More stories

  • in

    Experimental evidence for recovery of mercury-contaminated fish populations

    Mercury additions to the study catchmentMETAALICUS was conducted on the Lake 658 catchment at the Experimental Lakes Area (ELA; now IISD-ELA), a remote area in the Precambrian Shield of northwestern Ontario, Canada (49° 43′ 95″ N, 93° 44′ 20″ W) set aside for whole-ecosystem research31. The Lake 658 catchment includes upland (41.2 ha), wetland (1.7 ha) and lake surface (8.4 ha) areas. Lake 658 is a double basin (13 m depth), circumneutral, headwater lake, with a fish community consisting of forage (yellow perch (P. flavescens) and blacknose shiner (Notropis heterolepis)), benthivorous (lake whitefish (C. clupeaformis) and white sucker (Catostomus commersonii)), and piscivorous (northern pike (E. lucius)) fishes. The lake is closed to fishing.Hg addition methods used in METAALICUS have been described in detail elsewhere19,32,33. In brief, three Hg spikes, each enriched with a different stable Hg isotope, were applied separately to the lake surface, upland and wetland areas. Upland and wetland spikes were applied once per year (when possible; Fig. 1a) by fixed-wing aircraft (Cessna 188 AGtruck). Mercury spikes (as HgNO3) were diluted in acidified water (pH 4) in a 500 l fiberglass tank and sprayed with a stainless-steel boom on upland (approximately 79.9% 200Hg) and wetland (approximately 90.1% 198Hg) areas. Spraying was completed during or immediately before a rain event, with wind speeds less than 15 km h−1 to minimize drift of spike Hg outside of target areas. Aerial spraying of upland and wetland areas left a 20-m buffer to the shoreline, which was sprayed by hand with a gas-powered pump and fire hose to within about 5 m of the lake32. Average net application rates of isotopically labelled Hg to the upland and wetland areas were 18.5 μg m−2 yr−1 and 17.8 μg m−2 yr−1, respectively.The average net application rate for lake spike Hg was 22.0 μg m−2 yr−1. For each lake addition, inorganic Hg enriched with approximately 89.7% 202Hg was added as HgNO3 from four 20-l carboys filled with acidified lake water (pH 4). Nine lake additions were conducted bi-weekly at dusk over an 18-week (wk) period during the open-water season of each year (2001–2007) by injecting at 70-cm depth into the propeller wash of trolling electric motors of two boats crisscrossing each basin of the lake32,33. It was previously demonstrated with 14C additions to an ELA lake that this approach evenly distributed spike added in the evening by the next morning34.We did not attempt to simulate Hg in rainfall for isotopic lake additions because it is impossible to simulate natural rainfall concentrations (about 10 ng l−1) in the 20-l carboys used for additions. Instead, our starting point for the experiment was to ensure that the spike was behaving as closely as possible to ambient surface water Hg very soon after it entered the lake. Several factors support this assertion. By the next morning each spike addition had increased epilimnetic Hg concentrations by only 1 ng l−1 202Hg. Average ambient concentrations were 2 ng l−1. Thus, while the Hg concentrations in the carboys were high (2.6 mg l−1), the receiving waters were soon at trace levels. Furthermore, we investigated if the additions altered the degree of bioavailability or photoreactivity of Hg(ii) in the receiving surface water. We examined the bioavailability of spike Hg(ii) as compared to ambient Hg in the lake itself using a genetically engineered bioreporter bacterium35. On seven occasions, epilimnetic samples were collected on the day before and within 12 h of spike additions. The spike was added to the lake as Hg(NO3)2, which is bioavailable to the bioreporter bacterium (detection limit = 0.1 ng Hg(ii) l−1), but we never saw bioavailable ambient or spike Hg(ii) in the lake, presumably because it was quickly bound to dissolved organic carbon (DOC). This indicates that, in terms of bioavailability, the spike Hg was behaving like ambient Hg soon after additions. Photoreactivity in the surface water was examined on seven occasions, by measuring the % of total Hg(ii) that was dissolved gaseous Hg for spike and ambient Hg, either 24 h or 48 h after the lake was spiked36. There was no significant difference (paired t-test, P > 0.05), demonstrating that by then the lake spike was behaving in the same way as ambient Hg during gaseous Hg production.Lake, food web and fish samplingWater samples were collected from May to October every four weeks at the deepest point of Lake 658. Water was pumped from six depths through acid-cleaned Teflon tubing into acid-cleaned Teflon or glass bottles. Water samples were filtered in-line using pre-ashed quartz fibre filters (Whatman GFQ, 0.7 µm). Subsequently, Hg species were measured in the filtered water samples (dissolved Hg and MeHg) and in particles collected on the quartz fibre filter (particulate Hg and MeHg).From 2001 to 2012, Lake 658 sediments were sampled at 4 fixed sites up to 5 times per year. Sampling frequency was highest in 2001, with monthly sampling from May to September, and declined over the course of the study. Fixed sites were located at depths of 0.5, 2, 3 and 7 m. A sediment survey of up to 12 additional sites was also conducted once or twice each year. Survey sites were selected to represent the full range of water depths in both basins. Cores were collected by hand by divers, or by subsampling sediments collected using a small box corer. Cores were capped and returned to the field station for processing within a few hours. For each site, three separate cores were sectioned and composited in zipper lock bags for a 0- to 2-cm depth sampling horizon, and then frozen at −20 °C.Bulk zooplankton and Chaoborus samples were collected from Lake 658 for MeHg analysis. Zooplankton were collected during the day from May to October (bi-weekly: 2001–2007; monthly: 2008–2015). A plankton net (150 μm, 0.5 m diameter) was towed vertically through the water column from 1 m above the lake bottom at the deepest point to the surface of the lake. Samples were frozen in plastic Whirl-Pak bags after removal of any Chaoborus using acid-washed tweezers. Dominant zooplankton taxa in Lake 658 included calanoid copepods (Diaptomus oregonensis) and Cladocera (Holopedium glacialis, Daphnia pulicaria and Daphnia mendotae). Chaoborus samples were collected monthly in the same manner at least 1 h after sunset. After collection, Chaoborus were picked from the sample using forceps and frozen in Whirl-Pak bags. Chaoborus were not separated by species for MeHg analyses, but both C. flavicans and C. punctipennis occur in the lake. Profundal chironomids were sampled at the deepest part of the lake using a standard Ekman grab sampler. Grab material was washed using water from a nearby lake and individual chironomids were picked by hand.All work with vertebrate animals was approved by Animal Care Committees (ACC) through the Canadian Council on Animal Care (Freshwater Institute ACC for Fisheries and Oceans Canada, 2001–2013; University of Manitoba ACC for IISD-ELA, 2014–2015). Licenses to Collect Fish for Scientific Purposes were granted annually by the Ontario Ministry of Natural Resources and Forestry. Prior to any Hg additions, a small-mesh fence was installed at the outlet of Lake 658 to the downstream lake to prevent movement of fish between lakes. Sampling for determination of MeHg concentrations (measured as total mercury (THg), see below) occurred each autumn (August–October; that is, the end of the growing season in north temperate lakes) for all fish species in Lake 658, and for northern pike and yellow perch in nearby reference Lake 240 (Extended Data Tables 2, 3). Fish collections occurred randomly throughout the lakes. Forage fish (YOY and 1+ yellow perch, and blacknose shiner) were captured using small mesh gillnets (6–10 mm) set for 90% of the Hg in muscle tissue from yellow perch in Lake 658 is MeHg40,41, here we report fish mercury data as MeHg.THg concentrations (ambient, lake spike, upland spike and wetland spike) in fish muscle samples were quantified by ICP-MS39. Samples were digested with HNO3/H2SO4 (7:3 v/v) and heated at 80 °C until brown NOx gases no longer formed. The THg in sample digests was reduced by SnCl2 to Hg0 which was then quantified by ICP-MS (Thermo-Finnigan Element2) using a continuous flow cold vapour generation technique41. To correct for procedural recoveries, all samples were spiked with 201HgCl2 prior to sample analysis. Samples of CRMs (DORM2 (2001–2011), DORM3 (2012–2013), DORM4 (2014–2015); National Research Council of Canada) were submitted to the same procedures; measured THg concentrations in the reference materials were not statistically different from certified values (P > 0.05). Detection limit for each of the spikes was 0.5% of ambient Hg.Calculations and statistical methodsAnalyses were completed with Statistica (6.1, Statsoft) and Sigmaplot (11.0, Systat Software). We present wet weight (w.w.) MeHg concentrations for all samples, except sediments which are dry weight (d.w.) concentrations. For zooplankton, Chaoborus, and profundal chironomids, d.w. MeHg concentrations were multiplied by a standard proportion (0.15) to yield w.w. concentrations for each sample42. The resulting w.w. concentrations were averaged over each open water season to determine annual means. For fish muscle biopsies, d.w. MeHg concentrations were multiplied by individual d.w. proportions to yield w.w. MeHg concentrations for each sample. To avoid any size-related biases, we calculated standardized annual MeHg concentrations (ambient and lake spike) for northern pike and lake whitefish by determining best-fit relationships between FL and MeHg concentrations for each year (quadratic polynomial, except for a linear fit for lake whitefish in 2004), and using the resulting regression equations to estimate MeHg concentrations at a standard FL43 (the mean FL of all fish sampled for each species: northern pike, 475 mm; lake whitefish, 530 mm). Square root transformation of raw northern pike data was required to satisfy assumptions of normality and homoscedasticity prior to standardization. The resulting data represent standardized concentrations of lake spike and ambient MeHg for each species each year.We used the ratio of lake spike and ambient Hg in each sample as a measure of the amount by which Hg concentrations were changed with the addition of isotopically enriched Hg:$${rm{P}}{rm{e}}{rm{r}}{rm{c}}{rm{e}}{rm{n}}{rm{t}},{rm{i}}{rm{n}}{rm{c}}{rm{r}}{rm{e}}{rm{a}}{rm{s}}{rm{e}}={[{rm{l}}{rm{a}}{rm{k}}{rm{e}}{rm{s}}{rm{p}}{rm{i}}{rm{k}}{rm{e}}{rm{H}}{rm{g}}]}_{i}/{[{rm{a}}{rm{m}}{rm{b}}{rm{i}}{rm{e}}{rm{n}}{rm{t}}{rm{H}}{rm{g}}]}_{i}times 100$$
    (1)
    where [lake spike Hg]i is the concentration of lake spike MeHg in sample i, and [ambient Hg]i is the concentration of ambient MeHg in sample i. For northern pike and lake whitefish, we calculated the mean annual relative increase from all individuals (not the size-standardized concentration data).Biomagnification factors (BMF) were calculated to describe differences in Hg concentrations between predator and prey5:$${rm{BMF}}={log }_{10}({[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{d}}{rm{a}}{rm{t}}{rm{o}}{rm{r}}}/{[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{y}}})$$
    (2)
    where [MeHg]predator is the mean (forage fish) or standardized (large-bodied fish) concentration of MeHg in the predator (ng g−1 w.w.) and [MeHg]prey is the mean concentration of MeHg in the prey (ng g−1 w.w.). MeHg concentration of prey items were averaged from samples collected throughout the open-water season immediately prior to autumn sampling of fish species to represent an integrated exposure for calculation of BMF. We used a dominant prey item to represent the diet of each fish species. For age 1+ yellow perch, northern pike, and lake whitefish, dominant prey items were zooplankton, forage fishes (YOY and 1+ yellow perch, and blacknose shiner) and Chaoborus, respectively.To assess loss of lake spike MeHg by northern pike during the recovery period (2008–2015), we calculated28 whole body burdens (in μg) of lake spike MeHg for the standardized population and for individuals that had been sampled in autumn 2007 (t0 is the final time spike Hg was added to the lake) and again in at least one subsequent year during annual autumn sampling (n = 16 fish, of which 1–9 individuals were recaptured annually from 2008–2015). This calculation of MeHg burden is a relative measure of whole fish Hg content because MeHg is higher in muscle tissue than in other tissue types28,40. For the standardized population data, we used best-fit relationships between FL (in mm) and body weight (in g; quadratic polynomial) to determine body weight at the standard FL. We multiplied this body weight by standard ambient and spike MeHg concentrations (in ng g−1 w.w.) in muscle tissue for each year to determine body burdens over time (in ng). For individual fish, we multiplied spike MeHg concentration (in ng g−1 w.w.) by body weight (in g) to yield individual body burdens (in ng). To account for differences among individuals and between individuals and the population, we normalized the data to examine the mean proportion of original (t0) lake spike MeHg burden present in northern pike each year of the recovery period (2008–2015).$${rm{change}},{rm{in}},{rm{burden}},{rm{from}},{t}_{0}={{rm{burden}}}_{{rm{tx}}}/{{rm{burden}}}_{{rm{t}}0}$$
    (3)
    We used a best fit regression (exponential decay, beginning in the second year of recovery) to estimate the half-life (50% of original burden) of lake spike MeHg for the population.Northern pike and lake whitefish ages were determined by cleithra and otoliths, respectively, if mortality had occurred, but most ages were quantified using fin rays collected from live fish44 (K. H. Mills, DFO or North/South Consultants). Northern pike of the sizes selected for biopsy sampling had a median age of 3 years (range: 2–12 years; n = 305); the median age of lake whitefish was 17 years (range: 3–38 years; n = 86).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More

