More stories

  • in

    Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties

    1.United Nations. Transforming our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).
    Google Scholar 
    2.Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science (80-) 327, 812–818 (2010).ADS 
    CAS 

    Google Scholar 
    3.FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All (FAO, 2021). https://doi.org/10.4060/cb4474en.Book 

    Google Scholar 
    4.FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture (FAO, 2010). https://doi.org/10.4060/i4787e.Book 

    Google Scholar 
    5.Gepts, P. Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Sci. 46, 2278–2292 (2006).
    Google Scholar 
    6.McCouch, S. et al. Feeding the future. Nature 499, 23–24 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    7.Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).PubMed 

    Google Scholar 
    8.Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).PubMed 

    Google Scholar 
    9.Fernández-Llamazares, Á. et al. Scientists’ warning to humanity on threats to indigenous and local knowledge systems. J. Ethnobiol. 41, 144–169 (2021).
    Google Scholar 
    10.FAOSTAT. Food and Agriculture Data. (2019). http://www.fao.org/faostat/en/#data/QC. (Accessed: 15th July 2021)11.Lebot, V. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids (CABI, 2009). https://doi.org/10.5822/978-1-61091-225-9_2.Book 

    Google Scholar 
    12.Gade, D. W. Names for Manihot esculenta: Geographical variations and lexical clarification. J. Lat. Am. Geogr. 1, 55–74 (2002).
    Google Scholar 
    13.McKey, D. & Delêtre, M. The emergence of cassava as a global crop. in Achievng Sustainable Cultivation of Cassava, Vol. 1 (ed. Hershey, C. H.) 3–32 (Burleigh Dodds Science Publishing, 2017). https://doi.org/10.19103/as.2016.0014.04.14.Howeler, R., Lutaladio, N. & Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification (Food and Agriculture Organization of the United Nations, 2013).
    Google Scholar 
    15.Allem, A. C. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet. Resour. Crop Evol. 41, 133–150 (1994).
    Google Scholar 
    16.Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA 96, 5586–5591 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Olsen, K. M. & Schaal, B. A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: Further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142 (2001).CAS 
    PubMed 

    Google Scholar 
    18.Olsen, K. M. SNPs, SSRs and inferences on cassava’s origin. Plant Mol. Biol. 56, 517–526 (2004).CAS 
    PubMed 

    Google Scholar 
    19.Léotard, G. et al. Phylogeography and the origin of cassava: New insights from the northern rim of the Amazonian basin. Mol. Phylogenet. Evol. 53, 329–334 (2009).PubMed 

    Google Scholar 
    20.Mühlen, G. S. et al. Genetic diversity and population structure show different patterns of diffusion for bitter and sweet manioc in Brazil. Genet. Resour. Crop Evol. 66, 1773–1790 (2019).
    Google Scholar 
    21.Ménard, L., McKey, D., Mühlen, G. S., Clair, B. & Rowe, N. P. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness. PLoS ONE 8, e74727 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Brown, C. H., Clement, C. R., Epps, P., Luedeling, E. & Wichmann, S. The Paleobiolinguistics of domesticated manioc (Manihot esculenta). Ethnobiol. Lett. 4, 61–70 (2013).
    Google Scholar 
    23.Isendahl, C. The domestication and early spread of manioc (Manihot esculenta Crantz): A brief synthesis. Lat. Am. Antiq. 22, 452–468 (2011).
    Google Scholar 
    24.McKey, D., Elias, M., Pujol, B. & Duputié, A. Ecological approaches to crop domestication. in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability (eds. Gepts, P. et al.) 377–406 (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9781139019514.023.25.McKey, D. & Beckerman, S. Chemical ecology, plant evolution and traditional manioc cultivation systems. In Tropical forests, people and food. Biocultural interactions and applications to development (eds Hladik, C. M. et al.) 83–112 (Parthenon Carnforth and UNESCO, 1993).
    Google Scholar 
    26.Elias, M. & McKey, D. The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: An example involving cassava and a call for data. Acta Oecol. 21, 223–230 (2000).ADS 

    Google Scholar 
    27.Duputié, A., Massol, F., David, P., Haxaire, C. & McKey, D. Traditional Amerindian cultivators combine directional and ideotypic selection for sustainable management of cassava genetic diversity. J. Evol. Biol. 22, 1317–1325 (2009).PubMed 

    Google Scholar 
    28.Peroni, N., Kageyama, P. Y. & Begossi, A. Molecular differentiation, diversity, and folk classification of ‘sweet’ and ‘bitter’ cassava (Manihot esculenta) in Caiçara and Caboclo management systems (Brazil). Genet. Resour. Crop Evol. 54, 1333–1349 (2007).
    Google Scholar 
    29.Elias, M. et al. Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Mol. Ecol. 10, 1895–1907 (2001).CAS 
    PubMed 

    Google Scholar 
    30.Martins, P. S. Dinâmica evolutiva em roças de caboclos amazônicos. in Scientific Papers of Paulo Sodero Martins 1941–1997: A tribute (eds. Veasey, E. A., Oliveira, G. C. X. & Pinheiro, J. B.) 217–228 (SBG, 2007).https://doi.org/10.1590/s0103-40142005000100013.31.Coomes, O. T. Of stakes, stems, and cuttings: The importance of local seed systems in traditional Amazonian societies. Prof. Geogr. 62, 323–334 (2010).
    Google Scholar 
    32.Dyer, G. A., González, C. & Lopera, D. C. Informal ‘seed’ systems and the management of gene flow in traditional agroecosystems: The case of cassava in Cauca, Colombia. PLoS ONE 6, e29067 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Salick, J., Cellinese, N. & Knapp, S. Indigenous diversity of cassava: Generation, maintenance, use and loss among the Amuesha, peruvian upper amazon. Econ. Bot. 51, 6–19 (1997).
    Google Scholar 
    34.Sambatti, J. B. M., Martins, P. S. & Ando, A. Folk taxonomy and evolutionary dynamics of cassava: A case study in Ubatuba, Brazil. Econ. Bot. 55, 93–105 (2001).
    Google Scholar 
    35.Heckler, S. & Zent, S. Piaroa manioc varietals: Hyperdiversity or social currency?. Hum. Ecol. 36, 679–697 (2008).
    Google Scholar 
    36.Delêtre, M., McKey, D. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl. Acad. Sci. USA 108, 18249–18254 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Sardos, J. et al. Evolution of cassava (Manihot esculenta Crantz) after recent introduction into a South Pacific Island system: The contribution of sex to the diversification of a clonally propagated crop. Genome 51, 912–921 (2008).CAS 
    PubMed 

    Google Scholar 
    38.Ellen, R. & Soselisa, H. L. A comparative study of the socio-ecological concomitants of cassava (Manihot esculenta Crantz) diversity, local knowledge and management in Eastern Indonesia. Ethnobot. Res. Appl. 10, 15–35 (2012).
    Google Scholar 
    39.Burns, A. E., Gleadow, R., Cliff, J., Zacarias, A. & Cavagnaro, T. Cassava: The drought, war and famine crop in a changing world. Sustainability 2, 3572–3607 (2010).
    Google Scholar 
    40.Pujol, B., David, P. & McKey, D. Microevolution in agricultural environments: How a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol. Lett. 8, 138–147 (2005).
    Google Scholar 
    41.Mba, R. E. C. et al. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: Towards an SSR-based molecular genetic map of cassava. Theor. Appl. Genet. 102, 21–31 (2001).CAS 

    Google Scholar 
    42.de Oliveira, E. J. et al. Genome-wide selection in cassava. Euphytica 187, 263–276 (2012).CAS 

    Google Scholar 
    43.Ferguson, M. E., Shah, T., Kulakow, P. & Ceballos, H. A global overview of cassava genetic diversity. PLoS ONE 14, e0224763 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Wolfe, M. D. et al. Historical introgressions from a wild relative of modern cassava improved important traits and may be under balancing selection. Genetics 213, 1237–1253 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 34, 562–570 (2016).CAS 
    PubMed 

    Google Scholar 
    46.Kuon, J. E. et al. Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible African cassava cultivars. BMC Biol. 17, 1–15 (2019).CAS 

    Google Scholar 
    47.Prochnik, S. et al. The cassava genome: Current progress, future directions. Trop. Plant Biol. 5, 88–94 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Rabbi, I. Y. et al. Tracking crop varieties using genotyping-by-sequencing markers: A case study using cassava (Manihot esculenta Crantz). BMC Genet. 16, 115 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    49.Albuquerque, H. Y. G., do Carmo, C. D., Brito, A. C. & de Oliveira, E. J. Genetic diversity of Manihot esculenta Crantz germplasm based on single-nucleotide polymorphism markers. Ann. Appl. Biol. 173, 271–284 (2018).
    Google Scholar 
    50.Ogbonna, A. C. et al. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. Plant J. 105, 754–770 (2021).CAS 
    PubMed 

    Google Scholar 
    51.Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).CAS 
    PubMed 

    Google Scholar 
    52.Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: Advances and applications. Nat. Rev. Genet. 13, 85–96 (2012).CAS 

    Google Scholar 
    53.Ahrens, C. W. et al. The search for loci under selection: Trends, biases and progress. Mol. Ecol. 27, 1342–1356 (2018).PubMed 

    Google Scholar 
    54.Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).PubMed 

    Google Scholar 
    55.Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    56.Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    57.Pankin, A., Altmüller, J., Becker, C. & von Korff, M. Targeted resequencing reveals genomic signatures of barley domestication. New Phytol. 218, 1247–1259 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019).CAS 
    PubMed 

    Google Scholar 
    59.Allaby, R. G., Ware, R. L. & Kistler, L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol. Appl. 12, 29–37 (2019).PubMed 

    Google Scholar 
    60.Brown, T. A. Is the domestication bottleneck a myth?. Nat. Plants 5, 337–338 (2019).PubMed 

    Google Scholar 
    61.Gaillard, M. D. P., Glauser, G., Robert, C. A. M. & Turlings, T. C. J. Fine-tuning the ‘plant domestication-reduced defense’ hypothesis: Specialist vs generalist herbivores. New Phytol. 217, 355–366 (2018).CAS 
    PubMed 

    Google Scholar 
    62.Hillocks, R. J. & Wydra, K. Bacterial, fungal and nematode diseases. In Cassava: Biology, Production and Utilization (eds Hillocks, R. J. et al.) 261–280 (CABI, 2002).
    Google Scholar 
    63.Jarvis, A., Ramirez-Villegas, J., Campo, B. V. H. & Navarro-Racines, C. Is cassava the answer to African climate change adaptation?. Trop. Plant Biol. 5, 9–29 (2012).
    Google Scholar 
    64.Hanks, S. K. Genomic analysis of the eukaryotic protein kinase superfamily: A perspective. Genome Biol. 4, 111 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    65.Meng, X. & Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013).CAS 
    PubMed 

    Google Scholar 
    66.Champion, A., Kreis, M., Mockaitis, K., Picaud, A. & Henry, Y. Arabidopsis kinome: After the casting. Funct. Integr. Genomics 4, 163–187 (2004).CAS 
    PubMed 

    Google Scholar 
    67.Lenser, T. & Theißen, G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 18, 704–714 (2013).CAS 
    PubMed 

    Google Scholar 
    68.Gepts, P. The contribution of genetic and genomic approaches to plant domestication studies. Curr. Opin. Plant Biol. 18, 51–59 (2014).PubMed 

    Google Scholar 
    69.Ceballos, H. et al. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J. Agric. Food Chem. 55, 7469–7476 (2007).CAS 
    PubMed 

    Google Scholar 
    70.Jennings, D. L. & Iglesias, C. Breeding for crop improvement. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 149–166 (CABI, 2002). https://doi.org/10.18520/cs/v114/i02/256-257.71.Meyer, R. S. & Purugganan, M. D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).CAS 
    PubMed 

    Google Scholar 
    72.Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).PubMed 

    Google Scholar 
    73.Elias, M., Lenoir, H. & McKey, D. Propagule quantity and quality in traditional Makushi farming of cassava (Manihot esculenta): A case study for understanding domestication and evolution of vegetatively propagated crops. Genet. Resour. Crop Evol. 54, 99–115 (2007).
    Google Scholar 
    74.Zohary, D. Unconscious selection and the evolution of domesticated plants. Econ. Bot. 58, 5–10 (2004).
    Google Scholar 
    75.Lamberti, G., Gügel, I. L., Meurer, J., Soll, J. & Schwenkert, S. The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. Plant Physiol. 157, 70–85 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Pujol, B. et al. Evolution under domestication: Contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytol. 166, 305–318 (2005).PubMed 

    Google Scholar 
    77.Halkier, B. A. & Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333 (2006).CAS 
    PubMed 

    Google Scholar 
    78.Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).CAS 
    PubMed 

    Google Scholar 
    79.Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    80.An, F. et al. Domestication syndrome is investigated by proteomic analysis between cultivated cassava (Manihot esculenta Crantz) and its wild relatives. PLoS ONE 11, e0152154 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    81.Alves, A. A. C. Cassava botany and physiology. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 67–89 (CABI, 2002). https://doi.org/10.1079/9780851995243.0067.82.Alves, A. A. C. & Setter, T. L. Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Ann. Bot. 94, 605–613 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    83.Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: Applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).PubMed 
    MATH 

    Google Scholar 
    84.Arnold, B., Corbett-Detig, R. B., Hartl, D. & Bomblies, K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22, 3179–3190 (2013).CAS 
    PubMed 

    Google Scholar 
    85.Alves-Pereira, A. et al. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia. Evol. Appl. 13, 342–361 (2020).PubMed 

    Google Scholar 
    86.Bradbury, E. J. et al. Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am. J. Bot. 100, 857–866 (2013).PubMed 

    Google Scholar 
    87.Kates, H. R. et al. Targeted sequencing suggests wild-crop gene flow is central to different genetic consequences of two independent pumpkin domestications. Front. Ecol. Evol. 9, 618380 (2021).
    Google Scholar 
    88.Talavera, A., Soorni, A., Bombarely, A., Matas, A. J. & Hormaza, J. I. Genome-wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Sci. Rep. 9, 20137 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: Tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).CAS 
    PubMed 

    Google Scholar 
    90.Ross-Ibarra, J., Morrell, P. L. & Gaut, B. S. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl. Acad. Sci. USA 104, 8641–8648 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Ogbonna, A. C., Braatz de Andrade, L. R., Mueller, L. A., de Oliveira, E. J. & Bauchet, G. J. Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. Theor. Appl. Genet. https://doi.org/10.1007/s00122-021-03775-5 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.McKey, D., Cavagnaro, T. R., Cliff, J. & Gleadow, R. Chemical ecology in coupled human and natural systems: People, manioc, multitrophic interactions and global change. Chemoecology 20, 109–133 (2010).CAS 

    Google Scholar 
    93.Clement, C. R., de Cristo-Araújo, M., Coppens d’Eeckenbrugge, G., Alves Pereira, A. & Picanço-Rodrigues, D. Origin and domestication of native Amazonian crops. Diversity 2, 72–106 (2010).
    Google Scholar 
    94.Peña-Venegas, C. P., Stomph, T. J., Verschoor, G., Lopez-Lavalle, L. A. B. & Struik, P. C. Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity 6, 792–826 (2014).
    Google Scholar 
    95.Moreira, P. A. et al. Diversity of treegourd (Crescentia cujete) suggests introduction and prehistoric dispersal routes into Amazonia. Front. Ecol. Evol. 5, 150 (2017).
    Google Scholar 
    96.Clement, C. R. et al. Origin and dispersal of domesticated peach palm. Front. Ecol. Evol. 5, 148 (2017).
    Google Scholar 
    97.Mutegi, E. et al. Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor. Appl. Genet. 122, 989–1004 (2011).CAS 
    PubMed 

    Google Scholar 
    98.Roullier, C., Rossel, G., Tay, D., McKey, D. & Lebot, V. Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Mol. Ecol. 20, 3963–3977 (2011).CAS 
    PubMed 

    Google Scholar 
    99.Alves-Pereira, A. et al. Patterns of nuclear and chloroplast genetic diversity and structure of manioc along major Brazilian Amazonian rivers. Ann. Bot. 121, 625–639 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Siqueira, M. V. B. M. et al. Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats. Genet. Mol. Biol. 32, 104–110 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Allem, A. C. The origins and taxonomy of cassava. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 1–16 (CABI, 2002). https://doi.org/10.1079/9780851995243.0001.102.Barbieri, R. L., Gomes, J. C. C., Alercia, A. & Padulosi, S. Agricultural biodiversity in southern Brazil: Integrating efforts for conservation and use of neglected and underutilized species. Sustainability 6, 741–757 (2014).
    Google Scholar 
    103.Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 111, 4001–4006 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Peroni, N. & Hanazaki, N. Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric. Ecosyst. Environ. 92, 171–183 (2002).
    Google Scholar 
    105.Peroni, N. & Martins, P. S. Influência da dinâmica agrícola itinerante na geração de diversidade de etnovariedades cultivadas vegetativamente. Interciencia 25, 22–29 (2000).
    Google Scholar 
    106.Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 19, 11–15 (1987).
    Google Scholar 
    107.Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Andrews, A. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).109.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    110.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    113.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67–77 (2017).CAS 
    PubMed 

    Google Scholar 
    115.R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.r-project.org/. (Accessed: 15th January 2018).116.Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M. & Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193, 929–941 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    117.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y. ) 38, 1358–1370 (1984).CAS 

    Google Scholar 
    118.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 
    119.Bonhomme, M. et al. Detecting selection in population trees: The Lewontin and Krakauer test extended. Genetics 186, 241–262 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    120.Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105, 767–779 (1983).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    121.Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    122.Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Gautier, M., Klassmann, A. & Vitalis, R. rehh 2.0: A reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol. Ecol. Resour. 17, 78–90 (2017).CAS 
    PubMed 

    Google Scholar 
    124.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polyorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6, 1–13 (2012).
    Google Scholar 
    125.Ten Blake, J. A. quick tips for using the Gene Ontology. PLoS Comput. Biol. 9, e1003343 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    126.Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Alexa, A. & Rahnenführer, J. TopGO: Enrichment analysis for Gene Ontology. R package version 2.44.0. (2021).128.Osuna-Cruz, C. M. et al. PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 46, D1197–D1201 (2018).CAS 
    PubMed 

    Google Scholar 
    129.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    130.Paquette, S. R. Useful Functions for (Batch) File Conversion and Data Resampling in Microsatellite Datasets. https://cran.r-project.org/package=PopGenKit (2012).131.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 

    Google Scholar 
    132.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    133.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    134.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    135.Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    136.Jombart, T. & Ahmed, I. Genetics and population analysis. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Shifts in the foraging tactics of crocodiles following invasion by toxic prey

    Teasing apart the factors that influence prey choice and foraging tactics in the wild poses formidable logistical challenges because of multiple confounding features. For example, a particular type of prey may be rarely consumed not because of predator aversion, but because that prey type is more difficult to find or to capture than some other kind of prey22. Similarly, predators may key in on specific types of prey based on dietary preferences, prey size, or abundance23,24,25. The method of bait deployment that we adopted circumvents many of those problems, by standardising prey abundance, observability, and ease of capture by the predator. Under these conditions, free-ranging crocodiles from toad-sympatric versus toad-naïve populations showed substantial differences in foraging tactics and bait choice. In toad-naïve populations, crocodiles took equal numbers of treatment (toad) baits and control (chicken) baits, and frequently took baits located on land as well as over water. In contrast, crocodiles in toad-sympatric populations generally avoided toad baits in all locations and foraged primarily in the water rather than on land. Both of these shifts—in prey types and foraging locations—conceivably reduce the vulnerability of crocodiles to fatal ingestion of highly toxic cane toads.The relatively rapid ( More

  • in

    A call for governments to save soil

    BOOK REVIEW
    24 January 2022

    A call for governments to save soil

    To ensure food security, the world must stop letting fertile soil wash and blow away.

    Emma Marris

    0

    Emma Marris

    Emma Marris is an environmental writer who lives in Oregon.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Rock becomes visible as topsoil is eroded away.Credit: Martin Harvey/Getty

    A World Without Soil: The Past, Present, and Precarious Future of the Earth Beneath Our Feet Jo Handelsman Yale Univ. Press (2021)Soil creates life from death. The production of more than 95% of the food we eat relies on soil, a heady mix of rock particles, decaying organic matter, roots, fungi and microorganisms. Yet this precious resource is eroding at a global average of 13.5 tonnes per hectare per year. Instead of nourishing crops, fertile topsoil is ending up in inconvenient places such as ditches, reservoirs and the ocean.Microbiologist Jo Handelsman takes on the challenge of making readers care in A World Without Soil, aided by environmental researcher Kayla Cohen. Their prologue takes the form of a letter about soil erosion that Handelsman wishes she had sent to US president Barack Obama while working in the White House’s Office of Science and Technology Policy in the mid-2010s. Alas, she did not understand the true gravity of the problem until the waning days of the administration. Her biggest regret? That she wasn’t able to make soil management the federal priority she thinks it should be.Soil can be created over time, as dead things break down and contribute energy and nutrients to an ecosystem based on the underlying rock. But it erodes 10–30 times faster than it is produced. Globally, erosion reduces annual crop yields by 0.3%. At that rate, 10% of production could be lost by 2050. In erosion hotspots such as Nigeria, 80% of the land has been degraded. In Iowa, up to 17% of land is almost devoid of topsoil. Almost more convincing than the many facts and figures is a colour photograph of a field in Iowa with so little topsoil that the pale, lifeless sandy rubble beneath pokes through.Age-old solutionsA sense of dread builds in the chapters that cover the basic science of soil as well as the causes and consequences of its erosion. The last part of the book brings a burst of enthusiasm, as the authors turn to possible solutions — many of them simple, and some millennia old. These involve improving holding capacity through planting diverse crops in rotation; increasing organic content with additions such as compost and biochar; reducing the erosional effects of water and wind by reshaping the land with contouring, terraces, windbreaks and the like; and ploughing as little as possible.In a chapter on traditional soil-management techniques around the world, Handelsman and Cohen describe deep black “plaggen” soils on Scottish islands, made rich with cattle manure; rice terraces managed for 2,000 years by the Ifugao people in the Philippines; the milpa farming system of the Maya in Latin America, with its 25-year rotation of crops including trees; and compost made of seaweed, shells and plant material by the Māori in New Zealand. Each system yields rich agricultural productivity while maintaining deep banks of carbon-rich, fertile soil. “We know how to do this,” write Handelsman and Cohen.

    Cactus farming in Mexico, where the traditional system of crop rotation helps to replenish the soil.Credit: Omar Torres/AFP/Getty

    Why, then, is fertile soil being allowed to wash and blow away? The answer, not surprisingly, rests in the shackles of global capitalism. Farming’s profit margins are razor-thin, forcing producers to plant the highest-yielding variety of the highest-profit crop from field edge to field edge every season. Terracing, rotating crops and forgoing tilling enrich soil in the long run, but nibble into profits this year. And farmers can’t pay their mortgages or lease equipment with the aroma of deep black topsoil.
    Food systems: seven priorities to end hunger and protect the planet
    Handelsman and Cohen urge the world to demand real change in how mainstream agricultural production is managed. “The burden of protecting soil cannot be relegated to indigenous people and environmental activists,” they note. But their specific suggestions are a little underwhelming. They join the calls for international soil treaties, but given how poorly climate treaties have worked, I am cynical about the potential of such agreements. Countries seem likely to both under-promise and under-deliver unless there are costly penalties for failure. The same goes for the consumer-facing labels that the authors propose for food produced on farms that are working to improve their soil. Similar labels have not put a meaningful dent in climate change or other environmental problems — and many customers cannot afford to spend more on “soil-friendly” food.Top-down changeWhat farming needs is a top-down overhaul. Handelsman and Cohen gesture at this with proposed discounts on crop-insurance premiums for farmers who increase the carbon in their soil. More is needed. Governments must pay farmers to build soil. In the United States, farmers can apply for funding for anti-erosion improvements through the Environmental Quality Incentives Program, run by the Department of Agriculture. Funding announced this month will increase the amount of land planted with cover crops to 12 million hectares by 2030 — but even that would represent only some 7% of US cropland. It is not enough.We need to change how we think of farming. We have already begun to move towards a model in which farmers are less independent businesspeople growing and selling food, and more government-supported land stewards managing a complex mix of food production, soil fertility, wildlife habitat and more. Around the world, many farmers depend on subsidies, drought relief and payments from piecemeal schemes to conserve soil and nature. Such programmes — currently small-scale, ad hoc fixes for a broken system — should be the core of the agricultural sector.Our land, our fresh water, our biodiversity and our soil are too precious to be destroyed by the market price of commodity grains and other foodstuffs. We must invest deeply and thoughtfully in our farmers so that they can invest deeply and thoughtfully in the land, becoming holistic landscape-management professionals. This is the future of farming.

    Nature 601, 503-504 (2022)
    doi: https://doi.org/10.1038/d41586-022-00158-8

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Food systems: seven priorities to end hunger and protect the planet

    Globe to gut: inside Big Food

    The novelist who loved soil

    The business case for soil

    Subjects

    Sustainability

    Ecology

    Environmental sciences

    Latest on:

    Sustainability

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Sustainability at the crossroads
    Editorial 21 DEC 21

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Ecology

    Biodiversity faces its make-or-break year, and research will be key
    Editorial 19 JAN 22

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Environmental sciences

    Air pollution takes a bite out of Asia’s grain crops
    Research Highlight 21 JAN 22

    Global fine-scale changes in ambient NO2 during COVID-19 lockdowns
    Article 19 JAN 22

    Message to mayors: cities need nature
    World View 17 JAN 22

    Jobs

    Postdoc position to investigate composition and function of human hnRNP complexes

    University of Bern
    Bern, Switzerland

    Doctoral Candidate and Postdoc Positions on Magnonic/Plasmonic Devices, Magnonic Neural Networks, and Plasmonic Condensates/Nanolasers

    Aalto University
    Espoo, Finland

    211-0115/21-2N Tenure-track Assistant Professor in Plant Cell Biology and Biochemistry with emphasis on Glycobiology

    University of Copenhagen (UCPH)
    Copenhagen, Denmark

    Postdoctoral Research Scientist – Cellular Degradation Systems Lab

    Francis Crick Institute
    London, United Kingdom More

  • in

    Cryofouling avoidance in the Antarctic scallop Adamussium colbecki

    The Antarctic scallop Adamussium colbecki is one of the few species of benthic organisms that we routinely observed in the icy upper reaches of the shallow anchor-ice zone in Explorer’s Cove, in western McMurdo Sound, Antarctica (Supplementary Movie 1). They inhabit both the deep, ice-free zones and the shallowest, iciest areas27 where they can even be found sitting atop the thick, growing anchor-ice blanket (Fig. 1c–e). The external surfaces of this benthic bivalve (hereafter referred to as “shell”) appear to remain ice-free, while rocks and other inanimate materials in the scallops’ vicinity are completely covered with ice (Supplementary Movie 1). In possessing an inanimate calcitic shell, this species may provide a unique example of a marine invertebrate that avoids cryofouling by truly passive means.Similar to the well-studied locales in southeastern McMurdo Sound17,26, diver observations in Explorer’s Cove (2015, 2017, 2018, by PAC) revealed that the prevalence and thickness of the anchor-ice formations are highest in the shallowest locales and decreased with increasing depth of the seabed. From the underside of the surface sea ice (~2–3 m) to about 6 m depth, anchor ice formed a 60-cm-thick mat, covering greater than 90% of the seabed (Zone 1, Fig. 1c). From ~6 to 20 m depth, the anchor-ice cover was patchier, appearing to cover only 30–50% of the seabed (Zone 2; Fig. 1d). Anchor ice was never observed at depths below ~20 m (Zone 3; Fig. 1e). This depth may demarcate the maximum depth of supercooling occurrence in the study area (Fig. 1b). Live scallops were found to be distributed in all three zones. At the shallowest depths, aggregations of scallops were common even atop the growing anchor-ice blanket (Fig. 1c and Supplementary Movie 1). Interestingly, the shells of live scallops were never observed to be cryofouled during ~30 research dives completed during the peak anchor-ice growth periods in Austral spring (October to December of 2015, 2017, and 2018), nor did any scallops appear to be frozen to the actively growing anchor-ice matrix on which they sat.Demonstrating the potential dangers of cryofouling for Antarctic scallops is non-trivial because the scallops themselves appear to naturally avoid cryofouling. However, on numerous occasions, PAC documented cryofouling on bush sponges (Homaxinella balfourensis) that had colonized the external shell surfaces of Antarctic scallops. In these observations, the growth of ice24 on the epizoic sponges caused involuntary flotation of the host scallops due to the buoyancy28 of the ice attached to the sponge (Supplementary Movie 2). This resulted in the transport of both species to the underside of the growing sea-ice cover above, where they presumably froze in and died (Fig. 2a–f). Strikingly, the shells of cryofouled sponge-colonized scallops themselves, as well as uncolonized scallops in their immediate vicinity, appeared to remain devoid of ice. These observations suggest that the scallops themselves must be cryofouling-avoidant compared to the sponge, as well as to non-biogenic minerals in their vicinity (rocks, sand, and fine sediment) (Supplementary Movie 2).Fig. 2: Sea sponge-colonized Antarctic scallops demonstrate the potential dangers for organisms that do not avoid cryofouling.a–c Unless colonized by the cryofouling-susceptible bush sponge (H. balfourensis), Antarctic scallops appear to be unaffected by cryofouling, even in areas where underwater ice growth is prevalent (Zones 1 and 2). d–h Photographic images depicting the progression of cryofouling-induced uplift (by buoyant ice) of sponge-colonized scallops in Zone 2. The negative consequence of cryofouling for scallops becomes apparent only when its surfaces have been colonized by the bush sponge H. balfourensis, which readily accrete ice. g When a sufficient volume of ice has accreted on the sponge, both species are rafted to the underside of the sea ice by buoyant flotation, where both appear to freeze in and die. Scallop is freezing into the underside of the sea ice. Scallop shell exteriors appear to be free of icing even after arriving at the underside of the sea ice. Note: Scallops arriving and freezing into the underside of the sea ice will eventually be enveloped by further sea ice growth. Scale bars indicated are approximates.Full size imageCryofouling of Antarctic scallops could potentially be deleterious in multiple ways beyond that resulting in buoyant uplift and relatively rapid death. For example, ice adhered to a scallop’s shell could impact their swimming and escape behaviors or occlude water flow paths necessary for filter-feeding. In this case, if the Antarctic scallops do not possess anti-cryofouling capabilities, a larger proportion of the population may likely suffer from the same hazards posed by icing to epizoic sponges: ice growth, involuntary flotation, and likely death when merged into the sea ice. Given that no observations of a cryofouled live scallop exist, the icing process on scallops may be different, posing lower risks for accumulation and flotation. The negative consequences on both feeding and motility functionalities (Fig. 2c–h) associated with cryofouling suggest that for organisms inhabiting areas of supercooled seawater, the selection pressure to evolve passive or active anti-icing strategies could be relatively strong.The ability of surfaces to avoid in-air icing is influenced by properties like micro-structuring, surface roughness, hydrophobicity, chemical composition, or specific topological patterns4,5. Figure 3a–e shows the morphological characterization of the shells of the Antarctic scallop. In contrast to two non-Antarctic control species (bay scallop and sea scallop), the shells of the Antarctic scallop are macroscopically smooth, with only minute, elevated concentric growth rings and gently undulated primary ridges apparent to the naked eye. Scanning electron microscopy (SEM) images of the Antarctic scallop shells revealed a highly structured surface29 with concentric growth rings that separate micro-ridges and micro-valleys, forming a distinctive, regular hierarchical texture (Fig. 3f–h). That is, the areas between growth rings are defined by a series of relatively uniform radial micro-ridges. The shell surfaces of the two control species did not exhibit any ordered or repeating microstructures (Supplementary Figs. 2 and 3). For the Antarctic scallop, the spacing between concentric growth rings and radial micro-ridges along a line from the umbo to the margin were determined to be ~250 and ~10 µm wide, respectively. These features are not strictly uniform over the shell and may vary up to an order of magnitude, with the spacing of features increasing as a function of distance from the umbo. The microscopic surface features of larger (older) shells were slightly abraded, with surface wear appearing to increase towards the umbo–the oldest portion of the shell.Fig. 3: Surface characteristics of the Antarctic scallop’s shell features.a–c Terminology and schematics of features on the shell surface, a, b in-plane, and c section view. d, e Macroscopic images in visible light of the Antarctic scallop’s shell surface without magnification. The shell is covered by a thin, proteinaceous covering (periostracum), under which the calcitic material lies throughout the thickness of the shell. Radial rounded, primary ridges, and concentric growth rings are visible. f–h Scanning electron micrographs showing increasing magnification. f Concentric growth rings separating repeating series of g radial micro-ridges (c. 20 µm peak-to-peak). h Small protuberances are irregularly dispersed throughout the radial micro-valleys (Supplementary Fig. 3). Shells are oriented with the umbo at the top in all panels, except c. Shells of temperate control species are substantially rougher and less ordered than those of the Antarctic scallop (Supplementary Fig. 2).Full size imageNext, we determined the elemental composition and roughness at different positions on the shell surface. Energy-dispersive X-ray spectroscopy revealed that the shell surface predominately consists of oxygen, carbon, calcium, traces of silicon, sodium, aluminum, and magnesium (Supplementary Fig. 4). These findings are consistent with a typical calcitic shell (CaCO3) laminated with proteinaceous periostracum. Surface composition was found to be identical at different locations of the analyses, including along concentric growth rings, micro-ridges, or the micro-valleys in between. The surface roughness was determined using atomic force microscopy (AFM) and revealed that the peaks of the concentric growth rings were the roughest (RMS roughness of 135 ± 57 nm), followed by the radial micro-ridges (RMS roughness of 96 ± 3 nm). In contrast, valley floors between these micro-ridges were relatively smooth (RMS roughness of 38 ± 9 nm), interrupted only by small protuberances (nano-grains, diameter of 83 ± 26 nm) that were irregularly dispersed throughout the radial micro-valleys.In nature, unwanted ice accretion on surfaces can occur either by the accumulation of suspended adhesive frazil ice particles or by in situ initiation of ice growth (heterogeneous ice nucleation) on a surface18,25. To test the possibility of preferential ice nucleation, the scallops were subjected to ice nucleation measurements and an in-air frosting assay. Figure 4a, d shows the results of in-air frosting experiments performed using a custom-built apparatus30,31 in an air-filled climate-controlled (20 °C) chamber at controlled humidity (60%). Compared to the temperate control species, ice nucleation on the Antarctic scallop shell occurred later and subsequent ice growth was directed toward specific surface features (Fig. 4a, b and Supplementary Movie 3). Ice appears to accumulate only on the growth rings, leaving ice-free micro-ridges. As the experiment progressed, ice that had nucleated on the growth rings continued to grow vertically, thereby preventing further imaging of the ice-shell interface (Supplementary Movie 3). We observed no inter-ring bridging of ice and nucleated ice crystals grew preferentially upwards while enlarging in size. In contrast, neither control species showed any obvious signs of directed ice nucleation and appeared to frost uniformly over the surface (Fig. 4d, e). These results indicate that the Antarctic scallop may possess an ability to control ice nucleation and directed ice growth on its shell surfaces.Fig. 4: In-air frosting of scallop shells.The progression of ice accumulation was observed for shells placed atop a cold source in a temperature- and humidity-controlled chamber (20 °C, 60% relative humidity). a The Antarctic scallop preferentially directed ice nucleation and subsequent growth to the shell’s growth rings, termed directed frosting. b This patterned ice accumulation may also apply to ice growth in underwater environments, where it could reduce overall ice-shell contact area (c). d Directed frosting was not observed in control species (e.g., Bay scallop), where ice accreted in a patchy or uniform fashion over the entire surface (e). Likewise, such random but homogenously distributed nucleation-growth behaviors are likely to apply for ice growth in underwater environments, with continuous ice mats over the surface of the shell establishing higher overall contact adhesion force (f).Full size imageFor the Antarctic scallop, the mechanism of directed frosting occurs over two sequential steps: (1) initial condensation-frosting on growth rings, followed by (2) continuous frost growth. (1) The presence of sharp/rough edges (such as those on the growth rings), is known to enhance liquid nucleation by reducing the energy barrier32. Since more liquid water resides at the growth rings, here the nucleation of microscopic ice is more likely33. (2) Upon the formation of these microscopic ice domains as ice stripes (on growth rings), the vapor field around the ridges becomes compressed. The compressed vapor field generates locally steeper vapor gradients and thus stronger vapor fluxes towards the ice on the ridges (Fig. 4b). As a consequence, ice growth on the stripes is enhanced compared to the valleys. The vapor transport in the air during frosting is analogous to the heat transport underwater during icing. At the ridges, the latent heat generated is removed more quickly, facilitating accelerated growth34,35. Furthermore, since the vapor pressure of ice is lower than that of water36, the condensed water in the micro-valleys would be redirected to the ridges. This process would result in the micro-valleys being left comparatively free of ice, per Fig. 4a.A caveat remains, as the shell surface temperature during frosting assays (in-air) is significantly lower (c. −10 to −15 °C) than in nature. In its natural habitat, the lowest temperatures experienced by surfaces immersed in seawater (Fig. 4c, f) are rarely much below the equilibrium freezing point (~−1.9 °C), thus making heterogeneous ice nucleation on shells unlikely. However, the ability to direct ice growth may influence the probability of frazil ice adhering and anchoring strongly to the shell surface, thus facilitating easier removal through mechanical or passive environmental forces.We performed ice-adhesion measurements to test whether the apparent cryofouling avoidance of the Antarctic scallop’s shell in nature could arise from reduced adhesion forces between adhered ice and the shell’s surface. If adhesion is sufficiently low, ice could detach and float away under behavioral (movements, locomotion37) and/or environmentally induced forces (physical interactions, water currents, buoyancy of ice), or a combination of the above. This is particularly relevant once a sufficiently high ratio of ice volume to attachment surface area has been achieved. To provide complementary insight, both in-air and underwater ice-adhesion measurements were performed.The in-air ice-adhesion strength was determined30 by laterally shearing off drops of frozen freshwater from target scallop shells (Supplementary Movie 4). The recorded force curves show that ice adheres less strongly to the Antarctic scallop compared to the control species, the sea and bay scallops, as shown in Fig. 5a. For the Antarctic scallop, the in-air ice-adhesion strength was 145 ± 24 kPa (mean ± SE), ~2–3 times lower than both control species, with adhesion strengths of 335 ± 23 and 405 ± 27 kPa for the sea scallop and bay scallop respectively (Fig. 5a). We further observed that when the frozen drops sheared off the Antarctic scallop, the ice-shell fracture interface exhibited distinct growth ring-patterned fracture lines. In contrast, frozen drops detached from the control species appeared to have a uniform fracture interface (Supplementary Fig. 5 and Supplementary Movie 5). This observation could be explained by the incomplete contact adhesion of the frozen drops to the Antarctic scallop’s shell due to the spacing of small repetitive structural elements on the shell’s surface. As such, the overall area of ice-shell adhesion is reduced, thereby lowering the overall effective adhesion force.Fig. 5: Ice-adhesion measurements for Antarctic, Sea, and Bay scallops.a Displacement (lateral) of ice drops (10 µL) from the surface of shells in a humidity-controlled chamber. Shell temperature: −10 to −15 °C (thickness-dependent). Peak force was achieved immediately before the complete detachment of the drop from the surface. b Displacement (normal) of accreted ice grown in simulated seawater at its freezing point (35 g/L NaCl, c. −2 °C). Mean peak recorded force (dashed lines) ±1 SE (shaded areas) for three repetitions of each experiment are shown. Experimental details are available in the Supplementary Methods and Materials.Full size imageThe strength of ice adhesion (N/m2 or Pa) to shells underwater was determined using a custom-built apparatus. The apparatus determined the forces required for ice detachment when adhered ice was pulled perpendicular to and away from the shell surface. Underwater ice-adhesion experiments were performed in saltwater (35 g/L NaCl), simulating the seawater conditions in Antarctica. A cold source beneath a small section of the shell induced ice growth up to 6 mm in height above the shell surface, (Supplementary Movie 6), thereby encasing a perforated titanium plate (1 cm square, 4 × 2 mm-diameter holes) which was in turn connected to the force probe. The probe was then drawn upwards (normal to the shell, at 30 µm/s, Supplementary Movie 7). As for experiments in air, the recorded force curves in underwater experiments reveal that ice adheres weakly to the Antarctic scallop shell as compared to those of the two control species (Fig. 5b and Supplementary Movie 8). The Antarctic scallop experiences up to 3 times lower ice adhesion (37 ± 7 kPa, mean ± SE) than the sea scallop (112 ± 14 kPa) and more than 6 times lower adhesion than the bay scallop (243 ± 14 kPa) (Fig. 5b). At 37 ± 7 kPa, the Antarctic scallop’s shell shows underwater ice adhesion (normal to the surface) comparable to industrially-developed in-air anti-icing surfaces (1–50 kPa)4. However, if attachment forces in nature approach this value in a static environment (i.e., no water currents or scallop swimming behaviors), ≥3.7 cm3 of ice would need to be attached per mm2 of ice-shell contact area for the passive removal of ice under its own buoyant forces. Therefore, the “passive” removal of ice from Antarctic scallops must result from a combination of surface-to-environment factors. That is, the removal of ice crystals with small contact areas, such as platelet ice with its fine dendritic structure, may be facilitated by drag forces arising in natural water currents or induced by the rapid opening and closing of the scallop’s valves during swimming behaviors37. In these cases, adherent ice on the microstructures of the shell would likely experience the initiation of cracks that would subsequently facilitate ice removal given water movements or other physical disturbances.Whether the cryofouling-avoidant surfaces of the Antarctic scallop’s shell arose under evolutionary selection pressure remains unclear. Based on fossil records, the exclusively Antarctic scallop genus Adamussium first appeared in the early Oligocene, some 33 million years ago (mya)38,39. This time period roughly coincides with the onset of the major glaciation of Antarctica (c. 35 mya). The Antarctic scallop, Adamussium colbecki, appears to have arisen more recently, in the late Pliocene ( More

  • in

    Unique high Arctic methane metabolizing community revealed through in situ 13CH4-DNA-SIP enrichment in concert with genome binning

    1.Ferrari, B. C., Winsley, T., Gillings, M. & Binnerup, S. Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat. Protoc. 3, 1261–1269 (2008).CAS 
    PubMed 

    Google Scholar 
    2.Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. AEM. 80, 6807–6818 (2014).ADS 

    Google Scholar 
    5.Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533 (2013).CAS 
    PubMed 

    Google Scholar 
    6.Lazar, C. S., Baker, B. J., Seitz, K. W. & Teske, A. P. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 11, 1118–1129 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Dumont, M. G. & Murrell, J. C. Stable isotope probing—Linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).CAS 
    PubMed 

    Google Scholar 
    9.Gadkari, P. S., McGuinness, L. R., Männistö, M. K., Kerkhof, L. J. & Häggblom, M. M. Arctic tundra soil bacterial communities active at subzero temperatures detected by stable isotope probing. FEMS Microbiol. Ecol. 96, fiz192 (2020).CAS 
    PubMed 

    Google Scholar 
    10.Achouak, W. & el Zahar Haichar, F. Stable isotope probing of microbiota structure and function in the plant rhizosphere. Methods Mol. Biol. 2046, 233–243 (2019).CAS 
    PubMed 

    Google Scholar 
    11.Graef, C., Hestnes, A. G., Svenning, M. M. & Frenzel, P. The active methanotrophic community in a wetland from the High Arctic. Environ. Microbiol. Rep. 3, 466–472 (2011).CAS 
    PubMed 

    Google Scholar 
    12.He, R. et al. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14, 1403–1419 (2012).CAS 
    PubMed 

    Google Scholar 
    13.Martineau, C., Whyte, L. G. & Greer, C. W. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian High Arctic. Appl. Environ. Microbiol. 76, 5773–5784 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63. https://doi.org/10.1016/s0065-2113(07)96005-8 (2007).CAS 
    Article 

    Google Scholar 
    16.Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Ricke, P. et al. First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidiphila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl. Environ. Microbiol. 71, 7472–7482 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    19.Jørgensen, C. J., Johansen, K. M. L., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).ADS 

    Google Scholar 
    20.Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).ADS 

    Google Scholar 
    21.Martineau, C. et al. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol. Ecol. 89, 257–269 (2014).CAS 
    PubMed 

    Google Scholar 
    22.Christiansen, J. R. et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33 (2015).CAS 

    Google Scholar 
    23.Lau, M. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Altshuler, I. et al. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH4 and CO2 gas fluxes. Environ. Microbiol. 21, 3711–3727 (2019).CAS 
    PubMed 

    Google Scholar 
    25.Holmes, A. J. et al. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65, 3312–3318 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7, 1150–1161 (2005).CAS 
    PubMed 

    Google Scholar 
    27.Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl. Acad. Sci. 116, 8515–8524 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Cai, Y., Zheng, Y., Bodelier, P. L., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Curry, C. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6, 2355–2367 (2009).ADS 
    CAS 

    Google Scholar 
    31.Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784 (2015).CAS 

    Google Scholar 
    32.Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E. & Dell, C. J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. JoVE 90, 52110 (2014).
    Google Scholar 
    33.Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266 (2002).CAS 
    PubMed 

    Google Scholar 
    34.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 

    Google Scholar 
    35.Martineau, C., Whyte, L. G. & Greer, C. W. Development of a SYBR safe™ technique for the sensitive detection of DNA in cesium chloride density gradients for stable isotope probing assays. J. Microbiol. Methods 73, 199–202 (2008).CAS 
    PubMed 

    Google Scholar 
    36.McDonald, I. R., Bodrossy, L., Chen, Y. & Murrell, J. C. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 74, 1305–1315 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    37.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    38.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley National Lab. (LBNL), Berkeley, 2014).
    Google Scholar 
    40.Li, F., Zhu, R., Bao, T., Wang, Q. & Xu, H. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra. Sci. Total Environ. 572, 1150–1160 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    41.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    42.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Rodriguez-R, L. M. et al. The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282–W288 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).CAS 

    Google Scholar 
    45.Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132–e132 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    46.Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).
    Google Scholar 
    47.Huntemann, M. et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v. 4). Stand. Genom. Sci. 10, 86 (2015).
    Google Scholar 
    48.Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v. 4). Stand. Genom. Sci. 11, 17 (2016).
    Google Scholar 
    49.Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Holm, L. Using Dali for Protein Structure Comparison. In Structural Bioinformatics. Methods in Molecular Biology. (ed. Gáspári Z.) vol 2112 (Humana, New York, 2020) https://doi.org/10.1007/978-1-0716-0270-6_3.51.Yang, J. et al. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 12, 7 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Wen, X., Yang, S. & Liebner, S. Evaluation and update of cutoff values for methanotrophic pmoA gene sequences. Arch. Microbiol. 198, 629–636 (2016).CAS 
    PubMed 

    Google Scholar 
    53.Shrestha, P. M., Kammann, C., Lenhart, K., Dam, B. & Liesack, W. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME J. 6, 1115–1126 (2012).CAS 
    PubMed 

    Google Scholar 
    54.Tremblay, J. & Yergeau, E. Systematic processing of ribosomal RNA gene amplicon sequencing data. GigaScience 8, giz146 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    55.Fish, J. A. et al. FunGene: The functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    56.Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Doxey, A. C., Mansfield, M. J. & Montecucco, C. Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 147, 2–12 (2018).CAS 
    PubMed 

    Google Scholar 
    58.Pearson, W. R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinform. 42, 1–8 (2013).
    Google Scholar 
    59.Sachs, T., Giebels, M., Boike, J. & Kutzbach, L. Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Glob. Change Biol. 16, 3096–3110 (2010).
    Google Scholar 
    60.Brummell, M. E., Farrell, R. E., Hardy, S. P. & Siciliano, S. D. Greenhouse gas production and consumption in High Arctic deserts. Soil Biol. Biochem. 68, 158–165 (2014).CAS 

    Google Scholar 
    61.Allan, J. et al. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 6, 136–144 (2014).CAS 
    PubMed 

    Google Scholar 
    62.Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).CAS 

    Google Scholar 
    63.Qiu, Q., Noll, M., Abraham, W.-R., Lu, Y. & Conrad, R. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J. 2, 602–614 (2008).CAS 
    PubMed 

    Google Scholar 
    64.Esson, K. C. et al. Alpha-and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl. Environ. Microbiol. 82, 2363–2371 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Kolb, S., Knief, C., Stubner, S. & Conrad, R. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69, 2423–2429 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Belova, S. E., Danilova, O. V., Ivanova, A. A., Merkel, A. Y. & Dedysh, S. N. Methane-oxidizing communities in lichen-dominated forested tundra are composed exclusively of high-affinity USCα methanotrophs. Microorganisms 8, 2047 (2020).CAS 
    PubMed Central 

    Google Scholar 
    68.Hirayama, H. et al. Methylomarinovum caldicuralii gen. nov., sp. Nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int. J. Syst. Evol. Microbiol. 64, 989–999 (2014).CAS 
    PubMed 

    Google Scholar 
    69.Graham, D. W., Chaudhary, J. A., Hanson, R. S. & Arnold, R. G. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb. Ecol. 25, 1–17 (1993).CAS 
    PubMed 

    Google Scholar 
    70.Macalady, J. L., McMillan, A. M., Dickens, A. F., Tyler, S. C. & Scow, K. M. Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ. Microbiol. 4, 148–157 (2002).PubMed 

    Google Scholar 
    71.Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 

    Google Scholar 
    72.Zarzycki, J. & Fuchs, G. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Appl. Environ. Microbiol. 77, 6181–6188 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Ward, L. M. et al. Genomic evidence for phototrophic oxidation of small alkanes in a member of the chloroflexi phylum. bioRxiv 531582 (2019) https://doi.org/10.1101/531582.74.Khadem, A. F. et al. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193, 4438–4446 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Rasigraf, O., Kool, D. M., Jetten, M. S., Damsté, J. S. S. & Ettwig, K. F. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl. Environ. Microbiol. 80, 2451–2460 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Kalyuzhnaya, M. G., Gomez, O. A., Murrell J. C. The Methane-Oxidizing Bacteria (Methanotrophs). In: McGenity T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_10 (2019).77.Contin, M., Rizzardini, C. B., Catalano, L. & De Nobili, M. Contamination by mercury affects methane oxidation capacity of aerobic arable soils. Geoderma 189, 250–256 (2012).ADS 

    Google Scholar 
    78.Boden, R. & Murrell, J. C. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 324, 106–110 (2011).CAS 
    PubMed 

    Google Scholar 
    79.Yan, X., Chu, F., Puri, A. W., Fu, Y. & Lidstrom, M. E. Electroporation-based genetic manipulation in type I methanotrophs. Appl. Environ. Microbiol. AEM 82, 2062–2069 (2016).ADS 
    CAS 

    Google Scholar 
    80.Strong, P. J. et al. The opportunity for high-performance biomaterials from methane. Microorganisms 4, 11 (2016).PubMed Central 

    Google Scholar 
    81.Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction. ISME J. 12, 1929–1939 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Iguchi, H., Yurimoto, H. & Sakai, Y. Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12. FEMS Microbiol. Lett. 312, 71–76 (2010).CAS 
    PubMed 

    Google Scholar 
    83.Semrau, J. D. et al. Methanobactin and MmoD work in concert to act as the ‘copper-switch’in methanotrophs. Environ. Microbiol. 15, 3077–3086 (2013).CAS 
    PubMed 

    Google Scholar 
    84.Csaki, R., Bodrossy, L., Klem, J., Murrell, J. C. & Kovacs, K. L. Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): Cloning, sequencing and mutational analysis. Microbiology 149, 1785–1795 (2003).CAS 
    PubMed 

    Google Scholar 
    85.Lund, J., Woodland, M. P. & Dalton, H. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 297–305 (1985).CAS 
    PubMed 

    Google Scholar 
    86.Lund, J. & Howard, D. Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH: Acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 291–296 (1985).CAS 
    PubMed 

    Google Scholar 
    87.Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. 107, 14390–14395 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Katayama, T. et al. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl. Environ. Microbiol. 73, 2360–2363 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Scanlan, J., Dumont, M. G. & Murrell, J. C. Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol. Lett. 301, 181–187 (2009).CAS 
    PubMed 

    Google Scholar 
    90.Ali, H. & Murrell, J. C. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology 155, 761–771 (2009).CAS 
    PubMed 

    Google Scholar 
    91.Yu, Z., Groom, J., Zheng, Y., Chistoserdova, L. & Huang, J. Synthetic methane-consuming communities from a natural lake sediment. MBio 10, e01072-01019 (2019).
    Google Scholar 
    92.Tarlera, S. & Denner, E. B. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53, 1085–1091 (2003).CAS 
    PubMed 

    Google Scholar 
    93.Beller, H. R. et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 188, 1473–1488 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Kojima, H. & Fukui, M. Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 60, 2862–2866 (2010).CAS 
    PubMed 

    Google Scholar 
    95.Boden, R., Hutt, L. P. & Rae, A. W. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov. Transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and 4 new families within the orders Nitrosomonadales and Rhodocyclales. Int. J. Syst. Evol. Microbiol. 67, 1191–1205 (2017).CAS 
    PubMed 

    Google Scholar 
    96.Yoon, S., Cruz-García, C., Sanford, R., Ritalahti, K. M. & Löffler, F. E. Denitrification versus respiratory ammonification: Environmental controls of two competing dissimilatory NO3−/NO2− reduction pathways in Shewanella loihica strain PV-4. ISME J. 9, 1093 (2015).CAS 
    PubMed 

    Google Scholar 
    97.Bonin, P. Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: A dissimilatory pathway. FEMS Microbiol. Ecol. 19, 27–38 (1996).CAS 

    Google Scholar 
    98.Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 717, 179–244 (1988).
    Google Scholar 
    99.Stein, L. Y. & Klotz, M. G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 39, 1826–1831 (2011).CAS 
    PubMed 

    Google Scholar 
    100.Tays, C., Guarnieri, M. T., Sauvageau, D. & Stein, L. Y. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 9, 2239 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    101.van den Berg, E. M., Boleij, M., Kuenen, J. G., Kleerebezem, R. & van Loosdrecht, M. DNRA and denitrification coexist over a broad range of acetate/N-NO3− ratios, in a chemostat enrichment culture. Front. Microbiol. 7, 1842 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    102.Edwards, C. R. et al. Draft genome sequence of uncultured upland soil cluster Gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc. 5, e00047-e117 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    103.Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Gupta, V., Smemo, K. A., Yavitt, J. B. & Basiliko, N. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb. Ecol. 63, 438–445 (2012).CAS 
    PubMed 

    Google Scholar  More

  • in

    The choice of the white clover population alters overyielding of mixtures with perennial ryegrass and chicory and underlying processes

    1.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720. https://doi.org/10.1038/379718a0 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127. https://doi.org/10.1126/science.286.5442.1123 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Kirwan, L. et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 95, 530–539. https://doi.org/10.1111/j.1365-2745.2007.01225.x (2007).Article 

    Google Scholar 
    4.Sturludóttir, E. et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69, 229–240. https://doi.org/10.1111/gfs.12037 (2014).CAS 
    Article 

    Google Scholar 
    5.Roscher, C. et al. Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecol. Lett. 8, 419–429. https://doi.org/10.1111/j.1461-0248.2005.00736.x (2005).Article 

    Google Scholar 
    6.Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 1–5. https://doi.org/10.1038/nplants.2015.33 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277. https://doi.org/10.1007/s00442-002-0965-x (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    8.Sanderson, M. A. et al. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 44, 1132–1144. https://doi.org/10.2135/cropsci2004.1132 (2004).Article 

    Google Scholar 
    9.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922 (2005).Article 

