More stories

  • in

    Forest fire detection system using wireless sensor networks and machine learning

    Forest fires are disasters that cause extensive damage to the entire world in economic, ecological, and environmental ways. These fires can be caused by natural reasons, such as high temperatures that can create spontaneous combustion of dry fuel such as sawdust, leaves, lightning, etc., or by human activities, such as unextinguished campfires, arson, inappropriately burned debris, etc1. According to research, 90% of the world’s forest fire incidents have occurred as a result of the abovementioned human carelessness1. The increase in carbon dioxide levels in the atmosphere due to forest fires contributes to the greenhouse effect and climate change. Additionally, ash destroys much of the nutrients in the soil and can cause erosion, which may result in floods and landslides.
    At earlier times, forest fires were detected using watchtowers, which were not efficient because they were based on human observations. In recent history and even the present day, several forest fire detection methods have been implemented, such as watchtowers, satellite image processing methods, optical sensors, and digital camera-based methods2, although there are many drawbacks, such as inefficiency, power consumption, latency, accuracy and implementation costs. To address these drawbacks, a forest fire detection system using wireless sensor networks is proposed in this paper.Wireless sensor networks (WSNs) are self-configured and infrastructure-free wireless networks that help monitor physical or environmental conditions and pass these data through the network to a designated location or sink where the data can be observed and analyzed3. Efficiency and low power consumption are the major advantages of a WSN. In the proposed detection system, wireless sensor nodes are deployed according to cellular architecture to cover the entire area with sensors to monitor temperature, relative humidity, light intensity level, and carbon monoxide (CO) level using a microcontroller, transceiver module, and power components. The power supply to the sensor node is provided using batteries as the primary power supply, and solar panels are used as the secondary power supply. These sensor nodes are specially designed with a spherical shape to withstand damage caused by environmental conditions as well as animals.The sensor readings for each parameter are checked with a preset threshold ratio and a ratio that is calculated continuously in the node in real time, and only the ratios that exceed the preset ratio are sent from the sensor node to the base station for further analytical processing. The network utilized for this transmission is in the architecture of tree topology considering facts such as low power consumption, reduced latency, less complexity, etc. Cluster heads are used in this network to gather data from several sensor nodes and pass them on to the base station or the gateway node. The gateway node is an interface that connects the network with the secondary analysis process.For the analysis process, a machine learning regression model was used along with threshold ratio analysis to enhance detection accuracy. For the training and testing process of the model, data were collected during the fire and no fire situations in different areas and under different climatic conditions. During the data collection process, 7000 data samples were collected, where a data sample included temperature, relative humidity, light intensity level, and CO level at a particular time. Eighty percent of the collected data were randomly used as training data for the model, and the remaining 20% were used as test data.If the outcome of the machine learning model indicates a fire in a specific area, a text message will be sent to the mobile phone numbers of the authorized officers in responsible units. As this process is designed with a minimum delay, the fire can be detected within the initial stage, and the responsible parties can take necessary actions in a shorter period, which will minimize the damage.Related workForest fire detection has been a focus of many researchers for the last decade because of increased forest fire case reports from all over the world due to severe damage to society and the environment. Many methods have been proposed to detect forest fires, such as camera-based systems, WSN-based systems, and machine learning application-based systems, with both positive and negative aspects and performance figures of detection. Due to the higher probability of accurate and early detection due to the use of multiple sensor sources and deployment of sensor nodes in areas not visible to satellites, wireless sensor networks have a more positive outlook, and they have become the more applicable technology in many fields4.Many researchers have focused on environmental parameters, such as air temperature, relative humidity, barometric pressure, sound, light intensity, soil moisture, and wind speed and direction, along with gases, such as CO, CO2, methane, H2, and hydrocarbons apart from smoke, to detect forest fire conditions by considering the variations in these parameters during a fire5,6, and sensors have been selected according to the range, sensitivity, power consumption, and cost7,8.As supplying power to a sensor node is a challenging task in forested areas, utilizing only battery options is difficult because they do not last long, and distributing power using a wire would require a higher cost to deploy in a large forest. Therefore, many researchers have proposed solar-powered systems as secondary power sources along with rechargeable batteries as the main power source4,6, while some researchers have proposed solar batteries because they last longer9. To reduce the power consumption of sensor nodes, techniques such as keeping selected components active while others are deactivated have been proposed10,11,12.Most WSN-based detection systems are centered around a base station due to the memory and processing limitations of the nodes. Important and partially processed data are transferred to the base station through wireless media for processing and enabling relevant actions, while the base station also acts as the gateway between the sensor nodes and the system user4,9.When constructing a WSN, communicating data among the relevant entities is the main objective, and star topology and mesh topology-based networks have been proposed in many papers because of the different attributes in their systems. A mesh topology was chosen over a star topology because of its ability to self-organize, self-configure, and automatically establish among nodes in a network13. As a smaller number of nodes involved for transmission results in minimum energy consumption, concepts based on cluster heads have been used14. To minimize the loss of energy and data packages during transfer, a cluster-tree network topology structure was proposed15. Considering the sensing range of a node, fault tolerance, and energy consumption, a paper has proposed applying the on-demand k-coverage technique that provides event detection using static nodes with variable sensing ranges. This technique utilizes the maximum detection performance with the minimum power consumption for an event16. A survey on rare event detection has mentioned many event detection strategies that deliver maximized detection capability, minimized detection delay and low energy consumption, such as duty cycle, component deactivation, overpopulation/node redundancy, collaboration, and energy harvesting17.To reduce deployment cost and power consumption, a paper proposes a novel localization scheme that divides the whole forest area into different grids and allocates them to respective zones with another 8 neighboring grids. One centroid node from those grids, which is called the initiator node, predicts whether the zone is highly active (HA), medium active (MA), and low active (LA). Here, HA zones send data continuously to the base node through the interior node, MA zones send data periodically, and LA zones do not transfer data in the status that manages power consumption effectively18. Another author proposed obtaining data from the sensors every 2 min if there is the potential of a forest fire or obtaining data every 15 min otherwise to reduce the energy wastage19.To place sensor nodes in the most effective configuration to detect fire conditions, a sensor node was proposed at three different heights to perform different parameter measurements, while some authors have suggested covering sensor nodes to avoid direct sunlight exposure and minimize the false alarm rate4,10. As the network connectivity of service providers in forest areas is not robust, communication techniques that use dedicated network paths such as LoRa, ZigBee, and XBee have been used as the communication infrastructure. When considering attributes such as transmission range, high security, low power consumption (LPWAN protocol), and other relevant configurations, most papers have suggested using the LoRa module for transmission13,19.Most papers have suggested having threshold value-based fire detection on a sensor node, and if the exceeded threshold has remained the same, then a sink determines the location and will send an alarm to the fire department11. Because of the environmental parameter variations according to the place and time, threshold values are configured by the user considering geographic situations, climatic changes, seasonal changes, etc. after sensors obtain the data from the surrounding10.A fusion information process was proposed, where information from multiple sources is considered in making the final decision, which is better than using those sources individually, and two algorithms based on the threshold ratio method and Dempster-Shafer theory were used4. To enhance the detection accuracy, machine learning applications have been proposed in many papers based on different machine learning approaches, such as support vector machine (SVM) classification14 and regression techniques, such as logistic regression. However, applying machine learning techniques to fire detection systems has many limitations, such as the limited amount of energy, the energy required for data processing, the short range of communication and limited computations, the complexity of ML algorithms when executing on sensor nodes, and the difficulty of being distributed on every sensor node20,21. More

  • in

    Neuroanatomy of the nodosaurid Struthiosaurus austriacus (Dinosauria: Thyreophora) supports potential ecological differentiations within Ankylosauria

    1.Thompson, R. S., Parish, J. C., Maidment, S. C. R. & Barrett, P. M. Phylogeny of the ankylosaurian dinosaurs (Ornithischia: Thyreophora). J. Syst. Palaeontol. 10(2), 301–312 (2012).Article 

