More stories

  • in

    Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties

    1.United Nations. Transforming our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).
    Google Scholar 
    2.Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science (80-) 327, 812–818 (2010).ADS 
    CAS 

    Google Scholar 
    3.FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All (FAO, 2021). https://doi.org/10.4060/cb4474en.Book 

    Google Scholar 
    4.FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture (FAO, 2010). https://doi.org/10.4060/i4787e.Book 

    Google Scholar 
    5.Gepts, P. Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Sci. 46, 2278–2292 (2006).
    Google Scholar 
    6.McCouch, S. et al. Feeding the future. Nature 499, 23–24 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    7.Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).PubMed 

    Google Scholar 
    8.Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).PubMed 

    Google Scholar 
    9.Fernández-Llamazares, Á. et al. Scientists’ warning to humanity on threats to indigenous and local knowledge systems. J. Ethnobiol. 41, 144–169 (2021).
    Google Scholar 
    10.FAOSTAT. Food and Agriculture Data. (2019). http://www.fao.org/faostat/en/#data/QC. (Accessed: 15th July 2021)11.Lebot, V. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids (CABI, 2009). https://doi.org/10.5822/978-1-61091-225-9_2.Book 

    Google Scholar 
    12.Gade, D. W. Names for Manihot esculenta: Geographical variations and lexical clarification. J. Lat. Am. Geogr. 1, 55–74 (2002).
    Google Scholar 
    13.McKey, D. & Delêtre, M. The emergence of cassava as a global crop. in Achievng Sustainable Cultivation of Cassava, Vol. 1 (ed. Hershey, C. H.) 3–32 (Burleigh Dodds Science Publishing, 2017). https://doi.org/10.19103/as.2016.0014.04.14.Howeler, R., Lutaladio, N. & Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification (Food and Agriculture Organization of the United Nations, 2013).
    Google Scholar 
    15.Allem, A. C. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet. Resour. Crop Evol. 41, 133–150 (1994).
    Google Scholar 
    16.Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA 96, 5586–5591 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Olsen, K. M. & Schaal, B. A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: Further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142 (2001).CAS 
    PubMed 

    Google Scholar 
    18.Olsen, K. M. SNPs, SSRs and inferences on cassava’s origin. Plant Mol. Biol. 56, 517–526 (2004).CAS 
    PubMed 

    Google Scholar 
    19.Léotard, G. et al. Phylogeography and the origin of cassava: New insights from the northern rim of the Amazonian basin. Mol. Phylogenet. Evol. 53, 329–334 (2009).PubMed 

    Google Scholar 
    20.Mühlen, G. S. et al. Genetic diversity and population structure show different patterns of diffusion for bitter and sweet manioc in Brazil. Genet. Resour. Crop Evol. 66, 1773–1790 (2019).
    Google Scholar 
    21.Ménard, L., McKey, D., Mühlen, G. S., Clair, B. & Rowe, N. P. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness. PLoS ONE 8, e74727 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Brown, C. H., Clement, C. R., Epps, P., Luedeling, E. & Wichmann, S. The Paleobiolinguistics of domesticated manioc (Manihot esculenta). Ethnobiol. Lett. 4, 61–70 (2013).
    Google Scholar 
    23.Isendahl, C. The domestication and early spread of manioc (Manihot esculenta Crantz): A brief synthesis. Lat. Am. Antiq. 22, 452–468 (2011).
    Google Scholar 
    24.McKey, D., Elias, M., Pujol, B. & Duputié, A. Ecological approaches to crop domestication. in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability (eds. Gepts, P. et al.) 377–406 (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9781139019514.023.25.McKey, D. & Beckerman, S. Chemical ecology, plant evolution and traditional manioc cultivation systems. In Tropical forests, people and food. Biocultural interactions and applications to development (eds Hladik, C. M. et al.) 83–112 (Parthenon Carnforth and UNESCO, 1993).
    Google Scholar 
    26.Elias, M. & McKey, D. The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: An example involving cassava and a call for data. Acta Oecol. 21, 223–230 (2000).ADS 

    Google Scholar 
    27.Duputié, A., Massol, F., David, P., Haxaire, C. & McKey, D. Traditional Amerindian cultivators combine directional and ideotypic selection for sustainable management of cassava genetic diversity. J. Evol. Biol. 22, 1317–1325 (2009).PubMed 

    Google Scholar 
    28.Peroni, N., Kageyama, P. Y. & Begossi, A. Molecular differentiation, diversity, and folk classification of ‘sweet’ and ‘bitter’ cassava (Manihot esculenta) in Caiçara and Caboclo management systems (Brazil). Genet. Resour. Crop Evol. 54, 1333–1349 (2007).
    Google Scholar 
    29.Elias, M. et al. Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Mol. Ecol. 10, 1895–1907 (2001).CAS 
    PubMed 

    Google Scholar 
    30.Martins, P. S. Dinâmica evolutiva em roças de caboclos amazônicos. in Scientific Papers of Paulo Sodero Martins 1941–1997: A tribute (eds. Veasey, E. A., Oliveira, G. C. X. & Pinheiro, J. B.) 217–228 (SBG, 2007).https://doi.org/10.1590/s0103-40142005000100013.31.Coomes, O. T. Of stakes, stems, and cuttings: The importance of local seed systems in traditional Amazonian societies. Prof. Geogr. 62, 323–334 (2010).
    Google Scholar 
    32.Dyer, G. A., González, C. & Lopera, D. C. Informal ‘seed’ systems and the management of gene flow in traditional agroecosystems: The case of cassava in Cauca, Colombia. PLoS ONE 6, e29067 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Salick, J., Cellinese, N. & Knapp, S. Indigenous diversity of cassava: Generation, maintenance, use and loss among the Amuesha, peruvian upper amazon. Econ. Bot. 51, 6–19 (1997).
    Google Scholar 
    34.Sambatti, J. B. M., Martins, P. S. & Ando, A. Folk taxonomy and evolutionary dynamics of cassava: A case study in Ubatuba, Brazil. Econ. Bot. 55, 93–105 (2001).
    Google Scholar 
    35.Heckler, S. & Zent, S. Piaroa manioc varietals: Hyperdiversity or social currency?. Hum. Ecol. 36, 679–697 (2008).
    Google Scholar 
    36.Delêtre, M., McKey, D. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl. Acad. Sci. USA 108, 18249–18254 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Sardos, J. et al. Evolution of cassava (Manihot esculenta Crantz) after recent introduction into a South Pacific Island system: The contribution of sex to the diversification of a clonally propagated crop. Genome 51, 912–921 (2008).CAS 
    PubMed 

    Google Scholar 
    38.Ellen, R. & Soselisa, H. L. A comparative study of the socio-ecological concomitants of cassava (Manihot esculenta Crantz) diversity, local knowledge and management in Eastern Indonesia. Ethnobot. Res. Appl. 10, 15–35 (2012).
    Google Scholar 
    39.Burns, A. E., Gleadow, R., Cliff, J., Zacarias, A. & Cavagnaro, T. Cassava: The drought, war and famine crop in a changing world. Sustainability 2, 3572–3607 (2010).
    Google Scholar 
    40.Pujol, B., David, P. & McKey, D. Microevolution in agricultural environments: How a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol. Lett. 8, 138–147 (2005).
    Google Scholar 
    41.Mba, R. E. C. et al. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: Towards an SSR-based molecular genetic map of cassava. Theor. Appl. Genet. 102, 21–31 (2001).CAS 

    Google Scholar 
    42.de Oliveira, E. J. et al. Genome-wide selection in cassava. Euphytica 187, 263–276 (2012).CAS 

    Google Scholar 
    43.Ferguson, M. E., Shah, T., Kulakow, P. & Ceballos, H. A global overview of cassava genetic diversity. PLoS ONE 14, e0224763 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Wolfe, M. D. et al. Historical introgressions from a wild relative of modern cassava improved important traits and may be under balancing selection. Genetics 213, 1237–1253 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 34, 562–570 (2016).CAS 
    PubMed 

    Google Scholar 
    46.Kuon, J. E. et al. Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible African cassava cultivars. BMC Biol. 17, 1–15 (2019).CAS 

    Google Scholar 
    47.Prochnik, S. et al. The cassava genome: Current progress, future directions. Trop. Plant Biol. 5, 88–94 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Rabbi, I. Y. et al. Tracking crop varieties using genotyping-by-sequencing markers: A case study using cassava (Manihot esculenta Crantz). BMC Genet. 16, 115 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    49.Albuquerque, H. Y. G., do Carmo, C. D., Brito, A. C. & de Oliveira, E. J. Genetic diversity of Manihot esculenta Crantz germplasm based on single-nucleotide polymorphism markers. Ann. Appl. Biol. 173, 271–284 (2018).
    Google Scholar 
    50.Ogbonna, A. C. et al. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. Plant J. 105, 754–770 (2021).CAS 
    PubMed 

    Google Scholar 
    51.Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).CAS 
    PubMed 

    Google Scholar 
    52.Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: Advances and applications. Nat. Rev. Genet. 13, 85–96 (2012).CAS 

    Google Scholar 
    53.Ahrens, C. W. et al. The search for loci under selection: Trends, biases and progress. Mol. Ecol. 27, 1342–1356 (2018).PubMed 

    Google Scholar 
    54.Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).PubMed 

    Google Scholar 
    55.Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    56.Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    57.Pankin, A., Altmüller, J., Becker, C. & von Korff, M. Targeted resequencing reveals genomic signatures of barley domestication. New Phytol. 218, 1247–1259 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019).CAS 
    PubMed 

    Google Scholar 
    59.Allaby, R. G., Ware, R. L. & Kistler, L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol. Appl. 12, 29–37 (2019).PubMed 

    Google Scholar 
    60.Brown, T. A. Is the domestication bottleneck a myth?. Nat. Plants 5, 337–338 (2019).PubMed 

    Google Scholar 
    61.Gaillard, M. D. P., Glauser, G., Robert, C. A. M. & Turlings, T. C. J. Fine-tuning the ‘plant domestication-reduced defense’ hypothesis: Specialist vs generalist herbivores. New Phytol. 217, 355–366 (2018).CAS 
    PubMed 

    Google Scholar 
    62.Hillocks, R. J. & Wydra, K. Bacterial, fungal and nematode diseases. In Cassava: Biology, Production and Utilization (eds Hillocks, R. J. et al.) 261–280 (CABI, 2002).
    Google Scholar 
    63.Jarvis, A., Ramirez-Villegas, J., Campo, B. V. H. & Navarro-Racines, C. Is cassava the answer to African climate change adaptation?. Trop. Plant Biol. 5, 9–29 (2012).
    Google Scholar 
    64.Hanks, S. K. Genomic analysis of the eukaryotic protein kinase superfamily: A perspective. Genome Biol. 4, 111 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    65.Meng, X. & Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013).CAS 
    PubMed 

    Google Scholar 
    66.Champion, A., Kreis, M., Mockaitis, K., Picaud, A. & Henry, Y. Arabidopsis kinome: After the casting. Funct. Integr. Genomics 4, 163–187 (2004).CAS 
    PubMed 

    Google Scholar 
    67.Lenser, T. & Theißen, G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 18, 704–714 (2013).CAS 
    PubMed 

    Google Scholar 
    68.Gepts, P. The contribution of genetic and genomic approaches to plant domestication studies. Curr. Opin. Plant Biol. 18, 51–59 (2014).PubMed 

    Google Scholar 
    69.Ceballos, H. et al. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J. Agric. Food Chem. 55, 7469–7476 (2007).CAS 
    PubMed 

    Google Scholar 
    70.Jennings, D. L. & Iglesias, C. Breeding for crop improvement. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 149–166 (CABI, 2002). https://doi.org/10.18520/cs/v114/i02/256-257.71.Meyer, R. S. & Purugganan, M. D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).CAS 
    PubMed 

    Google Scholar 
    72.Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).PubMed 

    Google Scholar 
    73.Elias, M., Lenoir, H. & McKey, D. Propagule quantity and quality in traditional Makushi farming of cassava (Manihot esculenta): A case study for understanding domestication and evolution of vegetatively propagated crops. Genet. Resour. Crop Evol. 54, 99–115 (2007).
    Google Scholar 
    74.Zohary, D. Unconscious selection and the evolution of domesticated plants. Econ. Bot. 58, 5–10 (2004).
    Google Scholar 
    75.Lamberti, G., Gügel, I. L., Meurer, J., Soll, J. & Schwenkert, S. The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. Plant Physiol. 157, 70–85 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Pujol, B. et al. Evolution under domestication: Contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytol. 166, 305–318 (2005).PubMed 

    Google Scholar 
    77.Halkier, B. A. & Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333 (2006).CAS 
    PubMed 

    Google Scholar 
    78.Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).CAS 
    PubMed 

    Google Scholar 
    79.Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    80.An, F. et al. Domestication syndrome is investigated by proteomic analysis between cultivated cassava (Manihot esculenta Crantz) and its wild relatives. PLoS ONE 11, e0152154 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    81.Alves, A. A. C. Cassava botany and physiology. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 67–89 (CABI, 2002). https://doi.org/10.1079/9780851995243.0067.82.Alves, A. A. C. & Setter, T. L. Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Ann. Bot. 94, 605–613 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    83.Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: Applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).PubMed 
    MATH 

    Google Scholar 
    84.Arnold, B., Corbett-Detig, R. B., Hartl, D. & Bomblies, K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22, 3179–3190 (2013).CAS 
    PubMed 

    Google Scholar 
    85.Alves-Pereira, A. et al. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia. Evol. Appl. 13, 342–361 (2020).PubMed 

    Google Scholar 
    86.Bradbury, E. J. et al. Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am. J. Bot. 100, 857–866 (2013).PubMed 

    Google Scholar 
    87.Kates, H. R. et al. Targeted sequencing suggests wild-crop gene flow is central to different genetic consequences of two independent pumpkin domestications. Front. Ecol. Evol. 9, 618380 (2021).
    Google Scholar 
    88.Talavera, A., Soorni, A., Bombarely, A., Matas, A. J. & Hormaza, J. I. Genome-wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Sci. Rep. 9, 20137 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: Tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).CAS 
    PubMed 

    Google Scholar 
    90.Ross-Ibarra, J., Morrell, P. L. & Gaut, B. S. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl. Acad. Sci. USA 104, 8641–8648 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Ogbonna, A. C., Braatz de Andrade, L. R., Mueller, L. A., de Oliveira, E. J. & Bauchet, G. J. Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. Theor. Appl. Genet. https://doi.org/10.1007/s00122-021-03775-5 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.McKey, D., Cavagnaro, T. R., Cliff, J. & Gleadow, R. Chemical ecology in coupled human and natural systems: People, manioc, multitrophic interactions and global change. Chemoecology 20, 109–133 (2010).CAS 