  • in

    Biogeochemical extremes and compound events in the ocean

    1.Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1980–1996 (2011). Identifies the potential synegistic threat to marine ecosystems resulting from ocean warming, deoxygenation and acidification.ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    4.Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 

    Google Scholar 
    6.Keeling, R. F., Kortzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    7.Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).ADS 

    Google Scholar 
    8.Sallée, J. B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).10.Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, GB2002 (2006).ADS 

    Google Scholar 
    11.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    12.Doney, S. C., Busch, D. S., Cooley, S. R. & Kroeker, K. J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
    Google Scholar 
    13.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    14.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl Acad. Sci. USA 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 

    Google Scholar 
    16.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    17.Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).18.Lavell, A. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 25–64 (2012).19.Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteor. Soc. 81, 443–450 (2000).ADS 

    Google Scholar 
    20.Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).
    Google Scholar 
    21.Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    22.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018). Quantifies the future evolution of marine heatwaves under different climate scenarios and their attribution to climate change.ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018). Highlights the strong increase in the occurrence and intensity of marine heatwaves in recent decades.ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
    Google Scholar 
    25.Benedetti-Cecchi, L. Complex networks of marine heatwaves reveal abrupt transitions in the global ocean. Sci. Rep. 11, 1739 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019). Assesses the potential for global ocean ecosystem impacts of marine heatwaves.ADS 

    Google Scholar 
    27.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2012). Demonstrates marked ocean ecosystem changes in response to a heatwave.ADS 

    Google Scholar 
    28.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 

    Google Scholar 
    29.Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).ADS 

    Google Scholar 
    31.Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the west coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).ADS 

    Google Scholar 
    32.Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016). A synthesis of the ecosystem impacts of the 2013–2015 Blob heatwave.33.Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 north Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).ADS 

    Google Scholar 
    34.Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).
    Google Scholar 
    35.Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013). Models the evolution of ocean-acidification-related extremes in the California Current System.ADS 

    Google Scholar 
    38.Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).ADS 
    CAS 

    Google Scholar 
    39.Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5, 113–128 (2014).
    Google Scholar 
    40.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
    Google Scholar 
    41.Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).ADS 

    Google Scholar 
    42.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
    Google Scholar 
    43.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).44.Limburg, K. E., Breitburg, D., Swaney, D. P. & Jacinto, G. Ocean deoxygenation: a primer. One Earth 2, 24–29 (2020).
    Google Scholar 
    45.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 

    Google Scholar 
    46.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 

    Google Scholar 
    47.Allen, M. R. et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 49–91 (IPCC, 2018).48.Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Pilo, G. S., Holbrook, N. J., Kiss, A. E. & Hogg, A. M. C. sensitivity of marine heatwave metrics to ocean model resolution. Geophys. Res. Lett. 46, 14604–14612 (2019).ADS 

    Google Scholar 
    50.Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
    Google Scholar 
    51.Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).52.Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).ADS 

    Google Scholar 
    53.Amaya, D. J., Miller, A. J., Xie, S. P. & Kosaka, Y. Physical drivers of the summer 2019 north Pacific marine heatwave. Nat. Commun. 11, 1903 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Negrete-García, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M. & Lauvset, S. K. Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nat. Clim. Change 9, 313–317 (2019).ADS 

    Google Scholar 
    55.Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).ADS 

    Google Scholar 
    56.Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).ADS 

    Google Scholar 
    57.Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).ADS 

    Google Scholar 
    58.Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Frenger, I. et al. Biogeochemical role of subsurface coherent eddies in the ocean: tracer cannonballs, hypoxic storms, and microbial stewpots? Glob. Biogeochem. Cycles 32, 226–249 (2018).ADS 
    CAS 

    Google Scholar 
    60.Schütte, F. et al. Characterization of ‘dead-zone’ eddies in the eastern tropical north Atlantic. Biogeosciences 13, 5865–5881 (2016).ADS 

    Google Scholar 
    61.Lauvset, S. K. et al. Processes driving global interior ocean pH distribution. Glob. Biogeochem. Cycles 34, e2019GB006229 (2020).ADS 
    CAS 

    Google Scholar 
    62.Gaube, P., Chelton, D. B., Strutton, P. G. & Behrenfeld, M. J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 118, 6349–6370 (2013).ADS 
    CAS 

    Google Scholar 
    63.Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans 120, 7413–7449 (2015).ADS 

    Google Scholar 
    64.Hauss, H. et al. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies. Biogeosciences 13, 1977–1989 (2016).ADS 
    CAS 

    Google Scholar 
    65.Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).ADS 

    Google Scholar 
    68.Peterson, W. T., Bond, N. A. & Robert, M. The Blob (part three): going, going, gone? PICES Press 24, 46–48 (2016).
    Google Scholar 
    69.Frischknecht, M., Münnich, M. & Gruber, N. Local atmospheric forcing driving an unexpected California Current System response during the 2015–2016 El Niño. Geophys. Res. Lett. 44, 304–311 (2017).ADS 

    Google Scholar 
    70.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).72.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar. Ecol. Progr. Ser. 373, 203–217 (2008).ADS 

    Google Scholar 
    74.Stillman, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Straub, S. C. et al. Resistance, extinction, and everything in between—the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 
    76.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018). Demonstrates the global-scale impact of marine heatwaves on warm-water corals.ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Donovan, M. K. et al. Local conditions magnify coral loss following marine heatwaves. Science 372, 977–980 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. https://doi.org/10.1111/gcb.15818 (2021).79.McMahon, B. R. Physiological responses to oxygen depletion in intertidal animals. Am. Zool. 28, 39–53 (1988).
    Google Scholar 
    80.Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Change Biol. 26, 54–67 (2020).ADS 

