More stories

  • in

    Integrated molecular and behavioural data reveal deep circadian disruption in response to artificial light at night in male Great tits (Parus major)

    ALAN advances timing of activity and BMAL1 expressionDaily cycles of activity were strongly affected by the ALAN treatment (GAMM, p = 0.001, Fig. 2A and Fig. S2; Table S4). In the 5 lux group birds were generally active 6–7 h before lights-on, whereas birds in the other two light treatments (0.5 and 1.5 lux) advanced morning activity to a much lesser extent. Because of the advanced onset of activity, 40% of the overall diel activity in the 5 lux group occurred during the night, compared to 11 and 14% in the 0.5 and 1.5 lux groups, and less than 1% in the control dark group. Thus, with increasing ALAN, nocturnal activity also increased (LMM, treatment p  0.1 for pairwise comparison), and thereafter their timing remained stable. The group exposed to 5 lux showed a much larger instantaneous phase advance of almost five hours (mean ± SEM = 289 ± 21 min), and thereafter continued to gradually phase-advance until reaching a stable phase after 10 days (interaction treatment × day, p  More

  • in

    Richard Leakey (1944–2022)

    OBITUARY
    28 January 2022

    Richard Leakey (1944–2022)

    Palaeontologist of human origins, conservationist and politician.

    Marta Mirazón Lahr

    0

    Marta Mirazón Lahr

    Marta Mirazón Lahr is professor of human evolutionary biology and prehistory at the University of Cambridge, UK. Leakey was a friend, colleague and supporter of her work in Turkana, where she directs research in human origins.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Credit: William Campbell/Sygma/Getty

    Richard Leakey made palaeontological discoveries of lasting significance, and brought animal poaching to the world’s attention. His fossil finds at Koobi Fora on the shores of Lake Turkana, Kenya, transformed our understanding of the diversity of human ancestors. He directed Kenya’s national museum, reorganized the country’s wildlife services and headed Kenya’s civil service. He died aged 77, at home in the Ngong Hills, Kenya.In science, he liked exploration, big-picture problems and building institutions. He made huge strides in conservation, empowering organizations and deploying shock tactics. He entered politics, creating an opposition party, then worked in government, finally becoming its corruption watchdog. He mentored young Kenyan scholars, conservationists and artists who are now leaders in their field.Born in Nairobi, Richard was the middle child of pioneers in African palaeontology and archaeology Louis and Mary Leakey. He abandoned school at 16 to open an animal-trapping and safari business, earning enough to pay for flying lessons and his own small plane. In 1963, a mix of interest in his parents’ world and a wish to prove himself to them lured him into the study of the past, and he found his first important hominin fossil — a 1.5 million-year-old mandible of Paranthropus boisei — in 1964.
    Fifty years after Homo habilis
    In 1967, Leakey’s father asked him to direct an expedition to the Omo Valley of southern Ethiopia. There, Leakey found two Homo sapiens fossils now known to be 230,000 years old (C. M. Vidal et al. Nature https://doi.org/gn3794; 2022), key evidence of our species’ African origins. Flying over the eastern shore of Lake Turkana, he recognized the potential of sediments at Koobi Fora, which proved to be a trove of hominin fossils. The discovery of different hominin species living at the same time between 2 million and 1.5 million years ago (P. boisei, Homo habilis, Homo rudolfensis and Homo erectus) changed views of how humans evolved.In 1968, Leakey became director of the National Museums of Kenya, which became a hub of thriving research. Soon afterwards, he met the young British zoologist Meave Epps. They married after his first marriage ended, and became life-long personal and scientific partners. Their work with researchers dubbed the Hominid Gang, led by Kamoya Kimeu, resulted in the discovery of dozens of hominin fossils, including a new genus and four new species (Paranthropus aethiopicus, Australopithecus anamensis and Kenyanthropus platyops, as well as H. rudolfensis). A 1.6-million-year-old skeleton of a juvenile H. erectus proved to have grown more slowly than apes and faster than humans, giving insights into the evolution of human life-history.Leakey became involved in acrimonious scientific arguments — sometimes he was right, sometimes not — which, during the 1970s, gave an antagonistic tone to human-origins research. His health deteriorated, and he had his first kidney transplant (donated by his brother Philip) in 1980. In 1989, Kenya’s president, Daniel arap Moi, asked him to run the Kenya Wildlife Service (KWS). Leakey declared war on poachers, burnt the stockpile of Kenyan ivory and massively reduced elephant deaths. His controversial tactics had an impact on a web of corrupt practices and created serious enemies. In 1993, the plane he was piloting crashed; both his legs had to be amputated below the knee. Sabotage was rumoured.
    Human evolution’s ties to tectonics
    The relationship with Moi became increasingly hostile. In 1995, Leakey left KWS to create an opposition party, Safina, becoming a member of the Kenyan parliament in 1998. His time in opposition was tense. Leakey was beaten and received death threats. But Kenya needed large investments, and funders demanded assurances. Capitalizing on Leakey’s reputation for integrity, in 1998 Moi asked him to direct KWS again, and in 1999 to head the civil service. Over three years, Leakey raised hundreds of millions of dollars for Kenya and fought corruption.In 2002, he accepted a position at Stony Brook University, New York, that allowed him to live in Kenya and create the Turkana Basin Institute (TBI), which he chaired from 2005 until his death. TBI fostered a burst of discoveries: Miocene primates, hominins, the oldest stone tools in the world at 3.3 million years, evidence of prehistoric warfare, and the earliest monumental architecture in sub-Saharan Africa. In 2004, Leakey founded WildlifeDirect, a non-governmental conservation body, serving on its board for 10 years. In 2007, he became chair of Transparency International Kenya, continuing his battle against corruption.By this time, Leakey had skin cancer and progressively worse health. He underwent a second kidney transplant in 2006, with Meave as the donor, and a liver transplant in 2013. Yet, in 2015, he accepted President Uhuru Kenyatta’s request to return to KWS as chair until 2018. For the past six years, he worked to create a new Kenyan museum, called Ngaren — of which I am a board member — to celebrate science, evolution and humanity’s African origins.Richard was special — fun, insightful, generous, with a sharp sense of humour, and a fabulous cook and sommelier. He embraced life, good and bad, and imbued those around him with the sheer excitement of what could be done, discovered, resolved and enjoyed.

    Nature 602, 29 (2022)
    doi: https://doi.org/10.1038/d41586-022-00211-6

    Competing Interests
    M.M.L. is a member of the board of directors of Ngaren, a non-governmental organization founded by Richard Leakey to support the creation of a museum of evolution in Kenya.

    Related Articles

    Human evolution’s ties to tectonics

    The past, present and future of human evolution

    Fifty years after Homo habilis

    Obituary: Louis Leakey

    Collection: Human evolution

    Subjects

    History

    Evolution

    Conservation biology

    Politics

    Latest on:

    History

    From the archive
    News & Views 25 JAN 22

    Nobel nominators — which women will you suggest?
    Correspondence 18 JAN 22

    From the archive
    News & Views 18 JAN 22

    Evolution

    Where did Omicron come from? Three key theories
    News Feature 28 JAN 22

    The foreign trees that now reign over Asia’s jungles
    Research Highlight 27 JAN 22

    Evolution of inner ear neuroanatomy of bats and implications for echolocation
    Article 26 JAN 22

    Jobs

    Post-doc in Mathematics (Geometry and Mathematical Quantization)

    University of Luxembourg
    Luxembourg, Luxembourg

    Post-Doctoral Fellow in Mathematics (Statistics)

    University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) student position in autism and ADHD

    Karolinska Institutet, doctoral positions
    Stockholm, Sweden

    Proteomics Platform Scientist (m/f/d)

    Research Center for Molecular Medicine (CeMM), ÖAW
    Vienna, Austria More

  • in

    Syntax errors do not disrupt acoustic communication in the common cuckoo

    Study areaThe study was conducted in central Hungary, ca. 25–60 km south of Budapest, at around the settlements Alsónémedi (47°18′; 19°09′), Apaj (47°06′; 19°05′), Kunszentmiklós (47°01′; 19°07′) and Tass (47°01′; 19°01′) during the 2020 and 2021 breeding seasons. We also used heterospecific controls with Eurasian collared doves for comparisons conducted in the year 2016. In this study area common cuckoos can be found in high densities in their breeding season (May and June). They almost exclusively parasitize great reed warblers (Acrocephalus arundinaceus) locally, a large host which breeds in narrow reed-beds along small irrigation and flood-relief channels47.All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Local animal ethics regulations and agreements were followed for fieldwork. All work complied with the Hungarian laws, and the Middle-Danube-Valley Inspectorate for Environmental Protection, Nature Conservation and Water Management, Budapest, provided permission for research (permit no. PE/KTF/17190-3/2015).Playback filesWe used cuckoo calls recorded in May between 2016 and 2019. Recording were made with a Telinga Universal parabola dish, equipped with a Sennheiser ME-62 microphone, a K6 powering module, a FEL MX mono preamp, and a Marantz PMD-620 MKII recorder (sampling rate: 48 kHz, 24-bit quality)30.We constructed ten different sound files for playback from the basic “cu-coo” calls:Heterospecific (negative) control(1) The calls of a neutral species from the local avifauna, the Eurasian collared dove, were used for interspecific vocalization control.Natural (positive) control(2) Normal (natural) “cu-coo” calls.Experimental treatments; one-note calls(3) Deleting the second note, i.e. contained “cu”, only.(4) Deleting the first note, i.e. contained “coo”, only.Two-note calls(5) Reversal of the basic “cu-coo” call, i.e. “coo-cu”.(6) Repeating the first note, and deleting the second note, i.e. “cu-cu”.(7) Repeating the second note, and deleting the first note, i.e. “coo-coo”.Three-note calls(8) Repeating the first note, i.e. “cu-cu-coo”.(9) Repeating the second note. i.e. “cu-coo-coo”.Three-note natural(10) Normal (but rare and context specific) “nat. cu-cu-coo”.The experimental 3-note variant of the calls (“cu-cu-coo”; call type No. (8)) differs from our natural 3-note calls (“nat. cu-cu-coo”; call type No. (10)) in two out of the three acoustic parameters (length: F1,18 = 79.258, P  More

  • in

    Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems

    1.Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021;6:946–59.CAS 
    PubMed 

    Google Scholar 
    2.Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.CAS 
    PubMed 

    Google Scholar 
    3.Buckley DH, Graber JR, Schmidt TM. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol. 1998;64:4333–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: Comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2000;66:499–508.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005;102:14683–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol. 2012;66:83–101.CAS 
    PubMed 

    Google Scholar 
    7.DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992;356:148–9.CAS 
    PubMed 

    Google Scholar 
    9.Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J. 2020;14:2596–609.
    Google Scholar 
    10.Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–00420.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang Y, Huang J-M, Cui G-J, Nunoura T, Takaki Y, Li W-L, et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ Microbiol. 2019b;21:716–29.CAS 
    PubMed 

    Google Scholar 
    13.Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome. 2020;8:78.PubMed 
    PubMed Central 

    Google Scholar 
    14.Wang B, Qin W, Ren Y, Zhou X, Jung M-Y, Han P, et al. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME J. 2019a;13:3067–79.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Gaze WH, et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun. 2020;11:5494.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.PubMed 
    PubMed Central 

    Google Scholar 
    17.Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, Zhou M, et al. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Mol Biol Evol. 2021;38:3637–48.PubMed 
    PubMed Central 

    Google Scholar 
    18.Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1517.PubMed 
    PubMed Central 

    Google Scholar 
    19.Llirós M, Casamayor EO, Borrego C. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiol Ecol. 2008;66:331–42.PubMed 

    Google Scholar 
    20.Wang Z, Wang Z, Huang C, Pei Y. Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in North China. World J Microbiol Biotechnol. 2014;30:1335–46.CAS 
    PubMed 

    Google Scholar 
    21.Mußmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R, Richter A, et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA. 2011;108:16771–6.PubMed 
    PubMed Central 

    Google Scholar 
    22.Biller S, Mosier A, Wells G, Francis C. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Front Microbiol. 2012;3:252.23.Beman JM, Francis CA. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol. 2006;72:7767–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Auguet J-C, Nomokonova N, Camarero L, Casamayor EO. Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol. 2011;77:1937–45.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Small GE, Bullerjahn GS, Sterner RW, Beall BFN, Brovold S, Finlay JC, et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol Oceanogr. 2013;58:276–86.CAS 

    Google Scholar 
    26.Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol. 2020;22:212–28.CAS 
    PubMed 

    Google Scholar 
    27.Auguet J-C, Triadó-Margarit X, Nomokonova N, Camarero L, Casamayor EO. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J. 2012;6:1786–97.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Podowski JC, Paver SF, Newton RJ, Coleman ML. Genome streamlining, proteorhodopsin, and organic nitrogen metabolism in freshwater nitrifiers. bioRxiv. 2021;2021.2001.2019.427344.29.Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotech. 2016;34:942–9.CAS 

    Google Scholar 
    30.Restrepo-Ortiz CX, Auguet J-C, Casamayor EO. Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol. 2014;16:689–700.CAS 
    PubMed 

    Google Scholar 
    31.Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, et al. Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME J. 2020;14:2488–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Santos-Júnior CD, Sarmento H, de Miranda FP, Henrique-Silva F, Logares R. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. Microbiome. 2020;8:151.PubMed 
    PubMed Central 

    Google Scholar 
    33.Jung M-Y, Sedlacek CJ, Kits KD, Mueller AJ, Rhee S-K, Hink L, et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 2022;16:272–83.CAS 
    PubMed 

    Google Scholar 
    34.Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damste JS, Jeon CO, et al. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol. 2014;80:3645–55.PubMed 
    PubMed Central 

    Google Scholar 
    36.Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group i.1a ammonia-oxidizing archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS One. 2013;8:e80835.PubMed 
    PubMed Central 

    Google Scholar 
    37.Li Y, Ding K, Wen X, Zhang B, Shen B, Yang Y. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Sci Rep. 2016;6:23747.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Wang Y, Qin W, Jiang X, Ju F, Mao Y, Zhang A, et al. Seasonal prevalence of ammonia-oxidizing archaea in a full-scale municipal wastewater treatment plant treating saline wastewater revealed by a 6-year time-series analysis. Environ Sci Technol. 2021;55:2662–73.CAS 
    PubMed 

    Google Scholar 
    40.Xing P, Tao Y, Luo J, Wang L, Li B, Li H, et al. Stratification of microbiomes during the holomictic period of Lake Fuxian, an alpine monomictic lake. Limnol Oceanogr. 2020;65:S134–S148.
    Google Scholar 
    41.Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol. 2017;84:e02132–02117.PubMed 
    PubMed Central 

    Google Scholar 
    42.Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr. 2020;65:1471–88.43.Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Bayer B, Vojvoda J, Offre P, Alves RJ, Elisabeth NH, Garcia JA, et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 2016;10:1051–63.CAS 
    PubMed 

    Google Scholar 
    45.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hink L, Gubry-Rangin C, Nicol GW, Prosser JI. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018;12:1084–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.CAS 
    PubMed 

    Google Scholar 
    48.Mayr MJ, Zimmermann M, Guggenheim C, Brand A, Bürgmann H. Niche partitioning of methane-oxidizing bacteria along the oxygen–methane counter gradient of stratified lakes. ISME J. 2020;14:274–87.CAS 
    PubMed 

    Google Scholar 
    49.Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol. 2020;22:738–51.CAS 
    PubMed 

    Google Scholar 
    50.Tran PQ, Bachand SC, McIntyre PB, Kraemer BM, Vadeboncoeur Y, Kimirei IA, et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J 2021;15:1971–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sauder LA, Engel K, Lo C-C, Chain P, Neufeld JD. Candidatus Nitrosotenuis aquarius, an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Appl Environ Microbiol. 2018;84:e01430-18.52.Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH, Tringe SG, et al. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J. 2015;9:1846–56.PubMed 
    PubMed Central 

    Google Scholar 
    53.Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. MBio. 2020;11:e02475–02419.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol. 2019;21:3927–52.CAS 
    PubMed 

    Google Scholar 
    55.Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B, Han P, et al. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environ Microbiol. 2017;19:4939–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Shen M, Li Q, Ren M, Lin Y, Wang J, Chen L, et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in plateau lakes. Front Microbiol. 2019;10:2560–2560.PubMed 
    PubMed Central 

    Google Scholar 
    57.Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 

    Google Scholar 
    58.Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA. 2013;110:11463–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Grzymski JJ, Dussaq AM. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 2012;6:71–80.CAS 
    PubMed 

    Google Scholar 
    60.Bragg JG, Hyder CL. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Proc R Soc Lond B Biol Sci. 2004;271:S374–7.CAS 

    Google Scholar 
    61.Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.CAS 
    PubMed 

    Google Scholar 
    62.Baudouin-Cornu P, Schuerer K, Marlière P, Thomas D. Intimate evolution of proteins: Proteome atomic content correlates with genome base composition. J Biol Chem. 2004;279:5421–8.CAS 
    PubMed 

    Google Scholar 
    63.Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, et al. Genomic and proteomic characterization of Candidatus Nitrosopelagicus brevis: An ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA. 2015;112:1173–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, et al. Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J. 2014;8:732–6.CAS 
    PubMed 

    Google Scholar 
    65.Reji L, Tolar BB, Smith JM, Chavez FP, Francis CA. Depth distributions of nitrite reductase (nirK) gene variants reveal spatial dynamics of thaumarchaeal ecotype populations in coastal Monterey Bay. Environ Microbiol. 2019;21:4032–45.CAS 
    PubMed 

    Google Scholar 
    66.Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA. 2006;103:18296–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A phylogenetic perspective. Science. 2015;350:aac9323.PubMed 

    Google Scholar 
    68.Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 

    Google Scholar 
    69.Paver SF, Muratore D, Newton RJ, Coleman ML, Flynn TM. Reevaluating the salty divide: Phylogenetic specificity of transitions between marine and freshwater systems. mSystems. 2018;3:e00232–00218.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12:1846–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Luo H, Csűros M, Hughes AL, Moran MA, Azam F, Zehr J. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio. 2013;4:e00373–00313.PubMed 
    PubMed Central 

    Google Scholar 
    72.Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, Woyke T, et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 2013;14:R130.PubMed 
    PubMed Central 

    Google Scholar 
    73.Fillol M, Auguet J-C, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 2016;10:665–77.PubMed 

    Google Scholar 
    74.Siuda W, Kiersztyn B. Urea in lake ecosystem: The origin, concentration and distribution in relation to trophic state of the Great Mazurian Lakes (Poland). Pol J Ecol. 2015;63:110–23. 114
    Google Scholar 
    75.Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 

    Google Scholar 
    76.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 

    Google Scholar 
    77.Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E7946.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Carini P, Dupont Christopher L, Santoro, Alyson E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol. 2018;20:2112–24.CAS 
    PubMed 

    Google Scholar 
    79.Bogard MJ, Donald DB, Finlay K, Leavitt PR. Distribution and regulation of urea in lakes of central North America. Freshw Biol. 2012;57:1277–92.CAS 

    Google Scholar 
    80.Glibert PM, Harrison J, Heil C, Seitzinger S. Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry. 2006;77:441–63.CAS 

    Google Scholar 
    81.Alonso-Sáez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, et al. Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci USA. 2012;109:17989–94.PubMed 
    PubMed Central 

    Google Scholar 
    82.Tolar BB, Wallsgrove NJ, Popp BN, Hollibaugh JT. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities. Environ Microbiol. 2017;19:4838–50.CAS 
    PubMed 

    Google Scholar 
    83.Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.CAS 
    PubMed 

    Google Scholar 
    84.Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev. 2011;35:87–123.CAS 
    PubMed 

    Google Scholar 
    85.Blount P, Iscla I. Life with bacterial mechanosensitive channels, from discovery to physiology to pharmacological target. Microbiol Mol Biol Rev. 2020;84:e00055–00019.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, et al. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev. 2018;10:1377–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Widderich N, Czech L, Elling FJ, Konneke M, Stoveken N, Pittelkow M, et al. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol. 2016;18:1227–48.CAS 
    PubMed 

    Google Scholar 
    88.Jung H, Hilger D, Raba M. The Na+/L-proline transporter PutP. Front Biosci-Landmark. 2012;17:745–59.CAS 

    Google Scholar 
    89.Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11:777–88.CAS 
    PubMed 

    Google Scholar 
    90.Li D-C, Yang F, Lu B, Chen D-F, Yang W-J. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones. 2012;17:103–8.PubMed 

    Google Scholar 
    91.Qin W, Amin SA, Lundeen RA, Heal KR, Martens-Habbena W, Turkarslan S, et al. Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. ISME J. 2017a;12:508–19.PubMed 
    PubMed Central 

    Google Scholar 
    92.Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol. 2001;183:1205–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Albers S-V, Jarrell KF. The archaellum: An update on the unique archaeal motility structure. Trends Microbiol. 2018;26:351–62.CAS 
    PubMed 

    Google Scholar 
    94.Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Micro Ecol. 2012;64:955–63.CAS 

    Google Scholar 
    95.Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2017b;67:5067–79.PubMed 

    Google Scholar 
    96.Dupuis M-È, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat Commun. 2013;4:2087.PubMed 

    Google Scholar 
    97.Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, et al. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol. 2019;21:2056–78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Reduced rainfall and resistant varieties mediate a critical transition in the coffee rust disease

    Critical transition theory tells us that, as exogenous parameters drive the system towards a bifurcation and the emergence of a new equilibrium, we can see evidence of the upcoming transition through decreasing resistance to each oscillation peak15, like a ball rolling around in a cup whose walls are becoming less and less steep1,6. We find evidence of this critical slowing down within the year-to-year deceleration of rust growth rates just prior to their annual peak, or λ, our formal slowing down measure. This is coupled with a delay in the initiation month (takeoff) of the oscillation itself. The oscillations collapse in 2019 as the system apparently switches to a more benign non-epidemic state.In the mid-elevation zone of southwestern Mexico where we conducted our study, the general expectation from climate change, in addition to increased temperature, is reduced rainfall19,20, a pattern broadly in evidence for the past five years (Fig. S2). With regard to the coffee rust disease, this precipitation trend is most closely associated with the change in λ, and reflects the obligate range of associated moisture and temperature conditions required for the rust to flourish9,17. On the other hand, rust-resistant replanting has been occurring throughout coffee farms in much of Mesoamerica since the rust outbreak in 2012–201321,22. This could limit plant-to-plant spread by reducing opportunities for direct contact with an infected plant, as well as decrease the environmental spore load by reducing the contributing pool of infected plants in the broader region. On our site, the slowing down patterns of both λ and the rust takeoff point were associated with more rust-resistant replanting on a local level, while the significant linear delay in the year-to-year rust takeoff over the study period may reflect larger-scale effects emerging from increased resistance across the farm.Our preliminary treatment of April as the annual rust season initiation point corresponded generally with a seasonal pattern of increasing rainfall. This approach might be assumed by a manager experiencing the system in real time without knowledge of how the rust season will play out that year. Such an assumption works well in the first two seasons of our data, where the rust increase and rainy season both appear to begin in April. However, this association decouples in subsequent years. Evidently, the critical slowing down we initially estimated in Fig. 1B is partitioned into two components: one that imposes a lag on the initiation of the disease, and another that imposes a decelerating approach to the peak rust intensity, necessitating a joint model of the initiation month and the critical slowing down warning signal (λ). That the takeoff had a significant delaying trend over the study period suggests that the initiation of the rust season can also be seen as a measure of critical slowing down, in that a slower approach to the equilibrium point (the seasonal rust peak) will likely be reflected in a failure to even recognize the increase when it is still very small. Thus, the conspicuous change in takeoff point over time (Fig. 2A, B) itself suggests a critical slowing down and the negative values of λ in Fig. 1B may be mainly a reflection of a lag in takeoff time. The overall increasing lag in rust takeoff each year could mean that the transmission factor itself may be exhibiting a critical slowing down as the critical transition is approached, due to the progressive influence of parameters outside of the present analysis. Given the basic biology of the disease10, this trend may stem from a year-to-year secular decline in the environmental spore load causing initiation of the disease season to be deterred by a small amount each year.The evident relationship between critical slowing down and reduced rainfall is suggestive of a connection to climate change, while a slow secular increase in the proportion of rust-resistant varieties could have inhibited local or regional spread, leading to an effective “herd immunity” to the disease. The joint operation of reduced rainfall and fewer susceptible plants raises the possibility of dual bifurcations and hysteretic zones in the dynamic landscape, which we illustrate in a qualitative fashion (generalized to climate and management) in Fig. 4a. The initial outbreak, which was unexpected in light of the historically low, but persistent, levels of rust in the region7,8, was likely a critical transition precipitated by interactions between local and regional processes14. As foregrounded in Fig. 4b, we propose that a possible parameter driving the system to this initial bifurcation was recent increases in precipitation, as evidenced in local rainfall records (Fig. S2) and regional trends19. This could have propelled the system past a hysteretic phase space to where seasonal conditions dictated that the system jump to a high rust intensity equilibrium, represented conceptually in Fig. 4a by the dotted trajectory leading to the upper surface of the landscape that corresponds to an epidemic state of the rust. Likewise, in the years following the outbreak, our findings suggest that, while the system still tracked precipitation, progressive replanting of resistant varieties emerged as another parameter axis (management) that drove the system through a second critical transition back to a low rust equilibrium (Fig. 4c). Although the dynamical landscape in Fig. 4 is a qualitative representation, the trajectory along the upper surface helps to visualize how two exogenous forces, operating separately, both contributed to the critical transition we observed in our data. The trajectory we propose brings attention to the interesting possibility that the main driver of slowing down shifted from climate (precipitation) to management (replanting), leading to the second critical transition. Indeed, though the average yearly replanting rate remained roughly the same year-to-year (Fig. S1), we note that much of the cutting prior to the collapse in 2019 seemed to be concentrated in April that year (Fig. 1D), accompanied presumably by a similarly timed replanting campaign.Figure 4Envisioning the combination of climate and management effects in a joint hysteretic framing, stemming from gradual change in both forcing parameters. (A) Relative positions of rust intensity for each year are illustrated in their approximate positions with red arrows (other trajectories could be imagined based on the data presented herein). Inset plots provide a conceptualized view of the dynamics between the two forcing variables on rust intensity: (B) management (in our case, resistant variety replanting) and (C) climate (precipitation). In the inset plots, arrows indicate directions of change; solid and dashed lines indicate stable and unstable equilibria, respectively.Full size imageRecent work on critical transitions suggests that perturbances driving a system to transition are more realistically not distinct or isolated, and that the stochastic and deterministic elements of the system can therefore be entangled or even interdependent4. Likewise, we find that the variability in the environmental covariates of monthly rainfall and resistant variety replanting better explained patterns in λ than a linear trend leading up to the transition, as represented by the year variable. The correlation between the quadrat grouping offset estimates from the λ and takeoff components of the multivariate model also suggest that slowing down and delayed takeoff were associated at the individual quadrat level (Fig. 3C). Accounting for this spatial effect, these two components do not appear to be correlated by year (Fig. 3D). This suggests that the shared variability between these two indicators reflects variability in spatial environment within the plot rather than idiosyncratic effects of unique years. Besides the direct effect of resistant varieties, local stochasticity and spread dynamics may also play a role. Local growing conditions, such as variability in shade from overstory trees, can affect dispersal through rainfall splash and wind23,24. Additional management factors may also play a role, such as the vegetation structure and the presence of paths25, as well as the physical relationship between coffee plants26.Our observations of the rust dynamics themselves allow us to detect the general signals anticipating a critical transition, though the drivers may emerge from a complex system of dialectical interactions that must be considered in their whole7,27. The concept of critical slowing down thus may lend itself to application across coffee-growing regions, where predicted effects of climate change and other geographic conditions may differ9,19. Since the emergence of the rust outbreak, recommendations and protocols have been published for monitoring rust levels, potentially providing managers with regular data in changes in rust intensity for many areas9,28. As the resilience of a system can be interpreted through measuring critical slowing down prior to catastrophe2, as well as, in our case, the “exit time” from an undesirable regime4, we demonstrate that such concepts may be applied to this monitoring data to gain some insight into the system’s status. Future studies could explore signs of critical slowing down across coffee-growing regions and management systems to see how these signals predict significant changes and respond to local drivers, potentially adding to the vocabulary of agroecological management.In sum, it is clear that both a lag in takeoff point for the seasonal oscillation and the rate of approach to the peak each year seem to conspire to produce a critical slowing down, strong evidence that the decline in the disease in 2019–2020 is indeed a critical transition, regardless of the underlying mechanism. While our model suggests that two exogenous forces, rainfall and resistant variety replanting, may be driving the slowing down in our case, the underlying dynamical landscape is likely not unique to our site. More generally, the phenomenon of multivariate bifurcations leading to subsequent critical transitions (e.g., Fig. 4) is perhaps more common than thought29. Examinations of critical transitions should therefore consider the larger dynamical landscape for the possibility of subsequent transitions. More

  • in

    No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata

    1.GESAMP. Global pollution trends: coastal ecosystem assessment for the past century. 101 (2018).2.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    PubMed 

    Google Scholar 
    3.Hartmann, N. B. et al. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr. Environ. Assess. Manag. 13, 488–493 (2017).PubMed 

    Google Scholar 
    4.Bour, A., Avio, C. G., Gorbi, S., Regoli, F. & Hylland, K. Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environ. Pollut. 243, 1217–1225 (2018).CAS 
    PubMed 

    Google Scholar 
    5.Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science (80-) 47, 768–770 (2015).ADS 

    Google Scholar 
    6.PlasticsEurope. Plastics—The Facts 2020. PlasticsEurope (2020).7.Sweet, M., Steifox, M. & Lamb, J. Plastics and Shallow Water Coral Reefs. Synthesis of the Science for Policy-Makers (2019).8.Stafford, R. & Jones, P. J. S. Viewpoint—Ocean plastic pollution: A convenient but distracting truth? Mar. Policy 19, 0–1 (2019).9.Backhaus, T. & Wagner, M. Microplastics in the environment: Much ado about nothing? A debate. Glob. Challenges 1900022, 1900022 (2019).
    Google Scholar 
    10.Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).CAS 
    PubMed 

    Google Scholar 
    11.Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    12.Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl. Acad. Sci. USA. 117, 5351–5357 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science (80-) 359, 460–462 (2018).CAS 
    ADS 

    Google Scholar 
    14.Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (2011).15.Tan, F. et al. Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Sci. Total Environ. 725, 138383 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    16.Bucol, L. A. et al. Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Mar. Pollut. Bull. 150, 110685 (2020).CAS 
    PubMed 

    Google Scholar 
    17.Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8 (2017).
    Google Scholar 
    18.Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339 (2016).CAS 
    PubMed 

    Google Scholar 
    19.Cordova, M. R., Hadi, T. A. & Prayudha, B. Occurrence and abundance of microplastics in coral reef sediment: A case study in Sekotong, Lombok-Indonesia. AES Bioflux 10, 23–29 (2018).
    Google Scholar 
    20.Ogston, A. S., Storlazzi, C. D., Field, M. E. & Presto, M. K. Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs 23, 559–569 (2004).
    Google Scholar 
    21.Bellwood, D. R. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus on the Great Barrier Reef, Australia. Mar. Biol. 121, 419–429 (1995).
    Google Scholar 
    22.Rosenfeld, M., Bresler, V. & Abelson, A. Sediment as a possible food source for corals. Ecol. Lett. 2, 345–348 (1999).
    Google Scholar 
    23.Rogers, C. S. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62, 185–202 (1990).ADS 

    Google Scholar 
    24.Bastidas, C., Bone, D. & Garcia, E. M. Sedimentation rates and metal content of sediments in a Venezuelan coral reef. Mar. Pollut. Bull. 38, 16–24 (1999).CAS 

    Google Scholar 
    25.Smith, L. D., Negri, A. P., Philipp, E., Webster, N. S. & Heyward, A. J. The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Mar. Biol. 143, 651–657 (2003).CAS 

    Google Scholar 
    26.Stafford-Smith, M. Sediment rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol. 115, 229–243 (1993).
    Google Scholar 
    27.Junjie, R. K., Browne, N. K., Erftemeijer, P. L. A. & Todd, P. A. Impacts of sediments on coral energetics: Partitioning the effects of turbidity and settling particles. PLoS ONE 9, e107195 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    28.Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by scleractinian corals. Mar. Biol. 162, 725–732 (2015).CAS 

    Google Scholar 
    29.Allen, A. S., Seymour, A. C. & Rittschof, D. Chemoreception drives plastic consumption in a hard coral. Mar. Pollut. Bull. 124, 198–205 (2017).CAS 
    PubMed 

    Google Scholar 
    30.Mouchi, V. et al. Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environ. Pollut. 253, 322–329 (2019).CAS 
    PubMed 

    Google Scholar 
    31.Tang, J., Ni, X., Zhou, Z., Wang, L. & Lin, S. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ. Pollut. 243, 66–74 (2018).CAS 
    PubMed 

    Google Scholar 
    32.Chapron, L. et al. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Sci. Rep. 8, 1–8 (2018).CAS 

    Google Scholar 
    33.Hankins, C., Moso, E. & Lasseigne, D. Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis. Environ. Pollut. 275, 116649 (2021).CAS 
    PubMed 

    Google Scholar 
    34.Rocha, R. J. M. et al. Do microplastics affect the zoanthid Zoanthus sociatus?. Sci. Total Environ. 713, 136659 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    35.Reichert, J. et al. Interactive effects of microplastic pollution and heat stress on reef-building corals. Environ. Pollut. 290, 118010 (2021).CAS 
    PubMed 

    Google Scholar 
    36.Rotjan, R. D. et al. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R. Soc. B Biol. Sci. 286, 20190726 (2019).CAS 

    Google Scholar 
    37.Reichert, J., Schellenberg, J., Schubert, P. & Wilke, T. Responses of reef building corals to microplastic exposure. Environ. Pollut. 237, 955–960 (2018).CAS 
    PubMed 

    Google Scholar 
    38.Hankins, C., Duffy, A. & Drisco, K. Scleractinian coral microplastic ingestion: Potential calcification effects, size limits, and retention. Mar. Pollut. Bull. 135, 587–593 (2018).CAS 
    PubMed 

    Google Scholar 
    39.Reichert, J., Arnold, A. L., Hoogenboom, M. O., Schubert, P. & Wilke, T. Impacts of microplastics on growth and health of hermatypic corals are species-specific. Environ. Pollut. 254, 113074 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Mendrik, F. M. et al. Species-specific impact of microplastics on coral physiology. Environ. Pollut. 269, 116238 (2021).CAS 
    PubMed 

    Google Scholar 
    41.Corona, E., Martin, C., Marasco, R. & Duarte, C. M. Passive and active removal of marine microplastics by a mushroom Coral (Danafungia scruposa). Front. Mar. Sci. 7, 1–9 (2020).ADS 

    Google Scholar 
    42.Martin, C., Corona, E., Mahadik, G. A. & Duarte, C. M. Adhesion to coral surface as a potential sink for marine microplastics. Environ. Pollut. 255, 113281 (2019).CAS 
    PubMed 

    Google Scholar 
    43.Oldenburg, K. S., Urban-Rich, J., Castillo, K. D. & Baumann, J. H. Microfiber abundance associated with coral tissue varies geographically on the Belize Mesoamerican Barrier Reef System. Mar. Pollut. Bull. 163, 111938 (2021).CAS 
    PubMed 

    Google Scholar 
    44.Axworthy, J. B. & Padilla-Gamiño, J. L. Microplastics ingestion and heterotrophy in thermally stressed corals. Sci. Rep. 9, 1–8 (2019).
    Google Scholar 
    45.Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    46.Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).
    Google Scholar 
    47.Rochman, C. M., Hentschel, B. T. & The, S. J. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS ONE 9, e85433 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Niu, Y., Ying, D., Li, K., Wang, Y. & Jia, J. Adsorption of heavy-metal ions from aqueous solution onto chitosan-modified polyethylene terephthalate (PET). Res. Chem. Intermed. 43, 4213–4245 (2017).CAS 

    Google Scholar 
    49.Frias, J., Sobral, P. & Ferreira, A. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 60, 1988–1992 (2010).CAS 
    PubMed 

    Google Scholar 
    50.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Botterell, Z. L. R. et al. Bioavailability of microplastics to marine zooplankton: Effect of shape and infochemicals. Environ. Sci. Technol. 54, 12024–12033 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    52.Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the ecosystem. Nature 428, 66–70 (2004).CAS 
    PubMed 
    ADS 

    Google Scholar 
    53.Benson, A. & Muscatine, L. Wax in coral mucus: Energy transfer from corals to reef fishes. Limnol. Oceanogr. 19, 810–814 (1974).ADS 

    Google Scholar 
    54.Verla, A. W., Enyoh, C. E., Verla, E. N. & Nwarnorh, K. O. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN Appl. Sci. 1, 1–30 (2019).CAS 

    Google Scholar 
    55.Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).CAS 
    ADS 

    Google Scholar 
    56.Weber, M., Lott, C. & Fabricius, K. E. Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J. Exp. Mar. Bio. Ecol. 336, 18–32 (2006).CAS 

    Google Scholar 
    57.Riegl, B. & Branch, G. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamoroux 1816) corals. J. Exp. Mar. Bio. Ecol. 186, 259–275 (1995).
    Google Scholar 
    58.Felsing, S. et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior. Environ. Pollut. 234, 20–28 (2018).CAS 
    PubMed 

    Google Scholar 
    59.Bessell-Browne, P., Negri, A. P., Fisher, R., Clode, P. L. & Jones, R. Cumulative impacts: Thermally bleached corals have reduced capacity to clear deposited sediment. Sci. Rep. 7, 1–14 (2017).
    Google Scholar 
    60.Fitt, W. K. et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Bio. Ecol. 373, 102–110 (2009).
    Google Scholar 
    61.Weber, M. et al. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. USA. 109, E1558 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lear, G. et al. Plastics and the microbiome: Impacts and solutions. Environ. Microbiomes 16, 1–19 (2021).
    Google Scholar 
    63.Palardy, J., Rodrigues, L. & Grottolli, A. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Bio. Ecol. 367, 180–188 (2008).CAS 

    Google Scholar 
    64.Jennings, H. Modifiability in behaviour, 1: Behavior of sea anemones. J. Exp. Zool. 4, 447–632 (1905).
    Google Scholar 
    65.Boschma, H. On the feeding reactions and digestion in the coral polyp Astrangia danae, with notes on its symbiosis with zooxanthellae. Biol. Bull. 49, 407–439 (1925).CAS 

    Google Scholar 
    66.Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Bio. Ecol. 232, 85–106 (1999).
    Google Scholar 
    67.Schlekat, C., McGee, B. & Reinharz, E. Testing sediment toxicity in chesapeake bay with the amphipod Leptocheirus plumulosus: An evaluation. Environ. Toxicol. Chem. 11, 225–236 (1992).CAS 

    Google Scholar 
    68.Nie, H., Wang, J., Xu, K., Huang, Y. & Yan, M. Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Sci. Total Environ. 696, 134022 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    69.Cai, M. et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 633, 1206–1216 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    70.Zhu, L. et al. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification. Sci. Total Environ. 636, 20–29 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    71.Saliu, F. et al. Microplastic and charred microplastic in the Faafu Atoll, Maldives. Mar. Pollut. Bull. 136, 464–471 (2018).CAS 
    PubMed 

    Google Scholar 
    72.Saliu, F., Montano, S., Leoni, B., Lasagni, M. & Galli, P. Microplastics as a threat to coral reef environments: Detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives. Mar. Pollut. Bull. 142, 234–241 (2019).CAS 
    PubMed 

    Google Scholar 
    73.Bessa, F. et al. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 128, 575–584 (2018).CAS 
    PubMed 

    Google Scholar 
    74.Ivar Do Sul, J. A. & Costa, M. F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352–364 (2014).CAS 
    PubMed 

    Google Scholar 
    75.Chubarenko, I., Bagaev, A., Zobkov, M. & Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105–112 (2016).CAS 
    PubMed 

    Google Scholar 
    76.Tang, J. et al. Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ. J. Hazard. Mater. 404, 124205 (2021).CAS 
    PubMed 

    Google Scholar 
    77.Harrison, J. P., Schratzberger, M., Sapp, M. & Osborn, A. M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 14, 1–15 (2014).
    Google Scholar 
    78.Veron, J. Corals of the World (2000).79.Benavides, M. et al. Diazotrophs: A non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J. Exp. Biol. 219, 2608–2612 (2016).PubMed 

    Google Scholar 
    80.Einbinder, S. et al. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381, 167–174 (2009).ADS 

    Google Scholar 
    81.Erni-Cassola, G., Gibson, M. I., Thompson, R. C. & Christie-Oleza, J. A. Lost, but found with Nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ. Sci. Technol. 51, 13641–13648 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    82.Swain, T. D., Schellinger, J. L., Strimaitis, A. M. & Reuter, K. E. Evolution of anthozoan polyp retraction mechanisms: Convergent functional morphology and evolutionary allometry of the marginal musculature in order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia). BMC Evol. Biol. 15, 1–19 (2015).
    Google Scholar 
    83.Laissue, P. P., Gu, Y., Qian, C. & Smith, D. J. Light-induced polyp retraction and tissue rupture in the photosensitive, reef-building coral Acropora muricata. bioRxiv https://doi.org/10.1101/862045 (2019).Article 

    Google Scholar 
    84.Renegar, D. A. & Turner, N. R. Species sensitivity assessment of five Atlantic scleractinian coral species to 1-methylnaphthalene. Sci. Rep. 11, 1–17 (2021).
    Google Scholar 
    85.Armoza-Zvuloni, R., Schneider, A., Sher, D. & Shaked, Y. Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli. Sci. Rep. 6, 1–10 (2016).
    Google Scholar 
    86.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Meijering, E., Dzyubachyck, O. & Smal, I. Methods for cell and particle tracking. In Methods in Enzymology (Elsevier, 2012).88.Sorgeloos, P., Dhert, P. & Candrevab, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159 (2001).
    Google Scholar 
    89.R Core Team. R: A language and environment for statistical computing (2019).90.Wood, A. S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. (2020).91.Zuur, A., Saveliev, A. & Ieno, E. A Beginner’s Guide to Generalized Additive Mixed Models with R. (Highland Statistics Ltd, 2014).92.Zuur, A. F., Hilbe, J. M. & Ieno, E. N. A Beginner’s Guide to GLM and GLMM with R (Highland Statistics Ltd, 2013).93.Pyke, A. & Thompson, J. Statistical analysis of survival and removal rate experiments. Ecology 67, 240–245 (1986).
    Google Scholar 
    94.Therneau, T. M. Mixed effects cox models. R-Package Description. https://doi.org/10.1111/oik.01149 (2015).Article 

    Google Scholar 
    95.Katki, H. A. & Mark, S. D. Survival analysis of studies nested within cohorts using the NestedCohort Package. 1–16 (2013).96.Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package BRMS. R J. 10, 395–411 (2018).
    Google Scholar 
    97.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer, 2009).98.Manly, B. F. J. Measuring selectivity from multiple choice feeding-preference experiments. Biometrics 51, 709 (1995).
    Google Scholar 
    99.Richardson, J. Package ‘ selectapref ’. Anal. F. Lab. Foraging 8–11 (2020). More

  • in

    Uniparental genetic markers to investigate hybridization in wild-born marmosets with a mixed phenotype among Callithrix aurita and invasive species

    1.Mittermeier, R. A., Coimbra-Filho, A. F., Constable, I. D., Rylands, A. B. & Valle, C. Conservation of primates in the Atlantic forest region of eastern Brazil. Int. Zoo Yearb. 22, 2–17 (1982).
    Google Scholar 
    2.Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. W. Handbook of the Mammals of the World, vol. 3, Primates. Lynx, Barcelona (2013).3.Rylands, A. B., Kierulff, M. C. M., Mendes, S. L. & Oliveira, M. M. Callithrix aurita. The IUCN Red List of Threatened Species 2008. IUCN Red List Threat. Species 8235, 1–7 (2008).
    Google Scholar 
    4.IUCN. The IUCN Red List of Threatened Species. Version 2020–2, Vol. 8235 (2020).5.Coimbra-Filho, A., Pissinatti, A. & Rylands, A. B. Experimental mutiple hybridism and natural hybrids among Callithrix species from easterna Brazil. In Marmosets and Tamarins Systematics Behaviour and Ecology (ed. Rylands, A. B.) 93–120 (Oxford University Press, 1993).
    Google Scholar 
    6.Mittermeier, R. A., Coimbra-Filho, A. F., Rylands, A. B. & Constable, I. D. Atlantic Forest region of eastern Brazil a top primate of conservation priority. IUCN / SSC Primate Spec. Gr. Newsl. 1, 9–11 (1981).
    Google Scholar 
    7.Carvalho, R. S. et al. Buffy-tufted-year marmoset Callithrix aurita É. Geoffroy Saint-Hilaire, 1812 Brazil. In Primates in Peril: The World’s 25 Most Endangered Primates 2018–2020 (eds. Schwitzer, C. et al.) 136 (IUCN SSC Primate Specialist Group, International Primatological Society, Global Wildlife Conservation, Bristol Zoological Society, 2019).8.ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. (2018).9.SMA-SP. Decreto no63.853, de 27 de novembro de 2018. (2018).10.Rylands, A. B. et al. An assessment of the diversity of New World Primates. Neotrop. Primates 8, 61–93 (2000).
    Google Scholar 
    11.Brandão, L. D. & Develey, P. F. Distribution and conservation of the buffy-tufted-ear marmoset, Callithrix aurita, in lowland coastal, Atlantic Forest, Southeast Brazil. Neotrop. Primates 6, 86–88 (1998).
    Google Scholar 
    12.Carvalho, R. S. et al. Callithrix aurita: a marmoset species on its way to extinctionin the Brazilian Atlantic Forest. Neotrop. Primates 24, 1–8 (2018).
    Google Scholar 
    13.Malukiewicz, J. et al. Natural and anthropogenic hybridization in two species of eastern Brazilian marmosets (Callithrix jacchus and C. penicillata). PLoS ONE 10, 1–22 (2015).
    Google Scholar 
    14.Ruiz-Miranda, C. R., Affonso, A. G., Martins, A. & Beck, B. Distribuição do sagui (Callithrix jacchus) nas áreas de ocorrência do mico-leão-dourado (Leontopithecus rosalia) no Estado do Rio de Janeiro. Neotrop. Primates 8, 98–101 (2000).
    Google Scholar 
    15.Mendes, S. L. Hybridization in free-ranging Callithrix flaviceps and the taxonomy of the Atlantic forest marmosets. Neotrop. Primates 5, 6–8 (1997).
    Google Scholar 
    16.Santos, C. V. et al. Ecologia, comportamento e manejo de primatas invasores e populações-problema. A Primatologia no Brasil 10, 101–118 (2007).
    Google Scholar 
    17.Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecolology Evol. Syst. 27, 83–109 (1996).
    Google Scholar 
    18.Zinner, D., Arnold, M. L. & Roos, C. The strange blood: Natural hybridization in primates. Evol. Anthropol. 20, 96–103 (2011).PubMed 

    Google Scholar 
    19.Brumfield, R. T. Speciation genetics of biological invasions with hybridization. Mol. Ecol. 19, 5079–5083 (2010).PubMed 

    Google Scholar 
    20.Steeves, T. E., Maloney, R. F., Hale, M. L., Tylianakis, J. M. & Gemmell, N. J. Genetic analyses reveal hybridization but no hybrid swarm in one of the world’s rarest birds. Mol. Ecol. 19, 5090–5100 (2010).PubMed 

    Google Scholar 
    21.Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).
    Google Scholar 
    22.Bechara, I. M. Abordagens metodológicas em Biogeografia da Conservação para avaliar risco de extinção de espécies: um estudo de caso com Callithrix aurita (Primates: Callitrichidae). (UFRJ, 2012).23.Braz, A. G., Lorini, M. L. & Vale, M. M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Divers. Distrib. 25, 536–550 (2019).
    Google Scholar 
    24.Malukiewicz, J. A review of experimental, natural, and anthropogenic hybridization in Callithrix marmosets. Int. J. Primatol. 40, 72–98 (2019).
    Google Scholar 
    25.Pinto, L. F. G. & Voivodic, M. Reverse the tipping point of the Atlantic Forest for mitigation. Nat. Clim. Chang. 11, 364–365 (2021).ADS 

    Google Scholar 
    26.Seehausen, O., Takimoto, G., Roy, D. & Jokela, J. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17, 30–44 (2008).PubMed 

    Google Scholar 
    27.Pereira, D. G., De Oliveira, M. E. A. & Ruiz-Miranda, C. R. Interações entre calitriquídeos exóticos e nativos no Parque Nacional da Serra dos Órgãos – RJ. Espaço e Geogr. 11, 87–114 (2008).
    Google Scholar 
    28.Aximoff, I., Soares, H. M., Pissinatti, A. & Bueno, C. Registros de Callithrix aurita (Primates, Callitrichidae) e seus híbridos no Parque Nacional do Itatiaia. Oecologia Aust. 20, 520–525 (2016).
    Google Scholar 
    29.Detogne, N. et al. Spatial distribution of buffy-tufted-ear (Callithrix aurita) and invasive marmosets (Callithrix spp.) in a tropical rainforest reserve in southeastern Brazil. Am. J. Primatol. 79, 1–11 (2017).
    Google Scholar 
    30.Carvalho, R. S. et al. Molecular identification of a buffy-tufted-ear marmoset (Callithrix aurita) incorporated in a group of invasive marmosets in the Serra dos Órgãos National Park, Rio de Janeiro – Brazil. Forensic Sci. Int. Genet. Suppl. Ser. 4, e230–e231 (2013).
    Google Scholar 
    31.Novaes, C. M. et al. Karyotypic characteristics of hybrid marmosets of the genus Callithrix (Erxeleben, 1777) suggest the participation of three parental species. Bol. do Mus. Biol. Mello Leitão 39, 11–21 (2017).
    Google Scholar 
    32.Pereira, D. G. Densidade, genética e saúde populacional como ferramentas para propor um plano de controle e erradicação de invasão biológica: o caso de Callithrix aurita (Primates) no Parque Nacional da Serra dos Órgãos, RJ, Brasil (Universidade do Estado do Rio de Janeiro, 2010).
    Google Scholar 
    33.Veracini, C., Galeni, L. & Forti, M. The concept of species and the foundations of biology, a case study: The Callithrix jacchus group (Primates-Platyrrhini). Riv. Biol. 95, 75–100 (2002).PubMed 

    Google Scholar 
    34.Campton, D. E. Natural hybridization and introgression in fishes: methods of detection and genetic interpretations. In Population Genetics and Fishery Management (eds Ryman, N. & Utter, F.) 16–192 (University of Washington Press, 1987).
    Google Scholar 
    35.Nagamachi, C. Y., Pieczarka, J. C., Schwarz, M., Barros, R. M. S. & Mattevi, M. S. Comparative chromosomal study of five taxa of genus Callithrix, group jacchus (Platyrrhini, Primates). Am. J. Primatol. 41, 53–60 (1997).CAS 
    PubMed 

    Google Scholar 
    36.Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).PubMed 

    Google Scholar 
    37.Ardito, G., Lamberti, L., Bigatti, P., Stanyon, R. & Govone, D. NOR distribution and satellite associations in Callithrix jacchus. Caryologia 40, 185–194 (1987).
    Google Scholar 
    38.Nagamashi, C. & Ferrari, I. Cytogenetic studies of Callithrix jacchus (Callitrichidae, Platyrrhini) from two different sites in Brazil. I. Morphological variability of Y chromosome. Rev. Bras. Genética 7, 497–507 (1984).
    Google Scholar 
    39.Nogueira, D. M. et al. Cytogenetic study in natural hybrids of Callithrix (Callitrichidae: Primates) in the Atlantic forest of the state of Rio de Janeiro, Brazil. Iheringia, Série Zool. 101, 156–160 (2011).
    Google Scholar 
    40.Moreira, M. A. M. SRY evolution in Cebidae (Platyrrhini: Primates). J. Mol. Evol. 55, 92–103 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    41.de Morais, M. M. OS SAGUIS (Callithrix spp., ERXLEBEN, 1777) Exóticos Invasores na bacia do Rio São João, Rio de Janeiro: Biologia populacional e padrão de distribuição em uma paisagem fragmentada. Uenf.Br (2010).42.Sweeney, C. G., Curran, E., Westmoreland, S. V., Mansfield, K. G. & Vallender, E. J. Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins. BMC Genomics 13, 98. https://doi.org/10.1186/1471-2164-13-98 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Buckner, J. C., Lynch Alfaro, J. W., Rylands, A. B. & Alfaro, M. E. Biogeography of the marmosets and tamarins (Callitrichidae). Mol. Phylogenet. Evol. 82, 413–425 (2015).PubMed 

    Google Scholar 
    44.Schneider, H. et al. A molecular analysis of the evolutionary relationships in the Callitrichinae, with emphasis on the position of the dwarf marmoset. Zool. Scr. 41, 1–10 (2012).
    Google Scholar 
    45.Perelman, P. et al. A molecular phylogeny of living primates. PLoS Genet. 7, 1–17 (2011).
    Google Scholar 
    46.Price, T. D. & Bouvier, M. M. The evolution of F1 postzygotic incompatibilities in birds. Evolution (N. Y). 56, 2083–2089 (2002).
    Google Scholar 
    47.Nievergelt, C. M., Mundy, N. I. & Woodruff, D. S. Microsatellite primers for genotyping common marmosets (Callithrix jacchus) and other callitrichids. Mol. Ecol. 7, 1432–1434 (1998).CAS 
    PubMed 

    Google Scholar 
    48.Raveendran, M. et al. Polymorphic microsatellite loci for the common marmoset (Callithrix jacchus) designed using a cost- and time-efficient method. Am. J. Primatol. 70, 906–910 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Takabayashi, S. & Katoh, H. Noninvasive genotyping of common marmoset (Callithrix jacchus) by fingernail PCR. Primates 56, 235–240 (2015).PubMed 

    Google Scholar 
    50.Malukiewicz, J. et al. Mitogenomic phylogeny of Callithrix with special focus on human transferred taxa. BMC Genomics 22, 1–14 (2021).
    Google Scholar 
    51.Rozhnov, V. V. Extinction of the European mink: ecological catastrophe or a natural process?. Lutreola 1, 10–16 (1993).
    Google Scholar 
    52.Rosenthal, G. G. Individual mating decisions and hybridization. J. Evol. Biol. 26, 252–255 (2013).CAS 
    PubMed 

    Google Scholar 
    53.Fundação SOS Mata Atlântica. Notícias. www.sosma.org.br/noticias/desmatamento-da-mata-atlantica-cresce-em-dez-estados/ (2021).54.Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    55.Oliveira, A. B. L. Presença ou Ausência do Callithrix aurita em Fragmentos de Mata Atlântica (Instituto Superior de Agronomia – Universidade Técnica de Lisboa, 2012).
    Google Scholar 
    56.Allendorf, F. W. et al. Intercrosses and the U.S. endangered species act: Should hybridized populations be included as westslope cutthroat trout?. Conserv. Biol. 18, 1203–1213 (2004).
    Google Scholar 
    57.Wayne, R. K. & Shaffer, H. B. Hybridization and endangered species protection in the molecular era. Mol. Ecol. 25, 2680–2689 (2016).PubMed 

    Google Scholar 
    58.U.S. Fish and Wildlife Service and National Oceanic and Atmospheric Administration. Endangered and threatened wildlife and plants: Proposed policy and proposed rule on the treatment of intercrosses and intercross progeny (the issue of “hybridization”). Fed. Regist. 67, 4710–4713 (1996).
    Google Scholar 
    59.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Malukiewicz, J., Hepp, C. M., Guschanski, K. & Stone, A. C. Phylogeny of the jacchus group of Callithrix marmosets based on complete mitochondrial genomes. Am. J. Phys. Anthropol. 162, 157–169 (2016).PubMed 

    Google Scholar 
    61.Sambrook, J., Maniatis, T. & Fritsch, E. F. Molecular Cloning. A Laboratory Manual. Vol. 1 (Cold Spring Harbor Laboratory Press, 2001).
    Google Scholar 
    62.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Rozas, J. et al. DnaSP6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 

    Google Scholar 
    64.Ronquist, F., van der Mark, P. & Huelsenbeck, J. P. Bayesian phylogenetic analysis using MRBAYES. Phylogenetic Handb. https://doi.org/10.1017/cbo9780511819049.009 (2012).Article 

    Google Scholar  More

  • in

    Oriental freshwater mussels arose in East Gondwana and arrived to Asia on the Indian Plate and Burma Terrane

    1.Graf, D. L. & Cummings, K. S. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). J. Molluscan Stud. 73, 291–314. https://doi.org/10.1093/mollus/eym029 (2007).Article 

    Google Scholar 
    2.Graf, D. L. & Cummings, K. S. A “big data” approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. J. Molluscan Stud. 87, 034. https://doi.org/10.1093/mollus/eyaa034 (2021).Article 

    Google Scholar 
    3.Vaughn, C. C. Ecosystem services provided by freshwater mussels. Hydrobiologia 810, 15–27. https://doi.org/10.1007/s10750-017-3139-x (2018).Article 

    Google Scholar 
    4.Ożgo, M. et al. Lake-stream transition zones support hotspots of freshwater ecosystem services: Evidence from a 35-year study on unionid mussels. Sci. Total Environ. 774, 145114. https://doi.org/10.1016/j.scitotenv.2021.145114 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7 (2018).Article 

    Google Scholar 
    6.Bolotov, I. N. et al. Climate warming as a possible trigger of keystone mussel population decline in oligotrophic rivers at the continental scale. Sci. Rep. 8, 35. https://doi.org/10.1038/s41598-017-18873-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ferreira-Rodríguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87. https://doi.org/10.1016/j.biocon.2019.01.002 (2019).Article 

    Google Scholar 
    8.Lundquist, S. P., Worthington, T. A. & Aldridge, D. C. Freshwater mussels as a tool for reconstructing climate history. Ecol. Ind. 101, 11–21. https://doi.org/10.1016/j.ecolind.2018.12.048 (2019).Article 

    Google Scholar 
    9.Sousa, R. et al. The role of anthropogenic habitats in freshwater mussel conservation. Glob. Change Biol. 27, 2298–2314. https://doi.org/10.1111/gcb.15549 (2021).ADS 
    Article 

    Google Scholar 
    10.Bogan, A. E. Freshwater bivalve extinctions (Mollusca: Unionoida): A search for causes. Integr. Comp. Biol. 33, 599–609. https://doi.org/10.1093/icb/33.6.599 (1993).Article 

    Google Scholar 
    11.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330. https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).Article 

    Google Scholar 
    12.Hughes, J. et al. Past and present patterns of connectivity among populations of four cryptic species of freshwater mussels Velesunio spp (Hyriidae) in central Australia. Mol. Ecol. 13, 3197–3212. https://doi.org/10.1111/j.1365-294X.2004.02305.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Martel, A. L. et al. Freshwater mussels (Bivalvia: Margaritiferidae, Unionidae) of the Atlantic Maritime Ecozone. In Assessment of Species Diversity in the Atlantic Maritime Ecozone (eds McAlpine, D. F. & Smith, I. M.) 551–598 (NRC Research Press, 2010).
    Google Scholar 
    14.Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, 2012).
    Google Scholar 
    15.Smith, C. H., Pfeiffer, J. M. & Johnson, N. A. Comparative phylogenomics reveal complex evolution of life history strategies in a clade of bivalves with parasitic larvae (Bivalvia: Unionoida: Ambleminae). Cladistics 36, 505–520. https://doi.org/10.1111/cla.12423 (2020).Article 
    PubMed 

    Google Scholar 
    16.Sepkoski, J. J. Jr. & Rex, M. A. Distribution of freshwater mussels: Coastal rivers as biogeographic islands. Syst. Biol. 23, 165–188. https://doi.org/10.1093/sysbio/23.2.165 (1974).Article 

    Google Scholar 
    17.Haag, W. R. A hierarchical classification of freshwater mussel diversity in North America. J. Biogeogr. 37, 12–26. https://doi.org/10.1111/j.1365-2699.2009.02191.x (2010).Article 

    Google Scholar 
    18.Graf, D. L., Jones, H., Geneva, A. J., Pfeiffer, J. M. III. & Klunzinger, M. W. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. 85, 1–9. https://doi.org/10.1016/j.ympev.2015.01.012 (2015).Article 
    PubMed 

    Google Scholar 
    19.Bolotov, I. N. et al. Ancient river inference explains exceptional Oriental freshwater mussel radiations. Sci. Rep. 7, 2135. https://doi.org/10.1038/s41598-017-02312-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Bolotov, I. N. et al. Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia. Sci. Rep. 10, 3072. https://doi.org/10.1038/s41598-020-59867-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Lopes-Lima, M. et al. Diversity, biogeography, evolutionary relationships, and conservation of Eastern Mediterranean freshwater mussels (Bivalvia: Unionidae). Mol. Phylogenet. Evol. 163, 107261. https://doi.org/10.1016/j.ympev.2021.107261 (2021).Article 
    PubMed 

    Google Scholar 
    22.Bolotov, I. N. et al. Eight new freshwater mussels (Unionidae) from tropical Asia. Sci. Rep. 9, 12053. https://doi.org/10.1038/s41598-019-48528-z (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bolotov, I. N. et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Sci. Rep. 10, 6616. https://doi.org/10.1038/s41598-020-63612-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Jeratthitikul, E., Paphatmethin, S., Zieritz, A., Lopes-Lima, M. & Bun, P. Hyriopsis panhai, a new species of freshwater mussel from Thailand (Bivalvia: Unionidae). Raffles Bull. Zool. 69, 124–136. https://doi.org/10.26107/RBZ-2021-0011 (2021).Article 

    Google Scholar 
    25.Jeratthitikul, E., Sucharit, C. & Prasankok, P. Molecular phylogeny of the Indochinese freshwater mussel genus Scabies Haas, 1911 (Bivalvia: Unionidae). Trop. Nat. Hist. 19, 21–36 (2019).
    Google Scholar 
    26.Jeratthitikul, E., Sutcharit, C., Ngor, P. B. & Prasankok, P. Molecular phylogeny reveals a new genus of freshwater mussels from the Mekong River Basin (Bivalvia: Unionidae). Eur. J. Taxon. 775, 119–142. https://doi.org/10.5852/ejt.2021.775.1553 (2021).Article 

    Google Scholar 
    27.Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Taxonomic revision of a radiation of South-East Asian freshwater mussels (Unionidae: Gonideinae: Contradentini+ Rectidentini). Invertebr. Syst. 35, 394–470. https://doi.org/10.1071/IS20044 (2021).Article 

    Google Scholar 
    28.Zieritz, A. et al. A new genus and two new, rare freshwater mussel (Bivalvia: Unionidae) species endemic to Borneo are threatened by ongoing habitat destruction. Aquat. Conserv. https://doi.org/10.1002/aqc.3695 (2021).Article 

    Google Scholar 
    29.Smith, C. H., Johnson, N. A., Pfeiffer, J. M. & Gangloff, M. M. Molecular and morphological data reveal non-monophyly and speciation in imperiled freshwater mussels (Anodontoides and Strophitus). Mol. Phylogenet. Evol. 119, 50–62. https://doi.org/10.1016/j.ympev.2017.10.018 (2018).Article 
    PubMed 

    Google Scholar 
    30.Inoue, K. et al. A new species of freshwater mussel in the genus Popenaias Frierson, 1927, from Gulf coastal rivers of central Mexico (Bivalvia: Unionida: Unionidae) with comments on the genus. Zootaxa 4816, 457–490. https://doi.org/10.11646/zootaxa.4816.4.3 (2020).Article 

    Google Scholar 
    31.Ortiz-Sepulveda, C. M. et al. Diversification dynamics of freshwater bivalves (Unionidae: Parreysiinae: Coelaturini) indicate historic hydrographic connections throughout the East African Rift System. Mol. Phylogenet. Evol. 148, 106816. https://doi.org/10.1016/j.ympev.2020.106816 (2020).Article 
    PubMed 

    Google Scholar 
    32.Tomilova, A. A. et al. An endemic freshwater mussel species from the Orontes River basin in Turkey and Syria represents duck mussel’s intraspecific lineage: Implications for conservation. Limnologica 84, 125811. https://doi.org/10.1016/j.limno.2020.125811 (2020).CAS 
    Article 

    Google Scholar 
    33.Tomilova, A. A. et al. Evidence for plio-pleistocene duck mussel refugia in the Azov Sea river basins. Diversity 12, 118. https://doi.org/10.3390/d12030118 (2020).Article 

    Google Scholar 
    34.Pfeiffer, J. M., Sharpe, A. E., Johnson, N. A., Emery, K. F. & Page, L. M. Molecular phylogeny of the Nearctic and Mesoamerican freshwater mussel genus Megalonaias. Hydrobiologia 811, 139–151. https://doi.org/10.1007/s10750-017-3441-7 (2018).CAS 
    Article 

    Google Scholar 
    35.Bolotov, I. N. et al. A new genus and tribe of freshwater mussel (Unionidae) from Southeast Asia. Sci. Rep. 8, 10030. https://doi.org/10.1038/s41598-018-28385-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Konopleva, E. S. et al. New freshwater mussels from two Southeast Asian genera Bineurus and Thaiconcha (Pseudodontini, Gonideinae, Unionidae). Sci. Rep. 11, 8244. https://doi.org/10.1038/s41598-021-87633-w (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lopes-Lima, M. et al. Freshwater mussels (Bivalvia: Unionidae) from the Rising Sun (Far East Asia): Phylogeny, systematics, and distribution. Mol. Phylogenet. Evol. 146, 106755. https://doi.org/10.1016/j.ympev.2020.106755 (2020).Article 
    PubMed 

    Google Scholar 
    38.Rangin, C. Active and recent tectonics of the Burma Platelet in Myanmar. Geol. Soc. Lond. Mem. 48, 53–64. https://doi.org/10.1144/M48.3 (2017).Article 

    Google Scholar 
    39.Licht, A. et al. Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane. Gondwana Res. 87, 303–319. https://doi.org/10.1016/j.gr.2020.06.016 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868. https://doi.org/10.1038/s41561-019-0443-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Morley, C. K., Chantraprasert, S., Kongchum, J. & Chenoll, K. The West Burma Terrane, a review of recent paleo-latitude data, its geological implications and constraints. Earth Sci. Rev. 220, 103722. https://doi.org/10.1016/j.earscirev.2021.103722 (2021).Article 

    Google Scholar 
    42.Martin, C. R. et al. Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision. Proc. Natl. Acad. Sci. USA 117, 29487–29494. https://doi.org/10.1073/pnas.2009039117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Frisch, W., Meschede, M. & Blakey, R. C. Plate Tectonics: Continental Drift and Mountain Building (Springer Science & Business Media, 2010).
    Google Scholar 
    44.Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci. Rev. 88, 145–166. https://doi.org/10.1016/j.earscirev.2008.01.007 (2008).ADS 
    Article 

    Google Scholar 
    45.Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267. https://doi.org/10.1016/j.gr.2012.07.001 (2013).ADS 
    Article 

    Google Scholar 
    46.van Hinsbergen, D. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl. Acad. Sci. USA 109, 7659–7664. https://doi.org/10.1073/pnas.1117262109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.van Hinsbergen, D. J. et al. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69–94. https://doi.org/10.1016/j.tecto.2018.04.006 (2019).ADS 
    Article 

    Google Scholar 
    48.Morley, C. K., Naing, T. T., Searle, M. & Robinson, S. A. Structural and tectonic development of the Indo-Burma ranges. Earth Sci. Rev. 200, 102992. https://doi.org/10.1016/j.earscirev.2019.102992 (2020).Article 

    Google Scholar 
    49.Poinar, G. Jr. Burmese amber: Evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309. https://doi.org/10.1080/08912963.2018.1446531 (2019).Article 

    Google Scholar 
    50.Zhang, X. et al. Tracing Argoland in eastern Tethys and implications for India-Asia convergence. GSA Bull. 133, 1712–1722. https://doi.org/10.1130/B35772.1 (2021).CAS 
    Article 

    Google Scholar 
    51.Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Molecular phylogeny and taxonomic revision of two enigmatic freshwater mussel genera (Bivalvia: Unionidae incertae sedis: Harmandia and Unionetta) reveals a diverse clade of Southeast Asian Parreysiinae. J. Molluscan Stud. 84, 404–416. https://doi.org/10.1093/mollus/eyy028 (2018).Article 

    Google Scholar 
    52.Whelan, N. V., Geneva, A. J. & Graf, D. L. Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. Mol. Phylogenet. Evol. 61, 504–514. https://doi.org/10.1016/j.ympev.2011.07.016 (2011).Article 
    PubMed 

    Google Scholar 
    53.Konopleva, E. S. et al. A new genus and two new species of freshwater mussels (Unionidae) from Western Indochina. Sci. Rep. 9, 4106. https://doi.org/10.1038/s41598-019-39365-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Muanta, S., Jeratthitikul, E., Panha, S. & Prasankok, P. Phylogeography of the freshwater bivalve genus Ensidens (Unionidae) in Thailand. J. Molluscan Stud. 85, 224–231. https://doi.org/10.1093/mollus/eyz013 (2019).Article 

    Google Scholar 
    55.Zieritz, A. et al. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Sci. Total Environ. 571, 1069–1078. https://doi.org/10.1016/j.scitotenv.2016.07.098 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Bolotov, I. N. et al. New taxa of freshwater mussels (Unionidae) from a species-rich but overlooked evolutionary hotspot in Southeast Asia. Sci. Rep. 7, 11573. https://doi.org/10.1038/s41598-017-11957-9 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Subba Rao, N. V. Handbook. Freshwater Molluscs of India (Zoological Survey of India, 1989).58.Ramakrishna & Dey, A. Handbook on Indian Freshwater Molluscs (Zoological Survey of India, 2007).59.Prashad, B. The marsupium and glochidium of some Unionidae and on the Indian species hitherto assigned to the genus Nodularia. Rec. Indian Mus. 15, 143–148 (1918).
    Google Scholar 
    60.Burdi, G. H., Baloch, W. A., Begum, F., Soomro, A. N. & Khuhawar, M. Y. Ecological studies on freshwater bivalve mussels (Pelecypoda) of Indus River and its canals at Kotri Barrage Sindh, Pakistan. Sindh Univ. Res. J. 41, 31–36 (2009).
    Google Scholar 
    61.Nesemann, H. et al. Aquatic Invertebrates of the Ganga River System: Volume 1—Mollusca, Annelida, Crustacea (in part) (Hasko Nesemann and Chandi Press, 2007).62.Budha, P. B. A Field Guide to Freshwater Molluscs of Kailali, Far Western Nepal (Central Department of Zoology, Tribhuvan University, 2016).
    Google Scholar 
    63.Gittenberger, E., Leda, P., Gyeltshen, C. & Sherub, S. Distributional patterns of molluscan taxa in Bhutan (Mollusca). Biodiversität Naturausstattung Himalaya 4, 143–151 (2018).
    Google Scholar 
    64.Nanda, A. C., Sehgal, R. K. & Chauhan, P. R. Siwalik-age faunas from the Himalayan foreland Basin of South Asia. J. Asian Earth Sci. 162, 54–68. https://doi.org/10.1016/j.jseaes.2017.10.035 (2018).ADS 
    Article 

    Google Scholar 
    65.Vredenburg, E. & Prashad, B. Unionidae from the Miocene of Burma. Rec. Geol. Surv. India 51, 371–374 (1921).
    Google Scholar 
    66.Prashad, B. On some Fossil Indian Unionidae. Rec. Geol. Surv. India 60, 308–312 (1928).
    Google Scholar 
    67.Modell, H. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 4. Die tertiären Najaden des Punjab und Vorderindiens. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, neue Folge 135, 1–49 (1969).68.Takayasu, K., Gurung, D. D. & Matsuoka, K. Some new species of freshwater bivalves from the Mio-Pliocene Churia Group, west-central Nepal. Trans. Proc. Paleontol. Soc. Jpn. New Ser. 179, 157–168. https://doi.org/10.14825/prpsj1951.1995.179_157 (1995).Article 

    Google Scholar 
    69.Gurung, D. Freshwater molluscs from the Late Neogene Siwalik Group, Surai Khola, western Nepal. J. Nepal Geol. Soc. 17, 7–28. https://doi.org/10.3126/jngs.v17i0.32095 (1998).Article 

    Google Scholar 
    70.Simpson, C. T. Synopsis of the naiades, or pearly fresh-water mussels. Proc. U.S. Natl. Mus. 22, 501–1044 (1900).
    Google Scholar 
    71.Madhyastha, N. A. & Mumbrekar, K. D. Two endemic genera of bivalves in the Tunga River of the Western Ghats, Karnataka, India. Tentacle 14, 23–24 (2006).
    Google Scholar 
    72.Prashad, B. Notes on lamellibranchs in the Indian Museum. Rec. Indian Mus. 19, 165–173 (1920).
    Google Scholar 
    73.Haas, F. Eine neude indische Najade, Trapezoideus prashadi. Senckenbergiana 4, 101–102 (1922).
    Google Scholar 
    74.Sowerby, G. B. Genus Unio. Conchologica Iconica 16, pls. 1, 61–96 (1868).75.Haas, F. Die Unioniden. H.C. Küster, Systematisches Conchylien-Cabinet von Martini und Chemnitz 9, 257–288 (1919).76.Hadl, G. Results of the Austrian-Ceylonese Hydrobiological Mission 1970 of the 1st Zoological Institute of the University of Vienna (Austria) and the Department of Zoology of the Vidyalankara University of Ceylon, Kelaniya. Part XVIII: Freshwater Mussels Bivalvia. Bull. Fish. Res. Stn. Sri Lanka (Ceylon) 25, 183–188 (1974).
    Google Scholar 
    77.Gittenberger et al. A Field Guide to the Common Molluscs of Bhutan (National Biodiversity Centre (NBC), Ministry of Agriculture and Forests, 2017).78.Annandale, N. & Prashad, B. The Mollusca of the inland waters of Baluchistan and of Seistan. Rec. Indian Mus. 18, 17–62 (1919).
    Google Scholar 
    79.Simpson, C. T. A Descriptive Catalogue of the Naiades, or Pearly Fresh-Water Mussels. Parts I-III (Bryant Walker, 1914).
    Google Scholar 
    80.Mörch, O. A. L. On the land and fresh-water Mollusca of Greenland. Am. J. Conchol. 4, 25–40 (1868).
    Google Scholar 
    81.Schröter, J. S. Die Geschichte der Flussconchylien: Mit vorzüglicher Rücksicht auf Diejenigen Welche in den Thüringischen Wassern Leben (Halle, bey Johann Jacob Gebauer, 1779).82.Spengler, L. Om Slaegterne Chaena Mya og Unio. Skrivter Naturhistorie-Selskabet 3, 16–69 (1993).
    Google Scholar 
    83.Haas, F. Bemerkungen über Spenglers Unionen. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhav 65, 51–66 (1913).
    Google Scholar 
    84.Haas, F. Superfamilia Unionacea. Das Tierreich 88, 1–663 (1969).
    Google Scholar 
    85.Prashad, B. On some undescribed freshwater Molluscs from various parts of India and Burma. Rec. Geol. Surv. India 62, 428–433 (1930).
    Google Scholar 
    86.Conrad, T. A. A synopsis of the family of Naïades of North America, with notes, and a table of some of the genera and sub-genera of the family, according to their geographical distribution, and descriptions of genera and sub-genera. Proc. Acad. Natl. Sci. Phila. 6, 243–269 (1853).
    Google Scholar 
    87.Sowerby, G. B. Genus Unio. Conchol. Iconica 16, 31–54 (1866).
    Google Scholar 
    88.Frierson, L. S. A Classified and Annotated Check List of the North American Naiades (Baylor University Press, 1927).
    Google Scholar 
    89.Prashad, B. Studies on the anatomy of Indian Mollusca. The soft parts of some Indian Unionidae. Rec. Indian Mus. 16, 289–296 (1919).
    Google Scholar 
    90.Annandale, N. Further note on the burrows of Solenaia soleniformis. Rec. Indian Mus. 16, 205–206 (1919).
    Google Scholar 
    91.Godwin-Austen, H. H. Description of a new species of Margaritanopsis (Unionidae) from the Southern Shan States, with notes on Solenaia soleniformis. Rec. Indian Mus. 16, 203–205 (1919).
    Google Scholar 
    92.Pfeiffer, J. M., Breinholt, J. W. & Page, L. M. Unioverse: A phylogenetic resource for reconstructing the evolution of freshwater mussels (Bivalvia, Unionoida). Mol. Phylogenet. Evol. 137, 114–126. https://doi.org/10.1016/j.ympev.2019.02.016 (2019).Article 
    PubMed 

    Google Scholar 
    93.Huang, X.-C. et al. Towards a global phylogeny of freshwater mussels (Bivalivia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and diversification patterns. Mol. Phylogenet. Evol. 130, 45–59. https://doi.org/10.1016/j.ympev.2018.09.019 (2019).Article 
    PubMed 

    Google Scholar 
    94.Bolotov, I. N., Kondakov, A. V., Konopleva, E. S. & Vikhrev, I. V. A new genus of ultra-elongate freshwater mussels from Vietnam and eastern China (Bivalvia: Unionidae). Ecol. Montenegrina 39, 1–6. https://doi.org/10.37828/em.2021.39.1 (2021).Article 

    Google Scholar 
    95.Pfeiffer, J. M. & Graf, D. L. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zool. J. Linn. Soc. 175, 307–318. https://doi.org/10.1111/zoj.12282 (2015).Article 

    Google Scholar 
    96.Rafinesque, C. S. Continuation of a Monograph of the Bivalve Shells of the River Ohio and Other Rivers of the Western States. By Prof. C.S. Rafinesque. (Published at Brussels, September, 1820). Containing 46 species, from No. 76 to no. 121. Including an Appendix on Some Bivalve Shells of the Rivers of Hindostan, with a Supplement on the Fossil Bivalves of the Western States, and the Tulosites, A New Genus of Fossils (1831).97.Blanford, W. T. Contributions to Indian Malacology no VII. List of species of Unio and Anodonta described as occurring in India, Ceylon and Burma. J. Asiat. Soc. Bengal 35, 134–155 (1866).
    Google Scholar 
    98.Frierson, L. S. Remarks on classification of the Unionidae. Nautilus 28, 6–8 (1914).
    Google Scholar 
    99.Johnson, R. I. The types of Unionidae (Mollusca: Bivalvia) described by C. S. Rafinesque in the Museum national d’Histoire naturelle, Paris. J. Conchyliol. 110, 35–37 (1973).
    Google Scholar 
    100.Vanatta, E. G. Rafinesque’s types of Unio. Proc. Acad. Natl. Sci. Phila. 67, 549–559 (1915).
    Google Scholar 
    101.Baker, H. B. Some of Rafinesque’s unionid names. The Nautilus 77, 140–142 (1964).
    Google Scholar 
    102.Williams, J. D., Bogan, A. E. & Garner, J. T. Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi and Tennessee (University of Alabama Press, 2008).
    Google Scholar 
    103.Bogan, A. E. A resolution of the nomenclatural confusion surrounding Plagiola Rafinesque, Epioblasma Rafinesque, and Dysnomia Agassiz (Mollusca: Bivalvia: Unionidae). Malacol. Rev. 30, 77–86 (1997).
    Google Scholar 
    104.Graf, D. L. & Cummings, K. S. Palaeoheterodont diversity (Mollusca: Trigonioida+ Unionoida): What we know and what we wish we knew about freshwater mussel evolution. Zool. J. Linn. Soc. 148, 343–394. https://doi.org/10.1111/j.1096-3642.2006.00259.x (2006).Article 

    Google Scholar 
    105.Modell, H. Das natlirliche System der Najaden. Arch. Molluskenkunde 74, 161–191 (1942).
    Google Scholar 
    106.Starobogatov, Y. I. Fauna of Molluscs and Zoogeographic Division of Continental Waterbodies of the Globe (Nauka, 1970).
    Google Scholar 
    107.Bolotov, I. N. et al. Discovery of Novaculina myanmarensis sp. nov. (Bivalvia: Pharidae: Pharellinae) closes the freshwater razor clams range disjunction in Southeast Asia. Sci. Rep. 8, 16325. https://doi.org/10.1038/s41598-018-34491-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Than, W. et al. Phylogeography and distribution of the freshwater razor clams Novaculina myanmarensis and N. gangetica in Myanmar, with notes on two doubtful nominal taxa described as Novaculina members (Bivalvia: Pharidae). Ecol. Montenegrina 40, 59–67. https://doi.org/10.37828/em.2021.40.4 (2021).Article 

    Google Scholar 
    109.Haas, F. Beiträge zu einer Monographie der asiatischen Unioniden. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 38, 129–203 (1924).
    Google Scholar 
    110.Preston, H. B. Mollusca (Freshwater Gastropoda & Pelecypoda). Fauna of British India, including Ceylon and Burma (Taylor and Francis, 1915).
    Google Scholar 
    111.Prashad, B. A revision of the Burmese Unionidae. Rec. Indian Mus. 24, 91–111 (1922).
    Google Scholar 
    112.Theobald, W. Catalogue of the Recent Shells in the Museum of the Asiatic Society (Bengal Military Orphan Press, 1860).
    Google Scholar 
    113.Zieritz, A. et al. Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia 810, 29–44. https://doi.org/10.1007/s10750-017-3104-8 (2018).Article 

    Google Scholar 
    114.Konopleva, E. S. et al. A taxonomic review of Trapezidens (Bivalvia: Unionidae: Lamellidentini), a freshwater mussel genus endemic to Myanmar, with a description of a new species. Ecol. Montenegrina 27, 45–57. https://doi.org/10.37828/em.2020.27.6 (2020).Article 

    Google Scholar 
    115.Brandt, R. A. M. The non-marine aquatic mollusca of Thailand. Arch. Mollusckenkunde 105, 1–423 (1974).
    Google Scholar 
    116.Neumayr, M. Süsswasser-Mollusken. Die wissenschaftlichen ergebnisse der reise des grafen Béla Széchenyi in Ostasien 1877–1880(2), 637–662 (1899).
    Google Scholar 
    117.Tripathy, B. & Mukhopadhayay, A. Freshwater molluscs of India: An insight of into their diversity, distribution and conservation. In Aquatic Ecosystem: Biodiversity, Ecology and Conservation (eds Rawat, M. et al.) 163–195 (Springer, 2015).
    Google Scholar 
    118.Prashad, B. VIII—Some Noteworthy Examples of Parallel Evolution in the Molluscan Faunas of South-eastern Asia and South America. Proc. R. Soc. Edinb. 51, 42–53. https://doi.org/10.1017/s0370164600022987 (1932).Article 

    Google Scholar 
    119.Smith, E. A. Description of Mulleria dalyi, n. sp., from India. Proc. Malacol. Soc. Lond. 3, 14–16 (1898).
    Google Scholar 
    120.Bogan, A. E. & Hoeh, W. R. On becoming cemented: Evolutionary relationships among the genera in the freshwater bivalve family Etheriidae (Bivalvia: Unionoida). Geol. Soc. Lond. Spec. Publ. 177, 159–168. https://doi.org/10.1144/GSL.SP.2000.177.01.09 (2000).ADS 
    Article 

    Google Scholar 
    121.Bogan, A. E. & Roe, K. J. Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: Status and future directions. J. N. Am. Benthol. Soc. 27, 349–369. https://doi.org/10.1899/07-069.1 (2008).Article 

    Google Scholar 
    122.Hoeh, W. R., Bogan, A. E., Heard, W. H. & Chapman, E. G. Palaeoheterodont phylogeny, character evolution, diversity and phylogenetic classification: A reflection on methods of analysis. Malacologia 51, 307–317. https://doi.org/10.4002/040.051.0206 (2009).Article 

    Google Scholar 
    123.Woodward, M. F. On the anatomy of Mulleria dalyi, Smth. J. Molluscan Stud. 3, 87–91. https://doi.org/10.1093/oxfordjournals.mollus.a065152 (1898).Article 

    Google Scholar 
    124.Aravind, N. A. et al. The status and distribution of freshwater molluscs of the Western Ghats. In The Status and Distribution of Freshwater Biodiversity in the Western Ghats, India (eds Molur, S. et al.) 21–42 (IUCN and Zoo Outreach Organisation, 2011).
    Google Scholar 
    125.Madhyastha, N. A. Pseudomulleria dalyi (Acostea dalyi): A rare cemented bivalve of Western Ghats. Zoos’ Print J. 16, 573 (2001).
    Google Scholar 
    126.Loria, S. F. & Prendini, L. Out of India, thrice: Diversification of Asian forest scorpions reveals three colonizations of Southeast Asia. Sci. Rep. 10, 22301. https://doi.org/10.1038/s41598-020-78183-8 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Köhler, F. & Glaubrecht, M. Out of Asia and into India: On the molecular phylogeny and biogeography of the endemic freshwater gastropod Paracrostoma Cossmann, 1900 (Caenogastropoda: Pachychilidae). Biol. J. Lin. Soc. 91, 627–651. https://doi.org/10.1111/j.1095-8312.2007.00866.x (2007).Article 

    Google Scholar 
    128.Dahanukar, N., Raut, R. & Bhat, A. Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India. J. Biogeogr. 31, 123–136. https://doi.org/10.1046/j.0305-0270.2003.01016.x (2004).Article 

    Google Scholar 
    129.Britz, R. et al. Aenigmachannidae, a new family of snakehead fishes (Teleostei: Channoidei) from subterranean waters of South India. Sci. Rep. 10, 16081. https://doi.org/10.1038/s41598-020-73129-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    130.Hedges, S. B. The coelacanth of frogs. Nature 425, 669–670. https://doi.org/10.1038/425669a (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    131.Dutta, S. K., Vasudevan, K., Chaitra, M. S., Shanker, K. & Aggarwal, R. K. Jurassic frogs and the evolution of amphibian endemism in the Western Ghats. Curr. Sci. 86, 211–216 (2004).CAS 

    Google Scholar 
    132.Roelants, K., Jiang, J. & Bossuyt, F. Endemic ranid (Amphibia: Anura) genera in southern mountain ranges of the Indian subcontinent represent ancient frog lineages: Evidence from molecular data. Mol. Phylogenet. Evol. 31, 730–740. https://doi.org/10.1016/j.ympev.2003.09.011 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    133.Van Bocxlaer, I. et al. Mountain-associated clade endemism in an ancient frog family (Nyctibatrachidae) on the Indian subcontinent. Mol. Phylogenet. Evol. 62, 839–847. https://doi.org/10.1016/j.ympev.2011.11.027 (2012).Article 
    PubMed 

    Google Scholar 
    134.Krishnan, R. M. & Ramesh, B. R. Endemism and sexual systems in the evergreen tree flora of the Western Ghats, India. Divers. Distrib. 11, 559–565. https://doi.org/10.1111/j.1366-9516.2005.00190.x (2005).Article 

    Google Scholar 
    135.Mörch, O. A. L. Catalogue des Mollusques terrestres et fluviatiles des anciennes colonies du golfe du Bengale. J. Conchyliol. 20, 303–345 (1872).
    Google Scholar 
    136.Graf, D. L. & Cummings, K. S. Freshwater mussel (Mollusca: Bivalvia: Unionoida) richness and endemism in the ecoregions of Africa and Madagascar based on comprehensive museum sampling. Hydrobiologia 678, 17–36. https://doi.org/10.1007/s10750-011-0810-5 (2011).Article 

    Google Scholar 
    137.Li, Z. et al. Kinematic evolution of the West Burma block during and after India-Asia collision revealed by paleomagnetism. J. Geodyn. 134, 101690. https://doi.org/10.1016/j.jog.2019.101690 (2020).Article 

    Google Scholar 
    138.Van Damme, D., Bogan, A. E. & Dierick, M. A revision of the Mesozoic naiads (Unionoida) of Africa and the biogeographic implications. Earth Sci. Rev. 147, 141–200. https://doi.org/10.1016/j.earscirev.2015.04.011 (2015).ADS 
    Article 

    Google Scholar 
    139.Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021 (2012).ADS 
    Article 

    Google Scholar 
    140.Bosworth, W. Mesozoic and early Tertiary rift tectonics in East Africa. Tectonophysics 209, 115–137. https://doi.org/10.1016/0040-1951(92)90014-W (1992).ADS 
    Article 

    Google Scholar 
    141.Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 43, 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 (2005).ADS 
    Article 

    Google Scholar 
    142.Wilson, M. & Guiraud, R. Magmatism and rifting in Western and Central Africa, from Late Jurassic to Recent times. Tectonophysics 213, 203–225 (1992).ADS 

    Google Scholar 
    143.Chatterjee, S., Scotese, C. R. & Bajpai, S. Indian Plate and Its Epic Voyage from Gondwana to Asia: Its Tectonic, Paleoclimatic, and Paleobiogeographic Evolution (Special Paper 529, The Geological Society of America, 2017).144.Briggs, J. C. The biogeographic and tectonic history of India. J. Biogeogr. 30, 381–388. https://doi.org/10.1046/j.1365-2699.2003.00809.x (2003).Article 

    Google Scholar 
    145.Hartman, J. H., Erickson, D. N. & Bakken, A. Stephen Hislop and his 1860 Cretaceous continental molluscan new species descriptions in Latin from the Deccan Plateau, India. Palaeontology 51, 1225–1252. https://doi.org/10.1111/j.1475-4983.2008.00807.x (2008).Article 

    Google Scholar 
    146.Vandamme, D., Courtillot, V., Besse, J. & Montigny, R. Paleomagnetism and age determinations of the Deccan Traps (India): Results of a Nagpur-Bombay Traverse and review of earlier work. Rev. Geophys. 29, 159–190. https://doi.org/10.1029/91RG00218 (1991).ADS 
    Article 

    Google Scholar 
    147.Bolotov, I. N. et al. Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida). Mol. Phylogenet. Evol. 103, 104–121. https://doi.org/10.1016/j.ympev.2016.07.020 (2016).Article 
    PubMed 

    Google Scholar 
    148.Lyubas, A. A. et al. A taxonomic revision of fossil freshwater pearl mussels (Bivalvia: Unionoida: Margaritiferidae) from Pliocene and Pleistocene deposits of Southeastern Europe. Ecol. Montenegrina 21, 1–16. https://doi.org/10.37828/em.2019.21.1 (2019).Article 

    Google Scholar 
    149.Campbell, D. C. et al. Phylogeny of North American amblemines (Bivalvia, Unionoida): Prodigious polyphyly proves pervasive across genera. Invertebr. Biol. 124, 131–164 (2005).
    Google Scholar 
    150.Lopes-Lima, M. et al. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia: Unionidae): Phylogeny, taxonomy and species delineation. Zool. Scr. 48, 313–336. https://doi.org/10.1111/zsc.12344 (2019).Article 

    Google Scholar 
    151.Aksenova, O. V. et al. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8, 11199. https://doi.org/10.1038/s41598-018-29451-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    152.Kosuch, J., Vences, M., Dubois, A., Ohler, A. & Böhme, W. Out of Asia: Mitochondrial DNA evidence for an oriental origin of tiger frogs, genus Hoplobatrachus. Mol. Phylogenet. Evol. 21, 398–407. https://doi.org/10.1006/mpev.2001.1034 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    153.Sil, M., Aravind, N. A. & Karanth, K. P. Into-India or out-of-India? Historical biogeography of the freshwater gastropod genus Pila (Caenogastropoda: Ampullariidae). Biol. J. Lin. Soc. 129, 752–764. https://doi.org/10.1093/biolinnean/blz171 (2020).Article 

    Google Scholar 
    154.Sil, M., Aravind, N. A. & Karanth, K. P. Role of geography and climatic oscillations in governing into-India dispersal of freshwater snails of the family: Viviparidae. Mol. Phylogenet. Evol. 138, 174–181. https://doi.org/10.1016/j.ympev.2019.05.027 (2019).Article 
    PubMed 

    Google Scholar 
    155.Garg, S. & Biju, S. D. New microhylid frog genus from Peninsular India with Southeast Asian affinity suggests multiple Cenozoic biotic exchanges between India and Eurasia. Sci. Rep. 9, 1906. https://doi.org/10.1038/s41598-018-38133-x (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    156.Gorin, V. A. et al. A little frog leaps a long way: Compounded colonizations of the Indian Subcontinent discovered in the tiny Oriental frog genus Microhyla (Amphibia: Microhylidae). PeerJ 8, e9411. https://doi.org/10.7717/peerj.9411 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Karanth, K. P. An island called India: Phylogenetic patterns across multiple taxonomic groups reveal endemic radiations. Curr. Sci. 108, 1847–1851 (2015).
    Google Scholar 
    158.Karanth, K. P. Out-of-India Gondwanan origin of some tropical Asian biota. Curr. Sci. 90, 789–792 (2006).
    Google Scholar 
    159.Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697. https://doi.org/10.1007/s12038-009-0057-8 (2009).Article 
    PubMed 

    Google Scholar 
    160.Gower, D. J. et al. A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): Out of India or out of South East Asia?. Proc. R. Soc. Lond. B 269, 1563–1569. https://doi.org/10.1098/rspb.2002.2050 (2002).CAS 
    Article 

    Google Scholar 
    161.Kamei, R. G. et al. Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proc. R. Soc. B 279, 2396–2401. https://doi.org/10.1098/rspb.2012.0150 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    162.Yamahira, K. et al. Mesozoic origin and ‘out-of-India’radiation of ricefishes (Adrianichthyidae). Biol. Let. 17, 20210212. https://doi.org/10.1098/rsbl.2021.0212 (2021).Article 

    Google Scholar 
    163.Klaus, S., Schubart, C. D., Streit, B. & Pfenninger, M. When Indian crabs were not yet Asian-biogeographic evidence for Eocene proximity of India and Southeast Asia. BMC Evol. Biol. 10, 287. https://doi.org/10.1186/1471-2148-10-287 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    164.Joshi, J., Karanth, P. K. & Edgecombe, G. D. The out-of-India hypothesis: Evidence from an ancient centipede genus, Rhysida (Chilopoda: Scolopendromorpha) from the Oriental Region, and systematics of Indian species. Zool. J. Linn. Soc. 189, 828–861. https://doi.org/10.1093/zoolinnean/zlz138 (2020).Article 