    Google Scholar 
    93.Clement, C. R., de Cristo-Araújo, M., Coppens d’Eeckenbrugge, G., Alves Pereira, A. & Picanço-Rodrigues, D. Origin and domestication of native Amazonian crops. Diversity 2, 72–106 (2010).
    Google Scholar 
    94.Peña-Venegas, C. P., Stomph, T. J., Verschoor, G., Lopez-Lavalle, L. A. B. & Struik, P. C. Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity 6, 792–826 (2014).
    Google Scholar 
    95.Moreira, P. A. et al. Diversity of treegourd (Crescentia cujete) suggests introduction and prehistoric dispersal routes into Amazonia. Front. Ecol. Evol. 5, 150 (2017).
    Google Scholar 
    96.Clement, C. R. et al. Origin and dispersal of domesticated peach palm. Front. Ecol. Evol. 5, 148 (2017).
    Google Scholar 
    97.Mutegi, E. et al. Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor. Appl. Genet. 122, 989–1004 (2011).CAS 
    PubMed 

    Google Scholar 
    98.Roullier, C., Rossel, G., Tay, D., McKey, D. & Lebot, V. Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Mol. Ecol. 20, 3963–3977 (2011).CAS 
    PubMed 

    Google Scholar 
    99.Alves-Pereira, A. et al. Patterns of nuclear and chloroplast genetic diversity and structure of manioc along major Brazilian Amazonian rivers. Ann. Bot. 121, 625–639 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Siqueira, M. V. B. M. et al. Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats. Genet. Mol. Biol. 32, 104–110 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Allem, A. C. The origins and taxonomy of cassava. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 1–16 (CABI, 2002). https://doi.org/10.1079/9780851995243.0001.102.Barbieri, R. L., Gomes, J. C. C., Alercia, A. & Padulosi, S. Agricultural biodiversity in southern Brazil: Integrating efforts for conservation and use of neglected and underutilized species. Sustainability 6, 741–757 (2014).
    Google Scholar 
    103.Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 111, 4001–4006 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Peroni, N. & Hanazaki, N. Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric. Ecosyst. Environ. 92, 171–183 (2002).
    Google Scholar 
    105.Peroni, N. & Martins, P. S. Influência da dinâmica agrícola itinerante na geração de diversidade de etnovariedades cultivadas vegetativamente. Interciencia 25, 22–29 (2000).
    Google Scholar 
    106.Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 19, 11–15 (1987).
    Google Scholar 
    107.Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Andrews, A. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).109.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    110.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    113.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67–77 (2017).CAS 
    PubMed 

    Google Scholar 
    115.R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.r-project.org/. (Accessed: 15th January 2018).116.Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M. & Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193, 929–941 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    117.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y. ) 38, 1358–1370 (1984).CAS 

    Google Scholar 
    118.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 
    119.Bonhomme, M. et al. Detecting selection in population trees: The Lewontin and Krakauer test extended. Genetics 186, 241–262 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    120.Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105, 767–779 (1983).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    121.Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    122.Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Gautier, M., Klassmann, A. & Vitalis, R. rehh 2.0: A reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol. Ecol. Resour. 17, 78–90 (2017).CAS 
    PubMed 

    Google Scholar 
    124.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polyorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6, 1–13 (2012).
    Google Scholar 
    125.Ten Blake, J. A. quick tips for using the Gene Ontology. PLoS Comput. Biol. 9, e1003343 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    126.Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Alexa, A. & Rahnenführer, J. TopGO: Enrichment analysis for Gene Ontology. R package version 2.44.0. (2021).128.Osuna-Cruz, C. M. et al. PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 46, D1197–D1201 (2018).CAS 
    PubMed 

    Google Scholar 
    129.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    130.Paquette, S. R. Useful Functions for (Batch) File Conversion and Data Resampling in Microsatellite Datasets. https://cran.r-project.org/package=PopGenKit (2012).131.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 

    Google Scholar 
    132.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    133.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    134.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    135.Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    136.Jombart, T. & Ahmed, I. Genetics and population analysis. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Shifts in the foraging tactics of crocodiles following invasion by toxic prey

    Teasing apart the factors that influence prey choice and foraging tactics in the wild poses formidable logistical challenges because of multiple confounding features. For example, a particular type of prey may be rarely consumed not because of predator aversion, but because that prey type is more difficult to find or to capture than some other kind of prey22. Similarly, predators may key in on specific types of prey based on dietary preferences, prey size, or abundance23,24,25. The method of bait deployment that we adopted circumvents many of those problems, by standardising prey abundance, observability, and ease of capture by the predator. Under these conditions, free-ranging crocodiles from toad-sympatric versus toad-naïve populations showed substantial differences in foraging tactics and bait choice. In toad-naïve populations, crocodiles took equal numbers of treatment (toad) baits and control (chicken) baits, and frequently took baits located on land as well as over water. In contrast, crocodiles in toad-sympatric populations generally avoided toad baits in all locations and foraged primarily in the water rather than on land. Both of these shifts—in prey types and foraging locations—conceivably reduce the vulnerability of crocodiles to fatal ingestion of highly toxic cane toads.The relatively rapid ( More

  • in

    A call for governments to save soil

    BOOK REVIEW
    24 January 2022

    A call for governments to save soil

    To ensure food security, the world must stop letting fertile soil wash and blow away.

    Emma Marris

    0

    Emma Marris

    Emma Marris is an environmental writer who lives in Oregon.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Rock becomes visible as topsoil is eroded away.Credit: Martin Harvey/Getty

    A World Without Soil: The Past, Present, and Precarious Future of the Earth Beneath Our Feet Jo Handelsman Yale Univ. Press (2021)Soil creates life from death. The production of more than 95% of the food we eat relies on soil, a heady mix of rock particles, decaying organic matter, roots, fungi and microorganisms. Yet this precious resource is eroding at a global average of 13.5 tonnes per hectare per year. Instead of nourishing crops, fertile topsoil is ending up in inconvenient places such as ditches, reservoirs and the ocean.Microbiologist Jo Handelsman takes on the challenge of making readers care in A World Without Soil, aided by environmental researcher Kayla Cohen. Their prologue takes the form of a letter about soil erosion that Handelsman wishes she had sent to US president Barack Obama while working in the White House’s Office of Science and Technology Policy in the mid-2010s. Alas, she did not understand the true gravity of the problem until the waning days of the administration. Her biggest regret? That she wasn’t able to make soil management the federal priority she thinks it should be.Soil can be created over time, as dead things break down and contribute energy and nutrients to an ecosystem based on the underlying rock. But it erodes 10–30 times faster than it is produced. Globally, erosion reduces annual crop yields by 0.3%. At that rate, 10% of production could be lost by 2050. In erosion hotspots such as Nigeria, 80% of the land has been degraded. In Iowa, up to 17% of land is almost devoid of topsoil. Almost more convincing than the many facts and figures is a colour photograph of a field in Iowa with so little topsoil that the pale, lifeless sandy rubble beneath pokes through.Age-old solutionsA sense of dread builds in the chapters that cover the basic science of soil as well as the causes and consequences of its erosion. The last part of the book brings a burst of enthusiasm, as the authors turn to possible solutions — many of them simple, and some millennia old. These involve improving holding capacity through planting diverse crops in rotation; increasing organic content with additions such as compost and biochar; reducing the erosional effects of water and wind by reshaping the land with contouring, terraces, windbreaks and the like; and ploughing as little as possible.In a chapter on traditional soil-management techniques around the world, Handelsman and Cohen describe deep black “plaggen” soils on Scottish islands, made rich with cattle manure; rice terraces managed for 2,000 years by the Ifugao people in the Philippines; the milpa farming system of the Maya in Latin America, with its 25-year rotation of crops including trees; and compost made of seaweed, shells and plant material by the Māori in New Zealand. Each system yields rich agricultural productivity while maintaining deep banks of carbon-rich, fertile soil. “We know how to do this,” write Handelsman and Cohen.

    Cactus farming in Mexico, where the traditional system of crop rotation helps to replenish the soil.Credit: Omar Torres/AFP/Getty

    Why, then, is fertile soil being allowed to wash and blow away? The answer, not surprisingly, rests in the shackles of global capitalism. Farming’s profit margins are razor-thin, forcing producers to plant the highest-yielding variety of the highest-profit crop from field edge to field edge every season. Terracing, rotating crops and forgoing tilling enrich soil in the long run, but nibble into profits this year. And farmers can’t pay their mortgages or lease equipment with the aroma of deep black topsoil.
    Food systems: seven priorities to end hunger and protect the planet
    Handelsman and Cohen urge the world to demand real change in how mainstream agricultural production is managed. “The burden of protecting soil cannot be relegated to indigenous people and environmental activists,” they note. But their specific suggestions are a little underwhelming. They join the calls for international soil treaties, but given how poorly climate treaties have worked, I am cynical about the potential of such agreements. Countries seem likely to both under-promise and under-deliver unless there are costly penalties for failure. The same goes for the consumer-facing labels that the authors propose for food produced on farms that are working to improve their soil. Similar labels have not put a meaningful dent in climate change or other environmental problems — and many customers cannot afford to spend more on “soil-friendly” food.Top-down changeWhat farming needs is a top-down overhaul. Handelsman and Cohen gesture at this with proposed discounts on crop-insurance premiums for farmers who increase the carbon in their soil. More is needed. Governments must pay farmers to build soil. In the United States, farmers can apply for funding for anti-erosion improvements through the Environmental Quality Incentives Program, run by the Department of Agriculture. Funding announced this month will increase the amount of land planted with cover crops to 12 million hectares by 2030 — but even that would represent only some 7% of US cropland. It is not enough.We need to change how we think of farming. We have already begun to move towards a model in which farmers are less independent businesspeople growing and selling food, and more government-supported land stewards managing a complex mix of food production, soil fertility, wildlife habitat and more. Around the world, many farmers depend on subsidies, drought relief and payments from piecemeal schemes to conserve soil and nature. Such programmes — currently small-scale, ad hoc fixes for a broken system — should be the core of the agricultural sector.Our land, our fresh water, our biodiversity and our soil are too precious to be destroyed by the market price of commodity grains and other foodstuffs. We must invest deeply and thoughtfully in our farmers so that they can invest deeply and thoughtfully in the land, becoming holistic landscape-management professionals. This is the future of farming.

    Nature 601, 503-504 (2022)
    doi: https://doi.org/10.1038/d41586-022-00158-8

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Food systems: seven priorities to end hunger and protect the planet

    Globe to gut: inside Big Food

    The novelist who loved soil

    The business case for soil

    Subjects

    Sustainability

    Ecology

    Environmental sciences

    Latest on:

    Sustainability

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Sustainability at the crossroads
    Editorial 21 DEC 21

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Ecology

    Biodiversity faces its make-or-break year, and research will be key
    Editorial 19 JAN 22

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Environmental sciences

    Air pollution takes a bite out of Asia’s grain crops
    Research Highlight 21 JAN 22

    Global fine-scale changes in ambient NO2 during COVID-19 lockdowns
    Article 19 JAN 22

    Message to mayors: cities need nature
    World View 17 JAN 22

    Jobs

    Postdoc position to investigate composition and function of human hnRNP complexes

    University of Bern
    Bern, Switzerland

    Doctoral Candidate and Postdoc Positions on Magnonic/Plasmonic Devices, Magnonic Neural Networks, and Plasmonic Condensates/Nanolasers

    Aalto University
    Espoo, Finland

    211-0115/21-2N Tenure-track Assistant Professor in Plant Cell Biology and Biochemistry with emphasis on Glycobiology

    University of Copenhagen (UCPH)
    Copenhagen, Denmark

    Postdoctoral Research Scientist – Cellular Degradation Systems Lab

    Francis Crick Institute
    London, United Kingdom More

  • in

    The multicausal twilight of South American native mammalian predators (Metatheria, Sparassodonta)

    1.Simpson, G. G. History of the fauna of Latin America. Am. Sci. 38, 361–389 (1950).
    Google Scholar 
    2.Patterson, B. D. & Costa, L. P. Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals (The University of Chicago Press, 2012).3.Cidade, G. M., Fortier, D. & Hsiou, A. S. The crocodylomorph fauna of the Cenozoic of South America and its evolutionary history: a review. J. South Am. Earth Sci. 90, 392–411 (2019).ADS 

    Google Scholar 
    4.Tambussi, C. P. & Degrange, F. J. South American and Antarctic Continental Cenozoic Birds. (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5467-6.5.Marshall, L. G. Evolution of the carnivorous adaptive zone in South America. In Major Patterns in Vertebrate Evolution (eds. Hecht, M. K., Goody, P. C. & Hecht, B. M.) 709–721 (Springer US, 1977). https://doi.org/10.1007/978-1-4684-8851-7_24.6.Marshall, L. G. & Cifelli, R. L. Analysis of changing diversity patterns in Cenozoic land mammal age faunas, South America. Palaeovertebrata 19, 169–210 (1990).
    Google Scholar 
    7.Prevosti, F. J., Forasiepi, A. & Zimicz, N. The evolution of the cenozoic terrestrial mammalian predator guild in South America: competition or replacement?. J. Mamm. Evol. 20, 3–21 (2013).
    Google Scholar 
    8.Prevosti, F. J. & Forasiepi, A. M. Evolution of South American mammalian predators during the Cenozoic: paleobiogeographic and paleoenvironmental contingencies. (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-03701-1.9.Croft, D. A. Do marsupials make good predators? Insights from predator-prey diversity ratios. Evol. Ecol. Res. 8, 1193–1214 (2006).
    Google Scholar 
    10.Albino, A. M. Snakes from the Paleocene and Eocene of Patagonia (Argentina): Paleoecology and coevolution with mammals. Hist. Biol. 7, 51–69 (1993).
    Google Scholar 
    11.Head, J. J. et al. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457, 715–717 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    12.de Muizon, C., Ladevèze, S., Selva, C., Vignaud, R. & Goussard, F. Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America. Geodiversitas 40, 363 (2018).
    Google Scholar 
    13.Forasiepi, A. M. Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr. Mus. Argentino Cienc. Nat., n.s. 6, 1–174 (2009).14.Prevosti, F. J. et al. New radiometric 40Ar–39Ar dates and faunistic analyses refine evolutionary dynamics of Neogene vertebrate assemblages in southern South America. Sci. Rep. 11, 9830 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Pérez, L. F. et al. Oceanographic and climatic consequences of the tectonic evolution of the southern scotia sea basins, Antarctica. Earth-Science Rev. 198, 102922 (2019).
    Google Scholar 
    16.Williams, S. E., Whittaker, J. M., Halpin, J. A. & Müller, R. D. Australian-Antarctic breakup and seafloor spreading: Balancing geological and geophysical constraints. Earth-Science Rev. 188, 41–58 (2019).ADS 

    Google Scholar 
    17.Gelfo, J. N. Considerations about the evolutionary stasis of Notiolofos arquinotiensis (Mammalia: Sparnotheriodontidae), Eocene of Seymour Island, Antartica. Ameghiniana 53, 316–332 (2016).
    Google Scholar 
    18.Goin, F. J. et al. New metatherian mammal from the Early Eocene of Antarctica. J. Mamm. Evol. https://doi.org/10.1007/s10914-018-9449-6 (2018).Article 

    Google Scholar 
    19.Reguero, M. A. et al. Final Gondwana breakup: The Paleogene South American native ungulates and the demise of the South America-Antarctica land connection. Glob. Planet. Change 123, 400–413 (2014).ADS 

