Generalist herbivore response to volatile chemical induction varies along a gradient in soil salinization
1.Assadi, A., Pirnalouti, A. G., Malekpoor, F., Teimori, N. & Assadi, L. Impact of air pollution on physiological and morphological characteristics of Eucalyptus camaldulensis Den. J. Food Agric. Environ. 9, 676–679 (2011).
Google Scholar
2.Rai, R., Rajput, M., Agrawal, M. & Agrawal, S. B. Gaseous air pollutants: A review on current and future trends of emissions and impact on agriculture. J. Sci. Res. 55, 77–102 (2011).
Google Scholar
3.Brooker, R. W. Plant-plant interactions and environmental change. New Phytol. 171, 271–284. https://doi.org/10.1111/j.1469-8137.2006.01752.x (2006).Article
PubMed
Google Scholar
4.Jefferies, R. L. & Maron, J. L. The embarrassment of riches: Atmospheric deposition of nitrogen and community and ecosystem processes. Trends Ecol. Evol. 12, 74–78 (1997).CAS
Article
Google Scholar
5.Egerton-Warburton, L. M. & Allen, E. B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol. Appl. 10, 484–496 (2000).Article
Google Scholar
6.Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x (2007).ADS
Article
Google Scholar
7.Zvereva, E. L. & Kozlov, M. V. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: A metaanalysis. Glob. Change Biol. 12, 27–41. https://doi.org/10.1111/j.1365-2486.2005.01086.x (2006).ADS
Article
Google Scholar
8.Kopper, B. J. & Lindroth, R. L. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134, 95–103. https://doi.org/10.1007/s00442-002-1090-6 (2003).ADS
Article
PubMed
Google Scholar
9.Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. Biol. Sci. 273, 2575–2584. https://doi.org/10.1098/rspb.2006.3587 (2006).Article
PubMed
PubMed Central
Google Scholar
10.Karban, R. & Baldwin, I. T. Induced Responses to Herbivory (University of Chicago Press, 2007).
Google Scholar
11.Lambers, H. Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. Vegetation 104(105), 263–271 (1993).Article
Google Scholar
12.Poorter, H. et al. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 20, 472–482 (1997).CAS
Article
Google Scholar
13.Thaler, J. S., Stout, M. J., Karban, R. & Duffey, S. S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22, 1767–1781 (1996).CAS
Article
Google Scholar
14.De Moraes, C. M. et al. Herbivore-infested plants selectively attract parasitoids. Nature 393(6685), 570–573 (1998).ADS
Article
Google Scholar
15.Thaler, J. S. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399, 686–688 (1999).ADS
CAS
Article
Google Scholar
16.Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511), 2141–2144 (2001).ADS
CAS
Article
Google Scholar
17.Orrock, J., Connolly, B. & Kitchen, A. Induced defences in plants reduce herbivory by increasing cannibalism. Nat. Ecol. Evol. 1, 1205–1207. https://doi.org/10.1038/s41559-017-0231-6 (2017).Article
PubMed
Google Scholar
18.Blande, J. D., Holopainen, J. K. & Niinemets, Ü. Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant Cell Environ. 37, 1892–1904. https://doi.org/10.1111/pce.12352 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
19.Bidart-Bouzat, M. G. & Imeh-Nathaniel, A. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50, 1339–1354. https://doi.org/10.1111/j.1744-7909.2008.00751.x (2008).CAS
Article
PubMed
Google Scholar
20.Tao, L., Berns, A. R., Hunter, M. D. & Johnson, M. Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct. Ecol. 28, 190–196. https://doi.org/10.1111/1365-2435.12163 (2014).Article
Google Scholar
21.Forieri, I., Hildebrandt, U. & Rostás, M. Salinity stress effects on direct and indirect defence in maize. Environ. Exp. Bot. 122, 68–77. https://doi.org/10.1016/j.envexpbot.2015.09.007 (2016).CAS
Article
Google Scholar
22.Maathuis, F. J. Sodium in plants: Perception, signaling, and regulation of sodium fluxes. J. Exp. Bot. 65, 849–858. https://doi.org/10.1093/jxb/ert326 (2014).CAS
Article
PubMed
Google Scholar
