More stories

  • in

    Cefotax-magnetic nanoparticles as an alternative approach to control Methicillin-Resistant Staphylococcus aureus (MRSA) from different sources

    The prevalence of S. aureus isolation from the different examined samplesStaphylococcal infections represent a public health issue in hospitals and health care settings as well as a major economical and welfare problem in dairy animal farming25. The prevalence of S. aureus isolation from the farm under the study (Table 2) showed that 63 (33.1%) out of 190 different samples were bacteriologically positive. Moreover, the isolation was mainly obtained from manager swabs followed by milk machine swabs, nasal swabs and hand swabs (60.0, 53.3, 40.0 and 28.0%, respectively), and to a lesser extent in milk samples (24.0%). Meanwhile it was not isolated at any percent from water trough swabs, at X2 = 48.8, P  More

  • in

    Caveats on COVID-19 herd immunity threshold: the Spain case

    Generation timeDuring the infectious period, an infected individual may produce a secondary infection. However, the individual’s infectiousness is not constant during the infectious period, but it can be approximated by the probability distribution of the generation time (GT), which accounts for the time between the infection of a primary case and the infection of a secondary case. Unfortunately, such distribution is not as easy to estimate as that of the serial interval, which accounts for the time between the onset of symptoms in a primary case to the onset of symptoms of a secondary case. This is because the time of infection is more difficult to detect than the time of symptoms onset. Ganyani et al.27 developed a methodology to estimate the distribution of the GT from the distributions of the incubation period and the serial interval. Assuming an incubation period following a gamma distribution with a mean of 5.2 days and a standard deviation (SD) of 2.8 days, they estimated the serial interval from 91 and 135 pairs of documented infector-infectee in Singapore and Tianjin (China). Then, they found that the GT followed a gamma distribution with mean = 5.20 (95% CI = [3.78, 6.78]) days and SD = 1.72 (95% CI = [0.91, 3.93]) for Singapore (hereafter GT1), and with mean = 3.95 (95% CI = [3.01, 4.91]) days and SD = 1.51 (95% CI = [0.74, 2.97]) for Tianjin (hereafter GT2). Ng et al.28 applied the same methodology to 209 pairs of infector-infectee in Singapore and determined a gamma distribution with mean = 3.44 (95% CI = [2.79, 4.11]) days and SD 2.39 (95% CI = [1.27, 3.45]; hereafter GT3). Figure 3 shows the probability density functions (PDF) of such distributions, fGT. The differences between them are remarkable. For example, the 54.5%, 81.0%, and 80.7% of the contagions are produced in a pre-symptomatic stage (in the first 5.2 days after primary infection) assuming GT1, GT2, and GT3, respectively.Figure 3Probability density function of the generation time distribution, fGT(t), of GT1 (blue line; Singapore27), GT2 (yellow line; Tianjin27), GT3 (red line; Singapore28), and GTth (black line; theoretical distribution). Bars are the discretized version, (widetilde{{f_{GT} }}left( n right)), of the PDF of GTth.Full size imageTheoretically, assuming that the incubation periods of two individuals are independent and identically distributed, which is quite plausible, the expected/mean values of the GT and the serial interval should be equal29,30. The mean of the serial interval is easier to estimate than that of the GT. For that reason, we assume a mean serial interval as estimated from a meta-analysis of 13 studies involving a total of 964 pairs of infector-infectee, which is 4.99 days (95% CI = [4.17, 5.82])31, is more reliable than the aforementioned means of the GT. This value is within the error estimates of the means of GT1 and GT2, but not for GT3. Then, we construct a theoretical distribution for the GT that follows a gamma distribution (hereafter GTth) with mean = 4.99 days and SD = 1.88 days. This theoretical distribution can be seen in Fig. 3 and approximates the average PDF of three gamma distributions with mean = 4.99 and the SD of GT1, GT2, and GT3. We assume a conservative CI = [1.51, 2.39] for the theoretical SD, defined with the minimum and maximum SD values of GT1, GT2, and GT3. GTth shows 63.1% of pre-symptomatic contagions.
    R