    Google Scholar 
    2.Arbour, V. M. & Currie, P. J. Ankylosaurid dinosaur tail clubs evolved through stepwise acquisition of key features. J. Anat. 227, 514–523. https://doi.org/10.1111/joa.12363 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Brown, C. M. An exceptionally preserved armored dinosaur reveals the morphology and allometry of osteoderms and their horny epidermal coverings. PeerJ 5, e4066. https://doi.org/10.7717/peerj.4066 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Butler, R. J. & Barrett, P. M. Palaeoenvironmental controls on the distribution of Cretaceous herbivorous dinosaurs. Sci. Nat. 95, 1027–1032 (2008).CAS 
    Article 

    Google Scholar 
    5.Brown, C. M. et al. Dietary palaeoecology of an Early Cretaceous armoured dinosaur (Ornithischia; Nodosauridae) based on floral analysis of stomach contents. R. Soc. Open Sci. 7, 200305. https://doi.org/10.1098/rsos.200305 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Bourke, J. M., Porter, W. R. & Witmer, L. M. Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora). PLoS ONE 13, e0207381. https://doi.org/10.1371/journal.pone.0207381 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Mallon, J. C. & Anderson, J. S. The functional and palaeoecological implications of tooth morphology and wear for the megaherbivorous dinosaurs from the dinosaur park formation (Upper Campanian) of Alberta, Canada. PLoS ONE 9(6), e98605. https://doi.org/10.1371/journal.pone.0098605 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Ősi, A., Prondvai, E., Mallon, J. & Bodor, E. R. Diversity and convergences in the evolution of feeding adaptations in ankylosaurs (Dinosauria: Ornithischia). Hist. Biol. 29(4), 539–570. https://doi.org/10.1080/08912963.2016.1208194 (2017).Article 

    Google Scholar 
    9.Hayashi, S., Carpenter, K., Scheyer, T. M., Watanabe, M. & Suzuki, D. Function and evolution of ankylosaur dermal armor. Acta Palaeontol. Pol. 55(2), 213–228 (2010).Article 

    Google Scholar 
    10.Norman, D. B. Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: Cranial anatomy. Zool. J. Linn. Soc. 188(1), 1–81. https://doi.org/10.1093/zoolinnean/zlz074 (2019).Article 

    Google Scholar 
    11.Galton, P. M. Endocranial casts of the plated dinosaur Stegosaurus (Upper Jurassic, Western USA): A complete undistorted cast and the original specimens of Othniel Charles Marsh. In The Armored Dinosaurs (ed. Carpenter, K.) 103–129 (Indiana University Press, 2001).
    Google Scholar 
    12.Galton, P. M. Skull bones and endocranial casts of stegosaurian dinosaur Kentrosaurus Hennig, 1915 from Upper Jurassic of Tanzania, East Africa. Geol. Palaeontol. 22, 123–143 (1988).
    Google Scholar 
    13.Kuzmin, I. et al. The braincase of Bissektipelta archibaldi—new insights into endocranial osteology, vasculature, and paleoneurobiology of ankylosaurian dinosaurs. Biol. Commun. 65(2), 85–156. https://doi.org/10.21638/spbu03.2020.201 (2020).Article 

    Google Scholar 
    14.Leahey, L. G., Molnar, R. E., Carpenter, K., Witmer, L. M. & Salisbury, S. W. Cranial osteology of the ankylosaurian dinosaur formerly known as Minmi sp. (Ornithischia: Thyreophora) from the Lower Cretaceous Allaru Mudstone of Richmond, Queensland, Australia. PeerJ 3, e1475. https://doi.org/10.7717/peerj.1475 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Paulina-Carabajal, A., Lee, Y. N., Kobayashi, Y., Lee, H. J. & Currie, P. J. Neuroanatomy of the ankylosaurid dinosaurs Tarchia teresae and Talarurus plicatospineus from the Upper Cretaceous of Mongolia, with comments on endocranial variability among ankylosaurs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 494, 135–146. https://doi.org/10.1016/j.palaeo.2017.11.030 (2018).Article 

    Google Scholar 
    16.Pereda-Suberbiola, X. & Galton, P. M. On the taxonomic status of the dinosaur Struthiosaurus austriacus Bunzel from the Late Cretaceous of Austria. C. R. Acad. Sci. Paris II 315, 1275–1280 (1992).
    Google Scholar 
    17.Pereda-Suberbiola, X. & Galton, P. M. Revision of the cranial features of the dinosaur Struthiosaurus austriacus Bunzel (Ornithischia: Ankylosauria) from the Late Cretaceous of Europe. Neues Jahrb. Geol. Palaontol. Abh. 191, 173–200 (1994).
    Google Scholar 
    18.Pereda-Suberbiola, X. & Galton, P. M. Reappraisal of the nodosaurid ankylosaur Struthiosaurus austriacus Bunzel from the Upper Cretaceous Gosau Beds of Austria. In The Armored Dinosaurs (ed. Carpenter, K.) 173–210 (Indiana University Press, 2001).
    Google Scholar 
    19.Pereda-Suberbiola, X. A revised census of European Late Cretaceous nodosaurids (Ornithischia: Ankylosauria): Last occurrence and possible extinction scenarios. Terra Nova 4, 641–648 (1992).ADS 
    Article 

    Google Scholar 
    20.Pereda-Suberbiola, X. Ankylosaurian dinosaur remains from the Upper Cretaceous of Laño (Iberian Peninsula). Est. Mus. Cienc. Nat. de Álava 14(Número especial 1), 273–288 (1999).
    Google Scholar 
    21.Pereda-Suberbiola, X., Astibia, H. & Buffetaut, E. New remains of the armoured dinosaur Struthiosaurus from the Late Cretaceous of the Iberian peninsula (Lafio locality, Basque-Cantabric Basin). Bull. Soc. Géol. Fr. 166, 207–211 (1995).
    Google Scholar 
    22.Garcia, G. & Pereda-Suberbiola, X. A new species of Struthiosaurus (Dinosauria: Ankylosauria) from the upper cretaceous of Villeveyrac (Southern France). J. Vertbr. Paleontol 23(1), 156–165 (2003).Article 

    Google Scholar 
    23.Nopcsa, F. Dinosaurierreste aus Siebenbürgen V. Geologica Hungarica, Series Palaeontologica 4, 1–76 (1929).
    Google Scholar 
    24.Codrea, V. et al. More than just Nopcsa’s Transylvanian dinosaurs: A look outside the Haţeg Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 391–405. https://doi.org/10.1016/j.palaeo.2009.10.027 (2010).Article 

    Google Scholar 
    25.Ősi, A. & Prondvai, E. Sympatry of two ankylosaurs (Hungarosaurus and cf. Struthiosaurus) in the Santonian of Hungary. Cretac. Res. 44, 30–38. https://doi.org/10.1016/j.cretres.2013.03.006 (2013).Article 

    Google Scholar 
    26.Bunzel, E. Die Reptilfauna der Gosaformation in der Neuen Welt bei Wiener-Neustadt. Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt. 5, 1–18 (1871).
    Google Scholar 
    27.Franzosa, J. & Rowe, T. Cranial endocast of the Cretaceous theropod dinosaur Acrocanthosaurus atokensis. J. Vertebr. Paleontol. 25, 859–864 (2005).Article 

    Google Scholar 
    28.Witmer, L. M. & Ridgely, R. C. New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. Anat. Rec. 292(9), 1266–1296. https://doi.org/10.1002/ar.20983 (2009).Article 

    Google Scholar 
    29.Schade, M., Rauhut, O. W. M. & Evers, S. W. Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory. Sci. Rep. 10(9259), 1613–1616. https://doi.org/10.1038/s41598-020-66261 (2020).Article 

    Google Scholar 
    30.Witmer, L. M., Ridgely, R. C., Dufeau, D. L. & Semones, M. C. Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In Anatomical imaging: towards a new morphology (eds Endo, H. & Frey, R.) 67–87 (Springer, 2008).Chapter 