23.Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 57(5), 1017–1023 (2006).CAS
Article
Google Scholar
24.Harmon, J. P. & Daigh, A. L. M. Attempting to predict the plant-mediated trophic effects of soil salinity: A mechanistic approach to supplementing insufficient information. Food Webs 13, 67–77. https://doi.org/10.1016/j.fooweb.2017.02.002 (2017).Article
Google Scholar
25.Zribi, L. et al. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci. Hortic. 120, 367–372. https://doi.org/10.1016/j.scienta.2008.11.025 (2009).CAS
Article
Google Scholar
26.Farooq, M. et al. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. PPB 118, 199–217. https://doi.org/10.1016/j.plaphy.2017.06.020 (2017).CAS
Article
PubMed
Google Scholar
27.Zhang, C. et al. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 16, 1659–1668. https://doi.org/10.1016/s2095-3119(16)61590-3 (2017).CAS
Article
Google Scholar
28.Dumbroff, E. B. & Cooper, A. W. Effects of salt stress applied in balanced nutrient solution at several stages during growth of tomato. Bot. Gazette 135, 219–224 (1974).Article
Google Scholar
29.Aucejo-Romero, S., Gómez-Cadenas, A. & Jacas-Miret, J.-A. Effects of NaCl-stressed citrus plants on life-history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 33, 55–67 (2004).Article
Google Scholar
30.Polack, L. A., Pereyra, P. C. & Sarandón, S. J. Effects of plant stress and habitat manipulation on aphid control in greenhouse sweet peppers. J. Sustain. Agric. 35, 699–725. https://doi.org/10.1080/10440046.2011.606489 (2011).Article
Google Scholar
31.Dombrowski, J. E. Salt stress activation of wound-related genes in tomato plants. Plant Physiol. 132, 2098–2107. https://doi.org/10.1104/pp.102.019927 (2003).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Younginger, B., Barnouti, J. & Moon, D. Interactive effects of mycorrhizal fungi, salt stress, and competition on the herbivores of Baccharis halimifolia. Ecol. Entomol. 34(5), 580–587 (2009).Article
Google Scholar
33.Orrock, J. L. et al. Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores. Oecologia 186, 703–710. https://doi.org/10.1007/s00442-018-4070-1 (2018).ADS
Article
PubMed
Google Scholar
34.Rodriguez-Saona, C., Chalmers, J. A., Raj, S. & Thaler, J. S. Induced plant responses to multiple damagers: Differential effects on an herbivore and its parasitoid. Oecologia 143, 566–577. https://doi.org/10.1007/s00442-005-0006-7 (2005).ADS
Article
PubMed
Google Scholar
35.Connolly, B. M., Guiden, P. W. & Orrock, J. L. Past freeze–thaw events on Pinus seeds increase seedling herbivory. Ecosphere 8, e01748. https://doi.org/10.1002/ecs2.1748 (2017).Article
Google Scholar
36.Ainsworth, E. A. & Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2, 875–877. https://doi.org/10.1038/nprot.2007.102 (2007).CAS
Article
PubMed
Google Scholar
37.Connolly, B., Ripka, M., & Ebersole, W. Microclimate measurements (15-minute intervals) at Fish Lake Environmental Education Center (Eastern Michigan University; Lapeer County, Michigan, USA), Dryad, Dataset. https://doi.org/10.5061/dryad.3n5tb2rh4 (2021).38.Edwards, P. J. & Wratten, S. D. Wound induced defenses in plants and their consequences for patterns of insect grazing. Oecologia 59, 88–93 (1983).ADS
CAS
Article
Google Scholar
39.R Core Team. R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/ (2019)40.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
41.Therneau, T. A package for survival analysis in R. R package version 3.2-11. https://CRAN.R-project.org/package=survival (2021)42.Kassambara, A., Kosinski, M., & Biecek, P. survminer: Drawing survival curves using ‘ggplot2’. R package version 0.4.9. https://CRAN.R-project.org/package=survminer (2021)43.Wickham, H., François, R., Henry, L., & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr (2021)44.Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.2-1. https://CRAN.R-project.org/package=emmeans (2021)45.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book