    0

    from r
    In theory, the basic reproduction number R0 can be estimated as far as the intrinsic growth rate r, and the distributions of both the latent and infectious periods are known26,32,33,34. The latent period accounts for the period during which an infected individual cannot infect other individuals. It is observed in diseases for which the infectious period starts around the end of the incubation period, as happened with influenza35 and SARS36. However, from Fig. 3 it is inferred that COVID-19 is transmissible from the moment of infection, and we will assume a null latent period. Then, if the GT follows a gamma distribution, R0 can be estimated from the formulation of Anderson and Watson32, which was adapted to null latent periods by Yan26 as$$ R_{0} = frac{{mean_{GT} }}{{1 – left( {1 + mean_{GT} cdot r cdot frac{1}{{shape_{GT} }}} right)^{{ – shape_{GT} }} }} cdot r, $$
    (4)
    where meanGT is the mean GT and shapeGT is one of the two parameters defining the gamma distribution, which can be estimated as$$ shape_{GT} = frac{{left( {mean_{GT} } right)^{2} }}{{left( {SD_{GT} } right)^{2} }}. $$
    (5)
    For GTth, we get R0 = 1.50 (CI = [1.41, 1.61]) for REMEDID I(n) and R0 = 1.76 (CI = [1.60, 1.94]) for official I(n). For the other three GT distributions, R0 ranges from 1.39 (CI = [1.27, 1.58]) to 1.51 (CI = [1.34, 1.80]) for REMEDID I(n) and from 1.59 (CI = [1.40, 1.88]) to 1.78 (CI = [1.51, 2.23]) for official I(n) (Table 1). In all cases, R0 from GTth are within those from the three known GT distributions and indistinguishable from them within the error estimates. The lower (upper) bound of the CI is estimated as the minimum (maximum) R0 obtained from all the possible combinations of 100 evenly spaced values covering the CI of r, meanGT and SDGT. Then, following the Bonferroni correction, the reported CI present at least a 85% of confidence level for GT1, GT2, and GT3, but it cannot be assured for GTth since the CI of its SD is unknown. In general, all these R0 estimates are lower than those summarised by Park et al.20.Table 1 R0 and HIT values of the ancestral SARS-CoV-2 variant estimated from GT1, GT2, GT3, and GTth, and REMEDID and official infections. For date0, “Dec.” means December 2019, and “Jan.” means January 2020.Full size tableAlternatively, R0 can be estimated by applying the Euler–Lotka equation29,33,$$ R_{0} = frac{1}{{mathop smallint nolimits_{0}^{ + infty } e^{ – rt} cdot f_{GT} left( t right)dt}}. $$
    (6)
    In this case, we get values closer to previous estimates20. In particular, for GTth, we get R0 = 2.12 (CI = [1.81, 2.48]) for REMEDID I(n) and R0 = 2.92 (CI = [2.28, 3.75]) for official I(n). For the other three GT distributions, R0 ranges from 1.63 (CI = [1.43, 1.90]) to 2.21 (CI = [1.59, 2.95]) for REMEDID I(n) and from 1.97 (CI = [1.59, 2.54]) to 3.11 (CI = [1.84, 4.90]) for official I(n) (Table 1). The CI are estimated as in Eq. (4).R0 from a dynamical modelWe designed a dynamic model with Susceptible-Infected-Recovered (SIR) as stocks that accounts for the infectiousness of the infectors. Such a model is a generalisation of the Susceptible-Exposed-Infected-Recovered (SEIR) model37. Births, deaths, immigration and emigration are ignored, which seems reasonable since the timescale of the outbreak is too short to produce significant demographic changes. For the sake of simplicity, the recovered stock includes recoveries and fatalities, and it is denoted as R(t). A random mixing population is assumed, that is a population where contacts between any two people are equally probable. Time is discretized in days, so the real time variable t is replaced by the integer variable n. As a consequence, the derivatives in the differential equations defining the dynamic model explained below are discrete derivatives.The size of the population is fixed at N = 100,000, and then, for any day n we get$$ tilde{S}left( n right) + left( {mathop sum limits_{k = 0}^{20} tilde{I}left( n-k right)} right) + tilde{R}left( n right) = N, $$
    (7)
    where (tilde{S}left( n right)), (tilde{I}left( n right)), and (tilde{R}left( n right)) are the discretized versions of S(t), I(t), and R(t) and (tilde{I}) is assumed to be null for negative integers. The summation is a consequence of the infectiousness, which is approximated according to the GT, whose PDF is discretized as$$ widetilde{{f_{GT} }}left( n right) = mathop smallint limits_{n – 1}^{n} f_{GT} left( t right) dt, $$
    (8)
    from n = 1 to 20. Figure 3 shows (widetilde{{f_{GT} }}left( n right)) for GTth. Truncating at n = 20 accounts for 99.99% of the area below the PDF of all the GT. Then, an infected individual at day n0 is expected to produce on average$$ widetilde{{R_{e} }}left( {n_{0} + n} right) cdot widetilde{{f_{GT} }}left( n right) $$
    (9)
    infections n days later, where (widetilde{{R_{e} }}left( n right)) is the discretized version of Re(t). From this expression, it is obvious that values of (widetilde{{R_{e} }}left( n right) < 1) will produce a decline of infections. Conversely, infections at day n0 are produced by all individuals infected during the previous 20 days as$$ tilde{I}(n_{0} ) = tilde{R}_{e} left( {n_{0} } right) cdot left( {mathop sum limits_{n = 1}^{20} tilde{I}left( {n_{0} - n} right) cdot widetilde{{f_{GT} }}left( n right)} right), $$ (10) whose continuous version has been reported in previous studies29,38. The expression in brackets is called total infectiousness of infected individuals at day n039. According to Eq. (1), Eq. (10) can be expressed in terms of R0 as$$ tilde{I}(n_{0} ) = R_{0} cdot frac{{tilde{S}left( {n_{0} } right)}}{N} cdot left( {mathop sum limits_{n = 1}^{20} tilde{I}left( {n_{0} - n} right) cdot widetilde{{f_{GT} }}left( n right)} right). $$ (11) As we want a dynamic model capable of providing (tilde{I}left( {n_{0} } right)) from the stocks at time step n0 − 1, we replaced (tilde{S}left( {n_{0} } right)) by (tilde{S}left( {n_{0} - 1} right)) in Eq. (11). This assumption makes sense in a discrete domain since the infections at time n0 take place in the susceptible population at time n0 − 1. Then, assuming that all stocks are set to zero for negative integers, our dynamic model can be expressed in terms of Eq. (7) and the following differential equations:$$ delta tilde{I}(n_{0} ) = R_{0} cdot frac{{tilde{S}left( {n_{0} - 1} right)}}{N} cdot left( {mathop sum limits_{n = 1}^{20} tilde{I}left( {n_{0} - n} right) cdot widetilde{{{text{f}}_{GT} }}left( n right)} right) - tilde{I}(n_{0} - 1), $$ (12) $$ delta tilde{S}left( {n_{0} } right) = {-}tilde{I}left( {n_{0} } right), $$ (13) $$ delta tilde{R}left( {n_{0} } right) = tilde{I}left( {n_{0} - 21} right), $$ (14) where (delta tilde{I}), (delta tilde{S}), and (delta tilde{R}) are the (discrete) derivatives of (tilde{I}), (tilde{S}), and (tilde{R}), respectively. Applying the initial conditions (tilde{S}left( 0 right) = N - 1), (tilde{I}left( 0 right) = 1), and (tilde{R}left( 0 right) = 0), it is assumed that the outbreak was produced by only one infector. The latter is not true in Spain, since several independent introductions of SARS-CoV-2 were detected40. However, for modelling purposes it is equivalent to introducing a single infection at day 0 or M infections produced by the single infection n days later. Then, the date of the initial time n = 0 is accounted as a parameter date0, which is optimised, as well as R0, to minimise the root-mean square of the residual between the model simulated (tilde{I}left( n right)) and the REMEDID and official I(n) for the period from date0 to n0.The model was implemented in Stella Architect software v2.1.1 (www.iseesystems.com) and exported to R software v4.1.1 with the help of deSolve (v1.28) and stats (v4.1.1) packages, and the Brent optimisation algorithm was implemented. For REMEDID I(n) and GTth, we obtained date0 = 13 December 2019 and R0 = 2.71 (CI = [2.33, 3.15]). Optimal solutions combine lower/higher R0 and earlier/later date0 (Fig. 4), which highlights the importance of providing an accurate first infection date to estimate R0. When the other three GT distributions were considered, we obtained similar date0, ranging from 12 to 17 December 2019, and R0 values ranging from 2.08 (CI = [1.86, 2.42]) to 2.85 (CI = [2.05, 3.25]; see Table 1). For official infections, date0 was set to 1 January 2020 for all cases, and R0 ranged from 1.81 (CI = [1.64, 2.07]) to 2.41 (CI = [1.80, 2.91]). The CI are estimated as in Eq. (4).Figure 4Root-mean square (RMS) of the residuals between infections from the model, which depends on date0 (x-axis) and R0 (y-axis), and REMEDID (from MoMo ED) and official infections. Parameters optimizing the model are highlighted in purple. RMS larger than 1275 (left panel) and 103 (right panel) are saturated in white.Full size image More

  • in

    EU Nature Restoration Law needs ambitious and binding targets

    CORRESPONDENCE
    11 January 2022

    EU Nature Restoration Law needs ambitious and binding targets

    Kris Decleer

     ORCID: http://orcid.org/0000-0001-9621-8925

    0
    ,

    Jordi Cortina-Segarra

     ORCID: http://orcid.org/0000-0002-8231-3793

    1
    &

    Aveliina Helm

     ORCID: http://orcid.org/0000-0003-2338-4564

    2

    Kris Decleer

    Research Institute for Nature and Forest, Brussels, Belgium.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Jordi Cortina-Segarra

    University of Alicante, Alicante, Spain.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Aveliina Helm

    University of Tartu, Tartu, Estonia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Initiatives by the European Commission to restore the continent’s degraded areas (J. Cortina-Segarra et al. Nature 535, 231; 2016) have proved disappointing. As the United Nations Decade on Ecosystem Restoration gathers momentum, the commission is preparing a law that has legally binding targets. To underscore the urgency, some 1,400 European scientists and 30 expert networks and institutions have signed a declaration by the Society for Ecological Restoration Europe (see go.nature.com/3st6k88).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 601, 191 (2022)
    doi: https://doi.org/10.1038/d41586-022-00011-y

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Law

    Ecology

    Environmental sciences

    Latest on:

    Law

    Elizabeth Holmes verdict: researchers share lessons for science
    News 04 JAN 22

    What Sci-Hub’s latest court battle means for research
    News 13 DEC 21

    Science agency on trial following deadly White Island volcano eruption
    News 06 OCT 21

    Ecology

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Two million species catalogued by 500 experts
    Correspondence 11 JAN 22

    From the archive
    News & Views 11 JAN 22

    Environmental sciences

    Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs
    Article 22 DEC 21

    Half measures in One Health fail people and the environment
    Correspondence 21 DEC 21

    Uncovering global-scale risks from commercial chemicals in air
    Article 15 DEC 21

    Jobs

    W1 Professor (Tenure Track) of Molecular Plant Biologyr

    University of Tübingen (Uni Tübingen)
    Tübingen, Baden-Württemberg, Germany

    Early Career Fellowship Programme 2021

    Human Technopole
    Milano, Italy

    A tenure-track position in the field of ecology/evolutionary biology/conservation biology

    Ben-Gurion University of the Negev (BGU)
    Midrashet Ben-Gurion, Israel

    Leaders of Independent Junior Research Group (JRG) 2022

    Asia Pacific Center for Theoretical Physics (APCTP)
    Pohang, Korea, South More

