Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer
1.Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6–265sr6 (2014).2.Wilkinson, H. N. & Hardman, M. J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 10, 20023 (2020).
Google Scholar
3.Dvorak, H. F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).CAS
PubMed
Google Scholar
4.Dvorak, H. F. Tumors: Wounds that do not heal–Redux. Cancer Immunol. Res. 3, 1–11 (2015).CAS
PubMed
PubMed Central
Google Scholar
5.Schäfer, M. & Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).PubMed
Google Scholar
6.MacCarthy-Morrogh, L. & Martin, P. The hallmarks of cancer are also the hallmarks of wound healing. Sci. Signal. 13, eaay8690 (2020).7.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. How the evolution of multicellularity set the stage for cancer. Br. J. Cancer 118, 145–152 (2018).CAS
PubMed
PubMed Central
Google Scholar
8.Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed
Google Scholar
9.Bosch, T. C. G. Why polyps regenerate and we don’t: Towards a cellular and molecular framework for Hydra regeneration. Dev. Biol. 303, 421–433 (2007).CAS
PubMed
Google Scholar
10.Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).ADS
CAS
PubMed
Google Scholar
11.Slack, J. M. Animal regeneration: Ancestral character or evolutionary novelty?. EMBO Rep. 18, 1497–1508 (2017).CAS
PubMed
PubMed Central
Google Scholar
12.Wenger, Y., Buzgariu, W., Reiter, S. & Galliot, B. Injury-induced immune responses in Hydra. Semin. Immunol. 26, 277–294 (2014).CAS
PubMed
Google Scholar
13.Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science (80-. ). 298, 2188–2190 (2002).14.Kao, D., Felix, D. & Aboobaker, A. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 14, 1–17 (2013).
Google Scholar
15.Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science (80-. ). 363 (2019).16.DuBuc, T. Q., Traylor-Knowles, N. & Martindale, M. Q. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol. 12, 24 (2014).PubMed
PubMed Central
Google Scholar
17.Cary, G. A., Wolff, A., Zueva, O., Pattinato, J. & Hinman, V. F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 17, 16 (2019).PubMed
PubMed Central
Google Scholar
18.Owlarn, S. et al. Generic wound signals initiate regeneration in missing-tissue contexts. Nat. Commun. 8, 1–13 (2017).CAS
Google Scholar
19.Ramon-Mateu, J., Ellison, S. T., Angelini, T. E. & Martindale, M. Q. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biol. 17, 80 (2019).PubMed
PubMed Central
Google Scholar
20.Pawlik, J. R. & Deignan, L. K. Cowries graze Verongid sponges on Caribbean reefs. Coral Reefs 34, 663 (2015).ADS
Google Scholar
21.Rice, M. M., Ezzat, L. & Burkepile, D. E. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front. Mar. Sci. 5, 1–14 (2019).
Google Scholar
22.Pawlik, J. R., Loh, T.-L., McMurray, S. E. & Finelli, C. M. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS One 8, e62573 (2013).23.Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).ADS
CAS
Google Scholar
24.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science (80-. ). 342, 108–10 (2013).25.Rix, L. et al. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31, 778–789 (2016).
Google Scholar
26.Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles and conservation concerns. Mar. Animal Forests https://doi.org/10.1007/978-3-319-17001-5 (2015).Article
Google Scholar
27.Soubigou, A., Ross, E. G., Touhami, Y., Chrismas, N. & Modepalli, V. Regeneration in sponge Sycon ciliatum partly mimics postlarval development. Development https://doi.org/10.1242/dev.193714 (2020).Article
PubMed
Google Scholar
28.Telford, M. J., Moroz, L. L. & Halanych, K. M. A sisterly dispute. Nature 529, 286–287 (2016).ADS
CAS
PubMed
Google Scholar
29.Feuda, R. et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.11.008 (2017).Article
PubMed
Google Scholar
30.Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).PubMed
Google Scholar
31.Borisenko, I. E., Adamska, M., Tokina, D. B. & Ereskovsky, A. V. Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 3, e1211 (2015).32.Lavrov, A. I., Bolshakov, F. V., Tokina, D. B. & Ereskovsky, A. V. Sewing up the wounds: The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 330, 351–371 (2018).33.Ereskovsky, A. V. et al. Transdifferentiation and mesenchymal‐to‐epithelial transition during regeneration in Demospongiae (Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 334, 37–58 (2020).34.Alexander, B. E. et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? PeerJ 3, e820 (2015).35.Pozzolini, M. et al. Insights into the evolution of metazoan regenerative mechanisms: TGF superfamily member roles in tissue regeneration of the marine sponge Chondrosia reniformis Nardo, 1847. J. Exp. Biol. 222, jeb207894 (2019).36.Kenny, N. J. et al. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A transcriptomic case study in the demosponge Halisarca caerulea. Mar. Genomics 37, 135–147 (2018).PubMed
Google Scholar
37.Pawlik, J. R. Handbook of marine natural products. in Handbook of Marine Natural Products (eds. Fattorusso, E., Gerwick, W. H. & Taglialatela-Scafati, O.) 677–705 (Springer, New York, 2012). https://doi.org/10.1007/978-90-481-3834-038.Walters, K. D. & Pawlik, J. R. Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges?. Integr. Comp. Biol. 45, 352–358 (2005).PubMed
Google Scholar
39.Becerro, M. A., Turon, X., Uriz, M. J. & Templado, J. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biol. J. Linn. Soc. 78, 429–438 (2003).
