More stories

  • in

    Conservation agriculture based integrated crop management sustains productivity and economic profitability along with soil properties of the maize-wheat rotation

    Experimental site, location and climateFive years’ field experimentation on ICM was started in 2014–15 at the ICAR-Indian Agricultural Research Institute (28°35′ N latitude, 77°12′ E longitude, 229 m MSL), New Delhi, India. The study site comes under the ‘Trans IGPs’, being semi-arid with an average annual rainfall of 650 mm, of which ~ 80% occurs in July–September (south-west monsoon). The mean max. / min. air temperature ranges between 20-40ºC and 4-28ºC, respectively. The five years (2014–2019) weather data were recorded from the observatory adjoining to the experimental field, and presented in Supplementary Table 1. Before start of the experiment, a rainy season Sesbania was grown in 2014 to ensure the uniform fertility across the blocks. Initial soil samples (0.0–0.15 m depth) were collected in October 2014 after incorporating the Sesbania residues in soil. The soil samples were processed for the chemical analysis. The study site had a pH of 7.9 (1:2.5 soil and water ratio)68, 3.8 g kg−1 soil organic-C69, 94.1 kg ha−1 KMnO4 oxidizable N70, 97 µg g−1 soil microbial biomass carbon71, 51.3 μg PNP g−1 soil h−1 alkaline phosphatase72, 53.0 μg TPF g−1 soil d−1 dehydrogenase73, and 13.5 μg NH4-N g−1 soil h−1urease74.Description of different ICM modulesThe eight ICM modules were tested, comprising of four conventional tillage (CT)-based (ICM1-4) and four conservation agriculture (CA)-based (ICM5-8) modules, replicated thrice in a complete randomized block design with the plot size of 60 m2 (15 m × 4.5 m) (Table 4). The crop residues were completely removed in the CT-based modules (ICM1-4), while in the ICM5-8 modules, in-situ wheat (~ 3 Mg ha−1 on dry weight basis)) and maize (~ 5 Mg ha−1, on dry weight basis) residues were retained on the soil surface during all the seasons of crops cultivation (Footnote Table 4, Fig. 6a,b).Table 4 Description of integrated crop management (ICM) modules adopted in maize and wheat crops during the five yearsˈ fixed plot experimentation.Full size tableIn the ICM1-4 modules, the field preparation was carried out by sequential tillage operations, such as, deep ploughing using the disc harrow, cultivator/rotavator twice (0.15–0.20 m), followed by levelling in each season. In the ICM3-4, the raised beds of 0.70 m bed width (bed top 0.40 m and furrow 0.30 m) were formed during each cropping cycle using the tractor mounted bed planter, and simultaneously wheat sowing was done (Fig. 6c). In the case of maize, ridges (0.67 m length) were prepared using the ridge maker. In the CA-based ICM5-8 modules, the tillage operations, such as, seed and fertilizer placement were restricted to the crop row-zone in maize and wheat both. In the ICM7&8, the permanent raised beds (0.67 m mid-furrow to mid-furrow, 0.37 m wide flat tops, and 0.15 m furrow depth), were prepared (Fig. 6d). However, these beds were reshaped using the disc coulter at the end of each cropping cycle without disturbing the surface residues. The sowing was accomplished using the raised bed multi-crop planter.Cultural operations and the fertilizer applicationDuring every season, the maize (cv. PMH 1) was sown in the first week of July using 20 kg seed ha−1. The wheat (cv. HD 2967) crop was sown in the first fortnight of November using the seed-cum fertilizer drill (ICM1-2), bed planter (ICM3-4) and zero-till seed drill (ICM5-8) at 100 kg seed ha−1. The chemical fertilizers (N, P and K) were applied as per the modules described in the footnote of Table 4. At sowing, the full doses of phosphorous (P) and potassium (K) were applied using the di-ammonium phosphate (DAP) and muriate of potash (MOP), and the nitrogen (N) supplied through DAP. The remaining N was top-dressed through urea in two equal splits after the first irrigation and tasseling / silking stages in maize, and crown root initiation and tillering stages of wheat. In the modules receiving ¾ fertilizers (ICM2,4,6,8), the seeds were treated with the NPK liquid bio-fertilizer (LBFs) (diluted 250 ml formulation 2.5 L of water ha−1), and an arbuscular mycorrhiza (AMF) was broadcasted at 12 kg ha−1 as has been described by75. This LBFs had the microbial consortia of N-fixer (Azotobacter chroococcum), P (Pseudomonas) and K (Bacillus decolorationis) solubilizers, procured from the commercial biofertilizer production unit of the Microbiology Division, ICAR-Indian Agricultural Research Institute, New Delhi (Patentee: ICAR, Govt. of India). Weeds were managed by integrating the pre- and post-emergence herbicides, and their combinations along with the hand weeding-mulching, as mentioned in the concerned modules (Footnote Table 4). However, in the CA-based modules (ICM5-8), the non-selective herbicide glyphosate (1 kg ha−1) was used 10 days before the sowing. The need-based integrated insect-pests and disease management practices were followed uniformly across the modules.Soil sampling and analysisBefore start of the experiment, the soil sampling was done from 0.0–0.15 m depth. Afterwards, five random samples from each module from 0.0–0.30 m soil depth were collected at the flowering stage of 5th season wheat. These samples were taken from the three soil depths (0.0 to 0.05, 0.05–0.15 and 0.150–0.30 m) using the core sampler. The ground, air-dried soil samples, passed through a 0.2 mm sieve were used for the determination of the Walkley and Black organic carbon (SOC), as described by76. For the soil biological properties, the soil samples were processed, and stored at 5ºC for 18–24 h, then analyzed the soil microbial biomass carbon (SMBC), dehydrogenase (SDH), alkaline phosphate (SAP) and the urease (URE) activities.The soil microbial biomass carbon (SMBC)The SMBC was measured using the fumigation extraction method as proposed by71. The pre-weighed samples from the respective soil depths were fumigated with the ethanol-free chloroform for the 24 h. Separately, a non–fumigated set was also maintained. Further, 0.5 M K2SO4 (soil: extractant 1:4) was added, and kept on a reciprocal shaker for 30 min. and then filtered through a Whatman No. 42 filter paper. OC of the filtrate was measured through the dichromate digestion, followed by the back titration with 0.05 N ferrous ammonium sulphate. The SMBC was then calculated using the equation:$${text{S}}_{{{text{MBC}}}} = {text{EC }} times { 2}.{64}$$where, EC = (Corg in fumigated soil – Corg in non-fumigated soil), and expressed in µg C g−1 soil.The dehydrogenase activity (SDH)The SDH activity (μg TPF g−1 soil d−1) was assessed using the method of73. The soil sample (~ 6 g) was saturated with 1.0 ml freshly prepared 3% triphenyltetrazolium chloride (TTC), and then incubated for 24 h under the dark. Later on, the methanol was added to stop the enzyme activity, and the absorbance of the filtered aliquot was read at 485 nm.The alkaline phosphatase activity (SAP)The APA activity was estimated in 1.0 g soil saturated with 4 ml of the modified universal buffer (MUB) along with 1 ml of p-nitrophenol phosphate followed by incubation at 37 °C for 1 h. After incubation, 1 ml of 0.5 M CaCl2 and 4 mL of NaOH were added and the contents filtered through Whatman No. 1 filter paper. The amount of p-nitrophenol in the sample was determined at 400 nm72 and the enzyme activity was expressed as µg p-NP g−1 soil h−1.The urease activityUrease activity was measured using 10 g soil suspended in 2.5 ml of urea solution (0.5%). After incubating for a day at 37 °C, 50 ml of 1 M KCl solution was added. This was kept on a shaker for 30 min and the aliquot was filtered through Whatman No. 1 filter paper. To the filtrate (10 ml), 5 ml of sodium salicylate and 2 ml of 0.1% sodium dichloro-isocyanide solution were added and the green color developed was measured at 690 nm74. These values are reported as µg NH4-N g−1 soil h−1.Water application and productivityIn experimental modules, water was given through the controlled border irrigation method. The current meter was fixed in the main lined rectangular channel, and the water velocity was measured. To get the flow discharge, then multiplied with area of cross section of the channel. The following formulae were used to calculate the applied irrigation water quantity and depth3:$${text{Irrigation water applied }}left( {text{L}} right) , = {text{ F }} times {text{ t (i)}}$$$${text{Depth }}left( {{text{mm}}} right) , = {text{ L}} div {text{A}}/{ 1}000$$where, F is flow rate (m3 s−1), t is time (s) taken in each irrigation in each module and A is area (m2).The effective precipitation (EP, difference between total rainfall and the actual evapotranspiration) was calculated, and then EP was added to the irrigation water applied to calculate the total water applied in each module. Across the maize and wheat modules (ICM1-8), irrigations were given at the critical growth stages, such as, knee high and silking / tasseling (maize) and crown root formation, maximum tillering, flowering, heading / milking (wheat) stages, and after long dry spell (≥ 10-days).On the basis of the soil water depletion pattern (at the depth of 0.60 m), in each season, 3–6 irrigations were given to maize, while wheat received 5–8 irrigations per season or crop including the pre-sowing irrigation. The rainfall data were obtained from the meteorological observatory located in the adjoining field. The water productivity (kg grains ha−1 mm−1 of water) was measured as per the equation given below:$${text{Water productivity }} = {text{ economic yield }}left( {{text{kg ha}}^{{ – {1}}} } right)/{text{ total water applied }}left( {{text{mm}}} right)$$Additionally, the systems water productivity (SWP) was also estimated by adding the water productivity (WP) of both maize and wheat crops grown under the MWR.Yield measurementsIn each season, the maize and wheat crops were harvested during the months of October and April, respectively, leaving 0.75 m border rows from all the corners of each module. The crops were harvested from the net sampling area (6 m × 3 m, 18 m2) located at the center of each plot. Maize crop was harvested manually and the wheat by using the plot combine harvester. All the harvested produce was sun dried before threshing and the grain and straw / stover yields were weighed separately. The stover/straw yields were measured by subtracting the grain weight from the total biomass. To compare the total (system) productivity of the different ICM modules, the system yield was computed, taking maize as the base crop, i.e., the maize equivalent yield (MGEY) using the equation20:$${text{M}}_{{{text{GEY}}}} left( {{text{Mg ha}}^{{ – {1}}} } right) , = {text{ Ym }} + , left{ {left( {{text{Yw }} times {text{ Pw}}} right) , div {text{ Pm}}} right}$$where, Ym = maize grain yield (Mg ha−1), Yw = wheat grain yield (Mg ha−1), Pm = price of maize grain (US$ Mg−1) and Pw = price of wheat grain (US$ Mg−1).Farm economicsUnder different ICM modules, the variable production costs and economic returns were worked out based on the prevailing market prices for the respective years. The production costs included the cost of various inputs, such as, rental value of land, seeds, pesticides, LBFs / consortia, AMF, labor, and machinery; tillage / sowing operations, irrigation, mineral fertilizers, plant protection, harvesting, and threshing etc. The costs for the crops’ residues were also considered. The system total returns were computed by adding the economic worth of the individual crop, however, the net returns were the differences between the total returns to the variable production costs of the respective module. The Govt. of India’s minimum support prices (MSP) were considered for the conversion of grain yield to the economic returns (profits) during the respective years. Further, the system net returns (SNR) were worked out by summing the net income from both maize and the wheat in Indian rupees (INR), and then converted to the US$, based on the exchange rates for different years.Sustainable yield index (SYI)77,78described the SYI as a quantitative measure of the sustainability of agricultural rotation/practice. The sustainability could be interpreted using the standard deviation (σ) values, where the lower values of the σ indicate the greater sustainability and vice-versa. Total crop productivity of maize and wheat under the different ICM modules was computed based on the five years’ mean yield data. SYI was calculated using equation78.$${text{S}}_{{{text{YI}}}} = , left( {{-}{overline{text{Y}}}_{{{text{a }}{-}}} sigma_{{text{n}}} {-}_{{1}} } right) , /{text{ Y}}^{{{-}{1}}}_{{text{m}}}$$where, –ȳa is the average yield of the crops across the years under the specific management practice, σn–1 is the standard deviation and Y–1 m is the maximum yield obtained under the set of an ICM module.Statistical analysisThe GLM procedure of the SAS 9.4 (SAS Institute, 2003, Cary, NC) was used for the statistical analysis of all the data obtained from different ICM modules to analyze the variance (ANOVA) under the randomized block design79. Tukey’s honest significant difference test was employed to compare the mean effect of the treatments at p = 0.05.Authors have confirmed that all the plant studies were carried out in accordance with relevant national, international or institutional guidelines. More

