More stories

  • in

    Multiple roles of bamboo as a regulator of cyanobacterial bloom in aquatic systems

    1.Merel, S. et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327 (2013).CAS 
    PubMed 

    Google Scholar 
    2.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 

    Google Scholar 
    4.Ibelings, B. W. & Chorus, I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ. Pollut. 150, 177–192 (2007).CAS 
    PubMed 

    Google Scholar 
    5.Cheung, M. Y., Liang, S. & Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 51, 1–10 (2013).CAS 
    PubMed 

    Google Scholar 
    6.Rousso, B. Z., Bertone, E., Stewart, R. & Hamilton, D. P. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Res. 182, 115959 (2020).7.Vadeboncoeur, Y. et al. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 48, 1408–1418 (2003).ADS 

    Google Scholar 
    8.Han, Z. & Cui, B. Performance of macrophyte indicators to eutrophication pressure in ponds. Ecol. Eng. 96, 8–19 (2016).
    Google Scholar 
    9.Dorgham, M. Effects of Eutrophication. In Eutrophication: Causes, Consequences and Control (eds. Ansari, A. & Gill, S.). vol. 2, 29–44. (Springer, 2014).10.Glibert, P. M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).CAS 
    PubMed 

    Google Scholar 
    11.Lürling, M. & Mucci, M. Mitigating eutrophication nuisance: In-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia 847, 4447–4467 (2020).
    Google Scholar 
    12.Hall, R. O., Likens, G. E. & Malcom, H. M. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. J. N. Am. Benthol. Soc. 20, 432–447 (2001).
    Google Scholar 
    13.Tanentzap, A. J. et al. Forests fuel fish growth in freshwater deltas. Nat. Commun. 5, 4077 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Fey, S. B., Mertens, A. N. & Cottingham, K. L. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities. Oecologia 178, 875–885 (2015).ADS 
    PubMed 

    Google Scholar 
    15.Wondzell, S. M. & Bisson, P. A. Influence of wood on aquatic biodiversity. Am. Fish. Soc. Symp. 37, 249–263 (2003).
    Google Scholar 
    16.Czarnecka, M. Coarse woody debris in temperate littoral zones: Implications for biodiversity, food webs and lake management. Hydrobiologia 767, 13–25 (2016).
    Google Scholar 
    17.Graham, M. D. & Vinebrooke, R. D. Coupling of boreal forests and lakes: Effects of conifer pollen on littoral communities. Limnol. Oceanogr. 51, 1524–1529 (2006).ADS 

    Google Scholar 
    18.Kelly, P. T. et al. Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Glob. Change Biol. 22, 2766–2775 (2016).ADS 

    Google Scholar 
    19.Shao, J., Li, R., Lepo, J. E. & Gu, J. D. Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. J. Environ. Manag. 125, 149–155 (2013).
    Google Scholar 
    20.Tan, K. et al. A review of allelopathy on microalgae. Microbiology 165, 587–592 (2019).CAS 
    PubMed 

    Google Scholar 
    21.Tsuchiya, R., Kihei, M., Sakagami, Y. & Araki, T. Assessment of inhibition effect on growth of Microcystis aeruginosa by autoclaved water extracts from leaves of 104 woody plant species. J. Jpn. Limnol. 79, 41–48 (2018) (in Japanese with English abstract).22.Neilen, A. D., Hawker, D. W., O’Brien, K. R. & Burford, M. A. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition. Chemosphere 184, 969–980 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Chen, J., Zhang, H., Han, Z., Ye, J. & Liu, Z. The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol. Eng. 42, 130–133 (2012).
    Google Scholar 
    24.Zhou, B., Fu, M., Xie, J., Yang, X. & Li, Z. Ecological functions of bamboo forest: Research and application. J. For. Res. 16, 143–147 (2005).
    Google Scholar 
    25.Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes +. Glob. Change Biol. 21, e00787 (2020).26.Shinohara, Y., Misumi, Y., Kubota, T. & Nanko, K. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. CATENA 172, 451–460 (2019).
    Google Scholar 
    27.Suzuki, S. & Nakagoshi, N. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol. Res. 23, 641–647 (2008).
    Google Scholar 
    28.Buziquia, S. T., Lopes, P. V. F., Almeida, A. K. & de Almeida, I. K. Impacts of bamboo spreading: A review. Biodivers. Conserv. 28, 3695–3711 (2019).
    Google Scholar 
    29.Kudo, G., Amagai, Y., Hoshino, B. & Kaneko, M. Invasion of dwarf bamboo into alpine snow-meadows in Northern Japan: Pattern of expansion and impact on species diversity. Ecol. Evol. 1, 85–96 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    30.Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982 (2021).31.Fujii, Y. & Kobayashi, Y. Allelopathic activities of leaf leachates of Bamboo and Sasa; sandwich method of 80 species. Weed Biol. Manag. 39, 94–95 (1994).
    Google Scholar 
    32.Ogita, S. & Sasamoto, H. In vitro bioassay of allelopathy in four bamboo species; Bambusa multiplex, Phyllostachys bambusoides, P. nigra, Sasa kurilensis, using sandwich method and protoplast co-culture method with digital image analysis. Am. J. Plant Sci. 8, 1699 (2017).33.Chuyen, N. V., Kurata, T., Kato, H. & Fujimaki, M. Antimicrobial activity of Kumazasa (Sasa albo-marginata). Agr. Biol. Chem. 46, 971–978 (1982).
    Google Scholar 
    34.Chongtham, N., Bisht, M. S. & Haorongbam, S. Nutritional properties of bamboo shoots: potential and prospects for utilization as a health food. Compr. Rev. Food Sci. Food Saf. 10, 153–168 (2011).CAS 

    Google Scholar 
    35.Singhal, P., Satya, S. & Sudhakar, P. Antioxidant and pharmaceutical potential of bamboo leaves. Bamboo Sci. Cult. 24, 19–28 (2011).
    Google Scholar 
    36.Jin, L. et al. Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis 80, 293–304 (2020).CAS 

    Google Scholar 
    37.Lin, Y. T. et al. Changes in the soil bacterial communities in a cedar plantation invaded by moso bamboo. Microb. Ecol. 67, 421–429 (2014).PubMed 

    Google Scholar 
    38.Li, Y. et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production. Plant Soil 418, 507–521 (2017).CAS 

    Google Scholar 
    39.Liu, X. et al. Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests. Plant Soil 438, 85–99 (2019).CAS 

    Google Scholar 
    40.O’connor, P. J., Covich, A. P., Scatena, F. N. & Loope, L. L. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: Leaf fall, aquatic leaf decay and patterns of invasion. J. Trop. Ecol. 16, 499–516 (2000).
    Google Scholar 
    41.Cai, L., Zhang, K., McKenzie, E. H. & Hyde, K. D. Freshwater fungi from bamboo and wood submerged in the Liput River in the Philippines. Fungal Divers. 13, 1–12 (2003).
    Google Scholar 
    42.Suto, S. Mariculture of seaweeds and its problems in Japan. NOAA Tech. Rep. NMFS Circ 388, 7–16 (1974).
    Google Scholar 
    43.Milstein, A., Azim, M. E., Wahab, M. A. & Verdegem, M. C. J. The effects of periphyton, fish and fertilizer dose on biological processes affecting water quality in earthen fish ponds. Environ. Biol. Fishes 68, 247–260 (2003).
    Google Scholar 
    44.Azim, M. E. et al. The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture 232, 441–453 (2004).
    Google Scholar 
    45.Khatoon, H., Yusoff, F., Banerjee, S., Shariff, M. & Bujang, J. S. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture 273, 470–477 (2007).
    Google Scholar 
    46.Ma, J. F. & Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan. (Elsevier Science, 2002).47.Akagi, T. et al. Dissolved ion analyses of stream water from bamboo forests: Implication for enhancement of chemical weathering by bamboo. Geochem. J. 46, 505–515 (2012).ADS 
    CAS 

    Google Scholar 
    48.Umemura, M. & Takenaka, C. Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecol. Res. 29, 501–510 (2014).CAS 

    Google Scholar 
    49.Lürling, M. & Roessink, I. On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65, 618–626 (2006).ADS 
    PubMed 

    Google Scholar 
    50.Ji, X., Verspagen, J. M., Stomp, M. & Huisman, J. Competition between cyanobacteria and green algae at low versus elevated CO2: Who will win, and why?. J. Exp. Bot. 68, 3815–3828 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Kang, C. et al. Effects of macrophyte Vallisneria asiatica biomasses on the algae community. Int. J. Environ. Eng. 7, 1161–1166 (2013).
    Google Scholar 
    52.Hao, A., Haraguchi, T., Kuba, T., Kai, H., Lin, Y. & Iseri, Y. Effect of the microorganism-adherent carrier for Nitzschia palea to control the cyanobacterial blooms. Ecol. Eng. 159, 106127 (2021).53.Wang, Z., Li, G., Li, G. & Li, D. The decline process and major pathways of Microcystis bloom in Taihu Lake, China. Chin. J. Oceanol. Limnol. 30, 37–46 (2012).ADS 
    CAS 