    Google Scholar 
    20.Ramos, V. A. & Aleman, A. Tectonic evolution of the Andes. in Tectonic evolution of South America (eds. Cordani, U. G., Milani, E. J., Thomaz Filho, A. & Campos, D. A.) 635–685 (2000).21.Boschman, L. M. Andean mountain building since the Late Cretaceous: A paleoelevation reconstruction. Earth-Science Rev. 220, 103640 (2021).
    Google Scholar 
    22.Fosdick, J. C., Reat, E. J., Carrapa, B., Ortiz, G. & Alvarado, P. M. Retroarc basin reorganization and aridification during Paleogene uplift of the southern central Andes. Tectonics 36, 493–514 (2017).ADS 

    Google Scholar 
    23.Leier, A., McQuarrie, N., Garzione, C. & Eiler, J. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth Planet. Sci. Lett. 371–372, 49–58 (2013).ADS 

    Google Scholar 
    24.Cione, A. L., Gasparini, G. M., Soibelzon, E., Soibelzon, L. H. & Tonni, E. P. The Great American Biotic Interchange: a South American perspective. (Springer, 2015).25.Coates, A. G. & Stallard, R. F. How old is the isthmus of Panama?. Bull. Mar. Sci. 89, 801–813 (2013).
    Google Scholar 
    26.Montes, C. et al. Middle Miocene closure of the Central American Seaway. Science (80-) 348, 226–229 (2015).ADS 
    CAS 

    Google Scholar 
    27.Auderset, A. et al. Gulf Stream intensification after the early Pliocene shoaling of the Central American Seaway. Earth Planet. Sci. Lett. 520, 268–278 (2019).CAS 

    Google Scholar 
    28.Scher, H. D. et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).ADS 
    CAS 

    Google Scholar 
    30.Van Valen, L. New evolutionary law. Evol. Theory 1, 1–30 (1973).
    Google Scholar 
    31.Cione, A. L., Tonni, E. P. & Soibelzon, L. The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America. Rev. del Mus. Argentino Ciencias Nat. n.s. 5, 1–19 (2003).32.Leigh, E. G., O’Dea, A. & Vermeij, G. J. Historical biogeography of the isthmus of Panama. Biol. Rev. 89, 148–172 (2014).PubMed 

    Google Scholar 
    33.Werdelin, L. Jaw geometry and molar morphology in Marsupial carnivores: Analysis of a constraint and its macroevolutionary consequences. Paleobiology 13, 342–350 (1987).
    Google Scholar 
    34.Goin, F. J. & Montalvo, C. Revisión sistemática y reconocimiento de una nueva especie del género Thylatheridium Reig (Marsupialia, Didelphidae). Ameghiniana 25, 161–167 (1988).
    Google Scholar 
    35.Goin, F. J. & Pardiñas, U. F. J. Revision de las especies del genero Hyperdidelphys Ameghino, 1904 (Mammalia, Marsupialia, Didelphidae). Su significación filogenética, estratigráfica y adaptativa en el Neogeno del Cono Sur Sudamericano. Estud. Geológicos 52, 327–359 (1996).36.Beck, R. M. D. & Taglioretti, M. L. A nearly complete juvenile skull of the marsupial Sparassocynus derivatus from the Pliocene of Argentina, the affinities of “sparassocynids”, and the diversification of opossums (Marsupialia; Didelphimorphia; Didelphidae). J. Mamm. Evol. 27, 385–417 (2020).
    Google Scholar 
    37.López-Aguirre, C., Archer, M., Hand, S. J. & Laffan, S. W. Extinction of South American sparassodontans (Metatheria): Environmental fluctuations or complex ecological processes?. Palaeontology 60, 91–115 (2017).
    Google Scholar 
    38.Forasiepi, A. M., Martinelli, A. G. & Goin, F. J. Revisión taxonómica de Parahyaenodon argentinus Ameghino y sus implicancias en el conocimiento de los grandes mamíferos carnívoros del Mio-Plioceno de América de Sur. Ameghiniana 44, 143–159 (2007).
    Google Scholar 
    39.Zimicz, N. Avoiding competition: the ecological history of late Cenozoic metatherian carnivores in South America. J. Mamm. Evol. 21, 383–393 (2014).
    Google Scholar 
    40.Echarri, S., Ercoli, M. D., Chemisquy, M. A., Turazzini, G. & Prevosti, F. J. Mandible morphology and diet of the South American extinct metatherian predators (Mammalia, Metatheria, Sparassodonta). Earth Environ. Sci. Trans. R. Soc. Edinburgh 106, 277–288 (2017).41.Croft, D. A., Engelman, R. K., Dolgushina, T. & Wesley, G. Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds. Proc. R. Soc. B Biol. Sci. 285, 20172012 (2018).
    Google Scholar 
    42.Engelman, R. K. & Croft, D. A. A new species of small-bodied sparassodont (Mammalia, Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia. J. Vertebr. Paleontol. 34, 672–688 (2014).
    Google Scholar 
    43.Engelman, R. K. & Croft, D. A. Strangers in a strange land: ecological dissimilarity to metatherian carnivores may partly explain early colonization of South America by Cyonasua- group procyonids. Paleobiology 45, 598–611 (2019).
    Google Scholar 
    44.Engelman, R. K., Anaya, F. & Croft, D. A. Australogale leptognathus, gen. et sp. nov., a Second Species of Small Sparassodont (Mammalia: Metatheria) from the Middle Miocene Locality of Quebrada Honda, Bolivia. J. Mamm. Evol. 27, 37–54 (2020).45.Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).PubMed 

    Google Scholar 
    46.Lehtonen, S. et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci. Rep. 7, 4831 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Rangel, C. et al. Diversity, affinities and adaptations of the basal sparassodont Patene Simpson, 1935 (Mammalia, Metatheria). Ameghiniana 56, 263–289 (2019).
    Google Scholar 
    48.Alroy, J. et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl. Acad. Sci. 98, 6261–6266 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Badgley, C. The multiple scales of biodiversity. Paleobiology 29, 11–13 (2003).
    Google Scholar 
    50.Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).
    Google Scholar 
    51.Butler, R. J., Barrett, P. M., Nowbath, S. & Upchurch, P. Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35, 432–446 (2009).
    Google Scholar 
    52.Crampton, J. S. et al. Estimating the rock volume bias in paleobiodiversity studies. Science (80-) 301, 358–360 (2003).ADS 
    CAS 

    Google Scholar 
    53.Kalmar, A. & Currie, D. J. The completeness of the continental fossil record and its impact on patterns of diversification. Paleobiology 36, 51–60 (2010).
    Google Scholar 
    54.Newham, E., Benson, R., Upchurch, P. & Goswami, A. Mesozoic mammaliaform diversity: the effect of sampling corrections on reconstructions of evolutionary dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 32–44 (2014).
    Google Scholar 
    55.Prevosti, F. J. & Soibelzon, L. H. Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective. In Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals (eds. Patterson, B. D. & Costa, L. P.) 102–122 (University of Chicago Press, 2012).56.Carrillo, J. D., Forasiepi, A., Jaramillo, C. & Sánchez-Villagra, M. R. Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record. Front. Genet. 5, 451 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology https://doi.org/10.1017/pab.2019.23 (2019).Article 

    Google Scholar 
    58.Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl. Acad. Sci. 112, 8684–8689 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 (1996).
    Google Scholar 
    61.Moen, D. & Morlon, H. Why does diversification slow down?. Trends Ecol. Evol. 29, 190–197 (2014).PubMed 

    Google Scholar 
    62.Bromham, L. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos. Trans. R. Soc. B Biol. Sci. 366, 2503–2513 (2011).
    Google Scholar 
    63.Feng, P. & Zhou, Q. Absence of relationship between mitochondrial DNA evolutionary rate and longevity in mammals except for CYTB. J. Mamm. Evol. 26, 1–7 (2019).
    Google Scholar 
    64.Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. 102, 140–145 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. 90, 4087–4091 (1993).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Barraclough, T. G., Vogler, A. P. & Harvey, P. H. Revealing the factors that promote speciation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 353, 241–249 (1998).67.Barraclough, T. G. & Savolainen, V. Evolutionary rates and species diversity in flowering plants. Evolution (N. Y) 55, 677–683 (2001).CAS 

    Google Scholar 
    68.Raia, P., Passaro, F., Fulgione, D. & Carotenuto, F. Habitat tracking, stasis and survival in Neogene large mammals. Biol. Lett. 8, 64–66 (2012).CAS 
    PubMed 

    Google Scholar 
    69.Viranta, S. Geographic and temporal ranges of middle and late Miocene Carnivores. J. Mammal. 84, 1267–1278 (2003).
    Google Scholar 
    70.Flynn, L. J. et al. Neogene Siwalik mammalian lineages: Species longevities, rates of change, and modes of speciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 249–264 (1995).
    Google Scholar 
    71.Van Valen, L. Group selection, sex, and fossils. Evolution (N. Y) 29, 87 (1975).
    Google Scholar 
    72.Cardillo, M. Biological determinants of extinction risk: why are smaller species less vulnerable?. Anim. Conserv. 6, 63–69 (2003).
    Google Scholar 
    73.Liow, L. H. et al. Higher origination and extinction rates in larger mammals. Proc. Natl. Acad. Sci. 105, 6097–6102 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.McLain, D. K. Cope’s rules, sexual selection, and the loss of ecological plasticity. Oikos 68, 490–500 (1993).
    Google Scholar 
    75.Hautmann, M. What is macroevolution?. Palaeontology 63, 1–11 (2020).
    Google Scholar 
    76.Stanley, S. M. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. In Causes of evolution: A paleontological perspective (eds. Ross, R. M. & Allmon, W. D.) 103–127 (University of Chicago Press, 1990).77.Marshall, C. R. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol. 1, 0165 (2017).
    Google Scholar 
    78.Ercoli, M. D., Prevosti, F. J. & Forasiepi, A. M. The structure of the mammalian predator guild in the Santa Cruz Formation (late Early Miocene). J. Mamm. Evol. 21, 369–381 (2014).
    Google Scholar 
    79.Marshall, L. G. Evolution of the Borhyaenidae, extinct south american predaceous marsupials. Univ. Calif. Publ. Geol. Sci. 17, 1–89 (1978).
    Google Scholar 
    80.Prevosti, F. J., Forasiepi, A. M., Ercoli, M. D. & Turazzini, G. F. Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late Early Miocene). In Early Miocene paleobiology in Patagonia (eds. Vizcaino, S. F., Kay, R. F. & Bargo, M. S.) 173–193 (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9780511667381.012.81.Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    82.Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    83.Rovinsky, D. S., Evans, A. R., Martin, D. G. & Adams, J. W. Did the thylacine violate the costs of carnivory? Body mass and sexual dimorphism of an iconic Australian marsupial. Proc. R. Soc. B Biol. Sci. 287, 20201537 (2020).
    Google Scholar 
    84.Van Valkenburgh, B., Wang, X. & Damuth, J. Cope’s Rule, hypercarnivory, and extinction in North American canids. Science (80-) 306, 101–104 (2004).ADS 

    Google Scholar 
    85.Finarelli, J. A. Mechanisms behind active trends in body size evolution of the Canidae (Carnivora: Mammalia). Am. Nat. 170, 876–885 (2007).PubMed 

    Google Scholar 
    86.Cione, A. L. & Tonni, E. P. Chronostratigraphy and “Land-Mammal Ages” in the Cenozoic of southern South America: principles, practices, and the “Uquian” problem. J. Paleontol. 69, 135–159 (1995).
    Google Scholar 
    87.Soibelzon, L. H. & Prevosti, F. J. Los carnívoros (Carnivora, Mammalia) terrestres del Cuaternario de América del Sur. in Geomorfología Litoral i Quaternari. Homenatge a Joan Cuerda Barceló. Mon. Soc. Hist. Nat. (eds. Pons, G. X. & Vicens, D.) vol. 14 49–68 (2007).88.Argot, C. Evolution of South American mammalian predators (Borhyaenoidea): Anatomical and palaeobiological implications. Zool. J. Linn. Soc. 140, 487–521 (2004).
    Google Scholar 
    89.Degrange, F. J. Hind limb morphometry of terror birds (Aves, Cariamiformes, Phorusrhacidae): functional implications for substrate preferences and locomotor lifestyle. Earth Environ. Sci. Trans. R. Soc. Edinburgh 106, 257–276 (2015).90.Angst, D., Buffetaut, E., Lecuyer, C. & Amiot, R. A new method for estimating locomotion type in large ground birds. Palaeontology 59, 217–223 (2016).
    Google Scholar 
    91.Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19, 470–474 (2004).PubMed 

    Google Scholar 
    92.Davis, M. A. Biotic globalization: Does competition from introduced species threaten biodiversity?. Bioscience 53, 481–489 (2003).
    Google Scholar 
    93.Prowse, T. A. A., Johnson, C. N., Bradshaw, C. J. A. & Brook, B. W. An ecological regime shift resulting from disrupted predator–prey interactions in Holocene Australia. Ecology 95, 693–702 (2014).PubMed 

    Google Scholar 
    94.Marshall, L. G. A new species of Lycopsis (Borhyaenidae: Marsupialia) from the La Venta Fauna (Late Miocene) of Colombia, South America. J. Paleontol. 51, 633–642 (1977).
    Google Scholar 
    95.Tomassini, R. L., Montalvo, C. I., Bargo, M. S., Vizcaíno, S. F. & Cuitiño, J. I. Sparassodonta (Metatheria) coprolites from the early-mid Miocene (Santacrucian age) of Patagonia (Argentina) with evidence of exploitation by coprophagous insects. Palaios 34, 639–651 (2019).ADS 

    Google Scholar 
    96.Bond, M., Cerdeño, E. & López, G. Los ungulados nativos de América del Sur. in Evolución biológica y climática de la región Pampeana durante los últimos cinco millones de años (eds. Alberdi, M. T., Leone, G. & Tonni, E. P.) 258–275 (Museo Nacional de Ciencias Naturales, 1995).97.Croft, D. A., Gelfo, J. N. & López, G. M. Splendid innovation: The extinct South American native ungulates. Annu. Rev. Earth Planet. Sci. 48, 259–290 (2020).ADS 
    CAS 

    Google Scholar 
    98.Pascual, R. & Jaureguizar, E. O. Evolving climates and mammal faunas in cenozoic South America. J. Hum. Evol. 19, 23–60 (1990).
    Google Scholar 
    99.Patterson, B. & Pascual, R. The fossil mammal fauna of South America. Q. Rev. Biol. 43, 409–451 (1968).
    Google Scholar 
    100.Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).ADS 
    CAS 

    Google Scholar 
    102.Insel, N., Poulsen, C. J. & Ehlers, T. A. Influence of the Andes mountains on South American moisture transport, convection, and precipitation. Clim. Dyn. 35, 1477–1492 (2010).
    Google Scholar 
    103.Garzione, C. N. et al. Tectonic evolution of the Central Andean Plateau and implications for the growth of plateaus. Annu. Rev. Earth Planet. Sci. 45, 529–559 (2017).ADS 
    CAS 