Google Scholar
46.Katerji, N., van Hoorn, J. W., Hamdy, A. & Mastrorilli, M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag. 62, 37–66. https://doi.org/10.1016/s0378-3774(03)00005-2 (2003).Article
Google Scholar
47.Snell-Rood, E. C., Espeset, A., Boser, C. J., White, W. A. & Smykalski, R. Anthropogenic changes in sodium affect neural and muscle development in butterflies. Proc. Natl. Acad. Sci. U.S.A. 111, 10221–10226. https://doi.org/10.1073/pnas.1323607111 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
48.Negrão, S., Schmöckel, S. M. & Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119, 1–11. https://doi.org/10.1093/aob/mcw191 (2017).Article
PubMed
Google Scholar
49.Mogren, C. L. & Trumble, J. T. The impacts of metals and metalloids on insect behavior. Entomol. Exp. Appl. 135, 1–17. https://doi.org/10.1111/j.1570-7458.2010.00967.x (2010).CAS
Article
Google Scholar
50.Schultz, J. C. Habitat selection and foraging tactics of caterpillars in heterogeneous trees. In Variable Plants and Herbivores in Natural and Managed Systems (eds Denno, R. F. & McClure, M. S.) 61–90 (Academic Press Inc, 1983).Chapter
Google Scholar
51.Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).CAS
Article
Google Scholar
52.Elvira, S., Williams, T. & Caballero, P. Juvenile hormone analog technology: Effects on larval cannibalism and the production of Spodoptera exigua (Lepidoptera: Noctuidae) nucleopolyhedrovirus. J. Econ. Entomol. 103, 577–582. https://doi.org/10.1603/ec09325 (2010).Article
PubMed
Google Scholar
53.Elderd, B. D. Bottom-up trait-mediated indirect effects decrease pathogen transmission in a tritrophic system. Ecology 100, e02551 (2019).Article
Google Scholar
54.Mitchell, T. S., Shephard, A. M., Kalinowski, C. R., Kobiela, M. E. & Snell-Rood, E. C. Butterflies do not alter oviposition or larval foraging in response to anthropogenic increases in sodium. Anim. Behav. 154, 121–129. https://doi.org/10.1016/j.anbehav.2019.06.015 (2019).Article
Google Scholar
55.Beaton, L. L. & Dudley, S. A. Tolerance to salinity and manganese in three common roadside species. Int. J. Plant Sci. 165, 37–51 (2004).CAS
Article
Google Scholar
56.Kim, H. et al. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agric. Food Chem. 54, 7263–7269 (2006).CAS
Article
Google Scholar
57.Inbar, M., Doostdar, H. & Mayer, R. T. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94, 228–235 (2001).Article
Google Scholar
58.English-Loeb, G., Stout, M. J. & Duffey, S. S. Drought stress in tomatoes: Changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79, 456–468 (1997).Article
Google Scholar
59.Welti, E. A. R. & Kaspari, M. Sodium addition increases leaf herbivory and fungal damage across four grasslands. Funct. Ecol. https://doi.org/10.1111/1365-2435.13796 (2021).Article
Google Scholar
60.Caparrotta, S. et al. Induction of priming by salt stress in neighboring plants. Environ. Exp. Bot. 147, 261–270. https://doi.org/10.1016/j.envexpbot.2017.12.017 (2018).CAS
Article
Google Scholar
61.Nedjimi, B. & Daoud, Y. Cadmium accumulation in Atriplex halimus subsp. Schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol. Distrib. Funct. Ecol. Plants 204, 316–324. https://doi.org/10.1016/j.flora.2008.03.004 (2009).Article
Google Scholar
62.Methenni, K. et al. Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Sci. Hortic. 233, 349–358. https://doi.org/10.1016/j.scienta.2018.01.060 (2018).CAS
Article
Google Scholar
63.Song, Y. Y. et al. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci. Rep. 4, 3915. https://doi.org/10.1038/srep03915 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
64.Evelin, H., Kapoor, R. & Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 104, 1263–1280. https://doi.org/10.1093/aob/mcp251 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar More