More stories

  • in

    Reply to: The Living Planet Index does not measure abundance

    Department of Biology, McGill University, Montreal, Quebec, CanadaBrian Leung & Anna L. HargreavesBieler School of Environment, McGill University, Montreal, Quebec, CanadaBrian LeungDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaDan A. GreenbergSchool of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCentre for Biological Diversity, University of St Andrews, St Andrews, UKMaria DornelasIndicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UKRobin FreemanB.L. wrote the response. A.L.H. and D.A.G. helped with writing, editing and discussing ideas. B.M., M.D. and R.F. discussed ideas and did some editing. More

  • in

    Reply to: Shifting baselines and biodiversity success stories

    Cite this articleLeung, B., Hargreaves, A.L., Greenberg, D.A. et al. Reply to: Shifting baselines and biodiversity success stories.
    Nature 601, E19 (2022). https://doi.org/10.1038/s41586-021-03749-zDownload citationPublished: 26 January 2022Issue Date: 27 January 2022DOI: https://doi.org/10.1038/s41586-021-03749-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Do not downplay biodiversity loss

    1.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    2.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    3.Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    4.Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity in decline or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    5.Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).Article 

    Google Scholar 
    6.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 

    Google Scholar 
    8.Scholes, R. J. et al. Toward a global biodiversity observing system. Science 321, 1044–1045 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    The Living Planet Index does not measure abundance

    1.Almond, R. E. A., Grooten, M. & Petersen, T. (eds) Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (WWF, 2020).2.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. B. & Newson, S. E. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2, 1–15 (2011).Article 

    Google Scholar 
    4.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    5.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).Article 

    Google Scholar 
    6.Marconi, V., McRae, L., Deinet, S., Ledger, S. & Freeman, F. in Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (eds Almond, R. E. A., Grooten, M. & Petersen, T.) (WWF, 2020).7.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    8.Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368, 1341–1347 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    9.IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).10.van Strien, A. J., Soldaat, L. L. & Gregory, R. D. Desirable mathematical properties of indicators for biodiversity change. Ecol. Indic. 14, 202–208 (2012).Article 

    Google Scholar  More

  • in

    Shifting baselines and biodiversity success stories

    1.Almond, R. E. A., Grooten, M. & Petersen, T. (eds) Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (WWF, 2020).2.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Deinet, S. et al. Wildlife Comeback in Europe: The Recovery of Selected Mammal and Bird Species (final report to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council) (2013).4.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).CAS 
    Article 

    Google Scholar 
    5.Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    Article 

    Google Scholar 
    6.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Setiawan, R. et al. Preventing global extinction of the Javan rhino: tsunami risk and future conservation direction. Conserv. Lett. 11, e12366 (2018).Article 

    Google Scholar 
    8.Mondol, S., Bruford, M. W. & Ramakrishnan, U. Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc. R. Soc. Lond. B 280, 20130496 (2013).
    Google Scholar 
    9.Milner-Gulland, E. J. & Beddington, J. R. The exploitation of elephants for the ivory trade: An historical perspective. Proc. R. Soc. Lond. B 252, 29–37 (1993).ADS 
    Article 

    Google Scholar 
    10.Casas-Marce, M. et al. Spatiotemporal dynamics of genetic variation in the iberian lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol. 34, 2893–2907 (2017).CAS 
    Article 

    Google Scholar 
    11.Chase, M. J. et al. Continent-wide survey reveals massive decline in African savannah elephants. PeerJ 4, e2354 (2016).Article 

    Google Scholar 
    12.Jhala, Y. V, Qureshi, Q. & Nayak, A. K. (eds) Status of Tigers, Co-Predators and Prey in India 2018. Summary Report (National Tiger Conservation Authority, Government of India, New Delhi & Wildlife Institute of India, 2019).13.Sanderson, E. W. et al. The ecological future of the North American bison: conceiving long-term, large-scale conservation of wildlife. Conserv. Biol. 22, 252–266 (2008).Article 

    Google Scholar  More

  • in

    Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index

    1.Laffoley, D. & Baxter, J.M. Ocean Deoxygenation: Everyone’s Problem-Causes, Impacts, Consequences and Solutions. (IUCN, 2019).2.Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. 118(9), e2008478118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Ekau, W., Auel, H., Pörtner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).ADS 
    CAS 

    Google Scholar 
    4.Gallo, N. D. & Levin, L. A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74, 117–198 (2016).CAS 

    Google Scholar 
    5.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359(6371), eaam7240 (2018).
    Google Scholar 
    6.Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 C. Science 365(6459), eaaw6974 (2019).CAS 

    Google Scholar 
    7.Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).
    Google Scholar 
    8.Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319(5865), 920–920 (2008).ADS 
    CAS 

    Google Scholar 
    9.Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).ADS 
    CAS 

    Google Scholar 
    10.Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res Part I Oceanogr. Res. Pap. 57(4), 587–595 (2010).ADS 
    CAS 

    Google Scholar 
    11.Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5 °C Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty 175–311 (Intergovernmental Panel on Climate Change, 2019).12.Zhang, X. et al. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophys. Res. Lett. 38, L08605 (2011).ADS 

    Google Scholar 
    13.Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).CAS 

    Google Scholar 
    14.Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).ADS 
    CAS 

    Google Scholar 
    15.Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387(6630), 272–275 (1997).ADS 
    CAS 

    Google Scholar 
    16.Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: From genes to ecosystems. Annu. Rev. Mar. Sci. 3, 197–225 (2011).ADS 