    Google Scholar 
    104.Lossada, A. C. et al. Cenozoic uplift and exhumation of the Frontal Cordillera between 30° and 35° S and the influence of the subduction dynamics in the flat slab subduction context, South Central Andes. In The Evolution of the Chilean-Argentinean Andes (eds. Folguera, A. et al.) 387–409 (Springer Earth System Sciences, 2018). https://doi.org/10.1007/978-3-319-67774-3_16.105.Mora, A. et al. Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In Amazonia: Landscape and Species Evolution (eds. Hoorn, C. & Wesselingh, F. P.) 38–60 (Wiley-Blackwell Publishing Ltd., 2011). https://doi.org/10.1002/9781444306408.ch4.106.Pingel, H. et al. Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina). Earth Planet. Sci. Lett. 535, 116112 (2020).CAS 

    Google Scholar 
    107.Takahashi, K. & Battisti, D. S. Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the Eastern Pacific ITCZ. J. Clim. 20, 3434–3451 (2007).ADS 

    Google Scholar 
    108.Amidon, W. H. et al. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods. Proc. Natl. Acad. Sci. 114, 6474–6479 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    109.Carrapa, B., Clementz, M. & Feng, R. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling. Proc. Natl. Acad. Sci. 116, 9747–9752 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Hartley, A. J. Andean uplift and climate change. J. Geol. Soc. Lond. 160, 7–10 (2003).
    Google Scholar 
    111.Barreda, V., Guler, V. & Palazzesi, L. Late Miocene continental and marine palynological assemblages from Patagonia. Dev. Quat. Sci. 11, 343–350 (2008).
    Google Scholar 
    112.Barreda, V. & Palazzesi, L. Patagonian vegetation turnovers during the Paleogene-early Neogene: Origin of arid-adapted floras. Bot. Rev. 73, 31–50 (2007).
    Google Scholar 
    113.Ortiz-Jaureguizar, E. & Cladera, G. A. Paleoenvironmental evolution of southern South America during the Cenozoic. J. Arid Environ. 66, 498–532 (2006).ADS 

    Google Scholar 
    114.Krockenberger, A. Lactation. In Marsupials (eds. Armati, P. J., Dickman, C. R. & Hume, I. D.) 108–136 (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511541889.005.115.Morton, S. R., Recher, H. F., Thompson, S. D. & Braithwaite, R. W. Comments on the relative advantages of marsupial and eutherian reproduction. Am. Nat. 120, 128–134 (1982).
    Google Scholar 
    116.Thompson, S. D. Body size, duration of parental care, and the intrinsic rate of natural increase in eutherian and metatherian mammals. Oecologia 71, 201–209 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    117.Holloway, J. C. & Geiser, F. Seasonal changes in the thermoenergetics of the marsupial sugar glider Petaurus breviceps. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 171, 643–650 (2001).CAS 

    Google Scholar 
    118.Sánchez-Villagra, M. R. Why are there fewer marsupials than placentals? On the relevance of geography and physiology to evolutionary patterns of mammalian diversity and disparity. J. Mamm. Evol. 20, 279–290 (2013).
    Google Scholar 
    119.Bennett, C. V., Upchurch, P., Goin, F. J. & Goswami, A. Deep time diversity of metatherian mammals: Implications for evolutionary history and fossil-record quality. Paleobiology 44, 171–198 (2018).
    Google Scholar 
    120.Goin, F. J., Woodburne, M. O., Zimicz, A. N., Martin, G. M. & Chornogubsky, L. A Brief History of South American Metatherians: Evolutionary Contexts and Intercontinental Dispersals (Springer, 2016).121.Jablonski, D. Biotic interactions and macroevolution: Extensions and mismatches across scales and levels. Evolution (N. Y) 62, 715–739 (2008).
    Google Scholar 
    122.Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).ADS 
    CAS 

    Google Scholar 
    123.Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science (80-) 369, 1383–1387 (2020).ADS 
    CAS 

    Google Scholar 
    124.Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: A new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).
    Google Scholar 
    125.Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995).MathSciNet 
    MATH 

    Google Scholar 
    126.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Field experiments find no evidence that chimpanzee nut cracking can be independently innovated

    1.Mesoudi, A. & Thornton, A. What is cumulative cultural evolution? Proc. R. Soc. B 285, 20180712 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    2.Schofield, D. P., McGrew, W. C., Takahashi, A. & Hirata, S. Cumulative culture in nonhumans: overlooked findings from Japanese monkeys? Primates 59, 113–122 (2018).PubMed 

    Google Scholar 
    3.Boesch, C. & Tomasello, M. Chimpanzee and human cultures. Curr. Anthropol. 39, 591–614 (1998).
    Google Scholar 
    4.Tennie, C., Call, J. & Tomasello, M. Ratcheting up the ratchet: on the evolution of cumulative culture. Philos. Trans. R. Soc. B 364, 2405–2415 (2009).
    Google Scholar 
    5.Dean, L. G., Vale, G. L., Laland, K. N., Flynn, E. & Kendal, R. L. Human cumulative culture: a comparative perspective. Biol. Rev. Camb. Philos. Soc. 89, 284–301 (2014).PubMed 

    Google Scholar 
    6.Whiten, A., McGuigan, N., Marshall-Pescini, S. & Hopper, L. M. Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Philos. Trans. R. Soc. B 364, 2417–2428 (2009).
    Google Scholar 
    7.Tennie, C., Bandini, E., van Schaik, C. P. & Hopper, L. M. The zone of latent solutions and its relevance to understanding ape cultures. Biol. Philos. 35, 55 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    8.Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 15049 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Musgrave, S. et al. Teaching varies with task complexity in wild chimpanzees. Proc. Natl Acad. Sci. USA 117, 969–976 (2020).CAS 
    PubMed 

    Google Scholar 
    10.Boesch, C. et al. Chimpanzee ethnography reveals unexpected cultural diversity. Nat. Hum. Behav. 4, 910–916 (2020).PubMed 

    Google Scholar 
    11.Whiten, A. The burgeoning reach of animal culture. Science 372, eabe6514 (2021).CAS 
    PubMed 

    Google Scholar 
    12.Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).CAS 

    Google Scholar 
    13.Sanz, C. & Morgan, D. Chimpanzee tool technology in the Goualougo Triangle, Republic of Congo. J. Hum. Evol. 52, 420–433 (2007).PubMed 

    Google Scholar 
    14.Whiten, A. & van Schaik, C. P. The evolution of animal ‘cultures’ and social intelligence. Philos. Trans. R. Soc. B 362, 603–620 (2007).
    Google Scholar 
    15.McGrew, W. C. The Cultured Chimpanzee: Reflections on Cultural Primatology (Cambridge Univ. Press, 2004).16.McGrew, W. C. Chimpanzee Material Culture: Implications for Human Evolution (Cambridge Univ. Press, 1992).17.Sanz, C., Schöning, C. & Morgan, D. Chimpanzees prey on army ants with specialized tool set. Am. J. Primatol. 72, 17–24 (2010).PubMed 

    Google Scholar 
    18.Reindl, E., Apperly, I. A., Beck, S. R. & Tennie, C. Young children copy cumulative technological design in the absence of action information. Sci. Rep. 7, 1788 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Neadle, D., Allritz, M. & Tennie, C. Food cleaning in gorillas: social learning is a possibility but not a necessity. PLoS ONE 12, e0188866 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Tennie, C., Hopper, L. M. & van Schaik, C. P. in Chimpazees in Context (eds Hopper, L. M. & Ross, S. R.) 428–453 (Univ. of Chicago Press, 2020).21.Bandini, E. & Tennie, C. Spontaneous reoccurrence of “scooping”, a wild tool-use behaviour, in naive chimpanzees. PeerJ 5, e3814 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    22.Bandini, E. & Tennie, C. Individual acquisition of “stick pounding” behavior by naive chimpanzees. Am. J. Primatol. 81, e22987 (2019).PubMed 

    Google Scholar 
    23.Menzel, C., Fowler, A., Tennie, C. & Call, J. Leaf surface roughness elicits leaf swallowing behavior in captive chimpanzees (Pan troglodytes) and bonobos (P. paniscus), but not in gorillas (Gorilla gorilla) or orangutans (Pongo abelii). Int. J. Primatol. 34, 533–553 (2013).
    Google Scholar 
    24.Tonooka, R., Tomonaga, M. & Matsuzawa, T. Acquisition and transmission of tool making and use for drinking juice in a group of captive chimpanzees (Pan troglodytes). Jpn. Psychol. Res. 39, 253–265 (1997).
    Google Scholar 
    25.Celli, M. L., Hirata, S. & Tomonaga, M. Socioecological influences on tool use in captive chimpanzees. Int. J. Primatol. 25, 1267–1281 (2004).
    Google Scholar 
    26.Bernstein-Kurtycz, L. M., Hopper, L. M., Ross, S. R. & Tennie, C. Zoo-housed chimpanzees can spontaneously use tool sets but perseverate on previously successful tool-use methods. Anim. Behav. Cogn. 7, 288–309 (2020).
    Google Scholar 
    27.Boesch, C. in Evolution of Social Behaviour Patterns in Primates and Man (eds Runciman, W. G. et al.) 251–268 (Oxford Univ. Press, 1996).28.Neadle, D., Bandini, E. & Tennie, C. Testing the individual and social learning abilities of task-naïve captive chimpanzees (Pan troglodytes sp.) in a nut-cracking task. PeerJ 8, e8734 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    29.Biro, D. et al. Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Anim. Cogn. 6, 213–223 (2003).PubMed 

    Google Scholar 
    30.Boesch, C., Bombjaková, D., Meier, A. & Mundry, R. Learning curves and teaching when acquiring nut-cracking in humans and chimpanzees. Sci. Rep. 9, 1515 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    31.Matsuzawa, T. in Chimpanzee Cultures (eds Wrangham, R. W. et al.) 351–370 (Harvard Univ. Press, 1994).32.Matsuzawa, T. in Oxford Research Encyclopedia of Psychology 1–42 (Oxford Univ. Press, 2021).33.Boesch, C., Marchesi, P., Marchesi, N., Fruth, B. & Joulian, F. Is nut cracking in wild chimpanzees a cultural behaviour? J. Hum. Evol. 26, 325–338 (1994).
    Google Scholar 
    34.Carvalho, S., Matsuzawa, T. & McGrew, W. C. in Tool Use in Animals: Cognition and Ecology (eds Sanz, C. et al.) 225–241 (Cambridge Univ. Press, 2013).35.Morgan, B. & Abwe, E. Chimpanzees use stone hammers in Cameroon. Curr. Biol. 16, 632–633 (2006).
    Google Scholar 
    36.Sumita, K., Kitahara-Frisch, J. & Norikoshi, K. The aquisition of stone-tool use in captive chimpanzees. Primates 26, 168–181 (1985).
    Google Scholar 
    37.Marshall-Pescini, S. & Whiten, A. Social learning of nut-cracking behaviour in East African sanctuary-living chimpanzees (Pan troglodytes schweinfurthii). J. Comp. Psychol. 122, 186–194 (2008).PubMed 

    Google Scholar 
    38.Inoue-Nakamura, N. & Matsuzawa, T. Development of stone tool use by wild chimpanzees (Pan troglodytes). J. Comp. Psychol. 111, 159–173 (1997).CAS 
    PubMed 

    Google Scholar 
    39.van Schaik, C. P., Deaner, R. O. & Merrill, M. The conditions for tool use in primates: implications for the evolution of material culture. J. Hum. Evol. 36, 719–741 (1999).PubMed 

    Google Scholar 
    40.Humle, T. & Matsuzawa, T. Oil palm use by adjacent communities of chimpanzees at Bossou and Nimba Mountains, West Africa. Int. J. Primatol. 25, 551–581 (2004).
    Google Scholar 
    41.Koops, K., McGrew, W. C. & Matsuzawa, T. Ecology of culture: do environmental factors influence foraging tool use in wild chimpanzees (Pan troglodytes verus)? Anim. Behav. 85, 175–185 (2013).
    Google Scholar 
    42.Koops, K., Visalberghi, E. & van Schaik, C. P. The ecology of primate material culture. Biol. Lett. 10, 20140508 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    43.Matsuzawa, T., Humle, T. & Sugiyama, Y. The Chimpanzees of Bossou and Nimba (eds Matsuzawa, T. & Yamagiwa, J.) (Springer, 2011).44.Matsuzawa, T. et al. in Primate Origins of Human Cognition and Behavior (ed. Matsuzawa, T.) 557–574 (Springer, 2001).45.Bandini, E., Motes-Rodrigo, A., Steele, M. P., Rutz, C. & Tennie, C. Examining the mechanisms underlying the acquisition of animal tool behaviour. Biol. Lett. 16, 20200122 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    46.Koops, K., McGrew, W. C., Matsuzawa, T. & Knapp, L. A. Terrestrial nest-building by wild chimpanzees (Pan troglodytes): implications for the tree-to-ground sleep transition in early hominins. Am. J. Phys. Anthropol. 148, 351–361 (2012).PubMed 

    Google Scholar 
    47.Schuppli, C. et al. The effects of sociability on exploratory tendency and innovation repertoires in wild Sumatran and Bornean orangutans. Sci. Rep. 7, 15464 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    48.Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).
    Google Scholar 
    49.Visalberghi, E. & Addessi, E. Seeing group members eating a familiar food enhances the acceptance of novel foods in capuchin monkeys. Anim. Behav. 60, 69–76 (2000).CAS 
    PubMed 

    Google Scholar 
    50.Kalan, A. K. et al. Novelty response of wild African apes to camera traps. Curr. Biol. 29, 1211–1217 (2019).CAS 
    PubMed 

    Google Scholar 
    51.Gruber, T., Zuberbühler, K. & Neumann, C. Travel fosters tool use in wild chimpanzees. eLife 5, e16371 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    52.Grund, C., Neumann, C., Zuberbühler, K. & Gruber, T. Necessity creates opportunities for chimpanzee tool use. Behav. Ecol. 30, 1136–1144 (2019).
    Google Scholar 
    53.Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).PubMed 

    Google Scholar 
    54.Wrangham, R. W. Chimpanzees: the culture-zone concept becomes untidy. Curr. Biol. 16, R634–R635 (2006).CAS 
    PubMed 

    Google Scholar 
    55.McGrew, W. C., Ham, R. M., White, L. J. T., Tutin, C. E. G. & Fernandez, M. Why don’t chimpanzees in Gabon crack nuts? Int. J. Primatol. 18, 353–374 (1997).
    Google Scholar 
    56.Whiten, A. Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan. Philos. Trans. R. Soc. B 370, 20140359 (2015).
    Google Scholar 
    57.Hirata, S., Morimura, N. & Houki, C. How to crack nuts: acquisition process in captive chimpanzees (Pan troglodytes) observing a model. Anim. Cogn. 12, 87–101 (2009).PubMed 

    Google Scholar 
    58.Hayashi, M., Mizuno, Y. & Matsuzawa, T. How does stone-tool use emerge? Introduction of stones and nuts to naïve chimpanzees in captivity. Primates 46, 91–102 (2005).PubMed 

    Google Scholar 
    59.Funk, M. Werkzeuggebrauch Beim öffnen von Niessen: Unterschiedliche Bewaltigungen des Problems bei Schimpansen und Orang-Utans (Univ. of Zurich, 1985).60.Visalberghi, E. Acquisition of nut‐cracking behavior by two capuchin monkeys (Cebus apella). Folia Primatol. 49, 168–181 (1987).
    Google Scholar 
    61.Resende, B. D., Ottoni, E. B. & Fragaszy, D. M. Ontogeny of manipulative behavior and nut-cracking in young tufted capuchin monkeys (Cebus apella): a perception–action perspective. Dev. Sci. 11, 828–840 (2008).PubMed 

