More stories

  • in

    Conservation agriculture based integrated crop management sustains productivity and economic profitability along with soil properties of the maize-wheat rotation

    Experimental site, location and climateFive years’ field experimentation on ICM was started in 2014–15 at the ICAR-Indian Agricultural Research Institute (28°35′ N latitude, 77°12′ E longitude, 229 m MSL), New Delhi, India. The study site comes under the ‘Trans IGPs’, being semi-arid with an average annual rainfall of 650 mm, of which ~ 80% occurs in July–September (south-west monsoon). The mean max. / min. air temperature ranges between 20-40ºC and 4-28ºC, respectively. The five years (2014–2019) weather data were recorded from the observatory adjoining to the experimental field, and presented in Supplementary Table 1. Before start of the experiment, a rainy season Sesbania was grown in 2014 to ensure the uniform fertility across the blocks. Initial soil samples (0.0–0.15 m depth) were collected in October 2014 after incorporating the Sesbania residues in soil. The soil samples were processed for the chemical analysis. The study site had a pH of 7.9 (1:2.5 soil and water ratio)68, 3.8 g kg−1 soil organic-C69, 94.1 kg ha−1 KMnO4 oxidizable N70, 97 µg g−1 soil microbial biomass carbon71, 51.3 μg PNP g−1 soil h−1 alkaline phosphatase72, 53.0 μg TPF g−1 soil d−1 dehydrogenase73, and 13.5 μg NH4-N g−1 soil h−1urease74.Description of different ICM modulesThe eight ICM modules were tested, comprising of four conventional tillage (CT)-based (ICM1-4) and four conservation agriculture (CA)-based (ICM5-8) modules, replicated thrice in a complete randomized block design with the plot size of 60 m2 (15 m × 4.5 m) (Table 4). The crop residues were completely removed in the CT-based modules (ICM1-4), while in the ICM5-8 modules, in-situ wheat (~ 3 Mg ha−1 on dry weight basis)) and maize (~ 5 Mg ha−1, on dry weight basis) residues were retained on the soil surface during all the seasons of crops cultivation (Footnote Table 4, Fig. 6a,b).Table 4 Description of integrated crop management (ICM) modules adopted in maize and wheat crops during the five yearsˈ fixed plot experimentation.Full size tableIn the ICM1-4 modules, the field preparation was carried out by sequential tillage operations, such as, deep ploughing using the disc harrow, cultivator/rotavator twice (0.15–0.20 m), followed by levelling in each season. In the ICM3-4, the raised beds of 0.70 m bed width (bed top 0.40 m and furrow 0.30 m) were formed during each cropping cycle using the tractor mounted bed planter, and simultaneously wheat sowing was done (Fig. 6c). In the case of maize, ridges (0.67 m length) were prepared using the ridge maker. In the CA-based ICM5-8 modules, the tillage operations, such as, seed and fertilizer placement were restricted to the crop row-zone in maize and wheat both. In the ICM7&8, the permanent raised beds (0.67 m mid-furrow to mid-furrow, 0.37 m wide flat tops, and 0.15 m furrow depth), were prepared (Fig. 6d). However, these beds were reshaped using the disc coulter at the end of each cropping cycle without disturbing the surface residues. The sowing was accomplished using the raised bed multi-crop planter.Cultural operations and the fertilizer applicationDuring every season, the maize (cv. PMH 1) was sown in the first week of July using 20 kg seed ha−1. The wheat (cv. HD 2967) crop was sown in the first fortnight of November using the seed-cum fertilizer drill (ICM1-2), bed planter (ICM3-4) and zero-till seed drill (ICM5-8) at 100 kg seed ha−1. The chemical fertilizers (N, P and K) were applied as per the modules described in the footnote of Table 4. At sowing, the full doses of phosphorous (P) and potassium (K) were applied using the di-ammonium phosphate (DAP) and muriate of potash (MOP), and the nitrogen (N) supplied through DAP. The remaining N was top-dressed through urea in two equal splits after the first irrigation and tasseling / silking stages in maize, and crown root initiation and tillering stages of wheat. In the modules receiving ¾ fertilizers (ICM2,4,6,8), the seeds were treated with the NPK liquid bio-fertilizer (LBFs) (diluted 250 ml formulation 2.5 L of water ha−1), and an arbuscular mycorrhiza (AMF) was broadcasted at 12 kg ha−1 as has been described by75. This LBFs had the microbial consortia of N-fixer (Azotobacter chroococcum), P (Pseudomonas) and K (Bacillus decolorationis) solubilizers, procured from the commercial biofertilizer production unit of the Microbiology Division, ICAR-Indian Agricultural Research Institute, New Delhi (Patentee: ICAR, Govt. of India). Weeds were managed by integrating the pre- and post-emergence herbicides, and their combinations along with the hand weeding-mulching, as mentioned in the concerned modules (Footnote Table 4). However, in the CA-based modules (ICM5-8), the non-selective herbicide glyphosate (1 kg ha−1) was used 10 days before the sowing. The need-based integrated insect-pests and disease management practices were followed uniformly across the modules.Soil sampling and analysisBefore start of the experiment, the soil sampling was done from 0.0–0.15 m depth. Afterwards, five random samples from each module from 0.0–0.30 m soil depth were collected at the flowering stage of 5th season wheat. These samples were taken from the three soil depths (0.0 to 0.05, 0.05–0.15 and 0.150–0.30 m) using the core sampler. The ground, air-dried soil samples, passed through a 0.2 mm sieve were used for the determination of the Walkley and Black organic carbon (SOC), as described by76. For the soil biological properties, the soil samples were processed, and stored at 5ºC for 18–24 h, then analyzed the soil microbial biomass carbon (SMBC), dehydrogenase (SDH), alkaline phosphate (SAP) and the urease (URE) activities.The soil microbial biomass carbon (SMBC)The SMBC was measured using the fumigation extraction method as proposed by71. The pre-weighed samples from the respective soil depths were fumigated with the ethanol-free chloroform for the 24 h. Separately, a non–fumigated set was also maintained. Further, 0.5 M K2SO4 (soil: extractant 1:4) was added, and kept on a reciprocal shaker for 30 min. and then filtered through a Whatman No. 42 filter paper. OC of the filtrate was measured through the dichromate digestion, followed by the back titration with 0.05 N ferrous ammonium sulphate. The SMBC was then calculated using the equation:$${text{S}}_{{{text{MBC}}}} = {text{EC }} times { 2}.{64}$$where, EC = (Corg in fumigated soil – Corg in non-fumigated soil), and expressed in µg C g−1 soil.The dehydrogenase activity (SDH)The SDH activity (μg TPF g−1 soil d−1) was assessed using the method of73. The soil sample (~ 6 g) was saturated with 1.0 ml freshly prepared 3% triphenyltetrazolium chloride (TTC), and then incubated for 24 h under the dark. Later on, the methanol was added to stop the enzyme activity, and the absorbance of the filtered aliquot was read at 485 nm.The alkaline phosphatase activity (SAP)The APA activity was estimated in 1.0 g soil saturated with 4 ml of the modified universal buffer (MUB) along with 1 ml of p-nitrophenol phosphate followed by incubation at 37 °C for 1 h. After incubation, 1 ml of 0.5 M CaCl2 and 4 mL of NaOH were added and the contents filtered through Whatman No. 1 filter paper. The amount of p-nitrophenol in the sample was determined at 400 nm72 and the enzyme activity was expressed as µg p-NP g−1 soil h−1.The urease activityUrease activity was measured using 10 g soil suspended in 2.5 ml of urea solution (0.5%). After incubating for a day at 37 °C, 50 ml of 1 M KCl solution was added. This was kept on a shaker for 30 min and the aliquot was filtered through Whatman No. 1 filter paper. To the filtrate (10 ml), 5 ml of sodium salicylate and 2 ml of 0.1% sodium dichloro-isocyanide solution were added and the green color developed was measured at 690 nm74. These values are reported as µg NH4-N g−1 soil h−1.Water application and productivityIn experimental modules, water was given through the controlled border irrigation method. The current meter was fixed in the main lined rectangular channel, and the water velocity was measured. To get the flow discharge, then multiplied with area of cross section of the channel. The following formulae were used to calculate the applied irrigation water quantity and depth3:$${text{Irrigation water applied }}left( {text{L}} right) , = {text{ F }} times {text{ t (i)}}$$$${text{Depth }}left( {{text{mm}}} right) , = {text{ L}} div {text{A}}/{ 1}000$$where, F is flow rate (m3 s−1), t is time (s) taken in each irrigation in each module and A is area (m2).The effective precipitation (EP, difference between total rainfall and the actual evapotranspiration) was calculated, and then EP was added to the irrigation water applied to calculate the total water applied in each module. Across the maize and wheat modules (ICM1-8), irrigations were given at the critical growth stages, such as, knee high and silking / tasseling (maize) and crown root formation, maximum tillering, flowering, heading / milking (wheat) stages, and after long dry spell (≥ 10-days).On the basis of the soil water depletion pattern (at the depth of 0.60 m), in each season, 3–6 irrigations were given to maize, while wheat received 5–8 irrigations per season or crop including the pre-sowing irrigation. The rainfall data were obtained from the meteorological observatory located in the adjoining field. The water productivity (kg grains ha−1 mm−1 of water) was measured as per the equation given below:$${text{Water productivity }} = {text{ economic yield }}left( {{text{kg ha}}^{{ – {1}}} } right)/{text{ total water applied }}left( {{text{mm}}} right)$$Additionally, the systems water productivity (SWP) was also estimated by adding the water productivity (WP) of both maize and wheat crops grown under the MWR.Yield measurementsIn each season, the maize and wheat crops were harvested during the months of October and April, respectively, leaving 0.75 m border rows from all the corners of each module. The crops were harvested from the net sampling area (6 m × 3 m, 18 m2) located at the center of each plot. Maize crop was harvested manually and the wheat by using the plot combine harvester. All the harvested produce was sun dried before threshing and the grain and straw / stover yields were weighed separately. The stover/straw yields were measured by subtracting the grain weight from the total biomass. To compare the total (system) productivity of the different ICM modules, the system yield was computed, taking maize as the base crop, i.e., the maize equivalent yield (MGEY) using the equation20:$${text{M}}_{{{text{GEY}}}} left( {{text{Mg ha}}^{{ – {1}}} } right) , = {text{ Ym }} + , left{ {left( {{text{Yw }} times {text{ Pw}}} right) , div {text{ Pm}}} right}$$where, Ym = maize grain yield (Mg ha−1), Yw = wheat grain yield (Mg ha−1), Pm = price of maize grain (US$ Mg−1) and Pw = price of wheat grain (US$ Mg−1).Farm economicsUnder different ICM modules, the variable production costs and economic returns were worked out based on the prevailing market prices for the respective years. The production costs included the cost of various inputs, such as, rental value of land, seeds, pesticides, LBFs / consortia, AMF, labor, and machinery; tillage / sowing operations, irrigation, mineral fertilizers, plant protection, harvesting, and threshing etc. The costs for the crops’ residues were also considered. The system total returns were computed by adding the economic worth of the individual crop, however, the net returns were the differences between the total returns to the variable production costs of the respective module. The Govt. of India’s minimum support prices (MSP) were considered for the conversion of grain yield to the economic returns (profits) during the respective years. Further, the system net returns (SNR) were worked out by summing the net income from both maize and the wheat in Indian rupees (INR), and then converted to the US$, based on the exchange rates for different years.Sustainable yield index (SYI)77,78described the SYI as a quantitative measure of the sustainability of agricultural rotation/practice. The sustainability could be interpreted using the standard deviation (σ) values, where the lower values of the σ indicate the greater sustainability and vice-versa. Total crop productivity of maize and wheat under the different ICM modules was computed based on the five years’ mean yield data. SYI was calculated using equation78.$${text{S}}_{{{text{YI}}}} = , left( {{-}{overline{text{Y}}}_{{{text{a }}{-}}} sigma_{{text{n}}} {-}_{{1}} } right) , /{text{ Y}}^{{{-}{1}}}_{{text{m}}}$$where, –ȳa is the average yield of the crops across the years under the specific management practice, σn–1 is the standard deviation and Y–1 m is the maximum yield obtained under the set of an ICM module.Statistical analysisThe GLM procedure of the SAS 9.4 (SAS Institute, 2003, Cary, NC) was used for the statistical analysis of all the data obtained from different ICM modules to analyze the variance (ANOVA) under the randomized block design79. Tukey’s honest significant difference test was employed to compare the mean effect of the treatments at p = 0.05.Authors have confirmed that all the plant studies were carried out in accordance with relevant national, international or institutional guidelines. More