  • in

    Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior

    1.Andrews, K. L. Latin-American research on Spodoptera frugiperda (Lepidoptera, Noctuidae). Florida Entomol. 71, 630–653. https://doi.org/10.2307/3495022 (1988).Article 

    Google Scholar 
    2.Brevault, T. et al. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Senegal. Entomologia Generalis 37, 129–142. https://doi.org/10.1127/entomologia/2018/0553 (2018).Article 

    Google Scholar 
    3.Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. https://doi.org/10.1038/s41598-017-04238-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamo, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE https://doi.org/10.1371/journal.pone.0165632 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Jacobs, A., van Vuuren, A. & Rong, I. H. Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae) from South Africa. Afr. Entomol. 26, 45–49. https://doi.org/10.4001/003.026.0045 (2018).Article 

    Google Scholar 
    6.Day, R. et al. Fall Armyworm: Impacts and Implications for Africa. Outlooks Pest Manag. 28, 196–201. https://doi.org/10.1564/v28_oct_02 (2017).Article 

    Google Scholar 
    7.Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474. https://doi.org/10.1126/science.356.6337.473 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Luginbill, P. The fall armyworm. US Dept. Agric. Tech. Bull. 34, 1–91 (1928).
    Google Scholar 
    9.Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467. https://doi.org/10.1002/ece3.268 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Westbrook, J., Fleischer, S., Jairam, S., Meagher, R. & Nagoshi, R. Multigenerational migration of a pest insect. Ecosphere 10, e02919. https://doi.org/10.1002/ecs2.2919 (2019).Article 

    Google Scholar 
    11.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Ge, S. S. et al. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 20, 707–714. https://doi.org/10.1016/S2095-3119(20)63166-5 (2021).Article 

    Google Scholar 
    13.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE https://doi.org/10.1371/journal.pone.0217755 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Jr. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Nagoshi, R. N. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. https://doi.org/10.1038/s41598-018-21954-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of Cytochrome Oxidase Subunit I gene. Florida Entomol. 85, 186–190 (2002).CAS 
    Article 

    Google Scholar 
    18.Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).CAS 
    Article 

    Google Scholar 
    19.Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).CAS 
    Article 

    Google Scholar 
    20.Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).Article 
    PubMed 

    Google Scholar 
    21.Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).Article 

    Google Scholar 
    22.Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).CAS 
    Article 

    Google Scholar 
    24.Nagoshi, R. N. Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Ann. Entomol. Soc. Am. 105, 351–358. https://doi.org/10.1603/AN11138 (2012).CAS 
    Article 

    Google Scholar 
    25.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. https://doi.org/10.1038/s41598-019-44744-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528. https://doi.org/10.1371/journal.pone.0253528 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Koffi, D. et al. Trapping Spodoptera frugiperda (Lepidoptera: Noctuidae) moths in different crop habitats in Togo and Ghana. J. Econ. Entomol. 114, 1138–1144. https://doi.org/10.1093/jee/toab048 (2021).Article 
    PubMed 

    Google Scholar 
    30.Thenkabail, P. S. et al. Assessing future risks to agricultural productivity, water Resources and food security: How can remote sensing help?. Photogramm. Eng. Remote. Sens. 78, 773–782 (2012).
    Google Scholar 
    31.Teluguntla, P. et al. (eds.). Global Cropland Area Database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. Chapter 7 Vol. II. Land Resources: Monitoring, Modelling, and Mapping, Remote Sensing Handbook edited by Prasad S. Thenkabail.32.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Nagoshi, R. N., Fleischer, S. J. & Meagher, R. L. Texas is the overwintering source of fall armyworm in central Pennsylvania: Implications for migration into the northeastern United States. Environ. Entomol. 38, 1546–1554. https://doi.org/10.1603/022.038.0605 (2009).Article 
    PubMed 

    Google Scholar 
    34.Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).CAS 
    Article 

    Google Scholar 
    35.Assefa, Y., Mitchell, A. & Conlong, D. E. Phylogeography of Eldana saccharine Walker (Lepidoptera : Pyralidae). Annales de la Société Entomologique de France 42, 331–337. https://doi.org/10.1080/00379271.2006.10697465 (2006).Article 

    Google Scholar 
    36.Sezonlin, M. et al. Phylogeographic pattern and regional evolutionary history of the maize stalk borer Busseola fusca (Fuller) (Lepidoptera : Noctuidae) in sub-Saharan Africa. Annales de la Société Entomologique de France 42, 339–351. https://doi.org/10.1080/00379271.2006.10697466 (2006).Article 

    Google Scholar 
    37.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera, Noctuidae)—A sibling species complex. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    39.Nagoshi, R. N. & Meagher, R. Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Mol. Biol. 12, 453–458 (2003).CAS 
    Article 

    Google Scholar 
    40.Nagoshi, R. N. & Meagher, R. L. Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ. Entomol. 33, 881–889 (2004).Article 

    Google Scholar 
    41.Juárez, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains?. Entomol. Exp. Appl. 152, 182–199. https://doi.org/10.1111/eea.12215 (2014).CAS 
    Article 