    Google Scholar 
    62.Bandini, E., Grossmann, J., Funk, M., Albiach-Serrano, A. & Tennie, C. Naïve orangutans (Pongo abelii and Pongo pygmaeus) individually acquire nut-cracking using hammer tools. Am. J. Primatol. 83, e23304 (2021).PubMed 

    Google Scholar 
    63.Damerius, L. A. et al. Orientation toward humans predicts cognitive performance in orang-utans. Sci. Rep. 7, 40052 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Reindl, E., Beck, S. R., Apperly, A. & Tennie, C. Young children spontaneously invent wild great apes’ tool-use behaviours. Proc. R. Soc. B 283, 20152402 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Neldner, K. et al. A cross-cultural investigation of young children’s spontaneous invention of tool use behaviours. R. Soc. Open Sci. 7, 192240 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    66.Lucas, A. J. et al. The value of teaching increases with tool complexity in cumulative cultural evolution. Proc. R. Soc. B 287, 20201885 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    67.Boesch, C. Teaching among wild chimpanzees. Int. J. Primatol. 41, 530–532 (1991).
    Google Scholar 
    68.Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R. & Sanz, C. Tool transfers are a form of teaching among chimpanzees. Sci. Rep. 6, 34783 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Koops, K. in The Chimpanzees of Bossou and Nimba (eds Matsuzawa, T. et al.) 277–287 (Springer, 2011).70.van Schaik, C. P. & Pfannes, K. R. in Seasonality in Primates: Studies of Living and Extinct Human and Non-human Primates (eds Brockman, D. K. & van Schaik, C. P.) 23–54 (Cambridge Univ. Press, 2005).71.Matsuzawa, T. in The Chimpanzees of Bossou and Nimba (eds Matsuzawa, T. et al.) 157–164 (Springer, 2011).72.Carvalho, S., Cunha, E., Sousa, C. & Matsuzawa, T. Chaînes opératoires and resource exploitation strategies in chimpanzee nut-cracking (Pan troglodytes). J. Hum. Evol. 55, 148–163 (2008).PubMed 

    Google Scholar 
    73.Sanz, C., Morgan, D. & Gulick, S. New insights into chimpanzees, tools, and termites from the Congo basin. Am. Nat. 164, 67–581 (2004).
    Google Scholar 
    74.Hockings, K. J., Anderson, J. R. & Matsuzawa, T. Flexible feeding on cultivated underground storage organs by rainforest-dwelling chimpanzees at Bossou, West Africa. J. Hum. Evol. 58, 227–233 (2010).PubMed 

    Google Scholar 
    75.Takemoto, H. Seasonal change in terrestriality of chimpanzees in relation to microclimate in the tropical forest. Am. J. Phys. Anthropol. 124, 81–92 (2004).PubMed 

    Google Scholar 
    76.van Leeuwen, K. L., Matsuzawa, T., Sterck, E. H. M. & Koops, K. How to measure chimpanzee party size? A methodological comparison. Primates 61, 201–212 (2020).PubMed 

    Google Scholar 
    77.Field, A. P. Discovering Statistics Using IBM SPSS Statistics (SAGE, 2018).78.Humle, T. in The Chimpanzees of Bossou and Nimba (eds Matsuzawa, T. et al.) 61–72 (Springer, 2011).79.Humle, T. & Matsuzawa, T. Behavioural diversity among the wild chimpanzee populations of Bossou and neighbouring areas, Guinea and Côte d’Ivoire, West Africa. Folia Primatol. 72, 57–68 (2001).CAS 

    Google Scholar 
    80.Sugiyama, Y. & Koman, J. Tool-using and making behavior in wild chimpanzees at Bossou, Guinea. Primates 20, 513–524 (1979).
    Google Scholar 
    81.Sugiyama, Y. & Koman, J. A preliminary list of chimpanzees’ alimentation at Bossou, Guinea. Primates 28, 133–147 (1987).
    Google Scholar 
    82.Joulian, F. in Modelling the Early Human Mind (eds Mellars, P. & Gibson, K.) 173–189 (McDonald Institute Monographs, 1996).83.Matsuzawa, T. & Yamakoshi, G. in Reaching into Thought: The Minds of the Great Apes (eds Russon, A. E. et al.) 211–232 (Cambridge Univ. Press, 1996). More

  • in

    Heat sensitivity of first host and cercariae may restrict parasite transmission in a warming sea

    1.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    PubMed 

    Google Scholar 
    2.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 

    Google Scholar 
    3.Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. In: […]. in Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 175–311 (2018).4.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).PubMed 

    Google Scholar 
    5.Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).ADS 

    Google Scholar 
    6.Marcogliese, D. J. The impact of climate change on the parasites and infectious diseases of aquatic animals. OIE Rev. Sci. Tech. 27, 467–484 (2008).CAS 

    Google Scholar 
    7.Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
    Google Scholar 
    8.Mouritsen, K. N. & Poulin, R. Parasitism, climate oscillations and the structure of natural communities. Oikos 97, 462–468 (2002).
    Google Scholar 
    9.Poulin, R. & Mouritsen, K. N. Climate change, parasitism and the structure of intertidal ecosystems. J. Helminthol. 80, 183–191 (2006).CAS 
    PubMed 

    Google Scholar 
    10.Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).ADS 

    Google Scholar 
    11.James, C. C. et al. Marine host–pathogen dynamics: Influences of global climate change. Oceanography 31, 182–193 (2018).
    Google Scholar 
    12.Friesen, O. C., Poulin, R. & Lagrue, C. Temperature and multiple parasites combine to alter host community structure. Oikos 130(9), 1500–1511 (2021).

    Google Scholar 
    13.Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    14.Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Galaktionov, K. V. & Dobrovolskij, A. A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes. The American Journal of Semiotics vol. 4 (Springer-Science+Business Media Dordrecht, 2003).16.Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).CAS 
    PubMed 

    Google Scholar 
    17.Pietrock, M. & Marcogliese, D. J. Free-living endohelminth stages: At the mercy of environmental conditions. Trends Parasitol. 19, 293–299 (2003).PubMed 

    Google Scholar 
    18.Morley, N. J. Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138, 1442–1452 (2011).CAS 
    PubMed 

    Google Scholar 
    19.Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151 (2006).CAS 
    PubMed 

    Google Scholar 
    20.Thieltges, D. W. & Rick, J. Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis. Aquat. Organ. 73, 63–68 (2006).PubMed 

    Google Scholar 
    21.Selbach, C. & Poulin, R. Some like it hotter: Trematode transmission under changing temperature conditions. Oecologia 194, 745–755 (2020).ADS 
    PubMed 

    Google Scholar 
    22.Morley, N. J. Inbred laboratory cultures and natural trematode transmission under climate change. Trends Parasitol. 27, 286–287 (2011).PubMed 

    Google Scholar 
    23.Paull, S. H. & Johnson, P. T. J. Experimental warming drives a seasonal shift in the timing of host–parasite dynamics with consequences for disease risk. Ecol. Lett. 17, 445–453 (2014).PubMed 

    Google Scholar 
    24.Paull, S. H., Lafonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host–parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).ADS 

    Google Scholar 
    25.Studer, A., Poulin, R. & Tompkins, D. M. Local effects of a global problem: Modelling the risk of parasite-induced mortality in an intertidal trematode-amphipod system. Oecologia 172, 1213–1222 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    26.Studer, A., Thieltges, D. W. & Poulin, R. Parasites and global warming: Net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).ADS 

    Google Scholar 
    27.Mouritsen, K. N., Tompkins, D. M. & Poulin, R. Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146, 476–483 (2005).ADS 
    PubMed 

    Google Scholar 
    28.Selbach, C., Barsøe, M., Vogensen, T. K., Samsing, A. B. & Mouritsen, K. N. Temperature–parasite interaction: Do trematode infections protect against heat stress?. Int. J. Parasitol. 50, 1189–1194 (2020).PubMed 

    Google Scholar 
    29.Werding, B. Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Mar. Biol. 3, 306–333 (1969).
    Google Scholar 
    30.Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    31.Fredensborg, B. L., Mouritsen, K. N. & Poulin, R. Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarcinatus. Mar. Ecol. Prog. Ser. 290, 109–117 (2005).ADS 

    Google Scholar 
    32.Morón Lugo, S. C. et al. Warming and temperature variability determine the performance of two invertebrate predators. Sci. Rep. 10, 1–14 (2020).ADS 

    Google Scholar 
    33.Wolf, F. et al. High resolution water temperature data between January 1997 and December 2018 at the GEOMAR pier surface. Bremen PANGAEA. https://doi.org/10.1594/PANGAEA.919186 (2020).34.Franz, M., Lieberum, C., Bock, G. & Karez, R. Environmental parameters of shallow water habitats in the SW Baltic Sea. Earth Syst. Sci. Data 11, 947–957 (2019).ADS 

    Google Scholar 
    35.Lajeunesse, M. J. Bias and correction for the log response ratio in ecological meta-analysis. Ecology 96, 2056–2063 (2015).PubMed 

    Google Scholar 
    36.Gräwe, U., Friedland, R. & Burchard, H. The future of the western Baltic Sea: Two possible scenarios. Ocean Dyn. 63, 901–921 (2013).ADS 

    Google Scholar 
    37.Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).ADS 

    Google Scholar 
    38.Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    PubMed 

    Google Scholar 
    39.Clarke, A. P., Mill, P. J. & Grahame, J. The nature of heat coma in Littorina littorea (Mollusca: Gastropoda). Mar. Biol. 137, 447–451 (2000).
    Google Scholar 
    40.McDaniel, S. J. Littorina littorea: Lowered heat tolerance due to Cryptocotyle lingua. Exp. Parasitol. 25, 13–15 (1969).CAS 
    PubMed 

    Google Scholar 
    41.Ataev, G. Temperature influence on the development and biology of rediae and cercariae of Philophthalmus rhionica (Trematoda). Parazitologiâ 25, 349–359 (1991).
    Google Scholar 
    42.Paull, S. H. & Johnson, P. T. J. High temperature enhances host pathology in a snail-trematode system: Possible consequences of climate change for the emergence of disease. Freshw. Biol. 56, 767–778 (2011).
    Google Scholar 
    43.Paull, S. H., Raffel, T. R., Lafonte, B. E. & Johnson, P. T. J. How temperature shifts affect parasite production: Testing the roles of thermal stress and acclimation. Funct. Ecol. 29, 941–950 (2015).
    Google Scholar 
    44.Kuris, A. M. Effect of exposure to Echinostoma liei miracidia on growth and survival of young Biomphalaria glabrata snails. Int. J. Parasitol. 10, 303–308 (1980).CAS 
    PubMed 

    Google Scholar 
    45.Mouritsen, K. N. & Haun, S. C. B. Community regulation by herbivore parasitism and density: Trait-mediated indirect interactions in the intertidal. J. Exp. Mar. Biol. Ecol. 367, 236–246 (2008).
    Google Scholar 
    46.Bommarito, C. et al. Effects of first intermediate host density, host size and salinity on trematode infections in mussels of the south-western Baltic Sea. Parasitology 148, 486–494 (2021).CAS 
    PubMed 

    Google Scholar 
    47.McCarthy, A. M. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383–388 (1999).PubMed 

    Google Scholar 
    48.Morley, N. J. & Lewis, J. W. Thermodynamics of trematode infectivity. Parasitology 142, 585–597 (2015).CAS 
    PubMed 

    Google Scholar 
    49.Mouritsen, K. N. & Jensen, K. T. Parasite transmission between soft-bottom invertebrates: Temperature mediated infection rates and mortality in Corophium volutator. Mar. Ecol. Prog. Ser. 151, 123–134 (1997).ADS 

    Google Scholar 
    50.de Montaudouin, X., Wegeberg, A. M., Jensen, K. T. & Sauriau, P. G. Infection characteristics of Himasthla elongata cercariae in cockles as a function of water current. Dis. Aquat. Organ. 34, 63–70 (1998).
    Google Scholar 
    51.Vajedsamiei, J. et al. Simultaneous recording of filtration and respiration in marine organisms in response to short-term environmental variability. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10414 (2021).Article 

    Google Scholar 
    52.Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W. & Fredensborg, B. L. Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evol. Ecol. 26, 1497–1512 (2012).
    Google Scholar 
    53.Stunkard, H. W. The morphology and life history of the digenetic trematode, Himasthla littorinae sp. n. (Echinostomatidae). J. Parasitol. 52, 367–372 (2014).
    Google Scholar 
    54.Selbach, C. & Poulin, R. Parasites in space and time: A novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology 145, 1469–1474 (2018).PubMed 

    Google Scholar 
    55.Gorbushin, A. M. & Levakin, I. A. Encystment in vitro of the cercariae Himasthla elongata (Trematoda: Echinostomatidae). J. Evol. Biochem. Physiol. 41, 428–436 (2005).
    Google Scholar 
    56.Gorbushin, A. M. & Shaposhnikova, T. G. In vitro culture of the avian echinostome Himasthla elongata: From redia to marita. Exp. Parasitol. 101, 234–239 (2002).CAS 
    PubMed 

    Google Scholar 
    57.Levakin, I. A., Losev, E. A., Nikolaev, K. E. & Galaktionov, K. V. In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the haemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J. Helminthol. 87, 180–188 (2013).CAS 
    PubMed 

    Google Scholar 
    58.Choisy, M., Brown, S. P., Lafferty, K. D. & Thomas, F. Evolution of trophic transmission in parasites: Why add intermediate hosts?. Am. Nat. 162, 172–181 (2003).PubMed 

    Google Scholar 
    59.Pechenik, J. & Fried, B. Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: A test of the energy limitation hypothesis. Parasitology 111, 373–378 (1995).
    Google Scholar 
    60.Fried, B. & Ponder, E. L. Effects of temperature on survival, infectivity and in vitro encystment of the cercariae of Echinostoma caproni. J. Helminthol. 77, 235–238 (2003).CAS 
    PubMed 

    Google Scholar 
    61.Bommarito, C. et al. Freshening rather than warming drives trematode transmission from periwinkles to mussels. Mar. Biol. 167, 1–12 (2020).
    Google Scholar 
    62.Morley, N. J. & Lewis, J. W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140, 121–1214 (2013).
    Google Scholar 
    63.Büttger, H. et al. Community dynamics of intertidal soft-bottom mussel beds over two decades. Helgol. Mar. Res. 62, 23–36 (2008).ADS 

    Google Scholar 
    64.Jaatinen, K., Westerbom, M., Norkko, A., Mustonen, O. & Koons, D. N. Detrimental impacts of climate change may be exacerbated by density-dependent population regulation in blue mussels. J. Anim. Ecol. 90, 562–573 (2021).PubMed 

    Google Scholar 
    65.Studer, A. & Poulin, R. Analysis of trait mean and variability versus temperature in trematode cercariae: Is there scope for adaptation to global warming?. Int. J. Parasitol. 44, 403–413 (2014).CAS 
    PubMed 

