Nematode community structure along elevation gradient in high altitude vegetation cover of Gangotri National Park (Uttarakhand), India
1.Hoschitz, M. & Kaufmann, R. Nematode community composition in five alpine habitats. Nematology 6, 737–747 (2004).
Google Scholar
2.Treonis, A. M. & Wall, D. H. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr. Comp. Biol. 45, 741–750 (2005).PubMed
Google Scholar
3.Tong, F. C., Xiao, Y. & Wang, Q. L. Soil Nematode community structure on the northern slope of Changbai Mountain Northeast China. J. For. Res. 21, 93–98 (2010).
Google Scholar
4.Yeates, G. W. Nematodes as soil indicators functional and biodiversity aspects. Biol. Fertil. Soils 37, 199–210 (2003).
Google Scholar
5.Bakonyi, G. et al. Soil Nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl. Soil. Ecol. 37(1–2), 31–40 (2007).
Google Scholar
6.Van Eekeren, N. et al. Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biol. Biochem. 42(9), 1491–1504 (2010).
Google Scholar
7.Kitagami, Y., Kanzaki, N. & Matsuda, Y. Distribution and community structure of soil nematodes in coastal Japanese pine forests were shaped by harsh environmental conditions. Appl. Soil. Ecol. 119, 91–98 (2017).
Google Scholar
8.Salamun, P. et al. The effects of vegetation cover on soil Nematode communities in various biotopes disturbed by industrial emissions. Sci. Total Environ 592, 106–114 (2017).CAS
PubMed
ADS
Google Scholar
9.Kashyap, P., Bhardwaj, M. & Uniyal, V. P. Bibliography on the soil Nematodes of the Indian Himalayan Region. In Bibliography on the Fauna and Micro Flora of the Indian Himalayan Region. ENVIS Bulletin: Wildlife and Protected Areas Vol. 17 (ed. Sathyakumar, S.) 239–256 (Wildlife Institute of India, 2016).
Google Scholar
10.Kumar, S. & Rawat, S. First report on the root-knot Nematode Meloidogyneenterolobii (Yang and Eisenback 1988) infecting guava (Psidiumguajava) in Udham Singh Nagar of Uttarakhand India. Int. J. Curr. Microbiol. Appl. Sci. 7(4), 1720–1724 (2018).CAS
Google Scholar
11.Kayani, M. Z., Mukhtar, T. & Hussain, M. A. Interaction between Nematode inoculum density and plant age on growth and yield of cucumber and reproduction of Meloidogyne incognita. Pak. J. Zool. 50(3), 897–902 (2018).
Google Scholar
12.Rizvi, A. N., Sen, D., Maity, P. & Kumar, H. Nematoda (soil inhabiting Nematodes). In Faunal Diversity of Indian Himalaya (eds Chandra, K. et al.) 115–134 (Director Zool Surv India, 2018).
Google Scholar
13.Devetter, M., Hanel, L., Rehakova, K. & Anddolezal, J. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS ONE 12(11), e0187646 (2017).PubMed
PubMed Central
Google Scholar
14.Afzal, S., Nesar, H., Imran, Z. & Ahmad, W. Altitudinal gradient affect abundance, diversity and metabolicfootprint of soil nematodesin Banihal-Pass of Pir-Panjalmountain range. Sci. Rep. 11, 16214 (2021).CAS
PubMed
PubMed Central
ADS
Google Scholar
15.Dong, K. et al. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci. Rep. 7, 3028 (2017).PubMed
PubMed Central
ADS
Google Scholar
16.Powers, L. E., Ho, M. C., Freckman, D. W. & Virginia, R. A. Distribution, community structure and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley Antarctica. Arct. Alp. Res. 30, 133–141 (1998).
Google Scholar
17.Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. T. Abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Front. Ecol. Evol. 4, 84 (2016).
Google Scholar
18.Veen, G. F. et al. Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599 (2017).
Google Scholar
19.Burrows, C. J. Processes of Vegetation Change 1 (Unwin Hyman, 1990).
Google Scholar
20.De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).PubMed
PubMed Central
ADS
Google Scholar
21.Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadicasebifera) in China. Plant Ecol. 220, 965–976 (2019).
Google Scholar
22.Qing, X., Bert, W., Steel, H., Quisado, J. & de Ley, I. T. Soil and litter nematode diversity of Mount Hamiguitan, the Philippines, with description of Bicirronemahamiguitanense n. sp (Rhabditida: Bicirronematidae). Nematology 17, 325–344 (2015).
Google Scholar
23.Wasilewska, L. Soil invertebrates as bioindicators with special reference to soil inhabiting nematodes. Russ. J. Nematol. 5, 113–126 (1997).
Google Scholar
24.Mladenov, A., Lazarova, S. & Peneva, V. Distribution patterns of Nematode communities in an urban forest in Sofia Bulgaria. In Ecology of the City of Sofia. Species and Communities in an Urban Environment (eds Peneva, L. et al.) 281–297 (Sofia Bulgaria Pen-soft Publishers, 2004).
