Leaf plasticity across wet and dry seasons in Croton blanchetianus (Euphorbiaceae) at a tropical dry forest
1.Holechek, J. L., Pieper, R. D. & Herbel, C. H. Range management: Principles and practices 6th edn. (Pearson Education, Inc., 2011).
Google Scholar
2.Dombroski, J. L. D., Praxedes, S. C., de Freitas, R. M. O. & Pontes, F. M. Water relations of Caatinga trees in the dry season. S. Afr. J. Bot. 77, 430–434 (2011).
Google Scholar
3.Santos, M. G. et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?. Theor. Experim. Plant Physiol. 26, 83–99 (2014).
Google Scholar
4.Mendes, K. et al. Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Funct. Plant Biol. 10, 1–13 (2017).
Google Scholar
5.Smith, W. K. & Nobel, P. S. Influences of seasonal changes in leaf morphology on water-use efficiency for three desert broad leaf shrubs. Ecology 58, 1033–1043 (1977).
Google Scholar
6.Kyparissis, A. & Manetas, Y. Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub-ecophysiological comparisons between winter and summer leaves. Acta Oecol.-Oecol. Plantarum 14, 23–32 (1993).
Google Scholar
7.Kloeppel, B. D., Abrams, M. D. & Kubiske, M. E. Seasonal ecophysiology and leaf morphology of four successional Pennsylvania barrens species in open versus understory environments. Can. J. For. Res. 23(2), 181–189 (1993).
Google Scholar
8.Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).ADS
CAS
PubMed
Google Scholar
9.Reich, P., Walters, M. & Ellsworth, D. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–13734 (1997).ADS
CAS
PubMed
PubMed Central
Google Scholar
10.Pompelli, M. F. et al. Allometric models for non-destructive leaf area estimation of the Jatropha curcas. Biomass Bioenerg. 36, 77–85 (2012).
Google Scholar
11.Duan, B., Yang, Y., Lu, Y., Korpelainen, H. & Berninger, F. C. L. Interactions between drought stress, ABA and genotypes in Picea asperata. J. Exp. Bot. 58, 3025–3036 (2007).CAS
PubMed
Google Scholar
12.Kwon, M. Y. & Woo, S. Y. Plants’ responses to drought and shade environments. Afr. J. Biotech. 15, 29–31 (2016).CAS
Google Scholar
13.Santos, J. C., Leal, I. R., Almeida-Cortez, J. S., Fernandes, G. W. & Tabarelli, M. Caatinga: the scientific negligence experienced by a dry tropical forest. Tropical Conservation Science 4, 276–286 (2011).
Google Scholar
14.Almazroui, M., Islanm, M. N., Saeed, F., Alkhalaf, A. K. & Dambul, R. Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmos. Res. 194, 202–213 (2017).
Google Scholar
15.Angulo-Brown, F., Sánchez-Salas, N., Barranco-Jiménez, M. A. & Rosales, M. A. Possible future scenarios for atmospheric concentration of greenhouse gases: A simplified thermodynamic approach. Renewable Energy 34, 2344–2352 (2009).CAS
Google Scholar
16.Glotfelty, T. & Zhang, Y. Impact of future climate policy scenarios on air quality and aerosol-cloud interactions using an advanced version of CESM/CAM5: Part II. Future trend analysis and impacts of projected anthropogenic emissions. Atmos. Environ. 152, 531–552 (2017).ADS
CAS
Google Scholar
17.O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 7, 28–37 (2017).ADS
Google Scholar
18.Hulshof et al. Plant Functional Trait Variation in Tropical Dry Forests: A Review and Synthesis in Tropical Dry Forests in the Americas (ed. Sánchez-Azofeifa, A. et al.) 129–140 (2014).19.Mendes, K. R. et al. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Sci. Rep. 10, 9454 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
20.Poulter, B. et al. Contribuition of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–604 (2014).ADS
CAS
PubMed
Google Scholar
21.Campos, S. et al. Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agric. For. Meteorol. 471, 398–412 (2019).ADS
Google Scholar
22.Zappi, D. et al. Growing knowledge: An overview of seed plant diversity in Brazil. Rodriguésia 66, 1085–1113 (2015).
Google Scholar
23.Pompelli, M. F., Pompelli, G. M., Cabrini, E. C., Alves, C. J. L. & Ventrella, M. C. Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen availability. Biotemas 25, 13–28 (2012).
Google Scholar
24.Rossatto, D. R. & Kolb, R. M. (2010) Gochnatia polymorpha (Less) Cabrera (Asteraceae) changes in leaf structure due to differences in light and edaphic conditions. Acta Bot. Bras. 24, 605–612 (2010).