    Google Scholar 
    31.Evers, S. W. et al. Neurovascular anatomy of the protostegid turtle Rhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle. Zool. J. Linn. Soc. 187, 800–828. https://doi.org/10.1093/zoolinnean/zlz063 (2019).Article 

    Google Scholar 
    32.Ősi, A., Pereda Suberbiola, X. & Földes, T. Partial skull and endocranial cast of the ankylosaurian dinosaur Hungarosaurus from the Late Cretaceous of Hungary: Implications for locomotion. Palaeontol. Electro. 17(1), 18p (2014).
    Google Scholar 
    33.Sampson, S. D. & Witmer, L. M. Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 27, 32–104. https://doi.org/10.1671/0272-4634(2007)27[32:CAOMCT]2.0.CO;2 (2007).Article 

    Google Scholar 
    34.Walsh, S. A., Barrett, P. M., Milner, A. C., Manley, G. & Witmer, L. M. Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds. Proc. R. Soc. B 276, 1355–1360 (2009).Article 

    Google Scholar 
    35.Porter, W. R. & Witmer, L. M. Vascular patterns in the heads of dinosaurs: Evidence for blood vessels, sites of thermal exchange, and their role in physiological thermoregulatory strategies. Anat. Rec. 303, 1075–1103. https://doi.org/10.1002/ar.24234 (2019).Article 

    Google Scholar 
    36.Benson, R. B. J., Starmer-Jones, E., Close, R. A. & Walsh, S. A. Comparative analysis of vestibular ecomorphology in birds. J. Anat. 231, 990–1018. https://doi.org/10.1111/joa.12726 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Bronzati, M. et al. Deep evolutionary diversification of semicircular canals in archosaurs. Curr. Biol. 31(12), 2520-2529.e6. https://doi.org/10.1016/j.cub.2021.03.086 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hanson, M., Hoffman, E. A., Norell, M. A. & Bhullar, B. S. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 372(6542), 601–609. https://doi.org/10.1126/science.abb4305 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Miyashita, T., Arbour, V. M., Witmer, L. M. & Currie, P. J. The internal cranial morphology of an armoured dinosaur Euoplocephalus corroborated by X-ray computed tomographic reconstruction. J. Anat. 219, 661–675. https://doi.org/10.1111/j.1469-7580.2011.01427.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Paulina-Carabajal, A., Lee, Y. N. & Jacobs, L. L. Endocranial morphology of the primitive nodosaurid dinosaur Pawpawsaurus campbelli from the Early Cretaceous of North America. PLoS ONE 11, e0150845. https://doi.org/10.1371/journal.pone.0150845 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Spoor, F. & Thewissen, J. G. M. Comparative and functional anatomy of balance in aquatic mammals. In Sensory Evolution on the Threshold, Adaptations in Secondarily Aquatic Vertebrates (eds Thewissen, J. G. M. & Nummela, S.) 65–81 (University of California Press, 2008).
    Google Scholar 
    42.Sobral, G. & Müller, J. Archosaurs and their kin: The ruling reptiles. In Evolution of the Vertebrate Ear (eds Clack, J. A. et al.) 285–326 (Springer, 2016).Chapter 

    Google Scholar 
    43.Arbour, V. M. Estimating impact forces of tail club strikes by ankylosaurid dinosaurs. PLoS ONE 4(8), e6738. https://doi.org/10.1371/journal.pone.0006738 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Park, J. Y. et al. A new ankylosaurid skeleton from the Upper Cretaceous Baruungoyot Formation of Mongolia: Its implications for ankylosaurid postcranial evolution. Sci. Rep. 11, 4101. https://doi.org/10.1038/s41598-021-83568-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Witmer, L. M., Chatterjee, S., Franzosa, J. & Rowe, T. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature 425, 950–953. https://doi.org/10.1038/nature02048 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Walsh, S. A. et al. Avian cerebellar floccular fossa size is not a proxy for flying ability in birds. PLoS ONE 8(6), e67176. https://doi.org/10.1371/journal.pone.0067176 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Ferreira-Cardoso, S. et al. Floccular fossa size is not a reliable proxy of ecology and behaviour in vertebrates. Sci. Rep. 7(1), 2017. https://doi.org/10.1038/s41598-017-01981-0 (2005).CAS 
    Article 

    Google Scholar 
    48.Ezcurra, M. D. et al. Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature 588(7838), 445–449. https://doi.org/10.1038/s41586-020-3011-4 (2020) (Epub 2020 Dec 9).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Carpenter, K., Sanders, F., McWhinney, L. A. & Wood, L. Evidence for predator–prey relationships: examples for Allosaurus and Stegosaurus. In The Carnivorous Dinosaurs (ed. Carpenter, K.) 325–350 (Indiana University Press, 2005).
    Google Scholar 
    50.Mallison, H. CAD assessment of the posture and range of motion of Kentrosaurus aethiopicus HENNIG 1915. Swiss. J. Geosci. 103, 211–233. https://doi.org/10.1007/s00015-010-0024-2 (2010).Article 

    Google Scholar 
    51.Arbour, V. M., Lech-Hernes, N. L., Guldberg, T. E., Hurum, J. H. & Currie, P. J. An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions. Acta Palaeontol. Pol. 58(1), 55–64. https://doi.org/10.4202/app.2011.0081 (2013).Article 

    Google Scholar 
    52.Scheyer, T. M. & Sander, P. M. Histology of ankylosaur osteoderms: Implications for systematics and function. J. Vertebr. Paleontol. 24, 874–893 (2004).Article 

    Google Scholar 
    53.Carpenter, K. Ankylosauria. In The Complete Dinosaur 2nd edn (eds Brett-Surman, M. K. et al.) 505–526 (Indiana University Press, 2012).
    Google Scholar 
    54.Jerison, H. J. Evolution of the brain and intelligence 482 (Academic Press, 1973).
    Google Scholar 
    55.Marugan-Lobon, J., Chiappe, L. M. & Farke, A. A. The variability of inner ear orientation in saurischian dinosaurs: Testing the use of semicircular canals as a reference system for comparative anatomy. PeerJ 1, e124 (2013).Article 

    Google Scholar 
    56.Benoit, J. et al. A test of the lateral semicircular canal correlation to head posture, diet and other biological traits in “ungulate” mammals. Sci. Rep. 10, 19602. https://doi.org/10.1038/s41598-020-76757-0 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Coombs, W. P. Jr. Forelimb muscles of the Ankylosauria (Reptilia, Ornithischia). J. Paleontol. 52, 642–657 (1978).
    Google Scholar 
    58.Maidment, S. C. R. & Barrett, P. M. Osteological correlates for quadrupedality in ornithischian dinosaurs. Acta Palaeontol. Pol. 59(1), 53–70 (2014).
    Google Scholar  More

  • in

    Multiple bacterial partners in symbiosis with the nudibranch mollusk Rostanga alisae