    Google Scholar 
    54.Xiao, M., Li, M. & Reynolds, C. S. Colony formation in the cyanobacterium. Microcystis Biol. Rev. 93, 1399–1420 (2018).PubMed 

    Google Scholar 
    55.Wu, Y. et al. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ. Microb. 13, 604–615 (2011).CAS 

    Google Scholar 
    56.Ko, S. R. et al. Bioremediation of eutrophic water and control of cyanobacterial bloom by attached periphyton. Int. J. Environ. Sci. Technol. 16, 4173–4180 (2019).CAS 

    Google Scholar 
    57.Mühlbauer, L. K., Schulze, M., Harpole, W. S. & Clark, A. T. gauseR: Simple methods for fitting Lotka-Volterra models describing Gause’s “Struggle for Existence”. Ecol. Evol. 10, 13275–13283 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    58.Li, J. et al. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J. Environ. Sci. 43, 40–47 (2016).
    Google Scholar 
    59.Ma, J. et al. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31, 136–142 (2014).60.Hua, Q. et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 148, 953–959 (2018).CAS 

    Google Scholar 
    61.Zhao, W., Zheng, Z., Zhang, J., Roger, S. F. & Luo, X. Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225, 424–433 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    62.Ball, A. S., Williams, M., Vincent, D. & Robinson, J. Algal growth control by a barley straw extract. Bioresour. Technol. 77, 177–181 (2001).CAS 
    PubMed 

    Google Scholar 
    63.Park, M. H., Kim, B. H., Chung, I. M. & Hwang, S. J. Selective bactericidal potential of rice (Oryza sativa L. var. japonica) hull extract on Microcystis strains in comparison with green algae and zooplankton. Bull. Environ. Contam. Toxicol. 83, 97–101 (2009).64.Le Rouzic, B., Thiébaut, G. & Brient, L. Selective growth inhibition of cyanobacteria species (Planktothrix agardhii) by a riparian tree leaf extract. Ecol. Eng. 97, 74–78 (2016).
    Google Scholar 
    65.Eladel, H., Battah, M., Dawa, A., Abd-Elhay, R. & Anees, D. Effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J. Appl. Phycol. 31, 3557–3563 (2019).
    Google Scholar 
    66.Yang, J. et al. High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environ. Sci. Pollut. Res. 25, 4794–4802 (2018).CAS 

    Google Scholar 
    67.Grover, J. P. Phosphorus-dependent growth kinetics of 11 species of freshwater algae. Limnol. Oceanogr. 34, 341–348 (1989).ADS 
    CAS 

    Google Scholar 
    68.Shia, L. et al. Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J. Freshwat. Ecol. 25, 193–203 (2010).
    Google Scholar 
    69.Smith, D. J. et al. Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ. Microbiol. 23, 3020–3036 (2021).CAS 
    PubMed 

    Google Scholar  More

  • in

    Fecal and soil microbiota composition of gardening and non-gardening families

    1.Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Sonnenburg, J. L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. U.S.A. 110, 18360–18367 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Huang, Y. J. et al. The microbiome in allergic disease: Current understanding and future opportunities. J. Allergy Clin. Immunol. 139, 1099–1110 (2018).
    Google Scholar 
    5.Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, 2 (2012).
    Google Scholar 
    6.Schnabl, B. Linking intestinal homeostasis and liver disease. Curr. Opin. Gastroenterol. 29, 264–270 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Scott, F. W., Pound, L. D., Patrick, C., Eberhard, C. E. & Crookshank, J. A. Where genes meet environment—integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl. Res. 179, 183–198 (2017).CAS 
    PubMed 

    Google Scholar 
    8.Rook, G. A. W. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 42, 5–15 (2012).CAS 
    PubMed 

    Google Scholar 
    9.Deehan, E. C. & Walter, J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol. Metab. 27, 239–242 (2016).CAS 
    PubMed 

    Google Scholar 
    10.Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    11.Schloss, P. D., Iverson, K. D., Petrosino, J. F. & Schloss, S. J. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome 2, 1–13 (2014).
    Google Scholar 
    12.Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. ELife 2, 1–22 (2013).
    Google Scholar 
    13.Seedorf, H. et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253–266 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Zhou, D. et al. Exposure to soil, house dust and decaying plants increases gut microbial diversity and decreases serum immunoglobulin E levels in BALB/c mice. Environ. Microbiol. 18, 1326–1337 (2016).CAS 
    PubMed 

    Google Scholar 
    15.Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 2 (2014).
    Google Scholar 
    16.Tasnim, N., Abulizi, N., Pither, J., Hart, M. M. & Gibson, D. L. Linking the gut microbial ecosystem with the environment: Does gut health depend on where we live?. Front. Microbiol. 8, 1–8 (2017).
    Google Scholar 
    17.Schnorr, S. L. The soil in our microbial DNA informs about environmental interfaces across host and subsistence modalities: Soil taxa in human gut microbiome. Philos. Trans. R. Soc. B Biol. Sci. 375, 2 (2020).
    Google Scholar 
    18.Rook, G. A. W. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the “hygiene” or “old friends” hypothesis. Clin. Exp. Immunol. 160, 70–79 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.de Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. 107, 14691–14696 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Martínez, I. et al. The gut microbiota of rural papua new guineans: Composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).PubMed 

    Google Scholar 
    21.Senghor, B., Sokhna, C., Ruimy, R. & Lagier, J. C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 7–8, 1–9 (2018).
    Google Scholar 
    22.Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.McDonald, D. et al. American gut: an open platform for citizen-science microbiome research. mSystems 3, 1–28 (2018).
    Google Scholar 
    24.Mills, J. G. et al. Urban habitat restoration provides a human health benefit through microbiome rewilding: The Microbiome Rewilding Hypothesis. Restor. Ecol. 25, 866–872 (2017).
    Google Scholar 
    25.Shenhav, L. et al. FEAST: Fast expectation-maximization for microbial source tracking. Nat. Methods 16, 627–632 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Dhillon, J., Li, Z. & Ortiz, R. M. Almond snacking for 8 wk increases alpha-diversity of the gastrointestinal microbiome and decreases bacteroides fragilis abundance compared with an isocaloric snack in college freshmen. Curr. Dev. Nutr. 3, 1–9 (2019).CAS 

    Google Scholar 
    27.Thompson, S. V. et al. Avocado consumption alters gastrointestinal bacteria abundance and microbial metabolite concentrations among adults with overweight or obesity: A randomized controlled trial. J. Nutr. 151, 753–762 (2021).PubMed 

    Google Scholar 
    28.Yu, D. et al. Long-term diet quality is associated with gut microbiome diversity and composition among urban Chinese adults. Am. J. Clin. Nutr. 113, 684–694 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    29.Koh, A., de Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).CAS 
    PubMed 

    Google Scholar 
    30.Chung, W. S. F. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14, 1–13 (2016).
    Google Scholar 
    31.Kaczmarek, J. L. et al. Broccoli consumption affects the human gastrointestinal microbiota. J. Nutr. Biochem. 63, 27–34 (2019).CAS 
    PubMed 

    Google Scholar 
    32.Rose, D. J., DeMeo, M. T. & Keshavarzian, A. Influence of dietary fiber on inflammatory bowel disease and colon cancer: Importance of fermentation pattern. Nutr. Rev. 65, 51–62 (2007).PubMed 

    Google Scholar 
    33.Keohane, D. M. et al. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat. Med. 26, 1089–1095 (2020).CAS 
    PubMed 

    Google Scholar 
    34.Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 

    Google Scholar 
    35.Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198-1206.e12 (2019).CAS 
    PubMed 

    Google Scholar 
    36.Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).ADS 
    CAS 

    Google Scholar 
    37.Rook, G. A. W., Lowry, C. A. & Raison, C. L. Microbial, “Old Friends”, immunoregulation and stress resilience. Evol. Med. Public Heal. 2013, 46–64 (2013).
    Google Scholar 
    38.Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ. 777, 2 (2021).
    Google Scholar 
    39.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Venable, E. B. et al. Effects of feeding management on the equine cecal microbiota. J. Equine Vet. Sci. 49, 113–121 (2017).
    Google Scholar 
    41.Bolyen, E. et al. Reproducible, interactive, scalable, and extensible microbiome data science using QIIME2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).
    Google Scholar 
    44.Subar, A. F. et al. The automated self-administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the national cancer institute. J. Acad. Nutr. Diet 112, 1134–1137 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    45.Miller, P. E. et al. Development and evaluation of a method for calculating the Healthy Eating Index-2005 using the Nutrition Data System for Research. Public Health Nutr. 14, 306–313 (2011).PubMed 

    Google Scholar 
    46.Krebs-Smith, S. M. et al. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet 118, 1591–1602 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    47.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    48.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol 12, 2 (2011).
    Google Scholar  More

  • in

    Influence of state reopening policies in COVID-19 mortality

    1.