    Google Scholar 
    10.Spehn, E. M. et al. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol. Monogr. 75, 37–63. https://doi.org/10.1890/03-4101 (2005).Article 

    Google Scholar 
    11.Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390. https://doi.org/10.1016/j.tree.2017.02.011 (2017).Article 
    PubMed 

    Google Scholar 
    12.Brophy, C. et al. Major shifts in species’ relative abundance in grassland mixtures alongside positive effects of species diversity in yield: a continental-scale experiment. J. Ecol. 105, 1210–1222. https://doi.org/10.1111/1365-2745.12754 (2017).CAS 
    Article 

    Google Scholar 
    13.Nyfeler, D. et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 46, 683–691. https://doi.org/10.1111/j.1365-2664.2009.01653.x (2009).Article 

    Google Scholar 
    14.Søegaard, K., Gierus, M., Hopkins, A. & Halling, M. Temporary grassland – challenges in the future. Grassl. Sci. Eur. 12, 27–38. https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2007_GSE_vol12.pdf (2007).15.Høgh-Jensen, H., Nielsen, B. & Thamsborg, S. M. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. Eur. J. Agron. 24, 247–256. https://doi.org/10.1016/j.eja.2005.10.007 (2006).CAS 
    Article 

    Google Scholar 
    16.Cong, W. F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-01632-4 (2017).CAS 
    Article 

    Google Scholar 
    17.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. https://doi.org/10.1038/35083573 (2001).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Loreau, M., Sapijanskas, J., Isbell, F. & Hector, A. Niche and fitness differences relate the maintenance of diversity to ecosystem function: comment. Ecology 93, 1482–1487. https://doi.org/10.1890/11-0792.1 (2012).Article 
    PubMed 

    Google Scholar 
    19.Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 187–202. https://doi.org/10.1007/s11104-017-3496-2 (2018).CAS 
    Article 

    Google Scholar 
    20.Vermeulen, P. J., Van Ruijven, J., Anten, N. P. & Van der Werf, W. An evolutionary game theoretical model shows the limitations of the additive partitioning method for interpreting biodiversity experiments. J. Ecol. 105, 345–353. https://doi.org/10.1111/1365-2745.12706 (2017).Article 

    Google Scholar 
    21.Hille Ris Lambers, J. H. R., Harpole, W. S., Tilman, D., Knops, J. & Reich, P. B. Mechanisms responsible for the positive diversity–productivity relationship in Minnesota grasslands. Ecol. Lett. 7, 661–668. https://doi.org/10.1111/j.1461-0248.2004.00623.x (2004).22.Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302. https://doi.org/10.1890/09-0069.1 (2009).Article 
    PubMed 

    Google Scholar 
    23.Lüscher, A., Suter, M., Finn, J., Collins, R. & Gastal, F. Quantification of the effect of legume proportion in the sward on yield advantage and options to keep stable legume proportions (over climatic zones relevant for livestock production). HAL 7, 1–35. https://hal.archives-ouvertes.fr/hal-01611404 (2014).24.Roscher, C., Schumacher, J., Weisser, W. W., Schmid, B. & Schulze, E. D. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154, 535–549. https://doi.org/10.1007/s00442-007-0846-4 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    25.Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. Appl. Ecol. 50, 365–375. https://doi.org/10.1111/1365-2664.12041 (2013).Article 

    Google Scholar 
    26.Grange, G., Finn, J. A. & Brophy, C. Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. J. Appl. Ecol. 58, 1864–1875. https://doi.org/10.1111/1365-2664.13894 (2021).CAS 
    Article 

    Google Scholar 
    27.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U.S.A. 104, 18123–18128. https://doi.org/10.1073/pnas.0709069104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Marquard, E. et al. Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects. PLoS ONE 8, e75599. https://doi.org/10.1371/journal.pone.0075599 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642. https://doi.org/10.1038/s41559-017-0325-1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. Royal Soc. B 274, 871–876. https://doi.org/10.1098/rspb.2006.0351 (2007).Article 

    Google Scholar 
    31.Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C. & Jentsch, A. Extreme weather events and plant-plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol. Res. 29, 991–1001. https://doi.org/10.1007/s11284-014-1187-5 (2014).Article 

    Google Scholar 
    32.Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. https://doi.org/10.1126/science.1217909 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Roscher, C., Schmid, B., Kolle, O. & Schulze, E. D. Complementarity among four highly productive grassland species depends on resource availability. Oecologia 181, 571–582. https://doi.org/10.1007/s00442-016-3587-4 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    34.Frankow-Lindberg, B. E., Brophy, C., Collins, R. P. & Connolly, J. Biodiversity effects on yield and unsown species invasion in a temperate forage ecosystem. Ann. Bot. 103, 913–921. https://doi.org/10.1093/aob/mcp008 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Caradus, J. R. & Woodfield, D. R. World checklist of white clover varieties II. New Zealand J. Agric. Res. 40, 115–206. https://doi.org/10.1080/00288233.1997.9513239 (1997).Article 

    Google Scholar 
    36.Annicchiarico, P., Barrett, B., Brummer, E. C., Julier, B. & Marshall, A. H. Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 34, 327–380. https://doi.org/10.1080/07352689.2014.898462 (2015).CAS 
    Article 

    Google Scholar 
    37.Abberton, M. T. & Marshall, A. H. Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. 143, 117–135. https://doi.org/10.1017/S0021859605005101 (2005).Article 

    Google Scholar 
    38.Evans, D. R., Williams, T. A. & Mason, S. A. Contribution of white clover varieties to total sward production under typical farm management. Grass Forage Sci. 45, 129–134. https://doi.org/10.1111/j.1365-2494.1990.tb02193.x (1990).Article 

    Google Scholar 
    39.Hooper, D. U. & Dukes, J. S. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7, 95–105. https://doi.org/10.1046/j.1461-0248.2003.00555.x (2004).Article 

    Google Scholar 
    40.Ergon, Å. et al. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies: 1. dry-matter yield and dynamics of species composition. Grass Forage Sci. 71, 667–682. https://doi.org/10.1111/gfs.12250 (2016).CAS 
    Article 

    Google Scholar 
    41.Van Ruijven, J. & Berendse, F. Diversity–productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl. Acad. Sci. U.S.A. 102, 695–700. https://doi.org/10.1073/pnas.0407524102 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180. https://doi.org/10.1016/j.tree.2018.10.013 (2019).Article 
    PubMed 

    Google Scholar 
    43.Annicchiarico, P. Breeding white clover for increased ability to compete with associated grasses. J. Agric. Sci. 140, 255–266. https://doi.org/10.1017/S0021859603003198 (2003).Article 

    Google Scholar 
    44.Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111. https://doi.org/10.1038/nature13869 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Schöb, C. et al. Intraspecific genetic diversity and composition modify species-level diversity–productivity relationships. New Phytol. 205, 720–730. https://doi.org/10.1111/nph.13043 (2015).Article 
    PubMed 

    Google Scholar 
    46.Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology A review. Agron. Sustain. Dev. 37, 13. https://doi.org/10.1007/s13593-017-0418-x (2017).Article 

    Google Scholar 
    47.Van Ruijven, J. & Berendse, F. Long-term persistence of a positive plant diversity–productivity relationship in the absence of legumes. Oikos 118, 101–106. https://doi.org/10.1111/j.1600-0706.2008.17119.x (2009).Article 

    Google Scholar 
    48.Roscher, C. et al. A functional trait-based approach to understand community assembly and diversity–productivity relationships over 7 years in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 15, 139–149. https://doi.org/10.1016/j.ppees.2013.02.004 (2013).Article 

    Google Scholar 
    49.Roscher, C., Thein, S., Schmid, B. & Scherer-Lorenzen, M. Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. J. Ecol. 96, 477–488. https://doi.org/10.1111/j.1365-2745.2008.01353.x (2008).Article 

    Google Scholar 
    50.Kayser, M., Müller, J. & Isselstein, J. Grassland renovation has important consequences for C and N cycling and losses. Food Energy Secur. 7, e00146. https://doi.org/10.1002/fes3.146 (2018).Article 

    Google Scholar 
    51.Bundessortenamt. Beschreibende Sortenliste Futtergräser Esparsette, Klee, Luzerne 2020. https://www.bundessortenamt.de/bsa/media/Files/BSL/bsl_futtergraeser_2020.pdf (2020).52.Rognli, O. A., Pecetti, L., Kovi, M. R. & Annicchiarico, P. Grass and legume breeding matching the future needs of European grassland farming. Grass Forage Sci. 76, 175–185. https://doi.org/10.1111/gfs.12535 (2021).Article 

    Google Scholar 
    53.Annicchiarico, P. et al. Do we need specific breeding for legume-based mixtures?. Adv. Agron. 157, 141–215. https://doi.org/10.1016/bs.agron.2019.04.001 (2019).Article 

    Google Scholar 
    54.Sampoux, J. P., Giraud, H. & Litrico, I. Which recurrent selection scheme to improve mixtures of crop species? Theoretical expectations. G3-Genes Genom. Genet. 10, 89–107. https://doi.org/10.1534/g3.120.401092 (2020).55.Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).Article 

    Google Scholar 
    56.Pinheiro, J. et al. Nlme: Linear and nonlinear mixed effects models. R package version 3.1–137. https://CRAN.R-project.org/package=nlme (2018).57.Bartón, K. MuMIn: Multi-model inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019). More

  • in

    Heat sensitivity of first host and cercariae may restrict parasite transmission in a warming sea

    1.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    PubMed 

    Google Scholar 
    2.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 

    Google Scholar 
    3.Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. In: […]. in Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 175–311 (2018).4.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).PubMed 

    Google Scholar 
    5.Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).ADS 

    Google Scholar 
    6.Marcogliese, D. J. The impact of climate change on the parasites and infectious diseases of aquatic animals. OIE Rev. Sci. Tech. 27, 467–484 (2008).CAS 

    Google Scholar 
    7.Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
    Google Scholar 
    8.Mouritsen, K. N. & Poulin, R. Parasitism, climate oscillations and the structure of natural communities. Oikos 97, 462–468 (2002).
    Google Scholar 
    9.Poulin, R. & Mouritsen, K. N. Climate change, parasitism and the structure of intertidal ecosystems. J. Helminthol. 80, 183–191 (2006).CAS 
    PubMed 

    Google Scholar 
    10.Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).ADS 

    Google Scholar 
    11.James, C. C. et al. Marine host–pathogen dynamics: Influences of global climate change. Oceanography 31, 182–193 (2018).
    Google Scholar 
    12.Friesen, O. C., Poulin, R. & Lagrue, C. Temperature and multiple parasites combine to alter host community structure. Oikos 130(9), 1500–1511 (2021).

    Google Scholar 
    13.Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    14.Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Galaktionov, K. V. & Dobrovolskij, A. A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes. The American Journal of Semiotics vol. 4 (Springer-Science+Business Media Dordrecht, 2003).16.Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).CAS 
    PubMed 

    Google Scholar 
    17.Pietrock, M. & Marcogliese, D. J. Free-living endohelminth stages: At the mercy of environmental conditions. Trends Parasitol. 19, 293–299 (2003).PubMed 

    Google Scholar 
    18.Morley, N. J. Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138, 1442–1452 (2011).CAS 
    PubMed 

    Google Scholar 
    19.Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151 (2006).CAS 
    PubMed 

    Google Scholar 
    20.Thieltges, D. W. & Rick, J. Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis. Aquat. Organ. 73, 63–68 (2006).PubMed 

    Google Scholar 
    21.Selbach, C. & Poulin, R. Some like it hotter: Trematode transmission under changing temperature conditions. Oecologia 194, 745–755 (2020).ADS 
    PubMed 

    Google Scholar 
    22.Morley, N. J. Inbred laboratory cultures and natural trematode transmission under climate change. Trends Parasitol. 27, 286–287 (2011).PubMed 

    Google Scholar 
    23.Paull, S. H. & Johnson, P. T. J. Experimental warming drives a seasonal shift in the timing of host–parasite dynamics with consequences for disease risk. Ecol. Lett. 17, 445–453 (2014).PubMed 

    Google Scholar 
    24.Paull, S. H., Lafonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host–parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).ADS 

    Google Scholar 
    25.Studer, A., Poulin, R. & Tompkins, D. M. Local effects of a global problem: Modelling the risk of parasite-induced mortality in an intertidal trematode-amphipod system. Oecologia 172, 1213–1222 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    26.Studer, A., Thieltges, D. W. & Poulin, R. Parasites and global warming: Net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).ADS 

    Google Scholar 
    27.Mouritsen, K. N., Tompkins, D. M. & Poulin, R. Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146, 476–483 (2005).ADS 
    PubMed 

    Google Scholar 
    28.Selbach, C., Barsøe, M., Vogensen, T. K., Samsing, A. B. & Mouritsen, K. N. Temperature–parasite interaction: Do trematode infections protect against heat stress?. Int. J. Parasitol. 50, 1189–1194 (2020).PubMed 

    Google Scholar 
    29.Werding, B. Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Mar. Biol. 3, 306–333 (1969).
    Google Scholar 
    30.Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    31.Fredensborg, B. L., Mouritsen, K. N. & Poulin, R. Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarcinatus. Mar. Ecol. Prog. Ser. 290, 109–117 (2005).ADS 

    Google Scholar 
    32.Morón Lugo, S. C. et al. Warming and temperature variability determine the performance of two invertebrate predators. Sci. Rep. 10, 1–14 (2020).ADS 

    Google Scholar 
    33.Wolf, F. et al. High resolution water temperature data between January 1997 and December 2018 at the GEOMAR pier surface. Bremen PANGAEA. https://doi.org/10.1594/PANGAEA.919186 (2020).34.Franz, M., Lieberum, C., Bock, G. & Karez, R. Environmental parameters of shallow water habitats in the SW Baltic Sea. Earth Syst. Sci. Data 11, 947–957 (2019).ADS 

    Google Scholar 
    35.Lajeunesse, M. J. Bias and correction for the log response ratio in ecological meta-analysis. Ecology 96, 2056–2063 (2015).PubMed 

    Google Scholar 
    36.Gräwe, U., Friedland, R. & Burchard, H. The future of the western Baltic Sea: Two possible scenarios. Ocean Dyn. 63, 901–921 (2013).ADS 