Google Scholar
25.Hánel, L. Comparison of soil Nematode communities in three spruce forests at the Bobín Mount Czech Republic. Biológia 51, 485–493 (1996).
Google Scholar
26.Hanel, L. Soil Nematodes in five spruce forests of the Beskydymountains Czech Republic. Fundam. Appl. Nematol. 19(1), 15–24 (1996).
Google Scholar
27.Zhang, S. et al. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau China. Biol. Fertil. Soils 48(4), 393–400 (2012).CAS
Google Scholar
28.Yeates, G. W. Abundance diversityand resilience of Nematode assemblage in forest soils. Can. J. For. Res. 37, 216–225 (2007).
Google Scholar
29.Mulder, C., Zwart, D. D., Van Wijnen, H. J., Schouten, A. J. & Andbreure, A. M. Observational and simulated evidence of ecological shifts within the soil Nematode community of agroecosystems under conventional and organic farming. Funct. Ecol. 17(4), 516–525 (2003).
Google Scholar
30.Butenko, K. O., Gongalsky, K. B., Korobushkin, D. I., Ekschmitt, K. & Zaitsev, A. S. Forest fires alter the trophic structure of soil nematode communities. Soil Biol. Biochem. 109, 107–117 (2017).CAS
Google Scholar
31.Tibbett, M. et al. Long-term acidification of pH neutral grasslands affects soil biodiversity fertility and function in a heathland restoration. CATENA 180, 401–415 (2019).CAS
Google Scholar
32.Zhang, S. et al. Tillage effects outweigh seasonal effects on soil Nematode community structure. Soil Tillage Res. 192, 233–239 (2019).
Google Scholar
33.Liang, S. et al. Soil Nematode community composition and stability under different nitrogen additions in a semiarid grassland. Glob. Ecol. Conserv. 22, e00965n (2020).
Google Scholar
34.Olatunji, O. A. et al. The effect of phosphorus addition, soil moisture, and plant type on soil nematode abundance and community composition. J. Soil. Sediment 19, 1139–1150 (2019).CAS
Google Scholar
35.Wang, J. et al. Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant Soil 445(1), 425–437 (2019).CAS
Google Scholar
36.Zhang, Z. W. et al. The impacts of nutrient addition and livestock exclosure on the soil Nematode community in degraded grassland. Land Degrad. Dev. 30(13), 1574–1583 (2019).
Google Scholar
37.Bastow, J. The impacts of a wildfire in a semiarid grassland on soil Nematode abundances over 4 years. Biol. Fertil. Soils 56, 675–685 (2020).
Google Scholar
38.Renčo, M., Gomoryova, E. & Cerevková, A. The effect of soil type and ecosystems on the soil nematode and microbial communities. Helminthologia 57(2), 129 (2020).PubMed
PubMed Central
Google Scholar
39.Saeed, S., Barozai, M. Y. K., Ahmad, A. & Shah, S. H. Impact of altitude on soil physical and chemical properties in SraGhurgai (Takatu mountain range) Quetta Balochistan. Int. J. Sci. Eng. Res. 5(3), 730–735 (2014).
Google Scholar
40.Zhang, X. Y. et al. Effects of rainfall amount and frequency on soil nitrogen mineralization in Zoigê alpine wetland. Eur. J. Soil Biol. 97, 103170 (2020).CAS
Google Scholar
41.Juan, Y. et al. Simulation of soil freezing-thawing cycles under typical winter conditions: Implications for nitrogen mineralization. J. Soils Sediments 20(1), 143–152 (2020).CAS
Google Scholar
42.Cutz-Pool, L. Q., Palacios-Vargas, J. G., Cano-Santana, Z. & Castaño-Meneses, G. Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl volcano state of Mexico, Mexico. Entomol. News 121, 249–261 (2010).
Google Scholar
43.Baniyamuddin, M., Tomar, V. V. S. & Ahmad, W. Functional diversity of soil inhabiting nematodes in natural forests of Arunachal Pradesh India. Nematol. Mediterr. 35, 109–121 (2007).
Google Scholar
44.Hanel, L. Nematode assemblages indicate soil restoration on colliery spoils afforested by planting different tree species and by natural succession. Appl. Soil. Ecol. 40, 86–99 (2008).
Google Scholar
45.Rizvi, A. N. Community analysis of soil inhabiting nematodes in natural Sal forests of Dehradun India. Int. J. Nematol. 18, 181–190 (2008).
Google Scholar
46.Keith, A. M. et al. Strong impacts of below-ground tree inputs on soil nematode trophic composition. Soil Biol. Biochem. 41, 1060–1065 (2009).CAS
Google Scholar
47.Keith, A. M. et al. Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biol. Biochem. 38, 3421–3430 (2006).CAS
Google Scholar
48.Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178 (2001).CAS
Google Scholar
49.Savin, M. C., Gorres, J. H., Neher, D. A. & Amador, J. A. Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biol. Biochem. 33, 429–438 (2001).CAS
Google Scholar
50.Postma-Blaauw, M. B. et al. Within trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 142, 428–439 (2005).CAS
PubMed
ADS
Google Scholar
51.Bongers, T. & Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14, 224–228 (1999).CAS
PubMed
Google Scholar
52.Ferris, H., Bongers, T. & De Goede, R. G. M. A framework for soil food web diagnostics extension of the nematode faunal analysis concept. Appl. Soil. Ecol. 18, 13–29 (2001).