    Symbiont diversity and distributionThe present study provides the first evidence of symbiosis in R. alisae, a species of nudibranchs. This is the most multiple symbiosis that have ever been recorded for marine invertebrates. While many organisms establish an exclusively one-on-one relationship with a single microbial species or microbes belonging to the same functional group5,12, there are also organisms that harbor multiple microbial species, in which symbiont–symbiont and host–symbiont interactions occur. Six phylotypes of chemoautotrophic bacteria were reported for mussel Idas sp. from a cold seep area11 and five extracellular symbionts for the gutless oligochaete worm Olavius algarvensis34. However, in these cases, symbioses involving bacteria and marine invertebrates are either endosymbiotic microbes co-occurring inside the host bacteriocytes5,11 or ectosymbiotic microbes associated with the external surfaces of the animals3,4,9,15,34, with the exception of scaly-foot snail from hydrothermal vents having partnerships simultaneously with epi- and endosymbiontic microbes35.Bacterial symbionts in R. alisae have appeared to be more diverse than was previously known for marine invertebrates. It is evident that the detected symbiont phylotypes differ greatly from all other known symbionts found in marine invertebrates. Labrenzia (Rodobacteriales) and Maritalea (Rhizobiales) have not been recorded as forming symbiotic associations with invertebrates or plants so far, although other members of the families Rodobacteriales and Rhizobiales are well known symbionts14. Strains of Bradyrhizobium, Burkholderia, Achromobacter, and Stenotrophomonas are reported as symbionts of plants, interacting with a vast majority of nodulating legume species and efficient in biological nitrogen fixation36. This may be important when considering the nature of these symbionts in the nudibranch. Symbioses between cyanobacteria and marine organisms are commonly found among marine plants, fungi, sponges, ascidians, corals, and protists37,38. Synechococcus, identified as dominant symbiont clones of R. alisae (Table S2), is a unicellular cyanobacterium common in the marine environment, providing a range of beneficial functions including photosynthesis, nitrogen fixation, UV protection, and production of defensive toxins8,9,37. Symbiotic interactions between actinobacteria and their host have been observed in insects, human, animals, and plants, where the bacteria provide the host with protection against pathogens and produce essential nutrients39. However, none of the members of the clade Actinobacteria recorded in R. alisae are known to live symbiotically.Arrangement of symbiotic associationDespite the high diversity of bacteria, they are well organized in the host. Dense clusters of rod-shaped bacteria, Labrenzia, Maritalea, Bradyrhizobium, Burcholderia, Achromobacter, and Stenotrophomonas, were found within host-derived vacuoles, referred to as bacteriocytes, inside epithelial cells of R. alisae (Fig. 3). Although such arrangement differs from that typical of bacteriocytes, which are usually considered as specialized cells of the hosts for harboring bacteria, it resembles that reported for scaly-food snail from hydrothermal vents, which harbor symbionts in the esophageal gland35. Bacteriocytes in the gastropod Lurifax vitreus found near hydrothermal vents also constitute a portion of the mantle epithelium; they have large vacuoles containing many live and dividing bacteria40. Each bacteriocyte was densely packed with certain symbionts, and the bacteriocytes were randomly distributed within the epithelium cells. A distinctly regular distribution pattern was observed in the gill epithelium of the mussel Bathymodiolus sp.: the thiotrophic symbionts occupy the apical region, and the methanotrophic symbionts are more abundant in the basal region of bacteriocytes4. In the mussel Idas sp., however, there is no spatial pattern of the six distinct bacterial phylotypes, and the symbionts are mixed within bacteriocytes11.Synechococcus dominated the cytoplasm of intestinal epithelium and, more rarely, epidermis cells, mainly as specialized cell type referred to as nitrogen-fixing heterocysts. They are visually similar to cyanobacteria from corals and sponges8,37.The phylogenetic diversity and the spatial organization of the symbiotic community in R. alisae were determined by the 16S rRNA analysis, which was consistent with the results of FISH and TEM. Unlike most symbioses of marine invertebrates when bacteria house specialized host cells5,11 or cover epidermis7,15, symbiotic association of R. alisae exhibited spatial partitioning between symbionts, which were unevenly distributed between the tissues (Table S2). It has been established that different members of the microbial community can complement each other in acquisition of various restrictive nutrients, confirming the importance of the functional diversity of symbionts41. Thus, Stenotrophomonas rhizophila and Bradyrhizobium build a beneficial association in the rhizosphere and can act synergistically on promoting growth and nutrient uptake of soybean36. Cyanobacteria can interact synergistically with beneficial members from the endophytic microbiome of rice seedlings42. The location of bacterium in the organism of R. alisae may, in fact, depend on the specific metabolic and ecological roles that the symbionts play, and also on the interaction with bacterium belonging to different physiological groups.Nature of symbiosisSymbiotic associations between microbes and invertebrates are acquired mainly in a nutrient-depleted environment where symbionts usually provide their hosts with essential nutrients and high-energy compounds1. In contrast to known symbioses between microbes and gutless invertebrates, which obtain nutrients exclusively from the bacteria, R. alisae, like most nudibranch species, is a sponge-eating predator. However, due to the lack of adipose tissue, sponges are distinguished by a low lipid content (0.4 to 1.5% of wet weight)43 and also by specific proteinaceous spongin fibers and chitin, a polysaccharide similar to cellulose that can be indigestible for some predators, which together indicate their low nutritional value. Furthermore, R. alisae feeds exclusively on the sponge O. pennata; therefore, in habitats with low prey availability, this nudibranch has to survive starvation while searching for sponge assemblages. We suppose that symbiotic bacteria of R. alisae contribute to the utilization of low-quality food, similarly to symbiotic bacteria from the genera Rhodobacter, Burkholderia, and Aeromonas associated with the detritivorous isopod Asellus aquaticus44.A fatty acid analysis, as a useful approach to clarifying the nature of symbiosis5,20,32, has confirmed the trophic interaction between symbionts and the nudibranch host (Table S2). Among the fatty acids of symbiotic bacteria in R. alisae, OBFA are a major acyl constituent of membranes in Stenotrophomonas45 and also in Actinobacteria, Arthrobacter, Iamia, Ilumatobacter, and Kocuria46. Cis-vaccenic acid is a major component of Maritalea30. Omega-cyclohexyl tridecanoic acid (cyclo19:0) is specific to Bradyrhizobium47, Burkholderia, and Achromobacter48. Linoleic acid is produced by cyanobacteria including marine species of Synecoccocus33; in nudibranch, it obviously serves as a precursor in the synthesis of arachidonic acid (20:4n-6), thus, providing additional evidence for the transfer of fatty acids from symbionts to the host. Mollusks are capable of converting linoleic acid to arachidonic acid, since they have enzymes required for its synthesis21. The presence of these bacteria-specific markers and the abundance of arachidonic acid confirm the metabolic role of symbionts in the nudibranch host.Among nutrients, biologically available nitrogen can be considered a restrictive nutrient for the sponge-eating R. alisae, which can be acquired with the help of nitrogen-fixing symbionts, also referred to as diazotrophs. R. alisae harbors Bradyrhizobium, Burkholderia, Achromobacter, and Stenotrophomonas that are efficient in biological nitrogen fixation previously found to be associated with nodulating legume species36. Symbiotic nitrogen fixers are known to be associated with a variety of marine invertebrates such as wood-boring bivalves, corals, sponges, sea urchins, tunicates, and polychaetes7,8,37. Moreover, the protection of the enzyme nitrogenase that catalyzes N2 fixation against oxygen is an important physiological requirement in bacteria such as symbiotic Bradyrhizobium, Burkholderia, Achromobacter, and Stenotrophomonas that are located in bacteriocytes and provide this protection. Synechococcus is known as a nitrogen-fixer37,49. It performs N2 fixation in heterocysts where nitrogenase is restricted under oxic conditions. Indeed, heterocysts of Synechococcus are abundant in the intestine cells of R. alisae (Fig. 5B–D).Nitrate assimilation is one of the major processes of nitrogen acquisition by many heterotrophic bacteria and cyanobacteria50,51. Symbionts of R. alisae can play an important role in the process of nitrate utilization through denitrification, dissimilatory nitrate reduction, and assimilatory nitrate reduction as a nitrogen source and synthesize it into organic nitrogen. The nitrate reducers, Labrenzia52, Stenotrophomonas53, Maritalea30, and Rhodobacteraceae29 are widely represented in R. alisae. Synechococcus also utilizes nitrate, nitrite, or ammonium for growth50. Thus, symbiotic bacteria may play a significant role in the N-budget of the nudibranch mollusk.The symbiotic bacteria of R. alisae, including Bradyrhizobium, Maritalea, Labrenzia, Burkholderia, Achromobacter, Stenotrophomonas, Arthrobacter, Iamia, Ilumatobacter, and Kocuria, are known as carboxydotrophic or carbon monoxide (CO) oxidizers54,55. Despite the toxicity of CO for multicellular organisms, numerous aerobic and anaerobic microorganisms can use CO as a source of energy and/or carbon for cell growth56. The marine worm Olavius algarvensis establishes symbiosis with chemosynthetic bacteria using CO, a substrate previously not known to play a role in symbiotic associations with marine invertebrates, as an energy source57. We do not rule out that the R. alisae symbionts also might exploit CO as carbon and energy source. Despite this, assumption may seem impossible taking in account the CO toxicity, but, since many invertebrates (mollusks, tube worm, etc.) use toxic sulfate, thiosulfate, and methane as an energy source1,15, this hypothesis is worth to be addressed.An important component of skeleton in marine sponges of the family Microcionidae, including O. pennata, is the structural polysaccharide chitin58. Some bacteria are capable of hydrolyzing chitin via the activity of chitinolytic enzymes and can utilize chitin as a source of carbon, nitrogen, and/or energy59. Chitinase activity was documented for strains of Labrenzia60, Burkholderia61, Arthrobacter62, Achromobacter63, Stenotrophomonas64, Alcaligenes65, and actinobacteria59 associated with R. alisae. Thus, these bacteria can work synergistically to digest chitin and spongin, contributing to feeding success of the host nudibranch which depends solely on low-quality, nitrogen- and carbon-deficient food available.Furthermore, direct evidence has confirmed that many bioactive compounds from invertebrates are produced by symbiotic microorganisms66,67. Many biologically active compounds including toxic and deterrent secretions have been identified in nudibranchs of the family Discodorididae68. Symbiotic bacteria may exhibit toxic activity to provide the host nudibranch with chemical defense against predators and environment. Bacteria, especially actinobacteria, living in a symbiotic relationship with R. alisae may help the host in defense, since nudibranch lack a shell, and secondary metabolites of bacteria can provide them with chemical defense against predators and environment, as has been reported for some marine invertebrates2,9,10.In complex associations, the integration and coexistence of symbionts depend on supplementary partnerships and mutual contribution to the host’s metabolism41. The most intensively studied cases are highly specialized associations, where both partners can only exist in close relationship with one another. The relatively high diversity of microbes in R. alisae complicates understanding the complex pattern of molecular and cellular interactions between the host and its symbionts. More