    Google Scholar 
    37.Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).ADS 

    Google Scholar 
    38.Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    PubMed 

    Google Scholar 
    39.Clarke, A. P., Mill, P. J. & Grahame, J. The nature of heat coma in Littorina littorea (Mollusca: Gastropoda). Mar. Biol. 137, 447–451 (2000).
    Google Scholar 
    40.McDaniel, S. J. Littorina littorea: Lowered heat tolerance due to Cryptocotyle lingua. Exp. Parasitol. 25, 13–15 (1969).CAS 
    PubMed 

    Google Scholar 
    41.Ataev, G. Temperature influence on the development and biology of rediae and cercariae of Philophthalmus rhionica (Trematoda). Parazitologiâ 25, 349–359 (1991).
    Google Scholar 
    42.Paull, S. H. & Johnson, P. T. J. High temperature enhances host pathology in a snail-trematode system: Possible consequences of climate change for the emergence of disease. Freshw. Biol. 56, 767–778 (2011).
    Google Scholar 
    43.Paull, S. H., Raffel, T. R., Lafonte, B. E. & Johnson, P. T. J. How temperature shifts affect parasite production: Testing the roles of thermal stress and acclimation. Funct. Ecol. 29, 941–950 (2015).
    Google Scholar 
    44.Kuris, A. M. Effect of exposure to Echinostoma liei miracidia on growth and survival of young Biomphalaria glabrata snails. Int. J. Parasitol. 10, 303–308 (1980).CAS 
    PubMed 

    Google Scholar 
    45.Mouritsen, K. N. & Haun, S. C. B. Community regulation by herbivore parasitism and density: Trait-mediated indirect interactions in the intertidal. J. Exp. Mar. Biol. Ecol. 367, 236–246 (2008).
    Google Scholar 
    46.Bommarito, C. et al. Effects of first intermediate host density, host size and salinity on trematode infections in mussels of the south-western Baltic Sea. Parasitology 148, 486–494 (2021).CAS 
    PubMed 

    Google Scholar 
    47.McCarthy, A. M. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383–388 (1999).PubMed 

    Google Scholar 
    48.Morley, N. J. & Lewis, J. W. Thermodynamics of trematode infectivity. Parasitology 142, 585–597 (2015).CAS 
    PubMed 

    Google Scholar 
    49.Mouritsen, K. N. & Jensen, K. T. Parasite transmission between soft-bottom invertebrates: Temperature mediated infection rates and mortality in Corophium volutator. Mar. Ecol. Prog. Ser. 151, 123–134 (1997).ADS 

    Google Scholar 
    50.de Montaudouin, X., Wegeberg, A. M., Jensen, K. T. & Sauriau, P. G. Infection characteristics of Himasthla elongata cercariae in cockles as a function of water current. Dis. Aquat. Organ. 34, 63–70 (1998).
    Google Scholar 
    51.Vajedsamiei, J. et al. Simultaneous recording of filtration and respiration in marine organisms in response to short-term environmental variability. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10414 (2021).Article 

    Google Scholar 
    52.Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W. & Fredensborg, B. L. Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evol. Ecol. 26, 1497–1512 (2012).
    Google Scholar 
    53.Stunkard, H. W. The morphology and life history of the digenetic trematode, Himasthla littorinae sp. n. (Echinostomatidae). J. Parasitol. 52, 367–372 (2014).
    Google Scholar 
    54.Selbach, C. & Poulin, R. Parasites in space and time: A novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology 145, 1469–1474 (2018).PubMed 

    Google Scholar 
    55.Gorbushin, A. M. & Levakin, I. A. Encystment in vitro of the cercariae Himasthla elongata (Trematoda: Echinostomatidae). J. Evol. Biochem. Physiol. 41, 428–436 (2005).
    Google Scholar 
    56.Gorbushin, A. M. & Shaposhnikova, T. G. In vitro culture of the avian echinostome Himasthla elongata: From redia to marita. Exp. Parasitol. 101, 234–239 (2002).CAS 
    PubMed 

    Google Scholar 
    57.Levakin, I. A., Losev, E. A., Nikolaev, K. E. & Galaktionov, K. V. In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the haemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J. Helminthol. 87, 180–188 (2013).CAS 
    PubMed 

    Google Scholar 
    58.Choisy, M., Brown, S. P., Lafferty, K. D. & Thomas, F. Evolution of trophic transmission in parasites: Why add intermediate hosts?. Am. Nat. 162, 172–181 (2003).PubMed 

    Google Scholar 
    59.Pechenik, J. & Fried, B. Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: A test of the energy limitation hypothesis. Parasitology 111, 373–378 (1995).
    Google Scholar 
    60.Fried, B. & Ponder, E. L. Effects of temperature on survival, infectivity and in vitro encystment of the cercariae of Echinostoma caproni. J. Helminthol. 77, 235–238 (2003).CAS 
    PubMed 

    Google Scholar 
    61.Bommarito, C. et al. Freshening rather than warming drives trematode transmission from periwinkles to mussels. Mar. Biol. 167, 1–12 (2020).
    Google Scholar 
    62.Morley, N. J. & Lewis, J. W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140, 121–1214 (2013).
    Google Scholar 
    63.Büttger, H. et al. Community dynamics of intertidal soft-bottom mussel beds over two decades. Helgol. Mar. Res. 62, 23–36 (2008).ADS 

    Google Scholar 
    64.Jaatinen, K., Westerbom, M., Norkko, A., Mustonen, O. & Koons, D. N. Detrimental impacts of climate change may be exacerbated by density-dependent population regulation in blue mussels. J. Anim. Ecol. 90, 562–573 (2021).PubMed 

    Google Scholar 
    65.Studer, A. & Poulin, R. Analysis of trait mean and variability versus temperature in trematode cercariae: Is there scope for adaptation to global warming?. Int. J. Parasitol. 44, 403–413 (2014).CAS 
    PubMed 

    Google Scholar 
    66.Berkhout, B. W., Lloyd, M. M., Poulin, R. & Studer, A. Variation among genotypes in responses to increasing temperature in a marine parasite: Evolutionary potential in the face of global warming?. Int. J. Parasitol. 44, 1019–1027 (2014).PubMed 

    Google Scholar 
    67.Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of salinity and temperature on egg development and miracidial emergence. Parasitology 82, 459–465 (1981).
    Google Scholar 
    68.Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of temperature and salinity on the life-span of the miracidium and the infection of the first intermediate host, Hydrobia ventrosa. Parasitology 84, 131–135 (1982).
    Google Scholar 
    69.de Montaudouin, X. et al. Digenean trematode species in the cockle Cerastoderma edule: Identification key and distribution along the North-Eastern Atlantic Shoreline. J. Mar. Biol. Assoc. U.K. 89, 543–556 (2009).
    Google Scholar 
    70.Richard, A., de Montaudouin, X., Rubiello, A. & Maire, O. Cockle as second intermediate host of trematode parasites: Consequences for sediment bioturbation and nutrient fluxes across the benthic interface. J. Mar. Sci. Eng. 9, 749 (2021).
    Google Scholar 
    71.Magalhães, L., Freitas, R. & de Montaudouin, X. How costly are metacercarial infections in a bivalve host? Effects of two trematode species on biochemical performance of cockles. J. Invertebr. Pathol. 177, 107479 (2020).PubMed 

    Google Scholar 
    72.Magalhães, L., de Montaudouin, X., Figueira, E. & Freitas, R. Trematode infection modulates cockles biochemical response to climate change. Sci. Total Environ. 637–638, 30–40 (2018).ADS 
    PubMed 

    Google Scholar 
    73.Magalhães, L. et al. Seasonal variation of transcriptomic and biochemical parameters of cockles (Cerastoderma edule) related to their infection by trematode parasites. J. Invertebr. Pathol. 148, 73–80 (2017).PubMed 

    Google Scholar 
    74.Bakhmet, I., Nikolaev, K. & Levakin, I. Effect of infection with Metacercariae of Himasthla elongata (Trematoda: Echinostomatidae) on cardiac activity and growth rate in blue mussels (Mytilus edulis) in situ. J. Sea Res. 123, 51–54 (2017).ADS 

    Google Scholar 
    75.Stier, T., Drent, J. & Thieltges, D. W. Trematode infections reduce clearance rates and condition in blue mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 529, 137–144 (2015).ADS 

    Google Scholar 
    76.de Montaudouin, X., Bazairi, H. & Culloty, S. Effect of trematode parasites on cockle Cerastoderma edule growth and condition index: A transplant experiment. Mar. Ecol. Prog. Ser. 471, 111–121 (2012).ADS 

    Google Scholar 
    77.Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    78.Österblom, H. et al. Human-induced trophic cascades and ecological regime shifts in the baltic sea. Ecosystems 10, 877–889 (2007).
    Google Scholar 
    79.Zander, C. D. & Reimer, L. W. Parasitism at the ecosystem level in the Baltic Sea. Parasitology 124, 119–135 (2002).
    Google Scholar 
    80.Johnson, P. T. J. et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc. Natl. Acad. Sci. U. S. A. 104, 15781–15786 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Budria, A. & Candolin, U. How does human-induced environmental change influence host–parasite interactions?. Parasitology 141, 462–474 (2014).PubMed 

    Google Scholar 
    82.Aalto, S. L., Decaestecker, E. & Pulkkinen, K. A three-way perspective of stoichiometric changes on host–parasite interactions. Trends Parasitol. 31, 333–340 (2015).PubMed 

    Google Scholar 
    83.Vajedsamiei, J., Melzner, F., Raatz, M., Moron, S. & Pansch, C. Cyclic thermal fluctuations can be burden or relief for an ectotherm depending on fluctuations’ average and amplitude. Funct. Ecol. 35, 2483–2496 (2021).
    Google Scholar 
    84.Moisez, E., Spilmont, N. & Seuront, L. Microhabitats choice in intertidal gastropods is species-, temperature- and habitat-specific. J. Therm. Biol. 94, 102785 (2020).PubMed 

    Google Scholar 
    85.Bates, A. E., Leiterer, F., Wiedeback, M. L. & Poulin, R. Parasitized snails take the heat: A case of host manipulation?. Oecologia 167, 613–621 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    86.Shinagawa, K., Urabe, M. & Nagoshi, M. Relationships between trematode infection and habitat depth in a freshwater snail, Semisulcospira libertina (Gould). Hydrobiologia 397, 171–178 (1999).
    Google Scholar 
    87.Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    88.Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).
    Google Scholar 
    89.Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS One 11, 1–21 (2016).
    Google Scholar 
    90.Solovyeva, A. et al. Reduced infectivity in Himasthla elongata (Trematoda, Himasthlidae) cercariae with deviant photoreaction. J. Helminthol. 94, 1–5 (2020).
    Google Scholar 
    91.de Montaudouin, X., Blanchet, H., Desclaux-Marchand, C., Lavesque, N. & Bachelet, G. Cockle infection by Himasthla quissetensis—I. From cercariae emergence to metacercariae infection. J. Sea Res. 113, 99–107 (2016).
    Google Scholar 
    92.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health vol. 36 (Springer, 2009).93.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    94.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0. (2018).
    https://CRAN.R-project.org/package=DHARMa 1–36 https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf. Accessed 26 Feb 2021.95.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC, 2017).MATH 

    Google Scholar 
    96.Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).MathSciNet 
    CAS 

    Google Scholar 
    97.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    98.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 1–11 (2017).
    Google Scholar 
    99.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Assessment of Regression Models Performance. CRAN. CRAN https://easystats.github.io/performance/ (2020) https://doi.org/10.1098/rsif.2017.0213. Accessed 1 Sept 2021.100.Fox, J. & Weisberg, S. An R Companion to Applied Regression. Robust Regression in R (Sage, 2019).
    Google Scholar 
    101.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar  More

  • in

    Risk assessment of microplastic particles

    1.Science Advice for Policy by European Academies. A scientific perspective on microplastics in nature and society (SAPEA, 2019). Expert group report summarizing the state of the science regarding microplastics in nature and society.2.Koelmans, A. A. et al. Risks of plastic debris: Unravelling fact, opinion, perception and belief. Environ. Sci. Technol. 51, 11513–11519 (2017).CAS 

    Google Scholar 
    3.Henderson, L. & Green, C. Making sense of microplastics? Public understandings of plastic pollution. Mar. Pollut. Bull. 152, 110908 (2020).CAS 

    Google Scholar 
    4.Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). Sources, fate and effects of microplastics in the marine environment. Part two of a global assessment (eds Kershaw, P. J. & Rochman, C. M.) (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP, 2016).5.Arthur, C., Baker, J. & Bamford, H. (eds) NOAA technical memorandum NOS-OR&R-30. In Proc. Int. Res. Worksh. Occurrence, Effects and Fate of Microplastic Marine Debris (NOAA, 2009).6.European Chemicals Agency. Annex XV restriction report proposal for a restriction: intentionally added microplastics. Version 1.2. Proposal 1.2. ECA https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720 (2019).7.Coffin, S. Proposed definition of ‘microplastics in drinking water’. California Water Boards https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/stffrprt_jun3.pdf (2020).8.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 

    Google Scholar 
    9.Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019). This paper introduces the concept of describing microplastic characteristics through continuous PDFs, allowing us to capture the diversity of microplastics as a single contaminant in transport, exposure and risk assessment, rather than across many separate categories.CAS 

    Google Scholar 
    10.Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).CAS 

    Google Scholar 
    11.Kooi, M., Besseling, E., Kroeze, C., van Wezel, A. P. & Koelmans, A. A. Modelling the fate and transport of plastic debris in fresh waters. Review and guidance. In Freshwater Microplastics. The Handbook of Environmental Chemistry Vol. 58 (eds Wagner M. & Lambert S.) 125–152 (Springer, 2017).12.Hardesty, B. D. et al. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment. Front. Mar. Sci. 4, 1–30 (2017).
    Google Scholar 
    13.Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52, 2278–2286 (2018).CAS 

    Google Scholar 
    14.Adam, V., Yang, T. & Nowack, B. Toward an ecotoxicological risk assessment of microplastics: comparison of available hazard and exposure data in freshwaters. Environ. Toxicol. Chem. 38, 436–447 (2019). This paper introduces probabilistic SSDs for microplastic particles.CAS 

