1.Trivers, R. L. Parent-offspring conflict. Am. Zool. 14, 249â264 (1974).
Google ScholarÂ
2.Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871â1971 (ed. Campbell, B.) 136â179 (Routledge, 1972).
Google ScholarÂ
3.Godfray, H. C. J. Evolutionary theory of parentâoffspring conflict. Nature 376, 133â138 (1995).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
4.Parker, G. A. & Macnair, M. R. Models of parent-offspring conflict. IV. Suppression: Evolutionary retaliation by the parent. Anim. Behav. 27, 1210â1235 (1979).
Google ScholarÂ
5.Wells, J. C. K. Parent-offspring conflict theory, signaling of need, and weight gain in early life. Q. Rev. Biol. 78, 169â202 (2003).PubMedÂ
Google ScholarÂ
6.Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: The evolution of parent-offspring signalling. Philos. Trans. R. Soc. B 355, 1581â1591 (2000).CASÂ
Google ScholarÂ
7.Mock, D. W. & Parker, G. A. Siblicide, family confilct and the evolutionary limits of selfishness. Anim. Behav. 56, 1â10 (1997).
Google ScholarÂ
8.Wilson, A. J. et al. Selection on mothers and offspring: Whose phenotype is it and does it matter?. Evolution 59, 451â463 (2005).PubMedÂ
Google ScholarÂ
9.Janzen, F. J. & Warner, D. A. Parent-offspring conflict and selection on egg size in turtles. J. Evol. Biol. 22, 2222â2230 (2009).CASÂ
PubMedÂ
Google ScholarÂ
10.Hinde, C. A., Johnstone, R. A. & Kilner, R. M. Parent-offspring conflict and coadaptation. Science 327, 1373â1376 (2010).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
11.Kölliker, M. et al. Parent-offspring conflict and the genetic trade-offs shaping parental investment. Nat. Commun. 6, 1â8 (2015).
Google ScholarÂ
12.Kilner, R. M. & Hinde, C. A. Parentâoffspring conflict. In The Evolution of Parental Care (eds Royle, N. J. et al.) 119â132 (Oxford University Press, 2012).
Google ScholarÂ
13.Mas, F. & Kölliker, M. Maternal care and offspring begging in social insects: Chemical signalling, hormonal regulation and evolution. Anim. Behav. 76, 1121â1131 (2008).
Google ScholarÂ
14.Hale, R. E. & Travis, J. The evolution of developmental dependence, or âWhy do my kids need me so much?â. Evol. Ecol. Res. 14, 207â221 (2012).
Google ScholarÂ
15.Gomendio, M. Suckling behaviour and fertility in rhesus macaques (Macaca multatta). J. Zool. 217, 449â467 (1989).
Google ScholarÂ
16.Hamada, Y., Murata, T., Watanabe, S. & Kanda, I. Inhibitory effect of prolactin on ovulation in the in vitro perfused rabbit ovary. Nature 285, 161â163 (1980).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
17.Short, R. V. Breast feeding. Sci. Am. 250, 35â41 (1984).CASÂ
PubMedÂ
Google ScholarÂ
18.Traynor, K. S., Le Conte, Y. & Page, R. E. Age matters: Pheromone profiles of larvae differentially influence foraging behaviour in the honeybee, Apis mellifera. Anim. Behav. 99, 1â8 (2015).
Google ScholarÂ
19.Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D. & Le Conte, Y. E-ÎČ-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 5, 1â7 (2010).
Google ScholarÂ
20.Capodeanu-NĂ€gler, A., De La Torre, E. R., Eggert, A. K., Sakaluk, S. K. & Steiger, S. Divergent coevolutionary trajectories in parentâofspring interactions and discrimination against brood parasites revealed by interspecifc cross-fostering. R. Soc. Open Sci. 5, 180819 (2018).
Google ScholarÂ
21.Smiseth, P. T. & Moore, A. J. Behavioral dynamics between caring males and females in a beetle with facultative biparental care. Behav. Ecol. 15, 621â628 (2004).
Google ScholarÂ
22.Eggert, A. K. Alternative male mate-finding tactics in burying beetles. Behav. Ecol. 3, 243â254 (1992).
Google ScholarÂ
23.Pukowski, E. Ăkologische untersuchungen an Necrophorus F. Z. Morphol. Ăkol. Tiere 27, 518â586 (1933).