    Google Scholar 
    165.Foley, S., Krehenwinkel, H., Cheng, D. Q. & Piel, W. H. Phylogenomic analyses reveal a Gondwanan origin and repeated out of India colonizations into Asia by tarantulas (Araneae: Theraphosidae). PeerJ 9, e11162. https://doi.org/10.7717/peerj.11162 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    166.Dayanandan, S., Ashton, P. S., Williams, S. M. & Primack, R. B. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. Am. J. Bot. 86, 1182–1190 (1999).CAS 
    PubMed 

    Google Scholar 
    167.Conti, E., Eriksson, T., Schönenberger, J., Sytsma, K. J. & Baum, D. A. Early Tertiary out-of-India dispersal of Crypteroniaceae: Evidence from phylogeny and molecular dating. Evolution 56, 1931–1942. https://doi.org/10.1111/j.0014-3820.2002.tb00119.x (2002).Article 
    PubMed 

    Google Scholar 
    168.Chen, J. et al. Eurypterogerron kachinensis gen et sp nov, a remarkable minlagerrontid (Hemiptera, Cicadomorpha) in mid-Cretaceous Burmese amber. Cretaceous Res. 110, 104418. https://doi.org/10.1016/j.cretres.2020.104418 (2020).Article 

    Google Scholar 
    169.Rasnitsyn, A. P. & Öhm-Kühnle, C. Three new female Aptenoperissus from mid-Cretaceous Burmese amber (Hymenoptera, Stephanoidea, Aptenoperissidae): Unexpected diversity of paradoxical wasps suggests insular features of source biome. Cretac. Res. 91, 168–175. https://doi.org/10.1016/j.cretres.2018.06.004 (2018).Article 

    Google Scholar 
    170.Zhang, Q., Rasnitsyn, A. P., Wang, B. & Zhang, H. Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proc. Geol. Assoc. 129, 736–747. https://doi.org/10.1016/j.pgeola.2018.06.004 (2018).Article 

    Google Scholar 
    171.Bolotov, I. N. et al. A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar. Sci. Rep. 11, 6646. https://doi.org/10.1038/s41598-021-86241-y (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    172.Balashov, I. A., Perkovsky, E. E. & Vasilenko, D. V. A mid-Cretaceous land snail Burminella artiukhini gen. et. sp. nov. from Burmese amber: A “missing link” between Pupinidae and other Cyclophoroidea? (Caenogastropoda). Cretaceous Res. 118, 104941. https://doi.org/10.1016/j.cretres.2021.104941 (2021).Article 

    Google Scholar 
    173.Balashov, I. An inventory of molluscs recorded from mid-Cretaceous Burmese amber, with the description of a land snail, Euthema annae sp. nov. (Caenogastropoda, Cyclophoroidea, Diplommatinidae). Cretaceous Res. 118, 104676. https://doi.org/10.1016/j.cretres.2020.104676 (2021).Article 

    Google Scholar 
    174.Yu, T., Neubauer, T. A. & Jochum, A. First freshwater gastropod preserved in amber suggests long-distance dispersal during the Cretaceous Period. Geol. Mag. 58, 1327–1334. https://doi.org/10.1017/S0016756821000285 (2021).ADS 
    Article 

    Google Scholar 
    175.Bingle-Davis, M. J. Systematics, diversity, and origins of Upper Cretaceous continental molluscan fauna in the infra- and intertrappean strata of the Deccan Plateau, central India (PhD Dissertation) (University of North Dakota, 2012).176.Huang, H. et al. At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate. Rev. Palaeobot. Palynol. 291, 104441. https://doi.org/10.1016/j.revpalbo.2021.104441 (2021).Article 

    Google Scholar 
    177.Westerweel, J. et al. Burma Terrane collision and northward indentation in the Eastern Himalayas recorded in the Eocene-Miocene Chindwin Basin (Myanmar). Tectonics 39, e2020TC006413. https://doi.org/10.1029/2020TC006413 (2020).ADS 
    Article 

    Google Scholar 
    178.Soe, T. T. & Watkinson, I. M. The Sagaing Fault Myanmar. Geol. Soc. 48, 413–441. https://doi.org/10.1144/M48.19 (2017).Article 

    Google Scholar 
    179.de Sena Oliveira, I. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601. https://doi.org/10.1016/j.cub.2016.07.023 (2016).CAS 
    Article 

    Google Scholar 
    180.Gustafson, L. L. et al. Evaluation of a nonlethal technique for hemolymph collection in Elliptio complanata, a freshwater bivalve (Mollusca: Unionidae). Dis. Aquat. Org. 65, 159–165. https://doi.org/10.3354/dao065159 (2005).Article 

    Google Scholar 
    181.Jaksch, K., Eschner, A., Rintelen, T. V. & Haring, E. DNA analysis of molluscs from a museum wet collection: A comparison of different extraction methods. BMC. Res. Notes 9, 348. https://doi.org/10.1186/s13104-016-2147-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    182.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    183.Graf, D. L. Patterns of freshwater bivalve global diversity and the state of phylogenetic studies on the Unionoida, Sphaeriidae, and Cyrenidae. Am. Malacol. Bull. 31, 135–153. https://doi.org/10.4003/006.031.0106 (2013).Article 

    Google Scholar 
    184.Nguyen, L.-T., Schmidt, H. A., Haeseler, V. A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    185.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    186.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. https://doi.org/10.1038/nmeth.4285 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    187.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    188.Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235. https://doi.org/10.1093/nar/gkw256 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    189.Miller, M., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010).190.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    191.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    192.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    193.Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes 7, 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x (2007).CAS 
    Article 

    Google Scholar 
    194.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, 1–28. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 

    Google Scholar 
    195.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    196.Zieritz, A. et al. Mitogenomic phylogeny and fossil-calibrated mutation rates for all F-and M-type mtDNA genes of the largest freshwater mussel family, the Unionidae (Bivalvia). Zool. J. Linn. Soc. 193, 1088–1107. https://doi.org/10.1093/zoolinnean/zlaa153 (2020).Article 

    Google Scholar 
    197.Froufe, E. et al. Who lives where? Molecular and morphometric analyses clarify which Unio species (Unionida, Mollusca) inhabit the southwestern Palearctic. Org. Divers. Evol. 16, 597–611. https://doi.org/10.1007/s13127-016-0262-x (2016).Article 

    Google Scholar 
    198.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    199.Rambaut, A. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    200.Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970. https://doi.org/10.1093/sysbio/syu056 (2014).Article 
    PubMed 

    Google Scholar 
    201.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248. https://doi.org/10.21425/F5FBG19694 (2013).Article 

    Google Scholar 
    202.Yu, Y., Blair, C. & He, X. J. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606. https://doi.org/10.1093/molbev/msz257 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    203.Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+ J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749. https://doi.org/10.1111/jbi.13173 (2018).Article 

    Google Scholar 
    204.Yu, Y., Harris, A. J. & He, X. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 56, 848–850. https://doi.org/10.1016/j.ympev.2010.04.011 (2010).Article 
    PubMed 

    Google Scholar 
    205.Müller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. https://doi.org/10.1029/2018GC007584 (2018).ADS 
    Article 

    Google Scholar 
    206.Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907. https://doi.org/10.1029/2018TC005462 (2019).ADS 
    Article 

    Google Scholar 
    207.Cao, X. et al. A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Res. https://doi.org/10.1016/j.gr.2020.11.010 (2020).Article 

    Google Scholar 
    208.Young, A. et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10, 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011 (2019).ADS 
    Article 

    Google Scholar 
    209.Torsvik, T. H. et al. Pacific-Panthalassic reconstructions: Overview, errata and the way forward. Geochem. Geophys. Geosyst. 20, 3659–3689. https://doi.org/10.1029/2019GC008402 (2019).ADS 
    Article 

    Google Scholar 
    210.Nevill, G. List of the Mollusca brought back by Dr. J. Anderson from Yunnan and Upper Burma, with descriptions of new species. J. Asiatic Soc. Bengal 46, 14–41 (1877).
    Google Scholar 
    211.Bolotov, I. N. et al. Indonaia rectangularis (Tapparone-Canefri, 1889), comb. nov., a forgotten freshwater mussel species from Myanmar. ZooKeys 852, 23–30. https://doi.org/10.3897/zookeys.852.33898 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    212.Eydoux, F. Mollusques. Magasin Zool. 8, 181–192 (1838).
    Google Scholar 
    213.Lea, I. Observations on the Naïades, and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 4, 63–121 (1831).
    Google Scholar 
    214.Nesemann, H. A., Sharma, S. U., Sharma, G. O. & Sinha, R. K. Illustrated checklist of large freshwater bivalves of the Ganga River system (Mollusca: Bivalvia: Solecurtidae, Unionidae, Amblemidae). Nachrichchtenblatt Ersten Vorarlberger Malakologischen Gesellschaft 13, 1–51 (2005).
    Google Scholar 
    215.Gmelin, J. F. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, locis. Curt 1(6), 3021–3909 (1791).
    Google Scholar 
    216.Lea, I. Description of twenty-five new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 8, 92–95 (1856).
    Google Scholar 
    217.Martens, E. V. Binnen-Conchylien aus Ober-Birma. Arch. Nat. 65, 30–48 (1899).
    Google Scholar 
    218.Preston, H. B. A catalogue of the Asiatic naiades in the collection of the Indian Museum, Calcutta, with descriptions of new species. Rec. Indian Mus. 7, 279–308 (1912).
    Google Scholar 
    219.Annandale, N. & Prashad, B. XXVIII. The aquatic and amphibious Mollusca of Manipur. Rec. Indian Mus. 22, 529–631 (1921).
    Google Scholar 
    220.Annandale, N. & Prashad, B. Some freshwater molluscs from the Bombay Presidency. Rec. Indian Mus. 16, 139–152 (1919).
    Google Scholar 
    221.Philippi, R. A. Unio. Tab. I. Abbildungen und Beschreibungen neuer oder wenig gekannter Conchylien 1, 19–20 (1843).222.Hanley, S. Appendix, containing descriptions of the shells delineated in the plates, yet not described in the text; with a systematic list of the engravings, etc. In An Illustrated and Descriptive Catalogue of Recent Bivalve Shells 335–389 (Williams and Norgate, 1856).
    Google Scholar 
    223.Theobald, W. Descriptions of some new land and freshwater shells from India and Burmah. J. Asiatic Soc. Bengal 45, 184–189 (1876).
    Google Scholar 
    224.Lea, I. Observations on the Naïades; and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 5, 23–119 (1834).
    Google Scholar 
    225.Hutton, T. Notices of some land and fresh water shells occurring in Afghanistan. J. Asiatic Soc. Bengal 18, 649–661 (1849).
    Google Scholar 
    226.Annandale, N. Aquatic molluscs of the Inlé Lake and connected waters. Rec. Indian Mus. 14, 103–182 (1918).
    Google Scholar 
    227.Gould, A. A. D. Gould described new shells, received from Rev Mr Mason, of Burmah. Proc. Boston Soc. Nat. Hist. 2, 218–221 (1847).
    Google Scholar 
    228.Benson, W. H. Descriptions of Indian and Burmese species of the genus Unio, Retz. Ann. Mag. Nat. Hist. 10, 184–195 (1862).
    Google Scholar 
    229.Lea, I. Description of new freshwater and land shells. Trans. Am. Philos. Soc. 6, 1–154 (1838).
    Google Scholar 
    230.Lamarck, J.-B. Histoire naturelle des animaux sans vertèbres. Vol. 6 (Chez l’Auteur, 1819).231.Müller, O. F. Vermivm Terrestrium et Fluviatilium, Seu Animalium Infusoriorum, Helminthicorum et Testaceorum, non Marinorum, Succincta Historia. Havniae Lisiae 2, 1–214 (1774).
    Google Scholar 
    232.Lea, I. Descriptions of three new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 11, 331 (1860).
    Google Scholar 
    233.Lea, I. Continuation of paper on fresh water and land shells. Proc. Am. Philos. Soc. 2, 30–34 (1841).
    Google Scholar 
    234.Benson, W. H. Descriptive catalogue of a collection of land and fresh-water shells, chiefly contained in the museum of the Asiatic Society. J. Asiatic Soc. Bengal 5, 741–750 (1836).
    Google Scholar 
    235.Hislop, S. Description of fossil shells, from the above-described deposits. Q. J. Geol. Soc. Lond. 16, 166–181 (1860).
    Google Scholar 
    236.Malcolmson, J. G. XXXVIII: On the Fossils of the Eastern portion of the Great Basaltic District of India. Trans. Geol. Soc. Lond. 5, 537–575 (1840).
    Google Scholar 
    237.Newbold, C. Summary of the Geology of Southern India. Part V. Fresh-water Limestones and Cherts. J. R. Asiatic Soc. Great Br. Irel. 8, 219–227 (1846).
    Google Scholar 
    238.Prashad, B. On a new fossil unionid from the intertrappean beds of Peninsular India. Rec. Geol. Surv. India 51, 368–370 (1921).
    Google Scholar 
    239.Lopes-Lima, M. et al. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes. Mol. Phylogenet. Evol. 106, 174–191. https://doi.org/10.1016/j.ympev.2016.08.021 (2017).Article 
    PubMed 

    Google Scholar 
    240.Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1–52. https://doi.org/10.1029/2001GC000252 (2003).Article 

    Google Scholar 
    241.Preece, R. C. et al. William Benson and the Golden Age of Malacology in British India. Trop. Nat. Hist. 22, 1–612 (2022).MathSciNet 

    Google Scholar  More