  • in

    Hydrogen peroxide can be a plausible biomarker in cyanobacterial bloom treatment

    1.Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobcteria and other phytoplankton from waste water. Environ. Sci. Technol. 4(23), 8916–8921 (2008).ADS 

    Google Scholar 
    2.Lurling, M., Meng, D. & Fassen, E. L. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in cyanobacterium, Microcytis aeruginosa. Toxins 6(12), 3260–3281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    3.Ghime, D. & Ghosh, P. Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects (IntechOpen, 2020).4.Rahdar, S., Igwegbe, C. A., Ghasem, M. & Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 6, 492–499 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    5.Derakhshan, Z. et al. Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor. Ecotoxicol. Environ. Saf. 152, 1–7 (2018).PubMed 
    CAS 

    Google Scholar 
    6.Shekoohiyan, S. et al. Performance evaluation of cyanobacteria removal from water reservoirs by biological method. Afr. J. Microbiol. Res. 7(17), 1729–1734 (2013).CAS 

    Google Scholar 
    7.Cooper, W. J., Zika, R., Petasne, R. G. & Plane, J. M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ. Sci. Technol. 22, 1156–1160. https://doi.org/10.1021/es00175a004 (1988).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Cooper, W. J., Lean, D. R. S. & Carey, J. H. Spatial and temporal patterns of hydrogen peroxide in lake waters. Can. J. Fish. Aquat. Sci. 46, 1227–1231. https://doi.org/10.1139/f89-158 (1989).Article 
    CAS 

    Google Scholar 
    9.Cory, R. M. et al. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00054 (2016).Article 

    Google Scholar 
    10.Caverzan, A. et al. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35(4), 1011–1019 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    11.Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012).
    Google Scholar 
    12.Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: A mini review. J. Chem. Ecol. 36(2), 174–193 (2020).CAS 

    Google Scholar 
    13.Rastogi, R. P., Singh, S. P., Häder, D.-P. & Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397(3), 603–607 (2010).PubMed 
    CAS 

    Google Scholar 
    14.Foyer, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    15.Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).PubMed 
    CAS 

    Google Scholar 
    16.Ma, Z. & Gao, K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ. Exp. Bot. 68(2), 208–213 (2010).CAS 

    Google Scholar 
    17.Welkie, D. G. et al. A hard day’s night: Cyanobacteria in diel cycles. Trends Microbiol. 27(3), 231–242 (2019).PubMed 
    CAS 

    Google Scholar 
    18.Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33(2), 258–278 (2009).PubMed 
    CAS 

    Google Scholar 
    19.Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta (BBA) Bioenerg. 1857(3), 247–255 (2016).CAS 

    Google Scholar 
    20.Raja, V., Majeed, U., Kang, H., Andrabi, K. I. & John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157 (2017).CAS 

    Google Scholar 
    21.Asada, S., Fukuda, K., Oh, M., Hamanishi, C. & Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 48(7), 399–403 (1999).PubMed 
    CAS 

    Google Scholar 
    22.Nishiyama, Y. & Murata, N. Revised scheme for the mechanisms of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98(21), 8777–8796 (2014).PubMed 
    CAS 

    Google Scholar 
    23.Mikula, P., Zezulka, S., Jancula, D. & Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa—New findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 47(3), 195–206 (2012).CAS 

    Google Scholar 
    24.Huisman, J. & Hulot, F. D. Population dynamics of harmful cyanobacteria. In Harmful Cyanobacteria, 143–176 (Springer, 2005).25.Bergström, A. K. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat. Sci. 72(3), 277–281 (2010).
    Google Scholar 
    26.Downing, J. A. & McCauley, E. The nitrogen: Phosphorus relationship in lakes. Limnol. Oceanogr. 37(5), 936–945 (1992).ADS 
    CAS 

    Google Scholar 
    27.Horne, A. J. & Goldman, C. R. Limnology Vol. 2 (McGraw-Hill, 1994).
    Google Scholar 
    28.Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002 (2006).Article 
    PubMed 
    CAS 

    Google Scholar 
    29.Saints, M., Diaz, P., Monza, J. & Borsani, O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol. Plant 140(1), 46–56. https://doi.org/10.1111/j.1399-3054.2010.01383.x (2010).Article 
    CAS 

    Google Scholar 
    30.Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203(1), 3–43. https://doi.org/10.1111/nph.12797 (2014).Article 

    Google Scholar 
    31.Asaeda, T. & Barnuevo, A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. For. Ecol. Manag. 432, 73–82 (2019).
    Google Scholar 
    32.Asaeda, T., Senavirathna, M. D. H. J., Vamsi Krishna, L. & Yoshida, N. Impact of regulated water levels on willows (Salix subfragilis) at a flood-control dam, and the use of hydrogen peroxide as an indicator of environmenal stress. Ecol. Eng. 127, 96–102 (2019).
    Google Scholar 
    33.Asaeda, T., Senavirathna, M. D. H. J. & Vamsi Krishna, L. Evaluation of habitat preferance of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Front. Plant Sci. 11, 422. https://doi.org/10.3389/fpls.2020.00422 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Diaz, J. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: Past and future directions. J. Plankton Res. 40(6), 655–666 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    35.Drábková, M., Admiraal, W. & Maršálek, B. Combined exposure to hydrogen peroxide and PAR selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41(1), 309–314 (2007).ADS 
    PubMed 

    Google Scholar 
    36.Bouchard, J. N. & Purdie, D. A. Effect of elevated temperature, darkness and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol. 47(6), 1316–1325 (2011).PubMed 
    CAS 

    Google Scholar 
    37.Leunert, F., Eckert, W., Paul, A., Gerhardt, V. & Grossart, H. P. Phytoplanktonic response to UV-generated hydrogen peroxide from natural organic matter. J. Plankton Res. 36(1), 185–197. https://doi.org/10.1093/plankt/fbt096 (2014).Article 
    CAS 