Google ScholarÂ
24.Eggert, A.-K. & MĂŒller, J. K. Biparental care and social evolution in burying beetles: Lessons from the larder. Soc. Behav. Insects Arachn. (1997).25.Royle, N. J., Hopwood, P. E. & Head, M. L. Burying beetles. Curr. Biol. 23, R907 (2013).CASÂ
PubMedÂ
Google ScholarÂ
26.Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595â618 (1998).CASÂ
PubMedÂ
Google ScholarÂ
27.Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930â937 (2012).CASÂ
PubMedÂ
Google ScholarÂ
28.Cotter, S. C. & Kilner, R. M. Sexual division of antibacterial resource defence in breeding burying beetles, Nicrophorus vespilloides. J. Anim. Ecol. 79, 35â43 (2010).PubMedÂ
Google ScholarÂ
29.Vogel, H. et al. The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota. Nat. Commun. 6, 1â10 (2017).
Google ScholarÂ
30.Shukla, S. P. et al. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc. Natl. Acad. Sci. USA. 115, 11274â11279 (2018).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
31.Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: Lessons from burying beetles. J. Anim. Ecol. 87, 414â427 (2018).PubMedÂ
Google ScholarÂ
32.Miller, C. J., Bates, S. T., Gielda, L. M. & CurtisCreighton, J. Examining transmission of gut bacteria to preserved carcass via anal secretions in Nicrophorus defodiens. PLoS ONE 14, 1â13 (2019).
Google ScholarÂ
33.Suzuki, S. Suppression of fungal development on carcasses the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomol. Sci. 4, 403â405 (2001).
Google ScholarÂ
34.Eggert, A. K., Reinking, M. & MĂŒller, J. K. Parental care improves offspring survival and growth in burying beetles. Anim. Behav. 55, 97â107 (1998).CASÂ
PubMedÂ
Google ScholarÂ
35.Trumbo, S. T. Feeding upon and preserving a carcass: The function of prehatch parental care in a burying beetle. Anim. Behav. 130, 241â249 (2017).
Google ScholarÂ
36.Smiseth, P. T., Darwell, C. T. & Moore, A. J. Partial begging: An empirical model for the early evolution of offspring signalling. Proc. R. Soc. B Biol. Sci. 270, 1773â1777 (2003).
Google ScholarÂ
37.Rauter, C. M. & Moore, A. J. Do honest signalling models of offspring solicitation apply to insects?. Proc. R. Soc. B Biol. Sci. 266, 1691â1696 (1999).
Google ScholarÂ
38.Royle, N. J., Russell, A. F. & Wilson, A. J. The evolution of flexible parenting. Science 345, 776â781 (2014).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
39.Capodeanu-NĂ€gler, A., Eggert, A. K., Vogel, H., Sakaluk, S. K. & Steiger, S. Species divergence in offspring begging and parental provisioning is linked to nutritional dependency. Behav. Ecol. 29, 42â50 (2018).
Google ScholarÂ
40.MĂŒller, J. K. Replacement of a lost clutch: A strategy for optimal resource utilization in Necrophorus vespilloides (Coleoptera: Silphidae). Ethology 76, 74â80 (1987).
Google ScholarÂ
41.MĂŒller, J. K., Braunisch, V., Hwang, W. & Eggert, A. K. Alternative tactics and individual reproductive success in natural associations of the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 18, 196â203 (2007).
Google ScholarÂ
42.MĂŒller, J. K. & Eggert, A. K. Time-dependent shifts between infanticidal and parental behavior in female burying beetles a mechanism of indirect mother-offspring recognition. Behav. Ecol. Sociobiol. 27, 11â16 (1990).
Google ScholarÂ
43.Smiseth, P. T. & Parker, H. J. Is there a cost to larval begging in the burying beetle Nicrophorus vespilloides?. Behav. Ecol. 19, 1111â1115 (2008).
Google ScholarÂ
44.Steiger, S. Bigger mothers are better mothers: Disentangling size-related prenatal and postnatal maternal effects. Proc. R. Soc. B. 280, 1225 (2013).
Google ScholarÂ
45.Keppner, E. M. et al. Beyond cuticular hydrocarbons: Chemically mediated mate recognition in the subsocial burying beetle Nicrophorus vespilloides. J. Chem. Ecol. 43, 84â93 (2017).CASÂ
PubMedÂ
Google ScholarÂ
46.Schrader, M. & Galanek, J. Stridulation is unimportant for effective parental care in two species of burying beetle. Ecol. Entomol. 47, 1â18 (2021).