    Google Scholar 
    81.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Spisla, C. et al. Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study. Front. Mar. Sci. 7, 611157 (2021).
    Google Scholar 
    83.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Bednaršek, N. et al. El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California current system with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018). Shows the impact of a compound event on pteropods, a keystone zooplankton species in many marine ecosystems.
    Google Scholar 
    85.Calderón-Liévanos, S. et al. Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes. Mar. Freshw. Behav. Physiol. 52, 1–15 (2019).
    Google Scholar 
    86.Mieszkowska, N., Burrows, M. T., Hawkins, S. J. & Sugden, H. Impacts of pervasive climate change and extreme events on rocky intertidal communities: evidence from long-term data. Front. Mar. Sci. 8, 642764 (2021).87.Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several northeast Pacific marine ecosystems. Glob. Chang. Biol. 27, 506–520 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Garrabou, J. et al. Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).ADS 

    Google Scholar 
    90.Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940 (2013).ADS 

    Google Scholar 
    91.Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).ADS 

    Google Scholar 
    92.Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the Northern Gulf of Alaska. Front. Mar. Sci. 8, 556820 (2021).93.Samuels, T., Rynearson, T. A. & Collins, S. Surviving heatwaves: thermal experience predicts life and death in a Southern Ocean Diatom. Front. Mar. Sci. 8, 600343 (2021).94.Vajedsamiei, J., Wahl, M., Schmidt, A. L., Yazdanpanahan, M. & Pansch, C. The higher the needs, the lower the tolerance: extreme events may select ectotherm recruits with lower metabolic demand and heat sensitivity. Front. Mar. Sci. 8, 660427 (2021).
    Google Scholar 
    95.Bindoff, N. L. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 5 (IPCC, 2021).96. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 6 (Cambridge Univ. Press, 2014).97.Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    98.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    99.Seifert, M., Rost, B., Trimborn, S. & Hauck, J. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO2. Glob. Change Biol. 26, 6787–6804 (2020).ADS 

    Google Scholar 
    100.Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    101.Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments: adaptation to changing environments. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190454 (2020).
    Google Scholar 
    102.Somero, G. N. The cellular stress response and temperature: function, regulation, and evolution. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 379–397 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Fordyce, A. J., Ainsworth, T. D., Heron, S. F. & Leggat, W. Marine heatwave hotspots in coral reef environments: physical drivers, ecophysiological outcomes and impact upon structural complexity. Front. Mar. Sci. 6, 498 (2019).
    Google Scholar 
    104.Krueger, T. et al. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J. Phycol. 50, 1035–1047 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    106.Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2, e1501660 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Change 4, 1024–1030 (2014).ADS 

    Google Scholar 
    108.Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    109.Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    110.Hinder, S. L. et al. Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change. Glob. Change Biol. 20, 140–146 (2014).ADS 

    Google Scholar 
    111.Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl Acad. Sci. USA 118, e2017105118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).
    Google Scholar 
    113.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    114.Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).
    Google Scholar 
    115.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    116.Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Glob. Change Biol. 27, 1196–1213 (2021).ADS 

    Google Scholar 
    117.Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    118.Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 5–8 (2017).ADS 

    Google Scholar 
    119.Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).
    Google Scholar 
    120.Vallina, S. M. & Le Quéré, C. Stability of complex food webs: resilience, resistance and the average interaction strength. J. Theor. Biol. 272, 160–173 (2011).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    121.Neutel, A. M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    122.Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Nagelkerken, I., Goldenber, S. U., Ferreir, C. M., Ullah, H. & Conne, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369, 829–832 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    124.Carpenter, S. R. et al. Cascading trophic interactions and lake productivity. Bioscience 35, 634–639 (1985).
    Google Scholar 
    125.Bideault, A. et al. Thermal mismatches in biological rates determine trophic control and biomass distribution under warming. Glob. Change Biol. 27, 257–269 (2021).ADS 

    Google Scholar 
    126.Dee, L. E., Okamtoto, D., Gårdmark, A., Montoya, J. M. & Miller, S. J. Temperature variability alters the stability and thresholds for collapse of interacting species: species interactions facing variability. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190457 (2020).
    Google Scholar 
    127.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a south central Pacific reef. Sci. Rep. 8, 9680 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 

    Google Scholar 
    129.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Glob. Change Biol. 22, 2633–2650 (2016).ADS 

    Google Scholar 
    130.Ainsworth, T. D., Hurd, C. L., Gates, R. D. & Boyd, P. W. How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes? Glob. Change Biol. 26, 343–354 (2020).ADS 

    Google Scholar 
    131.Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010). Develops the concept of how other stressors can interact with each other in marine ectotherms.PubMed 
    PubMed Central 

    Google Scholar 
    132.Deutsch, C., Ferrel, A., Seibel, B., Portner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    134.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    135.Bertolini, C. & Pastres, R. Tolerance landscapes can be used to predict species-specific responses to climate change beyond the marine heatwave concept: using tolerance landscape models for an ecologically meaningful classification of extreme climate events. Estuar. Coast. Shelf Sci. 252, 107284 (2021).
    Google Scholar 
    136.Le Gland, G., Vallina, S. M., Smith, S. L. & Cermeño, P. SPEAD 1.0—simulating plankton evolution with adaptive dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea. Geosci. Model Dev. 14, 1949–1985 (2021).ADS 

    Google Scholar 
    137.Merico, A., Bruggeman, J. & Wirtz, K. A trait-based approach for downscaling complexity in plankton ecosystem models. Ecol. Modell. 220, 3001–3010 (2009).CAS 

    Google Scholar 
    138.Walworth, N. G., Zakem, E. J., Dunne, J. P., Collins, S. & Levine, N. M. Microbial evolutionary strategies in a dynamic ocean. Proc. Natl Acad. Sci. USA 117, 5943–5948 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    139.Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).ADS 
    CAS 

    Google Scholar 
    140.Collins, M. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 6 (IPCC, 2021).141.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    142.Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science 354, 1591–1594 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Rashid Sumaila, U. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    144.Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).
    Google Scholar 
    145.Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with Biogeochemical-Argo. Ann. Rev. Mar. Sci. 12, 23–48 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    146.Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1, 315–326 (2020).ADS 

    Google Scholar 
    147.Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019).
    Google Scholar 
    148.Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    149.Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).ADS 

    Google Scholar 
    151.Boyd, P. & Hutchins, D. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).ADS 

    Google Scholar 
    152.Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).ADS 

    Google Scholar 
    153.Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Modell. 222, 3823–3837 (2011).
    Google Scholar 
    154.Bruggeman, J. & Kooijman, S. A. L. M. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnol. Oceanogr. 52, 1533–1544 (2007).ADS 

    Google Scholar 
    155.Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91–93 (2013).ADS 

    Google Scholar 
    156.Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    159.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
    Google Scholar 
    160.Liquete, C. et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS ONE 8, e67737 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    161.Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Nino-coincident coral mortality. Coral Reefs 8, 181–191 (1990).ADS 

    Google Scholar 
    162.Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Gardner, J., Manno, C., Bakker, D. C. E., Peck, V. L. & Tarling, G. A. Southern Ocean pteropods at risk from ocean warming and acidification. Mar. Biol. 165, 8 (2018).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The global loss of floristic uniqueness