    Google Scholar 
    15.Koelmans, A. A., Diepens N. J. & Mohamed Nor, N. H. Weight of evidence for the microplastic vector effect in the context of chemical risk assessment. In Microplastic in the Environment: Pattern and Process (ed. Bank, M. S.) (Springer, 2021).16.Besseling, E., Redondo-Hasselerharm, P. E., Foekema, E. M. & Koelmans, A. A. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Rev. Environ. Sci. Technol. 49, 32–80 (2019).
    Google Scholar 
    17.Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37, 2776–2796 (2018).CAS 

    Google Scholar 
    18.Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017). This is a thorough review and outlook on the implications of plastic for human health.CAS 

    Google Scholar 
    19.Mohamed Nor, N. H., Kooi, M., Diepens, N. J. & Koelmans, A. A. Lifetime accumulation of nano- and microplastic in children and adults. Environ. Sci. Technol. 55, 5084–5096 (2021). This paper is the first probabilistic and aligned microplastic exposure assessment for humans, using PDFs.CAS 

    Google Scholar 
    20.Noventa, S. et al. Paradigms to assess the human health risks of nano- and microplastics. Micropl. Nanopl. 1, 9 (2021).
    Google Scholar 
    21.Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, eabd1211 (2020).CAS 

    Google Scholar 
    22.Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).CAS 

    Google Scholar 
    23.Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).CAS 

    Google Scholar 
    24.Schwabl, P. et al. Detection of various microplastics in human stool: a prospective case series. Ann. Intern. Med. 171, 453–457 (2019).
    Google Scholar 
    25.Connors, K. A., Dyer, S. D. & Belanger, S. E. Advancing the quality of environmental microplastic research. Environ. Toxicol. Chem. 36, 1697–1703 (2017). This paper highlights the need for better quality in microplastic research.CAS 

    Google Scholar 
    26.Wesch, C., Bredimus, K., Paulus, M. & Klein, R. Towards the suitable monitoring of ingestion of microplastics by marine biota: a review. Environ. Pollut. 218, 1200–1208 (2016).CAS 

    Google Scholar 
    27.O’Connor, J. et al. Microplastics in freshwater biota: a critical review of isolation, characterization and assessment methods. Glob. Challeng. https://doi.org/10.1002/gch2.201800118 (2019).28.de Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T. & Koelmans, A. A. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54, 11692–11705 (2020).
    Google Scholar 
    29.Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).CAS 

    Google Scholar 
    30.Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A. M. & Sanden, M. Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci. Total. Environ. 709, 136050 (2020).
    Google Scholar 
    31.Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & van Sebille, E. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review. Crit. Rev. Environ. Sci. Technol. 48, 685 (2018).
    Google Scholar 
    32.Riediker, M. et al. Particle toxicology and health — where are we? Part. Fibre Toxicol. 16, 1–33 (2019).
    Google Scholar 
    33.Kooi, M. et al. Characterizing the multidimensionality of microplastics across environmental compartments. Water Res. 202, 117429 (2021).CAS 

    Google Scholar 
    34.Wiesinger, H., Wang, Z. & Hellweg, S. Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021).CAS 

    Google Scholar 
    35.Gouin, T. Addressing the importance of microplastic particles as vectors for long-range transport of chemical contaminants: perspective in relation to prioritizing research and regulatory actions. Micropl. Nanopl. 1, 14 (2021).
    Google Scholar 
    36.Hermabessiere, L. et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182, 781–793 (2017).CAS 

    Google Scholar 
    37.Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ. Sci. Technol. 45, 1466–1472 (2011).CAS 

    Google Scholar 
    38.Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans — but should microplastics be considered POPs themselves? Int. Environ. Assess. Manag. 13, 460–465 (2017).CAS 

    Google Scholar 
    39.Takada, H. & Karapanagioti, H. K. (eds) Hazardous Chemicals Associated with Plastics in the Marine Environment (Springer International Publishing, 2016).40.Hong, S. H., Shim, W. J. & Hong, K. Methods of analysing chemicals associated with microplastics: a review. Anal. Methods 9, 1361–1368 (2017).
    Google Scholar 
    41.Koelmans, A. A., Bakir, A., Burton, G. A. & Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environment. critical review and model-supported re-interpretation of empirical studies. Environ. Sci. Technol. 50, 3315–3326 (2016).CAS 

    Google Scholar 
    42.Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).CAS 

    Google Scholar 
    43.Boucher, J. and Friot D. Primary Microplastics in the Oceans: A Global Evaluation of Sources 43 (IUCN, 2017).44.Koelmans, A. A., Kooi, M., Lavender-Law, K. & Van Sebille, E. All is not lost: deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 12, 114028 (2017).
    Google Scholar 
    45.Kawecki, D. & Nowack, D. Polymer-specific modeling of the environmental emissions of seven commodity plastics as macro- and microplastics. Environ. Sci. Technol. 53, 9664–9676 (2019).CAS 

    Google Scholar 
    46.Kooi, M., Van Nes, E. H., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).CAS 

    Google Scholar 
    47.Mateos-Cárdenas, A., O’Halloran, J., van Pelt, F. N. A. M. & Jansen, M. A. K. Rapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.). Sci. Rep. 10, 12799 (2020).
    Google Scholar 
    48.Julienne, F., Delorme, N. & Lagarde, F. From macroplastics to microplastics: role of water in the fragmentation of polyethylene. Chemosphere 236, 124409 (2019).CAS 

    Google Scholar 
    49.Koelmans, A. A., Redondo-Hasselerharm, P. E., Mohamed Nor, N. H. & Kooi, M. Solving the non-alignment of methods and approaches used in microplastic research in order to consistently characterize risk. Environ. Sci. Technol. 54, 12307–12315 (2020).CAS 

    Google Scholar 
    50.Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).
    Google Scholar 
    51.Mattsson, K., Björkroth, F., Karlsson, T. & Hassellöv, M. Nanofragmentation of expanded polystyrene under simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence). Front. Mar. Sci., 7, 1–9 (2021). This paper demonstrates log linear particle size distributions extending to the nanoparticle scale.
    Google Scholar 
    52.Kaandorp, M. L. A., Dijkstra, H. A. & van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 16, 054075 (2021).
    Google Scholar 
    53.Koelmans, A. A., Besseling, E. & Shim, W. J. Nanoplastics in the aquatic environment. Critical review. In Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 325–340 (Springer, 2015).54.Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 155, 410–422 (2019).CAS 

    Google Scholar 
    55.Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sust. Chem. Engin. 8, 3494–3511 (2020). This paper provides a rare estimate of degradation rates for plastic items in the environment.CAS 

    Google Scholar 
    56.Unice, K. M. et al. Characterizing export of land-based microplastics to the estuary — Part II: Sensitivity analysis of an integrated geospatial microplastic transport modeling assessment of tire and road wear particles. Sci. Total. Environ. 646, 1650–1659 (2019).CAS 

    Google Scholar 
    57.Buffle, J. & van Leeuwen, H. P. Environmental Particles Vol. 1 76 (CRC Press, 1992).58.Chamley, H., Clay formation through weathering. In Clay Sedimentology (Springer, 1989).59.Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).
    Google Scholar 
    60.Boyd, C. E. Suspended solids, color, turbidity, and light. In Water Quality 119–133 (Springer, 2020).61.Konrad, K. et al. Chemical composition and complex refractive index of Saharan mineral dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos. Env. 41, 8058–8074 (2007).
    Google Scholar 
    62.Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014).
    Google Scholar 
    63.De Wit, C. T. & Arens, P. L. Moisture content and density of some clay minerals and some remarks on the hydration pattern of clay. Trans. Int. Congr. Soil Science 2, 59–62 (1951).
    Google Scholar 
    64.Utembe, W., Potgieter, K., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials. Part. Fiber Toxicol. 12, 11 (2015).
    Google Scholar 
    65.Köhler, S. J., Bosbach, D. & Oelkers, E. H. Do clay mineral dissolution rates reach steady state? Geochim. Cosmochim. Acta 69, 1997–2006 (2005).
    Google Scholar 
    66.Torrey, M. L. S. T. Chemistry of Lake Michigan (Argonne National Laboratory, 1976).67.Prestigiacomo, A. R. et al. Turbidity and suspended solids levels and loads in a sediment enriched stream: implications for impacted lotic and lentic ecosystems. Lake Res. Manag. 23, 231–244 (2007).
    Google Scholar 
    68.Baran, A. et al. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health 41, 2893–2910 (2019).CAS 

    Google Scholar 
    69.Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D. M. Environmental Organic Chemistr 3rd edn 1024 (Wiley, 2016).70.Van Valkenburg, S. D., Jones, J. K. & Heinle, D. R. A comparison by size class and volume of detritus versus phytoplankton in Chesapeake Bay. Estuar. Coast. Mar. Sci. 6, 569–582 (1978).
    Google Scholar 
    71.Hamilton, S. K., Sippel, S. J. & Bunn, S. E. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnol. Oceanogr. Methods 3, 149–157 (2005).CAS 

    Google Scholar 
    72.Zimmer, M. Detritus. Encyclopedia of Ecology 903–911 (Elsevier, 2008).73.Zhao, H.-C., Wang, S.-R., Jiao, L.-X., Yang, S.-W. & Cui, C.-N. Characteristics of composition and spatial distribution of organic matter in the sediment of Erhai Lake. Res. Environ. Sci. 26, 243–249 (2013).CAS 

    Google Scholar 
    74.Duan, H., Feng, L., Ma, R., Zhang, Y. & Loiselle, S. A. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ. Res. Lett. 9, 084011 (2014).CAS 

    Google Scholar 
    75.Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, eaay8493 (2020). This paper identifies the relative proportion of microplastic fibres in the oceans.
    Google Scholar 
    76.Le Guen, C. et al. Microplastic study reveals the presence of natural and synthetic fibres in the diet of King penguins (Aptenodytes patagonicus) foraging from South Georgia. Environ. Intern. 134, 105303 (2020).
    Google Scholar 
    77.Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W. & Gomes, R. L. Sci. Total. Environ. 666, 377–389 (2019).CAS 

    Google Scholar 
    78.Comnea-Stancu, L. R., Wieland, H., Ramer, G., Schwaighofer, A. & Lendl, B. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using Fourier transform infrared spectroscopy. Appl. Spectrosc. 71, 939–950 (2017).CAS 

    Google Scholar 
    79.Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247 (1980).CAS 

    Google Scholar 
    80.Cornelissen, G. et al. Critical review. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation and biodegradation. Environ. Sci. Technol. 39, 6881–6895 (2005).CAS 

    Google Scholar 
    81.Jonker, M. T. O., Hawthorne, S. B. & Koelmans, A. A. Extremely slow desorption and limited bioaccumulation of BC-associated PAHs. ACS Div. Environ. Chem. 45, 381–384 (2005).CAS 

    Google Scholar 
    82.Shrestha, G., Traina, S. J., Swanson & C., W. Black carbons properties and role in the environment: a comprehensive review. Sustainability 2, 294–320 (2010).CAS 

    Google Scholar 
    83.Bisiaux, M. M. et al. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe. Environ. Sci. Technol. 45, 2065–2071 (2011). This paper identifies black carbon abundance in surface waters.CAS 

    Google Scholar 
    84.World Health Organization. Health effects of black carbon. (WHO, 2012).85.Jonker, M. T. O. & Koelmans, A. A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment. Mechanistic considerations. Environ. Sci. Technol. 36, 3725–3734 (2002).CAS 

    Google Scholar 
    86.Liu, H. et al. Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing. Atmos. Chem. Phys. 20, 5771–5785 (2020).CAS 

    Google Scholar 
    87.Ouf, F.-X. et al. True density of soot particles: a comparison of results highlighting the influence of the organic contents. J. Aerosol Sci. 134, 1–13 (2019).CAS 

    Google Scholar 
    88.Wu, Y. et al. A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmos. Meas. Tech. 12, 4347–4359 (2019).CAS 

    Google Scholar 
    89.Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. & Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil. Biol. Biochem. 41, 210–219 (2009).CAS 

    Google Scholar 
    90.Middelburg, J. J., Nieuwenhuize, J. & Van Breugel, P. Black carbon in marine sediments. Mar. Chem. 65, 245–252 (1999).CAS 

    Google Scholar 
    91.Murr, L. E., Bang, J. J., Esquivel, E. V., Guerrero, P. A. & Lopez, D. A. Carbon nanotubes, nanocrystal forms and complex nanoparticle aggregates in common fuel gas combustion streams. J. Nanopart. Res. 6, 241–251 (2004).CAS 

    Google Scholar 
    92.Koelmans, A. A., Nowack, B. & Wiesner, M. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ. Pollut. 157, 1110–1116 (2009).CAS 

    Google Scholar 
    93.Dickens, A. F., Gelinas, Y., Masiello, C. A., Wakeham, S. & Hedges, J. I. Reburial of fossil organic carbon in marine sediments. Nature 427, 336–339 (2004).CAS 

    Google Scholar 
    94.Kharbush, J. J. et al. Particulate organic carbon deconstructed: molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).
    Google Scholar 
    95.Redondo-Hasselerharm, P. E. Effect assessment of nano- and microplastics in freshwater ecosystems. Thesis, Wageningen Univ. (2020).96.Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).CAS 

    Google Scholar 
    97.Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020).CAS 

    Google Scholar 
    98.Velzeboer, I., Kwadijk, C. J. A. F. & Koelmans, A. A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes and fullerenes. Environ. Sci. Technol. 48, 4869–4876 (2014).CAS 

    Google Scholar 
    99.Beckingham, B. & Ghosh, U. Differential bioavailability of polychlorinated biphenyls associated with environmental particles: microplastic in comparison to wood, coal and biochar. Environ. Pollut. 220, 150–158 (2017).CAS 

    Google Scholar 
    100.Liping, L. et al. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment. Environ. Pollut. 190, 101–108 (2014).
    Google Scholar 
    101.Voparil, I. M. et al. Digestive bioavailability to a deposit feeder (Arenicola marina) of polycyclic aromatic hydrocarbons associated with anthropogenic particles. Environ. Toxicol. Chem. 23, 2618–2626 (2004).CAS 