  • in

    Ecoregional and temporal dynamics of dugong habitat use in a complex coral reef lagoon ecosystem

    1.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    2.Robinson, L. M. et al. Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802 (2011).
    Google Scholar 
    3.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).PubMed 

    Google Scholar 
    4.Mayor, S. J., Schneider, D. C., Schaefer, J. A. & Mahoney, S. P. Habitat selection at multiple scales. Ecoscience 16, 238–247 (2009).
    Google Scholar 
    5.Mannocci, L. et al. Temporal resolutions in species distribution models of highly mobile marine animals: Recommendations for ecologists and managers. Divers. Distrib. 23, 1098–1109 (2017).
    Google Scholar 
    6.Sequeira, A. M. M., Bouchet, P. J., Yates, K. L., Mengersen, K. & Caley, M. J. Transferring biodiversity models for conservation: Opportunities and challenges. Methods Ecol. Evol. 9, 1250–1264 (2018).
    Google Scholar 
    7.Cleguer, C., Grech, A., Garrigue, C. & Marsh, H. Spatial mismatch between marine protected areas and dugongs in New Caledonia. Biol. Conserv. 184, 154–162 (2015).
    Google Scholar 
    8.Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).PubMed 

    Google Scholar 
    9.Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016).PubMed 

    Google Scholar 
    10.Hazen, E. L. et al. WhaleWatch: A dynamic management tool for predicting blue whale density in the California Current. J. Appl. Ecol. 54, 1415–1428 (2017).
    Google Scholar 
    11.Sequeira, A. M. M. et al. Overhauling ocean spatial planning to improve marine megafauna conservation. Front. Mar. Sci. 6, 639 (2019).
    Google Scholar 
    12.Marsh, H. & Sobtzick, S. Dugong dugon. In The IUCN RedList of Threatened Species (2019:e.T6909A160756767). https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6909A160756767.en. Accessed November 2020 (2019).13.Marsh, H., O’Shea, T. J. & Reynolds, J. E. I. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).
    Google Scholar 
    14.Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, eaay7650 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    15.Nowicki, R. J., Thomson, J. A., Fourqurean, J. W., Wirsing, A. J. & Heithaus, M. R. Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13424 (2021).Article 
    PubMed 

    Google Scholar 
    16.Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Living on the edge: Dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim. Behav. 74, 93–101 (2007).
    Google Scholar 
    17.Aragones, L. V., Lawler, I. R., Foley, W. J. & Marsh, H. Dugong grazing and turtle cropping: Grazing optimization in tropical seagrass systems?. Oecologia 149, 635–647 (2006).PubMed 
    ADS 

    Google Scholar 
    18.Preen, A. Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. Mar. Ecol. Prog. Ser. 124, 201–213 (1995).ADS 

    Google Scholar 
    19.Unsworth, R. K. F., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46 (2015).CAS 
    PubMed 

    Google Scholar 
    20.Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 1–8 (2017).CAS 
    ADS 

    Google Scholar 
    21.Ponnampalam, L. S., Fairul Izmal, J. H., Adulyanukosol, K., Ooi, J. L. S. & Reynolds, J. E. Aligning conservation and research priorities for proactive species and habitat management: The case of dugongs Dugong dugon in Johor, Malaysia. Oryx 49, 743–749 (2015).
    Google Scholar 
    22.Preen, A. The Status and Conservation of Dugongs in the Arabian Region. Saudi Arabia, Meteorological and Environmental Protection Administration (MEPA), Coastal and Marine Management Series. Report, No 10, (1989).23.Preen, A. Distribution, abundance and conservation status of dugongs and dolphins in the southern and western Arabian Gulf. Biol. Conserv. 118, 205–218 (2004).
    Google Scholar 
    24.Findlay, K. P., Cockcroft, V. G. & Guissamulo, A. T. Dugong abundance and distribution in the Bazaruto Archipelago, Mozambique. Afr. J. Mar. Sci. 33, 441–452 (2011).
    Google Scholar 
    25.Pilcher, N. J. et al. A low-cost solution for documenting distribution and abundance of endangered marine fauna and impacts from fisheries. PLoS ONE 12, e0190021 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Hashim, M. et al. Using fisher knowledge, mapping population, habitat suitability and risk for the conservation of dugongs in Johor Straits of Malaysia. Mar. Policy 78, 18–25 (2017).
    Google Scholar 
    27.Bayliss, P. & Hutton, M. Integrating Indigenous Knowledge and Survey Techniques to Develop a Baseline for Dugong (Dugong dugon) Management in the Kimberley. Final Report of project 1.2.5 of the Kimberley Marine Research Program Node of the Western Australian Marine Science Institution, WAMSI (2017).28.Campbell, R., Holley, D. & Bardi-Jawi Ranger Group. Movement Behaviours and Habitat Usage of West Kimberley Dugongs : A Community Based Approach Final Report to the National Marine Mammal Centre November 2010. Final Report to the National Marine Mammal Centre (2010).29.Cleguer, C. et al. Working with the Community to Understand Use of Space by Dugongs and Green Turtles in Torres Strait. Final Report to the Mura Badulgal Representative NativeTitle Body Corporate and the Department of the Environment, National Environment Science Program TropicalWater Quality Hub (James Cook University, Townsville, 2016).30.Gredzens, C. et al. Satellite tracking of sympatric marine megafauna can inform the biological basis for species co-management. PLoS ONE 9, e98944 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    31.Holley, D. Movement Patterns and Habitat Usage of Shark Bay Dugongs. MSc thesis, Edith Cowan University, Perth. https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1070&context=theses (2006).32.Sheppard, J. et al. Movement heterogeneity of dugongs, Dugong dugon (Müller), over large spatial scales. J. Exp. Mar. Bio. Ecol. 334, 64–83 (2006).
    Google Scholar 
    33.Hagihara, R. et al. Improving the Estimates of Abundance of Dugongs and Large Immature and Adult-Sized Green Turtles in Western and Central Torres Strait. Report to the National Environmental Science Programme (Reef and Rainforest Research Centre Limited, Cairns 2016).34.De Iongh, H. H., Langeveld, P. & Van Der Wal, M. Movement and home ranges of dugongs around the Lease Islands, East Indonesia. Mar. Ecol. 19, 179–193 (1998).ADS 

    Google Scholar 
    35.Cleguer, C., Garrigue, C. & Marsh, H. Dugong (Dugong dugon) movements and habitat use in a coral reef lagoonal ecosystem. Endanger. Species Res. 43, 167–181 (2020).
    Google Scholar 
    36.Sheppard, J., Jones, R. E., Marsh, H. & Lawler, I. R. Effects of tidal and diel cycles on dugong habitat use. J. Wildl. Manag. 73, 45–59 (2009).
    Google Scholar 
    37.Sheppard, J., Marsh, H., Jones, R. E. & Lawler, I. R. Dugong habitat use in relation to seagrass nutrients, tides, and diel cycles. Mar. Mammal Sci. 26, 855–879 (2010).
    Google Scholar 
    38.Zeh, D. R. et al. Evidence of behavioural thermoregulation by dugongs at the high latitude limit to their range in eastern Australia. J. Exp. Mar. Bio. Ecol. 508, 27–34 (2018).
    Google Scholar 
    39.UNESCO. Lagoons of New Caledonia: Reef Diversity and Associated Ecosystems (U.W.H. Centre, 2009).40.Payri, C. New Caledonia: World of Corals (IRD Editions/Solaris, Marseille/Nouméa, 2018).41.Oremus, M., Garrigue, C. & Cleguer, C. Isolement et diversité génétique des dugongs de Nouvelle-Calédonie (Unpublished Report, 2011).42.Oremus, M., Garrigue, C. & Cleguer, C. Etude génétique complémentaire sur le statut de la population de dugong de Nouvelle-Calédonie (Unpublished Report, 2015).43.Garrigue, C., Patenaude, N. & Marsh, H. Distribution and abundance of the dugong in New Caledonia, southwest Pacific. Mar. Mammal Sci. 24, 81–90 (2008).
    Google Scholar 
    44.Cleguer, C. et al. Drivers of change in the relative abundance of dugongs in New Caledonia. Wildl. Res. 44, 365–376 (2017).
    Google Scholar 
    45.Gonson, C. et al. Decadal increase in the number of recreational users is concentrated in no-take marine reserves. Mar. Pollut. Bull. 107, 144–154 (2016).CAS 
    PubMed 