    Quantification of changes in floristic similarityTo quantify changes in floristic similarity by naturalized flowering plant species, we extracted regional lists of alien species from the Global Naturalized Alien Flora (GloNAF) database45 and regional lists of native species from the Global Inventory of Floras and Traits (GIFT) database46. The GloNAF database contains lists of naturalized vascular plant taxa for 861 regions (countries or subnational administrative units), ranging in size from 0.03 to 6,864,961 km2 (median size is 15,152 km2) and covering >80% of the terrestrial ice-free surface globally47. GloNAF includes 13,803 plant taxa that, according to the original data sources, are alien plants and have established self-sustaining wild populations in the respective regions (i.e., are naturalized5). The GIFT database is a compilation of floras and checklists of predominantly native vascular plant species with an indication of their floristic status for more than 300,000 species across nearly 3000 regions with near global coverage46. We first selected regions that matched perfectly between GloNAF and GIFT. Additionally, we merged some GloNAF regions to match a larger GIFT region, and vice versa, by comparing the overlapping area of nested regions using the R package ‘sf’ (version 0.8-0)48.To ensure the highest data quality, and to be on the conservative side, we restricted our analysis to regions with complete or nearly complete checklists of both native and naturalized alien species. For GloNAF, we only included regions for which there was at least one species list judged to include more than 50% of the naturalized taxa for that region45. Although the judgment of species-list completeness is coarse and for most lists made by the GloNAF curators, it allows the exclusion of regions for which the data are obviously poor. For GIFT, we included a region only if at least one species list aimed to represent its entire native angiosperm flora. Our strict selection criteria resulted in a dataset including native and naturalized species for 658 non-overlapping regions, including 154 island regions, 503 mainland regions and one region including both islands and mainland areas (Chile). These regions covered all continents, except Antarctica, but there was low coverage for parts of Africa and Asia (Fig. 4).We restricted our analyses to flowering plants (angiosperms), which had the most complete species lists, and to species with accepted names in The Plant List24 (http://www.theplantlist.org/). We excluded species with an uncertain native/alien status or with a conflicting status, i.e., being native to a region according to GIFT but being alien to the same region according to GloNAF. Furthermore, since the native/alien status of many infraspecific taxa and hybrid taxa are less clear, we restricted our analyses to the species level (i.e., infraspecific taxa were assigned to the binomial species name), and we excluded hybrids. Our final dataset included 1,139,254 native species-by-region records for 189,110 species and 141,762 naturalized species-by-region records for 10,130 species.For all 216,153 possible pairwise combinations of the 658 regions, we quantified the taxonomic and phylogenetic similarities between their native floras (SimTaxnative, SimPhylnative), and between their floras including both native and naturalized alien species (SimTaxnative+naturalized, SimPhylnative+naturalized). As the regions vary largely in species richness (ranging from 11 to 13,720 species with a median of 1704), we used the Simpson similarity index for taxonomic similarity (Eq. 1)49, which is largely insensitive to species richness:50$${SimTax}=1-frac{{{min }}left(b,cright)}{a+{{min }}left(b,cright)}$$
    (1)
    Here a is the number of species common to both regions, b is the number of species that occur in the first region but not in the second and c is the number of species that occur in the second region but not in the first51. Likewise, we calculated the Simpson phylogenetic similarity index as phylogenetic similarity (Eq. 2) as implemented in the R package ‘betapart’ (version 1.5.1)52:$${SimPhyl}=1-frac{{{min }}left(B,Cright)}{A+{{min }}left(B,Cright)}$$
    (2)
    Here A is the total length of the phylogenetic branches in the phylogenetic tree that are shared by the species of both regions, B is the total length of the phylogenetic branches that are shared only by the first region and C is the total length of the phylogenetic branches that are shared only by the second region51. To quantify changes in similarity due to naturalization of alien species, we calculated the degree of homogenization H (or differentiation, see below) for each pair of regions as$$H={ln}frac{{{Sim}}_{{native}+{naturalized}}+0.001}{{{Sim}}_{{native}}+0.001}$$
    (3)
    A small value of 0.001 was added to both similarities to avoid infinite values. A positive log-response ratio indicates homogenization (i.e., increased floristic similarity between two regions), and a negative one indicates differentiation (i.e., decreased floristic similarity). As an alternative to the Simpson similarity index, we also calculate the Sørensen similarity index, which additionally takes into consideration the nestedness of the floras in the paired regions51. As the results were not sensitive to the choice of similarity indices (Supplementary Fig. 14), we focused our analyses on the Simpson similarity index.To quantify phylogenetic similarity, we used a phylogenetic tree including all angiosperms with accepted names in The Plant List (Supplementary Fig. 2). The tree was developed based on the mega phylogeny of Smith and Brown53. We added missing species (n = 71,124, of which 733 are naturalized in other regions) with their accepted names in The Plant List to the root of their genus or families. For details on the development of the phylogenetic tree, see ref. 47.Quantification of geographic distances and climatic distancesWe calculated the pairwise geographic distance between regions as the distance between their geographic centroids using the R package ‘geosphere’ (version 1.5-10)54. We also calculated the nearest distance between the geographic borders of regions. However, since the distances between geographic centroids are highly correlated with distances between region borders (n = 216,153, r = 0.996, P  More

  • in

    Potato leafroll virus reduces Buchnera aphidocola titer and alters vector transcriptome responses

    1.Remaudiere, G., & Remaudiere, M. Catalogue of the World’s Aphididae: Homoptera Aphidoidea. 473–1275. (Institut National de la Recherche Agronomique (INRA), 1997).2.Fereres, A., Irwin, M.E., & Kamppeier, G.E. Aphid movement: Process and consequences. in (van Emden H.F.R.H. ed.) Aphids as Crop Pests. 2nd edn. 196–200. (CABI, 2017).3.Ng, J. C. K. & Perry, K. L. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 5(5), 505–511. https://doi.org/10.1111/j.1364-3703.2004.00240.x (2004).Article 
    PubMed 

    Google Scholar 
    4.Whitfield, A. E., Falk, B. W. & Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 479–480, 278–289. https://doi.org/10.1016/j.virol.2015.03.026 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Elena, S. F., Bernet, G. P. & Carrasco, J. L. The games plant viruses play. Curr. Opin. Virol. 8, 62–67. https://doi.org/10.1016/j.coviro.2014.07.003 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Casteel, C.L., & Falk, B.W. Plant virus-vector interactions: More than just for virus transmission. in (Wang, A., & Zhou, X. eds.) Current Research Topics in Plant Virology. 2016. 217–240. https://doi.org/10.1007/978-3-319-32919-2_9 (2016).7.Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: Ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191. https://doi.org/10.1146/annurev-ento-020117-043119 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Blanc, S. & Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect Sci. 16, 36–43. https://doi.org/10.1016/j.cois.2016.05.007 (2016).Article 
    PubMed 

    Google Scholar 
    9.Ingwell, L. L., Eigenbrode, S. D. & Bosque-Pérez, N. A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2(1), 578. https://doi.org/10.1038/srep00578 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Stafford, C. A., Yang, L. H., Mcmunn, M. S. & Ullman, D. E. Virus infection alters the predatory behavior of an omnivorous vector. Oikos 123, 1384–1390. https://doi.org/10.1111/oik.01148 (2014).Article 

    Google Scholar 
    11.Wang, Q. et al. Rice dwarf virus infection alters green rice leafhopper host preference and feeding behavior. PLoS ONE 13(9), 1–16. https://doi.org/10.1371/journal.pone.0203364 (2018).CAS 
    Article 

    Google Scholar 
    12.Stafford, C. A., Walker, G. P. & Ullman, D. E. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. 108(23), 9350–9355. https://doi.org/10.1073/pnas.1100773108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Zhang, Y. C., Cao, W. J., Zhong, L. R., Godfray, H. C. J. & Liu, X. D. Host plant determines the population size of an obligate symbiont (Buchnera aphidicola) in aphids. Appl. Environ. Microbiol. 82(8), 2336–2346. https://doi.org/10.1128/AEM.04131-15 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Hansen, A. K. & Moran, N. A. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc. Natl. Acad. Sci. 108(7), 2849–2854. https://doi.org/10.1073/pnas.1013465108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nakabachi, A. et al. Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc. Natl. Acad. Sci. 102(15), 5477–5482. https://doi.org/10.1073/pnas.1013465108 (2005).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wernegreen, J. J. Strategies of genomic integration within insect-bacterial mutualisms. Biol Bull. 223(1), 112–122. https://doi.org/10.1086/BBLv223n1p112 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Zhang, Y. et al. Genetic structure of the bacterial endosymbiont, Buchnera aphidicola, from its host aphid, Schlechtendalia chinensis, and evolutionary implications. Curr. Microbiol. 75(3), 309–315. https://doi.org/10.1007/s00284-017-1381-0 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Zhang, F. et al. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F) (Homoptera: Aphididae). Front. Physiol. 6, 155. https://doi.org/10.3389/fphys.2015.00155 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Machado-Assefh, C. R., Lopez-Isasmendi, G., Tjallingii, W. F., Jander, G. & Alvarez, A. E. Disrupting Buchnera aphidicola, the endosymbiotic bacteria of Myzus persicae, delays host plant acceptance. Arthropod. Plant Interact. 9(5), 529–541. https://doi.org/10.1007/s11829-015-9394-8 (2015).Article 

    Google Scholar 
    20.Douglas, A. E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43(1), 17–37. https://doi.org/10.1146/annurev.ento.43.1.17 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296(5577), 2376–2379. https://doi.org/10.1126/science.1071278 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Van Ham, R. C. H. J. et al. Reductive genome evolution in Buchnera aphidicola. Proc. Natl. Acad. Sci. 100(2), 581–586. https://doi.org/10.1073/pnas.0235981100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bouvaine, S., Boonham, N. & Douglas, A. E. Interactions between a Luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. J. Gen. Virol. 92(6), 1467–1474. https://doi.org/10.1099/vir.0.029355-0 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Rana, V. S., Singh, S. T., Priya, N. G., Kumar, J. & Rajagopal, R. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS ONE 7(8), e42168. https://doi.org/10.1371/journal.pone.0042168 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Kliot, A. & Ghanim, M. The role of bacterial chaperones in the circulative transmission of plant viruses by insect vectors. Viruses 5(6), 1516–1535. https://doi.org/10.3390/v5061516 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Filichkin, S. A., Brumfield, S., Filichkin, T. P. & Young, M. J. In vitro interactions of the aphid endosymbiotic SymL chaperonin with Barley yellow dwarf virus. J. Virol. 71(1), 569–577. https://doi.org/10.1128/JVI.71.1.569-577.1997 (1997).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.van den Heuvel, J. F., Verbeek, M. & van der Wilk, F. Endosymbiotic bacteria associated with circulative transmission of Potato leafroll virus by Myzus persicae. J. Gen. Virol. 75(Pt 10), 2559–2565. https://doi.org/10.1099/0022-1317-75-10-2559 (1994).Article 
    PubMed 