    Google Scholar 
    17.Pack, M. A. et al. Methane oxidation in the Eastern Tropical North Pacific Ocean water column. J. Geophys. Res. Biogeosci. 120, 1078–1092 (2015).CAS 

    Google Scholar 
    18.Lashof, D. A. & Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531 (1990).ADS 
    CAS 

    Google Scholar 
    19.Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).CAS 

    Google Scholar 
    20.Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).ADS 
    CAS 

    Google Scholar 
    21.Keeling, R. E., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).
    Google Scholar 
    22.Helm, K. P., Bindoff, N. L. & Church, J. A. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).ADS 

    Google Scholar 
    23.Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).ADS 
    CAS 

    Google Scholar 
    24.Savrda, C. E. & Bottjer, D. J. Trace·fossil model for reconstruction of paleo-oxgenation in bottom waters. Geology 14, 3–6 (1986).ADS 
    CAS 

    Google Scholar 
    25.Savrda, C. E. & Bottjer, D. J. The exaerobic zone, a new oxygen-deficient marine biofacies. Nature 327, 54–56 (1987).ADS 

    Google Scholar 
    26.Savrda, C. E. & Bottjer, D. J. Trace·fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).
    Google Scholar 
    27.Kaiho, K. Morphotype changes of deep-sea benthic foraminifera during the Cenozoic Era and their paleoenvironmental implications. Kaseki (Fossils) 47, 1–23 (1989).
    Google Scholar 
    28.Kaiho, K. Global changes of Paleogene aerobic/anaerobic Benthic foraminifera and deep-sea circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 83, 65–85 (1991).
    Google Scholar 
    29.Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).ADS 
    CAS 

    Google Scholar 
    30.Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E. & Gooday, A. J. Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea). Mar. Micropaleontol. 62, 45–73 (2007).ADS 

    Google Scholar 
    31.Abu-Zied, R. H. et al. Benthic foraminiferal response to changes in bottom-water oxygenation and organic carbon flux in the eastern Mediterranean during LGM to Recent times. Mar. Micropaleontol. 67, 46–68 (2008).ADS 

    Google Scholar 
    32.Grunert, P. et al. Upwelling conditions in the Early Miocene Central Paratethys Sea. Geol. Carpath. 61(2), 129–145 (2010).ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    33.Kaminski, M. A. Calibration of the benthic foraminiferal oxygen index in the Marmara Sea. Geol. Q. 56(4), 757–764 (2012).
    Google Scholar 
    34.Ilies, I. A. et al. Early middle Miocene paleoenvironmental evolution in southwest Transylvania (Romania): Interpretation based on foraminifera. Geol. Carpath. 71(5), 444–461 (2020).
    Google Scholar 
    35.Bernhard, J. M. & Bowser, S. S. Benthic foraminifera of dysoxic sediments: Chloroplast sequestration and functional morphology. Earth Sci. Rev. 46(1–4), 149–165 (1999).ADS 
    CAS 

    Google Scholar 
    36.Ohkushi, K. et al. Quantified intermediate water oxygenation history of the NE Pacific: A new benthic foraminiferal record from Santa Barbara basin. Paleoceanography 28(3), 453–467 (2013).ADS 

    Google Scholar 
    37.Lu, W. et al. I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. EPSL 533, 116055 (2020).CAS 

    Google Scholar 
    38.Rathburn, A. E., Willingham, J., Ziebis, W., Burkett, A. M. & Corliss, B. H. A new biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera. Sci. Rep. 8, 1–8 (2018).CAS 

    Google Scholar 
    39.Singh, A. D., Rai, A. K., Verma, K., Das, S. & Bharti, S. K. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP. Quat. Int. 374, 118–125 (2015).
    Google Scholar 
    40.Palmer, H. M. et al. Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone. Biogeosciences 17(11), 2923–2937 (2020).ADS 

    Google Scholar 
    41.Tetard, M., Licari, L., Ovsepyan, E., Tachikawa, K. & Beaufort, L. Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera. Biogeosciences 18(9), 2827–2841 (2021).ADS 
    CAS 

    Google Scholar 
    42.Moffitt, S. E., Hill, T. M., Ohkushi, K., Kennett, J. P. & Behl, R. J. Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective. Paleoceanography 29, 44–57 (2014).ADS 

    Google Scholar 
    43.Hoogakker, B. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8, 40–43 (2015).ADS 
    CAS 

    Google Scholar 
    44.Glock, N., Liebetrau, V. & Eisenhauer, A. I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: analytical methodology and evaluation as a proxy for redox conditions. Biogeosciences 11(23), 7077–7095 (2014).ADS 

    Google Scholar 
    45.Jorissen, F.J., Fontanier, C., & Thomas, E. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In: Hillaire-Marcel, C., & De Vernal, A. Proxies in late Cenozoic paleoceanography. Dev. Mar. Geol., 1, 263–325 (2007).46.Diaz, R. J. Overview of hypoxia around the world. J. Environ. Qual. 30(2), 275–281 (2001).CAS 

    Google Scholar 
    47.Tetard, M., Licari, L., Tachikawa, K., Ovsepyan, E. & Beaufort, L. Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera. Biogeosci. Discuss. 18(9), 2827–2841 (2021).48.Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 33, 245–303 (1995).
    Google Scholar 
    49.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).ADS 
    CAS 

    Google Scholar 
    50.Sen Gupta, B. K., Eugene Turner, R. & Rabalais, N. N. Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers. Geology 24(3), 227–230 (1996).ADS 

    Google Scholar 
    51.Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnbouw 55, 179–184 (1976).
    Google Scholar 
    52.Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).ADS 