    2.Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Anderson, R. M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T. D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancent 395, 931 (2020).CAS 

    Google Scholar 
    4.WHO. Coronavirus disease (COVID 2019) situation report-30.5.Linton, N. M. et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data. J. Clin. Med. 9, 538 (2020).PubMed Central 

    Google Scholar 
    6.
    https://www.washingtonpost.com/graphics/2020/national/states-reopening-coronavirus-map/
    7.Kaufman, G. B. et al. Comparing associations of state reopening strategies with COVID-19 burden. J. Gen. Intern. Med. 35, 3627 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    8.Woolf, S. H. et al. Excess deaths from COVID-19 and other causes, March-July 2020. JAMA 324, 1562 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Faust, J. S. et al. All-cause excess mortality and COVID-19-related mortality among US adults aged 25–44 years, March–July 2020. JAMA 325, 785 (2021).CAS 
    PubMed 

    Google Scholar 
    10.Huppert, A. & Katriel, G. Mathematical modelling and prediction in infectious disease epidemiology. Clin. Microbiol. Infect. 19, 999 (2003).
    Google Scholar 
    11.Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700 (1927).ADS 
    MATH 

    Google Scholar 
    12.Crokidakis, C. Modeling the early evolution of the COVID-19 in Brazil: Results from a susceptible-infectious-quarantined-recovered (SIQR) model. Int. J. Mod. Phys. C 31, 2050135 (2020).ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    13.Bin, M. et al. Post-lockdown abatement of COVID-19 by fast periodic switching. PLoS Comput. Biol. 17, e1008604 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Pedersen, M. G., & Meneghini, M. Quantifying undetected COVID-19 cases and effects of containment measures in Italy: Predicting phase 2 dynamics. https://doi.org/10.13140/RG.2.2.11753.85600 (2020).15.Calafiore, G. C., Novara, C., & Possieri, C. A Modified SIR Model for the COVID-19 Contagion in Italy. arXiv:2003.14391 (2020).16.Bastos, S. B., & Cajueiro, D. O. Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. arXiv:2003.14288 (2020).17.Gaeta, G. Chaos, social distancing versus early detection and contacts tracing in epidemic management. Solitons Fractals 140, 110074 (2020).MathSciNet 

    Google Scholar 
    18.Gaeta, G. Asymptomatic infectives and R0 for COVID. arXiv:2003.14098 (2020).19.te Vrugt, M., Bickmann, J., & Wittkowski, R. Effects of social distancing and isolation on epidemic spreading: a dynamical density functional theory model. arXiv:2003.13967 (2020).20.Schulz, R. A., Coimbra-Araújo, C. H., & Costiche, S. W. S. COVID-19: A model for studying the evolution of contamination in Brazil. arXiv:2003.13932 (2020).21.Zhang, Y., Yu, X., Sun, H., Tick, Geoffrey R., Wei, W., & Jin, B. COVID-19 infection and recovery in various countries: Modeling the dynamics and evaluating the non-pharmaceutical mitigation scenarios. arXiv:2003.13901 (2020).22.Dell’Anna, L. Solvable delay model for epidemic spreading: the case of Covid-19 in Italy. Sci. Rep. 10, 15763 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Sonnino, G. & Nardone, P. Annals of clinical and medical case reports dynamics of the COVID-19 comparison between the theoretical predictions and the real data, and predictions about returning to normal life. Ann. Clin. Med. Case Rep. 4, 1 (2020).
    Google Scholar 
    24.Notari, A. Temperature dependence of COVID-19 transmission. arXiv:2003.12417 (2020).25.Amaro, J. E. The D model for deaths by COVID-19. arXiv:2003:13747 (2020).26.Simha, A., Prasad, R. V., & Narayana, S. A simple stochastic SIR model for COVID 19 infection dynamics for Karnataka: Learning from Europe. arXiv:2003.11920 (2020).27.Acioli, P. H. Diffusion as a first model of spread of viral infection. arXiv:2003.11449 (2020).28.Zullo, F. Some numerical observations about the COVID-19 epidemic in Italy. arXiv:2003.11363 (2020).29.Sameni, R. Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus. arXiv:2003.11371 (2020).30.Radulescu, A., & Cavanagh, K. Management strategies in a SEIR model of COVID 19 community spread. arXiv:2003.11150 (2020).31.Roques, L., Klein, E., Papaix, J. & Soubeyrand, S. Using early data to estimate the actual infection fatality ratio from COVID-19 in France. MDPI Biol. 9, 97 (2020).CAS 

    Google Scholar 
    32.Teles, P. Predicting the evolution Of SARS-Covid-2 in Portugal using an adapted SIR Model previously used in South Korea for the MERS outbreak. arXiv:2003.10047 (2020).33.Piccolomini, E. L., & Zama, F. Preliminary analysis of COVID-19 spread in Italy with an adaptive SEIRD model. arXiv:2003.09909 (2020).34.Brugnano, L., & Iavernaro, F. A multi-region variant of the SIR model and its extensions. arXiv:2003.09875 (2020).35.Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. the COVID19 IRCCS San Matteo Pavia Task Force. Nat. Med. 16, 855 (2020).
    Google Scholar 
    36.Zlatić, V., Barjašć, I., Kadović, A., Štefančić, H. & Gabrielli, A. Bi-stability of SUDR+ K model of epidemics and test kits applied to COVID-19. Nonlinear Dyn. 101, 1635 (2020).
    Google Scholar 
    37.Baker, R. Reactive Social distancing in a SIR model of epidemics such as COVID-19. arXiv:2003.08285 (2020).38.Biswas, K., Khaleque, A., & Sen, P. Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network. arXiv:2003.07063 (2020).39.Zhang, J., Wang, L., & Wang, J. SIR model-based prediction of infected population of coronavirus in Hubei Province. arXiv:2003.06419 (2020).40.Chen, Y.-C., Lu, P.-E., Chang, C.-S., & Liu, T.-H. A Time-dependent SIR model for COVID-19 with Undetectable Infected Persons. arXiv:2003.00122 (2020).41.Lloyd, A. L. Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics. Theor. Popul. Biol. 60, 59 (2001).CAS 
    PubMed 

    Google Scholar 
    42.Fokas, A. S., Dikaios, N. & Kastis, G. A. Mathematical models and deep learning for predicting the number of individuals reported to be infected with SARS-CoV-2. J. R. Soc. Interface 17, 20200494 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Vadyala, S. R., Betgeri, S. N., Sherer, E. A., & Amritphale, A. Prediction of the number of COVID-19 confirmed cases based on K-means-LSTM. arXiv:2006.14752 (2020).44.Fokas, A. S., Cuevas-Maraver, J. & Kevrekidis, P. G. A quantitative framework for exploring exit strategies from the COVID-19 lockdown. Chaos Solitons Fractals 140, 11024 (2020).MathSciNet 

    Google Scholar 
    45.Coopera, I., Mondal, A. & Antonopoulos, C. G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 139, 110057 (2020).MathSciNet 

    Google Scholar 
    46.Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B. & Sledge, D. The challenges of modeling and forecasting the spread of COVID-19. PNAS 117, 16732 (2020).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. The Lancet Public Health 5, e261 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    48.He, S., Peng, Y. & Sun, K. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dyn. 101, 1667 (2020).
    Google Scholar 
    49.Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D. & Mbogo, R. SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Res. Notes 13, 352 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 369, 160 (2020).
    Google Scholar 
    51.Atkeson, A., Kopecky, K. A., & Zha, T. A. Estimating and forecasting disease scenarios for COVID-19 with an SIR Model. NBER Working Paper w27335 (2020).52.Wang, N., Fu, Y., Zhang, H. & Shi, H. An evaluation of mathematical models for the outbreak of COVID-19. Precis. Clin. Med. 3, 85 (2020).
    Google Scholar 
    53.Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Alfano, V. & Ercolano, S. The efficacy of lockdown against COVID-19: A cross-country panel analysis. Appl. Health Econ. Health Policy 18, 509 (2020).PubMed 

    Google Scholar 
    55.Arshed, N., Meo, M. S. & Farooq, F. Empirical assessment of government policies and flattening of the COVID19 curve. J. Public Aff. 20, e2333 (2000).
    Google Scholar 
    56.Auger, K. A. et al. Association between statewide school closure and COVID-19 incidence and mortality in the US. JAMA 324, 859 (2020).CAS 
    PubMed 

    Google Scholar 
    57.Banerjee, T. & Nayak, A. Coping with being cooped up: Social distancing during COVID-19 among 60+ in the United States. Revista Panamericana de Salud Pública. 44, e81 (2020).
    Google Scholar 
    58.Castex, G., Dechter, E. & Lorca, M. COVID-19: The impact of social distancing policies, cross-country analysis. Econ. Disasters Clim. Change 5, 135 (2021).
    Google Scholar 
    59.Bennett, M. All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in Chile. World Dev. 137, 105208 (2021).PubMed 

    Google Scholar 
    60.Castillo, R. C., Staguhn, E. D. & Weston-Farber, E. The effect of state-level stay-at-home orders on COVID-19 infection rates. Am. J. Infect. Control 48, 958 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    61.Cobb, J. S. & Seale, M. A. Examining the effect of social distancing on the compound growth rate of COVID-19 at the county level (United States) using statistical analyses and a random forest machine learning model. Public Health 185, 27 (2020).CAS 
    PubMed 