    Google Scholar 
    28.Gray, S. M. & Gildow, F. E. Luteovirus-aphid interactions. Annu. Rev. Phytopathol. 41(1), 539–566. https://doi.org/10.1146/annurev.phyto.41.012203.105815 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Li, C., Cox-Foster, D., Gray, S. M. & Gildow, F. Vector specificity of Barley yellow dwarf virus (BYDV) transmission: Identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 286(1), 125–133. https://doi.org/10.1006/viro.2001.0929 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Dombrovsky, A., Gollop, N., Chen, S., Chejanovsky, N. & Raccah, B. In vitro association between the helper component-proteinase of Zucchini yellow mosaic virus and cuticle proteins of Myzus persicae. J. Gen. Virol. 88(5), 1602–1610. https://doi.org/10.1099/vir.0.82769-0 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.van den Heuvel, J. F. et al. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 71(10), 7258–7265. https://doi.org/10.1128/JVI.71.10.7258-7265.1997 (1997).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Morin, S. et al. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virology 256(1), 75–84. https://doi.org/10.1006/viro.1999.9631 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P. & Kaloshian, I. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc. Natl. Acad. Sci. 111(24), 8919–8924. https://doi.org/10.1073/pnas.1407687111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Vandermoten, S. et al. Comparative analyses of salivary proteins from three aphid species. Insect Mol. Biol. 23(1), 67–77. https://doi.org/10.1111/imb.12061 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Gray, S. M., Cilia, M. & Ghanim, M. Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Adv. Virus Res. 2014, 89. https://doi.org/10.1016/B978-0-12-800172-1.00004-5 (2014).Article 

    Google Scholar 
    36.Eigenbrode, S. D., Ding, H., Shiel, P. & Berger, P. H. Volatiles from potato plants infected with Potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. Biol. Sci. 269(1490), 455–460. https://doi.org/10.1098/rspb.2001.1909 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Rajabaskar, D., Wu, Y., Bosque-Pérez, N. A. & Eigenbrode, S. D. Dynamics of Myzus persicae arrestment by volatiles from Potato leafroll virus-infected potato plants during disease progression. Entomol. Exp. Appl. 148(2), 2. https://doi.org/10.1111/eea.12087 (2013).Article 

    Google Scholar 
    38.Patton, M. F., Bak, A., Sayre, J. M., Heck, M. L. & Casteel, C. L. A polerovirus, Potato leafroll virus, alters plant–vector interactions using three viral proteins. Plant Cell Environ. 43(2), 387–399. https://doi.org/10.1111/pce.13684 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Sadowy, E., Juszczuk, M., David, C., Gronenborn, B. & Danuta Hulanicka, M. D. Mutational analysis of the proteinase function of Potato leafroll virus. J. Gen. Virol. 82(Pt 6), 1517–1527. https://doi.org/10.1099/0022-1317-82-6-1517 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.DeBlasio, S. L. et al. Insights into the polerovirus– plant interactome revealed by coimmunoprecipitation and mass spectrometry. Mol. Plant-Microbe Interact. 28(4), 467–481. https://doi.org/10.1094/MPMI-11-14-0363-R (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Zhong, S. et al. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb. Protoc. 2011(8), 940–949. https://doi.org/10.1101/pdb.prot5652 (2011).Article 

    Google Scholar 
    42.Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat. Protoc. 8(9), 1765–1786. https://doi.org/10.1038/nprot.2013.099 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Morgan, M. et al. ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25(19), 2607–2608. https://doi.org/10.1093/bioinformatics/btp450 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. (2010).45.Gauthier, J. P., Legeai, F., Zasadzinski, A., Rispe, C. & Tagu, D. AphidBase: A database for aphid genomic resources. Bioinformatics 23(6), 783–784. https://doi.org/10.1093/bioinformatics/btl682 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638 (2015).CAS 
    Article 

    Google Scholar 
    48.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18), 3674–3676. https://doi.org/10.1093/bioinformatics/bti610 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Patton, M. F., Arena, G. D., Salminen, J. P., Steinbauer, M. J. & Casteel, C. L. Transcriptome and defence response in Eucalyptus camaldulensis leaves to feeding by Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae): A stealthy psyllid does not go unnoticed. Austral. Entomol. 57(2), 247–254. https://doi.org/10.1111/aen.12319 (2017).Article 

    Google Scholar 
    51.Casteel, C. L. et al. Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector. Plant Physiol. 169(1), 209–218. https://doi.org/10.1104/pp.15.00332 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Nikoh, N. et al. Bacterial genes in the aphid genome: Absence of functional gene transfer from Buchnera to its host. PLoS Genet. 6(2), e1000827. https://doi.org/10.1371/journal.pgen.1000827 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Hansen, A. K. & Degnan, P. H. Widespread expression of conserved small RNAs in small symbiont genomes. ISME J. 8(12), 2490–2502. https://doi.org/10.1038/ismej.2014.121 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Hogenhout, S. A., van der Wilk, F., Verbeek, M., Goldbach, R. W. & van den Heuvel, J. F. Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog. J. Virol. 72(1), 358–365. https://doi.org/10.1128/JVI.72.1.358-365.1998 (1998).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Camberg, J.L., Doyle, S.M., Johnston, D.M., & Wickner, S. Molecular Chaperones. in Brenner’s Encyclopedia of Genetics. 2nd Edn. 456–60. (Elsevier, 2013). https://doi.org/10.1016/B978-0-12-809633-8.06723-6.56.Segal, G. & Ron, E. Z. Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol. Lett. 138(1), 1–10. https://doi.org/10.1111/j.1574-6968.1996.tb08126.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Zhang, L., Pelech, S. & Uitto, V. J. Bacterial GroEL-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3. Exp. Cell Res. 292(1), 231–240. https://doi.org/10.1016/j.yexcr.2003.08.012 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nat. 407(6800), 81–86. https://doi.org/10.1038/35024074 (2000).CAS 
    Article 

    Google Scholar 
    59.Dombrovsky, A., Sobolev, I., Chejanovsky, N. & Raccah, B. Characterization of RR-1 and RR-2 cuticular proteins from Myzus persicae. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146(2), 256–264. https://doi.org/10.1016/j.cbpb.2006.11.013 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Dombrovsky, A., Huet, H., Zhang, H., Chejanovsky, N. & Raccah, B. Comparison of newly isolated cuticular protein genes from six aphid species. Insect Biochem. Mol. Biol. 33(7), 709–715. https://doi.org/10.1016/s0965-1748(03)00065-1 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Liang, Y. & Gao, X. W. The cuticle protein gene MPCP4 of Myzus persicae (Homoptera: Aphididae) plays a critical role in cucumber mosaic virus acquisition. J. Econ. Entomol. 110(3), 848–853. https://doi.org/10.1093/jee/tox025 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Silva, A. X., Jander, G., Samaniego, H., Ramsey, J. S. & Figueroa, C. C. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS ONE 7(6), e36366. https://doi.org/10.1371/journal.pone.0036366 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Deshoux, M., Monsion, B. & Uzest, M. Insect cuticular proteins and their role in transmission of phytoviruses. Curr. Opin. Virol. 33, 137–143. https://doi.org/10.1016/j.coviro.2018.07.015 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Gallot, A. et al. Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem. Mol. Biol. 40(3), 235–240. https://doi.org/10.1016/j.ibmb.2009.12.001 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Cilia, M. et al. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J. Virol. 85(5), 2148–2166. https://doi.org/10.1128/JVI.01504-10 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Wang, H., Wu, K., Liu, Y., Wu, Y. & Wang, X. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi. Sci. Rep. 5, 10971. https://doi.org/10.1038/srep10971 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Seddas, P. et al. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of Beet western yellows virus particles in the aphid. Virology 325(2), 399–412. https://doi.org/10.1016/j.virol.2004.05.014 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Yang, Z., Zhang, F., Zhu, L. & He, G. Identification of differentially expressed genes in brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae) responding to host plant resistance. Bull. Entomol. Res. 96(1), 53–59. https://doi.org/10.1079/ber2005400 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Bass, C. et al. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. 110(48), 19460–19465. https://doi.org/10.1073/pnas.1314122110 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Ramsey, J. S. et al. Adaptation to nicotine feeding in Myzus persicae. J. Chem. Ecol. 40(8), 869–877. https://doi.org/10.1007/s10886-014-0482-5 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Casteel, C. L. & Jander, G. New synthesis: Investigating mutualisms in virus-vector interactions. J. Chem. Ecol. 39(7), 809. https://doi.org/10.1007/s10886-013-0305-0 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Götz, M. et al. Implication of Bemisia tabaci HEAT SHOCK PROTEIN 70 in Begomovirus-whitefly interactions. J. Virol. 86(24), 13241–13252. https://doi.org/10.1128/JVI.00880-12 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Porras, M. F. et al. Enhanced heat tolerance of viral-infected aphids leads to niche expansion and reduced interspecific competition. Nat. Commun. 11(1), 1184. https://doi.org/10.1038/s41467-020-14953-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Syller, J. The influence of temperature on transmission of potato leaf roll virus by Myzus persicae Sulz. Potato Res. 30(1), 47–58. https://doi.org/10.1007/BF02357683 (1987).Article 

    Google Scholar 
    75.Syller, J. The effects of temperature on the susceptibility of potato plants to infection and accumulation of Potato Leafroll Virus. J. Phytopathol. 133(3), 216–224. https://doi.org/10.1111/j.1439-0434.1991.tb00156.x (1991).Article 

    Google Scholar 
    76.Chung, B. N. et al. The effects of high temperature on infection by Potato virus Y, Potato virus A, and Potato leafroll virus. Plant Pathol. J. 32(4), 321–328. https://doi.org/10.5423/PPJ.OA.12.2015.0259 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23(6), 1473–96 (2014).Article 