    Google Scholar 
    66.Berkhout, B. W., Lloyd, M. M., Poulin, R. & Studer, A. Variation among genotypes in responses to increasing temperature in a marine parasite: Evolutionary potential in the face of global warming?. Int. J. Parasitol. 44, 1019–1027 (2014).PubMed 

    Google Scholar 
    67.Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of salinity and temperature on egg development and miracidial emergence. Parasitology 82, 459–465 (1981).
    Google Scholar 
    68.Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of temperature and salinity on the life-span of the miracidium and the infection of the first intermediate host, Hydrobia ventrosa. Parasitology 84, 131–135 (1982).
    Google Scholar 
    69.de Montaudouin, X. et al. Digenean trematode species in the cockle Cerastoderma edule: Identification key and distribution along the North-Eastern Atlantic Shoreline. J. Mar. Biol. Assoc. U.K. 89, 543–556 (2009).
    Google Scholar 
    70.Richard, A., de Montaudouin, X., Rubiello, A. & Maire, O. Cockle as second intermediate host of trematode parasites: Consequences for sediment bioturbation and nutrient fluxes across the benthic interface. J. Mar. Sci. Eng. 9, 749 (2021).
    Google Scholar 
    71.Magalhães, L., Freitas, R. & de Montaudouin, X. How costly are metacercarial infections in a bivalve host? Effects of two trematode species on biochemical performance of cockles. J. Invertebr. Pathol. 177, 107479 (2020).PubMed 

    Google Scholar 
    72.Magalhães, L., de Montaudouin, X., Figueira, E. & Freitas, R. Trematode infection modulates cockles biochemical response to climate change. Sci. Total Environ. 637–638, 30–40 (2018).ADS 
    PubMed 

    Google Scholar 
    73.Magalhães, L. et al. Seasonal variation of transcriptomic and biochemical parameters of cockles (Cerastoderma edule) related to their infection by trematode parasites. J. Invertebr. Pathol. 148, 73–80 (2017).PubMed 

    Google Scholar 
    74.Bakhmet, I., Nikolaev, K. & Levakin, I. Effect of infection with Metacercariae of Himasthla elongata (Trematoda: Echinostomatidae) on cardiac activity and growth rate in blue mussels (Mytilus edulis) in situ. J. Sea Res. 123, 51–54 (2017).ADS 

    Google Scholar 
    75.Stier, T., Drent, J. & Thieltges, D. W. Trematode infections reduce clearance rates and condition in blue mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 529, 137–144 (2015).ADS 

    Google Scholar 
    76.de Montaudouin, X., Bazairi, H. & Culloty, S. Effect of trematode parasites on cockle Cerastoderma edule growth and condition index: A transplant experiment. Mar. Ecol. Prog. Ser. 471, 111–121 (2012).ADS 

    Google Scholar 
    77.Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    78.Österblom, H. et al. Human-induced trophic cascades and ecological regime shifts in the baltic sea. Ecosystems 10, 877–889 (2007).
    Google Scholar 
    79.Zander, C. D. & Reimer, L. W. Parasitism at the ecosystem level in the Baltic Sea. Parasitology 124, 119–135 (2002).
    Google Scholar 
    80.Johnson, P. T. J. et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc. Natl. Acad. Sci. U. S. A. 104, 15781–15786 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Budria, A. & Candolin, U. How does human-induced environmental change influence host–parasite interactions?. Parasitology 141, 462–474 (2014).PubMed 

    Google Scholar 
    82.Aalto, S. L., Decaestecker, E. & Pulkkinen, K. A three-way perspective of stoichiometric changes on host–parasite interactions. Trends Parasitol. 31, 333–340 (2015).PubMed 

    Google Scholar 
    83.Vajedsamiei, J., Melzner, F., Raatz, M., Moron, S. & Pansch, C. Cyclic thermal fluctuations can be burden or relief for an ectotherm depending on fluctuations’ average and amplitude. Funct. Ecol. 35, 2483–2496 (2021).
    Google Scholar 
    84.Moisez, E., Spilmont, N. & Seuront, L. Microhabitats choice in intertidal gastropods is species-, temperature- and habitat-specific. J. Therm. Biol. 94, 102785 (2020).PubMed 

    Google Scholar 
    85.Bates, A. E., Leiterer, F., Wiedeback, M. L. & Poulin, R. Parasitized snails take the heat: A case of host manipulation?. Oecologia 167, 613–621 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    86.Shinagawa, K., Urabe, M. & Nagoshi, M. Relationships between trematode infection and habitat depth in a freshwater snail, Semisulcospira libertina (Gould). Hydrobiologia 397, 171–178 (1999).
    Google Scholar 
    87.Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    88.Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).
    Google Scholar 
    89.Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS One 11, 1–21 (2016).
    Google Scholar 
    90.Solovyeva, A. et al. Reduced infectivity in Himasthla elongata (Trematoda, Himasthlidae) cercariae with deviant photoreaction. J. Helminthol. 94, 1–5 (2020).
    Google Scholar 
    91.de Montaudouin, X., Blanchet, H., Desclaux-Marchand, C., Lavesque, N. & Bachelet, G. Cockle infection by Himasthla quissetensis—I. From cercariae emergence to metacercariae infection. J. Sea Res. 113, 99–107 (2016).
    Google Scholar 
    92.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health vol. 36 (Springer, 2009).93.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    94.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0. (2018).
    https://CRAN.R-project.org/package=DHARMa 1–36 https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf. Accessed 26 Feb 2021.95.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC, 2017).MATH 

    Google Scholar 
    96.Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).MathSciNet 
    CAS 

    Google Scholar 
    97.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    98.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 1–11 (2017).
    Google Scholar 
    99.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Assessment of Regression Models Performance. CRAN. CRAN https://easystats.github.io/performance/ (2020) https://doi.org/10.1098/rsif.2017.0213. Accessed 1 Sept 2021.100.Fox, J. & Weisberg, S. An R Companion to Applied Regression. Robust Regression in R (Sage, 2019).
    Google Scholar 
    101.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar  More

  • in

    Risk assessment of microplastic particles

    1.Science Advice for Policy by European Academies. A scientific perspective on microplastics in nature and society (SAPEA, 2019). Expert group report summarizing the state of the science regarding microplastics in nature and society.2.Koelmans, A. A. et al. Risks of plastic debris: Unravelling fact, opinion, perception and belief. Environ. Sci. Technol. 51, 11513–11519 (2017).CAS 

    Google Scholar 
    3.Henderson, L. & Green, C. Making sense of microplastics? Public understandings of plastic pollution. Mar. Pollut. Bull. 152, 110908 (2020).CAS 

    Google Scholar 
    4.Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). Sources, fate and effects of microplastics in the marine environment. Part two of a global assessment (eds Kershaw, P. J. & Rochman, C. M.) (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP, 2016).5.Arthur, C., Baker, J. & Bamford, H. (eds) NOAA technical memorandum NOS-OR&R-30. In Proc. Int. Res. Worksh. Occurrence, Effects and Fate of Microplastic Marine Debris (NOAA, 2009).6.European Chemicals Agency. Annex XV restriction report proposal for a restriction: intentionally added microplastics. Version 1.2. Proposal 1.2. ECA https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720 (2019).7.Coffin, S. Proposed definition of ‘microplastics in drinking water’. California Water Boards https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/stffrprt_jun3.pdf (2020).8.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 

    Google Scholar 
    9.Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019). This paper introduces the concept of describing microplastic characteristics through continuous PDFs, allowing us to capture the diversity of microplastics as a single contaminant in transport, exposure and risk assessment, rather than across many separate categories.CAS 

    Google Scholar 
    10.Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).CAS 

    Google Scholar 
    11.Kooi, M., Besseling, E., Kroeze, C., van Wezel, A. P. & Koelmans, A. A. Modelling the fate and transport of plastic debris in fresh waters. Review and guidance. In Freshwater Microplastics. The Handbook of Environmental Chemistry Vol. 58 (eds Wagner M. & Lambert S.) 125–152 (Springer, 2017).12.Hardesty, B. D. et al. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment. Front. Mar. Sci. 4, 1–30 (2017).
    Google Scholar 
    13.Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52, 2278–2286 (2018).CAS 

    Google Scholar 
    14.Adam, V., Yang, T. & Nowack, B. Toward an ecotoxicological risk assessment of microplastics: comparison of available hazard and exposure data in freshwaters. Environ. Toxicol. Chem. 38, 436–447 (2019). This paper introduces probabilistic SSDs for microplastic particles.CAS 

    Google Scholar 
    15.Koelmans, A. A., Diepens N. J. & Mohamed Nor, N. H. Weight of evidence for the microplastic vector effect in the context of chemical risk assessment. In Microplastic in the Environment: Pattern and Process (ed. Bank, M. S.) (Springer, 2021).16.Besseling, E., Redondo-Hasselerharm, P. E., Foekema, E. M. & Koelmans, A. A. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Rev. Environ. Sci. Technol. 49, 32–80 (2019).
    Google Scholar 
    17.Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37, 2776–2796 (2018).CAS 

    Google Scholar 
    18.Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017). This is a thorough review and outlook on the implications of plastic for human health.CAS 

    Google Scholar 
    19.Mohamed Nor, N. H., Kooi, M., Diepens, N. J. & Koelmans, A. A. Lifetime accumulation of nano- and microplastic in children and adults. Environ. Sci. Technol. 55, 5084–5096 (2021). This paper is the first probabilistic and aligned microplastic exposure assessment for humans, using PDFs.CAS 

    Google Scholar 
    20.Noventa, S. et al. Paradigms to assess the human health risks of nano- and microplastics. Micropl. Nanopl. 1, 9 (2021).
    Google Scholar 
    21.Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, eabd1211 (2020).CAS 

    Google Scholar 
    22.Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).CAS 

    Google Scholar 
    23.Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).CAS 

    Google Scholar 
    24.Schwabl, P. et al. Detection of various microplastics in human stool: a prospective case series. Ann. Intern. Med. 171, 453–457 (2019).
    Google Scholar 
    25.Connors, K. A., Dyer, S. D. & Belanger, S. E. Advancing the quality of environmental microplastic research. Environ. Toxicol. Chem. 36, 1697–1703 (2017). This paper highlights the need for better quality in microplastic research.CAS 

    Google Scholar 
    26.Wesch, C., Bredimus, K., Paulus, M. & Klein, R. Towards the suitable monitoring of ingestion of microplastics by marine biota: a review. Environ. Pollut. 218, 1200–1208 (2016).CAS 

    Google Scholar 
    27.O’Connor, J. et al. Microplastics in freshwater biota: a critical review of isolation, characterization and assessment methods. Glob. Challeng. https://doi.org/10.1002/gch2.201800118 (2019).28.de Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T. & Koelmans, A. A. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54, 11692–11705 (2020).
    Google Scholar 
    29.Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).CAS 

    Google Scholar 
    30.Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A. M. & Sanden, M. Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci. Total. Environ. 709, 136050 (2020).
    Google Scholar 
    31.Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & van Sebille, E. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review. Crit. Rev. Environ. Sci. Technol. 48, 685 (2018).
    Google Scholar 
    32.Riediker, M. et al. Particle toxicology and health — where are we? Part. Fibre Toxicol. 16, 1–33 (2019).
    Google Scholar 
    33.Kooi, M. et al. Characterizing the multidimensionality of microplastics across environmental compartments. Water Res. 202, 117429 (2021).CAS 

    Google Scholar 
    34.Wiesinger, H., Wang, Z. & Hellweg, S. Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021).CAS 

    Google Scholar 
    35.Gouin, T. Addressing the importance of microplastic particles as vectors for long-range transport of chemical contaminants: perspective in relation to prioritizing research and regulatory actions. Micropl. Nanopl. 1, 14 (2021).
    Google Scholar 
    36.Hermabessiere, L. et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182, 781–793 (2017).CAS 

    Google Scholar 
    37.Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ. Sci. Technol. 45, 1466–1472 (2011).CAS 

    Google Scholar 
    38.Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans — but should microplastics be considered POPs themselves? Int. Environ. Assess. Manag. 13, 460–465 (2017).CAS 

    Google Scholar 
    39.Takada, H. & Karapanagioti, H. K. (eds) Hazardous Chemicals Associated with Plastics in the Marine Environment (Springer International Publishing, 2016).40.Hong, S. H., Shim, W. J. & Hong, K. Methods of analysing chemicals associated with microplastics: a review. Anal. Methods 9, 1361–1368 (2017).
    Google Scholar 
    41.Koelmans, A. A., Bakir, A., Burton, G. A. & Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environment. critical review and model-supported re-interpretation of empirical studies. Environ. Sci. Technol. 50, 3315–3326 (2016).CAS 

    Google Scholar 
    42.Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).CAS 

    Google Scholar 
    43.Boucher, J. and Friot D. Primary Microplastics in the Oceans: A Global Evaluation of Sources 43 (IUCN, 2017).44.Koelmans, A. A., Kooi, M., Lavender-Law, K. & Van Sebille, E. All is not lost: deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 12, 114028 (2017).
    Google Scholar 
    45.Kawecki, D. & Nowack, D. Polymer-specific modeling of the environmental emissions of seven commodity plastics as macro- and microplastics. Environ. Sci. Technol. 53, 9664–9676 (2019).CAS 

    Google Scholar 
    46.Kooi, M., Van Nes, E. H., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).CAS 

    Google Scholar 
    47.Mateos-Cárdenas, A., O’Halloran, J., van Pelt, F. N. A. M. & Jansen, M. A. K. Rapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.). Sci. Rep. 10, 12799 (2020).
    Google Scholar 
    48.Julienne, F., Delorme, N. & Lagarde, F. From macroplastics to microplastics: role of water in the fragmentation of polyethylene. Chemosphere 236, 124409 (2019).CAS 

    Google Scholar 
    49.Koelmans, A. A., Redondo-Hasselerharm, P. E., Mohamed Nor, N. H. & Kooi, M. Solving the non-alignment of methods and approaches used in microplastic research in order to consistently characterize risk. Environ. Sci. Technol. 54, 12307–12315 (2020).CAS 

    Google Scholar 
    50.Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).
    Google Scholar 
    51.Mattsson, K., Björkroth, F., Karlsson, T. & Hassellöv, M. Nanofragmentation of expanded polystyrene under simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence). Front. Mar. Sci., 7, 1–9 (2021). This paper demonstrates log linear particle size distributions extending to the nanoparticle scale.
    Google Scholar 
    52.Kaandorp, M. L. A., Dijkstra, H. A. & van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 16, 054075 (2021).
    Google Scholar 
    53.Koelmans, A. A., Besseling, E. & Shim, W. J. Nanoplastics in the aquatic environment. Critical review. In Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 325–340 (Springer, 2015).54.Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 155, 410–422 (2019).CAS 

    Google Scholar 
    55.Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sust. Chem. Engin. 8, 3494–3511 (2020). This paper provides a rare estimate of degradation rates for plastic items in the environment.CAS 

    Google Scholar 
    56.Unice, K. M. et al. Characterizing export of land-based microplastics to the estuary — Part II: Sensitivity analysis of an integrated geospatial microplastic transport modeling assessment of tire and road wear particles. Sci. Total. Environ. 646, 1650–1659 (2019).CAS 