Google ScholarÂ
47.Curtis Creighton, J., Heflin, N. D. & Belk, M. C. Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am. Nat. 174, 673â684 (2009).PubMedÂ
Google ScholarÂ
48.Engel, K. C. et al. A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. Nat. Commun. 7, 1â10 (2016).
Google ScholarÂ
49.Trumbo, S. T. Reproductive benefits of infanticide in a biparental burying beetle Nicrophorus orbicollis. Behav. Ecol. Sociobiol. 27, 269â273 (1990).
Google ScholarÂ
50.Skinner, S. W. Clutch size as an optimal foraging problem for insects. Behav. Ecol. Sociobiol. 17, 231â238 (1985).
Google ScholarÂ
51.Lack, D. The significance of clutch-size. Ibis 89, 302â352 (1946).
Google ScholarÂ
52.Lyon, B. E. Optimal clutch size and conspecific brood parasitism. Nature 392, 380â383 (1998).CASÂ
ADSÂ
Google ScholarÂ
53.Parker, G. A. & Courtney, S. P. Models of clutch size in insect oviposition. Theor. Popul. Biol. 26, 27â48 (1984).MATHÂ
Google ScholarÂ
54.Godfray, H. C. J., Partridge, L. & Harvey, P. H. Clutch size. Annu. Rev. Ecol. Syst. 22, 409â429 (1991).
Google ScholarÂ
55.Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: a manipulation experiment. J. Anim. Ecol. 61, 121â129 (1992).
Google ScholarÂ
56.Zaviezo, T. & Mills, N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047â1057 (2000).
Google ScholarÂ
57.Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Anim. Behav. 66, 1119â1128 (2003).
Google ScholarÂ
58.Parker, G. A., Royle, N. J. & Hartley, I. R. Intrafamilial conflict and parental investment: a synthesis. Philos. Trans. R. Soc. B 357, 295â307 (2002).
Google ScholarÂ
59.Godfray, H. C. J. & Parker, G. A. Clutch size, fecundity and parent-offspring conflict. Philos. Trans. R. Soc. Lond. B 332, 67â79 (1991).ADSÂ
Google ScholarÂ
60.Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325â383 (1974).
Google ScholarÂ
61.Kilner, R. M. & Hinde, C. A. Information warfare and parent-offspring conflict. Adv. Stud. Behav. 38, 283â336 (2008).
Google ScholarÂ
62.Kilner, R. M. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Trends Ecol. Evol. 12, 11â15 (1997).CASÂ
PubMedÂ
Google ScholarÂ
63.Godfray, H. C. J. Signalling of need by offspring to their parents. Lett. Nat. 352, 328â330 (1991).
Google ScholarÂ
64.Johnstone, R. A. Begging signals and parent-offspring conflict: Do parents always win?. Proc. R. Soc. B. 263, 1677â1681 (1996).ADSÂ
Google ScholarÂ
65.Parker, G. A., Royle, N. J. & Hartley, I. R. Begging scrambles with unequal chicks: Interactions between need and competitive ability. Ecol. Lett. 5, 206â215 (2002).
Google ScholarÂ
66.Keller, L. & Nonacs, P. The role of queen pheromones in social insects: Queen control or queen signal?. Anim. Behav. 45, 787â794 (1993).
Google ScholarÂ
67.Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263â1275 (2011).CASÂ
PubMedÂ
Google ScholarÂ
68.Oi, C. A. et al. The origin and evolution of social insect queen pheromones: Novel hypotheses and outstanding problems. BioEssays 37, 808â821 (2015).CASÂ
PubMedÂ
Google ScholarÂ
69.Smiseth, P. T. & Moore, A. J. Does resource availability affect offspring begging and parental provisioning in a partially begging species?. Anim. Behav. 63, 577â585 (2002).
Google ScholarÂ
70.Andrews, C. P. & Smiseth, P. T. Differentiating among alternative models for the resolution of parent-offspring conflict. Behav. Ecol. 24, 1185â1191 (2013).