Google Scholar
40.Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
41.Pita, L., Hoeppner, M. P., Ribes, M. & Hentschel, U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci. Rep. 8, 16081 (2018).ADS
PubMed
PubMed Central
Google Scholar
42.Stewart, F. J., Ottesen, E. A. & Delong, E. F. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4, 896–907 (2010).CAS
PubMed
Google Scholar
43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics btu170 (2014).44.Menzel, P. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2015).ADS
Google Scholar
45.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS
PubMed
Google Scholar
46.Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference free quality assessment of de-novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).CAS
PubMed
PubMed Central
Google Scholar
47.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. Genome analysis BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).CAS
PubMed
Google Scholar
48.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS
PubMed
PubMed Central
Google Scholar
49.Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS
PubMed
PubMed Central
Google Scholar
50.Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS
PubMed
Google Scholar
51.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).52.Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer, Berlin, 2016).53.Team, R. C. R: A language and environment for statistical computing. (2019).54.Team, Rs. RStudio: Integrated Development for R. (2015).55.Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).CAS
PubMed
Google Scholar
56.Pritchard, L., Jones, S. & Cock, P. IBioIC Introd. Bioinform. Train. Course https://doi.org/10.5281/zenodo.1184095 (2018).57.Forbes, S. A. et al. The catalogue of somatic mutations in cancer (COSMIC). Curr. Protoc. Hum. Genet. 57 (2008).58.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife 8, 1–28 (2019).
Google Scholar
59.Cerenius, L. & Söderhäll, K. Coagulation in invertebrates. J. Innate Immun. 3, 3–8 (2011).PubMed
Google Scholar
60.Davie, E. W., Fujikawa, K. & Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30, 10363–10370 (1991).CAS
PubMed
Google Scholar
61.Richardson, V. R., Cordell, P., Standeven, K. F. & Carter, A. M. Substrates of factor XIII-A: Roles in thrombosis and wound healing. Clin. Sci. 124, 123–137 (2013).CAS
Google Scholar
62.Domazet-Lošo, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 1–10 (2010).
Google Scholar
63.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc. Natl. Acad. Sci. USA 114, 6406–6411 (2017).CAS
PubMed
PubMed Central
Google Scholar
64.Rohani, M. G. & Parks, W. C. Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46, 113–121 (2015).PubMed
Google Scholar
65.Grose, R. et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).CAS
PubMed
Google Scholar
66.Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).PubMed
PubMed Central
Google Scholar
67.Paps, J. & Holland, P. W. H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9, 1730 (2018).ADS
PubMed
PubMed Central
Google Scholar
68.Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).CAS
PubMed
Google Scholar
69.Larroux, C. et al. Developmental expression of transcription factor genes in a demosponge: Insights into the origin of metazoan multicellularity. Evol. Dev. 8, 150–173 (2006).CAS
PubMed
Google Scholar
70.Petersen, H. O. et al. A comprehensive transcriptomic and proteomic analysis of Hydra head regeneration. Mol. Biol. Evol. 32, 1928–1947 (2015).CAS
PubMed
PubMed Central
Google Scholar
71.Cardozo, M. J., Mysiak, K. S., Becker, T. & Becker, C. G. Reduce, reuse, recycle—Developmental signals in spinal cord regeneration. Dev. Biol. 432, 53–62 (2017).CAS
PubMed
Google Scholar
72.Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2, e1031 (2007).73.Stewart, Z. K. et al. Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus. Sci. Rep. 7, 41458 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
74.Chablais, F. & Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGF signaling. Development 139, 1921–1930 (2012).CAS
PubMed
Google Scholar
75.Chen, H., Lin, F., Xing, K. & He, X. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat. Commun. 6, 1–10 (2015).ADS
Google Scholar
76.Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).ADS
CAS
PubMed
PubMed Central
Google Scholar
77.Ćetković, H., Halasz, M. & Herak Bosnar, M. Sponges: A reservoir of genes implicated in human cancer. Mar. Drugs 16, 20 (2018).PubMed Central
Google Scholar More