    Google Scholar 
    57.Buffle, J. & van Leeuwen, H. P. Environmental Particles Vol. 1 76 (CRC Press, 1992).58.Chamley, H., Clay formation through weathering. In Clay Sedimentology (Springer, 1989).59.Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).
    Google Scholar 
    60.Boyd, C. E. Suspended solids, color, turbidity, and light. In Water Quality 119–133 (Springer, 2020).61.Konrad, K. et al. Chemical composition and complex refractive index of Saharan mineral dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos. Env. 41, 8058–8074 (2007).
    Google Scholar 
    62.Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014).
    Google Scholar 
    63.De Wit, C. T. & Arens, P. L. Moisture content and density of some clay minerals and some remarks on the hydration pattern of clay. Trans. Int. Congr. Soil Science 2, 59–62 (1951).
    Google Scholar 
    64.Utembe, W., Potgieter, K., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials. Part. Fiber Toxicol. 12, 11 (2015).
    Google Scholar 
    65.Köhler, S. J., Bosbach, D. & Oelkers, E. H. Do clay mineral dissolution rates reach steady state? Geochim. Cosmochim. Acta 69, 1997–2006 (2005).
    Google Scholar 
    66.Torrey, M. L. S. T. Chemistry of Lake Michigan (Argonne National Laboratory, 1976).67.Prestigiacomo, A. R. et al. Turbidity and suspended solids levels and loads in a sediment enriched stream: implications for impacted lotic and lentic ecosystems. Lake Res. Manag. 23, 231–244 (2007).
    Google Scholar 
    68.Baran, A. et al. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health 41, 2893–2910 (2019).CAS 

    Google Scholar 
    69.Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D. M. Environmental Organic Chemistr 3rd edn 1024 (Wiley, 2016).70.Van Valkenburg, S. D., Jones, J. K. & Heinle, D. R. A comparison by size class and volume of detritus versus phytoplankton in Chesapeake Bay. Estuar. Coast. Mar. Sci. 6, 569–582 (1978).
    Google Scholar 
    71.Hamilton, S. K., Sippel, S. J. & Bunn, S. E. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnol. Oceanogr. Methods 3, 149–157 (2005).CAS 

    Google Scholar 
    72.Zimmer, M. Detritus. Encyclopedia of Ecology 903–911 (Elsevier, 2008).73.Zhao, H.-C., Wang, S.-R., Jiao, L.-X., Yang, S.-W. & Cui, C.-N. Characteristics of composition and spatial distribution of organic matter in the sediment of Erhai Lake. Res. Environ. Sci. 26, 243–249 (2013).CAS 

    Google Scholar 
    74.Duan, H., Feng, L., Ma, R., Zhang, Y. & Loiselle, S. A. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ. Res. Lett. 9, 084011 (2014).CAS 

    Google Scholar 
    75.Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, eaay8493 (2020). This paper identifies the relative proportion of microplastic fibres in the oceans.
    Google Scholar 
    76.Le Guen, C. et al. Microplastic study reveals the presence of natural and synthetic fibres in the diet of King penguins (Aptenodytes patagonicus) foraging from South Georgia. Environ. Intern. 134, 105303 (2020).
    Google Scholar 
    77.Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W. & Gomes, R. L. Sci. Total. Environ. 666, 377–389 (2019).CAS 

    Google Scholar 
    78.Comnea-Stancu, L. R., Wieland, H., Ramer, G., Schwaighofer, A. & Lendl, B. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using Fourier transform infrared spectroscopy. Appl. Spectrosc. 71, 939–950 (2017).CAS 

    Google Scholar 
    79.Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247 (1980).CAS 

    Google Scholar 
    80.Cornelissen, G. et al. Critical review. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation and biodegradation. Environ. Sci. Technol. 39, 6881–6895 (2005).CAS 

    Google Scholar 
    81.Jonker, M. T. O., Hawthorne, S. B. & Koelmans, A. A. Extremely slow desorption and limited bioaccumulation of BC-associated PAHs. ACS Div. Environ. Chem. 45, 381–384 (2005).CAS 

    Google Scholar 
    82.Shrestha, G., Traina, S. J., Swanson & C., W. Black carbons properties and role in the environment: a comprehensive review. Sustainability 2, 294–320 (2010).CAS 

    Google Scholar 
    83.Bisiaux, M. M. et al. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe. Environ. Sci. Technol. 45, 2065–2071 (2011). This paper identifies black carbon abundance in surface waters.CAS 

    Google Scholar 
    84.World Health Organization. Health effects of black carbon. (WHO, 2012).85.Jonker, M. T. O. & Koelmans, A. A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment. Mechanistic considerations. Environ. Sci. Technol. 36, 3725–3734 (2002).CAS 

    Google Scholar 
    86.Liu, H. et al. Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing. Atmos. Chem. Phys. 20, 5771–5785 (2020).CAS 

    Google Scholar 
    87.Ouf, F.-X. et al. True density of soot particles: a comparison of results highlighting the influence of the organic contents. J. Aerosol Sci. 134, 1–13 (2019).CAS 

    Google Scholar 
    88.Wu, Y. et al. A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmos. Meas. Tech. 12, 4347–4359 (2019).CAS 

    Google Scholar 
    89.Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. & Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil. Biol. Biochem. 41, 210–219 (2009).CAS 

    Google Scholar 
    90.Middelburg, J. J., Nieuwenhuize, J. & Van Breugel, P. Black carbon in marine sediments. Mar. Chem. 65, 245–252 (1999).CAS 

    Google Scholar 
    91.Murr, L. E., Bang, J. J., Esquivel, E. V., Guerrero, P. A. & Lopez, D. A. Carbon nanotubes, nanocrystal forms and complex nanoparticle aggregates in common fuel gas combustion streams. J. Nanopart. Res. 6, 241–251 (2004).CAS 

    Google Scholar 
    92.Koelmans, A. A., Nowack, B. & Wiesner, M. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ. Pollut. 157, 1110–1116 (2009).CAS 

    Google Scholar 
    93.Dickens, A. F., Gelinas, Y., Masiello, C. A., Wakeham, S. & Hedges, J. I. Reburial of fossil organic carbon in marine sediments. Nature 427, 336–339 (2004).CAS 

    Google Scholar 
    94.Kharbush, J. J. et al. Particulate organic carbon deconstructed: molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).
    Google Scholar 
    95.Redondo-Hasselerharm, P. E. Effect assessment of nano- and microplastics in freshwater ecosystems. Thesis, Wageningen Univ. (2020).96.Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).CAS 

    Google Scholar 
    97.Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020).CAS 

    Google Scholar 
    98.Velzeboer, I., Kwadijk, C. J. A. F. & Koelmans, A. A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes and fullerenes. Environ. Sci. Technol. 48, 4869–4876 (2014).CAS 

    Google Scholar 
    99.Beckingham, B. & Ghosh, U. Differential bioavailability of polychlorinated biphenyls associated with environmental particles: microplastic in comparison to wood, coal and biochar. Environ. Pollut. 220, 150–158 (2017).CAS 

    Google Scholar 
    100.Liping, L. et al. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment. Environ. Pollut. 190, 101–108 (2014).
    Google Scholar 
    101.Voparil, I. M. et al. Digestive bioavailability to a deposit feeder (Arenicola marina) of polycyclic aromatic hydrocarbons associated with anthropogenic particles. Environ. Toxicol. Chem. 23, 2618–2626 (2004).CAS 

    Google Scholar 
    102.Birdwell, J., Cook, R. L. & Thibodeaux, L. J. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models. Environ. Toxicol. Chem. 26, 424–434 (2007).CAS 

    Google Scholar 
    103.Koelmans, A. A., Besseling, E. & Foekema, E. M. Leaching of plastic additives to marine organisms. Environ. Pollut. 187, 49–54 (2014).CAS 

    Google Scholar 
    104.Bundschuh, M. et al. Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. 30, 6 (2018).
    Google Scholar 
    105.Peijnenburg, W. J. G. M. et al. A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit. Rev. Environ. Sci. Technol. 45, 2084–2134 (2015).CAS 

    Google Scholar 
    106.Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).CAS 

    Google Scholar 
    107.Ter Halle, A. et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).
    Google Scholar 
    108.Sengul, A. B. & Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environ. Chem. Lett. 18, 1659–1683 (2020).CAS 

    Google Scholar 
    109.Botterell, Z. L. R. et al. Bioavailability and effects of microplastics on marine zooplankton: a review. Environ. Pollut. 245, 98–110 (2019).CAS 

    Google Scholar 
    110.Ribeiro, F., O’Brien, J. W., Galloway, T. & Thomas, K. V. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC 111, 139–147 (2019).CAS 

    Google Scholar 
    111.da Costa Araújo, A. P. et al. How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. J. Hazard. Mater. 382, 121066 (2020).
    Google Scholar 
    112.Jovanović, B. Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. 13, 510–515 (2017).
    Google Scholar 
    113.Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total. Environ. 646, 68–74 (2018).
    Google Scholar 
    114.Hu, L., Chernick, M., Hinton, D. E. & Shi, H. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environ. Sci. Technol. 52, 8885–8893 (2018).CAS 

    Google Scholar 
    115.McNeish, R. E. et al. Microplastic in riverine fish is connected to species traits. Sci. Rep. 8, 11639 (2018).CAS 

    Google Scholar 
    116.Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Chang. Biol. 25, 744–752 (2019).
    Google Scholar 
    117.Kühn, S., Bravo Rebolledo, E. L. & Van Franeker, J. A. Deleterious effects of litter on marine life. In Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 75–116 (Springer International Publishing, 2015).118.Nelms, S. E. et al. Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory? Sci. Rep. 9, 1–9 (2019).CAS 

    Google Scholar 
    119.O’Connor, J. D. et al. Microplastics in freshwater biota: a critical review of isolation, characterization, and assessment methods. Glob. Challen. 4, 1800118 (2019).
    Google Scholar 
    120.Vroom, R. J. E., Koelmans, A. A., Besseling, E. & Halsband, C. Aging of microplastics promotes their ingestion by marine zooplankton. Environ. Pollut. 231, 987–996 (2017).CAS 

    Google Scholar 
    121.Bour, A., Haarr, A., Keiter, S. & Hylland, K. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environ. Pollut. 236, 652–660 (2018).CAS 

    Google Scholar 
    122.Kaposi, K. L., Mos, B., Kelaher, B. P. & Dworjanyn, S. A. Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. 48, 1638–1645 (2014).CAS 

    Google Scholar 
    123.Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).CAS 

    Google Scholar 
    124.Ribeiro, F. et al. Microplastics effects in Scrobicularia plana. Mar. Pollut. Bull. 122, 379–391 (2017).CAS 

    Google Scholar 
    125.Von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).
    Google Scholar 
    126.Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M. & Thompson, R. C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031 (2008).CAS 

    Google Scholar 
    127.Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).
    Google Scholar 
    128.Zhang, C., Chen, X., Wang, J. & Tan, L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ. Pollut. 220, 1282–1288 (2017).CAS 

    Google Scholar 
    129.Mateos-Cárdenas, A. et al. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci. Total. Environ. 689, 413–421 (2019).
    Google Scholar 
    130.Murphy, F. & Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology and reproduction. Environ. Pollut. 234, 487–494 (2018).CAS 

    Google Scholar 
    131.Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).CAS 

    Google Scholar 
    132.Green, D. S., Boots, B., O’Connor, N. E. & Thompson, R. Microplastics affect the ecological functioning of an important biogenic habitat. Environ. Sci. Technol. 51, 68–77 (2017).CAS 

    Google Scholar 
    133.Senga Green, D. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 216, 95–103 (2016).
    Google Scholar 
    134.Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).CAS 

    Google Scholar 
    135.Ogonowski, M., Schür, C., Jarsén, Å. & Gorokhova, E. The effects of natural and anthropogenic microparticles on individual fitness in daphnia magna. PLoS ONE 11, e0155063 (2016). This paper systematically addresses the differences between the biological effects of microplastic and natural particles.
    Google Scholar 
    136.Mazurais, D. et al. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Mar. Environ. Res. 112, 78–85 (2015).CAS 

    Google Scholar 
    137.Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Env. Sci. Technol. 47, 11278–11283 (2013).CAS 

    Google Scholar 
    138.Au, S. Y., Bruce, T. F., Bridges, W. C. & Klaine, S. J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 34, 2564–2572 (2015).CAS 

    Google Scholar 
    139.Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).CAS 

    Google Scholar 
    140.Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).CAS 

    Google Scholar 
    141.Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857 (2016).CAS 

    Google Scholar 
    142.Blarer, P. & Burkhardt-Holm, P. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ. Sci. Pollut. Res. 23, 23522–23532 (2016).CAS 

    Google Scholar 
    143.Wright, S. L., Rowe, D., Thompson, R. C. & Galloway, T. S. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 23, R1031–R1033 (2013).CAS 

    Google Scholar 
    144.Straub, S., Hirsch, P. E. & Burkhardt-Holm, P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 14, 774 (2017).
    Google Scholar 
    145.Green, D. S., Boots, B., Sigwart, J., Jiang, S. & Rocha, C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut. 208, 426–434 (2016).CAS 

    Google Scholar 
    146.Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51, 13397–13406 (2017).CAS 

    Google Scholar 
    147.Nobre, C. R. et al. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Pollut. Bull. 92, 99–104 (2015).CAS 

    Google Scholar 
    148.Rehse, S., Kloas, W. & Zarfl, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153, 91–99 (2016).CAS 

    Google Scholar 
    149.Gambardella, C. et al. Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol. Environ. Saf. 145, 250–257 (2017).CAS 

    Google Scholar 
    150.Watts, A. J. R. et al. Effect of microplastic on the gills of the shore crab Carcinus maenas. Environ. Sci. Technol. 50, 5364–5369 (2016).CAS 

    Google Scholar 
    151.Espinosa, C., Cuesta, A. & Esteban, M. Á. Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish. Shellfish. Immunol. 68, 251–259 (2017).CAS 

    Google Scholar 
    152.Jin, Y., Lu, L., Tu, W., Luo, T. & Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total. Environ. 649, 308–317 (2019).CAS 

    Google Scholar 
    153.Jin, Y. et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 235, 322–329 (2018).CAS 

    Google Scholar 
    154.Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020). This paper reviews the evidence for effects of plastic pollution across endpoints, organisms and levels of biological organization.CAS 

    Google Scholar 
    155.Kjelland, M. E., Woodley, C. M., Swannack, T. M. & Smith, D. L. A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environ. Syst. Decis. 35, 334–350 (2015).
    Google Scholar 
    156.Michel, C., Herzog, S., de Capitani, C., Burkhardt-Holm, P. & Pietsch, C. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS ONE 9, e100856 (2014).
    Google Scholar 
    157.Gordon, A. K. & Palmer, C. G. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids. Environ. Toxicol. Chem. 34, 907–912 (2015).CAS 

    Google Scholar 
    158.Lu, C., Kania, P. W. & Buchmann, K. Particle effects on fish gills: an immunogenetic approach for rainbow trout and zebrafish. Aquaculture 484, 98–104 (2018).CAS 