    Google Scholar 
    78.Jiang, Z. et al. Comparative analysis of genome sequences from four strains of the Buchnera aphidicola Mp endosymbion of the green peach aphid, Myzus persicae. BMC Genom. 14(1), 917. https://doi.org/10.1186/1471-2164-14-917 (2013).CAS 
    Article 

    Google Scholar 
    79.Enders, L. S. et al. Abiotic and biotic stressors causing equivalent mortality induce highly variable transcriptional responses in the soybean aphid. G3 (Bethesda) 5(2), 261–270. https://doi.org/10.1534/g3.114.015149 (2014).Article 

    Google Scholar 
    80.Wilcox, J. L., Dunbar, H. E., Wolfinger, R. D. & Moran, N. A. Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol. Microbiol. 48(6), 1491–1500. https://doi.org/10.1046/j.1365-2958.2003.03522.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 20(4), 1085–1093. https://doi.org/10.1093/bib/bbx085 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    82.Zhang, B., Leonard, S. P., Li, Y. & Moran, N. A. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc. Natl. Acad. Sci. 116(49), 24712–24718. https://doi.org/10.1073/pnas.1915307116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Chong, R. A. & Moran, N. A. Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. PNAS 113(46),13114–13119. https://doi.org/10.1073/pnas.1610749113 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Pers, D. & Hansen, A. K. The boom and bust of the aphid’s essential amino acid metabolism across nymphal development. G3 (Bethesda). 11(9), jkab115. https://doi.org/10.1093/g3journal/jkab115 (2021).Article 

    Google Scholar 
    85.Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R. & Moran, N. A. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5(5), e96. https://doi.org/10.1371/journal.pbio.0050096 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Moran, N. A. & Yun, Y. Experimental replacement of an obligate insect symbiont. Proc. Natl. Acad. Sci. 112(7), 2093–2096. https://doi.org/10.1073/pnas.1420037112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Fares, M. A., Barrio, E., Sabater-Muñoz, B. & Moya, A. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol. Biol. Evol. 19(7), 1162–1170. https://doi.org/10.1093/oxfordjournals.molbev.a004174 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Kliot, A., Cilia, M., Czosnek, H., & Ghanim, M. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with Tomato yellow leaf curl virus. J. Virol. 88(10), 5652–5660. https://doi.org/10.1128/JVI.00071-14 (2014).89.Dheilly, N. M. et al. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc. R. Soc. B Biol. Sci. 2015(282), 20142773 (1803).
    Google Scholar 
    90.Mohan, P. & Sinu, P. A. Does the solitary parasitoid Microplitis pennatulae use a combinatorial approach to manipulate its host?. Entomol. Exp. Appl. 168(4), 295–303 (2020).CAS 
    Article 

    Google Scholar 
    91.Smith, T. E. & Moran, N. A. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc. Natl. Acad. Sci. 117(4), 2113–2121. https://doi.org/10.1073/pnas.1916748117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Learning of a mimic odor combined with nectar nonsugar compounds enhances honeybee pollination of a commercial crop

    1.Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274(1608), 303–313 (2007).Article 

    Google Scholar 
    2.Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 
    Article 

    Google Scholar 
    3.Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).ADS 
    Article 

    Google Scholar 
    4.Ribbands, C. R. The scent perception of the honey bee. Proc. R. Soc. Lond. B 143(912), 367–379 (1955).ADS 
    Article 

    Google Scholar 
    5.von Frisch, K. The Dance Language and Orientation of Bees (Harvard University Press, 1967).
    Google Scholar 
    6.Reinhard, J., Srinivasan, M. V., Guez, D. & Zhang, S. W. Floral scents induce recall of navigational and visual memories in honeybees. J. Exp. Biol. 207(25), 4371–4381 (2004).Article 

    Google Scholar 
    7.Arenas, A., Fernández, V. M. & Farina, W. M. Floral odor learning within the hive affects honeybees’ foraging decisions. Naturwissenschaften 94, 218–222 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Farina, W. M., Grüter, C. & Díaz, P. C. Social learning of floral odours inside the honeybee hive. Proc. R. Soc. Lond. B. 272(1575), 1923–1928 (2005).
    Google Scholar 
    9.Farina, W. M., Grüter, C., Acosta, L. & Mc Cabe, S. Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 94(1), 55–60 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Grüter, C., Acosta, L. E. & Farina, W. M. Propagation of olfactory information within the honeybee hive. Behav. Ecol. Sociobiol. 60(5), 707–715 (2006).Article 

    Google Scholar 
    11.Arenas, A., Fernández, V. M. & Farina, W. M. Floral scents experienced within the colony affect long-term foraging preferences in honeybees. Apidologie 39, 714–722 (2008).Article 

    Google Scholar 
    12.Balbuena, M. S., Arenas, A. & Farina, W. M. Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment. Anim. Behav. 84, 77–83 (2012).Article 

    Google Scholar 
    13.Farina, W. M., Arenas, A., Díaz, P. C., Susic Martin, C. & Estravis Barcala, M. C. Learning of a mimic odor within beehives improves pollination service efficiency in a commercial crop. Curr. Biol. 30, 4284–4290. https://doi.org/10.1016/j.cub.2020.08.018 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31(1), 65–75 (2017).Article 

    Google Scholar 
    15.Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8(4), 349–356 (1977).Article 

    Google Scholar 
    16.Chalisova, N. I. et al. Effect of encoding amino acids on associative learning of honeybee Apis mellifera. J. Evol. Biochem. Fisiol. 47(6), 607 (2011).Article 

    Google Scholar 
    17.Strauss, S. Y. & Whittall, J. B. Non-pollinator agents of selection on floral traits. In Ecology and Evolution of flowers (eds. Harder, L. D. & Barret, S. C. H.) 120–138 (Oxford University Press, 2006).18.McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).Article 

    Google Scholar 
    19.Gatica Hernández, I., Palottini, F., Macri, I., Galmarini, C. R. & Farina, W. M. Appetitive behavior of the honey bee Apis mellifera in response to phenolic compounds naturally found in nectars. J. Exp. Biol. https://doi.org/10.1242/jeb.189910 (2019).Article 

    Google Scholar 
    20.Stevenson, P. C. For antagonists and mutualists: The paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 19(3), 603–614 (2020).CAS 
    Article 

    Google Scholar 
    21.Carlesso, D., Smargiassi, S., Pasquini, E., Bertelli, G. & Baracchi, D. Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Sci. Rep. 11(1), 1–14 (2021).Article 

    Google Scholar 
    22.Kretschmar, J. A. & Baumann, T. W. Caffeine in Citrus flowers. Phytochemistry 52(1), 19–23 (1999).CAS 
    Article 

    Google Scholar 
    23.Wright, G. A. et al. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339(6124), 1202–1204 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Couvillon, M. J. et al. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Curr. Biol. 25, 2815–2818 (2015).CAS 
    Article 

    Google Scholar 
    25.Arnold, S. E. et al. Bumble bees show an induced preference for flowers when primed with caffeinated nectar and a target floral odor. Curr. Biol. 31, 1–5 (2021).Article 

    Google Scholar 
    26.Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27(12), 2545–2558 (2001).CAS 
    Article 

    Google Scholar 
    27.Power, E. F., Stabler, D., Borland, A. M., Barnes, J. & Wright, G. A. Analysis of nectar from low-volume flowers: A comparison of collection methods for free amino acids. Methods Ecol. Evol. 9, 734–743 (2018).Article 

    Google Scholar 
    28.Terrab, A. et al. Analysis of amino acids in nectar from Silene colorata Poiret (Caryophyllaceae). Bot. J. Linn. Soc. 155, 49–56 (2007).Article 

    Google Scholar 
    29.Taha, E. K. A., Al-Kahtani, S. & Taha, R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J. Biol. Sci. 26, 232–237 (2019).CAS 
    Article 

    Google Scholar 
    30.Müller, U. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16, 541–549 (1996).Article 

    Google Scholar 
    31.Müller, U. The nitric oxide system in insects. Prog. Neurobiol. 51, 363–381 (1997).Article 

    Google Scholar 
    32.Lopatina, N. G., Zachepilo, T. H., Kamyshev, N. G. & Chalisova, N. I. The influence of combinations of encoded amino acids on associative learning in the honeybee Apis mellifera L. J. Evol. Biochem. Physiol. 53(2), 123–128 (2017).CAS 
    Article 

    Google Scholar 
    33.Marchi, I. L., Palottini, F. & Farina, W. M. Combined secondary compounds naturally found in nectars enhance honeybee cognition and survival. J. Exp. Biol. 224(6), jeb239616 (2021).Article 

    Google Scholar 
    34.Müller, U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27(1), 159–168 (2000).Article 

    Google Scholar 
    35.Negri, P. et al. Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie 44(5), 575–585 (2013).CAS 
    Article 

    Google Scholar 
    36.Lu, Y. H. et al. Identification of immune regulatory genes in Apis mellifera through caffeine treatment. Insects 11(8), 516 (2020).Article 