    Google Scholar 
    46.Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
    Google Scholar 
    47.Hussey, N. E. et al. Aquatic animal telemetry: A panoramic window into the underwater world. Science (80-.) 348, 1255642 (2015).
    Google Scholar 
    48.Hagihara, R. et al. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna. PLoS ONE 13, e0191476 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Sequeira, A. M. M. et al. The importance of sample size in marine megafauna tagging studies. Ecol. Appl. 29, e01947 (2019).CAS 
    PubMed 

    Google Scholar 
    50.Derville, S., Constantine, R., Baker, C. S., Oremus, M. & Torres, L. G. Environmental correlates of nearshore habitat distribution by the Critically Endangered Maui dolphin. Mar. Ecol. Prog. Ser. 551, 261–275 (2016).CAS 
    ADS 

    Google Scholar 
    51.Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).
    Google Scholar 
    52.Pinto, C. et al. Using individual tracking data to validate the predictions of species distribution models. Divers. Distrib. 22, 682–693 (2016).
    Google Scholar 
    53.Tingley, M. W., Wilkerson, R. L., Howell, C. A. & Siegel, R. B. An integrated occupancy and space-use model to predict abundance of imperfectly detected, territorial vertebrates. Methods Ecol. Evol. 7, 508–517 (2016).
    Google Scholar 
    54.Roberts, J. J. et al. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico. Sci. Rep. 6, 22615 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    55.Mannocci, L., Roberts, J. J., Pedersen, E. J. & Halpin, P. N. Geographical differences in habitat relationships of cetaceans across an ocean basin. Ecography (Cop.) 43, 1250–1259 (2020).
    Google Scholar 
    56.Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Fear factor: Do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)?. Oecologia 153, 1031–1040 (2007).PubMed 
    ADS 

    Google Scholar 
    57.Jollit, I. Spatialisation des activités humaines et aide à la décision pour une gestion durable des écosystèmes coralliens: la pêche plaisancière dans le lagon sud-ouest de la Nouvelle-Calédonie. PhD dissertation, Université de la Nouvelle-Calédonie (2010).58.Maitland, R. N., Lawler, I. R. & Sheppard, J. K. Assessing the risk of boat strike on Dugongs Dugong dugon at Burrum Heads, Queensland, Australia. Pac. Conserv. Biol. 12, 321–326 (2006).
    Google Scholar 
    59.Preen, A. Interactions Between Dugongs and Seagrasses in a Subtropical Environment. PhD dissertation, James Cook University, Townsville, Australia (1992).60.Hodgson, A. Dugong Behaviour and Responses to Human Influences. PhD dissertation, James Cook University (2004).61.Edwards, H. H. et al. Influence of manatees’ diving on their risk of collision with watercraft. PLoS ONE 11, e0151450 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    62.Rycyk, A. M. et al. Manatee behavioral response to boats. Mar. Mamm. Sci. 34, 924–962 (2018).
    Google Scholar 
    63.Garrigue, C. Macrophyte associations on the soft bottoms of the South-West Lagoon of New Caledonia: Description, structure and biomass. Bot. Mar. 38, 481–492 (1995).
    Google Scholar 
    64.Andréfouët, S. et al. Nation-wide hierarchical and spatially-explicit framework to characterize seagrass meadows in the Indo-Pacific: Example application to New Caledonia. Mar. Pollut. Bull. 173, 113036 (2021).PubMed 

    Google Scholar 
    65.Cleguer, C. Informing Dugong Conservation at Several Spatial and Temporal Scales in New Caledonia. PhD dissertation, James Cook University (2015).66.Anderson, P. K. Dugongs of Shark Bay, Australia–Seasonal migration, water temperature and forage. Natl. Geogr. Res. 2, 473–490 (1986).
    Google Scholar 
    67.Heithaus, M. R. & Dill, L. M. Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83, 480–491 (2002).
    Google Scholar 
    68.Roger, J. Données bathymétriques et topographiques de Nouvelle-Calédonie : Réalisation d’un MNT terre-mer pour l’étude de l’aléa tsunami (projet TSUCAL). (Institut de Recherche pour le Développement, 2020).69.Andréfouët, S. et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: A view from space. In Opening Talk, 10th International Coral Reef Symposium (eds Suzuki, Y. et al.) 1732–1745 (Japanese Coral Reef Society, 2006).
    Google Scholar 
    70.Andréfouët, S., Cabioch, G., Flamand, B. & Pelletier, B. A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: A synthesis from optical remote sensing, coring and acoustic multibeam observations. Coral Reefs 28, 691–707 (2009).ADS 

    Google Scholar 
    71.Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).MATH 

    Google Scholar 
    72.Marsh, H. & Rathbun, G. B. Development and application of conventional and satellite radio tracking techniques for studying dugong movements and habitat use. Aust. Wildl. Res. 17, 83–100 (1990).
    Google Scholar 
    73.Lanyon, J. M. et al. A method for capturing dugongs (Dugong dugong) in open water. Aquat. Mamm. 32, 196–201 (2006).
    Google Scholar 
    74.Cleguer, C., Derville, S., Kelly, N., Lambourne, R. & Garrigue, C. Programme SIREN : Suivi à fine échelle de la fréquentation et du déplacement des dugongs dans la zone Voh-Koné- Pouembout , pour une gestion améliorée de l’espèce Rapport final (Technical report prepared for Koniambo Nickel SAS, 2020).75.Johnson, D., London, J., Lea, M. A. & Durban, J. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    76.Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movements bouts. Ecology 89, 3336–3348 (2008).PubMed 

    Google Scholar 
    77.Hyndman, R. et al. Forecast: Forecasting Functions for Time Series and Linear Models. https://pkg.robjhyndman.com/forecast/ (R package version 8.15, 2021).78.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme (R package version 3.1–152, 2021).79.Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability (Chapman and Hall/CRC, 1990).
    Google Scholar 
    80.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    81.Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).MATH 

    Google Scholar 
    82.Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 

    Google Scholar 
    83.Cox, T. & Schepers, L. Tides: Quasi-periodic Time Series Characteristics. https://CRAN.R-project.org/package=Tides (R package version 2.1., 2018).84.Boldina, I. & Beninger, P. G. Strengthening statistical usage in marine ecology: Linear regression. J. Exp. Mar. Bio. Ecol. 474, 81–91 (2016).
    Google Scholar 
    85.Russell, L. emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans (R package version 1.4.7., 2020).86.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar  More

  • in

    The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic

    1.Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G. & Strathmann, R. R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol. Rev. 91, 867–882 (2016).PubMed 

    Google Scholar 
    2.Cowman, P. F. & Bellwood, D. R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. R. Soc. B Biol. Sci. 280, 20131541 (2013).
    Google Scholar 
    3.Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    4.Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).
    Google Scholar 
    5.Rocha, L. A. et al. Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol. Ecol. 14, 3921–3928 (2005).PubMed 

    Google Scholar 
    6.Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: A test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).CAS 
    PubMed 

    Google Scholar 
    7.Fraser, C. I., Kay, G. M., du Plessis, M. & Ryan, P. G. Breaking down the barrier: Dispersal across the Antarctic Polar Front. Ecography 40, 235–237 (2017).
    Google Scholar 
    8.Thorrold, S. R. & McKinnon, A. D. Response of larval fish assemblages to a riverine plume in coastal waters of the central Great Barrier Reef lagoon. Limnol. Oceanogr. 40, 177–181 (1995).ADS 