    Google Scholar 
    102.Birdwell, J., Cook, R. L. & Thibodeaux, L. J. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models. Environ. Toxicol. Chem. 26, 424–434 (2007).CAS 

    Google Scholar 
    103.Koelmans, A. A., Besseling, E. & Foekema, E. M. Leaching of plastic additives to marine organisms. Environ. Pollut. 187, 49–54 (2014).CAS 

    Google Scholar 
    104.Bundschuh, M. et al. Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. 30, 6 (2018).
    Google Scholar 
    105.Peijnenburg, W. J. G. M. et al. A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit. Rev. Environ. Sci. Technol. 45, 2084–2134 (2015).CAS 

    Google Scholar 
    106.Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).CAS 

    Google Scholar 
    107.Ter Halle, A. et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).
    Google Scholar 
    108.Sengul, A. B. & Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environ. Chem. Lett. 18, 1659–1683 (2020).CAS 

    Google Scholar 
    109.Botterell, Z. L. R. et al. Bioavailability and effects of microplastics on marine zooplankton: a review. Environ. Pollut. 245, 98–110 (2019).CAS 

    Google Scholar 
    110.Ribeiro, F., O’Brien, J. W., Galloway, T. & Thomas, K. V. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC 111, 139–147 (2019).CAS 

    Google Scholar 
    111.da Costa Araújo, A. P. et al. How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. J. Hazard. Mater. 382, 121066 (2020).
    Google Scholar 
    112.Jovanović, B. Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. 13, 510–515 (2017).
    Google Scholar 
    113.Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total. Environ. 646, 68–74 (2018).
    Google Scholar 
    114.Hu, L., Chernick, M., Hinton, D. E. & Shi, H. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environ. Sci. Technol. 52, 8885–8893 (2018).CAS 

    Google Scholar 
    115.McNeish, R. E. et al. Microplastic in riverine fish is connected to species traits. Sci. Rep. 8, 11639 (2018).CAS 

    Google Scholar 
    116.Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Chang. Biol. 25, 744–752 (2019).
    Google Scholar 
    117.Kühn, S., Bravo Rebolledo, E. L. & Van Franeker, J. A. Deleterious effects of litter on marine life. In Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 75–116 (Springer International Publishing, 2015).118.Nelms, S. E. et al. Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory? Sci. Rep. 9, 1–9 (2019).CAS 

    Google Scholar 
    119.O’Connor, J. D. et al. Microplastics in freshwater biota: a critical review of isolation, characterization, and assessment methods. Glob. Challen. 4, 1800118 (2019).
    Google Scholar 
    120.Vroom, R. J. E., Koelmans, A. A., Besseling, E. & Halsband, C. Aging of microplastics promotes their ingestion by marine zooplankton. Environ. Pollut. 231, 987–996 (2017).CAS 

    Google Scholar 
    121.Bour, A., Haarr, A., Keiter, S. & Hylland, K. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environ. Pollut. 236, 652–660 (2018).CAS 

    Google Scholar 
    122.Kaposi, K. L., Mos, B., Kelaher, B. P. & Dworjanyn, S. A. Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. 48, 1638–1645 (2014).CAS 

    Google Scholar 
    123.Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).CAS 

    Google Scholar 
    124.Ribeiro, F. et al. Microplastics effects in Scrobicularia plana. Mar. Pollut. Bull. 122, 379–391 (2017).CAS 

    Google Scholar 
    125.Von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).
    Google Scholar 
    126.Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M. & Thompson, R. C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031 (2008).CAS 

    Google Scholar 
    127.Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).
    Google Scholar 
    128.Zhang, C., Chen, X., Wang, J. & Tan, L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ. Pollut. 220, 1282–1288 (2017).CAS 

    Google Scholar 
    129.Mateos-Cárdenas, A. et al. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci. Total. Environ. 689, 413–421 (2019).
    Google Scholar 
    130.Murphy, F. & Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology and reproduction. Environ. Pollut. 234, 487–494 (2018).CAS 

    Google Scholar 
    131.Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).CAS 

    Google Scholar 
    132.Green, D. S., Boots, B., O’Connor, N. E. & Thompson, R. Microplastics affect the ecological functioning of an important biogenic habitat. Environ. Sci. Technol. 51, 68–77 (2017).CAS 

    Google Scholar 
    133.Senga Green, D. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 216, 95–103 (2016).
    Google Scholar 
    134.Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).CAS 

    Google Scholar 
    135.Ogonowski, M., Schür, C., Jarsén, Å. & Gorokhova, E. The effects of natural and anthropogenic microparticles on individual fitness in daphnia magna. PLoS ONE 11, e0155063 (2016). This paper systematically addresses the differences between the biological effects of microplastic and natural particles.
    Google Scholar 
    136.Mazurais, D. et al. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Mar. Environ. Res. 112, 78–85 (2015).CAS 

    Google Scholar 
    137.Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Env. Sci. Technol. 47, 11278–11283 (2013).CAS 

    Google Scholar 
    138.Au, S. Y., Bruce, T. F., Bridges, W. C. & Klaine, S. J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 34, 2564–2572 (2015).CAS 

    Google Scholar 
    139.Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).CAS 

    Google Scholar 
    140.Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).CAS 

    Google Scholar 
    141.Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857 (2016).CAS 

    Google Scholar 
    142.Blarer, P. & Burkhardt-Holm, P. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ. Sci. Pollut. Res. 23, 23522–23532 (2016).CAS 

    Google Scholar 
    143.Wright, S. L., Rowe, D., Thompson, R. C. & Galloway, T. S. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 23, R1031–R1033 (2013).CAS 

    Google Scholar 
    144.Straub, S., Hirsch, P. E. & Burkhardt-Holm, P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 14, 774 (2017).
    Google Scholar 
    145.Green, D. S., Boots, B., Sigwart, J., Jiang, S. & Rocha, C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut. 208, 426–434 (2016).CAS 

    Google Scholar 
    146.Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51, 13397–13406 (2017).CAS 

    Google Scholar 
    147.Nobre, C. R. et al. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Pollut. Bull. 92, 99–104 (2015).CAS 

    Google Scholar 
    148.Rehse, S., Kloas, W. & Zarfl, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153, 91–99 (2016).CAS 

    Google Scholar 
    149.Gambardella, C. et al. Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol. Environ. Saf. 145, 250–257 (2017).CAS 

    Google Scholar 
    150.Watts, A. J. R. et al. Effect of microplastic on the gills of the shore crab Carcinus maenas. Environ. Sci. Technol. 50, 5364–5369 (2016).CAS 

    Google Scholar 
    151.Espinosa, C., Cuesta, A. & Esteban, M. Á. Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish. Shellfish. Immunol. 68, 251–259 (2017).CAS 

    Google Scholar 
    152.Jin, Y., Lu, L., Tu, W., Luo, T. & Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total. Environ. 649, 308–317 (2019).CAS 

    Google Scholar 
    153.Jin, Y. et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 235, 322–329 (2018).CAS 

    Google Scholar 
    154.Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020). This paper reviews the evidence for effects of plastic pollution across endpoints, organisms and levels of biological organization.CAS 

    Google Scholar 
    155.Kjelland, M. E., Woodley, C. M., Swannack, T. M. & Smith, D. L. A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environ. Syst. Decis. 35, 334–350 (2015).
    Google Scholar 
    156.Michel, C., Herzog, S., de Capitani, C., Burkhardt-Holm, P. & Pietsch, C. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS ONE 9, e100856 (2014).
    Google Scholar 
    157.Gordon, A. K. & Palmer, C. G. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids. Environ. Toxicol. Chem. 34, 907–912 (2015).CAS 

    Google Scholar 
    158.Lu, C., Kania, P. W. & Buchmann, K. Particle effects on fish gills: an immunogenetic approach for rainbow trout and zebrafish. Aquaculture 484, 98–104 (2018).CAS 

    Google Scholar 
    159.Ogonowski, M., Gerdes, Z. & Gorokhova, E. What we know and what we think we know about microplastic effects — a critical perspective. Curr. Opin. Environ. Sci. Health 1, 41–46 (2018).
    Google Scholar 
    160.Albarano, L. et al. Comparison of in situ sediment remediation amendments: risk perspectives from species sensitivity distribution. Environ. Pollut. 272, 115995 (2021).CAS 

    Google Scholar 
    161.Newcombe, C. P. & Macdonald, D. D. Effects of suspended sediments on aquatic ecosystems. North. Am. J. Fish. Manag. 11, 72–82 (1991).
    Google Scholar 
    162.Yap, V. H. et al. A comparison with natural particles reveals a small specific effect of PVC microplastics on mussel performance. Mar. Pollut. Bull. 160, 111703 (2020).CAS 

    Google Scholar 
    163.Schür, C., Zipp, S., Thalau, T. & Wagner, M. Microplastics but not natural particles induce multigenerational effects in Daphnia magna. Environ. Pollut. 260, 113904 (2020).
    Google Scholar 
    164.Gerdes, Z., Hermann, M., Ogonowski, M. & Gorokhova, E. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Sci. Rep. 9, 1–9 (2019).CAS 

    Google Scholar 
    165.Niranjan, R. & Thakur, A. K. The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory pathways. Front. Immunol. 8, 763 (2017).
    Google Scholar 
    166.Tsuji, J. S. et al. Research strategies for safety evaluation of nanomaterials. Part IV: Risk assessment of nanoparticles. Toxicol. Sci. 89, 42–50 (2006).CAS 

    Google Scholar 
    167.Schwarze, P. E. et al. Importance of size and composition of particles for effects on cells in vitro. Inhal. Toxicol. 19, 17–22 (2007).CAS 

    Google Scholar 
    168.Schmid, O. & Stoeger, T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 99, 133–143 (2016). This paper identifies the toxicologically relevant dose metric for particle effects.CAS 

    Google Scholar 
    169.Fubini, B. Surface reactivity in the pathogenic response to particulates. Environ. Health Perspect. 105, 1013–1020 (1997).
    Google Scholar 
    170.Poland, C. A., Duffin, R. & Donaldson, K. High aspect ratio nanoparticles and the fibre pathogenicity paradigm. In Nanotoxicity Vivo and In Vitro Models to Health Risks 61–80 (John Wiley and Sons, 2009).171.Gualtieri, A. F. Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Curr. Res. Toxicol. 2, 42–52 (2021).
    Google Scholar 
    172.Shao, X. R. et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 48, 465–474 (2015).CAS 

    Google Scholar 
    173.Motskin, M. et al. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30, 3307–3317 (2009).CAS 

    Google Scholar 
    174.Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).CAS 

    Google Scholar 
    175.Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).CAS 

    Google Scholar 
    176.Everaert, G. et al. Risk assessment of microplastics in the ocean: modelling approach and first conclusions. Environ. Pollut. 242, 1930–1938 (2018).CAS 

    Google Scholar 
    177.Everaert, G. et al. Risks of floating microplastic in the global ocean. Environ. Pollut. 267, 115499 (2020).CAS 

    Google Scholar 
    178.Zhang, X., Leng, Y., Liu, X., Huang, K. & Wang, J. Microplastics’ pollution and risk assessment in an urban river: a case study in the Yongjiang River, Nanning City, South China. Exposure Health 12, 141–151 (2020).CAS 

    Google Scholar 
    179.Skåre, J. U. et al. Microplastics, occurrence, levels and implications for environment and human health related to food. Opinion of the steering committee of the Norwegian Scientific Committee for Food and Environment (VKM, 2019).180.Adam, V., von Wyl, A. & Nowack, B. Probabilistic environmental risk assessment of microplastics in marine habitats. Aq. Toxicol. 230, 105689 (2021).CAS 

    Google Scholar 
    181.Jung, J.-W. et al. Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape. Environ. Pollut. 270, 116217 (2021).CAS 

    Google Scholar 
    182.Posthuma, L., Suter, G. W. & Traas, T. P. Species Sensitivity Distributions In Ecotoxicology (Lewis, 2002).183.Gouin, T. et al. Toward the development and application of an environmental risk assessment framework for microplastic. Environ. Toxicol. Chem. 38, 2087–2100 (2019).CAS 

    Google Scholar 
    184.Kong, X. & Koelmans, A. A. Effects of microplastic on shallow lake food webs. Environ. Sci. Technol. 53, 13822–13831 (2019).CAS 

    Google Scholar 
    185.Zimmermann, L., Göttlich, S., Oehlmann, J., Wagner, M. & Völker, C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ. Pollut. 267, 115392 (2020).CAS 

    Google Scholar 
    186.Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).CAS 

    Google Scholar 
    187.Bakir, A., O’Connor, I. A., Rowland, S. J., Hendriks, A. J. & Thompson, R. C. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ. Pollut. 219, 56–65 (2016).CAS 

    Google Scholar 
    188.Capolupo, M., Sørensen, L., Jayasena, K., Booth, A. M. & Fabbri, E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 169, 115270 (2020).CAS 

    Google Scholar 
    189.Zimmermann, L. et al. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 55, 11814–11823 (2021).CAS 

    Google Scholar 
    190.Bucci, K. & Rochman, C. M. A proposed framework for microplastics risk assessment [abstract 07.05.02]. Society of Environmental Toxicology and Chemistry North America 42nd Annual Meeting – SETAC SciCon4 https://scicon4.setac.org/wp-content/uploads/2021/11/SciCon4-abstract-book.pdf (2021).191.Primpke, S., Lorenz, C., Rascher-Friesenhausen, R. & Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 9, 1499–1511 (2017).CAS 

    Google Scholar 
    192.Rauchschwalbe, M.-T., Fueser, H., Traunspurger, W. & Höss, S. Bacterial consumption by nematodes is disturbed by the presence of polystyrene beads: the roles of food dilution and pharyngeal pumping. Environ. Pollut. 273, 116471 (2021).CAS 

    Google Scholar 
    193.Donaldson, K. & Seaton, A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 9, 13 (2012).
    Google Scholar 
    194.Primpke, S., Dias, A. P. & Gerdts, G. Automated identification and quantification of microfibers and microplastics. Anal. Methods 11, 2138–2147 (2019).CAS 

    Google Scholar  More