Google Scholar
25.Liu, Y. et al. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Ann. Bot. 118, 1329–1336 (2016).PubMed
PubMed Central
Google Scholar
26.Pompelli, M. F., Martins, S. C., Celin, E. F., Ventrella, M. C. & Da Matta, F. M. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?. Braz. J. Biol. 70, 1083–1088 (2010).CAS
PubMed
Google Scholar
27.Björkman, O. Responses to different quantum flux densities. In Encyclopaedia of Plant Physiology (eds Lange, O. L. et al.) (Springer, Berlin, 1981).
Google Scholar
28.Robakowski, P., Wyka, T., Samardakiewicz, S. & Kierzkowski, D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill) seedlings under different canopies. For. Ecol. Manag. 201, 211–227 (2004).
Google Scholar
29.Sam, O., Jeréz, E., Dell’Amico, J. & Ruiz-Sanchez, M. C. Water stress induced changes in anatomy of tomato leaf epidermes. Biol. Plant. 43, 275–277 (2000).
Google Scholar
30.Shao, H. B., Chu, L.-Y., Jaleel, C. A. & Zhao, D. Water-deficit stress-induced anatomical changes in higher plants. C.R. Biol. 331, 215–225 (2008).PubMed
Google Scholar
31.Chartzoulakis, K., Patakas, A., Kofidis, G., Bosabalidis, A. & Nastou, A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic. 95, 39–50 (2002).CAS
Google Scholar
32.Ennajeh, M., Vadel, A. M., Cochard, H. & Khemira, H. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J. Hortic. Sci. Biotechnol. 85, 289–294 (2010).
Google Scholar
33.Oguchi, R., Hikosaka, K. & Hirose, T. Does the photosynthetic light-acclimation need change in leaf anatomy?. Plant Cell Environ. 26, 505–512 (2003).
Google Scholar
34.Johnson, D., Meinzer, F., Woodruff, D. & McCulloh, K. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ. 32, 828–836 (2009).PubMed
Google Scholar
35.Tyree, M. & Sperry, J. B. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).
Google Scholar
36.McKown, A., Cochard, H. & Sack, L. Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am. Nat. 175, 447–460 (2010).PubMed
Google Scholar
37.Nardini, A., Pedà, G. & Rocca, N. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences. New Phytol. 196, 788–798 (2012).PubMed
Google Scholar
38.Nunes, A. et al. Plants used to feed ruminants in semi-arid Brazil: A study of nutritional composition guided by local ecological knowledge. J. Arid Environ. 135, 96–103 (2016).ADS
Google Scholar
39.Santos, A. C. J. & Melo, J. I. M. Flora vascular de uma área de caatinga no estado da Paraíba – Nordeste do Brasil. Revista Caatinga 23, 32–40 (2010).
Google Scholar
40.Flexas, J. et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965–982 (2016).CAS
PubMed
Google Scholar
41.Flexas, J. & Medrano, H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189 (2002).CAS
PubMed
PubMed Central
Google Scholar
42.He, W. & Zhang, X. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. J. Arid Environ. 53, 307–316 (2003).ADS
Google Scholar
43.Pinho-Pessoa, A. C. B. et al. Interannual variation in temperature and rainfall can modulate the physiological and photoprotective mechanisms of a native semiarid plant species. Indian J. Sci. Technol. 11, 1–17 (2018).CAS
Google Scholar
44.Reddy, T., Reddy, V. & Anbumozhi, V. Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: A critical review. Plant Growth Regul. 41, 75–88 (2003).CAS
Google Scholar
45.Thakur, P. & Sood, R. Drought tolerance of multipurpose agroforestry tree species during first and second summer droughts after transplanting. Indian J. Plant Physiol. 10, 32–40 (2005).
Google Scholar
46.Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions?. Plant, Cell Environ. 40, 237–248 (2016).
Google Scholar
47.Markesteijn, L., Poorter, L. & Bongers, F. Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 94, 515–525 (2007).PubMed
Google Scholar
48.Gotsch, S., Powers, J. & Lerdau, M. Leaf traits and water relations of 12 evergreen species in Costa Rican wet and dry forests: patterns of intra-specific variation across forests and seasons. Plant Ecol. 211, 133–146 (2010).
Google Scholar
49.Popma, J. & Bongers, F. The effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia 75, 625–632 (1988).ADS
CAS
PubMed
Google Scholar
50.Evans, J. R. & Poorter, H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24, 755–767 (2001).CAS
Google Scholar
51.Pompelli, M. F. et al. Mesophyll thickness and sclerophylly among Calotropis procera morphotypes reveal water-saved adaptation to environments. J Arid Land. 11, 795–810 (2019).