    Google Scholar 
    37.Delaplane, K. S. & Mayer, D. F. Crop Pollination by Bees (CAB International, 2000).
    Google Scholar 
    38.Cabrera, A. L. & Willink, A. Biogeografía de América Latina (Organización de Estados Americanos, 1973).
    Google Scholar 
    39.Gabai, A. et al. Protocol for Using Pollinators in Hybrid Seed Production: An Outline for Improving Pollinator Effectiveness. (International Seed Federation, 2018).40.Torretta, J. P., Medan, D., Roig Alsina, A. H. & Montaldo, N. H. Visitantes florales diurnos del girasol (Helianthus annuus L., Asterales: Asteraceae) en la Argentina. Rev. Soc. Entomol. Argent. 69(1–2), 17–32 (2010).
    Google Scholar 
    41.Sáez, A., Sabatino, M. & Aizen, M. A. Interactive effects of large-and small-scale sources of feral honeybees for sunflower in the Argentine Pampas. PLoS One 7(1), e30968 (2012).ADS 
    Article 

    Google Scholar 
    42.Farina, W. M., Díaz, P. C. & Arenas, A. Patent AR082846B1: Una Formulación que Promueve la Polinización Dirigida de Abejas Melíferas Hacia Cultivos de Girasol (Instituto Nacional de Propiedad Intelectual, 2017).43.Noetzel, D. M. Insect Pollination Results on Sunflower 108–112 (Department of Entomology North Dakota State University Fargo USA, 1968).44.Johannsmeier, M. F. & Mostert, J. N. Crop pollination. In Beekeeping in South Africa, 3rd ed. 235–250 (ed. Johannsmeier, M. F.) (Plant Protection Research Institute handbook 14. Agricultural Research Council of South Africa, 2001).45.R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing). https://www.R-project.org/ (2021).46.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).Article 

    Google Scholar 
    47.Crawley, M. J. The R Book (Wiley, 2013).MATH 

    Google Scholar 
    48.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.2.7. https://CRAN.R-project.org/package=DHARMa (2021).49.Chambers, J. M. & Hastie, T. J. Statistical Models in S (Chapman and Hall, 1992).MATH 

    Google Scholar 
    50.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.4., https://CRAN.R-project.org/package=emmeans (2021). More

  • in

    Attachment of zebra and quagga mussel adhesive plaques to diverse substrates

    1.Hebert, P. D. N., Muncaster, B. W. & Mackie, G. L. Ecological and genetic studies on Dreissena polymorpha (Pallas): A new mollusc in the Great Lakes. Can. J. Fish. Aquat. Sci. 46, 1587–1591 (1989).
    Google Scholar 
    2.May, B. & Marsden, J. E. Genetic identification and implications of another invasive species of dreissenid mussel in the Great Lakes. Can. J. Fish. Aquat. Sci. 49, 1501–1506 (1992).
    Google Scholar 
    3.Ackerman, J. D., Cottrell, C. M., Ethier, C. R., Allen, D. G. & Spelt, J. K. Attachment strength of zebra mussels on natural, polymeric, and metallic materials. J. Environ. Eng. ASCE 122, 141–148 (1996).CAS 

    Google Scholar 
    4.Kobak, J. Attachment strength of Dreissena polymorph on artificial substrates. In The Zebra Mussel in Europe (eds van der Velde, G. et al.) 349–354 (Margraf Publishers, 2010).
    Google Scholar 
    5.Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: A review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).CAS 

    Google Scholar 
    6.Karatayev, V. A., Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Lakewide dominance does not predict the potential for spread of dreissenids. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2013.09.007 (2013).Article 

    Google Scholar 
    7.Peyer, S. M., McCarthy, A. J. & Lee, C. E. Zebra mussels anchor byssal threads faster and tighter than quagga mussels in flow. J. Exp. Biol. https://doi.org/10.1242/jeb.028688 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Amini, S. et al. Preventing mussel adhesion using lubricant-infused materials. Science 357, 668–673 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Matsui, Y. et al. Attachment strength of Limnoperna fortunei on substrates, and their surface properties. Biofouling 17, 29–39 (2001).
    Google Scholar 
    10.Marsden, J. E. & Lansky, D. M. Substrate selection by settling zebra mussels, Dreissena polymorpha, relative to material, texture, orientation, and sunlight. Can. J. Zool. 78, 787–793 (2000).
    Google Scholar 
    11.Kobak, J. Factors influencing the attachment strength of Dreissena polymorpha (Bivalvia). Biofouling 22, 141–150 (2006).
    Google Scholar 
    12.Ackerman, J. D., Ethier, C. R., Allen, D. G. & Spelt, J. K. Investigation of zebra mussel adhesion strength using rotating disks. J. Environ. Eng. 118, 708–724 (1992).
    Google Scholar 
    13.Ackerman, J. D., Ethier, C. R., Spelt, J. K., Allen, D. G. & Cottrell, C. M. A wall jet to measure the attachment strength of zebra mussels. Can. J. Fish. Aquat. Sci. 52, 126–135 (1995).
    Google Scholar 
    14.Balogh, C., Serfőző, Z., bij de Vaate, A., Noordhuis, R. & Kobak, J. Biometry, shell resistance and attachment of zebra and quagga mussels at the beginning of their co-existence in large European lakes. J. Great Lakes Res. 45, 777–787 (2019).
    Google Scholar 
    15.Grutters, B. M. C., Verhofstad, M. J. J. M., van der Velde, G., Rajagopal, S. & Leuven, R. S. E. W. A comparative study of byssogenesis on zebra and quagga mussels: The effects of water temperature, salinity and light–dark cycle. Biofouling 28, 121–129 (2012).PubMed 

    Google Scholar 
    16.Naddafi, R. & Rudstam, L. G. Predator-induced behavioural defences in two competitive invasive species: The zebra mussel and the quagga mussel. Anim. Behav. 86, 1275–1284 (2013).
    Google Scholar 
    17.Bell, E. C. & Gosline, J. M. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017 (1996).CAS 
    PubMed 

    Google Scholar 
    18.Brazee, S. L. & Carrington, E. Interspecific comparison of the mechanical properties of mussel byssus. Biol. Bull. 211, 263–274 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    19.Burkett, J. R., Wojtas, J. L., Cloud, J. L. & Wilker, J. J. A method for measuring the adhesion strength of marine mussels. J. Adhes. 85, 601–615 (2009).CAS 

    Google Scholar 
    20.Desmond, K. W., Zacchia, N. A., Waite, J. H. & Valentine, M. T. Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Hamada, N., Roman, V., Howell, S. & Wilker, J. Examining potential active tempering of adhesive curing by marine mussels. Biomimetics 2, 16 (2017).
    Google Scholar 
    22.Farsad, N. & Sone, E. D. Zebra mussel adhesion: Structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha. J. Struct. Biol. 177, 613–620 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    23.Stalder, A. F. et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 364, 72–81 (2010).CAS 

    Google Scholar 
    24.Claxton, W. T., Wilson, A. B., Mackie, G. L. & Boulding, E. G. A genetic and morphological comparison of shallow- and deep-water populations of the introduced dreissenid bivalve Dreissena bugensis. Can. J. Zool. 76, 1269–1276 (1998).
    Google Scholar 
    25.Peyer, S. M., Hermanson, J. C. & Lee, C. E. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes. J. Exp. Biol. 213, 2602–2609 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    26.Sprung, M. Field and laboratory observations of Dreissena polymorpha larvae: Abundance, growth, mortality and food demands. Arch. Hydrobiol. 115, 537–561 (1989).
    Google Scholar 
    27.Nichols, S. J. Maintenance of the zebra mussel (Dreissena polymorpha) under laboratory conditions. In Zebra Mussels: Biology, Impacts, and Control (eds Nalepa, T. F. & Schloesser, D. W.) 733–747 (Lewis Publishers, 1992).
    Google Scholar 
    28.Porter, A. E. & Marsden, J. E. Adult zebra mussels (Dreissena polymorpha) avoid attachment to mesh materials. Northeast. Nat. 15, 589–594 (2008).
    Google Scholar 
    29.Kimmins, K. M., James, B. D., Nguyen, M. T., Hatton, B. D. & Sone, E. D. Oil-infused silicone prevents zebra mussel adhesion. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.9b00832 (2019).Article 

    Google Scholar 
    30.Peyer, S. M., Hermanson, J. C. & Lee, C. E. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion. J. Exp. Biol. 214, 2226–2236 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    31.Berkman, P. A., Garton, D. W., Haltuch, M. A., Kennedy, G. W. & Febo, L. R. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates. Biol. Invasions https://doi.org/10.1023/A:1010088925713 (2000).Article 

    Google Scholar 
    32.Skaja, A., Tordonato, D. & Merten, B. Coatings for invasive mussel control: Colorado river field study. In Biol. Manag. Invasive Quagga Zebra Mussels West. United States 451–466 (2015) https://doi.org/10.1201/b18447-37https://doi.org/10.1201/b18447-37.33.Zhao, H., Robertson, N. B., Jewhurst, S. A. & Waite, J. H. Probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. https://doi.org/10.1074/jbc.M510792200 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kimmins, K. Freshwater Mussel Adhesion: Interfacial Structures & Antifouling Surfaces (Univesity of Toronto, 2020).
    Google Scholar 
    35.Kobak, J. Behavior of juvenile and adult zebra mussels (Dreissena polymorpha). In Quagga Zebra Mussel Biol. Impacts, Control 331–344 (2013) https://doi.org/10.1201/b15437-28.36.Waite, J. H. Adhesion in byssally attached bivalves. Biol. Rev. 58, 209–231 (1983).CAS 