    Google Scholar 
    9.Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    10.Lentz, S. J. The Amazon River plume during AmasSeds: Subtidal current variability and the importance of wind forcing. J. Geophys. Res. 100, 2377–2390 (1995).ADS 

    Google Scholar 
    11.Figueiredo, A. G., Allison, M. & Nittrouer, C. A. Amazon Discharge: Internal Report for AMASSEDS Researches. (1991).12.Nittrouer, C. A. & DeMaster, D. J. The Amazon shelf setting: Tropical, energetic, and influenced by a large river. Cont. Shelf Res. 16, 553–573 (1996).ADS 

    Google Scholar 
    13.Jo, Y.-H., Yan, X. H., Dzwonkowski, B. & Liu, W. T. A study of the freshwater discharge from the Amazon River into the tropical Atlantic using multi-sensor data. Geophys. Res. Lett. 32, 1–4 (2005).
    Google Scholar 
    14.Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–11 (2016).
    Google Scholar 
    15.Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front. Mar. Sci. 5, 142 (2018).
    Google Scholar 
    16.Neumann-Leitão, S. et al. Zooplankton from a reef system under the influence of the Amazon River plume. Front. Microbiol. 9, 1–15 (2018).
    Google Scholar 
    17.Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 80 (2020).
    Google Scholar 
    18.Barroso, C. X., Lotufo, T. M. C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).
    Google Scholar 
    19.Brandini, F. P., Lopes, R. M., Gutseit, K. S. & Sassi, R. Planctonologia na Plataforma Continental do Brasil: Diagnose e Revisão Bibliográfica. (CEMAR/MMA/CIRM/FEMAR, 1997).20.Loder, J. W., Boicourt, W. C. & Simpson, J. H. Western ocean boundary shelves coastal segment (W). Sea 11, 3–27 (1998).
    Google Scholar 
    21.Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 

    Google Scholar 
    22.Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Saeedi, H., Simões, M. & Brandt, A. Endemicity and community composition of marine species along the NW Pacific and the adjacent Arctic Ocean. Prog. Oceanogr. 178, 102199 (2019).
    Google Scholar 
    24.OBIS. Ocean Biogeographic Information System. http://www.iobis.org (2021).25.Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    26.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 
    27.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 
    28.Fu, H. et al. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206–217 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    29.Costello, M. J., Stocks, K., Zhang, Y., Grassle, J. F. & Fautin, D. G. About the Ocean Biogeographic Information System. Vol. 29. (2007).30Miloslavich, P. et al. Marine biodiversity in the Caribbean: Regional estimates and distribution patterns. PLoS ONE 5, e11916 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    31.Boltovskoy, D. & Valentin, J. L. Overview of the history of biological oceanography in the southwestern Atlantic, with emphasis on plankton. in Plankton Ecology of the Southwestern Atlantic (eds. Hoffmeyer, M. S., Sabatini, M. E., Brandini, F. P., Calliari, D. L. & Santinelli, N. H.). 3–34. https://doi.org/10.1007/978-3-319-77869-3_1 (Springer, 2018).32Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Lopes, R. M. Marine zooplankton studies in Brazil: A brief evaluation and perspectives. An. Acad. Bras. Ciênc. 79, 369–379 (2007).PubMed 

    Google Scholar 
    34.Alves-Júnior, F. D. A. et al. Taxonomy of deep-sea shrimps of the superfamily Oplophoroidea Dana 1852 (Decapoda: Caridea) from Southwestern Atlantic. Zootaxa 4613, 401–442 (2019).
    Google Scholar 
    35.Eduardo, L. N. et al. Biodiversity, ecology, fisheries, and use and trade of Tetraodontiformes fishes reveal their socio-ecological significance along the tropical Brazilian continental shelf. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 761–774 (2020).
    Google Scholar 
    36.Tosetto, E. G., Bertrand, A., Neumann-Leitão, S., Costa da Silva, A. & Nogueira Júnior, M. Spatial patterns in planktonic cnidarian distribution in the western boundary current system of the tropical South Atlantic Ocean. J. Plankton Res. 43, 270–287 (2021).
    Google Scholar 
    37.Tosetto, E. G., Neumann-Leitão, S. & Nogueira Júnior, M. New species of Eirenidae (Hydrozoa: Leptothecata) from the Amazonian coast (northern Brazil). Sci. Mar. 84, 421–430 (2020).
    Google Scholar 
    38.Santana, C. S. et al. Amazon river plume influence on planktonic decapods in the tropical Atlantic. J. Mar. Syst. 212, 103428 (2020).
    Google Scholar 
    39.Tosetto, E. G., Neumann-Leitão, S., Bertrand, A. & Júnior, M. N. First record of Cirrholovenia polynema (Hydrozoa: Leptothecata) in the Western Atlantic Ocean. Ocean Coast. Res. 69, e21006 (2021).
    Google Scholar 
    40.Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Bowen, B. W., Muss, A., Rocha, L. A. & Grant, W. S. Shallow mtDNA coalescence in Atlantic Pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J. Hered. 97, 1–12 (2005).
    Google Scholar 
    42.Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. R. Soc. B Biol. Sci. 272, 573–579 (2005).
    Google Scholar 
    43.Rocha, L. A., Rocha, C. R., Robertson, D. R. & Bowen, B. W. Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol. Biol. 8, 157 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    44.Agard, J. B. R., Hubbard, R. H. & Griffith, J. K. The relation between productivity, disturbance and the biodiversity of Caribbean phytoplankton: Applicability of Huston’s dynamic equilibrium model. J. Exp. Mar. Biol. Ecol. 202, 1–17 (1996).
    Google Scholar 
    45.Toonen, R. J., Bowen, B. W., Iacchei, M. & Briggs, J. C. Biogeography, marine. in Encyclopedia of Evolutionary Biology (ed. Kliman, R. M.). 166–178. https://doi.org/10.1016/B978-0-12-800049-6.00120-7 (Academic Press, 2016).46.Briggs, J. C. & Bowen, B. W. Marine shelf habitat: Biogeography and evolution. J. Biogeogr. 40, 1023–1035 (2013).
    Google Scholar 
    47.Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).
    Google Scholar 
    48.Bartlow, A. W. & Agosta, S. J. Phoresy in animals: Review and synthesis of a common but understudied mode of dispersal. Biol. Rev. 96, 223–246 (2021).PubMed 

    Google Scholar 
    49.South Atlantic Zooplankton. (Backhuys Publishers, 1999).50.Mapstone, G. M. Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9, 1–37 (2014).
    Google Scholar 
    51.Young, C. M., Sewell, M. A. & Rice, M. E. Atlas of Marine Invertebrate Larvae. Vol. 6. (Academic Press, 2002).52.Strathmann, R. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Mar. Biol. Ecol. 34, 23–27 (1978).
    Google Scholar 
    53.Haddoock, S. H. D. A golden age of gelata Past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530–531, 549–556 (2004).
    Google Scholar 
    54Dossa, A. N. et al. Near-surface western boundary circulation off Northeast Brazil. Prog. Oceanogr. 190, 102475 (2021).
    Google Scholar 
    55.Luiz, O., Floeter, S., Rocha, L. & Ferreira, C. Perspectives for the lionfish invasion in the South Atlantic: Are Brazilian reefs protected by the currents?. Mar. Ecol. Prog. Ser. 485, 1–7 (2013).ADS 