    Google Scholar 
    53.Clark, P. U. et al. Consequences of twenty-first century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).ADS 

    Google Scholar 
    54.Clark, P. U. et al. Sea-level commitment as a gauge for climate policy. Nat. Clim. Change 8, 653–655 (2018).ADS 

    Google Scholar 
    55.Li, C., Held, H., Hokamp, S. & Marotzke, J. Optimal temperature overshoot profile found by limiting global sea level rise as a lower-cost climate target. Sci. Adv. 6(2), eaaw9490 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Berner, R. A. & Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochim. Cosmochim. Acta 47(5), 855–862 (1983).ADS 
    CAS 

    Google Scholar 
    57.Gautier, D. L. Cretaceous shales from the western interior of North America: Sulfur/carbon ratios and sulfur-isotope composition. Geology 14(3), 225–228 (1986).ADS 
    CAS 

    Google Scholar 
    58.Kajiwara, Y. & Kaiho, K. Oceanic anoxia at the Cretaceous/Tertiary boundary supported by the sulfur isotopic record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 151–162 (1992).
    Google Scholar 
    59.Anderson, R. F., LeHuray, A. P., Fleisher, M. Q. & Murray, J. W. Uranium deposition in ancouv inlet sediments, ancouver island. Geochim. Cosmochim. Acta 53(9), 2205–2213 (1989).ADS 
    CAS 

    Google Scholar 
    60.Kaiho, K., Fujiwara, O. & Motoyama, I. Mid-Cretaceous faunal turnover of intermediate-water benthic foraminifera in the northwestern Pacific Ocean margin. Mar. Micropaleontol. 23, 13–49 (1993).ADS 

    Google Scholar 
    61.Kaiho, K., Morgans, H. E. & Okada, H. Faunal turnover of intermediate-water benthic foraminifera during the Paleogene in New Zealand. Mar. Micropaleontol. 23, 51–86 (1993).ADS 

    Google Scholar 
    62.Alegret, L., Molina, E. & Thomas, E. Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences. Mar. Micropaleontol. 48(3–4), 251–279 (2003).ADS 

    Google Scholar 
    63.Morigi, C. Benthic environmental changes in the Eastern Mediterranean Sea during sapropel S5 deposition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273(3–4), 258–271 (2009).
    Google Scholar 
    64.Cetean, C. G., Bălc, R., Kaminski, M. A. & Filipescu, S. Integrated biostratigraphy and palaeoenvironments of an upper Santonian—upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretac. Res. 32(5), 575–590 (2011).
    Google Scholar 
    65.Drinia, H. & Anastasakis, G. Benthic foraminifer palaeoecology of the Late Quaternary continental outer shelf of a landlocked marine basin in central Aegean Sea, Greece. Quat. Int. 261, 43–52 (2012).
    Google Scholar 
    66.Baas, J. H., Schönfeld, J. & Zahn, R. Mid-depth oxygen drawdown during Heinrich events: Evidence from benthic foraminiferal community structure, trace-fossil tiering, and benthic δ13C at the Portuguese Margin. Mar. Geol. 152(1–3), 25–55 (1998).ADS 
    CAS 

    Google Scholar 
    67.Kaiho, K. Global climatic forcing of deep-sea benthic foraminiferal test size during the past 120 my. Geology 26(6), 491–494 (1998).ADS 

    Google Scholar 
    68.Wang, N., Huang, B. & Dong, Y. The evolution of deepwater dissolved oxygen in the Northern South China Sea during the past 400 ka. In AGU Fall Meeting Abstracts 2016, PP43A-2297 (2016).69.Ukpong, A. J. & Macaulay, E. O. Evaluation of paleo-oxygen conditions of Priabonian-Rupelian sediments of the Agbada Formation, Niger delta based on Fisher’s Diversity Index and Benthic Foraminifera Oxygen Index. IJRD. 2(12), 65–80 (2017).
    Google Scholar 
    70.Harzhauser, M. et al. Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). Aust. J. Earth Sci. 113, 169–199 (2020).ADS 

    Google Scholar 
    71.Kranner, M. et al. Miocene ecology of the central and northern Vienna Basin (Austria), based on foraminiferal ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 581, 110640 (2021).
    Google Scholar 
    72.Loeblich, A. R. & Tappan, H. Foraminiferal Genera and Their Classification (Von Nostrand Reinhold Co., 1987).
    Google Scholar 
    73.Kaminski, M. A. The year 2010 classification of the agglutinated foraminifera. Micropaleontology 60, 89–108 (2014).
    Google Scholar 
    74.Pawlowski, J., Lejzerowicz, F. & Esling, P. Next-generation environmental diversity surveys of foraminifera: Preparing the future. Biol. Bull. 227(2), 93–106 (2014).CAS 

    Google Scholar 
    75.Boersma, A. Foraminifera. In Introduction to Marine Micropaleontology. 19–77 (Elsevier Science BV, 1998).76.Piller, W. E. & Haunold, T. G. The Northern Bay of Safaga (Red Sea, Egypt): An Actuopalaeontological Approach V. Foraminifera (Waldemar Kramer Verlag, 1998).
    Google Scholar 
    77.Amao, A. O. et al. Distribution of benthic foraminifera along the Iranian coast. Mar. Biodivers. 49, 399–945 (2019).
    Google Scholar 
    78.Charrieau, L. M. et al. The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region. Mar. Micropaleontol. 139, 42–56 (2018).ADS 

    Google Scholar 
    79.Charrieau, L. M. et al. Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance. Biogeosciences 16, 3835–3852 (2019).ADS 
    CAS 

    Google Scholar 
    80.Groeneveld, J. et al. Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages. J. Micropalaeontol. 37, 403–429 (2018).ADS 

    Google Scholar 
    81.García-Gallardo, Á. et al. Benthic foraminifera-based reconstruction of the first Mediterranean-Atlantic exchange in the early Pliocene Gulf of Cadiz. Palaeogeogr. Palaeoclimatol. Palaeoecol. 472, 93–107 (2017).
    Google Scholar 
    82.Rupp, C. & Ćorić, S. Zur Eferding-Formation. Jahrb. Geol. Bundesanst. 155, 33–95 (2015).
    Google Scholar 
    83.Murray, J. W. Ecology and Applications of Benthic Foraminifera (Cambridge University Press, 2006).
    Google Scholar 
    84.Jorissen, F. J., de Stigter, H. C. & Widmark, J. G. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 26, 3–15 (1995).ADS 

    Google Scholar 
    85.Garcia, H.E. et al. World Ocean Atlas 2013. Vol. 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. (NOAA Atlas NESDIS 75, 2013).86.Murray, J. W. Ecology and Palaeoecology of Benthic Foraminifera. (Longman Scientific and Technical, 1991).87.Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).ADS 

    Google Scholar 
    88.Titelboim, D. et al. Selective responses of benthic foraminifera to thermal pollution. Mar. Pollut. Bull. 105, 324–333 (2016).CAS 

    Google Scholar 
    89.Renema, W. Terrestrial influence as a key driver of spatial variability in large benthic foraminiferal assemblage composition in the Central Indo-Pacific. Earth-Sci. Rev. 177, 514–544 (2018).ADS 

    Google Scholar 
    90.Koho, K. A. et al. Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: A case study from Lisbon-Setúbal Canyon (southern Portugal). Prog. Oceanogr. 79, 55–82 (2008).ADS 

    Google Scholar  More

  • in

    Nematode community structure along elevation gradient in high altitude vegetation cover of Gangotri National Park (Uttarakhand), India

    1.Hoschitz, M. & Kaufmann, R. Nematode community composition in five alpine habitats. Nematology 6, 737–747 (2004).
    Google Scholar 
    2.Treonis, A. M. & Wall, D. H. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr. Comp. Biol. 45, 741–750 (2005).PubMed 

    Google Scholar 
    3.Tong, F. C., Xiao, Y. & Wang, Q. L. Soil Nematode community structure on the northern slope of Changbai Mountain Northeast China. J. For. Res. 21, 93–98 (2010).
    Google Scholar 
    4.Yeates, G. W. Nematodes as soil indicators functional and biodiversity aspects. Biol. Fertil. Soils 37, 199–210 (2003).
    Google Scholar 
    5.Bakonyi, G. et al. Soil Nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl. Soil. Ecol. 37(1–2), 31–40 (2007).
    Google Scholar 
    6.Van Eekeren, N. et al. Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biol. Biochem. 42(9), 1491–1504 (2010).
    Google Scholar 
    7.Kitagami, Y., Kanzaki, N. & Matsuda, Y. Distribution and community structure of soil nematodes in coastal Japanese pine forests were shaped by harsh environmental conditions. Appl. Soil. Ecol. 119, 91–98 (2017).
    Google Scholar 
    8.Salamun, P. et al. The effects of vegetation cover on soil Nematode communities in various biotopes disturbed by industrial emissions. Sci. Total Environ 592, 106–114 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Kashyap, P., Bhardwaj, M. & Uniyal, V. P. Bibliography on the soil Nematodes of the Indian Himalayan Region. In Bibliography on the Fauna and Micro Flora of the Indian Himalayan Region. ENVIS Bulletin: Wildlife and Protected Areas Vol. 17 (ed. Sathyakumar, S.) 239–256 (Wildlife Institute of India, 2016).
    Google Scholar 
    10.Kumar, S. & Rawat, S. First report on the root-knot Nematode Meloidogyneenterolobii (Yang and Eisenback 1988) infecting guava (Psidiumguajava) in Udham Singh Nagar of Uttarakhand India. Int. J. Curr. Microbiol. Appl. Sci. 7(4), 1720–1724 (2018).CAS 

    Google Scholar 
    11.Kayani, M. Z., Mukhtar, T. & Hussain, M. A. Interaction between Nematode inoculum density and plant age on growth and yield of cucumber and reproduction of Meloidogyne incognita. Pak. J. Zool. 50(3), 897–902 (2018).
    Google Scholar 
    12.Rizvi, A. N., Sen, D., Maity, P. & Kumar, H. Nematoda (soil inhabiting Nematodes). In Faunal Diversity of Indian Himalaya (eds Chandra, K. et al.) 115–134 (Director Zool Surv India, 2018).
    Google Scholar 
    13.Devetter, M., Hanel, L., Rehakova, K. & Anddolezal, J. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS ONE 12(11), e0187646 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    14.Afzal, S., Nesar, H., Imran, Z. & Ahmad, W. Altitudinal gradient affect abundance, diversity and metabolicfootprint of soil nematodesin Banihal-Pass of Pir-Panjalmountain range. Sci. Rep. 11, 16214 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    15.Dong, K. et al. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci. Rep. 7, 3028 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Powers, L. E., Ho, M. C., Freckman, D. W. & Virginia, R. A. Distribution, community structure and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley Antarctica. Arct. Alp. Res. 30, 133–141 (1998).
    Google Scholar 
    17.Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. T. Abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Front. Ecol. Evol. 4, 84 (2016).
    Google Scholar 
    18.Veen, G. F. et al. Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599 (2017).
    Google Scholar 
    19.Burrows, C. J. Processes of Vegetation Change 1 (Unwin Hyman, 1990).
    Google Scholar 
    20.De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    21.Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadicasebifera) in China. Plant Ecol. 220, 965–976 (2019).
    Google Scholar 
    22.Qing, X., Bert, W., Steel, H., Quisado, J. & de Ley, I. T. Soil and litter nematode diversity of Mount Hamiguitan, the Philippines, with description of Bicirronemahamiguitanense n. sp (Rhabditida: Bicirronematidae). Nematology 17, 325–344 (2015).
    Google Scholar 
    23.Wasilewska, L. Soil invertebrates as bioindicators with special reference to soil inhabiting nematodes. Russ. J. Nematol. 5, 113–126 (1997).
    Google Scholar 
    24.Mladenov, A., Lazarova, S. & Peneva, V. Distribution patterns of Nematode communities in an urban forest in Sofia Bulgaria. In Ecology of the City of Sofia. Species and Communities in an Urban Environment (eds Peneva, L. et al.) 281–297 (Sofia Bulgaria Pen-soft Publishers, 2004).
    Google Scholar 
    25.Hánel, L. Comparison of soil Nematode communities in three spruce forests at the Bobín Mount Czech Republic. Biológia 51, 485–493 (1996).
    Google Scholar 
    26.Hanel, L. Soil Nematodes in five spruce forests of the Beskydymountains Czech Republic. Fundam. Appl. Nematol. 19(1), 15–24 (1996).
    Google Scholar 
    27.Zhang, S. et al. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau China. Biol. Fertil. Soils 48(4), 393–400 (2012).CAS 

    Google Scholar 
    28.Yeates, G. W. Abundance diversityand resilience of Nematode assemblage in forest soils. Can. J. For. Res. 37, 216–225 (2007).
    Google Scholar 
    29.Mulder, C., Zwart, D. D., Van Wijnen, H. J., Schouten, A. J. & Andbreure, A. M. Observational and simulated evidence of ecological shifts within the soil Nematode community of agroecosystems under conventional and organic farming. Funct. Ecol. 17(4), 516–525 (2003).
    Google Scholar 
    30.Butenko, K. O., Gongalsky, K. B., Korobushkin, D. I., Ekschmitt, K. & Zaitsev, A. S. Forest fires alter the trophic structure of soil nematode communities. Soil Biol. Biochem. 109, 107–117 (2017).CAS 

    Google Scholar 
    31.Tibbett, M. et al. Long-term acidification of pH neutral grasslands affects soil biodiversity fertility and function in a heathland restoration. CATENA 180, 401–415 (2019).CAS 

    Google Scholar 
    32.Zhang, S. et al. Tillage effects outweigh seasonal effects on soil Nematode community structure. Soil Tillage Res. 192, 233–239 (2019).
    Google Scholar 
    33.Liang, S. et al. Soil Nematode community composition and stability under different nitrogen additions in a semiarid grassland. Glob. Ecol. Conserv. 22, e00965n (2020).
    Google Scholar 
    34.Olatunji, O. A. et al. The effect of phosphorus addition, soil moisture, and plant type on soil nematode abundance and community composition. J. Soil. Sediment 19, 1139–1150 (2019).CAS 

    Google Scholar 
    35.Wang, J. et al. Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant Soil 445(1), 425–437 (2019).CAS 

    Google Scholar 
    36.Zhang, Z. W. et al. The impacts of nutrient addition and livestock exclosure on the soil Nematode community in degraded grassland. Land Degrad. Dev. 30(13), 1574–1583 (2019).
    Google Scholar 
    37.Bastow, J. The impacts of a wildfire in a semiarid grassland on soil Nematode abundances over 4 years. Biol. Fertil. Soils 56, 675–685 (2020).
    Google Scholar 
    38.Renčo, M., Gomoryova, E. & Cerevková, A. The effect of soil type and ecosystems on the soil nematode and microbial communities. Helminthologia 57(2), 129 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Saeed, S., Barozai, M. Y. K., Ahmad, A. & Shah, S. H. Impact of altitude on soil physical and chemical properties in SraGhurgai (Takatu mountain range) Quetta Balochistan. Int. J. Sci. Eng. Res. 5(3), 730–735 (2014).
    Google Scholar 
    40.Zhang, X. Y. et al. Effects of rainfall amount and frequency on soil nitrogen mineralization in Zoigê alpine wetland. Eur. J. Soil Biol. 97, 103170 (2020).CAS 

    Google Scholar 
    41.Juan, Y. et al. Simulation of soil freezing-thawing cycles under typical winter conditions: Implications for nitrogen mineralization. J. Soils Sediments 20(1), 143–152 (2020).CAS 

    Google Scholar 
    42.Cutz-Pool, L. Q., Palacios-Vargas, J. G., Cano-Santana, Z. & Castaño-Meneses, G. Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl volcano state of Mexico, Mexico. Entomol. News 121, 249–261 (2010).
    Google Scholar 
    43.Baniyamuddin, M., Tomar, V. V. S. & Ahmad, W. Functional diversity of soil inhabiting nematodes in natural forests of Arunachal Pradesh India. Nematol. Mediterr. 35, 109–121 (2007).
    Google Scholar 
    44.Hanel, L. Nematode assemblages indicate soil restoration on colliery spoils afforested by planting different tree species and by natural succession. Appl. Soil. Ecol. 40, 86–99 (2008).
    Google Scholar 
    45.Rizvi, A. N. Community analysis of soil inhabiting nematodes in natural Sal forests of Dehradun India. Int. J. Nematol. 18, 181–190 (2008).
    Google Scholar 
    46.Keith, A. M. et al. Strong impacts of below-ground tree inputs on soil nematode trophic composition. Soil Biol. Biochem. 41, 1060–1065 (2009).CAS 

    Google Scholar 
    47.Keith, A. M. et al. Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biol. Biochem. 38, 3421–3430 (2006).CAS 

    Google Scholar 
    48.Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178 (2001).CAS 

    Google Scholar 
    49.Savin, M. C., Gorres, J. H., Neher, D. A. & Amador, J. A. Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biol. Biochem. 33, 429–438 (2001).CAS 

    Google Scholar 
    50.Postma-Blaauw, M. B. et al. Within trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 142, 428–439 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    51.Bongers, T. & Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14, 224–228 (1999).CAS 
    PubMed 

    Google Scholar 
    52.Ferris, H., Bongers, T. & De Goede, R. G. M. A framework for soil food web diagnostics extension of the nematode faunal analysis concept. Appl. Soil. Ecol. 18, 13–29 (2001).
    Google Scholar 
    53.Ferris, H., Bongers, A.M.T. & De Goede, R. Nematode faunal analyses to assess food web enrichment and connectance. Nematology monographs and perspectives. In Proceedings of the Fourth International Congress of Nematology, Brill 503–510 (2004).54.Ferris, H., Zheng, L. & Walker, M. A. Resistance of grape rootstocks to plant-parasitic nematodes. J. Nematol. 44, 377–386 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Quist, C. W., Van Der Putten, W. H. & Thakur, M. P. Soil predator loss alters aboveground stoichiometry in a native but not in a related range-expanding plant when exposed to periodic heat waves. Soil Biol. Biochem. 150, 107999 (2020).CAS 

    Google Scholar 
    56.Ferris, H. & Matute, M. M. Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil. Ecol. 23, 93–110 (2003).
    Google Scholar 
    57.Tomar, W. W. S. & Ahmad, W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia 46, 183–189 (2009).
    Google Scholar 
    58.Hanel, N. Soil Nematodes in alpine meadows of the Tatra National Park (Slovak Republic). Helminthologia 54(1), 48–67 (2017).
    Google Scholar 
    59.Hanel, L. & Cerevkova, A. Diversity of soil Nematodes in meadows of the White Carpathians. Helminthologia 43, 109–116 (2006).
    Google Scholar 
    60.Neely, C. L., Beare, M. H., Hargrove, W. L. & Coleman, D. C. Relationships between fungal and bacterial substrate-induced respiration biomass and plant residue decomposition. Soil Biol. Biochem. 23(10), 947–954 (1991).CAS 

    Google Scholar 
    61.Moller, J., Miller, M. & Kjoller, A. Fungal–bacterial interaction on beech leaves: Influence on decomposition and dissolved organic carbon quality. Soil Biol. Biochem. 31(3), 367–374 (1999).CAS 

    Google Scholar 
    62.Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).CAS 

    Google Scholar 
    63.Nottingham, A. T. et al. Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol. Fertil. Soils 54(2), 219–228 (2018).CAS 

    Google Scholar 
    64.Albright, M. B. et al. Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front. Microbiol. 11, 542220 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    65.Champion, H. G. & Seth, S. K. Revised Forest Types of India (Manager of Publications Government of India Delhi, 1968).
    Google Scholar 
    66.Singh, D., Chhonkar, P. K. & Pandey, R. N. Manual on Soil, Plant and Water Analysis (Westville Publishing House, 2005).
    Google Scholar 
    67.Jackson, M. L. Soil Chemical Analysis 498 (Prentice-Hall of India Pvt. Ltd, 1973).
    Google Scholar 
    68.Walkley, A. & Black, I. A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–37 (1934).CAS 
    ADS 

    Google Scholar 
    69.Kjeldahl, J. New method for the determination of nitrogen. Chem. News 48(1240), 101–102 (1883).
    Google Scholar 
    70.Olsen, S. R., Cole, W., Watanable, F. S. & Dean, L. A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Methods Soil Anal. Circ. 939(1883), 1–56 (1954).
    Google Scholar 
    71.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for globalland areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    72.Cobb, N.A. Estimating the Nematode population of the soil. In Agricultural Technical Circular No. 1 48 (United States Department of Agriculture Bureau of Plant Industry, 1918).73.Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil Nematode families and genera—An outline for soil ecologists. J. Nematol. 25, 315–331 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia: Relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178. https://doi.org/10.1007/s003740100390 (2001).CAS 
    Article 

    Google Scholar 
    75.Bongers, T. The maturity index an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).PubMed 
    ADS 

    Google Scholar 
    76.Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil. Ecol. 10, 239–251 (1998).
    Google Scholar 
    77.Bongers, T., De Goede, R. G. M., Korthals, G. W. & Yeates, G. W. Proposed changes of c–p classification for nematodes. Russ. J. Nematol. 3, 61–62 (1995).
    Google Scholar 
    78.Neher, D. A. & Campbell, C. L. Nematode communities and microbial biomass in soils with annual and perennial crops. Appl. Soil. Ecol. 1(1), 17–28 (1994).
    Google Scholar 
    79.Sieriebriennikov, B., Ferris, H. & de Goede, R. G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).
    Google Scholar 
    80.Andrassy, I. T. Determination of volume and weight of nematodes. Acta Zool. Acad. Sci. Hung. 2, 1–15 (1956).
    Google Scholar 
    81.Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).
    Google Scholar 
    82.Oksanen, J.B. et al. vegan: Community ecology package. R package version 5–6 (2020).83.R Core Team. R: A Language and Environment for Statistical Computing (2019). Retrieved from https://www.R-project.org.84.Figures 1, 3 and 4 was prepared using GraphPad Prism version 8.0.2 for Windows, GraphPadSofware, La Jolla California USA. www.graphpad.com. More