    Google Scholar 
    38.Wang, B. et al. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes. Chemosphere 228, 503–512 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    39.Foo, S. C., Chapman, I. J., Hartnell, D. M., Turner, A. D. & Franklin, D. J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environ. Sci. Pollut. Res. 27(31), 38916–38927 (2020).CAS 

    Google Scholar 
    40.Barrington, D. J., Reichwaldt, E. S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86–94 (2013).
    Google Scholar 
    41.Drábková, M., Matthijs, H., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363–369 (2007).
    Google Scholar 
    42.Marsac, N. T. D. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130(1), 82–91 (1977).
    Google Scholar 
    43.Garcia, P. E., Queimalinos, C. & Dieguez, M. C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic sysyems: Influence of the dissolved organic matter pool. Chemosphere 217, 550–557 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    44.Herrmann, R. The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environ. Toxicol. Chem. 15(5), 652–662 (1996).CAS 

    Google Scholar 
    45.Spoof, L. et al. Elimination of cyanobacteria and microcystins in irrigation water—Effects of hydrogen peroxide treatment. Environ. Sci. Pollut. Res. 27(8), 8638–8652. https://doi.org/10.1007/s11356-019-07476-x (2020).Article 
    CAS 

    Google Scholar 
    46.Lopez, C. V. G. et al. Protein measuremements of microalgae and cyanobacterial biomass. Bioresour. Technol. 101(19), 7587–7591 (2010).PubMed 

    Google Scholar 
    47.Vesterkvist, P. S. M., Misiorek, J. O., Spoof, L. E. M., Toivola, D. M. & Meriluoto, J. A. O. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4(11), 1008–1023 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    48.Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45 (2017).CAS 

    Google Scholar 
    49.Pham, T.-L. & Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 213, 520–529 (2018).CAS 

    Google Scholar 
    50.Goldman, J. C., McCarthy, J. J. & Peavey, D. G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279(5710), 210–215 (1979).ADS 
    CAS 

    Google Scholar 
    51.Paerl, H. W., Fulton, R. S. 3rd., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World. J. 1, 76–113 (2001).CAS 

    Google Scholar 
    52.Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. The low TN:TP ratio, a case or result of Microcystis blooms?. Water Res. 37(9), 2073–2080 (2003).PubMed 
    CAS 

    Google Scholar 
    53.Asaeda, T., Rashid, M. H. & Schoelynck, J. Tissue hydrogen peroxide concentration can explain the invasiveness of aquatic macrophytes: A modeling perspective. Front. Environ. Sci. 8, 292 (2021).ADS 

    Google Scholar 
    54.Hesse, K., Dittman, E. & Borner, T. Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol. Ecol. 37(1), 39–43 (2001).CAS 

    Google Scholar 
    55.Tilzer, M. M. Light‐dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwater Res. 21(3), 401-412 (1987).Article 
    CAS 

    Google Scholar 
    56.Iwase, S. & Abe, Y. Identification and change in concentration of musty-odor compounds during growth in blue–green algae. J. Mar. Sci. Technol. 8(1), 27–33 (2010).
    Google Scholar 
    57.Abeynayaka, H. D. L., Asaeda, T. & Kaneko, Y. Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicle collapse. Environ. Manag. 60(2), 293–303 (2017).ADS 

    Google Scholar 
    58.Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979).
    Google Scholar 
    59.Jana, S. & Choudhuri, M. A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12, 345–354 (1982).CAS 

    Google Scholar 
    60.Veljovic-Jovanovic, S., Noctor, G. & Foer, C. H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507 (2002).CAS 

    Google Scholar 
    61.Cheeseman, J. M. Hydrogen peroxide concentrations in leaves under natular conditions. J. Exp. Bot. 57(10), 2435–2444 (2006).PubMed 
    CAS 

    Google Scholar 
    62.Queval, G., Hager, J., Gakiere, B. & Noctor, G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot. 59(2), 135–146. https://doi.org/10.1093/jxb/erm193 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    63.Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).PubMed 
    CAS 

    Google Scholar 
    64.Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5), 867–880 (1981).CAS 

    Google Scholar 
    65.Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).PubMed 
    CAS 

    Google Scholar  More

  • in

    Resilience of countries to COVID-19 correlated with trust

    Up to 1 December 2020, 156 countries had exhibited at least one peak and then decay of cases/capita (of which 36 had experienced a second peak and decay), 151 countries had exhibited at least one peak and then decay of deaths/capita (of which 32 had experienced a second peak and decay), and 93 countries had sufficient testing data to determine at least one peak and then decay of cases/tests (of which 23 had experienced a second peak and decay). Time-series for all countries and the three metrics are shown in Supplementary Fig. 1. For resilience, having filtered cases of reasonably exponential decay for further analysis (r2 ≥ 0.8) and included multiple instances of well-fitted recovery occurring in one country in the dataset, we obtain n = 177 decays for cases/capita, n = 159 for deaths/capita, n = 105 for cases/tests. In a few countries a minimum had not yet been reached by 1 December 2020, so the reduction dataset is smaller (cases/capita n = 165, deaths/capita n = 150, cases/tests n = 101).Comparable resilience and reduction of cases and deathsThe relative measures of resilience (rate of decay) and (proportional) reduction of cases should be more reliably estimated than absolute case numbers but could still be biased by variations in testing intensity across time and space. Encouragingly, we find across countries and waves, resilience of cases/capita and cases/tests are strongly positively rank correlated (n = 100, (rho) =0.86, p  More

  • in

    Emergence of methicillin resistance predates the clinical use of antibiotics

    1.Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.European Centre for Disease Prevention and Control, European Medicines Agencies. The Bacterial Challenge: Time to React. A Call to Narrow the Gap Between Multidrug-Resistant Bacteria in the EU and the Development of New Antibacterial Agents https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (2009).3.Jevons, M. P. “Celbenin”—resistant Staphylococci. Br. Med. J. 1, 124–125 (1961).PubMed Central 

    Google Scholar 
    4.Harkins, C. P. et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18, 130 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Chambers, H. F. & DeLeo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3, e00305-11 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    7.Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (WHO, 2017).8.Rasmussen, S. L. et al. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE 14, e0222031 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Bengtsson, B. et al. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 207, 103–107 (2017).PubMed 

    Google Scholar 
    10.García-Álvarez, L. et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11, 595–603 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    11.Paterson, G. K., Harrison, E. M. & Holmes, M. A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22, 42–47 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Marples, M. J. & Smith, J. M. B. The hedgehog as a source of human ringworm. Nature 188, 867–868 (1960).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.English, M. P., Evans, C. D., Hewitt, M. & Warin, R. P. “Hedgehog ringworm”. Br. Med. J. 1, 149–151 (1962).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Smith, J. M. B. & Marples, M. J. A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature 201, 844 (1964).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Smith, J. M. B. & Marples, M. J. Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci. J. Hyg. 63, 293–303 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Smith, J. M. B. Staphylococcus aureus strains associated with the hedgehog Erinaceus europaeus. J. Hyg. Camb. 63, 293–303 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Morris, P. & English, M. P. Trichophyton mentagrophytes var. erinacei in British hedgehogs. Sabouraudia 7, 122–128 (1969).CAS 
    PubMed 

    Google Scholar 
    18.Le Barzic, C. et al. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. J. Fungi 7, 74 (2021).
    Google Scholar 
    19.Dube, F., Söderlund, R., Salomonsson, M. L., Troell, K. & Börjesson, S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs: a pilot-study. BMC Microbiol. 21, 212 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    21.Brockie, R. E. Distribution and abundance of the hedgehog (Erinaceus europaeus) L. in New Zealand, 1869–1973. N. Z. J. Zool. 2, 445–462 (1975).
    Google Scholar 
    22.van den Berg, M. A. et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 26, 1161–1168 (2008).CAS 
    PubMed 

    Google Scholar 
    23.Ullán, R. V., Campoy, S., Casqueiro, J., Fernández, F. J. & Martín, J. F. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem. Biol. 14, 329–339 (2007).PubMed 