    Google Scholar 
    62.Courtemanche, C., Garuccio, J., Le, A., Pinkston, J. & Yelowitz, A. Strong social distancing measures in the United States reduced The COVID-19 growth rate. Health Aff. 39, 1237 (2020).
    Google Scholar 
    63.Dave, D., Friedson, A. I., Matsuzawa, K. & Sabia, J. J. When do shelter-in-place orders fight COVID-19 best? Policy heterogeneity across states and adoption time. Econ Inq. 59, 29 (2021).
    Google Scholar 
    64.Dave, D., Friedson, A., Matsuzawa, K., Sabia, J. J. & Safford, S. JUE insight: Were urban cowboys enough to control COVID-19? Local shelter-in-place orders and coronavirus case growth. J. Urban Econ. 2020, 103294 (2020).
    Google Scholar 
    65.Edelstein, M. et al. SARS-CoV-2 infection in London, England: Changes to community point prevalence around lockdown time, March–May 2020. J. Epidemiol. Commun. Health 75, 185 (2021).
    Google Scholar 
    66.Gallaway, M. S. et al. Trends in COVID-19 incidence after implementation of mitigation measures–Arizona, January 22–August 7, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 1460 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Hsiang, S. et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584, 262 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    68.Hyafil, A. & Moriña, D. Analysis of the impact of lockdown on the reproduction number of the SARS-Cov-2 in Spain. Gac. Sanit. 35, 453 (2021).PubMed 

    Google Scholar 
    69.Islam, N., Sharp, S. J. & Chowell, G. Physical distancing interventions and incidence of coronavirus disease 2019: Natural experiment in 149 countries. BMJ 2020, m2743 (2019).
    Google Scholar 
    70.Lyu, W. & Wehby, G. L. Comparison of estimated rates of coronavirus disease 2019 (COVID-19) in border counties in Iowa without a stay-at-home order and border counties in Illinois with a stay-at-home order. JAMA Netw. Open 3, e2011102 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    71.Lyu, W. & Wehby, G. L. Community use of face masks and COVID-19: Evidence from a natural experiment of state mandates in the US. Health Aff. 39, 1419 (2020).
    Google Scholar 
    72.Zhang, R., Li, Y., Zhang, A. L., Wang, Y. & Molina, M. J. Identifying airborne transmission as the dominant route for the spread of COVID-19. PNAS 117, 14857 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Fokas, A. S., Athanassios, S., Jesus, C.-M. & Panayotis, G. K. A quantitative framework for exploring exit strategies from the COVID-19 lockdown. Chaos Solitons Fractals 140, 110244 (2020).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Olumoyin, K. D., Khaliq, A. Q. M., & Furati, F. M. A quantitative framework for exploring exit strategies from the COVID-19 lockdown. arXiv:2104.02603 (2021).75.Tam, K.-M., Walker, N. & Moreno, J. Effect of mitigation measures on the spreading of COVID-19 in hard-hit states in the U.S.. PLoS ONE 15, e0240877 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Tam, K.-M., Walker, N., & Moreno, J. Projected Development of COVID-19 in Louisiana. arXiv:2004.02859 (2020).77.Marchant, R., Samia, N. I., Rosen, O., Tanner, M. A., & Cripps, S. Learning as we go: An examination of the statistical accuracy of COVID19 daily death count predictions. arXiv:2004.04734 (2020).78.Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA 323, 1239 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Mizumoto, K., Kagaya, K., Zarebski, A. & Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveill 25, 10 (2020).
    Google Scholar 
    80.
    https://github.com/nytimes/covid-19-data
    81.Holmdahl, I. & Buckee, C. Wrong but useful—What covid-19 epidemiologic models can and cannot tell us. N. Engl. J. Med. 383, 303 (2020).CAS 
    PubMed 

    Google Scholar 
    82.
    https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover-guidance.html
    83.
    https://www.cdc.gov/mmwr/volumes/69/wr/mm695152a8.htm
    84.Abedi, V. et al. Racial, economic, and health inequality and COVID-19 infection in the United States. J. Racial Ethnic Health Disparities 8, 732 (2021).
    Google Scholar 
    85.Merow, C. & Urban, M. C. Seasonality and uncertainty in global COVID-19 growth rates. PNAS 117(44), 27456 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Carlson, C. J., Gomez, A. C. R., Bansal, S. & Ryan, S. J. Misconceptions about weather and seasonality must not misguide COVID-19 response. Nat. Comm. 11, 412 (2020).
    Google Scholar 
    87.Burra, P. et al. Temperature and latitude correlate with SARS-CoV-2 epidemiological variables but not with genomic change worldwide. Evol. Bioinform. https://doi.org/10.1177/1176934321989695 (2021).Article 

    Google Scholar  More

  • in

    Grape expectations: making Australian wine more sustainable

    Download PDF

    This photograph was taken at the Angullong estate in New South Wales, Australia, which hosts some of my field trials. The aim is to study sustainable agriculture in vineyards. You have to dodge the odd brown snake, but, as offices go, this one — among the grapevines of such a picturesque part of the world — makes my job quite a privilege.It’s a November evening, which is springtime here in the Southern Hemisphere, and this time of year is when pests such as the light brown apple moth (Epiphyas postvittana) start to emerge. That means that ecologists such as myself, as well as the commercial winemakers we collaborate with, move into data-capture mode to track the presence of the insects. These moths produce multiple generations every year, so they can be quite numerous by harvest time, and can cause real damage by getting into the grapes.We’re conducting experiments to see whether positioning various plant species between and under grapevines can help to reduce the population of pests by encouraging their predators. Parasitoid wasps, for example, target the eggs of light brown apple moths, injecting them with their own eggs. When the wasp larvae hatch, they eat the moth larvae from the inside out. Although quite gruesome, parasitoid wasps could provide an environmentally friendly way to control moth populations.In my laboratory at Charles Sturt University in Orange, we’re incubating moth eggs that we then put on special cards in the vineyard. Because parasitoids love nectar, we expect to see more attacks on the moth eggs in areas where we’ve planted flowering shrubs than in the control areas, where grass predominates. We collect the cards after about 48 hours in the field, and incubate the moth eggs to measure the level of parasitism. In the next couple of years, with more data, we hope to identify the optimum mix of plant species to manage pests without resorting to chemicals.

    Nature 602, 176 (2022)
    doi: https://doi.org/10.1038/d41586-022-00218-z

    Related Articles

    ‘For a brown invertebrate’: rescuing native UK oysters

    Breeding the sweetest biofuels in the business

    An IPCC reviewer shares his thoughts on the climate debate

    Collection: Fieldwork

    Subjects

    Careers

    Ecology

    Agriculture

    Latest on:

    Careers

    A nutritionist in Kenya shares advice for prospective students
    Career Q&A 31 JAN 22

    Why early-career researchers should step up to the peer-review plate
    Career Feature 31 JAN 22

    I’m a lip-reading scientist: here’s how I can discuss science with you
    Career Column 28 JAN 22

    Ecology

    Richard Leakey (1944–2022)
    Obituary 28 JAN 22

    Emphasizing declining populations in the Living Planet Report
    Matters Arising 26 JAN 22

    Reply to: Do not downplay biodiversity loss
    Matters Arising 26 JAN 22

    Agriculture

    A hard graft problem solved for key global food crops
    News & Views 25 JAN 22

    Countries should boycott Brazil over export-driven deforestation
    Correspondence 18 JAN 22

    From the archive
    News & Views 18 JAN 22

    Jobs

    Postdoctoral Research Assistant

    Queen Mary University of London (QMUL)
    London, United Kingdom

    Faculty Position in Environmental Sensing Technologies Joint Appointement between the Swiss Federal Laboratories for Materials Science and Technology (Empa) and the Ecole polytechnique fédérale de Lausanne (EPFL)

    Swiss Federal Institute of Technology in Lausanne (EPFL)
    Dübendorf and Lausanne, Switzerland

    Private Secretary, Chief Scientist

    Alan Turing Institute
    London, United Kingdom

    Research Fellow/Senior Research Fellow – Mathematical Modeller/Bioinformatician

    University College London (UCL)
    London, United Kingdom More

  • in

    Ozone damage costs billions

    Tropospheric ozone is formed through the oxidation of precursor pollutants (nitrogen oxide gases and volatile organic compounds) in the presence of sunlight. This surface ozone — a major pollutant — contributes negatively to air quality, posing risks to human health. Many plant species are also sensitive to ozone, exhibiting reduced growth and seed production, and accelerated ageing. Such impacts translate to high crop yield losses, threatening food security, especially in light of rising ozone concentrations and exposure observed across Asia. More

  • in

    Egg-laying increases body temperature to an annual maximum in a wild bird

    1.Perrins, C. M. Eggs, egg formation and the timing of breeding. Ibis (Lond. 1859). 138, 2–15. https://doi.org/10.1111/j.1474-919X.1996.tb04308.x (1996).Article 

    Google Scholar 
    2.Monaghan, P. & Nager, R. G. Why don’t birds lay more eggs? Trends Ecol. Evol. 12, 270–274. https://doi.org/10.1016/S0169-5347(97)01094-X (1997).CAS 
    Article 