    Google Scholar 
    42.Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).Article 

    Google Scholar 
    43.Pashley, D. P., Hardy, T. N. & Hammond, A. M. Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88, 748–755 (1995).Article 

    Google Scholar 
    44.Groot, A. T., Marr, M., Heckel, D. G. & Schofl, G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol. Entomol. 35, 105–118. https://doi.org/10.1111/J.1365-2311.2009.01138.X (2010).Article 

    Google Scholar 
    45.Kost, S., Heckel, D. G., Yoshido, A., Marec, F. & Groot, A. T. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution 70, 1418–1427. https://doi.org/10.1111/evo.12940 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Pashley, D. P., Hammond, A. M. & Hardy, T. N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 85, 400–405 (1992).Article 

    Google Scholar 
    47.Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575. https://doi.org/10.1093/jee/tox229 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816. https://doi.org/10.1038/s41598-017-10461-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22, 179. https://doi.org/10.1186/s12864-021-07492-7 (2021).CAS 
    Article 

    Google Scholar 
    50.Sperling, F. A. H. Sex-linked genes and species-differences in lepidoptera. Can. Entomol. 126, 807–818 (1994).Article 

    Google Scholar 
    51.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).Article 
    PubMed 

    Google Scholar 
    52.Jeger, M. et al. Pest risk assessment of Spodoptera frugiperda for the European Union. Efsa J. https://doi.org/10.2903/j.efsa.2018.5351 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Rwomushana, I. et al. Fall armyworm: Impacts and implications for Africa. In CABI Evidnece Notes (CABI, Oxfordshire, 2018) http://www.invasive-species.org/wp-content/uploads/sites/2/2019/02/FAW-Evidence-Note-October-2018.pdf54.Stanaway, M. A., Zalucki, M. P., Gillespie, P. S., Rodriguez, C. M. & Maynard, G. V. Pest risk assessment of insects in sea cargo containers. Aust. J. Entomol. 40, 180–192. https://doi.org/10.1046/j.1440-6055.2001.00215.x (2001).Article 

    Google Scholar  More

  • in

    Climate drives long-term change in Antarctic Silverfish along the western Antarctic Peninsula

    1.DeWitt, H. H. The character of the midwater fish fauna of the Ross Sea, Antarctica. Antarctic Ecol. 1, 305–314 (1970).
    Google Scholar 
    2.Guglielmo, L., Granata, A. & Greco, S. Distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Nototheniidae) off Terra Nova Bay (Ross Sea, Antarctica). Polar Biol. 19, 37–51 (1997).
    Google Scholar 
    3.La Mesa, M. & Eastman, J. T. Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fisheries 13, 241–266 (2012).
    Google Scholar 
    4.La Mesa, M., Eastman, J. T. & Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol. 27, 321–338 (2004).
    Google Scholar 
    5.Pinkerton, M. H., Bradford-Grieve, J. M. & Hanchet, S. M. A balanced model of the food web of the Ross Sea, Antarctica. CCAMLR Sci. 17, 1–31 (2010).
    Google Scholar 
    6.Caccavo, J. A. et al. Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica). Sci. Rep. 8, 1–16 (2018).
    Google Scholar 
    7.Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J. Exp. Biol. 218, 1834–1845 (2015).PubMed 

    Google Scholar 
    8.Bilyk, K. T. & DeVries, A. L. Heat tolerance and its plasticity in Antarctic fishes. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 158, 382–390 (2011).
    Google Scholar 
    9.Sandersfeld, T., Davison, W., Lamare, M. D., Knust, R. & Richter, C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 218, 2373–2381 (2015).PubMed 

    Google Scholar 
    10.Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).CAS 
    PubMed 

    Google Scholar 
    11.Stammerjohn, S. E. & Scambos, T. A. Warming reaches the South Pole. Nat. Clim. Change 10, 710–711 (2020).
    Google Scholar 
    12.Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. 173, 208–237 (2019).
    Google Scholar 
    13.Mintenbeck, K. & Torres, J. J. in The Antarctic silverfish: a keystone species in a changing ecosystem, 253–286 (Springer, 2017).14.Vacchi, M. et al. A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol. 35, 1573–1585 (2012).
    Google Scholar 
    15.Vacchi, M., La Mesa, M., Dalu, M. & Macdonald, J. Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antartic Sci. 16, 299–305 (2004).
    Google Scholar 
    16.Kellermann, A. K. Midwater fish ecology. Found. Ecol. Res. West Antarctic Peninsula 70, 231–256 (1996).
    Google Scholar 
    17.La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).
    Google Scholar 
    18.Parker, M. L. et al. Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the Western Antarctic Peninsula. J. Mar. Syst. 152, 18–41 (2015).
    Google Scholar 
    19.Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar. Ecol. Prog. Ser. 515, 11–32 (2014).
    Google Scholar 
    20.Koubbi, P. et al. Spatial distribution and inter-annual variations in the size frequency distribution and abundances of Pleuragramma antarcticum larvae in the Dumont d’Urville Sea from 2004 to 2010. Polar Sci. 5, 225–238 (2011).
    Google Scholar 
    21.Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).CAS 

    Google Scholar 
    22.La Mesa, M. et al. Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarctic Sci. 22, 243 (2010).
    Google Scholar 
    23.Raphael, M. N. et al. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).
    Google Scholar 
    24.Fogt, R. L., Wovrosh, A. J., Langen, R. A. & Simmonds, I. The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017337 (2012).25.Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).
    Google Scholar 
    26.Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367–376 (2016).
    Google Scholar 
    27.Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).
    Google Scholar 
    28.Stammerjohn, S. E. et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa Sci. Anthropocene 3, 000055 (2015).29.Holland, M. M., Landrum, L., Raphael, M. N. & Kwok, R. The regional, seasonal, and lagged influence of the Amundsen Sea Low on Antarctic sea ice. Geophys. Res. Lett. 45, 11–227 (2018).
    Google Scholar 
    30.Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034939 (2008).31.Dotto, T. S. et al. Control of the oceanic heat content of the Getz‐Dotson Trough, Antarctica, by the Amundsen Sea Low. J. Geophys. Res. Oceans 125, e2020JC016113 (2020).32.Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).CAS 

    Google Scholar 
    33.Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and Ice Shelf Basal Melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).
    Google Scholar 
    34.Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of circumpolar deep water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. II Top. Stud. Oceanogr. 58, 1508–1523 (2011).CAS 

    Google Scholar 
    35.Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    36.Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).
    Google Scholar 
    37.Greaves, B. L. et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences 17, 3815–3835 (2020).CAS 

    Google Scholar 
    38.Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I Oceanogr. Res. Papers 101, 54–70 (2015).
    Google Scholar 
    39.La, H. S. et al. Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Sci. Rep. 9, 10087 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    40.Granata, A., Zagami, G., Vacchi, M. & Guglielmo, L. Summer and spring trophic niche of larval and juvenile Pleuragramma antarcticum in the Western Ross Sea, Antarctica. Polar Biol. 32, 369–382 (2009).
    Google Scholar 
    41.Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L. & Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 42, 1187–1195 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    42.Ghigliotti, L. et al. Reproductive features of the Antarctic silverfish (Pleuragramma antarctica) from the western Ross Sea. Polar Biol. 40, 199–211 (2017).
    Google Scholar 
    43.Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie ­penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).
    Google Scholar 
    44.Coggins, J. H. J. & McDonald, A. J. The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. J. Geophys. Res. Atmos. 120, 2167–2189 (2015).
    Google Scholar 
    45.Assmann, K. M. et al. Variability of circumpolar deep water transport onto the Amundsen Sea Continental shelf through a shelf break trough. J. Geophys. Res. Oceans 118, 6603–6620 (2013).
    Google Scholar 
    46.Moffat, C., Owens, B. & Beardsley, R. C. On the characteristics of circumpolar deep water intrusions to the west Antarctic Peninsula Continental Shelf. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC004955 (2009).47.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    PubMed 

    Google Scholar 
    48.Regan, H. C., Holland, P. R., Meredith, M. P. & Pike, J. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica. Deep Sea Res I Oceanogr. Res. Pap. 133, 59–71 (2018).
    Google Scholar 
    49.Holland, P. R. et al. Modeled trends in Antarctic sea ice thickness. J. Clim. 27, 3784–3801 (2014).
    Google Scholar 
    50.Hoppmann, M. et al. Platelet ice, the Southern Ocean’s hidden ice: a review. Ann. Glaciol. 61, 341–368 (2020).
    Google Scholar 
    51.Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci 6, 439–467 (2014).
    Google Scholar 
    52.Veazey, A. L., Jeffries, M. O. & Morris, K. Small-scale variability of physical properties and structural characteristics of Antarctic fast ice. Ann. Glaciol. 20, 61–66 (1994).
    Google Scholar 
    53.Garrison, D. L., Ackley, S. F. & Buck, K. R. A physical mechanism for establishing algal populations in frazil ice. Nature 306, 363–365 (1983).CAS 