Google Scholar
52.Leigh, A., Sevanto, S., Close, J. & D & Nicotra A. B.,. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions?. Plant Cell Environ. 40, 237–248 (2016).PubMed
Google Scholar
53.Gil-Pelegrín, E., Saz, M. A., Cuadrat, J. M., Peguero-Pina, J. J. & Sancho-Knapik, D. Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity. In Oaks Physiological Ecology Exploring the Functional Diversity of Genus Quercus L (eds Gil-Pelegrín, E. et al.) 137–193 (Springer, London, 2017).
Google Scholar
54.Chazdon, R. L. & Kaufmann, S. Plasticity of leaf anatomy of two rain forest shrubs in relation to photosynthetic light acclimation. Funct. Ecol. 7, 385–394 (1993).
Google Scholar
55.Smith, W., Vogelmann, T., De Lucia, E., Bell, D. & Shepherd, K. Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide?. Bioscience 47, 785–793 (1997).
Google Scholar
56.Boanares, D., Isaias, R. R. M. S., Sousa, H. C. & Kozovits, A. R. Strategies of leaf water uptake based on anatomical traits. Plant Biol. 20, 848–856 (2018).CAS
PubMed
Google Scholar
57.Fah, N. A. Plant Anatomy. 2nd ed, Oxford,USA, Butterworth Heinemann (1990).58.Holbrook, N.M. Water Balance of Plants. In: Taiz L, Zeiger E eds. Plant Physiology, 5th ed. Sunderland, Sinauer Associates Inc (2010).59.Glover, B. Differentiation in plant epidermal cells. J. Exp. Bot. 51, 497–505 (2000).CAS
PubMed
Google Scholar
60.Vogelman, T., Nishio, J. & Smith, W. Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1, 65–70 (1996).
Google Scholar
61.Fini, A. M. et al. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiol. Plant. 157, 54–68 (2016).CAS
PubMed
Google Scholar
62.Oguchi, R., Hikosaka, K. & Hirose, T. Leaf anatomy as a constraint for photosynthetic acclimation: Differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell Environ. 28, 916–927 (2005).
Google Scholar
63.Pollastrini, M. et al. Interaction and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. Plant Biol. 16, 323–331 (2014).CAS
PubMed
Google Scholar
64.Sevillano, I., Short, I., Grant, J. & O’Reilly, C. Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. For. Ecol. Manag. 374, 11–19 (2016).
Google Scholar
65.Nguyen, H. T., Radacsi, P., Gosztola, B. & Nemeth, E. Effects of temperature and light intensity on morphological and phytochemical characters and antioxidant potential of wormwood (Artemisia absinthium L.). Biochem. Syst. Ecol. 79, 1–7 (2018).CAS
Google Scholar
66.Boardman, N. K. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28, 355–377 (1977).CAS
Google Scholar
67.Bejaoui, F. et al. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. J. Plant Physiol. 198, 32–38 (2016).CAS
PubMed
Google Scholar
68.Van Rensburg, L., Krüger, G. H. J. & Krüger, H. Proline accumulation as drought-tolerance selection criterion: Its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J. Plant Physiol. 141, 188–194 (1993).
Google Scholar
69.Westoby, M. & Wright, I. The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628 (2003).ADS
PubMed
Google Scholar
70.Scoffoni, C. et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytol. 213, 1076–1092 (2017).CAS
PubMed
Google Scholar
71.Sack, L. & Scoffoni, C. Leaf venation: Structure, function, development, evolution, ecology andapplications in the past, present and future. New Phytol. 198, 983–1000 (2013).PubMed
Google Scholar
72.Brodribb, T., Holbrook, N., Edwards, E. & Gutierrez, M. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450 (2003).
Google Scholar
73.Scoffoni, C. et al. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytol. 207, 43–58 (2015).CAS
PubMed
Google Scholar
74.Mendes, K. R. & Marenco, R. A. Leaf traits and gas exchange in saplings of native tree species in the Central Amazon. Scientia Agricola 67, 624–632 (2010).
Google Scholar
75.Puglielli, G., Varone, L., Gratani, L. & Catoni, R. Specific leaf area variations drive acclimation of Cistus salvifolius in different light environments. Photosynthetica 55, 31–40 (2017).CAS
Google Scholar
76.O’Brien, T., Feder, N. & McCully, M. Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59, 368–373 (1965).
Google Scholar
77.Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137–138 (1965).
Google Scholar
78.Spurr, A. R. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).CAS
PubMed
Google Scholar
79.Reynolds, E. S. The use of load citrate at a high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).CAS
PubMed
PubMed Central
Google Scholar
80.Hardoon, D. R., Szedmak, S. & Shawe-Taylor, J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16, 2639–2664 (2004).PubMed
MATH
Google Scholar More