    Google Scholar 
    3.Alisauskas, R., DeVink, J.-M. Breeding costs, nutrient reserves, and cross-seasonal effects: dealing with deficits in sea ducks. pp. 125–168 (2015).4.Ebeid, T., Tumova Prague (Czech Republic). Katedra Chovu Prasat a Drubeze) E (Ceska ZU. In press. Physiological aspects of oviposition and its role in egg quality. A review. Sci. Agric. Bohem. (Czech Republic). v. 35.5.Johnson, A. The avian ovary and follicle development: some comparative and practical insights. Turkish J. Vet. Anim. Sci. 38, 660–669 (2014).CAS 
    Article 

    Google Scholar 
    6.Bédécarrats, G. Y., Baxter, M. & Sparling, B. An updated model to describe the neuroendocrine control of reproduction in chickens. Gen. Comp. Endocrinol. 227, 58–63. https://doi.org/10.1016/j.ygcen.2015.09.023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Brommer, J. E., Rattiste, K. & Wilson, A. J. Exploring plasticity in the wild: laying date-temperature reaction norms in the common gull Larus canus. Proc. R. Soc. B Biol. Sci. 275, 687–693. https://doi.org/10.1098/rspb.2007.0951 (2008).Article 

    Google Scholar 
    8.Schaper, S. V. et al. Increasing Temperature, Not Mean Temperature, Is a Cue for Avian Timing of Reproduction. Am. Nat. 179, E55–E69. https://doi.org/10.1086/663675 (2012).Article 
    PubMed 

    Google Scholar 
    9.Shave, A., Garroway, C. J., Siegrist, J. & Fraser, K. C. Timing to temperature: Egg-laying dates respond to temperature and are under stronger selection at northern latitudes. Ecosphere 10, e02974. https://doi.org/10.1002/ecs2.2974 (2019).Article 

    Google Scholar 
    10.Verhagen, I., Tomotani, B. M., Gienapp, P. & Visser, M. E. Temperature has a causal and plastic effect on timing of breeding in a small songbird. J. Exp. Biol. https://doi.org/10.1242/jeb.218784 (2020).Article 
    PubMed 

    Google Scholar 
    11.Caro, S. P., Schaper, S. V., Hut, R. A., Ball, G. F. & Visser, M. E. The case of the missing mechanism: How does temperature influence seasonal timing in endotherms?. PLoS Biol. 11, e1001517–e1001517. https://doi.org/10.1371/journal.pbio.1001517 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bobr, L. W. & Sheldon, B. L. Analysis of ovulation-oviposition patterns in the domestic fowl by telemetry measurement of deep body temperature. Aust. J. Biol. Sci. 30, 243–257. https://doi.org/10.1071/bi9770243 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Kadono, H., Besch, E. L. & Usami, E. Body temperature, oviposition, and food intake in the hen during continuous light. J. Appl. Physiol. 51, 1145–1149. https://doi.org/10.1152/jappl.1981.51.5.1145 (1981).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Yang, J., Morgan, J. L., Kirby, J. D., Long, D. W. & Bacon a W.,. Circadian rhythm of the preovulatory surge of luteinizing hormone and its relationships to rhythms of body temperature and locomotor activity in turkey hens. Biol. Reprod. 62, 1452–1458. https://doi.org/10.1095/biolreprod62.5.1452 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Zivkovic, B. D., Underwood, H. & Siopes, T. Circadian ovulatory rhythms in Japanese quail: role of ocular and extraocular pacemakers. J. Biol. Rhythms 15, 172–183. https://doi.org/10.1177/074873040001500211 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Ward, S. Energy expenditure of female barn swallows Hirundo rustica during egg formation. Physiol. Zool. 69, 930–951. https://doi.org/10.1086/physzool.69.4.30164236 (1996).Article 

    Google Scholar 
    17.Nilsson, J. -Å. & Råberg, L. The resting metabolic cost of egg laying and nestling feeding in great tits. Oecologia 128, 187–192. https://doi.org/10.1007/s004420100653 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    18.Vézina, F. & Williams, T. D. Metabolic costs of egg production in the European starling (Sturnus vulgaris). Physiol. Biochem. Zool. 75, 377–385. https://doi.org/10.1086/343137 (2002).Article 
    PubMed 

    Google Scholar 
    19.Götmark, F. The Effects of Investigator Disturbance on Nesting Birds BT – Current Ornithology. In ed. D.M. Power, pp. 63–104. Springer. https://doi.org/10.1007/978-1-4757-9921-7_3 (1992).20.Lyngs, P. Status of the Danish Breeding population of Eiders Somateria mollissima 1988–93. Dansk Ornitol. Foren. Tidsskr. 94, 12–18 (2000).
    Google Scholar 
    21.Bolduc, F. & Guillemette, M. Human disturbance and nesting success of Common Eiders: interaction between visitors and gulls. Biol. Conserv. 110, 77–83. https://doi.org/10.1016/S0006-3207(02)00178-7 (2003).Article 

    Google Scholar 
    22.Christensen, T. K. Female pre-nesting foraging and male vigilance in Common Eider Somateria mollissima. Bird Study 47, 311–319. https://doi.org/10.1080/00063650009461191 (2000).Article 

    Google Scholar 
    23.Guillemette, M. Foraging before spring migration and before breeding in common eiders: Does hyperphagia occur?. Condor 103, 633–638 (2001).Article 

    Google Scholar 
    24.Guillemette, M. & Ouellet, J. Temporary flightlessness as a potential cost of reproduction in pre-laying Common Eiders Somateria mollissima. Ibis (Lond. 1859). 147, 301–306. https://doi.org/10.1111/j.1474-919x.2005.00402.x (2005).Article 

    Google Scholar 
    25.Rigou, Y. & Guillemette, M. Foraging effort and pre-laying strategy in breeding common eiders. Waterbirds Int. J. Waterbird Biol. 33, 314–322 (2010).
    Google Scholar 
    26.Watson, M. D., Robertson, G. J. & Cooke, F. Egg-laying time and laying interval in the common eider. Condor 95, 869–878. https://doi.org/10.2307/1369424 (1993).Article 

    Google Scholar 
    27.Guillemette, M., Woakes, A. J., Flagstad, A. & Butler, P. J. Effects of data-loggers implanted for a full year in female common eiders. Condor 104, 448–452 (2002).Article 

    Google Scholar 
    28.Franzmann, N. E. Ederfuglens (Somateria m. mollissima) ynglebiologi of populationsdynamik pa° Christiansø 1973–1977. Ph.D. Diss. Copenhagen 1980.29.Pelletier, D., Guillemette, M., Grandbois, J.-M. & Butler, P. J. It is time to move: linking flight and foraging behaviour in a diving bird. Biol. Lett. 3, 357–359. https://doi.org/10.1098/rsbl.2007.0088 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Coulson, J. C. The population dynamics of the Eider Duck Somateria mollissima and evidence of extensive non-breeding by adult ducks. Ibis (Lond. 1859). 126, 525–543. https://doi.org/10.1111/j.1474-919X.1984.tb02078.x (2008).Article 

    Google Scholar 
    31.Sabourin, M. Comportement d’incubation de l’Eider à duvet (Somateria mollissima) et effet du dérangement humain dans deux colonies de l’Estuaire du Saint-Laurentle. Mémoire de maîtrise Université (2003).32.Waltho, C., Coulson, J. Egg laying, parasitism, ‘jumbo clutches’ and egg stealing. In The Common Eider, pp. 7–10. POYSER (2015).33.Guillemette, M., Ydenberg, R. C. & Himmelman, J. H. The role of energy intake rate in prey and habitat selection of common eiders Somateria mollissima in winter: a risk-sensitive interpretation. J. Anim. Ecol. 61, 599. https://doi.org/10.2307/5615 (1992).Article 

    Google Scholar 
    34.Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) functions. R Packag Vers 1, 3–20 (2017).
    Google Scholar 
    35.Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat. Med. 19, 1141–1164 2000. https://doi.org/10.1002/(SICI)1097-0258(20000515)19:93.0.CO;2-F36.Jenssen, B., Ekker, M. & Bech, C. Thermoregulation in winter-acclimatized Common Eiders (Somateria mollissima) in air and water. Can. J. Zool. 67, 669–673. https://doi.org/10.1139/z89-096 (1989).Article 

    Google Scholar 
    37.Winget, C. M., Averkin, E. G. & Fryer, T. B. Quantitative measurement by telemetry of ovulation and oviposition in the fowl. Am. J. Physiol. 209, 853–858. https://doi.org/10.1152/ajplegacy.1965.209.4.853 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Cain, J. R. & Wilson, W. O. Multichannel telemetry system for measuring body temperature: circadian rhythms of body temperature, locomotor activity and oviposition in chickens. Poult. Sci. 50, 1437–1443. https://doi.org/10.3382/ps.0501437 (1971).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Khalil, A., Matsui, K. & Takeda, K. Responses to abrupt changes in feeding and illumination in laying hens. Turkish J. Vet. Anim. Sci. https://doi.org/10.3906/vet-0901-25 (2010).Article 

    Google Scholar 
    40.Kadono, H. & Yamade, T. Changes of body temperature related to oviposition and ovulation induced by LH in the domestic hen. Nihon Juigaku Zasshi. 47, 55–61. https://doi.org/10.1292/jvms1939.47.55 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Piccione, G. & Refinetti, R. Thermal chronobiology of domestic animals. Front. Biosci. 8, s258–s264. https://doi.org/10.2741/1040 (2003).Article 
    PubMed 

    Google Scholar 
    42.Peters DG, Rose RW. The oestrous cycle and basal body temperature in the common wombat (Vombatus ursinus). Reproduction 57, 453–460 (in press). doi:https://doi.org/10.1530/jrf.0.057045343.Rose, R. W. & Jones, S. M. The association between basal body temperature, plasma progesterone and the oestrous cycle in a marsupial, the Tasmanian bettong (Bettongia gaimardi). J. Reprod. Fertil. 106, 67–71. https://doi.org/10.1530/jrf.0.1060067 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Graham, C. E., Warner, H., Misener, J., Collins, D. C. & Preedy, J. R. The association between basal body temperature, sexual swelling and urinary gonadal hormone levels in the menstrual cycle of the chimpanzee. J. Reprod. Fertil. 50, 23–28. https://doi.org/10.1530/jrf.0.0500023 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Nyakudya, T. T., Fuller, A., Meyer, L. C. R., Maloney, S. K. & Mitchell, D. Body temperature and physical activity correlates of the menstrual cycle in Chacma Baboons (Papio hamadryas ursinus). Am. J. Primatol. 74, 1143–1153. https://doi.org/10.1002/ajp.22073 (2012).Article 
    PubMed 

    Google Scholar 
    46.Suthar, V. S., Burfeind, O., Bonk, S., Dhami, A. J. & Heuwieser, W. Endogenous and exogenous progesterone influence body temperature in dairy cows. J. Dairy Sci. 95, 2381–2389. https://doi.org/10.3168/jds.2011-4450 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Giersch, G. E. W. et al. Menstrual cycle and thermoregulation during exercise in the heat: A systematic review and meta-analysis. J. Sci. Med. Sport 23, 1134–1140. https://doi.org/10.1016/j.jsams.2020.05.014 (2020).Article 
    PubMed 

    Google Scholar 
    48.Farmer, C. G. Parental care: The key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326–334. https://doi.org/10.1086/303323 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Koteja, P. Energy assimilation, parental care and the evolution of endothermy. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 479–484. https://doi.org/10.1098/rspb.2000.1025 (2000).CAS 
    Article 

    Google Scholar 
    50.Portugal, S. J. et al. Associations between resting, activity, and daily metabolic rate in free-living endotherms: No universal rule in birds and mammals. Physiol. Biochem. Zool. 89, 251–261. https://doi.org/10.1086/686322 (2016).Article 
    PubMed 

    Google Scholar 
    51.Guillemette, M., Pelletier, D., Grandbois, J.-M. & Butler, P. J. Flightlessnessand the energetic cost of wing molt in a large sea duck. Ecology 88, 2936–2945. https://doi.org/10.1890/06-1751.1 (2007).Article 
    PubMed 

    Google Scholar 
    52.Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female common eiders nesting in the high arctic. Auk 107, 660–668. https://doi.org/10.2307/4087996 (1990).Article 

    Google Scholar 
    53.Guillemette, M. & Ouellet, J.-F. Temporary flightlessness in pre-laying Common Eiders Somateria mollissima: Are females constrained by excessive wing-loading or by minimal flight muscle ratio?. Ibis (Lond. 1859). 147, 293–300. https://doi.org/10.1111/j.1474-919x.2005.00401.x (2005).Article 

    Google Scholar 
    54.Vézina, F., Speakman, J. R. & Williams, T. D. Individually variable energy management strategies in relation to energetic costs of egg production. Ecology 87, 2447–2458. https://doi.org/10.1890/0012-9658(2006)87[2447:ivemsi]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    55.Bevan, R. M., Butler, P. J., Woakes, A. J. & Prince, P. A. The energy expenditure of free-ranging black-browed albatross. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 350, 119–131. https://doi.org/10.1098/rstb.1995.0146 (1995).ADS 
    Article 

    Google Scholar 
    56.Bevan, R. et al. Heart rates and abdominal temperatures of free-ranging South Georgian shags, Phalacrocorax georgianus. J. Exp. Biol. 200, 661–675 (1997).CAS 
    Article 

    Google Scholar 
    57.Woakes, A. J., Butler, P. J. & Bevan, R. M. Implantable data logging system for heart rate and body temperature: Its application to the estimation of field metabolic rates in Antarctic predators. Med. Biol. Eng. Comput. 33, 145–151. https://doi.org/10.1007/BF02523032 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Lewden, A. et al. Body surface rewarming in fully and partially hypothermic king penguins. J. Comp. Physiol. B 190, 597–609. https://doi.org/10.1007/s00360-020-01294-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Wilson, R. P. & Grémillet, D. Body temperatures of free-living African penguins (Spheniscus demersus) and bank cormorants (Phalacrocorax neglectus). J. Exp. Biol. 199, 2215–2223 (1996).CAS 
    Article 

    Google Scholar 
    60.Schmidt, A., Alard, F. & Handrich, Y. Changes in body temperature in king penguins at sea: The result of fine adjustments in peripheral heat loss?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R608–R618. https://doi.org/10.1152/ajpregu.00826.2005 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Sherer, J., Wunder, B. A. Thermoregulation of a semi-aquatic mammal, the muskrat, in air and water. 24, 249–256 (1979).62.Dyck, A. P. & MacArthur, R. A. Seasonal patterns of body temperature and activity in free-ranging beaver (Castor canadensis). Can. J. Zool. 70, 1668–1672. https://doi.org/10.1139/z92-232 (1992).Article 

    Google Scholar 
    63.Kolka, M. A. & Stephenson, L. A. Resetting the thermoregulatory set-point by endogenous estradiol or progesterone in women. Ann. N. Y. Acad. Sci. 813, 204–206. https://doi.org/10.1111/j.1749-6632.1997.tb51694.x (1997).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Ubuka, T. & Bentley, G. E. Neuroendocrine control of reproduction in birds. In Hormones and reproduction of Vertebrates (ed Norris DO & Lopez KH), pp. 1–25 (2011).65.van der Klein, S. A. S., Zuidhof, M. J. & Bédécarrats, G. Y. Diurnal and seasonal dynamics affecting egg production in meat chickens: A review of mechanisms associated with reproductive dysregulation. Anim. Reprod. Sci. 213, 106257. https://doi.org/10.1016/j.anireprosci.2019.106257 (2020).Article 
    PubMed 

    Google Scholar 
    66.Tanabe, Y. Production, evolution and reproductive endocrinology of ducks. Asian-Australas. J. Anim. Sci. 5, 173–181. https://doi.org/10.5713/ajas.1992.173 (1992).Article 

    Google Scholar 
    67.Johnson, A. L. Chapter 3 – Organization and Functional Dynamics of the Avian Ovary. In (eds DO Norris, KHBT-H and R of V Lopez), pp. 71–90. Academic Press (2011). https://doi.org/10.1016/B978-0-12-374929-1.10003-468.Bluhm, C. K., Phillips, R. E. & Burke, W. H. Serum levels of luteinizing hormone (LH), prolactin, estradiol, and progesterone in laying and nonlaying canvasback ducks (Aythya valisineria). Gen. Comp. Endocrinol. 52, 1–16. https://doi.org/10.1016/0016-6480(83)90152-1 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Bluhm, C. K., Phillips, R. E. & Burke, W. H. Serum levels of luteinizing hormone, prolactin, estradiol and progesterone in laying and nonlaying mallards (Anas platyrhynchos). Biol. Reprod. 28, 295–305. https://doi.org/10.1095/biolreprod28.2.295 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Sockman, K. W. & Schwabl, H. Daily estradiol and progesterone levels relative to laying and onset of incubation in canaries. Gen. Comp. Endocrinol. 114, 257–268. https://doi.org/10.1006/gcen.1999.7252 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Proszkowiec, M. & Rzasa, J. Variation in the ovarian and plasma progesterone and estradiol levels of the domestic hen during a pause in laying. Folia Biol. (Praha) 49, 285–289 (2001).CAS 

    Google Scholar 
    72.Proszkowiec-Weglarz, M., Rzasa, J., Słomczyńska, M. & Paczoska-Eliasiewicz, H. Steroidogenic activity of chicken ovary during pause in egg laying. Reprod. Biol. 5, 205–225 (2005).PubMed 

    Google Scholar 
    73.Nakayma, T., Suzuki, M. & Ishizuka, N. Action of progesterone on preoptic thermosensitive neurones. Nature 258, 80. https://doi.org/10.1038/258080a0 (1975).ADS 
    Article 

    Google Scholar 
    74.Hampl, R., Stárka, L. & Janský, L. Steroids and thermogenesis. Physiol. Res. 55, 123–131 (2006).CAS 
    PubMed 

    Google Scholar 
    75.Splawinski, J. A., Górka, Z., Zacny, E. & Wojtaszek, B. Hyperthermic effects of arachidonic acid, prostaglandins E2 and F2α in rats. Pflügers Arch. 374, 15–21. https://doi.org/10.1007/BF00585692 (1978).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Gray, D. A., Marais, M. & Maloney, S. K. A review of the physiology of fever in birds. J. Comp. Physiol. B 183, 297–312. https://doi.org/10.1007/s00360-012-0718-z (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Hertelendy, F. & Biellier, H. V. Evidence for a physiological role of prostaglandins in oviposition by the hen. J. Reprod. Fertil. 53, 71–74. https://doi.org/10.1530/jrf.0.0530071 (1978).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Etches, R. J., Kelly, J. D., Anderson-Langmuir, C. E. & Olson, D. M. Prostaglandin production by the largest preovulatory follicles in the domestic hen (Gallus domesticus). Biol. Reprod. 43, 378–384. https://doi.org/10.1095/biolreprod43.3.378 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Takahashi, T., Tajima, H., Nakagawa-Mizuyachi, K., Nakayama, H. & Kawashima, M. Changes in prostaglandin F2α receptor bindings in the hen oviduct uterus before and after oviposition. Poult. Sci. 90, 1767–1773. https://doi.org/10.3382/ps.2010-01329 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    80.McNabb, F. M. A. The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37, 163–193. https://doi.org/10.1080/10408440601123552 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Nakao, N., Ono, H. & Yoshimura, T. Thyroid hormones and seasonal reproductive neuroendocrine interactions. Reproduction 136, 1–8. https://doi.org/10.1530/REP-08-0041 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    82.Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 190, 68–75. https://doi.org/10.1016/J.YGCEN.2013.04.012 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Gabrielsen, G., Mehlum, F., Karlsen, H., Andresen & Parker, H. Energy cost during incubation and thermoregulation in female Common Eider (Somateria mollissima). Nor. Polarinstitutt Skr. 195 (1991).84.Ardia, D. R., Pérez, J. H. & Clotfelter, E. D. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. R. Soc. B Biol. Sci. 277, 1881–1888. https://doi.org/10.1098/rspb.2009.2138 (2010).Article 

    Google Scholar 
    85.Hepp, G. R. & Kennamer, R. A. Warm is better: Incubation temperature influences apparent survival and recruitment of wood ducks (Aix sponsa). PLoS ONE 7, e47777 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Ipek, A., Sahan, U. & Sozcu, A. The effects of different eggshell temperatures between embryonic day 10 and 18 on broiler performance and susceptibility to ascites. Rev. Bras. Ciência Avícola 17, 387–394. https://doi.org/10.1590/1516-635X1703387-394 (2015).Article 

    Google Scholar 
    87.Haftorn, S. & Reinertsen, R. E. Regulation of body temperature and heat transfer to eggs during incubation. Ornis Scand. Scandinavian J. Ornithol. 13, 1–10. https://doi.org/10.2307/3675966 (1982).Article 

    Google Scholar 
    88.Vehrencamp, S. Body temperatures of incubating versus non-incubating roadrunners. Condor 84, 203 (1982).Article 

    Google Scholar 
    89.Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 15, 335–349. https://doi.org/10.1038/nri3843 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Hupton, G., Portocarrero, S., Newman, M. & Westneat, D. F. Bacteria in the reproductive tracts of red-wingedblackbirds. Condor 105, 453–464. https://doi.org/10.1650/7246 (2003).Article 

    Google Scholar 
    91.White, J. et al. Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol. Lett. 13, 1515–1524. https://doi.org/10.1111/j.1461-0248.2010.01542.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Hansen, C. M., Meixell, B. W., Van Hemert, C., Hare, R. F. & Hueffer, K. Microbial infections are associated with embryo mortality in arctic-nesting geese. Appl. Environ. Microbiol. 81, 5583–5592. https://doi.org/10.1128/AEM.00706-15 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Barrow, P. A. & Lovell, M. A. Experimental infection of egg-laying hens with Salmonella enteritidis phage type 4. Avian Pathol. 20, 335–348. https://doi.org/10.1080/03079459108418769 (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Mitchell, D. et al. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 87, 956–973. https://doi.org/10.1111/1365-2656.12818 (2018).Article 
    PubMed 

    Google Scholar 
    95.van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214. https://doi.org/10.1038/s41467-021-22546-w (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Guillemette, M., Polymeropoulos, E. T., Portugal, S. J. & Pelletier, D. It takes time to be cool: On the relationship between hyperthermia and body cooling in a migrating seaduck. Front. Physiol. 8, 532. https://doi.org/10.3389/fphys.2017.00532 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100. https://doi.org/10.1152/physiol.00040.2018 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    98.Schou, M. F. et al. Extreme temperatures compromise male and female fertility in a large desert bird. Nat. Commun. 12, 666. https://doi.org/10.1038/s41467-021-20937-7 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Stevenson, I. R. & Bryant, D. M. Climate change and constraints on breeding. Nature 406, 366–367. https://doi.org/10.1038/35019151 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Syntax errors do not disrupt acoustic communication in the common cuckoo

    Study areaThe study was conducted in central Hungary, ca. 25–60 km south of Budapest, at around the settlements Alsónémedi (47°18′; 19°09′), Apaj (47°06′; 19°05′), Kunszentmiklós (47°01′; 19°07′) and Tass (47°01′; 19°01′) during the 2020 and 2021 breeding seasons. We also used heterospecific controls with Eurasian collared doves for comparisons conducted in the year 2016. In this study area common cuckoos can be found in high densities in their breeding season (May and June). They almost exclusively parasitize great reed warblers (Acrocephalus arundinaceus) locally, a large host which breeds in narrow reed-beds along small irrigation and flood-relief channels47.All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Local animal ethics regulations and agreements were followed for fieldwork. All work complied with the Hungarian laws, and the Middle-Danube-Valley Inspectorate for Environmental Protection, Nature Conservation and Water Management, Budapest, provided permission for research (permit no. PE/KTF/17190-3/2015).Playback filesWe used cuckoo calls recorded in May between 2016 and 2019. Recording were made with a Telinga Universal parabola dish, equipped with a Sennheiser ME-62 microphone, a K6 powering module, a FEL MX mono preamp, and a Marantz PMD-620 MKII recorder (sampling rate: 48 kHz, 24-bit quality)30.We constructed ten different sound files for playback from the basic “cu-coo” calls:Heterospecific (negative) control(1) The calls of a neutral species from the local avifauna, the Eurasian collared dove, were used for interspecific vocalization control.Natural (positive) control(2) Normal (natural) “cu-coo” calls.Experimental treatments; one-note calls(3) Deleting the second note, i.e. contained “cu”, only.(4) Deleting the first note, i.e. contained “coo”, only.Two-note calls(5) Reversal of the basic “cu-coo” call, i.e. “coo-cu”.(6) Repeating the first note, and deleting the second note, i.e. “cu-cu”.(7) Repeating the second note, and deleting the first note, i.e. “coo-coo”.Three-note calls(8) Repeating the first note, i.e. “cu-cu-coo”.(9) Repeating the second note. i.e. “cu-coo-coo”.Three-note natural(10) Normal (but rare and context specific) “nat. cu-cu-coo”.The experimental 3-note variant of the calls (“cu-cu-coo”; call type No. (8)) differs from our natural 3-note calls (“nat. cu-cu-coo”; call type No. (10)) in two out of the three acoustic parameters (length: F1,18 = 79.258, P  More

  • in

    Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems

    1.Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021;6:946–59.CAS 
    PubMed 

    Google Scholar 
    2.Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.CAS 
    PubMed 

    Google Scholar 
    3.Buckley DH, Graber JR, Schmidt TM. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol. 1998;64:4333–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: Comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2000;66:499–508.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005;102:14683–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol. 2012;66:83–101.CAS 
    PubMed 

    Google Scholar 
    7.DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992;356:148–9.CAS 
    PubMed 

    Google Scholar 
    9.Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J. 2020;14:2596–609.
    Google Scholar 
    10.Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–00420.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang Y, Huang J-M, Cui G-J, Nunoura T, Takaki Y, Li W-L, et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ Microbiol. 2019b;21:716–29.CAS 
    PubMed 

    Google Scholar 
    13.Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome. 2020;8:78.PubMed 
    PubMed Central 

    Google Scholar 
    14.Wang B, Qin W, Ren Y, Zhou X, Jung M-Y, Han P, et al. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME J. 2019a;13:3067–79.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Gaze WH, et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun. 2020;11:5494.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.PubMed 
    PubMed Central 

    Google Scholar 
    17.Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, Zhou M, et al. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Mol Biol Evol. 2021;38:3637–48.PubMed 
    PubMed Central 

    Google Scholar 
    18.Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1517.PubMed 
    PubMed Central 

    Google Scholar 
    19.Llirós M, Casamayor EO, Borrego C. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiol Ecol. 2008;66:331–42.PubMed 

    Google Scholar 
    20.Wang Z, Wang Z, Huang C, Pei Y. Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in North China. World J Microbiol Biotechnol. 2014;30:1335–46.CAS 
    PubMed 

    Google Scholar 
    21.Mußmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R, Richter A, et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA. 2011;108:16771–6.PubMed 
    PubMed Central 

    Google Scholar 
    22.Biller S, Mosier A, Wells G, Francis C. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Front Microbiol. 2012;3:252.23.Beman JM, Francis CA. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol. 2006;72:7767–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Auguet J-C, Nomokonova N, Camarero L, Casamayor EO. Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol. 2011;77:1937–45.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Small GE, Bullerjahn GS, Sterner RW, Beall BFN, Brovold S, Finlay JC, et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol Oceanogr. 2013;58:276–86.CAS 

    Google Scholar 
    26.Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol. 2020;22:212–28.CAS 
    PubMed 

    Google Scholar 
    27.Auguet J-C, Triadó-Margarit X, Nomokonova N, Camarero L, Casamayor EO. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J. 2012;6:1786–97.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Podowski JC, Paver SF, Newton RJ, Coleman ML. Genome streamlining, proteorhodopsin, and organic nitrogen metabolism in freshwater nitrifiers. bioRxiv. 2021;2021.2001.2019.427344.29.Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotech. 2016;34:942–9.CAS 

    Google Scholar 
    30.Restrepo-Ortiz CX, Auguet J-C, Casamayor EO. Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol. 2014;16:689–700.CAS 
    PubMed 

    Google Scholar 
    31.Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, et al. Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME J. 2020;14:2488–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Santos-Júnior CD, Sarmento H, de Miranda FP, Henrique-Silva F, Logares R. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. Microbiome. 2020;8:151.PubMed 
    PubMed Central 

    Google Scholar 
    33.Jung M-Y, Sedlacek CJ, Kits KD, Mueller AJ, Rhee S-K, Hink L, et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 2022;16:272–83.CAS 
    PubMed 

    Google Scholar 
    34.Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damste JS, Jeon CO, et al. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol. 2014;80:3645–55.PubMed 
    PubMed Central 

    Google Scholar 
    36.Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group i.1a ammonia-oxidizing archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS One. 2013;8:e80835.PubMed 
    PubMed Central 

    Google Scholar 
    37.Li Y, Ding K, Wen X, Zhang B, Shen B, Yang Y. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Sci Rep. 2016;6:23747.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Wang Y, Qin W, Jiang X, Ju F, Mao Y, Zhang A, et al. Seasonal prevalence of ammonia-oxidizing archaea in a full-scale municipal wastewater treatment plant treating saline wastewater revealed by a 6-year time-series analysis. Environ Sci Technol. 2021;55:2662–73.CAS 
    PubMed 

    Google Scholar 
    40.Xing P, Tao Y, Luo J, Wang L, Li B, Li H, et al. Stratification of microbiomes during the holomictic period of Lake Fuxian, an alpine monomictic lake. Limnol Oceanogr. 2020;65:S134–S148.
    Google Scholar 
    41.Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol. 2017;84:e02132–02117.PubMed 
    PubMed Central 

    Google Scholar 
    42.Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr. 2020;65:1471–88.43.Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Bayer B, Vojvoda J, Offre P, Alves RJ, Elisabeth NH, Garcia JA, et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 2016;10:1051–63.CAS 
    PubMed 

    Google Scholar 
    45.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hink L, Gubry-Rangin C, Nicol GW, Prosser JI. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018;12:1084–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.CAS 
    PubMed 

    Google Scholar 
    48.Mayr MJ, Zimmermann M, Guggenheim C, Brand A, Bürgmann H. Niche partitioning of methane-oxidizing bacteria along the oxygen–methane counter gradient of stratified lakes. ISME J. 2020;14:274–87.CAS 
    PubMed 

    Google Scholar 
    49.Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol. 2020;22:738–51.CAS 
    PubMed 

    Google Scholar 
    50.Tran PQ, Bachand SC, McIntyre PB, Kraemer BM, Vadeboncoeur Y, Kimirei IA, et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J 2021;15:1971–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sauder LA, Engel K, Lo C-C, Chain P, Neufeld JD. Candidatus Nitrosotenuis aquarius, an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Appl Environ Microbiol. 2018;84:e01430-18.52.Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH, Tringe SG, et al. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J. 2015;9:1846–56.PubMed 
    PubMed Central 

    Google Scholar 
    53.Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. MBio. 2020;11:e02475–02419.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol. 2019;21:3927–52.CAS 
    PubMed 

    Google Scholar 
    55.Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B, Han P, et al. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environ Microbiol. 2017;19:4939–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Shen M, Li Q, Ren M, Lin Y, Wang J, Chen L, et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in plateau lakes. Front Microbiol. 2019;10:2560–2560.PubMed 
    PubMed Central 

    Google Scholar 
    57.Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 

    Google Scholar 
    58.Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA. 2013;110:11463–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Grzymski JJ, Dussaq AM. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 2012;6:71–80.CAS 
    PubMed 

    Google Scholar 
    60.Bragg JG, Hyder CL. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Proc R Soc Lond B Biol Sci. 2004;271:S374–7.CAS 

    Google Scholar 
    61.Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.CAS 
    PubMed 

    Google Scholar 
    62.Baudouin-Cornu P, Schuerer K, Marlière P, Thomas D. Intimate evolution of proteins: Proteome atomic content correlates with genome base composition. J Biol Chem. 2004;279:5421–8.CAS 
    PubMed 

    Google Scholar 
    63.Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, et al. Genomic and proteomic characterization of Candidatus Nitrosopelagicus brevis: An ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA. 2015;112:1173–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, et al. Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J. 2014;8:732–6.CAS 
    PubMed 

    Google Scholar 
    65.Reji L, Tolar BB, Smith JM, Chavez FP, Francis CA. Depth distributions of nitrite reductase (nirK) gene variants reveal spatial dynamics of thaumarchaeal ecotype populations in coastal Monterey Bay. Environ Microbiol. 2019;21:4032–45.CAS 
    PubMed 

    Google Scholar 
    66.Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA. 2006;103:18296–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A phylogenetic perspective. Science. 2015;350:aac9323.PubMed 

    Google Scholar 
    68.Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 

    Google Scholar 
    69.Paver SF, Muratore D, Newton RJ, Coleman ML, Flynn TM. Reevaluating the salty divide: Phylogenetic specificity of transitions between marine and freshwater systems. mSystems. 2018;3:e00232–00218.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12:1846–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Luo H, Csűros M, Hughes AL, Moran MA, Azam F, Zehr J. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio. 2013;4:e00373–00313.PubMed 
    PubMed Central 

    Google Scholar 
    72.Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, Woyke T, et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 2013;14:R130.PubMed 
    PubMed Central 

    Google Scholar 
    73.Fillol M, Auguet J-C, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 2016;10:665–77.PubMed 

    Google Scholar 
    74.Siuda W, Kiersztyn B. Urea in lake ecosystem: The origin, concentration and distribution in relation to trophic state of the Great Mazurian Lakes (Poland). Pol J Ecol. 2015;63:110–23. 114
    Google Scholar 
    75.Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 

    Google Scholar 
    76.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 

    Google Scholar 
    77.Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E7946.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Carini P, Dupont Christopher L, Santoro, Alyson E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol. 2018;20:2112–24.CAS 
    PubMed 

    Google Scholar 
    79.Bogard MJ, Donald DB, Finlay K, Leavitt PR. Distribution and regulation of urea in lakes of central North America. Freshw Biol. 2012;57:1277–92.CAS 

    Google Scholar 
    80.Glibert PM, Harrison J, Heil C, Seitzinger S. Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry. 2006;77:441–63.CAS 

    Google Scholar 
    81.Alonso-Sáez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, et al. Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci USA. 2012;109:17989–94.PubMed 
    PubMed Central 

    Google Scholar 
    82.Tolar BB, Wallsgrove NJ, Popp BN, Hollibaugh JT. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities. Environ Microbiol. 2017;19:4838–50.CAS 
    PubMed 

    Google Scholar 
    83.Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.CAS 
    PubMed 

    Google Scholar 
    84.Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev. 2011;35:87–123.CAS 
    PubMed 

    Google Scholar 
    85.Blount P, Iscla I. Life with bacterial mechanosensitive channels, from discovery to physiology to pharmacological target. Microbiol Mol Biol Rev. 2020;84:e00055–00019.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, et al. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev. 2018;10:1377–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Widderich N, Czech L, Elling FJ, Konneke M, Stoveken N, Pittelkow M, et al. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol. 2016;18:1227–48.CAS 
    PubMed 

    Google Scholar 
    88.Jung H, Hilger D, Raba M. The Na+/L-proline transporter PutP. Front Biosci-Landmark. 2012;17:745–59.CAS 

    Google Scholar 
    89.Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11:777–88.CAS 
    PubMed 

    Google Scholar 
    90.Li D-C, Yang F, Lu B, Chen D-F, Yang W-J. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones. 2012;17:103–8.PubMed 

    Google Scholar 
    91.Qin W, Amin SA, Lundeen RA, Heal KR, Martens-Habbena W, Turkarslan S, et al. Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. ISME J. 2017a;12:508–19.PubMed 
    PubMed Central 

    Google Scholar 
    92.Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol. 2001;183:1205–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Albers S-V, Jarrell KF. The archaellum: An update on the unique archaeal motility structure. Trends Microbiol. 2018;26:351–62.CAS 
    PubMed 

    Google Scholar 
    94.Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Micro Ecol. 2012;64:955–63.CAS 

    Google Scholar 
    95.Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2017b;67:5067–79.PubMed 

    Google Scholar 
    96.Dupuis M-È, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat Commun. 2013;4:2087.PubMed 

    Google Scholar 
    97.Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, et al. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol. 2019;21:2056–78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More