    Google Scholar 
    24.Kitano, K. et al. A novel penicillin produced by strains of the genus Paecilomyces. J. Ferment. Technol. 54, 705–711 (1976).CAS 

    Google Scholar 
    25.Petersen, A. et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 19, E16–E22 (2013).CAS 
    PubMed 

    Google Scholar 
    26.Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Holden, M. T. G. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Strauß, L. et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA 114, E10596–E10604 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Nübel, U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 105, 14130–14135 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Rasmussen, S. L., Nielsen, J. L., Jones, O. R., Berg, T. B. & Pertoldi, C. Genetic structure of the European hedgehog (Erinaceus europaeus) in Denmark. PLoS ONE 15, e0227205 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hansen, J. E. et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 10, 2733 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Eriksson, J. Espinosa-Gongora, C., Stamphøj, I., Larsen, A. R. & Guardabassi, L. Carriage frequency, diversity and methicillin resistance of in Danish small ruminants. Vet. Microbiol. 163, 110–115 (2013).CAS 
    PubMed 

    Google Scholar 
    33.Danish Integrated Antimicrobial Resistance Monitoring and Research Programme. DANMAP 2019: Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria From Food Animals, Food, and Humans in DENMARK https://www.danmap.org/-/media/Sites/danmap/Downloads/Reports/2019/DANMAP_2019.ashx?la=da&hash=AA1939EB449203EF0684440AC1477FFCE2156BA5 (2020).34.Veterinary Medicines Directorate. UK Veterinary Antibiotic Resistance and Sales Surveillance Reporthttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950126/UK-VARSS_2019_Report__2020-TPaccessible.pdf (2020).35.Harrison, E. M. et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5, 509–515 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Loncaric, I. et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 230, 138–144 (2019).CAS 
    PubMed 

    Google Scholar 
    37.Gómez, P. et al. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 71, 53–57 (2016).PubMed 

    Google Scholar 
    38.Kim, C. et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem. 287, 36854–36863 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Tahlan, K. & Jensen, S. E. Origins of the β-lactam rings in natural products. J. Antibiot. 66, 401–419 (2013).CAS 

    Google Scholar 
    40.Pantůček, R. et al. Staphylococcus edaphicus sp. nov. isolated in Antarctica harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environment. Appl. Environ. Microbiol. 84, e01746-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    41.D’Costa, V. M., et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).ADS 
    PubMed 

    Google Scholar 
    42.Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J. 3, 243–251 (2009).CAS 

    Google Scholar 
    43.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Coll, F. et al. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe 1, e328–e335 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its application to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Van Wamel, W. J., Rooijakkers, S. H., Ruyken, M. van Kessel, K. P. & Strijp, J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    49.Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involved SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010).50.Rooijakkers, S. H. M. et al. Staphylococcal complement inhibitor: structure and active sites. J. Immunol. 179, 2989–2998 (2007).CAS 
    PubMed 

    Google Scholar 
    51.Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Clausen, P. T. L. C., Aarestrup, F. M. & Lund, O. Rapid and precise alignment of raw reads against redundant database with KMA. BMC Bioinform. 19, 397 (2018).
    Google Scholar 
    54.Sahl, J. W. et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2, e000074 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    55.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrow-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation sequencing data. Nat. Genet. 43, 491–498 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    59.Kurz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
    Google Scholar 
    60.Guindon, S. & Gasquel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 

    Google Scholar 
    61.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 

    Google Scholar 
    62.Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genome. PLoS Comput. Biol. 11, e1004041 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Didelot, X. et al. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    64.Didelot, X., Siveroni, I. & Volz, E. M. Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies. Mol. Biol. Evol. 38, 307–317 (2021).CAS 
    PubMed 

    Google Scholar 
    65.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
    Google Scholar 
    66.Volz, E. M. & Frost, S. D. Scalable relaxed clock phylogenetic dating. Virus Evol. 3, vex025 (2017).
    Google Scholar 
    67.Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Adusumilli, R. & Mallick, P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339–368 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Network traits predict ecological strategies in fungi

    1.Fischer MS, Glass NL. Communicate and fuse: How filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619.2.Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:335–67.3.Heaton LLM, Jones NS, Fricker MD. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun. 2020;11:2594.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Kiss E, Hegedus B, Viragh M, Varga T, Merenyi Z, Koszo T, et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun. 2019;10:4080.PubMed 
    PubMed Central 

    Google Scholar 
    5.Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biol Rev. 2020;34:151–69.
    Google Scholar 
    6.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed 
    PubMed Central 

    Google Scholar 
    7.Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, et al. The fungi. Curr Biol. 2009;19:R840–845.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad Sci USA. 2014;111:740–5.CAS 
    PubMed 

    Google Scholar 
    10.Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167.
    Google Scholar 
    11.Dawson SK, Boddy L, Halbwachs H, Bässler C, Andrew C, Crowther TW, et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct Ecol. 2018;33:372–87.
    Google Scholar 
    12.Aguilar-Trigueros CA, Hempel S, Powell JR, Anderson IC, Antonovics J, Bergmann J, et al. Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biol Rev. 2015;29:34–41.
    Google Scholar 
    13.Pringle A, Taylor JW. The fitness of filamentous fungi. Trends Microbiol. 2002;10:474–81.CAS 
    PubMed 

    Google Scholar 
    14.Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol Rev. 2020;95:409–33.PubMed 

    Google Scholar 
    15.Boddy L. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13–32.
    Google Scholar 
    16.Boddy L, Donnelly DP. Fractal geometry and microorganisms in the environment. Biophys Chem Fractal Struct Processes Environ Syst. 2008;11:239–72.17.Lehmann A, Zheng W, Soutschek K, Roy J, Yurkov AM, Rillig MC. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Sci Rep. 2019;9:14152.PubMed 
    PubMed Central 

    Google Scholar 
    18.Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and dikaryons of the arbuscular mycorrhizal fungus rhizophagus irregularis differ in life history strategy. Front Plant Sci. 2021;12:1544.
    Google Scholar 
    19.Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.PubMed 

    Google Scholar 
    20.Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 2021;15:1782–1793.21.De Ligne L, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Van Acker J, De Baets B. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions. IMA Fungus. 2019;10:7.PubMed 
    PubMed Central 

    Google Scholar 
    22.Dikec J, Olivier A, Bobee C, D’Angelo Y, Catellier R, David P, et al. Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina. Sci Rep. 2020;10:3131.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Du H, Lv P, Ayouz M, Besserer A, Perré P. Morphological characterization and quantification of the mycelial growth of the Brown-Rot fungus Postia placenta for modeling purposes. PLoS One. 2016;11:e0162469.PubMed 
    PubMed Central 

    Google Scholar 
    24.Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Lopez-Molina C, De Windt I, De Baets B. Automated image-based analysis of spatio-temporal fungal dynamics. Fungal Genet Biol. 2015;84:12–25.CAS 
    PubMed 

    Google Scholar 
    25.Boddy L, Wood J, Redman E, Hynes J, Fricker MD. Fungal network responses to grazing. Fungal Genet Biol. 2010;47:522–30.PubMed 

    Google Scholar 
    26.Rotheray TD, Jones TH, Fricker MD, Boddy L. Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecol. 2008;1:124–32.
    Google Scholar 
    27.Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD. Biological solutions to transport network design. Proc Biol Sci/R Soc. 2007;274:2307–15.
    Google Scholar 
    28.Fricker MD, Akita D, Heaton LLM, Jones N, Obara B, Nakagaki T. Automated analysis of Physarumnetwork structure and dynamics. J Phys D: Appl Phys. 2017;50:254005.
    Google Scholar 
    29.Lee SH, Fricker MD, Porter MA. Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits. J Complex Netw. 2017;5:145–59.
    Google Scholar 
    30.Obara B, Grau V, Fricker MD. A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics. 2012;28:2374–81.CAS 
    PubMed 