    Google Scholar 
    56.Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).
    Google Scholar 
    57.Giangrande, A. Polychaete reproductive patterns, life cycles and life histories: An overview. in Oceanography and Marine Biology. Vol. 35. (eds. Ansell, A., Gibson, R. N. & Barnes, M.) (CRC Press, 1997).58.Nogueira Júnior, M. & Oliveira, V. M. Strategies of plankton occupation by polychaete assemblages in a subtropical estuary (south Brazil). J. Mar. Biol. Assoc. U. K. 97, 1651–1661 (2017).
    Google Scholar 
    59Assunção, R. V. et al. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Prog. Oceanogr. 187, 102399 (2020).
    Google Scholar 
    60.Molleri, G. S. F., Novo, E. M. L. M. & Kampel, M. Space-time variability of the Amazon River plume based on satellite ocean color. Cont. Shelf Res. 30, 342–352 (2010).ADS 

    Google Scholar 
    61.López, R., López, J. M., Morell, J., Corredor, J. E. & Del Castillo, C. E. Influence of the Orinoco River on the primary production of eastern Caribbean surface waters: Primary Production of Caribbean waters. J. Geophys. Res. Oceans 118, 4617–4632 (2013).ADS 

    Google Scholar 
    62.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. (2014).63.Clarke, K. R. & Gorley, R. N. PRIMER 6 + PERMANOVA. (2006).64.Larsson, J. et al. Package ‘eulerr’. (2018).65.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar  More

  • in

    Mechanisms of dispersal and colonisation in a wind-borne cereal pest, the haplodiploid wheat curl mite

    1.Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: Implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).ADS 

    Google Scholar 
    2.Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics in Dispersal Ecology and Evolution 251–265 (Oxford University Press, 2013). https://doi.org/10.1093/acprof:oso/9780199608898.003.0020.3.Rochat, E., Manel, S., Deschamps-Cottin, M., Widmer, I. & Joost, S. Persistence of butterfly populations in fragmented habitats along urban density gradients: Motility helps. Heredity (Edinb). 119, 328–338 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Machado, F. P., Roldán-Correa, A. & Schinazi, R. B. Colonization and collapse. ALEA, Lat. Am. J. Probab. Math. Stat. 14, 719–731 (2017)5.Junior, V. V., Machado, F. P. & Roldán-Correa, A. Dispersion as a survival strategy. J. Stat. Phys. 164, 937–951 (2016).MathSciNet 
    MATH 
    ADS 

    Google Scholar 
    6.Saastamoinen, M. et al. Genetics of dispersal. Biol. Rev. 93, 574–599 (2018).PubMed 

    Google Scholar 
    7.Nichols, R. A. & Hewitt, G. M. The genetic consequences of long distance dispersal during colonization. Heredity (Edinb). 72, 312–317 (1994).
    Google Scholar 
    8.Bonte, D. et al. Costs of dispersal. Biol. Rev. 87, 290–312 (2012).PubMed 

    Google Scholar 
    9.Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 

    Google Scholar 
    10.Skelsey, P., With, K. A. & Garrett, K. A. Why dispersal should be maximized at intermediate scales of heterogeneity. Theor. Ecol. 6, 203–211 (2013).PubMed 

    Google Scholar 
    11.Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 1–7 (2017).ADS 

    Google Scholar 
    12.Newman, D. & Pilson, D. Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia pulchella. Evolution (N. Y.) 51, 354–362 (1997).
    Google Scholar 
    13.Bijlsma, R., Bundgaard, J. & Boerema, A. C. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. J. Evol. Biol. 13, 502–514 (2000).
    Google Scholar 
    14.Reed, D. H., Briscoe, D. A. & Frankham, R. Inbreeding and extinction: The effect of environmental stress and lineage. Conserv. Genet. 3, 301–307 (2002).CAS 

    Google Scholar 
    15.Reed, D. H., Lowe, E. H., Briscoe, D. A. & Frankham, R. Fitness and adaptation in a novel environment: Effect of inbreeding, prior environment, and lineage. Evolution (N. Y.) 57, 1822–1828 (2003).
    Google Scholar 
    16.Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).CAS 
    PubMed 

    Google Scholar 
    17.Szücs, M. et al. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl. Acad. Sci. USA 114, 13501–13506 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    18.Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).CAS 
    PubMed 

    Google Scholar 
    19.Tien, N. S. H., Sabelis, M. W. & Egas, M. Inbreeding depression and purging in a haplodiploid: Gender-related effects. Heredity (Edinb). 114, 327–332 (2015).CAS 
    PubMed 

    Google Scholar 
    20.Smith, A. L. et al. Dispersal responses override density effects on genetic diversity during post-disturbance succession. Proc. R. Soc. B Biol. Sci. 283, 20152934 (2016).21.Clotuche, G. et al. The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 6, e18854 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Clotuche, G., Navajas, M., Mailleux, A.-C. & Hance, T. Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8, e77573 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Carew, M., Schiffer, M., Umina, P., Weeks, A. & Hoffmann, A. Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull. Entomol. Res. 99, 479–486 (2009).CAS 
    PubMed 

    Google Scholar 
    24.Hein, G. L., French, R., Siriwetwiwat, B. & Amrine, J. W. Genetic characterization of North American populations of the wheat curl mite and dry bulb mite. J. Econ. Entomol. 105, 1801–1808 (2012).CAS 
    PubMed 

    Google Scholar 
    25.Kuczyński, L. et al. A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. Exp. Appl. Acarol. 82, 17–31 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    26.Helle, W. & Wysoki, M. 1.3.2 Arrhenotokous parthenogenesis. In World Crop Pests (eds Lindquist, E. E., Sabelis, M. W., Bruin, J.) vol. 6, 169–172 (Elsevier, 1996).27.Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).28.Sabelis, M. W. & Bruin, J. 1.5.3 Evolutionary ecology: Life history patterns, food plant choice and dispersal. World Crop Pests 6, 329–366 (1996).
    Google Scholar 
    29.Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim. Behav. 155, 141–151 (2019).
    Google Scholar 
    30.Lacy, R. C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).
    Google Scholar 
    31.Powell, J. R. The effects of founder-flush cycles on ethological isolation in laboratory populations of Drosophila in Genetics. In Speciation and the Founder Principle (eds Giddings, L. V. et al.) 239–251 (Oxford University Press, 1989).
    Google Scholar 
    32.Jamieson, I. G. Efecto fundador, endogamia y pérdida de diversidad genética en cuatro programas de reintroducción de Aves. Conserv. Biol. 25, 115–123 (2011).PubMed 

    Google Scholar 
    33.Montero-Pau, J., Gómez, A. & Serra, M. Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ 6, e6094 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    34.Perrin, N. & Mazalov, V. Dispersal and inbreeding avoidance. Am. Nat. 154, 282–292 (1999).PubMed 

    Google Scholar 
    35.Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. M. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Soc. 62, 237–245 (2015).
    Google Scholar 
    36.Tabadkani, S. M., Nozari, J. & Lihoreau, M. Inbreeding and the evolution of sociality in arthropods. Naturwissenschaften 99, 779–788 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    37.Yearsley, J. M., Viard, F. & Broquet, T. The effect of collective dispersal on the genetic structure of a subdivided population. Evolution (N. Y.) 67, 1649–1659 (2013).
    Google Scholar 
    38.van der Kooi, C. J., Matthey-Doret, C. & Schwander, T. Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evol. Lett. 1, 304–316 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    39.Li, X.-Y. & Kokko, H. Sex-biased dispersal: A review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 

    Google Scholar 
    40.Nault, L. R. & Styer, W. E. The dispersal of Aceria tulipae and three other grass-infesting Eriophyid mites in Ohio. Ann. Entomol. Soc. Am. 62, 1446–1455 (1969).
    Google Scholar 
    41.Southwood, T. R. E., May, R. M., Hassell, M. P. & Conway, G. R. Ecological strategies and population parameters. Am. Nat. 108, 791–804 (1974).
    Google Scholar 
    42.Frost, W. E. Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness. Physiol. Entomol. 22, 37–46 (1997).
    Google Scholar 
    43.Ronce, O. & Clobert, J. Dispersal syndromes in Dispersal Ecology and Evolution (eds Baguette, M., Benton, T. G., Bullock, J. M.) vol. 1, 119–138 (Oxford University Press, 2012).44.Laska A. et al. A sink host allows a specialist herbivore to persist in a seasonal source. Proc. Roy. Soc. B, accepted for publication (2021).45.Skoracka, A. et al. Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebr. Syst. 26, 417 (2012).
    Google Scholar 
    46.Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).CAS 
    PubMed 