    Google Scholar 
    54.Quetin, L. B. & Ross, R. M. in Smithsonian at the Poles: Contributions to International Polar Year Science (eds Krupnik, I., Lang, M. A. & Miller, S. E.) 285–298 (IPY, 2009).55.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).56.Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).CAS 
    PubMed 

    Google Scholar 
    57.Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).CAS 
    PubMed 

    Google Scholar 
    58.Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818–1829 (2013).
    Google Scholar 
    59.Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 4, 398–403 (2011).CAS 

    Google Scholar 
    60.Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).
    Google Scholar 
    61.Gleiber, M. Long-Term Change in Copepod Community Structure in the Western Antarctic Peninsula: Linkage to Climate and Implications for Carbon Cycling. Dissertations, Theses, and Masters Projects, College of William and Mary, Virginia Institute of Marine Science (2014).62.Wöhrmann, A. P., Hagen, W. & Kunzmann, A. Adaptations of the Antarctic silverfish Pleuragramma antarcticum(Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar. Ecol. Prog. Ser. 151, 205–218 (1997).
    Google Scholar 
    63.Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035–1047 (2013).
    Google Scholar 
    64.Meredith, M. P. et al. Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O. Deep Sea Res. II Top. Stud. Oceanogr. 55, 309–322 (2008).
    Google Scholar 
    65.Slosarczyk, W. Attempts at a quantitative estimate by trawl sampling of distribution of postlarval and juvenile notothenioids (Pisces, Perciformes) in relation to environmental conditions in the Antarctic Peninsula region during SIBEX 1983–84. Mem Natl Inst Polar Res Spec Issue. 40, 299–315 (1986).
    Google Scholar 
    66.Varsamos, S., Nebel, C. & Charmantier, G. Ontogeny of osmoregulation in postembryonic fish: a review. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 141, 401–429 (2005).
    Google Scholar 
    67.Gille, S. T., McKee, D. C. & Martinson, D. G. Temporal changes in the Antarctic circumpolar current: implications for the Antarctic Continental Shelves. Oceanography 29, 96–105 (2016).
    Google Scholar 
    68.Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).CAS 

    Google Scholar 
    69.Allen, M. et al. Technical summary: global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_TS_High_Res.pdf (2019).70.Screen, J. A., Bracegirdle, T. J. & Simmonds, I. Polar climate change as manifest in atmospheric circulation. Curr. Clim. Change Rep. 4, 383–395 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Gao, M. et al. Historical fidelity and future change of Amundsen Sea Low under 1.5 °C–4 °C global warming in CMIP6. Atmos. Res. 255, 105533 (2021).
    Google Scholar 
    72.Emslie, S. D. & McDaniel, J. D. Adélie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol. 25, 222–229 (2002).
    Google Scholar 
    73.Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: winter-summer heterogeneity in the distribution of Adélie penguin populations. In Foundations for Ecological Research West of the Antarctic Peninsula 257–272 (American Geophysical Union, 1996).74.Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).
    Google Scholar 
    76.Ruck, K. E., Steinberg, D. K. & Canuel, E. A. Regional differences in quality of krill and fish as prey along the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 509, 39–55 (2014).CAS 

    Google Scholar 
    77.Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fisheries 14, 343–363 (2013).
    Google Scholar 
    78.Eastman, J. T. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol. 4, 155–160 (1985).
    Google Scholar 
    79.Hanchet, S. et al. The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761, 397–414 (2015).
    Google Scholar 
    80.Pinkerton, M., Hanchet, S. & Bradford-Grieve, J. Finding the role of Antarctic toothfish in the Ross Sea ecosystem. Water Atmos. 15, 20–21 (2007).
    Google Scholar 
    81.Hanchet, S. M. & Rickard, G. J. A hypothetical life cycle for Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea region. CCAMLR Sci. 15, 35–53 (2008).
    Google Scholar 
    82.Fuiman, L., Davis, R. & Williams, T. Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar. Biol. 140, 815–822 (2002).
    Google Scholar 
    83.Casaux, R., Baroni, A. & Ramón, A. The diet of the Weddell Seal Leptonychotes weddellii at the Danco Coast, Antarctic Peninsula. Polar Biol. 29, 257–262 (2006).
    Google Scholar 
    84.Ponganis, P. J. & Stockard, T. K. Short note: the Antarctic toothfish: how common a prey for Weddell seals? Antarctic Sci. 19, 441–442 (2007).
    Google Scholar 
    85.Rumolo, P. et al. The diet of Weddell seals (Leptonychotes weddellii) in Terra Nova Bay using stable isotope analysis. Eur. Zool. J. 87, 94–104 (2020).
    Google Scholar 
    86.Hubold, G. & Ekau, W. Feeding patterns of post-larval and juvenile notothenioids in the southern Weddell Sea (Antarctica). Polar Biol. 10, 255–260 (1990).87.Moreno, C., Rueda, T. & Asencio, G. The trophic niche of Pleuragramma antarcticum in the Bransfield Strait, Antarctica: quantitative comparison with other areas of the Southern Ocean. Ser. Cient. INACH 35, 101–117 (1986).88.Gleiber, M. R., Steinberg, D. K. & Schofield, O. M. E. Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. J. Plankton Res. 38, 732–750 (2016).CAS 

    Google Scholar 
    89.Garzio, L., Steinberg, D., Erickson, M. & Ducklow, H. Microzooplankton grazing along the Western Antarctic Peninsula. Aquat. Microb. Ecol. 70, 215–232 (2013).
    Google Scholar 
    90.Hobbie, J. E. Scientific accomplishments of the Long Term Ecological Research Program: an introduction. Bioscience 53, 17–20 (2003).
    Google Scholar 
    91.Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281 (2017).
    Google Scholar 
    92.Hilton, E. J., Watkins-Colwell, G. J. & Huber, S. K. The expanding role of natural history collections. Ichthyol. Herpetol. 109, 379–391 (2021).
    Google Scholar 
    93.Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421–1435 (2020).CAS 
    PubMed 

    Google Scholar 
    94.Houde, E. D. Emerging from Hjort’s shadow. J. Northw. Atl. Fish. Sci 41, 53–70 (2008).
    Google Scholar 
    95.Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B Biol. Sci. 362, 67–94 (2007).
    Google Scholar 
    96.Smith, R. C. et al. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8, 77–86 (1995).
    Google Scholar 
    97.Kellermann, A. K. Identification key and catalogue of larval Antarctic fishes. Ber. Polarforsch 1–138 (1990).98.Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 2041–2058 (2008).
    Google Scholar 
    99.Hurrell, J. W. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).CAS 
    PubMed 

    Google Scholar 
    100.Hosking, J. S. & National Center for Atmospheric Research Staff. (eds) The Climate Data Guide: Amundsen Sea Low indices. https://climatedataguide.ucar.edu/climate-data/amundsen-sea-low-indices (2020).101.O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
    Google Scholar 
    102.Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning: With Applications in R (Spinger, 2013).103.Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fisheries Res. 93, 154–162 (2008).
    Google Scholar 
    104.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).105.Denes, F. V., Silveira, L. F. & Beissinger, S. R. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. 6, 543–556 (2015).
    Google Scholar 
    106.Zuur, A. F. & Ieno, E. N. Beginner´s Guide to Zero-inflated Models with R (Highland Statistics Ltd., 2016).107.Barnett, A. G., Koper, N., Dobson, A. J., Schmiegelow, F. & Manseau, M. Using information criteria to select the correct variance–covariance structure for longitudinal data in ecology. Methods Ecol. Evol. 1, 15–24 (2010).
    Google Scholar 
    108.Clark, I. Statistics or geostatistics? Sampling error or nugget effect? J. Southern African Inst. Mining Metall. 110, 307–312 (2010).
    Google Scholar 
    109.Gschlößl, S. & Czado, C. Modelling count data with overdispersion and spatial effects. Stat. Papers 49, 531–552 (2008).
    Google Scholar 
    110.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    111.Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).PubMed 

    Google Scholar 
    112.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. JOSS 3, 772 (2018).
    Google Scholar 
    113.Francq, B. G., Lin, D. & Hoyer, W. Confidence, prediction, and tolerance in linear mixed models. Stat. Med. 38, 5603–5622 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    114.Spineli, L. M. & Pandis, N. Prediction interval in random-effects meta-analysis. Am. J. Orthod. Dentofacial Orthop. 157, 586–588 (2020).PubMed 

    Google Scholar 
    115.Comiso, J. C. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim. 13, 1674–1696 (2000).
    Google Scholar 
    116.Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans https://doi.org/10.1029/2007JC004257 (2008).117.Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1979 to present. https://doi.org/10.24381/CDS.F17050D7 (2019).118.Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
    Google Scholar  More