  • in

    Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior

    1.Andrews, K. L. Latin-American research on Spodoptera frugiperda (Lepidoptera, Noctuidae). Florida Entomol. 71, 630–653. https://doi.org/10.2307/3495022 (1988).Article 

    Google Scholar 
    2.Brevault, T. et al. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Senegal. Entomologia Generalis 37, 129–142. https://doi.org/10.1127/entomologia/2018/0553 (2018).Article 

    Google Scholar 
    3.Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. https://doi.org/10.1038/s41598-017-04238-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamo, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE https://doi.org/10.1371/journal.pone.0165632 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Jacobs, A., van Vuuren, A. & Rong, I. H. Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae) from South Africa. Afr. Entomol. 26, 45–49. https://doi.org/10.4001/003.026.0045 (2018).Article 

    Google Scholar 
    6.Day, R. et al. Fall Armyworm: Impacts and Implications for Africa. Outlooks Pest Manag. 28, 196–201. https://doi.org/10.1564/v28_oct_02 (2017).Article 

    Google Scholar 
    7.Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474. https://doi.org/10.1126/science.356.6337.473 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Luginbill, P. The fall armyworm. US Dept. Agric. Tech. Bull. 34, 1–91 (1928).
    Google Scholar 
    9.Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467. https://doi.org/10.1002/ece3.268 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Westbrook, J., Fleischer, S., Jairam, S., Meagher, R. & Nagoshi, R. Multigenerational migration of a pest insect. Ecosphere 10, e02919. https://doi.org/10.1002/ecs2.2919 (2019).Article 

    Google Scholar 
    11.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Ge, S. S. et al. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 20, 707–714. https://doi.org/10.1016/S2095-3119(20)63166-5 (2021).Article 

    Google Scholar 
    13.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE https://doi.org/10.1371/journal.pone.0217755 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Jr. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Nagoshi, R. N. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. https://doi.org/10.1038/s41598-018-21954-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of Cytochrome Oxidase Subunit I gene. Florida Entomol. 85, 186–190 (2002).CAS 
    Article 

    Google Scholar 
    18.Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).CAS 
    Article 

    Google Scholar 
    19.Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).CAS 
    Article 

    Google Scholar 
    20.Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).Article 
    PubMed 

    Google Scholar 
    21.Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).Article 

    Google Scholar 
    22.Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).CAS 
    Article 

    Google Scholar 
    24.Nagoshi, R. N. Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Ann. Entomol. Soc. Am. 105, 351–358. https://doi.org/10.1603/AN11138 (2012).CAS 
    Article 

    Google Scholar 
    25.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. https://doi.org/10.1038/s41598-019-44744-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528. https://doi.org/10.1371/journal.pone.0253528 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Koffi, D. et al. Trapping Spodoptera frugiperda (Lepidoptera: Noctuidae) moths in different crop habitats in Togo and Ghana. J. Econ. Entomol. 114, 1138–1144. https://doi.org/10.1093/jee/toab048 (2021).Article 
    PubMed 

    Google Scholar 
    30.Thenkabail, P. S. et al. Assessing future risks to agricultural productivity, water Resources and food security: How can remote sensing help?. Photogramm. Eng. Remote. Sens. 78, 773–782 (2012).
    Google Scholar 
    31.Teluguntla, P. et al. (eds.). Global Cropland Area Database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. Chapter 7 Vol. II. Land Resources: Monitoring, Modelling, and Mapping, Remote Sensing Handbook edited by Prasad S. Thenkabail.32.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Nagoshi, R. N., Fleischer, S. J. & Meagher, R. L. Texas is the overwintering source of fall armyworm in central Pennsylvania: Implications for migration into the northeastern United States. Environ. Entomol. 38, 1546–1554. https://doi.org/10.1603/022.038.0605 (2009).Article 
    PubMed 

    Google Scholar 
    34.Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).CAS 
    Article 

    Google Scholar 
    35.Assefa, Y., Mitchell, A. & Conlong, D. E. Phylogeography of Eldana saccharine Walker (Lepidoptera : Pyralidae). Annales de la Société Entomologique de France 42, 331–337. https://doi.org/10.1080/00379271.2006.10697465 (2006).Article 

    Google Scholar 
    36.Sezonlin, M. et al. Phylogeographic pattern and regional evolutionary history of the maize stalk borer Busseola fusca (Fuller) (Lepidoptera : Noctuidae) in sub-Saharan Africa. Annales de la Société Entomologique de France 42, 339–351. https://doi.org/10.1080/00379271.2006.10697466 (2006).Article 

    Google Scholar 
    37.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera, Noctuidae)—A sibling species complex. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    39.Nagoshi, R. N. & Meagher, R. Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Mol. Biol. 12, 453–458 (2003).CAS 
    Article 

    Google Scholar 
    40.Nagoshi, R. N. & Meagher, R. L. Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ. Entomol. 33, 881–889 (2004).Article 

    Google Scholar 
    41.Juárez, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains?. Entomol. Exp. Appl. 152, 182–199. https://doi.org/10.1111/eea.12215 (2014).CAS 
    Article 

    Google Scholar 
    42.Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).Article 

    Google Scholar 
    43.Pashley, D. P., Hardy, T. N. & Hammond, A. M. Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88, 748–755 (1995).Article 

    Google Scholar 
    44.Groot, A. T., Marr, M., Heckel, D. G. & Schofl, G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol. Entomol. 35, 105–118. https://doi.org/10.1111/J.1365-2311.2009.01138.X (2010).Article 

    Google Scholar 
    45.Kost, S., Heckel, D. G., Yoshido, A., Marec, F. & Groot, A. T. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution 70, 1418–1427. https://doi.org/10.1111/evo.12940 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Pashley, D. P., Hammond, A. M. & Hardy, T. N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 85, 400–405 (1992).Article 

    Google Scholar 
    47.Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575. https://doi.org/10.1093/jee/tox229 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816. https://doi.org/10.1038/s41598-017-10461-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22, 179. https://doi.org/10.1186/s12864-021-07492-7 (2021).CAS 
    Article 

    Google Scholar 
    50.Sperling, F. A. H. Sex-linked genes and species-differences in lepidoptera. Can. Entomol. 126, 807–818 (1994).Article 

    Google Scholar 
    51.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).Article 
    PubMed 

    Google Scholar 
    52.Jeger, M. et al. Pest risk assessment of Spodoptera frugiperda for the European Union. Efsa J. https://doi.org/10.2903/j.efsa.2018.5351 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Rwomushana, I. et al. Fall armyworm: Impacts and implications for Africa. In CABI Evidnece Notes (CABI, Oxfordshire, 2018) http://www.invasive-species.org/wp-content/uploads/sites/2/2019/02/FAW-Evidence-Note-October-2018.pdf54.Stanaway, M. A., Zalucki, M. P., Gillespie, P. S., Rodriguez, C. M. & Maynard, G. V. Pest risk assessment of insects in sea cargo containers. Aust. J. Entomol. 40, 180–192. https://doi.org/10.1046/j.1440-6055.2001.00215.x (2001).Article 

    Google Scholar  More

  • in

    Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana

    1.Bai, Y., Henry, J. & Wlodkowic, D. Chemosensory avoidance behaviors of marine amphipods Allorchestes compressa revealed using a millifluidic perfusion technology. Biomicrofluidics 14, 014110 (2020).CAS 
    Article 

    Google Scholar 
    2.Bownik, A. Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Sci. Total Environ. 601–602, 194–205 (2017).Article 

    Google Scholar 
    3.Libralato, G., Prato, E., Migliore, L., Cicero, A. M. & Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 69, 35–49 (2016).CAS 
    Article 

    Google Scholar 
    4.Henry, J. & Wlodkowic, D. Towards high-throughput chemobehavioural phenomics in neuropsychiatric drug discovery. Mar. Drugs 17, 340 (2019).CAS 
    Article 

    Google Scholar 
    5.Morgana, S., Estévez-Calvar, N., Gambardella, C., Faimali, M. & Garaventa, F. A short-term swimming speed alteration test with nauplii of Artemia franciscana. Ecotoxicol. Environ. Saf. 147, 558–564 (2018).CAS 
    Article 

    Google Scholar 
    6.Bartolomé, M. C. & Sánchez-Fortún, S. Acute toxicity and inhibition of phototaxis induced by benzalkonium chloride in Artemia franciscana larvae. Bull. Environ. Contam. Toxicol. 75, 1208–1213 (2005).Article 

    Google Scholar 
    7.Hellou, J. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. Int. 18, 1–11 (2011).CAS 
    Article 

    Google Scholar 
    8.Campana, O. & Wlodkowic, D. Ecotoxicology goes on a chip: embracing miniaturized bioanalysis in aquatic risk assessment. Environ. Sci. Technol. 52, 932–946 (2018).CAS 
    Article 

    Google Scholar 
    9.De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R. & de Groot, D. Zebrafish as potential model for developmental neurotoxicity testing. A mini review. Neurotoxicol. Teratol. 34, 545–553 (2012).Article 

    Google Scholar 
    10.Blackiston, D., Shomrat, T., Nicolas, C. L., Granata, C. & Levin, M. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS ONE 5, e14370 (2010).Article 

    Google Scholar 
    11.Franco-Restrepo, J. E., Forero, D. A. & Vargas, R. A. A review of freely available, open-source software for the automated analysis of the behavior of adult. zebrafish. Zebrafish 16, 223–232 (2019).PubMed 

    Google Scholar 
    12.Henry, J., Rodriguez, A. & Wlodkowic, D. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology. PeerJ 7, e7367 (2019).Article 

    Google Scholar 
    13.Henry, J. & Wlodkowic, D. High-throughput animal tracking in chemobehavioral phenotyping: current limitations and future perspectives. Behav. Processes 180, 104226 (2020).Article 

    Google Scholar 
    14.Garcia, G. R., Noyes, P. D. & Tanguay, R. L. Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161, 11–21 (2016).CAS 
    Article 

    Google Scholar 
    15.Rennekamp, A. J. & Peterson, R. T. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24, 58–70 (2015).CAS 
    Article 

    Google Scholar 
    16.Cartlidge, R. & Wlodkowic, D. Caging of planktonic rotifers in microfluidic environment for sub-lethal aquatic toxicity tests. Biomicrofluidics 12, 044111 (2018).Article 

    Google Scholar 
    17.Kohler, S. A., Parker, M. O. & Ford, A. T. Shape and size of the arenas affect amphipod behaviours: implications for ecotoxicology. PeerJ 6, e5271 (2018).Article 

    Google Scholar 
    18.Kohler, S. A., Parker, M. O. & Ford, A. T. Species-specific behaviours in amphipods highlight the need for understanding baseline behaviours in ecotoxicology. Aquat. Toxicol. 202, 173–180 (2018).CAS 
    Article 

    Google Scholar 
    19.Kohler, S. A., Parker, M. O. & Ford, A. T. High-throughput screening of psychotropic compounds: impacts on swimming behaviours in Artemia franciscana. Toxics 9, 64 (2021).Article 

    Google Scholar 
    20.Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S. & Agata, K. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zoolog. Lett. 1, 7 (2015).Article 

    Google Scholar 
    21.Truong, L. et al. Multidimensional in vivo hazard assessment using zebrafish. Toxicol. Sci. 137, 212–233 (2014).CAS 
    Article 

    Google Scholar 
    22.Zhang, S., Hagstrom, D., Hayes, P., Graham, A. & Collins, E.-M. S. Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians. Toxicol. Sci. 167, 26–44 (2019).CAS 
    Article 

    Google Scholar 
    23.Akiyama, Y., Agata, K. & Inoue, T. Spontaneous behaviors and wall-curvature lead to apparent wall preference in planarian. PLoS ONE 10, e0142214 (2015).Article 

    Google Scholar 
    24.Blaser, R. E. & Rosemberg, D. B. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS ONE 7, e36931 (2012).CAS 
    Article 

    Google Scholar 
    25.Harro, J. Animals, anxiety, and anxiety disorders: how to measure anxiety in rodents and why. Behav. Brain Res. 352, 81–93 (2018).Article 

    Google Scholar 
    26.Faimali, M. et al. Old model organisms and new behavioral end-points: swimming alteration as an ecotoxicological response. Mar. Environ. Res. 128, 36–45 (2017).CAS 
    Article 

    Google Scholar 
    27.Rashid, M. T. et al. Artemia swarm dynamics and path tracking. Nonlinear Dyn. 68, 555–563 (2012).Article 

    Google Scholar 
    28.Forward, R. B. & Rittschof, D. Brine shrimp larval photoresponses involved in diel vertical migration: activation by fish mucus and modified amino sugars. Limnol. Oceanogr. 44, 1904–1916 (1999).CAS 
    Article 

    Google Scholar 
    29.Gerhardt, A. Aquatic behavioral ecotoxicology—prospects and limitations. Hum. Ecol. Risk Assess. 13, 481–491 (2007).Article 

    Google Scholar 
    30.Ford, A. T. et al. The role of behavioral ecotoxicology in environmental protection. Environ. Sci. Technol. 55, 5620–5628 (2021).CAS 
    Article 

    Google Scholar 
    31.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).Article 

    Google Scholar  More

  • in

    Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates

    1.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
    Google Scholar 
    2.Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).CAS 

    Google Scholar 
    3.Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).
    Google Scholar 
    4.Turley, C. & Gattuso, J.-P. Future biological and ecosystem impacts of ocean acidification and their socioeconomic-policy implications. Curr. Opin. Environ. Sustain. 4, 278–286 (2012).
    Google Scholar 
    5.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 4719 (2019).
    Google Scholar 
    6.Falkenberg, L. et al. Ocean acidification and human health. Int. J. Environ. Res. Public Health 17, 4563 (2020).CAS 

    Google Scholar 
    7.Loewe, M. & Rippin, N. The Sustainable Development Goals of the Post-2015 Agenda. Comments on the OWG and SDSN Proposals (German Development Institute 2015).8.Doney, S. C. et al. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
    Google Scholar 
    9.Ekstrom, J. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).
    Google Scholar 
    10.Ponce Oliva, R. D. et al. Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry. Ecol. Econ. 158, 42–50 (2019).
    Google Scholar 
    11.Quatrinni, A. M. et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 4, 1531–1538 (2020).
    Google Scholar 
    12.Thomsen, J. et al. Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci. Adv. 3, e1602411 (2017).
    Google Scholar 
    13.Rastrick, S. S. P. et al. Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems. ICES J. Mar. Sci. 75, 2299–2311 (2018).
    Google Scholar 
    14.Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents reveal ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).CAS 

    Google Scholar 
    15.Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical–temperate transition zone. Sci. Rep. 8, 11354 (2018).
    Google Scholar 
    16.Riquelme-Bugueño, R. et al. Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current. Sci. Rep. 10, 17181 (2020).
    Google Scholar 
    17.Pérez et al. Riverine discharges impact physiological traits and carbon sources for shell carbonate in the marine intertidal mussel Perumytilus purpuratus. Limnol. Oceanogr. 61, 969–983 (2016).
    Google Scholar 
    18.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 
    19.Saavedra et al. Local habitat influences on feeding and respiration of the intertidal mussels Perumytilus purpuratus exposed to increased pCO2 levels. Estuaries Coast. 41, 1118–1129 (2018).CAS 

    Google Scholar 
    20.Riebesell, U. & Gattuso, J.-P. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 12–14 (2015).CAS 

    Google Scholar 
    21.Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).
    Google Scholar 
    22.Barry, J. P., Hall-Spencer, J. M. and Tyrrell, T. in Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds Riebesell, U. et al.) Ch. 3 (Publications Office of the European Union, 2010).23.Vargas, C. A. et al. Influence of glacier melting and river discharges on the nutrient distribution and DIC recycling in the southern Chilean Patagonia. J. Geophys. Res. Biogeosci. 123, 256–270 (2018).
    Google Scholar 
    24.Feely, R. A. et al. Evidence for upwelling of corrosive ‘acidified’ water onto the Continental Shelf. Science 320, 1490–1492 (2008).CAS 

    Google Scholar 
    25.Vargas, C. A. et al. Riverine and corrosive upwelling waters influences on the carbonate system in the coastal upwelling area off Central Chile: implications for coastal acidification events. J. Geophys. Res. Biogeosci. 121, 1468–1483 (2016).
    Google Scholar 
    26.Cao, Z. et al. Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. J. Geophys. Res. Oceans 116, G02010 (2010).
    Google Scholar 
    27.Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Est. Coast. Shelf Sci. 88, 442–449 (2010).CAS 

    Google Scholar 
    28.Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).CAS 

    Google Scholar 
    29.Kwiatkowski, L. et al. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification. Sci. Rep. 6, 22984 (2016).CAS 

    Google Scholar 
    30.Wolfe, K., Nguyen, H. D., Davey, M. & Byrne, M. Characterizing biogeochemical fluctuations in a world of extremes: a synthesis for temperate intertidal habitats in the face of global change. Glob. Change Biol. 26, 3858–3879 (2020).
    Google Scholar 
    31.Shaw, E. C., Phinn, S. R., Tilbrook, B. & Steven, A. Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnol. Oceanogr. 60, 777–788 (2015).
    Google Scholar 
    32.Takeshita, Y. et al. Coral reef carbonate chemistry variability at different functional scales. Front. Mar. Sci. 5, 175 (2018).
    Google Scholar 
    33.Brodeur, J. R. et al. Chesapeake Bay inorganic carbon: spatial distribution and seasonal variability. Front. Mar. Sci. 6, 99 (2019).
    Google Scholar 
    34.Hoshijima, U. & Hofmann, G. E. Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus. Front. Mar. Sci. 6, 62 (2019).
    Google Scholar 
    35.Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosciences 14, 31–44 (2017).CAS 

    Google Scholar 
    36.Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).
    Google Scholar 
    37.Kapsenberg, L. & Hofmann, G. E. Ocean pH time-series and drivers of variability along the northern Channel Islands, California, USA. Limnol. Oceanogr. 61, 953–968 (2016).
    Google Scholar 
    38.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).CAS 

    Google Scholar 
    39.Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).
    Google Scholar 
    40.Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. R. Soc. B 280, 20132201 (2013).
    Google Scholar 
    41.Rivest, E. B., Comeau, S. & Cornwall, C. E. The role of natural variability in shaping the response of coral reef organisms to climate change. Curr. Clim. 3, 271–281 (2017).
    Google Scholar 
    42.Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).
    Google Scholar 
    43.Lewis, C. N. et al. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc. Natl Acad. Sci. USA 110, E4960–E4967 (2013).CAS 

    Google Scholar 
    44.Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Google Scholar 
    45.Aguilera, V. M., Vargas, C. A. & Dewitte, B. Intraseasonal hydrographic variations and nearshore carbonates system off northern Chile during the 2015 El Niño event. J. Geophys. Res. Biogeosci. 125, e2020JG005704 (2020).CAS 

    Google Scholar 
    46.Fassbender, A. J. et al. Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest. Earth Syst. Sci. Data 10, 1367–1401 (2018).
    Google Scholar 
    47.Reum, J. C. P. et al. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. PLoS ONE 9, e89619 (2014).
    Google Scholar 
    48.Wallace, R. B. et al. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).CAS 

    Google Scholar 
    49.Rutgersson, A. et al. The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper. J. Mar. Syst. 74, 381–394 (2008).
    Google Scholar 
    50.Clargo, N. M., Salt, L. A., Thomas, H. & de Baar, H. J. W. Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001–2011 decade ascribed to climate change superimposed by biological processes. Mar. Chem. 177, 566–581 (2015).CAS 

    Google Scholar 
    51.Ericson, Y. et al. Temporal variability in surface water pCO2 in Adventfjorden (West Spitsbergen) with emphasis on physical and biogeochemical drivers. J. Geophys. Res. Oceans 123, 4888–4905 (2018).CAS 

    Google Scholar 
    52.Geilfus, N.-X. et al. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011. Cont. Shelf Res. 156, 1–10 (2018).
    Google Scholar 
    53.Islam, F. et al. Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic Ocean. J. Geophys. Res. Oceans 122, 1425–1438 (2016).
    Google Scholar 
    54.Copin-Montégut, C., Bégovic, M. & Merlivat, L. Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea. Mar. Chem. 85, 169–189 (2004).
    Google Scholar 
    55.Pardo, P. C. et al. Surface ocean carbon dioxide variability in South Pacific boundary currents and Subantarctic waters. Sci. Rep. 9, 7592 (2019).
    Google Scholar 
    56.Gagliano, M., McCormick, M. I., Moore, J. A. & Depczynski, M. The basics of acidification: baseline variability of pH on Australian coral reefs. Mar. Biol. 157, 1849–1856 (2010).CAS 

    Google Scholar 
    57.Takeshita, Y. et al. Including high-frequency variability in coastal acidification projections. Biogeosciences 12, 5853–5870 (2015).
    Google Scholar 
    58.Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).CAS 

    Google Scholar 
    59.Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1405–1411 (2013).CAS 

    Google Scholar 
    60.Miller, S. H. et al. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) larvae exposed to subsequent salinity stress. PLoS ONE 9, e109167 (2014).
    Google Scholar 
    61.Bayne, B. L. Metabolic expenditure. Dev. Aquacult. Fish. Sci. 41, 331–415 (2017).
    Google Scholar 
    62.Waldbusser, G. G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).
    Google Scholar 
    63.Dorey, N., Lancon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point for sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).
    Google Scholar 
    64.Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2015).
    Google Scholar 
    65.Gaitán-Espitia, J. D. et al. Spatio–temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification. Biol. Lett. 13, 20160865 (2017).
    Google Scholar 
    66.Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470–484 (2013).CAS 

    Google Scholar 
    67.Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).CAS 

    Google Scholar 
    68.Chan, K. Y. K., Grünbaum, D., Arnberg, M. & Dupont, S. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci. 73, 951–996 (2016).
    Google Scholar 
    69.Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl Acad. Sci. USA 109, 18192–18197 (2012).CAS 

    Google Scholar 
    70.Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).CAS 

    Google Scholar 
    71.Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).
    Google Scholar 
    72.Gibbin, E. M. et al. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).
    Google Scholar 
    73.Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).
    Google Scholar 
    74.Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).
    Google Scholar 
    75.Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. 49, 1–42 (2011).
    Google Scholar 
    76.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).
    Google Scholar 
    77.Kroeker et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
    Google Scholar 
    78.Takahashi, T., Sutherland, S. C. & Kozyr, A. LDEO Database (Version 2019): Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957–2019 (NCEI Accession 0160492) Version 9.9 (National Oceanic and Atmospheric Administration National Centers for Environmental Information); https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015)79.Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC Press, 1997).80.Martinez, W. L. & Martinez, A. R. Computational Statistics Handbook with MATLAB (CRC Press, 2002). More

  • in

    Ericaceous vegetation of the Bale Mountains of Ethiopia will prevail in the face of climate change

    1.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Jump, A. S., Matyas, C. & Penuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24(12), 694–701. https://doi.org/10.1016/j.tree.2009.06.007 (2009).Article 
    PubMed 

    Google Scholar 
    3.Malcolm, J. R., Liu, C., Neilson, R. O., Hansen, A. & Hannah, L. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20(2), 538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x (2006).Article 
    PubMed 

    Google Scholar 
    4.Gentili, R. et al. Review: Potential warm stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecol. Complex. 21, 87–99. https://doi.org/10.1016/j.ecocom.2014.11.006 (2015).Article 

    Google Scholar 
    5.Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Trans. R. Soc. Lond. B. 359, 311–329. https://doi.org/10.1098/rstb.2003.1433Phil (2004).Article 

    Google Scholar 
    6.IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team (eds. Pachauri, R. K., Meyer, L. A.) 155 (IPCC, Geneva, 2014).7.Kreyling, J., Wana, D. & Beierkuhnlein, C. Climate warming and tropical plant species—consequence of the potential upslope shift of isotherms in southern Ethiopia. Divers. Distrib. 16, 593–605. https://doi.org/10.1111/j.1472-4642.2010.00675.x (2010).Article 

    Google Scholar 
    8.Beierkuhnlein, C. Biogeografie. Die räumliche Organisation des Lebens in einer sich verändernden Welt (Eugen Ulmer Verlag, 2007).Book 

    Google Scholar 
    9.Körner, C. The use of “altitude” for ecological research. Trends Ecol. Evol. 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).Article 
    PubMed 

    Google Scholar 
    10.Messerli, B., and Ives, J.D. (1997). Mountains of the world: a global priority. edited by B. Messerli and J.D. Ives. Parthenon Pub. Group, New York. 495p.11.Flantua, S. G. A. et al. Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Glob. Ecol. Biogeogr. 29, 1651–1673. https://doi.org/10.1111/geb.13155 (2020).Article 

    Google Scholar 
    12.Steinbauer, M. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25(9), 1097–1107. https://doi.org/10.1111/geb.12469 (2016).Article 

    Google Scholar 
    13.Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231. https://doi.org/10.1111/geb.13297 (2021).Article 

    Google Scholar 
    14.Buytaert, W., Cuesta-Camacho, F. & Tobon, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20, 19–33. https://doi.org/10.1111/j.1466-8238.2010.00585.x (2011).Article 

    Google Scholar 
    15.Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).Article 

    Google Scholar 
    16.Nagy, L. & Grabherr, G. The Biology of Alpine Habitats (Oxford University Press, 2009).
    Google Scholar 
    17.Razgour, O., Kasso, M., Santos, H. & Juste, J. Up in the air: Threats to Afromontane biodiversity from climate change and habitat loss revealed by genetic monitoring of the Ethiopian Highlands bat. Evol. Appl. 14, 794–806. https://doi.org/10.1111/eva.13161 (2021).Article 

    Google Scholar 
    18.Vuilleumier, F. & Monasterio, M. Introduction: high tropical Mountain Biota of the world. In High mountains tropical biogeography (eds Vuilleumier, F. & Monasterio, M.) (Oxford University Press, 1986).
    Google Scholar 
    19.Gehrke, B. & Linder, H. P. Species richness, endemism, and species composition in the tropical afroalpine flora. Alp. Bot. 124, 165–177 (2014).Article 

    Google Scholar 
    20.Hedberg, O. Features of afroalpine plant ecology. Acta Phytogeogr. Suec. 49, 1–144 (1964).
    Google Scholar 
    21.Hedberg, O. Vegetation belts of the East African mountains. Sven. Bot. Tidskr. 45, 140–202 (1951).
    Google Scholar 
    22.Hillman, J. C. The Bale Mountains National Park Area, Southeast Ethiopia and its management. Mt. Res. Dev. 8(2/3), 253–258 (1988).Article 

    Google Scholar 
    23.Miehe, S. & Miehe, G. Ericaceous Forests and Heathlands in the Bale Mountains of South Ethiopia .Ecology and Man’s Impact (Stiftung Walderhaltung in Africa, 1994).
    Google Scholar 
    24.Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, 1–12. https://doi.org/10.1016/j.gecco.2019.e00670 (2019).Article 

    Google Scholar 
    25.McGuire, A. F., Kathleen, A. & Kron, K. A. Phylogenetic relationships of European and African Ericas. Int. J. Plant Sci. 162(2), 311–318. https://doi.org/10.1086/427478 (2005).Article 

    Google Scholar 
    26.Wesche, K. The importance of occasional droughts for afroalpine landscape ecology. J. Trop. Ecol. 19, 197–208. https://doi.org/10.1017/S0266467403003225 (2003).Article 

    Google Scholar 
    27.Gil-Romera, G. et al. Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia. Biol. Lett. 15, 20190357. https://doi.org/10.1098/rsbl.2019.0357 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Gizaw, A. et al. Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine “sky islands” inferred from AFLPs and plastid DNA sequences. Flora 208, 453–463 (2013).Article 

    Google Scholar 
    29.Johansson, M. Fire and Grazing in Subalpine Heathlands and Forests of Bale Mountains, Ethiopia (Swedish University of Agricultural Sciences, 2013).
    Google Scholar 
    30.Johansson, M. U., Frisk, C. A., Nemomissa, S. & Hylander, K. Disturbance from traditional fire management in subalpine heathlands increases Afro-alpine plant resilience to climate change. Glob. Change Biol. 24(7), 2952–2964. https://doi.org/10.1111/gcb.14121 (2018).ADS 
    Article 

    Google Scholar 
    31.Wesche, K., Miehe, G. & Kaeppeli, M. The significance of fire for afroalpine ericaceous vegetation. Mt. Res. Dev. 20, 340–347. https://doi.org/10.1659/0276-4741(2000)020[0340:TSOFFA]2.0.CO;2 (2000).Article 

    Google Scholar 
    32.Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682. https://doi.org/10.1038/NCLIMATE1887 (2013).ADS 
    Article 

    Google Scholar 
    34.Hillman, J. C. Conservation in Ethiopia’s Bale Mountains. Endanger. Species 3, 1–4 (1986).
    Google Scholar 
    35.Johansson, M. U. & Granström, A. Fuel, fire, and cattle in African highlands: traditional management maintains a mosaic heathland landscape. J. Appl. Ecol. 51, 1396–1405. https://doi.org/10.1111/1365-2664.12291 (2014).Article 

    Google Scholar 
    36.Ossendorf, G. et al. Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science 365(6453), 583–587. https://doi.org/10.1126/science.aaw8942 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Uhlig, S. & Uhlig, K. Mountain chronicles. Studies on the altitudinal zonation of forests and alpine plants in the Central Bale Mountains, Ethiopia. Mt. Res. Dev. 11, 153–256 (1991).Article 

    Google Scholar 
    38.Umer, M. et al. Late Pleistocene Holocene vegetation history of the Bale Mountains, Ethiopia. Quatern. Sci. Rev. 26, 2229–2246 (2007).ADS 
    Article 

    Google Scholar 
    39.Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35–46. https://doi.org/10.1080/17550870802262166 (2008).Article 

    Google Scholar 
    40.Di Falco, S., Veronesi, M. & Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 93(3), 829–846. https://doi.org/10.1093/ajae/aar006 (2011).Article 

    Google Scholar 
    41.Nsengiyumva, P. African mountains in a changing climate: trends, impacts, and adaptation solutions. Mt. Res. Dev. 39(2), 1–8. https://doi.org/10.1659/MRD-JOURNAL-D-19-00062.1 (2019).Article 

    Google Scholar 
    42.IPCC. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) (2018).43.Araújo, M. B. & Guisan, A. Five (or so) challenges for species distribution modeling. J. Biogeogr. 33(10), 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x (2006).Article 

    Google Scholar 
    44.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    45.Bonnefille, R. Evidence for a cooler and drier climate in the Ethiopian uplands towards 2.5 Myr ago. Nature 303, 487–491. https://doi.org/10.1038/303487a0 (1983).ADS 
    Article 

    Google Scholar 
    46.Bonnefille, R., Roeland, J. C. & Guiot, J. Temperature and rainfall estimate for the past 40,000 years in equatorial Africa. Nature 346, 347–349 (1990).ADS 
    Article 

    Google Scholar 
    47.Gottelli, D., Marino, J., Sillero-Zubiri, C. & Funk, S. M. The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol. Ecol. 13, 2275–2286 (2004).CAS 
    Article 

    Google Scholar 
    48.Smith, A. P. & Young, T. P. Tropical alpine plant ecology. Annu. Rev. Ecol. Syst. 18, 137–158 (1987).Article 

    Google Scholar 
    49.Kidane, Y. O., Stahlman, R. & Beierkuhnlein, C. Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 184(12), 7473–7489. https://doi.org/10.1007/S10661-011-2514-8 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Hedberg, O. Origins of the afroalpine Flora. In High Mountains Tropical Biogeography (eds Vuilleumier, F. & Monasterio, M.) (Oxford University Press, 1986) (Published by Oxford University Press and the American Museum of Natural History).
    Google Scholar 
    51.United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf (2015). Accessed November 19, 2021.52.QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. http://qgis.osgeo.org (2018).53.Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4 (2002).ADS 
    Article 

    Google Scholar 
    54.Wegmann, M., Leutner, B. & Dech, S. Remote Sensing and GIS for Ecologists: Using Open Software 333 (Pelagic Publishing, UK, 2016).
    Google Scholar 
    55.Duveiller, G., Defourny, P., Descle’e, B. & Mayaux, P. Deforestation in Central Africa: Estimates at regional, national, and landscape levels by advanced processing of systematically distributed Landsat extracts. Remote Sens. Environ. 112(5), 1969–1981. https://doi.org/10.1016/j.rse.2007.07.026 (2008).ADS 
    Article 

    Google Scholar 
    56.Smeeton, N. C. Early history of the kappa statistic. Biometrics 41(3), 795–795 (1985).
    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing [Internet]. http://www.R-project.org/ (2019).58.Naimi, B. & Araújo, M. B. SDM: a reproducible and extensible R platform for species distribution modeling. Ecography 39, 368–375. https://doi.org/10.1111/ecog.01881 (2016).Article 

    Google Scholar 
    59.Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modeling? Ecography 37(2), 191–203 (2014).Article 

    Google Scholar 
    60.Austin, M. P. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157, 101–118 (2002).Article 

    Google Scholar 
    61.World Climate Research Program (WCRP). Coupled Model Intercomparison Project 5 (CMIP5). https://esgf-node.llnl.gov/projects/cmip5 (2021).62.Hijmans, R. J., & Elith, J. Species distribution modelling with R. https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (2017). Accessed July 2018.63.Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–881 (2009).Article 

    Google Scholar 
    64.Hijmans, R. J. & van Etten, J. Raster: Geographic Analysis and Modelling with Raster Data. R package version 1.8-39. http://CRAN.R-project.org/package=raster (2011). Accessed July 2018.65.Elith, J. et al. Novel methods improve prediction of “species” distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    66.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9. https://doi.org/10.1111/ddi.12144 (2014).Article 

    Google Scholar 
    67.Carpenter, G., Gillison, A. N. & Winter, J. Domain: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 2, 667–680 (1993).Article 

    Google Scholar 
    68.Vapnik, V. Statistical Learning Theory (Wiley, 1998).MATH 

    Google Scholar 
    69.Mateo, R. G., Felicísimo, Á. M., Pottier, J., Guisan, A. & Muñoz, J. Do stacked species distribution models reflect altitudinal diversity patterns?. PloS ONE 7(3), e32586. https://doi.org/10.1371/journal.pone.0032586 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Thuiller, W. BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    71.Peterson, A. T. et al. Ecological Niches and Geographic Distributions. Monographs in Population Biology-49 (Princeton University Press, 2011).Book 

    Google Scholar 
    72.Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 https://doi.org/10.1038/s41586-018-0005-6 (2018).Article 
    PubMed 

    Google Scholar 
    73.Chala, D., Niklaus, E., Zimmermann, E. Z., Brochmann, C. & Bakkestuen, V. Migration corridors for alpine plants among the “sky islands” of eastern Africa: do they, or did they exist?. Alp. Bot. 127, 133–144. https://doi.org/10.1007/s00035-017-0184-z (2017).Article 

    Google Scholar 
    74.Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383. https://doi.org/10.3390/d13080383 (2021).Article 

    Google Scholar 
    75.Winkler, M. et al. The rich sides of mountain summit a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43(11), 2261–2273. https://doi.org/10.1111/Jbi.12835 (2016).Article 

    Google Scholar 
    76.United States Geological Survey (USGS). Landsat Archive. Landsat standard data products. http://landsat.usgs.gov (2018). Accessed July 17, 2018.77.Di Falco, S., Yesuf, M., Kohlin, G. & Ringler, C. Estimating the impact of climate change on agriculture in low-income countries: household level evidence from the Nile Basin, Ethiopia. Environ. Resour. Econ. 52, 457–478. https://doi.org/10.1007/s10640-011-9538-y (2011).Article 

    Google Scholar  More

  • in

    Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding

    1.Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2005).
    Google Scholar 
    2.Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).
    Google Scholar 
    3.Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).
    Google Scholar 
    4.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246 (2010).
    Google Scholar 
    5.Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
    Google Scholar 
    6.Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195 (2009).
    Google Scholar 
    7.Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 

    Google Scholar 
    8.Zhang, H., Yuan, W., Liu, S. & Dong, W. Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere 6, art250 (2015).
    Google Scholar 
    9.Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).CAS 

    Google Scholar 
    10.Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Google Scholar 
    11.Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
    Google Scholar 
    12.Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).
    Google Scholar 
    13.Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. https://doi.org/10.1029/2007gl031447 (2007).14.Fitter, A. H. & Fitter, R. S. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).CAS 

    Google Scholar 
    15.Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).
    Google Scholar 
    16.Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A. & Field, C. B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl Acad. Sci. USA 103, 13740–13744 (2006).CAS 

    Google Scholar 
    17.Wang, H., Dai, J., Zheng, J. & Ge, Q. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. Int. J. Climatol. 35, 913–922 (2015).
    Google Scholar 
    18.Chuine, I. M., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).
    Google Scholar 
    19.Chuine, I. A unified model for budburst of trees. J. Theor. Biol. 207, 337–347 (2000).CAS 

    Google Scholar 
    20.Murray, M., Cannell, M. G. R. & Smith, R. I. Date of budburst of fifteen tree species in Britain following climatic warming. J. Appl. Ecol. 26, 693–700 (1989).
    Google Scholar 
    21.Man, R., Lu, P. & Dang, Q. L. Insufficient chilling effects vary among boreal tree species and chilling duration. Front. Plant Sci. 8, 1354 (2017).
    Google Scholar 
    22.Cannell, M. G. R. & Smith, R. I. L. Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol. 20, 951–963 (1983).
    Google Scholar 
    23.Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).
    Google Scholar 
    24.Zhang, H., Liu, S., Regnier, P. & Yuan, W. New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Glob. Change Biol. 24, 2066–2078 (2018).
    Google Scholar 
    25.Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).CAS 

    Google Scholar 
    26.Asse, D. et al. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric. For. Meteorol. 252, 220–230 (2018).
    Google Scholar 
    27.Ettinger, A. K. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change 10, 1137–1142 (2020).
    Google Scholar 
    28.Chuine, I. & Régnière, J. Process-based models of phenology for plants and animals. Annu. Rev. Ecol. Evol. Syst. 48, 159–182 (2017).
    Google Scholar 
    29.Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Clim. Res. 46, 147–157 (2011).
    Google Scholar 
    30.Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).CAS 

    Google Scholar 
    31.Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).32.Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).
    Google Scholar 
    33.Wolkovich, E. M. et al. A simple explanation for declining temperature sensitivity with warming. Glob. Change Biol. 27, 4947–4949 (2021).CAS 

    Google Scholar 
    34.Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).
    Google Scholar 
    35.Kramer, K. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172–181 (1994).
    Google Scholar 
    36.Chuine, I., Cour, P. & Rousseau, D.-D. Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ. 22, 1–13 (1999).37.Savas, R. Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy https://eurekamag.com/research/000/414/000414639.php (1974).38.Hänninen, H. Modelling bud dormancy release in trees from cool and temperate regions. Acta. Fenn. 14, 499–454 (1990).
    Google Scholar 
    39.Harrington, C. A., Gould, P. J. & St. Clair, J. B. Modeling the effects of winter environment on dormancy release of Douglas-fir. Ecol. Manag. 259, 798–808 (2010).
    Google Scholar 
    40.Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120, 1658–1665 (2015).
    Google Scholar 
    41.Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331 (2009).CAS 

    Google Scholar 
    42.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    43.Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    Google Scholar 
    44.Zohner, C. M. & Renner, S. S. Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecol. Lett. 17, 1016–1025 (2014).
    Google Scholar 
    45.Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8 (2012).
    Google Scholar 
    46.Lenz, A., Hoch, G., Körner, C. & Vitasse, Y. Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. Funct. Ecol. 30, 1480–1490 (2016).
    Google Scholar 
    47.Wang, Y. et al. Forest controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. Int. J. Biometeorol. 63, 963–972 (2019).
    Google Scholar 
    48.Marquis, B., Bergeron, Y., Simard, M. & Tremblay, F. Probability of sping frosts, not growing degree-days, drives onset of spruce bud burst in plantations at the boreal-temperate forest ecotone. Front. Plant Sci. 11, 1031 (2020).
    Google Scholar 
    49.Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tiberan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).
    Google Scholar 
    50.Liu et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).CAS 