  • in

    Topography of the Dolomites modulates range dynamics of narrow endemic plants under climate change

    1.IPCC. Shukla, P. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).2.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    3.Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline?. Science (80-) 80(341), 504–508 (2013).ADS 

    Google Scholar 
    4.Gobiet, A. et al. 21st century climate change in the European Alps—A review. Sci. Total Environ. 493, 1138–1151 (2014).ADS 
    CAS 

    Google Scholar 
    5.Damschen, E. I., Harrison, S., Ackerly, D. D., Fernandez-Going, B. M. & Anacker, B. L. Endemic plant communities on special soils: early victims or hardy survivors of climate change?. J. Ecol. 100(5), 1122–1130 (2012).
    Google Scholar 
    6.Essl, F. et al. Distribution patterns, range size and niche breadth of Austrian endemic plants. Biol. Conserv. 142, 2547–2558 (2009).
    Google Scholar 
    7.Hülber, K. et al. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Change Biol. 22, 2608–2619 (2016).ADS 

    Google Scholar 
    8.Wershow, S. T. & DeChaine, E. G. Retreat to refugia: Severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. Am. J. Bot. 105, 760–778 (2018).
    Google Scholar 
    9.Dagnino, D. et al. Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Reg. Environ. Change 20, 1–12 (2020).
    Google Scholar 
    10.Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Chang. Biol. 17, 990–996 (2011).ADS 

    Google Scholar 
    11.Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    12.Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. in Alpine biodiversity in Europe 195–207 (Springer, 2003).13.Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).
    Google Scholar 
    14.Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).ADS 

    Google Scholar 
    15.Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
    Google Scholar 
    16.Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).ADS 

    Google Scholar 
    17.Patsiou, T. S., Conti, E., Zimmermann, N. E., Theodoridis, S. & Randin, C. F. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob. Change Biol. 20, 2286–2300 (2014).ADS 

    Google Scholar 
    18.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).ADS 

    Google Scholar 
    19.Körner, C. The alpine life zone. in Alpine Plant Life 9–20 (Springer, 2003).20.Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    21.Graae, B. J. et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
    Google Scholar 
    22.Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 17, 1022–1035 (2011).ADS 

    Google Scholar 
    23.Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
    Google Scholar 
    24.Hülber, K. et al. Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Glob. Ecol. Conserv. 23, e01113 (2020).
    Google Scholar 
    25.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 

    Google Scholar 
    26.Vittoz, P. & Engler, R. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117, 109–124 (2007).
    Google Scholar 
    27.Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science (80-) 80(334), 660–664 (2011).ADS 

    Google Scholar 
    28.Harrison, S. & Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207–214 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Pignatti, E. & Pignatti, S. Plant life of the Dolomites. (Springer, 2016).30.Pawlowski, B. Remarks on endemism in the flora of the Alps and the Carpathians. Vegetatio 21, 181–243 (1970).
    Google Scholar 
    31.Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    32.Carton, A. & Soldati, M. Geomorphological features of the Dolomites (Italy). (1993).33.Bosellini, A., Gianolla, P. & Stefani, M. Geology of the Dolomites. Episodes 26(3), 181–185 (2003).
    Google Scholar 
    34.Gianolla, P., Panizza, M., Micheletti, C. & Viola, F. Nomination of the Dolomites for inscription on the World Natural Heritage list UNESCO, nomination document. Prov. di Belluno, Prov. Auton. di Bolzano—Bozen, Prov. di Pordenone, Prov. Auton. di Trento, Prov. di Udine (2008).35.Erschbamer, B. et al. Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83, 387–401 (2011).
    Google Scholar 
    36.Unterluggauer, P., Mallaun, M. & Erschbamer, B. The higher the summit, the higher the diversity changes–results of a long-term monitoring project in the Dolomites. Gredleriana 16, 5–34 (2016).
    Google Scholar 
    37.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).
    Google Scholar 
    38.Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 50, 54–89 (2007).
    Google Scholar 
    39.Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).ADS 