  • in

    Environmental structure impacts microbial composition and secondary metabolism

    1.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 

    Google Scholar 
    2.Caswell H, Cohen JE. Disturbance, interspecific interaction and diversity in metapopulations. Biol J Linn Soc. 1991;42:193–218.
    Google Scholar 
    3.Tolker-Nielsen T, Molin S. Spatial organization of microbial biofilm communities. Microb Ecol. 2000;40:75–84.CAS 
    PubMed 

    Google Scholar 
    4.Yanni D, Márquez-Zacarías P, Yunker PJ, Ratcliff WC. Drivers of spatial structure in social microbial communities. Curr Biol. 2019;29:R545–50.CAS 
    PubMed 

    Google Scholar 
    5.Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    6.Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive earth’s biogeochemical cycles. Science. 2008;320:1034–9.CAS 
    PubMed 

    Google Scholar 
    7.Overmann J, van Gemerden H. Microbial interactions involving sulfur bacteria: Implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev. 2000;24:591–9.CAS 
    PubMed 

    Google Scholar 
    8.García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science. 2018;361:1–11.
    Google Scholar 
    9.Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 

    Google Scholar 
    10.Wang X, Li X, Ling J. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans. J Basic Microbiol. 2017;57:605–16.CAS 
    PubMed 

    Google Scholar 
    11.Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and In vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. 2017;7:1–13.
    Google Scholar 
    12.Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the dynamics and functions of microbial communities. Nat Ecol Evol. 2020;4:366–75. https://doi.org/10.1038/s41559-019-1080-2.Article 
    PubMed 

    Google Scholar 
    13.Justice NB, Sczesnak A, Hazen TC, Arkin AP. Environmental selection, dispersal, and organism interactions shape community assembly in high-throughput enrichment culturing. Appl Environ Microbiol. 2017;83:1–16.
    Google Scholar 
    14.Hilker M. New synthesis: parallels between biodiversity and chemodiversity. J Chem Ecol. 2014;40:225–6.CAS 
    PubMed 

    Google Scholar 
    15.Raguso R, Agrawal A, Douglas A, Jander G, Kessler A, Poveda K, et al. The raison d’être of chemical ecology. Ecology. 2015;96:617–30.PubMed 

    Google Scholar 
    16.Tilman D. Competition and biodiversity in spatially structured habitats. Ecology. 1994;75:2–16.
    Google Scholar 
    17.Geyrhofer L, Brenner N. Coexistence and cooperation in structured habitats. BMC Ecol. 2020;20:1–15. https://doi.org/10.1186/s12898-020-00281-y.Article 

    Google Scholar 
    18.Wakano JY, Nowak MA, Hauert C. Spatial dynamics of ecological public goods. Proc Natl Acad Sci USA. 2009;106:7910–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed 
    PubMed Central 

    Google Scholar 
    20.Lowery NV, Ursell T. Structured environments fundamentally alter dynamics and stability of ecological communities. Proc Natl Acad Sci USA. 2019;116:379–88.CAS 

    Google Scholar 
    21.Lee JZ, Craig Everroad R, Karaoz U, Detweiler AM, Pett-Ridge J, Weber PK, et al. Metagenomics reveals niche partitioning within the phototrophic zone of a microbial mat. PLoS ONE. 2018;13:1–19.
    Google Scholar 
    22.Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv. 2018;4:1–12.
    Google Scholar 
    23.Fenchel T, Finlay B. Oxygen and the spatial structure of microbial communities. Biol Rev. 2008;83:553–69.PubMed 

    Google Scholar 
    24.Esteban DJ, Hysa B, Bartow-McKenney C. Temporal and spatial distribution of the microbial community of winogradsky columns. PLoS ONE. 2015;10:1–21.
    Google Scholar 
    25.Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science. 1998;280:694–6.CAS 

    Google Scholar 
    26.McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc B Biol Sci. 2015;370:1–8.
    Google Scholar 
    27.Schreiber F, Ackermann M. Environmental drivers of metabolic heterogeneity in clonal microbial populations. Curr Opin Biotechnol. 2020;62:202–11. https://doi.org/10.1016/j.copbio.2019.11.018.CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Lopez D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology. 2010;2:1–11.
    Google Scholar 
    29.Picketts STA, Cadenasso ML. Landscape ecology: spatial heterogeneity in ecological systems. NCASI Techn Bull. 1999;2:420.
    Google Scholar 
    30.Chao L, Levin BR. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA. 1981;78:6324–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69–72.CAS 
    PubMed 

    Google Scholar 
    32.Cardinale BJ. Biodiversity improves water quality through niche partitioning. Nature. 2011;472:86–91.CAS 
    PubMed 

    Google Scholar 
    33.Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science. 2001;294:804–8.CAS 
    PubMed 

    Google Scholar 
    34.Wellborn GA, Langerhans RB. Ecological opportunity and the adaptive diversification of lineages. Ecol Evol. 2015;5:176–95.PubMed 

    Google Scholar 
    35.Czárán TL, Hoekstra RF. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc R Soc B Biol Sci. 2003;270:1373–8.
    Google Scholar 
    36.West SA, Griffin AS, Gardner A, Diggle SP. Social evolution theory for microorganisms. Nat Rev Microbiol. 2006;4:597–607.CAS 
    PubMed 

    Google Scholar 
    37.Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek. 2002;81:665–80.CAS 
    PubMed 

    Google Scholar 
    38.Johnson DR, Lee TK, Park J, Fenner K, Helbling DE. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ Microbiol. 2015;17:4851–60.CAS 
    PubMed 

    Google Scholar 
    39.Liébana R, Arregui L, Santos A, Murciano A, Marquina D, Serrano S. Unravelling the interactions among microbial populations found in activated sludge during biofilm formation. FEMS Microbiol Ecol. 2016;92:1–13.
    Google Scholar 
    40.Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49:1–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2015;18:1403–14.PubMed 

    Google Scholar 
    42.Junkins EN, Stevenson BS. Using plate-wash PCR and high-throughput sequencing to measure cultivated diversity for natural product discovery efforts. Front Microbiol. 2021;12:1–14.
    Google Scholar 
    43.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    Google Scholar 
    44.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    46.Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:643–8.
    Google Scholar 
    47.Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:1–14.
    Google Scholar 
    48.Wright ES. DECIPHER: Harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinformatics. 2015;16:1–14. https://doi.org/10.1186/s12859-015-0749-z.CAS 
    Article 

    Google Scholar 
    49.Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.
    Google Scholar 
    50.Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.CAS 
    PubMed 

    Google Scholar 
    51.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11.
    Google Scholar 
    52.Willis A, Bunge J. Estimating diversity via frequency ratios. Biometrics. 2015;71:1042–9.PubMed 

    Google Scholar 
    53.Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131–44.
    Google Scholar 
    54.Levene H. Robust tests for equality of variances. In: Olkin I, editor. Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford University Press, Palo Alto, California, USA; 1960. p. 278–92.55.Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks, CA: Sage; 2019.56.Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R Package; 2019.58.Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.PubMed 
    PubMed Central 

    Google Scholar 
    59.Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:1–11.61.Myers OD, Sumner SJ, Li S, Barne S, Du X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal Chem. 2017;89:8696–703.CAS 
    PubMed 

    Google Scholar 
    62.Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N;, Peng Y, et al. Sharing and community curation of mass spectrometry data with GNPS. Nat Biotechnol. 2017;34:828–37.
    Google Scholar 
    63.Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905–8. https://doi.org/10.1038/s41592-020-0933-6.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models. Genome Res. 2003;13:2498–504. http://ci.nii.ac.jp/naid/110001910481/.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.R Core Team. R: a language and environment for R Foundation for Statistical Computing. 2018. https://www.r-project.org/.66.Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Google Scholar 
    67.Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:1–20.
    Google Scholar 
    68.O’Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol. 2011;22:552–8. https://doi.org/10.1016/j.copbio.2011.03.010.CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Thierbach S, Wienhold M, Fetzner S, Hennecke U. Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO and PQS. Beilstein J Org Chem. 2019;15:187–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Morales-Soto N, Dunham SJB, Baig NF, Ellis JF, Madukoma CS, Bohn PW, et al. Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. J Biol Chem. 2018;293:9544–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35:247–74.CAS 
    PubMed 

    Google Scholar 
    72.Grollman AP. Inhibitors of protein biosynthesis. II. Mode of action of anisomycin. J Biolog Chem. 1967;242:3226–33. https://doi.org/10.1016/S0021-9258(18)95953-3.CAS 
    Article 

    Google Scholar 
    73.Sobin BA, Tanner FW Jr. Anisomycin, a new anti-protozoan antibiotic. J Am Chem Soc. 1954;76:4053–4053.CAS 

    Google Scholar 
    74.Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol. 2007;14:53–63.CAS 
    PubMed 

    Google Scholar 
    75.Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, et al. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem. 2013;61:6786–91.CAS 
    PubMed 