Google Scholar
53.Ferris, H., Bongers, A.M.T. & De Goede, R. Nematode faunal analyses to assess food web enrichment and connectance. Nematology monographs and perspectives. In Proceedings of the Fourth International Congress of Nematology, Brill 503–510 (2004).54.Ferris, H., Zheng, L. & Walker, M. A. Resistance of grape rootstocks to plant-parasitic nematodes. J. Nematol. 44, 377–386 (2012).CAS
PubMed
PubMed Central
Google Scholar
55.Quist, C. W., Van Der Putten, W. H. & Thakur, M. P. Soil predator loss alters aboveground stoichiometry in a native but not in a related range-expanding plant when exposed to periodic heat waves. Soil Biol. Biochem. 150, 107999 (2020).CAS
Google Scholar
56.Ferris, H. & Matute, M. M. Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil. Ecol. 23, 93–110 (2003).
Google Scholar
57.Tomar, W. W. S. & Ahmad, W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia 46, 183–189 (2009).
Google Scholar
58.Hanel, N. Soil Nematodes in alpine meadows of the Tatra National Park (Slovak Republic). Helminthologia 54(1), 48–67 (2017).
Google Scholar
59.Hanel, L. & Cerevkova, A. Diversity of soil Nematodes in meadows of the White Carpathians. Helminthologia 43, 109–116 (2006).
Google Scholar
60.Neely, C. L., Beare, M. H., Hargrove, W. L. & Coleman, D. C. Relationships between fungal and bacterial substrate-induced respiration biomass and plant residue decomposition. Soil Biol. Biochem. 23(10), 947–954 (1991).CAS
Google Scholar
61.Moller, J., Miller, M. & Kjoller, A. Fungal–bacterial interaction on beech leaves: Influence on decomposition and dissolved organic carbon quality. Soil Biol. Biochem. 31(3), 367–374 (1999).CAS
Google Scholar
62.Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).CAS
Google Scholar
63.Nottingham, A. T. et al. Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol. Fertil. Soils 54(2), 219–228 (2018).CAS
Google Scholar
64.Albright, M. B. et al. Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front. Microbiol. 11, 542220 (2020).PubMed
PubMed Central
Google Scholar
65.Champion, H. G. & Seth, S. K. Revised Forest Types of India (Manager of Publications Government of India Delhi, 1968).
Google Scholar
66.Singh, D., Chhonkar, P. K. & Pandey, R. N. Manual on Soil, Plant and Water Analysis (Westville Publishing House, 2005).
Google Scholar
67.Jackson, M. L. Soil Chemical Analysis 498 (Prentice-Hall of India Pvt. Ltd, 1973).
Google Scholar
68.Walkley, A. & Black, I. A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–37 (1934).CAS
ADS
Google Scholar
69.Kjeldahl, J. New method for the determination of nitrogen. Chem. News 48(1240), 101–102 (1883).
Google Scholar
70.Olsen, S. R., Cole, W., Watanable, F. S. & Dean, L. A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Methods Soil Anal. Circ. 939(1883), 1–56 (1954).
Google Scholar
71.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for globalland areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
Google Scholar
72.Cobb, N.A. Estimating the Nematode population of the soil. In Agricultural Technical Circular No. 1 48 (United States Department of Agriculture Bureau of Plant Industry, 1918).73.Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil Nematode families and genera—An outline for soil ecologists. J. Nematol. 25, 315–331 (1993).CAS
PubMed
PubMed Central
Google Scholar
74.Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia: Relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178. https://doi.org/10.1007/s003740100390 (2001).CAS
Article
Google Scholar
75.Bongers, T. The maturity index an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).PubMed
ADS
Google Scholar
76.Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil. Ecol. 10, 239–251 (1998).
Google Scholar
77.Bongers, T., De Goede, R. G. M., Korthals, G. W. & Yeates, G. W. Proposed changes of c–p classification for nematodes. Russ. J. Nematol. 3, 61–62 (1995).
Google Scholar
78.Neher, D. A. & Campbell, C. L. Nematode communities and microbial biomass in soils with annual and perennial crops. Appl. Soil. Ecol. 1(1), 17–28 (1994).
Google Scholar
79.Sieriebriennikov, B., Ferris, H. & de Goede, R. G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).
Google Scholar
80.Andrassy, I. T. Determination of volume and weight of nematodes. Acta Zool. Acad. Sci. Hung. 2, 1–15 (1956).
Google Scholar
81.Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).
Google Scholar
82.Oksanen, J.B. et al. vegan: Community ecology package. R package version 5–6 (2020).83.R Core Team. R: A Language and Environment for Statistical Computing (2019). Retrieved from https://www.R-project.org.84.Figures 1, 3 and 4 was prepared using GraphPad Prism version 8.0.2 for Windows, GraphPadSofware, La Jolla California USA. www.graphpad.com. More