Google ScholarÂ
71.Steiger, S., Peschke, K., Francke, W. & MĂŒller, J. K. The smell of parents: Breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc. R. Soc. B Biol. Sci. 274, 2211â2220 (2007).CASÂ
Google ScholarÂ
72.Steiger, S., Franz, R., Eggert, A. K. & MĂŒller, J. K. The Coolidge effect, individual recognition and selection for distinctive cuticular signatures in a burying beetle. Proc. R. Soc. B Biol. Sci. 275, 1831â1838 (2008).
Google ScholarÂ
73.Chemnitz, J., Jentschke, P. C., Ayasse, M. & Steiger, S. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282, 1â9 (2015).CASÂ
Google ScholarÂ
74.Steiger, S. Recognition and family life: Recognition mechanisms in the biparental burying beetle. in Social Recognition in Invertebrates: The Knowns and the Unknowns (eds. Aquiloni, L. & Tricarico, E.) 249â266 (2015).75.Takata, M., Mitaka, Y., Steiger, S. & Mori, N. A parental volatile pheromone triggers offspring begging in a burying beetle. Science 19, 1260â1278 (2019).
Google ScholarÂ
76.MĂ€enpÀÀ, M. I. & Smiseth, P. T. Resource allocation is determined by both parents and offspring in a burying beetle. J. Evol. Biol. 33(11), 1567â1578 (2020).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
77.Mattey, S. N., Richardson, J., Ratz, T. & Smiseth, P. T. Effects of offspring and parental inbreeding on parent-offspring communication. Am. Nat. 191, 716â725 (2018).PubMedÂ
Google ScholarÂ
78.Steiger, S. & Stökl, J. Pheromones regulating reproduction in subsocial beetles: insights with references to eusocial insects. J. Chem. Ecol. 44, 785â795 (2018).CASÂ
PubMedÂ
Google ScholarÂ
79.Haig, D. Genetic conflict in human pregnancy. Q. Rev. Biol. 68, 495â532 (1993).CASÂ
PubMedÂ
Google ScholarÂ
80.Paquet, M., Drummond, H. & Smiseth, P. T. Offspring are predisposed to beg more towards females in the burying beetle Nicrophorus vespilloides. Anim. Behav. 141, 195â201 (2018).
Google ScholarÂ
81.Sakaluk, S. K., Eggert, A.-K. & MĂŒller, J. K. The âwidow effectâ and its consequences for reproduction in burying beetles, Nicrophorus vespilloides (Coleoptera: Silphidae). Ethology 104, 553â564 (1998).
Google ScholarÂ
82.De Gasperin, O., Duarte, A., Troscianko, J. & Kilner, R. M. Fitness costs associated with building and maintaining the burying beetleâs carrion nest. Sci. Rep. 6, 1â6 (2016).
Google ScholarÂ
83.Bartlett, J. Male mating success and paternal care in Nicrophorus vespilloides (Coleoptera: Silphidae). Behav. Ecol. Sociobiol. 23, 297â303 (1988).
Google ScholarÂ
84.MĂŒller, J. K., Eggert, A. K. & Sakaluk, S. K. Carcass maintenance and biparental brood care in burying beetles: are males redundant?. Ecol. Entomol. 23, 195â200 (1998).
Google ScholarÂ
85.Smiseth, P. T., Dawson, C., Varley, E. & Moore, A. J. How do caring parents respond to mate loss? Differential response by males and females. Anim. Behav. 69, 551â559 (2005).
Google ScholarÂ
86.Parker, D. J. et al. Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle. Nat. Commun. 6, 1â10 (2015).CASÂ
Google ScholarÂ
87.Keppner, E. M., Ayasse, M. & Steiger, S. Contribution of males to brood care can compensate for their food consumption from a shared resource. Ecol. Evol. 10, 3535â3543 (2020).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
88.Schedwill, P., Paschkewitz, S., Teubner, H. & Steinmetz, N. From the hostâ s point of view: Effects of variation in burying beetle brood care and brood size on the interaction with parasitic mites. Plosone 15, 1â14 (2020).
Google ScholarÂ
89.Pilakouta, N., Hanlon, E. J. H. & Smiseth, P. T. Biparental care is more than the sum of its parts: Experimental evidence for synergistic effects on offspring fitness. Proc. R. Soc. B. 285, 875 (2018).
Google ScholarÂ
90.Chemnitz, J., Bagrii, N., Ayasse, M. & Steiger, S. Staying with the young enhances the fathersâ attractiveness in burying beetles. Evolution 71, 985â994 (2017).PubMedÂ
Google Scholar More