    Google Scholar 
    76.Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, et al. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol. 2016;7:1–16.
    Google Scholar 
    77.Figueira V, Vaz-Moreira I, Silva M, Manaia CM. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res. 2011;45:5599–611.CAS 
    PubMed 

    Google Scholar 
    78.Skwor T, Stringer S, Haggerty J, Johnson J, Duhr S, Johnson M, et al. Prevalence of potentially pathogenic antibiotic-resistant Aeromonas spp. in treated urban wastewater effluents versus recipient riverine populations: a 3-year comparative study. Appl Environ Microbiol. 2020;86:1–16.
    Google Scholar 
    79.Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23:35–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Rema T, Lawrence JR, Dynes JJ, Hitchcock AP, Korber DR. Microscopic and spectroscopic analyses of chlorhexidine tolerance in Delftia acidovorans biofilms. Antimicrob Agents Chemother. 2014;58:5673–86.PubMed 
    PubMed Central 

    Google Scholar 
    81.Assanta MA, Roy D, Lemay MJ, Montpetit D. Attachment of Arcobacter butzleri, a new waterborne pathogen, to water distribution pipe surfaces. J Food Protect. 2002;65:1240–7.
    Google Scholar 
    82.Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.CAS 
    PubMed 

    Google Scholar 
    83.Harrison F, Paul J, Massey RC, Buckling A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J. 2008;2:49–55.PubMed 

    Google Scholar 
    84.Inglis RF, Roberts PG, Gardner A, Buckling A. Spite and the scale of competition in Pseudomonas aeruginosa. Am Nat. 2011;178:276–85.PubMed 

    Google Scholar 
    85.van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by Actinomycetes. FEMS Microbiol Rev. 2017;41:392–416.PubMed 

    Google Scholar 
    86.Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.CAS 
    PubMed 

    Google Scholar 
    87.Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56. https://doi.org/10.1038/ismej.2013.175. [Internet]Available fromCAS 
    Article 
    PubMed 

    Google Scholar 
    88.Pacala SW, Levin SA. Biologically generated spatial pattern and the coexistence of competing species. In: Tilman D, Kareiva P, editors. Spatial ecology: the role of space in population dynamics and interspecific interactions; Princeton University Press, Princeton, New Jersey, USA; 1997.89.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.
    Google Scholar 
    90.Haig SJ, Quince C, Davies RL, Dorea CC, Collinsa G. The relationship between microbial community evenness and function in slow sand filters. mBio. 2015;6:1–12.
    Google Scholar 
    91.Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, et al. Initial community evenness favours functionality under selective stress. Nature. 2009;458:623–6.CAS 
    PubMed 

    Google Scholar 
    92.Davies J, Ryan KS. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol. 2012;7:252–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Bassler BL, Losick R. Bacterially speaking. Cell. 2006;125:237–46.CAS 
    PubMed 

    Google Scholar 
    94.Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev. 2006;30:274–91.CAS 
    PubMed 

    Google Scholar 
    95.Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol. 2019;29:R521–37. https://doi.org/10.1016/j.cub.2019.04.024.CAS 
    Article 
    PubMed 

    Google Scholar 
    96.Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput Biol. 2018;14:1–21.CAS 

    Google Scholar 
    97.Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Garcia-Garcera M, Rocha EPC. Community diversity and habitat structure shape the repertoire of extracellular proteins in bacteria. Nat Commun. 2020;11:1–11. https://doi.org/10.1038/s41467-020-14572-x.CAS 
    Article 

    Google Scholar  More

  • in

    Global and regional health and food security under strict conservation scenarios

    1.Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).CAS 
    Article 

    Google Scholar 
    2.Buchanan, G. M., Butchart, S. H. M., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    3.Butchart, S. H. M. et al. in Global Assessment Report of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T. M.) Ch. 3 (IPBES Secretariat, 2019); https://doi.org/10.5281/zenodo.38320534.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS 
    Article 

    Google Scholar 
    5.Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. S. W. 58, 7–17 (2014).
    Google Scholar 
    6.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    Article 

    Google Scholar 
    8.Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    9.Kok, M. T. J. et al. Assessing ambitious nature conservation strategies within a 2 degree warmer and food-secure world. Preprint at bioRxiv https://doi.org/10.1101/2020.08.04.236489 (2020).10.Rosa, I. M. D. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).Article 

    Google Scholar 
    11.Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    12.Pereira, L. M. et al. Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People Nat. 2, 1172–1195 (2020).Article 

    Google Scholar 
    13.Rabin, S. S. et al. Impacts of future agricultural change on ecosystem service indicators. Earth Syst. Dynam. 11, 357–376 (2019).Article 

    Google Scholar 
    14.Springmann, M. et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946 (2016).Article 

    Google Scholar 
    15.Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    16.Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    17.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwz136 (2019).18.Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).19.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    Article 

    Google Scholar 
    20.O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2015).21.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).22.Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).Article 

    Google Scholar 
    23.Kashwan, P. V., Duffy, R., Massé, F., Asiyanbi, A. P. & Marijnen, E. From racialized neocolonial global conservation to an inclusive and regenerative conservation. Environ. Sci. Policy Sustain. Dev. 63, 4–19 (2021).Article 

    Google Scholar 
    24.The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017).25.Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).Article 

    Google Scholar 
    26.Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2021).27.Brockington, D. & Wilkie, D. Protected areas and poverty. Phil. Trans. R. Soc. B 370, 20140271 (2015).28.Protected Planet Report 2020 (UNEP–WCMC and IUCN, 2021).29.Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).CAS 
    Article 

    Google Scholar 
    30.Dutta, A., Allan, J., Shimray, G., General, S. & Pact, A. I. P. RE: “A ‘Global Safety Net’ to reverse biodiversity loss and stabilize Earth’s climate”. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    31.Simmons, B. A., Nolte, C. & McGowan, J. Tough questions for the “30 × 30” conservation agenda. Front. Ecol. Environ. 19, 322–323 (2021).Article 

    Google Scholar 
    32.Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).33.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019).34.The World Database of Key Biodiversity Areas (KBA Partnership, 2019); www.keybiodiversityareas.org35.Mogg, S., Fastre, C. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).36.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019).37.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3 https://CRAN.R-project.org/package=prioritizr (2020).38.Hurtt, G., Chini, L., Frolking, S. & Sahajpal, R. Land-Use Harmonization (LUH2) (Global Ecology Laboratory, Univ. Maryland, 2017).39.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed April 2019); www.protectedplanet.net40.Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).41.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 84003 (2016).42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).Article 

    Google Scholar 
    43.Engström, K. et al. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst. Dynam. 7, 893–915 (2016).44.Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Change 35, 138–147 (2015).Article 

    Google Scholar 
    45.Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).Article 

    Google Scholar 
    46.GBD Results Tool (IHME, 2020); http://ghdx.healthdata.org/gbd-results-tool47.KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017). More

  • in

    Low tropical diversity during the adaptive radiation of early land plants

    1.Gaston, K. J. Global patterns of biodiversity. Nature 405, 220–227 (2000).CAS 
    Article 

    Google Scholar 
    2.Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).3.Blomenkemper, P. et al. A hidden cradle of plant evolution in Permian tropical lowlands. Science 362, 1414–1416 (2018).CAS 
    Article 

    Google Scholar 
    4.Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study (Smithsonian Institution Scholarly Press, 1997).5.Puttick, M. N. et al. The interrelationships of land plants and the nature of the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).CAS 
    Article 

    Google Scholar 
    6.Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, 2274–2283 (2018).Article 

    Google Scholar 
    7.Wellman, C. H., Steemans, P. & Vecoli, M. in Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. & Servais, T.) Ch. 29 (Geological Society of London, 2014).8.Edwards, D. et al. Piecing together the eophytes—a new group of ancient plants containing cryptospores. New Phytol. 233, 1440–1455 (2021).Article 

    Google Scholar 
    9.Gray, J. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Philos. Trans. R. Soc. Lond. B 309, 167–195 (1985).Article 

    Google Scholar 
    10.Wellman, C. H. Cryptospores from the type area for the Caradoc Series (Ordovician) in southern Britain. Palaeontology 55, 103–136 (1996).
    Google Scholar 
    11.Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2017).12.Harland, W. B. The Geology of Svalbard (Geological Society of London, 1997).13.Davies, N. S., Berry, C. M., Marshall, J. E. A., Wellman, C. H. & Lindemann, F.-J. The Devonian landscape factory: plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. J. Geol. Soc. Lond. https://doi.org/10.1144/jgs2020-225 (2021).14.Blieck, A., Goujet, D. & Janvier, P. The vertebrate stratigraphy of the Lower Devonian (Red Bay Group and Wood Bay Formation) of Spitsbergen. Mod. Geol. 11, 197–217 (1987).
    Google Scholar 
    15.Blom, H. & Goujet, D. Thelodont scales from the Lower Devonian Red Bay Group, Spitsbergen. Palaeontology 45, 795–820 (2002).Article 