    Google Scholar 
    47.Karpicka-Ignatowska, K. et al. A novel experimental approach for studying life-history traits of phytophagous arthropods utilizing an artificial culture medium. Sci. Rep. 9, (2019).48.Karpicka-Ignatowska, K., Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Temperature-dependent development and survival of an invasive genotype of wheat curl mite, Aceria tosichella. Exp. Appl. Acarol. 83, 513–525 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    49.Amrine, J. W. & Manson, D. C. M. Preparation, mounting and descriptive study of eriophyoid mites. In Eriophyoid Mites—Their Biology, Natural Enemies and Control Vol. 6 (eds Lindquist, E. E. & Bruin, M. W.) 383–396 (Elsevier, 1996).
    Google Scholar 
    50.de Lillo, E., Craemer, C., Amrine, J. W. & Nuzzaci, G. Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51, 283–307 (2010).PubMed 

    Google Scholar 
    51.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/. Accessed 24 Apr 2020.52.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 

    Google Scholar 
    53.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    54.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    55.Wood, S. N. Generalized Additive Models (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.Book 
    MATH 

    Google Scholar 
    56.Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8. https://CRAN.R-project.org/package=emmeans More

  • in

    Effects of water saving and nitrogen reduction on the yield, quality, water and nitrogen use efficiency of Isatis indigotica in Hexi Oasis

    Effects of water and nitrogen treatments on the yield of Isatis indigotica
    As shown in Table 3, in the two-year experiment, both the water input and the nitrogen application rate had significant effects on the yield of Isatis indigotica.Table 3 Variance analysis of traits on the yield of Isatis indigotica.Full size tableAs shown in Fig. 4, with increasing water and nitrogen, the yield first increased and then decreased. The interaction between the water input and the nitrogen application rate reached a significant level (P  N1. At the levels of W1, W2, and W3, the yield of the N2 treatment increased by 5.3–7.9%, 6.5–6.9%, and 5.0–9.0% compared with those of the N3 treatment, respectively, and the yield of the N3 treatment increased by 1.4–1.9%, 1.5%-4.5%, and 1.7–3.5% compared with those of the N1 treatment, respectively. At the same nitrogen application level, the yield performance was W2  > W1  > W3. At the levels of N1, N2, and N3, the yield of the W2 treatment increased by 6.9–12.4%, 8.3–11.3%, and 6.8–13.5% compared with those of the W3 treatment, respectively, and the yield of the W3 treatment decreased by 1.6–3.9%, 1.5–1.6%, and 1.3–2.4% compared with those of the W1 treatment, respectively.Effects of the water and nitrogen treatments on the quality of Isatis indigotica
    As shown in Table 4, in the two-year experiment, the water input and nitrogen application rate had significant impacts on the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in Isatis indigotica.Table 4 Variance analysis of traits the quality of Isatis indigotica.Full size tableAs shown in Fig. 5, The impacts decreased with increasing irrigation amount and nitrogen application rate. Compared with those in the W3N3 treatment, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in the W2N2 treatment increased by 4.5–5.9%, 2.7–3.1%, 5.2–6.0% and 1.8–2.1%, respectively. At the same irrigation level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides all decreased in the order N1  > N2  > N3. At the W2 level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in the N1 treatment increased by 0.5–1.7%, 0.8–0.9%, 0.8–1.1% and 0.1–0.4%, respectively, compared with those in the N2 treatment. Compared with those in the N3 treatment, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in the N2 treatment increased by 1.9–2.1%, 1.5–2.2%, 2.1–2.2% and 0.6–1.1%, respectively.Figure 5The effects of the different treatments on the quality index of Isatis indigotica. The values shown are the mean ± SD, n = 3. Asterisks indicate a significant difference at the P ≤ 0.05 level.Full size imageAt the same nitrogen level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides all decreased in the order W1  > W2  > W3. At the N2 level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides in the W1 treatment increased by 1.5–2.0%, 1.8–2.1%, 3.0–3.1% and 0.4–0.9% compared with those in the W2 treatment, respectively. Compared with those in the W3 treatment, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides of the W2 treatment increased by 2.3–3.5%, 1.8–2.3%, 2.0–4.0% and 1.0–1.4%, respectively.Effects of the water and nitrogen treatments on the WUE of Isatis indigotica
    As shown in Table 5, in the two-year experiment, the water input and nitrogen application rate had significant impacts on the WUE of Isatis indigotica (P  N3  > N1. At the W1, W2, and W3 levels, the WUE of the N2 treatment increased by 6.5–8.6%, 7.8–8.1%, and 7.4–10.4% compared with that of the N3 treatment, respectively, and the WUE of the N3 treatment increased by 2.9–3.1%, 3.9–6.0%, and 4.5–5.3% compared with that of the N1 treatment, respectively. Under the same nitrogen application rate level, the WUE performance was W1  > W2  > W3. At the N1, N2, and N3 levels, the WUE of the W1 treatment increased by 5.0–11.7%, 2.8–9.2%, and 2.0–10.9% compared with that of the W2 treatment, respectively, and the WUE of the W2 treatment increased by 24.2–29.5%, 24.3 -27.2%, and 23.5–30.3% compared with that of the W3 treatment, respectively.Effects of water and nitrogen treatments on NUE of Isatis indigotica
    As shown in Table 6, in the two-year experiment, the water input and nitrogen application rate had significant impacts on the nitrogen fertilizer use efficiency (NUE) of Isatis indigotica (P  N2  > N3. At the levels of W1, W2, and W3, the NUE of the N1 treatment increased by 9.9–11.8%, 9.6–13.0%, and 6.3–11.6% compared with that of the N2 treatment, respectively, and the NUE of the N2 treatment increased by 31.0–37.6%, 28.8–29.2%, and 28.3–28.6% compared with that of the N3 treatment, respectively. At the same nitrogen application level, the NUE performance was W2  > W3  > W1. At the N1, N2, and N3 levels, the NUE of the W2 treatment increased by 5.7–6.1%, 2.5–4.8%, and 2.3–4.1% compared with that of the W3 treatment, respectively, and the NUE of the W3 treatment decreased by 3.4–8.0%, 6.9–8.2%, and 10.5–14.5% compared with that of the W1 treatment, respectively.Ethical guidelineThe authors confirm that relevant ethical guidelines were followed for plant usage.Land permit statementThe experimental land belongs to the Yimin Irrigation Experimental Station, in Minle County, Gansu Province, China. More

  • in

    Interannual temperature variability is a principal driver of low-frequency fluctuations in marine fish populations