    Google Scholar 
    159.Ogonowski, M., Gerdes, Z. & Gorokhova, E. What we know and what we think we know about microplastic effects — a critical perspective. Curr. Opin. Environ. Sci. Health 1, 41–46 (2018).
    Google Scholar 
    160.Albarano, L. et al. Comparison of in situ sediment remediation amendments: risk perspectives from species sensitivity distribution. Environ. Pollut. 272, 115995 (2021).CAS 

    Google Scholar 
    161.Newcombe, C. P. & Macdonald, D. D. Effects of suspended sediments on aquatic ecosystems. North. Am. J. Fish. Manag. 11, 72–82 (1991).
    Google Scholar 
    162.Yap, V. H. et al. A comparison with natural particles reveals a small specific effect of PVC microplastics on mussel performance. Mar. Pollut. Bull. 160, 111703 (2020).CAS 

    Google Scholar 
    163.Schür, C., Zipp, S., Thalau, T. & Wagner, M. Microplastics but not natural particles induce multigenerational effects in Daphnia magna. Environ. Pollut. 260, 113904 (2020).
    Google Scholar 
    164.Gerdes, Z., Hermann, M., Ogonowski, M. & Gorokhova, E. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Sci. Rep. 9, 1–9 (2019).CAS 

    Google Scholar 
    165.Niranjan, R. & Thakur, A. K. The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory pathways. Front. Immunol. 8, 763 (2017).
    Google Scholar 
    166.Tsuji, J. S. et al. Research strategies for safety evaluation of nanomaterials. Part IV: Risk assessment of nanoparticles. Toxicol. Sci. 89, 42–50 (2006).CAS 

    Google Scholar 
    167.Schwarze, P. E. et al. Importance of size and composition of particles for effects on cells in vitro. Inhal. Toxicol. 19, 17–22 (2007).CAS 

    Google Scholar 
    168.Schmid, O. & Stoeger, T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 99, 133–143 (2016). This paper identifies the toxicologically relevant dose metric for particle effects.CAS 

    Google Scholar 
    169.Fubini, B. Surface reactivity in the pathogenic response to particulates. Environ. Health Perspect. 105, 1013–1020 (1997).
    Google Scholar 
    170.Poland, C. A., Duffin, R. & Donaldson, K. High aspect ratio nanoparticles and the fibre pathogenicity paradigm. In Nanotoxicity Vivo and In Vitro Models to Health Risks 61–80 (John Wiley and Sons, 2009).171.Gualtieri, A. F. Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Curr. Res. Toxicol. 2, 42–52 (2021).
    Google Scholar 
    172.Shao, X. R. et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 48, 465–474 (2015).CAS 

    Google Scholar 
    173.Motskin, M. et al. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30, 3307–3317 (2009).CAS 

    Google Scholar 
    174.Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).CAS 

    Google Scholar 
    175.Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).CAS 

    Google Scholar 
    176.Everaert, G. et al. Risk assessment of microplastics in the ocean: modelling approach and first conclusions. Environ. Pollut. 242, 1930–1938 (2018).CAS 

    Google Scholar 
    177.Everaert, G. et al. Risks of floating microplastic in the global ocean. Environ. Pollut. 267, 115499 (2020).CAS 

    Google Scholar 
    178.Zhang, X., Leng, Y., Liu, X., Huang, K. & Wang, J. Microplastics’ pollution and risk assessment in an urban river: a case study in the Yongjiang River, Nanning City, South China. Exposure Health 12, 141–151 (2020).CAS 

    Google Scholar 
    179.Skåre, J. U. et al. Microplastics, occurrence, levels and implications for environment and human health related to food. Opinion of the steering committee of the Norwegian Scientific Committee for Food and Environment (VKM, 2019).180.Adam, V., von Wyl, A. & Nowack, B. Probabilistic environmental risk assessment of microplastics in marine habitats. Aq. Toxicol. 230, 105689 (2021).CAS 

    Google Scholar 
    181.Jung, J.-W. et al. Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape. Environ. Pollut. 270, 116217 (2021).CAS 

    Google Scholar 
    182.Posthuma, L., Suter, G. W. & Traas, T. P. Species Sensitivity Distributions In Ecotoxicology (Lewis, 2002).183.Gouin, T. et al. Toward the development and application of an environmental risk assessment framework for microplastic. Environ. Toxicol. Chem. 38, 2087–2100 (2019).CAS 

    Google Scholar 
    184.Kong, X. & Koelmans, A. A. Effects of microplastic on shallow lake food webs. Environ. Sci. Technol. 53, 13822–13831 (2019).CAS 

    Google Scholar 
    185.Zimmermann, L., Göttlich, S., Oehlmann, J., Wagner, M. & Völker, C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ. Pollut. 267, 115392 (2020).CAS 

    Google Scholar 
    186.Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).CAS 

    Google Scholar 
    187.Bakir, A., O’Connor, I. A., Rowland, S. J., Hendriks, A. J. & Thompson, R. C. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ. Pollut. 219, 56–65 (2016).CAS 

    Google Scholar 
    188.Capolupo, M., Sørensen, L., Jayasena, K., Booth, A. M. & Fabbri, E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 169, 115270 (2020).CAS 

    Google Scholar 
    189.Zimmermann, L. et al. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 55, 11814–11823 (2021).CAS 

    Google Scholar 
    190.Bucci, K. & Rochman, C. M. A proposed framework for microplastics risk assessment [abstract 07.05.02]. Society of Environmental Toxicology and Chemistry North America 42nd Annual Meeting – SETAC SciCon4 https://scicon4.setac.org/wp-content/uploads/2021/11/SciCon4-abstract-book.pdf (2021).191.Primpke, S., Lorenz, C., Rascher-Friesenhausen, R. & Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 9, 1499–1511 (2017).CAS 

    Google Scholar 
    192.Rauchschwalbe, M.-T., Fueser, H., Traunspurger, W. & Höss, S. Bacterial consumption by nematodes is disturbed by the presence of polystyrene beads: the roles of food dilution and pharyngeal pumping. Environ. Pollut. 273, 116471 (2021).CAS 

    Google Scholar 
    193.Donaldson, K. & Seaton, A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 9, 13 (2012).
    Google Scholar 
    194.Primpke, S., Dias, A. P. & Gerdts, G. Automated identification and quantification of microfibers and microplastics. Anal. Methods 11, 2138–2147 (2019).CAS 

    Google Scholar  More

  • in

    Changes in the sediment microbial community structure of coastal and inland sinkholes of a karst ecosystem from the Yucatan peninsula

    Our results show that differences in environmental conditions between inland and coastal sinkholes, caused mainly by the inflow of seawater in the latter, influence the microbial community structure of their sediments. Furthermore, the microbial community structure also varied within the sinkholes and according to the sediment zone sampled, suggesting that a connection between the atmosphere in the outermost location of the sediments and sunlight creates an environment distinct from that found in deeper caves. Together with the different environmental factors that were measured (in situ physicochemical composition of water and sediment) these characteristics could drive niche-specific microbial community structures associated with the sediment zones. Additionally, beta-diversity analysis showed separate clustering of the sediment microbial communities from the coastal and inland sinkholes, and of the WM zone from cavern and cave zones at both sinkholes. Microbial community structure associated with karst environments have shown to be significantly influenced by environmental factors as seen in the Bahamian blue holes19, a coastal sinkhole13, a Floridan anchialine sinkhole20, and sediments from Chinese karst caves21.Microbial communities from karst sediments can be limited by nutrients such as carbon, phosphorus, and nitrogen21, therefore, influencing their structure. Differences in the microbial community composition associated with multiple environmental factors (moisture, type of niche, nitrogen) were also reported in karst cave sediments from China21. Previous studies had shown there was no effect on the alpha diversity of water column assemblages in the Yucatan groundwater associated with the type of sinkhole (inland or coastal)6. However, this observation may be limited due to the low sample number used in the study6. For other karst sinkholes, the microbial community dynamics differ between the water column and the sediments6,22,23,24.The karst caves and sinkholes of the underground river in Yucatan are characterized by low phosphorus concentrations and high levels of nitrate, mostly related to Anthropocentric activities (urban developments, farms and agriculture)3. The inland sinkhole at Noh Mozón showed the highest concentration of nitrate detected in the study and, not surprisingly, the area is surrounded by agricultural fields. The presence of organic matter in the sinkholes from the Yucatan peninsula are highly dependent on the connection between the cave systems, on the levels of exposure to light, and on their morphology3. High concentrations of organic carbon (661 ± 132 μM) and methane (6466 ± 659 nM) have been reported in the top layer of the water masses in coastal sinkholes before13. In this study, the highest concentration of organic carbon was observed in the sediments from the coastal sinkhole, likely originating from the surrounding vegetation and from seawater intrusion. We hypothesize that the differences in nutrients found at these two types of sinkholes influence the structure of their microbial communities.Other environmental factors such as pH and dissolved oxygen (DO), may also contribute significantly to the composition and structure of microbial communities, as seen in freshwater lake sediments22. Davis and Garey20 reported distinct microbial communities with unique functions for each water layer from an anchialine sinkhole from the Florida karst aquifer and suggested that this occurred as a result of the influence of the hydrochemistry, including differences in the concentration carbon and other nutrients from the environment20. Analyses of the sinkhole caves from the Yucatan underwater river support observations that physical and chemical parameters create distinct ecological niches which host unique microbes, as a high abundance of exclusive (not shared) ASVs were observed in the three sediment zones at both locations.The taxonomic diversity from the coastal and inland sinkholes included Chloroflexi, Crenarchaeota, Desulfobacterota, Proteobacteria, Nitrospirota, Bacteroidota, and Firmicutes as the most abundant phyla in the sediment samples, however, there were differences in the relative abundance associated with the type of sinkhole and sediment zone. Some of these phyla (Chloroflexi, Proteobacteria, and Bacteroidetes) have been reported in sediments from freshwater karst sinkholes from Lake Huron25 in water and sediments from other sinkholes in the Yucatan peninsula6, and in the karst caves bacteriome from southwest China21. A study that included coastal marine sediments from two sites in the Yucatan peninsula, showed high abundances of Spirochaeta, Desulfococcus, Clostridium, Psychrobacter26, four genera that were abundant in the coastal sinkhole. However, Desulfococcus, Synechococcus were also abundant in the inland sinkhole. Of the most abundant genera reported for sediments from different marine environments in the Yucatan coast23, Acinetobacter, Desulfotignum, Desulfovibrio, Pseudomonas, Sedimenticola, and Sulfurimonas were also present in the coastal sinkhole while only Pseudomonas and Sedimenticola were also present in the inland sinkhole23. The high number of families shared between the coastal sinkhole and marine sediments from the Yucatan coast, together with the salinity levels registered at the bottom layer of the water column in the coastal sinkhole, suggest an interconnection between these two environments which shapes the microbial communities present in the sediments of caverns and caves of this sinkhole. The genus Nitrospira was abundant in the WM from the coastal sinkhole and in all sediment zones from the inland sinkhole. This genus has been reported as one of the most abundant in the surface of speleothems from El Zapote coastal sinkhole2, and is considered a complete ammonia oxidizer (comammox), meaning it converts ammonia to nitrate through nitrite. A negative correlation between abundance of this genus and salinity has been reported before, which could explain the low concentration of Nitrospira in the cavern and cave from the coastal sinkhole, where the highest salinity was observed27. Connectivity between coastal sinkholes and the ocean, as well as the terrestrial input of soil organic matter (OM) has been reported for the underground karst aquifer in the Yucatan peninsula13. As in other sediments, degradation of OM is carried out by several MFGs including acetogenic bacteria, methanogens, and sulfate reducers13,20,28. When these MFGs were analyzed in coastal and inland sinkholes, differences in their relative abundances were clearly marked by the type of sinkhole and by the sediment zone analyzed, supporting the hypothesis that environmental differences drive microbial community distributions in these niches. The high abundance of sulfate-reducing bacteria (SRB) in the three sediment zones from the coastal sinkhole suggests that sulfate reduction is a predominant function. SRB degrade organic matter using sulfate with sulfide as waste or end-product19,30, originating hydrogen sulfide (H2S)29, which could explain the low concentration of sulfate the hydrogen sulfide (H2S) cloud observed and previously reported in the WM zone of El Zapote coastal sinkhole30. In this study, high levels of sulfate (SO−4) were measured in the water samples from the cavern and cave zones from El Zapote sinkhole, which could be associated with sulfate-rich deposits, such as gypsum beds, which have been reported in other sinkholes from the Yucatan peninsula (up to 2400 mg/L of sulfate concentration)3. However, we do not disregard other possible sources of sulfate, associated with seawater intrusion or as a product of sulfide or sulfur oxidation29,31 by sulfur-oxidizing bacteria detected in this study.The inland sinkhole had a low concentration of sulfate and low abundances of SRB. The high abundance of methanogenic bacteria in the WM zone from the coastal sinkhole detected in the MFG analysis supports the previous hypothesis of acetoclastic methanogenesis due to high inputs of organic matter13. Methylotrophic bacteria were most abundant at the inland sinkhole in the WM zone, suggesting the presence of methyl compounds, such as methane or methanol which can be used as a source of carbon and energy32. High methane concentrations have been quantified in shallow water masses from the Yucatan aquifer system13, consistent with observations from this study. ‘Candidatus Methylomirabilis’ was identified in the sediment of the WM zone from Noh-Mozón and has been previously described as being able to perform nitrite-dependent anaerobic methane oxidation, using methane as electron donor and nitrate and nitrite as electron acceptors33, which would be possible in these sediments considering the low levels of oxygen (average of 2.3 mg/L) detected in the water column above them and assuming this would lead to lower levels of oxygen in the sediments. We hypothesize that bacteria from this genus could be using the nitrite produced by ammonia oxidizing bacteria and archaea observed in this zone (Nitrosomonadaceae, Nitrospiraceae, and Nitrosococcaceae). The low abundance of methanotrophic microbes in the coastal sinkhole (mainly the cavern and cave zones) could be derived from the high concentrations of hydrogen sulfide previously reported at this location, which have been suggested to be toxic to methane-oxidizing microbes34. Therefore, a decrease in the anaerobic oxidation of methane, and a poor methane removal capacity is hypothesized in the sediments from this coastal sinkhole. Further research could focus on the influence of the saline intrusion on methanotrophic microbes and methane levels in El Zapote sinkhole sediments. As expected, photosynthetic bacterial abundances differed with the type of sinkhole and sediment zone. Both sinkholes are so the presence of daylight can start the photosynthetic process which would occur most in the WM zone. However, only the inland sinkhole showed a high abundance of photosynthetic bacteria within its WM zone. The coastal sinkhole water column and sediments would be deprived of photosynthetic bacteria since the water source is the underground aquifer, lacks photosynthesizers. Ammonia oxidizing bacteria (AOB) and archaea (AOA), and nitrite-oxidizing bacteria (NOB) were relatively abundant in the three sediment zones from the inland sinkhole and in the WM from the coastal sinkhole, these observation at the WM from El Zapote agree with previous observations2. Anaerobic ammonium oxidation (anammox) uses nitrite (as a product of nitrate reduction), as electron acceptor35. The high levels of nitrate concentration in the water column from the three sediment zones at the inland sinkhole and at the WM from the coastal sinkhole may influence the abundance of AOB, AOA and NOB in the sediments from these zones, while NH4+ and nitrite values were below detection limit ( More