    Google Scholar 
    16.Pernègre, V. N. & Blieck, A. A revised heterostrachan-cased ichthyostratigraphy of the Wood Bay Formation (Lower Devonian, Spitsbergen), and correlation with Russian Arctic archipelagos. Geodiversitas 38, 5–20 (2016).Article 

    Google Scholar 
    17.Wellman, C. H. & Richardson, J. B. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne Scotland. Spec. Pap. Palaeontol. 55, 41–101.18.Richardson J. B. Taxonomy and classification of some new Early Devonian cryptospores from England. Spec. Pap. Palaeontol. 55, 7–40 (1996).19.Steemans, P. Etude palynostratgraphique du Devonian Inferieur dans l’Ouest de l’Europe. Mém. Soc. Géol. Minér. Bretagne 27, 1–453 (1989).
    Google Scholar 
    20.Rodriguez, R. M. Palinologia de las Formaciones del Silurico Superior-Devonico Inferior de la Cordillera Cantabrica, Noroeste de España (Institución Fray Bernardino de Sahagún, de la Excelentísima Diputación provincial de León y del Servicio de Publicaciones de la Universidad de León, 1983).21.Richardson, J. B., Rodriguez, R. M. & Sutherland, S. J. E. Palynological zonation of Mid-Palaeozoic sequences from the Cantabrian Mountains, NW Spain: implications for inter-regional and interfacies correlation of the Ludfor/Pridoli and Silurian/Devonian boundaries, and plant dispersal patterns. Bull. Nat. Hist. Mus. Lond. 57, 115–162 (2001).
    Google Scholar 
    22.Rubinstein, C. & Steemans, P. Miospore assemblages from the Silurian–Devonian boundary, in borehole A1–61, Ghadames Basin, Libya. Rev. Palaeobot. Palynol. 118, 397–412 (2002).Article 

    Google Scholar 
    23.Spina, A. & Vecoli, M. Palynostratigraphy and vegetational change in the Siluro-Devonian of the Ghadamis basin, North Africa. Palaeogeog. Palaeoclimatol. Palaeoecol. 282, 1–18 (2009).Article 

    Google Scholar 
    24.Hao, S. G. & Gensel, P. G. in Plants Invade the Land (eds Gensel, P. G. & Edwards, D.) 103–119 (Columbia Univ. Press, 2001).25.Wellman, C. H. et al. Spore assemblages from the Lower Devonian Xujiachong Formation from Qujing, Yunnan, China. Palaeontology 55, 583–611 (2012).Article 

    Google Scholar 
    26.Hao, S. & Xue, J. The Early Devonian Posongchong Flora of Yunnan (Science Press, 2013).27.Edwards, D., & Li, C.-S. Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China. Rev. Palaeobot. Palynol. 253, 37–48 (2018).Article 

    Google Scholar 
    28.Gao, L. Early Devonian spore and acritarchs from the Guijiatum Formation of Qujing, China. Bull. Inst. Geol. Chin. Acad. Sci. 9, 125–136 (1984).
    Google Scholar 
    29.Tian, J. et al. Late Silurian to early Devonian palynomorphs from Qujing, Yunnan, southwest China. Acta Geol. Sin. 85, 559–568 (2011).Article 

    Google Scholar 
    30.Høeg, O. A. The Downtonian and Dittonian flora of Spitsbergen. Skr. Svalbard Ishavet 83, 1–229 (1942).
    Google Scholar 
    31.Morris, J. L., Edwards, D. & Richardson, J. B. in Transformative Paleobotany (eds Krings, M. et al.) 49–67 (Academic Press, 2018).32.McSweeney, F. R., Shimeta, J. & Buckeridge, J. St. J. S. Two new genera of early Tracheophyta (Zosterophyllaceae) from the upper Silurian–Lower Devonian of Victoria, Australia. Alcheringa https://doi.org/10.1080/03115518.2020.1744725 (2020).33.Xue, J. H. et al. Silurian–Devonian terrestrial revolution in South China: taxonomy, diversity, and character evolution of vascular plants in a paleogeographically isolated low-latitude region. Earth Sci. Rev. 180, 92–125 (2018).Article 

    Google Scholar 
    34.Hao, S. G. et al. Zosterophyllum Penhallow around the Silurian–Devonian boundary of northeastern Yunnan, China. Int. J. Plant Sci. 168, 477–489 (2007).Article 

    Google Scholar 
    35.Hao, S. G. et al. Earliest rooting system and root: shoot ratio from a new Zosterophyllum plant. New Phytol. 185, 217–225 (2009).Article 

    Google Scholar 
    36.Xue, J.-Z. Two zosterophyll plants from the Lower Devonian (Lochkovian) Xitun Formation of northeastern Yunnan, China. Acta Geol. Sin. 83, 504–512 (2009).Article 

    Google Scholar 
    37.Xue, J.-Z. Lochkovian plants from the Xitun Formation of Yunnan, China and their palaeophytogeographical significance. Geol. Mag. 149, 333–344 (2012).Article 

    Google Scholar 
    38.Sun, Y. et al. Lethally high temperatures during the early Triassic greenhouse. Science 6105, 366–370 (2012).Article 

    Google Scholar 
    39.Meng, X. Y. & Gai, Z. K. Falxcornus, a new genus of Tridensaspidae (Galeaspida, stem-Gnathostomata) from the Lower Devonian in Qujing, Yunnan, China. Hist. Biol. https://doi.org/10.1080/08912963.2021.1952198 (2021).40.Traverse, A. Paleopalynology 2nd edn (Springer, 2007). More

  • in

    Temperature sensitivity of woody nitrogen fixation across species and growing temperatures

    1.Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003).CAS 
    Article 

    Google Scholar 
    2.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).CAS 
    Article 

    Google Scholar 
    3.Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).CAS 
    Article 

    Google Scholar 
    4.Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).5.Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).Article 

    Google Scholar 
    6.Meyerholt, J., Zaehle, S. & Smith, M. J. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation. Biogeosciences 13, 1491–1518 (2016).CAS 
    Article 

    Google Scholar 
    7.Fisher, J. B. et al. Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob. Biogeochem. Cycles 24, GB1014 (2010).8.Wang, Y. P. & Houlton, B. Z. Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophys. Res. Lett. 36, L24403 (2009).9.Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).CAS 
    Article 

    Google Scholar 
    10.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    Article 

    Google Scholar 
    11.van Velzen, R., Doyle, J. J. & Geurts, R. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 24, 49–57 (2018).Article 

    Google Scholar 
    12.Mills, B. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2018).Article 

    Google Scholar 
    13.Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).14.Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).Article 

    Google Scholar 
    15.Prévost, D., Antoun, H. & Bordeleau, L. M. Effects of low temperatures on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by Arctic rhizobia. FEMS Microbiol. Lett. 45, 205–210 (1987).Article 

    Google Scholar 
    16.Rainbird, R. M., Atkins, C. A. & Pate, J. S. Effect of temperature on nitrogenase functioning in cowpea nodules. Plant Physiol. 73, 392–394 (1983).CAS 
    Article 

    Google Scholar 
    17.Dalton, D. A. & Zobel, D. B. Ecological aspects of nitrogen fixation by Purshia tridentata. Plant Soil 48, 57–80 (1977).CAS 
    Article 

    Google Scholar 
    18.Waughman, G. J. The effect of temperature on nitrogenase activity. J. Exp. Bot. 28, 949–960 (1977).CAS 
    Article 

    Google Scholar 
    19.Wheeler, C. T. The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa. New Phytol. 70, 487–495 (1971).Article 

    Google Scholar 
    20.Schomberg, H. H. & Weaver, R. W. Nodulation, nitrogen fixation, and early growth of arrowleaf clover in response to root temperature and starter nitrogen. Agron. J. 84, 1046 (1992).CAS 
    Article 

    Google Scholar 
    21.Kou-Giesbrecht, S. & Menge, D. N. L. Nitrogen-fixing trees increase soil nitrous oxide emissions: a meta-analysis. Ecology 102, e03415 (2021).22.Bytnerowicz, T. A., Min, E., Griffin, K. L. & Menge, D. N. L. Repeatable, continuous and real‐time estimates of coupled nitrogenase activity and carbon exchange at the whole‐plant scale. Methods Ecol. Evol. 10, 960–970 (2019).Article 

    Google Scholar 
    23.Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).Article 

    Google Scholar 
    24.Staccone, A. et al. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Glob. Biogeochem. Cycles 32, e2019GB006241 (2020).25.Cierjacks, A. et al. Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol. 101, 1623–1640 (2013).Article 

    Google Scholar 
    26.Benson, D. R. & Dawson, J. O. Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol. Plant. 130, 318–330 (2007).CAS 
    Article 

    Google Scholar 
    27.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    28.Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).CAS 
    Article 