    Google Scholar 
    40.Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography (Cop.) 42, 1267–1279 (2019).
    Google Scholar 
    41.Perazza, G. & Lorenz, R. Le orchidee dell’Italia nordorientale. Atlante corologico e Guid. al riconoscimento. Ed. Osiride, Rovereto (2013).42.Prosser, F., Bertolli, A., Festi, F. & Perazza, G. Flora del Trentino. Fondazione Museo civico di Rovereto (2019)43.Bertolli A., Prosser F., Tomasi G., Argenti C., – Flora Dolomitica. 50 fiori da conoscere nel patrimonio Unesco. Edizioni Osiride, Rovereto, 68 pp. (2019)44.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: with applications in R (Cambridge University Press, Cambridge, 2017).
    Google Scholar 
    45.Rossi G., Orsenigo S., Gargano D., Montagnani C., Peruzzi L., Fenu G., Abeli T., Alessandrini A., Astuti G., Bacchetta G., Bartolucci F., Bernardo L., Bovio M., Brullo S., Carta A., Castello M., Cogoni D., Conti F., Domina G., Foggi B., Gennai M., Gigante D., Iberite M., Lasen C., Magrini S., Nicolella G., Pinna M.S., Poggio L., Prosser F., Santangelo A., Selvaggi A., Stinca A., Tartaglini N., Troia A., Villani M.C., Wagensommer R.P., Wilhalm T., Blasi C.,. Lista Rossa della Flora Italiana. 2 Endemiti e altre specie minacciate. Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2020)46.Rossi G., Montagnani C., Gargano D., Peruzzi L., Abeli T., Ravera S., Cogoni A., Fenu G., Magrini S., Gennai M., Foggi B., Wagensommer R.P., Venturella G., Blasi C., Raimondo F.M., Orsenigo S. (Eds.), Lista Rossa della Flora Italiana. 1. Policy Species e altre specie minacciate. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2013)47.Buffa G., Carpenè B., Casarotto N., Da Pozzo M., Filesi L., Lasen C., Marcucci R., Masin R., Prosser F., Tasinazzo S., Villani M., Zanatta K. Lista rossa regionale piante vascolari del Veneto. Regione Veneto (2016)48.Wilhalm, T. & Hilpold, A. Rote Liste der gefährdeten Gefäßpflanzen Südtirols (Naturmuseum Südtirols, Bozen, 2006).
    Google Scholar 
    49.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. data 4, 1–20 (2017).
    Google Scholar 
    50.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8 5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117(33), 19656–19657 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).ADS 

    Google Scholar 
    52.Kassambara A., & Mundt F. factoextra: Extract
    and Visualize the Results of Multivariate Data Analyses. R package
    version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).53.Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography (Cop.) 40, 253–266 (2017).
    Google Scholar 
    54.Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    Google Scholar 
    55.Thuiller, W. et al. Package ‘biomod2’. Species Distrib. Model. within an ensemble Forecast. Framew. (2016).56.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
    Google Scholar 
    57.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).
    Google Scholar 
    58.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    59.Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
    Google Scholar 
    60.Cao, Y. et al. Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecol. Modell. 259, 30–39 (2013).
    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing. (2020).62.Riley, S. J., DeGloria, S. D. & Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).
    Google Scholar 
    63.Irl, S. D. H. et al. Climate vs topography–spatial patterns of plant species diversity and endemism on a high-elevation island. J. Ecol. 103, 1621–1633 (2015).
    Google Scholar 
    64.Tarquini, S. & Nannipieri, L. The 10 m-resolution TINITALY DEM as a trans-disciplinary basis for the analysis of the Italian territory: Current trends and new perspectives. Geomorphology 281, 108–115 (2017).ADS 

    Google Scholar 
    65.Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Chang. Biol. 21, 997–1004 (2015).ADS 

    Google Scholar 
    66.Dexter, F. Wilcoxon-Mann-Whitney test used for data that are not normally distributed. Anesth. Anal. 117, 537–538 (2013)67.Geppert, C. et al. Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nat. Commun. 11, 1–11 (2020).
    Google Scholar 
    68.Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 1–13 (2021).
    Google Scholar 
    69.Muñoz-Sáez, A., Choe, H., Boynton, R. M., Elsen, P. R. & Thorne, J. H. Climate exposure shows high risk and few climate refugia for Chilean native vegetation. Sci. Total Environ. 785, 147399 (2021).ADS 

    Google Scholar 
    70.Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).
    Google Scholar 
    71.Sedlacek, J. F., Bossdorf, O., Cortés, A. J., Wheeler, J. A. & van Kleunen, M. What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic Appl. Ecol. 15(4), 305–315 (2014).
    Google Scholar 
    72.Di Nuzzo, L. et al. Contrasting multitaxon responses to climate change in Mediterranean mountains. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    73.Zecca, G., Casazza, G., Piscopo, S., Minuto, L. & Grassi, F. Are the responses of plant species to Quaternary climatic changes idiosyncratic? A demographic perspective from the Western Alps. Plant Ecol. Divers. 10, 273–281 (2017).
    Google Scholar 
    74.Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang. 7, 577–580 (2017).ADS 

    Google Scholar 
    75.Boisvert-Marsh, L., Périé, C. & de Blois, S. Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. J. Ecol. 107, 1956–1969 (2019).
    Google Scholar 
    76.Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. & Hannah, L. E. E. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    77.Casazza, G. et al. Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol. Conserv. 179, 129–138 (2014).
    Google Scholar 
    78.Körner, C. The use of ‘altitude’in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    79.Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography (Cop.) 32, 34–45 (2009).
    Google Scholar 
    80.Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).
    Google Scholar 
    81.Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl. Acad. Sci. 112, 12741–12745 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).
    Google Scholar 
    83.Trew, B. T. & Maclean, I. M. D. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 30, 768–783 (2021).
    Google Scholar 
    84.Garcia, M. B. et al. Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environ. Exp. Bot. 170, 103886 (2020).
    Google Scholar 
    85.Tribsch, A. Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
    Google Scholar 
    86.Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
    Google Scholar 
    87.Panizza, M. The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment. Geoheritage 1, 33–42 (2009).
    Google Scholar 
    88.Santini, L., Benitez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050 (2021).
    Google Scholar 
    89.Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science (80-) 341, 499–504 (2013).ADS 
    CAS 

    Google Scholar 
    90.Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography (Cop.) 40, 1003–1013 (2017).
    Google Scholar 
    91.Ferrarini, A. et al. Planning for assisted colonization of plants in a warming world. Sci. Rep. 6, 1–6 (2016).
    Google Scholar 
    92.Casazza, G. et al. Combining conservation status and species distribution models for planning assisted colonisation under climate change. J. Ecol. 109, 2284–2295 (2021) More