    1.Caddy, J. F. & Gulland, J. A. Historical patterns of fish stocks. Mar. Policy 7, 267–278 (1983).
    Google Scholar 
    2.Steele, J. H. & Henderson, E. W. Coupling between physical and biological scales. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 343, 5–9 (1994).
    Google Scholar 
    3.Bjornstad, O. N., Fromentin, J. M., Stenseth, N. C. & Gjosaeter, J. Cycles and trends in cod populations. Proc. Natl Acad. Sci. USA 96, 5066–5071 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15, e0226087 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Oremus, K. L. Climate variability reduces employment in New England fisheries. Proc. Natl Acad. Sci. USA 16, 26444–26449 (2018).
    Google Scholar 
    6.Shelton, A. O. & Mangel, M. Fluctuations of fish populations and the magnifying effect of fishing. Proc. Natl Acad. Sci. USA 108, 7075–7080 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Essington, T. E. et al. Fishing amplifies forage fish population collapses. Proc. Natl Acad. Sci. USA 112, 6648–6652 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Memarzadeha, M., Britten, G. L., Wormd, B. & Boettigere, C. Rebuilding global fisheries under uncertainty. Proc. Natl Acad. Sci. USA 116, 15985–15990 (2019).
    Google Scholar 
    9.Pauly, D. & Zeller, D. Sea Around Us Concepts, Design and Data (seaaroundus.org) (2015).10.Bjornstad, O. N., Nisbet, R. M. & Fromentin, J. M. Trends and cohort resonant effects in age-structured populations. J. Anim. Ecol. 73, 1157–1167 (2004).
    Google Scholar 
    11.Botsford, L. W., Holland, M. D., Field, J. C. & Hastings, A. Cohort resonance: a significant component of fluctuations in recruitment, egg production, and catch of fished populations. ICES J. Mar. Sci. 71, 2158–2170 (2014).
    Google Scholar 
    12.Di Lorenzo, E. & Ohman, M. D. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proc. Natl Acad. Sci. USA 110, 2496–2499 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    13.Bjorkvoll, E. et al. Stochastic population dynamics and life-history variation in marine fish species. Am. Naturalist 180, 372–387 (2012).
    Google Scholar 
    14.Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).CAS 
    PubMed 

    Google Scholar 
    15.Beamish, R. J., McFarlane, G. A. & Benson, A. Longevity overfishing. Prog. Oceanogr. 68, 289–302 (2006).
    Google Scholar 
    16.Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).CAS 
    PubMed 

    Google Scholar 
    17.Hutchings, J. A. & Myers, R. A. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 50, 2468–2474 (1993).
    Google Scholar 
    18.Bobko, S. J. & Berkeley, S. A. Maturity, ovarian cycle, fecundity, and age-specific parturition of black rockfish (Sebastes melanops). Fish. Bull. 102, 418–429 (2004).
    Google Scholar 
    19.Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).
    Google Scholar 
    20.Longhurst, A. Murphy’s law revisited: longevity as a factor in recruitment to fish populations. Fish. Res. 56, 125–131 (2002).
    Google Scholar 
    21.Stawitz, C. C. & Essington, T. E. Somatic growth contributes to population variation in marine fishes. J. Anim. Ecol. 88, 315–329 (2019).PubMed 

    Google Scholar 
    22.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 
    PubMed 

    Google Scholar 
    23.Hollowed, A. B., Hare, S. R. & Wooster, W. S. Pacific basin climate variability and patterns of Northeast Pacific marine fish production. Prog. Oceanogr. 49, 257–282 (2001).
    Google Scholar 
    24.Holsman, K. K., Aydin, K., Sullivan, J., Hurst, T. & Kruse, G. H. Climate effects and bottom-up controls on growth and size-at-age of Pacific halibut (Hippoglossus stenolepis) in Alaska (USA). Fish. Oceanogr. 28, 345–358 (2019).
    Google Scholar 
    25.Whitten, A. R., Klaer, N. L., Tuck, G. N. & Day, R. W. Accounting for cohort-specific variable growth in fisheries stock assessments: A case study from south-eastern Australia. Fish. Res. 142, 27–36 (2013).
    Google Scholar 
    26.Heessen, H. J. L., Daan, N. & Ellis, J. R. Fish atlas of the Cebtic Sea, North Sea, and Baltic Sea (KNNV Publishing and Wageningen Academic Publishers, 2015).27.Froese, R. & Pauly, D. FishBase, version (01/2021) https://www.fishbase.org (2021).28.Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).30.Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. int. Explor. Mer. 39, 175–192 (1980).
    Google Scholar 
    31.Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 1–6 (2020).
    Google Scholar 
    32.Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 28, 64–77 (2019).
    Google Scholar 
    33.Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109, 19310–19314 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 

    Google Scholar 
    35.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).CAS 

    Google Scholar 
    36.Ives, A. R. Measuring resilience in stochastic-systems. Ecol. Monogr. 65, 217–233 (1995).
    Google Scholar 
    37.Alheit, J. & Niquen, M. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 60, 201–222 (2004).
    Google Scholar 
    38.Pinsky, M. L., Jensen, O. P., Ricard, D. & Palumbi, S. R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl Acad. Sci. USA 108, 8317–8322 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Spencer, P. D. & Collie, J. S. Patterns of population variability in marine fish stocks. Fish. Oceanogr. 6, 188–204 (1997).
    Google Scholar 
    40.FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals. (Food and Agriculture Organization of the United Nations, Rome, 2018).41.Barnett, L. A. K., Branch, T. A., Ranasinghe, R. A. & Essington, T. E. Old-growth fishes become scarce under fishing. Curr. Biol. 27, 2843–2848 (2017).CAS 
    PubMed 

    Google Scholar 
    42.Rouyer, T. et al. Shifting dynamic forces in fish stock fluctuations triggered by age truncation? Glob. Change Biol. 17, 3046–3057 (2011).
    Google Scholar 
    43.Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).
    Google Scholar 
    44.Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).CAS 
    PubMed 

    Google Scholar 
    45.Portner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish. Biol. 77, 1745–1779 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    PubMed 

    Google Scholar 
    47.de Gee, A. & Kikkert, A. H. Analysis of the grey gurnard (Eutrigla gurnardus) samples collected during the 1991 international stomach sample project. ICES Document CM 1993/G:14, 25 (1993).48.Sparholt, H. In Fish Atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 377–381 (KNNV Publishiing and Wageningen Academic Publishers, 2015).49.Arnott, S. A. & Ruxton, G. D. Sandeel recruitment in the North Sea: demographic, climate and trophic effects. Mar. Ecol. Prog. Ser. 238, 199–210 (2002).
    Google Scholar 
    50.van Deurs, M., van Hal, R., Tomczak, M. T., Jonasdottir, S. H. & Dolmer, P. Recruitment of lesser sandeel Ammodytes marinus in relation to density dependence and zooplakton composition. Mar. Ecol. Prog. Ser. 381, 249–258 (2009).
    Google Scholar 
    51.Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. Change Biol. 24, E352–E364 (2018).
    Google Scholar 
    52.Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. D: Atmospheres 108, ACL 2-1–ACL 2–29 (2003).
    Google Scholar 
    53.Papworth, D. J., Marini, S. & Conversi, A. Novel, unbiased analysis approach for investigating population dynamics: A case study on Calanus finmarchicus and its decline in the North Sea. PLoS One 11, e0158230 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Bergstad, O. A., Hoines, A. S. & Jorgensen, T. Growth of sandeel Ammodytes marinus, in the northern North Sea and Norwegian coastal waters. Fish. Res. 56, 9–23 (2002).
    Google Scholar 
    55.Wright, P. J. Otolith microstructure of the lesser sandeel, Ammodytes marinus. J. Mar. Biol. Assoc. U.K. 73, 245–248 (1993).
    Google Scholar 
    56.Sell, A. & Heessen, H. in Fish atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 295−299 (KNNV Publishing and Wageningen Academic Publishers, 2015).57.Bergstad, O. A., Hoines, A. S. & Kruger-Johnsen, E. M. Spawning time, age and size at maturity, and fecundity of sandeel, Ammodytes marinus, in the north-eastern North Sea and in unfished coastal waters off Norway. Aquat. Living Resour. 14, 293–301 (2001).
    Google Scholar 
    58.Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).
    Google Scholar 
    59.van der Sleen, P. et al. Non-stationary responses in anchovy (Engraulis encrasicolus) recruitment to coastal upwelling in the Southern Benguela. Mar. Ecol. Prog. Ser. 596, 155–164 (2018).
    Google Scholar 
    60.Cushing, D. H. Upwelling and production on fish. Adv. Mar. Biol. 9, 255–334 (1971).
    Google Scholar 
    61.Pauly, D. & Lam, V. W. Y. In Large marine ecosystems: Status and Trends (eds IOC-UNESCO and UNEP) 113–137 (United Nations Environmental Programme, 2016). More