    Google Scholar 
    29.Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).CAS 
    Article 

    Google Scholar 
    30.Kou-Giesbrecht, S. et al. A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF). Biogeosciences 18, 4143–4183 (2021).CAS 
    Article 

    Google Scholar 
    31.Hardy, R. W. F., Holsten, R. D., Jackson, E. K. & Burns, R. C. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968).CAS 
    Article 

    Google Scholar 
    32.Cassar, N., Bellenger, J. P., Jackson, R. B., Karr, J. & Barnett, B. A. N2 fixation estimates in real-time by cavity ring-down laser absorption spectroscopy. Oecologia 168, 335–342 (2012).Article 

    Google Scholar 
    33.Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).34.Kok, B. A Critical Consideration of the Quantum Yield of Chlorella-Photosynthesis (W. Junk, 1948).35.Liang, L. L. et al. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Glob. Change Biol. 24, 1538–1547 (2018).Article 

    Google Scholar 
    36.Gunderson, C. A., O’hara, K. H., Campion, C. M., Walker, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).Article 

    Google Scholar 
    37.Medlyn, B. E. et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179 (2002).CAS 
    Article 

    Google Scholar 
    38.Slot, M. & Winter, K. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant Cell Environ. 40, 3055–3068 (2017).CAS 
    Article 

    Google Scholar 
    39.Murphy, B. K. & Stinziano, J. R. A derivation error that affects carbon balance models exists in the current implementation of the modified Arrhenius function. New Phytol. 6, 2371–2381 (2021).40.Yan, W. & Hunt, L. A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).Article 

    Google Scholar 
    41.Farquhar, G. D. & Busch, F. A. Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol. 214, 570–584 (2017).CAS 
    Article 

    Google Scholar 
    42.Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    Article 

    Google Scholar 
    43.Duursma, R. A. Plantecophys – an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10, e0143346 (2015).44.Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–260 (2001).CAS 
    Article 

    Google Scholar 
    45.De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).Article 

    Google Scholar 
    46.Bolker, B. M. & R. Core Team. bbmle: Tools for General Maximum Likelihood Estimation (R Foundation for Statistical Computing, 2014).47.Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).Article 

    Google Scholar 
    48.Bolker, B. M. Ecological Models and Data in R (Princeton Univ. Press, 2008).49.Venables, W. & Ripley, B. Modern Applied Statistics with S (Springer, 2002).50.Bytnerowicz, T. A. tbytnero/Bytnerowicz-Akana-Griffin-Menge-N-fix-Temp: Bytnerowicz_Akana_Griffin_Menge_2022_Nature_Plants https://doi.org/10.5281/zenodo.5764790 (2021). More

  • in

    Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana

    1.Bai, Y., Henry, J. & Wlodkowic, D. Chemosensory avoidance behaviors of marine amphipods Allorchestes compressa revealed using a millifluidic perfusion technology. Biomicrofluidics 14, 014110 (2020).CAS 
    Article 

    Google Scholar 
    2.Bownik, A. Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Sci. Total Environ. 601–602, 194–205 (2017).Article 

    Google Scholar 
    3.Libralato, G., Prato, E., Migliore, L., Cicero, A. M. & Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 69, 35–49 (2016).CAS 
    Article 

    Google Scholar 
    4.Henry, J. & Wlodkowic, D. Towards high-throughput chemobehavioural phenomics in neuropsychiatric drug discovery. Mar. Drugs 17, 340 (2019).CAS 
    Article 

    Google Scholar 
    5.Morgana, S., Estévez-Calvar, N., Gambardella, C., Faimali, M. & Garaventa, F. A short-term swimming speed alteration test with nauplii of Artemia franciscana. Ecotoxicol. Environ. Saf. 147, 558–564 (2018).CAS 
    Article 

    Google Scholar 
    6.Bartolomé, M. C. & Sánchez-Fortún, S. Acute toxicity and inhibition of phototaxis induced by benzalkonium chloride in Artemia franciscana larvae. Bull. Environ. Contam. Toxicol. 75, 1208–1213 (2005).Article 

    Google Scholar 
    7.Hellou, J. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. Int. 18, 1–11 (2011).CAS 
    Article 

    Google Scholar 
    8.Campana, O. & Wlodkowic, D. Ecotoxicology goes on a chip: embracing miniaturized bioanalysis in aquatic risk assessment. Environ. Sci. Technol. 52, 932–946 (2018).CAS 
    Article 

    Google Scholar 
    9.De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R. & de Groot, D. Zebrafish as potential model for developmental neurotoxicity testing. A mini review. Neurotoxicol. Teratol. 34, 545–553 (2012).Article 

    Google Scholar 
    10.Blackiston, D., Shomrat, T., Nicolas, C. L., Granata, C. & Levin, M. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS ONE 5, e14370 (2010).Article 

    Google Scholar 
    11.Franco-Restrepo, J. E., Forero, D. A. & Vargas, R. A. A review of freely available, open-source software for the automated analysis of the behavior of adult. zebrafish. Zebrafish 16, 223–232 (2019).PubMed 

    Google Scholar 
    12.Henry, J., Rodriguez, A. & Wlodkowic, D. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology. PeerJ 7, e7367 (2019).Article 

    Google Scholar 
    13.Henry, J. & Wlodkowic, D. High-throughput animal tracking in chemobehavioral phenotyping: current limitations and future perspectives. Behav. Processes 180, 104226 (2020).Article 

    Google Scholar 
    14.Garcia, G. R., Noyes, P. D. & Tanguay, R. L. Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161, 11–21 (2016).CAS 
    Article 

    Google Scholar 
    15.Rennekamp, A. J. & Peterson, R. T. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24, 58–70 (2015).CAS 
    Article 

    Google Scholar 
    16.Cartlidge, R. & Wlodkowic, D. Caging of planktonic rotifers in microfluidic environment for sub-lethal aquatic toxicity tests. Biomicrofluidics 12, 044111 (2018).Article 

    Google Scholar 
    17.Kohler, S. A., Parker, M. O. & Ford, A. T. Shape and size of the arenas affect amphipod behaviours: implications for ecotoxicology. PeerJ 6, e5271 (2018).Article 

    Google Scholar 
    18.Kohler, S. A., Parker, M. O. & Ford, A. T. Species-specific behaviours in amphipods highlight the need for understanding baseline behaviours in ecotoxicology. Aquat. Toxicol. 202, 173–180 (2018).CAS 
    Article 

    Google Scholar 
    19.Kohler, S. A., Parker, M. O. & Ford, A. T. High-throughput screening of psychotropic compounds: impacts on swimming behaviours in Artemia franciscana. Toxics 9, 64 (2021).Article 

    Google Scholar 
    20.Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S. & Agata, K. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zoolog. Lett. 1, 7 (2015).Article 

    Google Scholar 
    21.Truong, L. et al. Multidimensional in vivo hazard assessment using zebrafish. Toxicol. Sci. 137, 212–233 (2014).CAS 
    Article 

    Google Scholar 
    22.Zhang, S., Hagstrom, D., Hayes, P., Graham, A. & Collins, E.-M. S. Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians. Toxicol. Sci. 167, 26–44 (2019).CAS 
    Article 

    Google Scholar 
    23.Akiyama, Y., Agata, K. & Inoue, T. Spontaneous behaviors and wall-curvature lead to apparent wall preference in planarian. PLoS ONE 10, e0142214 (2015).Article 

    Google Scholar 
    24.Blaser, R. E. & Rosemberg, D. B. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS ONE 7, e36931 (2012).CAS 
    Article 

    Google Scholar 
    25.Harro, J. Animals, anxiety, and anxiety disorders: how to measure anxiety in rodents and why. Behav. Brain Res. 352, 81–93 (2018).Article 

    Google Scholar 
    26.Faimali, M. et al. Old model organisms and new behavioral end-points: swimming alteration as an ecotoxicological response. Mar. Environ. Res. 128, 36–45 (2017).CAS 
    Article 

    Google Scholar 
    27.Rashid, M. T. et al. Artemia swarm dynamics and path tracking. Nonlinear Dyn. 68, 555–563 (2012).Article 

    Google Scholar 
    28.Forward, R. B. & Rittschof, D. Brine shrimp larval photoresponses involved in diel vertical migration: activation by fish mucus and modified amino sugars. Limnol. Oceanogr. 44, 1904–1916 (1999).CAS 
    Article 

    Google Scholar 
    29.Gerhardt, A. Aquatic behavioral ecotoxicology—prospects and limitations. Hum. Ecol. Risk Assess. 13, 481–491 (2007).Article 

    Google Scholar 
    30.Ford, A. T. et al. The role of behavioral ecotoxicology in environmental protection. Environ. Sci. Technol. 55, 5620–5628 (2021).CAS 
    Article 

    Google Scholar 
    31.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).Article 

    Google Scholar  More