    Google Scholar 
    51.Minder, J. R., Mote, P. W. & Lundquist, J. D. Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J. Geophys. Res. 115, D14122 (2010).
    Google Scholar 
    52.Navarro-Serrano et al. Elevation effects on air temperature in a topographically complex mountain valley in the Spanish Pyrenees. Atmosphere 11, 656 (2020).
    Google Scholar 
    53.Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).CAS 

    Google Scholar 
    54.Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    55.Beer, C. et al. Harmonized European long-term climate data for assessing the effect of changing temporal variability on land–atmosphere CO2 fluxes. J. Clim. 27, 4815–4834 (2014).
    Google Scholar 
    56.Olsson, C. & Jönsson, A. M. Process-based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob. Change Biol. 20, 3492–3507 (2014).
    Google Scholar 
    57.Duan, Q., Sorooshian, S. & Gupta, V. K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158, 265–284 (1994).
    Google Scholar 
    58.Bluemel, K. & Chmielewski, F. Shortcomings of classical phenological forcing models and a way to overcome them. Agric. For. Meteorol. 164, 10–19 (2012).
    Google Scholar  More

  • in

    Contrasting impacts of forests on cloud cover based on satellite observations

    Cloud cover and environmental datasetsThe monthly mean MODIS cloud fraction at 0.05° used in this study was computed from the daily cloud mask data (“cloudy” label for the bits 0–1 of “state_1 km” band) included in the MODIS Surface Reflectance product (MYD09GA.006, overpass at local time of 13:30) of Aqua from 2002 to 2018, using the reduceResolution function with “mean” aggregation method on Google Earth Engine (https://earthengine.google.com/). The 1-km cloud mask was produced based on the MOD35_L2 cloud mask product, which had been extensively validated71,72. Before computing cloud fractions, a snow/ice flag (the bit 12 of “state_1km” band) was used to remove snow or ice pixels in the cloud record because the high reflectivity of snow/ice degrades the accuracy of cloud detection, especially during winter in the northern hemisphere. Therefore, the estimated cloud effect would have larger uncertainty in boreal winter than in summer.To complement MODIS-based cloud analyses, we used the Meteosat Second Generation (MSG) hourly cloud fraction data of 2004–2013 at a spatial resolution of 0.05°. The Coordinated Universal Time (UTC) of the raw MSG hourly cloud cover data was converted to local time before being used for analysis.The cloud fraction from Sentinel-5P Near Real-Time (NRTI) data product was used in this analysis. This dataset is available from 2018-07-05 at a spatial resolution of 0.01° and it has an overpass time of 13:30 similar to MODIS. The Sentinel-5P cloud data, although having a short period of 2 years, allows for the separation of cloud effects into different cloud types, with the help of a cloud classification scheme based on cloud top pressure and cloud optical depth information30.Environmental variables include evapotranspiration (ET, MOD16A2 V6), land surface temperature (LST, MYD11A1 V6) from MODIS, and soil moisture (SM) from the TerraClimate dataset. All these environmental variables were averaged into monthly means at 0.05° resolution.Elevation data are from SRTM Digital Elevation Data at 0.05° resolution. Land cover data include MODIS (MOD12C1) and European Space Agency (ESA) global land cover products, which were aggregated to 0.05°.Defining forest cover changeTo define forest/non-forest and forest cover change, we used the Global forest cover (GFC) product which provides global tree cover for the year 2000 (baseline), yearly forest loss from 2001 to 2018, and forest gain from 2000–2012 at 30 m resolution53. The GFC data were aggregated to fractions at 0.05°. Net forest cover change was calculated as the sum of the loss and gain accumulated throughout the study period. Pixels with net forest cover change fractions smaller than 0.05 are considered to be “unchanged” and greater than 0.05 are considered to be “changed”. Unchanged forests and unchanged non-forest were defined as pixels with baseline tree cover fraction greater or less than 0.5 and with net forest change 0.15. Forest loss defined this way is expected to pose a stronger signal on clouds than that with a lower threshold, and thus improves the detectability of cloud impact against natural variability of cloud cover.Estimating potential and actual impacts of forest loss on cloud coverThe potential effect of forest on cloud (ΔCloud) was quantified as the mean cloud difference between unchanged forests and nearby non-forest as:$$Delta {{{{{rm{Cloud}}}}}}={{{{{{rm{Cloud}}}}}}}_{{{{{{rm{forest}}}}}}}-{{{{{{rm{Cloud}}}}}}}_{{{{{{rm{nonforest}}}}}}}$$
    (1)
    where Cloudforest and Cloudnonforest are multiyear or yearly mean cloud fractions averaged over unchanged forest and unchanged non-forest pixels, respectively. ΔCloud defined this way, with the reversed sign, represents the potential impact of forest loss on cloud cover at a given location. The methodology is designed to isolate the cloud effects of land surface conditions from those caused by meteorological conditions. It refers to local cloud impact (caused by land surface conditions) because effects from synoptic conditions and large-scale circulation changes/climate changes (meteorological conditions) are shared by both forest and non-forest and are therefore minimized through subtraction. If there is no effect of forests on cloud cover, the resulting ΔCloud would show random patterns with mixed positive and negative values instead of a systematic pattern, which indicates a cloud preference over forests or non-forest.To implement Eq. 1, we used a moving window approach to search for comparison samples between forest and nearby non-forest pixels at locations that underwent “forest change” (i.e., net forest change >0.05) across the globe73. Each moving window was sized at 9 × 9 pixels (0.45° × 0.45°) and two adjacent windows were half-overlapped with a distance of 5 pixels (i.e., the centers of two windows were 5 pixels apart along latitudinal and longitudinal direction). To avoid cloud inhibition effects from water bodies74, water pixels and their one-pixel buffer zone were masked out in the window searching strategy for ΔCloud. Therefore, ΔCloud can be calculated using unchanged forest and non-forest pixels within each moving window. This window searching strategy ensures the proximity of the forest and non-forest pixels to pixels that underwent forest change, making the estimated potential effect more representative of the actual forest change impact. To test the sensitivity of ΔCloud to window size and time period, ΔCloud was also estimated using alternative window sizes: 11 × 11 (0.55° × 0.55°), 21 × 21 (1.05° × 1.05°), 51 × 51 (2.55° × 2.55°) pixels and different periods (2002–2007, 2008–2013, and 2014–2018). The resulting ΔCloud was similar to results with the window size of 9 × 9 (0.45° × 0.45°) and among split time periods (Supplementary Figs. 2, 3). Unlike using direct comparison in cloud cover (and other biophysical variables) between forest and non-forest, an alternative method is to utilize the regression coefficients of cloud cover (dependent variable) to land cover fraction (independent variable) and estimate cloud effects assuming 100% land conversion, as adopted by ref. 58. The alternative regression-based approach is mathematically more complicated, and its implementation involves non-trivial post-processing compared with our method while producing qualitatively similar results.A similar window searching strategy was applied to estimate the differences between forests and non-forest in LST (ΔLST), ET (ΔET), and soil moisture (ΔSM) (Supplementary Fig. 10).The cloud impact estimated as the cloud differences between forest and non-forest could be confounded by their differences in topography, which is known to be an important factor for cloud formation. To minimize the topographic influence, we calculated the standard deviation (s.d.) of elevation within each moving window and removed samples with s.d. >100 m from the analysis. This filtering effectively excluded comparison samples over complex terrain such as mountainous regions so that the retained samples came from relatively flat areas.The actual effect of forest loss on cloud (ΔCloudloss) was quantified as the cloud cover difference between forest loss (Cloudloss) and nearby unchanged forest pixels (Cloudforest) using the same window searching strategy as the potential effect (Eq. 2).$$Delta {{{{{{rm{Cloud}}}}}}}_{{{{{{rm{loss}}}}}}}={{{{{{rm{Cloud}}}}}}}_{{{{{{rm{loss}}}}}}}-{{{{{{rm{Cloud}}}}}}}_{{{{{{rm{forest}}}}}}}$$
    (2)
    where ΔCloudloss is the actual impact of forest loss on cloud cover, Cloudloss and Cloudforest are the multiyear or yearly mean cloud cover averaged over forest loss and unchanged forest pixels, respectively. The actual impact (deforested vs. forests) shows good spatial resemblance to the potential effect (non-forest vs. forests, ΔCloud with the reversed sign), suggesting that the potential effect can provide a priori prediction of possible cloud change induced by forest loss (the correlation of the spatial pattern is 0.44, p  200 W/m2).Scale-dependency of potential cloud effect of forestTo investigate how the potential cloud effect varies with spatial scale, we reprocessed the MODIS cloud cover and GFC data into different spatial resolutions to emulate the scale change (using “mean” for cloud cover and “major” method for forest cover). Specifically, the 0.05° cloud and GFC data used in the main analysis were aggregated to coarser resolutions (0.1°, 0.25°, 0.5°, and 1°) and ΔCloud was re-estimated with the window searching strategy of slightly different configurations to accommodate the resolution change (Supplementary Fig. 12). The specific parameters of the window searching strategy under different resolutions are provided in Supplementary Table 2, including raw data resolution, window size, window distance, and display resolution. For a given resolution, ΔCloud was estimated with two-parameter combinations to ensure the robustness of the results. More