    Google Scholar 
    31.Bebber DP, Tlalka M, Hynes J, Darrah PR, Ashford A, Watkinson SC et al. Fungi and the environment. Cambridge: Cambridge University Press; 2007. p. 1−21.32.Fricker MD, Lee JA, Bebber DP, Tlalka M, Hynes J, Darrah PR, et al. Imaging complex nutrient dynamics in mycelial networks. J. Microsc. 2008;231:317–31.CAS 
    PubMed 

    Google Scholar 
    33.Vidal-Diez de Ulzurrun G, Huang T-Y, Chang C-W, Lin H-C, Hsueh Y-P. Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Comp Biol. 2019;15:e1007428.CAS 

    Google Scholar 
    34.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Growth-induced mass flows in fungal networks. Proc R Soc B: Biol Sci. 2010;277:3265–74.
    Google Scholar 
    35.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E. 2012;86:021905.
    Google Scholar 
    36.Fricker MD, Boddy L, Nakagaki T, Bebber DP (2009). Adaptive biological networks. In: Gross T, Sayama H, editors. Adaptive networks: theory, models, and applications. Berlin: Springer; 2009. p. 51−70.37.Boddy L, Jones TH. Mycelial responses in heterogeneous environments: parallels with macroorganisms. Fungi Environ. 2007;25:112–58.
    Google Scholar 
    38.Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Crowther TW, Jones TH, Boddy L. Interactions between saprotrophic basidiomycete mycelia and mycophagous soil fauna. Mycology. 2012;3:77–86.
    Google Scholar 
    40.Tordoff GM, Boddy L, Jones TH. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina, and Resinicium bicolor. Mycol Res. 2006;110:335–45.PubMed 

    Google Scholar 
    41.Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, et al. Analysis of fungal networks. Fungal Biol Rev. 2012;26:12–29.
    Google Scholar 
    42.Barthelemy M. Morphogenesis of spatial networks. Cham, Switzerland: Springer International Publishing; 2018.43.Fricker MD, Bebber D, Boddy L. Chapter 1 Mycelial networks: structure and dynamics. In: Boddy L, Frankland JC, van West P, editors. British mycological society symposia series. London, UK, Academic Press; 2008. p. 3−18.44.Fricker M, Boddy L, Bebber D. Biology of the fungal cell. Berlin Heidelberg: Springer Verlag; 2007. p. 309−30.45.Fricker MD, Lee JA, Boddy L, Bebber DP. The Interplay between structure and function in fungal networks. Topologica 2008;1:004.46.Moore D, Robson GD, Trinci AP. 21st century guidebook to fungi. Cambridge, UK: Cambridge University Press; 2011.47.Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Movement Ecol. 2019;7:36.
    Google Scholar 
    48.Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.CAS 

    Google Scholar 
    49.Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods. 2015;12:233–5.CAS 
    PubMed 

    Google Scholar 
    50.Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336:1157–60.CAS 
    PubMed 

    Google Scholar 
    51.Andrade-Linares DR, Veresoglou SD, Rillig MC. Temperature priming and memory in soil filamentous fungi. Fungal Ecol. 2016;21:10–15.
    Google Scholar 
    52.A’Bear AD, Boddy L, Hefin Jones T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biol. 2012;18:1823–32.
    Google Scholar 
    53.Boddy L, Wells JM, Culshaw C, Donnelly DP. Fractal analysis in studies of mycelium in soil. Geoderma. 1999;88:301–28.
    Google Scholar 
    54.Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun. 2019;10:984.PubMed 
    PubMed Central 

    Google Scholar 
    55.Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol. 2021;229:631–48.PubMed 

    Google Scholar 
    56.Wickham H, Bryan J. Read Excel Files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.57.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ, Complex Syst. 2006;1695:1–9.
    Google Scholar 
    58.R Development Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing; 2017.59.Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community ecology package. 2012. https://CRAN.R-project.org/package=vegan.60.A’Bear AD, Jones TH, Boddy L. Size matters: What have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem. 2014;78:274–83.
    Google Scholar 
    61.Trinci APJ. A kinetic study of the growth of Aspergillus nidulans and other fungi. Microbiology. 1969;57:11–24.CAS 

    Google Scholar 
    62.Morin-Sardin S, Nodet P, Coton E, Jany J-L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev. 2017;31:12–32.
    Google Scholar 
    63.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704.CAS 
    PubMed 

    Google Scholar 
    64.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy, and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94:2101–37.PubMed 
    PubMed Central 

    Google Scholar 
    65.Domsch K, Gams W, Anderson T-H. Compendium of soil fungi. 2nd ed. Eching: IHW-Verlag; 2007.66.Thomma BP. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol. 2003;4:225–36.CAS 
    PubMed 

    Google Scholar 
    67.Bacon C, Yates I. Endophytic root colonization by fusarium species: histology, plant interactions, and toxicity. In: Schulz BE, Boyle CC, Sieber T, editors. Microbial root endophytes. Berlin: Springer; 2006. p. 133−52.68.Nguyen TA, Le S, Lee M, Fan J-S, Yang D, Yan J, et al. Fungal wound healing through instantaneous protoplasmic gelation. Curr Biol. 2021;31:271–82. e275CAS 
    PubMed 

    Google Scholar 
    69.Scheu S, Simmerling F. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin, and mixed diets. Oecologia. 2004;139:347–53.PubMed 

    Google Scholar 
    70.Rayner ADM, Boddy L. Fungal decomposition of wood. Its biology and ecology. Chichester, Sussex: John Wiley & Sons Ltd.; 1988.71.Connolly JH, Shortle WC, Jellison J. Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Botany. 1999;77:179–87.CAS 

    Google Scholar 
    72.A’Bear AD, Jones TH, Boddy L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014;10:34–43.
    Google Scholar 
    73.Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.PubMed 

    Google Scholar 
    74.Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579. More

  • in

    Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs)

    Divergent CuMMOs identified in MAGs recovered from soil and sediment ecosystemsIn previous work we identified putative divergent amoA/pmoA homologues in 7 Thermoplasmatota genomes recovered from Mediterranean grassland soil [25]. This was intriguing, given that amo/pmo homologues had not been previously observed in archaea outside of the Nitrososphaerales. Here we searched for additional genomes encoding related (divergent) amo/pmo’s using a series of readily available, and custom built, hidden markov models (HMMs) across all archaeal genomes in the Genome Taxonomy Database (GTDB), and in all archaeal MAGs in our unpublished datasets from ongoing studies (Supplementary Fig. 1 and Supplementary Data 1). We found additional amoA/pmoA genes in genomes recovered from soils at the South Meadow and Rivendell sites of the Angelo Coast Range Reserve (CA) [25, 26], the nearby Sagehorn site [26], a hillslope of the East River watershed (CO) [27], and in sediments from the Rifle aquifer (CO) [28] and the deep ocean [29]. In total we identified 201 archaeal MAGs taxonomically placed using phylogenetically informative single copy marker genes outside of Nitrososphaerales containing divergent amo/pmo proteins (Supplementary Table 1 and Supplementary Data 1). Genome de-replication resulted in 34 species-level genome clusters, 20 of which encoded an amo/pmo homologue (Supplementary Table 2). Of these genomes, 11 are species not previously available in public databases. In all cases where assembled sequences were of sufficient length, the amoA/pmoA, B, and C protein coding genes were found co-located with each other and with a hypothetical protein here called amoX/pmoX in the order C-A-X-B (Fig. 1A, Supplementary Table 2, and Supplementary Fig. 2). The mean sequence identity of the novel amoA/pmoA, B, and C proteins to known bacterial sequences were 16.7, 8.0, and 14.2% and 13.8, 9.5, and 20.8% to known archaeal sequences. This level of divergent amino acid identity is typical for CuMMOs, as known bacterial and known archaeal amoA/pmoA, B, and C proteins share mean identities of 16.1, 9.7, and 16.5% respectively. As might be expected considering the large sequence divergence between the recovered sequences and known amo/pmo proteins, we found that no pair of typical primers used for bacterial and archaeal amoA/pmoA environmental surveys [30] matched any novel amoA/pmoA gene with More