  • in

    Global mapping reveals increase in lacustrine algal blooms over the past decade

    1.Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 35, 6–13 (2016).
    Google Scholar 
    2.Lopez, C., Jewett, E., Dortch, Q., Walton, B. & Hudnell, H. Scientific Assessment of Freshwater Harmful Algal Blooms (United States National Ocean Service, 2008)3.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
    Google Scholar 
    4.Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).
    Google Scholar 
    5.Carmichael, W. W. The toxins of cyanobacteria. Sci. Am. 270, 78–86 (1994).
    Google Scholar 
    6.Carmichael, W. W. et al. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Persp. 109, 663–668 (2001).
    Google Scholar 
    7.Botswana: mystery elephant deaths caused by cyanobacteria. BBC News https://www.bbc.com/news/world-africa-54234396 (2020).8.Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
    Google Scholar 
    9.O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).
    Google Scholar 
    10.Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 49, 2179–2189 (2004).
    Google Scholar 
    11.Kutser, T., Metsamaa, L., Strömbeck, N. & Vahtmäe, E. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67, 303–312 (2006).
    Google Scholar 
    12.Binding, C. E., Pizzolato, L. & Zeng, C. EOLakeWatch; delivering a comprehensive suite of remote sensing algal bloom indices for enhanced monitoring of Canadian eutrophic lakes. Ecol. Indic. 121, 106999 (2021).
    Google Scholar 
    13.Stumpf, R. P. et al. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160–173 (2016).
    Google Scholar 
    14.Matthews, M. W. Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sens. Environ. 155, 161–177 (2014).
    Google Scholar 
    15.Mishra, S. et al. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci. Rep. 9, 18310 (2019).
    Google Scholar 
    16.Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 115, C04002 (2010).
    Google Scholar 
    17.Song, K. et al. Climatic versus anthropogenic controls of decadal trends (1983–2017) in algal blooms in lakes and reservoirs across China. Environ. Sci. Technol. 55, 2929–2938 (2021).
    Google Scholar 
    18.Coffer, M. M., Schaeffer, B. A., Darling, J. A., Urquhart, E. A. & Salls, W. B. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecol. Indic. 111, 105976 (2020).
    Google Scholar 
    19.Ho, J., Michalak, A. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).
    Google Scholar 
    20.Dierssen, H. M., Kudela, R. M., Ryan, J. P. & Zimmerman, R. C. Red and black tides: quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol. Oceanogr. 51, 2646–2659 (2006).
    Google Scholar 
    21.Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013).
    Google Scholar 
    22.Binding, C., Greenberg, T., McCullough, G., Watson, S. & Page, E. An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. J. Great Lakes Res. 44, 436–446 (2018).
    Google Scholar 
    23.Guo, L. Doing battle with the green monster of Taihu Lake. Science 317, 1166–1166 (2007).
    Google Scholar 
    24.Moradi, M. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea. Mar. Pollut. Bull. 87, 311–322 (2014).
    Google Scholar 
    25.Schindler, D. W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184, 897–899 (1974).
    Google Scholar 
    26.Qin, B. et al. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 54, 3191–3198 (2020).
    Google Scholar 
    27.Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).
    Google Scholar 
    28.Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).
    Google Scholar 
    29.Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
    Google Scholar 
    30.Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl Acad. Sci. USA 114, 4177–4182 (2017).
    Google Scholar 
    31.Wang, Z. China’s wastewater treatment goals. Science 338, 604–604 (2012).
    Google Scholar 
    32.Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).33.Litke, D. W. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality (US Geological Survey, 1999).34.Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012).
    Google Scholar 
    35.Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).
    Google Scholar 
    36.Wells, M. L. et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49, 68–93 (2015).
    Google Scholar 
    37.Elliott, J. A. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob. Change Biol 16, 864–876 (2010).
    Google Scholar 
    38.Jeppesen, E. et al. in Shallow Lakes ’95 (eds Kufel, L. et al.) 151–164 (Springer, 1997).39.O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 773–710,781 (2015).
    Google Scholar 
    40.Janssen, A. B. G. et al. How to model algal blooms in any lake on earth. Curr. Opin. Environ. Sustain 36, 1–10 (2019).
    Google Scholar 
    41.Woodcock, C. E. et al. Free access to Landsat imagery. Science 320, 1011 (2008).
    Google Scholar 
    42.Zhu, Z. & Woodcock, C. E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 118, 83–94 (2012).
    Google Scholar 
    43.Masek, J. G. et al. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72 (2006).
    Google Scholar 
    44.Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016).
    Google Scholar 
    45.Irish, R. R. Landsat 7 Science Data Users Handbook 415–430 (US Geological Survey, 2000).46.Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
    Google Scholar 
    47.Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).
    Google Scholar 
    48.Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
    Google Scholar 
    49.McNally, A. et al. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 4, 170012 (2017).
    Google Scholar 
    50.CIESIN Gridded Population of the World v.4 (NASA SEDAC, 2018).51.Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).
    Google Scholar 
    52.Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).
    Google Scholar 
    53.Feng, L. & Hu, C. Land adjacency effects on MODIS Aqua top-of-atmosphere radiance in the shortwave infrared: statistical assessment and correction. J. Geophys. Res. Oceans 122, 4802–4818 (2017).
    Google Scholar 
    54.Walsh, S. E. et al. Global patterns of lake ice phenology and climate: model simulations and observations. J. Geophys. Res. Atmos. 103, 28825–28837 (1998).
    Google Scholar 
    55.Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).
    Google Scholar 
    56.Hu, C. et al. Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past. Appl. Opt. 51, 6045–6062 (2012).
    Google Scholar 
    57.Kuhn, C. & Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl Acad. Sci. USA 118, e2021219118 (2021).
    Google Scholar 
    58.Kirillin, G. et al. Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74, 659–682 (2012).
    Google Scholar 
    59.Kotovirta, V., Toivanen, T., Järvinen, M., Lindholm, M. & Kallio, K. Participatory surface algal bloom monitoring in Finland in 2011–2013. Environ. Syst. Res. 3, 24 (2014).
    Google Scholar 
    60.Cronberg, G., Annadotter, H. & Lawton, L. A. The occurrence of toxic blue-green algae in Lake Ringsjön, southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia 404, 123–129 (1999).
    Google Scholar 
    61.Romarheim, A. T. & Riise, G. Development of Cyanobacteria in Årungen (Norsk vannforening, 2009)62.Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 2, 7–11 (1977).
    Google Scholar 
    63.Mouw, C. B. et al. Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens. Environ. 160, 15–30 (2015).
    Google Scholar 
    64.Wasmund, N., Nausch, G. & Matthäus, W. Phytoplankton spring blooms in the southern Baltic Sea—spatio-temporal development and long-term trends. J. Plankton Res. 20, 1099–1117 (1998).
    Google Scholar 
    65.Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 113, 2118–2129 (2009).
    Google Scholar 
    66.Fairman, H. S., Brill, M. H. & Hemmendinger, H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Res. Appl. 22, 11–23 (1997).
    Google Scholar 
    67.Chander, G., Markham, B. L. & Helder, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113, 893–903 (2009).
    Google Scholar 
    68.Feng, L. et al. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: a solution for large view angle associated problems. Remote Sens. Environ. 174, 56–68 (2016).
    Google Scholar 
    69.Yu, X. et al. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 235, 111491 (2019).
    Google Scholar 
    70.Hou, X., Feng, L., Chen, X. & Zhang, Y. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes. ISPRS J. Photogramm. Remote Sens. 141, 148–160 (2018).
    Google Scholar 
    71.Lee, Z., Pahlevan, N., Ahn, Y.-H., Greb, S. & O’Donnell, D. Robust approach to directly measuring water-leaving radiance in the field. Appl. Opt. 52, 1693–1701 (2013).
    Google Scholar 
    72.Liu, L., Peng, W., Wu, L. & Liu, L. Water quality assessment of Danjiangkou Reservoir and its tributaries in China. IOP Conf. Ser. Earth Environ. Sci. 112, 012008 (2018).
    Google Scholar 
    73.Li, X. et al. The color formation mechanism of the blue karst lakes in Jiuzhaigou Nature Reserve, Sichuan, China. Water 12, 771 (2020).
    Google Scholar 
    74.Wurtsbaugh, W. & Marcarelli, A. Eutrophication in Farmington Bay, Great Salt Lake, Utah 2005 Annual Report (Utah State Univ., 2006).75.Hammer, U. T. Saline Lake Ecosystems of the World Vol. 59 (Springer, 1986). More