    Google Scholar 
    37.Lachance, A. A., Myrand, B., Tremblay, R., Koutitonsky, V. & Carrington, E. Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2, 119–129 (2008).
    Google Scholar 
    38.Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 103, 12999–13003 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Rzepecki, L. M. & Waite, J. H. The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation. Mol. Mar. Biol. Biotechnol. 2, 255–266 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Waite, J. H. & Qin, X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40, 2887–2893 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Zhao, H. & Waite, J. H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281, 26150–26158 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Petrone, L. et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 6, 8737 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Waite, J. H. Mussel adhesion—Essential footwork. J. Exp. Biol. 220, 517–530 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ou, X. et al. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci. Adv. 6, eabb7620 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N. & Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349, 628–632 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bilotto, P. et al. Adhesive properties of adsorbed layers of two recombinant mussel foot proteins with different levels of DOPA and tyrosine. Langmuir 35, 15481–15490 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Kim, S. et al. Cation–π interaction in DOPA-deficient mussel adhesive protein mfp-1. J. Mater. Chem. B 3, 738–743 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology

    1.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nature Microbiol. 2018;3:977–82.CAS 

    Google Scholar 
    2.Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat. Med. 2018;24:392–400.3.Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    4.Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.5.Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang HB, et al. Phage-specific metabolic reprogramming of virocells. ISME J. 2020;14:881–95.PubMed 
    PubMed Central 

    Google Scholar 
    6.Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:1344–57.CAS 

    Google Scholar 
    7.Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.CAS 
    PubMed 

    Google Scholar 
    8.Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 

    Google Scholar 
    9.Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci. 2011;108:E757–E764.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 2021;15:981–98.PubMed 

    Google Scholar 
    11.Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.CAS 
    PubMed 

    Google Scholar 
    12.Rosenwasser S, Ziv C, Creveld SG, van, Vardi A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 2016;24:821–32.CAS 
    PubMed 

    Google Scholar 
    13.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:1–21.
    Google Scholar 
    15.Zhong Z-P, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li Y-F, et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome. 2021;9:160.PubMed 
    PubMed Central 

    Google Scholar 
    16.Zhong Z-P, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, et al. Viral ecogenomics of arctic cryopeg brine and sea ice. mSystems. 2020;5:e00246–20.17.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757–60.CAS 
    PubMed 

    Google Scholar 
    18.Gao S-M, Schippers A, Chen N, Yuan Y, Zhang M-M, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021;19:501–13.CAS 
    PubMed 

    Google Scholar 
    20.Blazanin M, Turner PE. Community context matters for bacteria-phage ecology and evolution. ISME J. 2021;1–10.21.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23. e14CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host and Microbe. 2020;28:724–40. e8CAS 
    PubMed 

    Google Scholar 
    23.Roux S, Páez-Espino D, Chen IA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 2021;49:1–12.24.Nayfach S, Páez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6:960–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Roux S, Matthijnssens J, Dutilh BE. Metagenomics in virology. Encycloped Virol. 2021;133–40. Published online 2021 Mar 1. https://doi.org/10.1016/B978-0-12-809633-8.20957-6.26.Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.PubMed 
    PubMed Central 

    Google Scholar 
    27.Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ. 2016;4:e2777.PubMed 
    PubMed Central 

    Google Scholar 
    28.Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.CAS 
    PubMed 

    Google Scholar 
    29.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum Information about an Uncultivated Virus Genome (MIUViG): a community consensus on standards and best practices for describing genome sequences from uncultivated viruses. Nat Biotechnol. 2018;37:29–37.PubMed 
    PubMed Central 

    Google Scholar 
    30.Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019;37:632–9.
    Google Scholar 
    31.Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the viral proteomic tree server. Bioinformatics. 2017;33:2379–80.32.Moraru C, Varsani A, Kropinski AM. VIRIDIC-a novel tool to calculate the intergenomic similarities of prokaryote-infecting. Viruses. 2020;12:1268.CAS 
    PubMed Central 

    Google Scholar 
    33.Pons JC, Paez-Espino D, Riera G, Ivanova N, Kyrpides NC, Llabrés M. VPF-Class: taxonomic assignment and host prediction of uncultivated viruses based on viral protein families. Bioinformatics. 2021;37:1805–13.34.Bolduc B, Youens-Clark K, Roux S, Hurwitz BL, Sullivan MB. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 2017;11:7–14.PubMed 

    Google Scholar 
    35.Merchant N, Lyons E, Goff S, Vaughn M, Ware D, Micklos D, et al. The iPlant Collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLOS Biol. 2016;14:e1002342.PubMed 
    PubMed Central 

    Google Scholar 
    36.Teytelman L, Stoliartchouk A, Kindler L, Hurwitz BL. Protocols.io: virtual communities for protocol development and discussion. PLOS Biol. 2016;14:e1002538.PubMed 
    PubMed Central 

    Google Scholar 
    37.Kindler L, Stoliartchouk A, Gomez C, Thornton J, Teytelman L, Hurwitz BL. VERVENet: the viral ecology research and virtual exchange network. PeerJ. 2021; in press.38.Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Sousa AL de, Maués D, Lobato A, Franco EF, Pinheiro K, Araújo F, et al. PhageWeb—web interface for rapid identification and characterization of prophages in bacterial genomes. Front Genet. 2018; 9.40.Tynecki P, Guziński A, Kazimierczak J, Jadczuk M, Dastych J, Onisko A. PhageAI—bacteriophage life cycle recognition with machine learning and natural language processing. bioRxiv 2020; 2020.07.11.198606.41.Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, et al. VIROME: a standard operating procedure for analysis of viral metagenome sequences. Standards Genom Sci. 2012;6:427–39.
    Google Scholar 
    42.Roux S, Faubladier M, Mahul A, Paulhe N, Bernard A, Debroas D, et al. Metavir: a web server dedicated to virome analysis. Bioinformatics. 2011;27:3074–5.CAS 
    PubMed 

    Google Scholar 
    43.Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States department of energy systems biology knowledgebase. Nat Biotechnol. 2018;36:566–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.PubMed 
    PubMed Central 

    Google Scholar 
    45.Bolduc B, Jang HB, Doulcier G, You Z-QZ, Roux S, Sullivan MB. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ. 2017;5:e3243.PubMed 
    PubMed Central 

    Google Scholar 
    46.Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci. 2014;111:10714–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:37.PubMed 
    PubMed Central 

    Google Scholar 
    48.Ren J, Kai S, Chao D, Nathan A, Ahlgren, JA, Fuhrman, YL, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77. https://doi.org/10.1007/s40484-019-0187-4.49.Amgarten D, Braga LPP, da Silva AM, Setubal JC. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 2018;9:1–8.
    Google Scholar 
    50.Pratama A, Bolduc B, Zayed AA, Zhong Z-P, Guo J, Vik DR, et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ. 2021; In Press.51.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90. https://doi.org/10.1186/s40168-020-00867-0.52.Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.CAS 
    PubMed 

    Google Scholar 
    53.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CCC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    54.Vik D, Bolduc B, Roux S, Krupovic M, Sullivan MB. MArVDv2: a machine learning approach to metagenomic archaeal virus detection. bioRxiv 2021; In Press..55.Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, et al. Discovery of several thousand highly diverse circular DNA viruses. eLife. 2020;9:1–26.
    Google Scholar 
    56.Tisza MJ, Belford AK, Domínguez-Huerta G, Bolduc B, Buck CB. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evolut. 2021;7:1–12.
    Google Scholar 
    57.Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–8900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol Rev. 2016;40:258–72.CAS 
    PubMed 

    Google Scholar 
    59.Galiez C, Siebert M, Enault F, Vincent J, Söding J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics. 2017;33:3113–14.60.Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S & Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021;39:578–85. https://doi.org/10.1038/s41587-020-00774-7.61.Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genom. 2016;17:930.
    Google Scholar 
    62.Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.CAS 
    PubMed 

    Google Scholar 
    63.Gregory AC, Gerhardt K, Zhong Z-P, Bolduc B, Temperton B, Konstantinidis KT, et al. MetaPop: a pipeline for macro- and micro-diversity analyses and visualization of microbial and viral metagenome-derived populations. bioRxiv 2020; 2020.11.01.363960.64.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    65.Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 2019;48:D570–D578.PubMed Central 

    Google Scholar 
    66.Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, Konstantinidis K, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genom. 2013;14:320.CAS 

    Google Scholar 
    67.Wood-Charlson EM, Anubhav, Auberry D, Blanco H, Borkum MI, Corilo YE, et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat Rev Microbiol. 2020;18:313–4.CAS 
    PubMed 

    Google Scholar  More

  • in

    Conventional agriculture and not drought alters relationships between soil biota and functions

    1.Baer, S. G. & Birgé, H. E. Soil ecosystem services: An overview. Manag. Soil Health Sustain. Agric. 1, 1–22 (2018).
    Google Scholar 
    2.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS 
    PubMed 

    Google Scholar 
    3.Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biol. 21, 973–985 (2015).ADS 

    Google Scholar 
    5.Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 

    Google Scholar 
    6.Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Smith, P. et al. Global change pressures on soils from land use and management. Global Change Biol. 22, 1008–1028 (2016).ADS 

    Google Scholar 
    9.Birkhofer, K., Smith, H. G. & Rundlöf, M. Environmental Impacts of Organic Farming. in eLS. 1–7 (John Wiley & Sons Ltd, 2016).10.Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005).
    Google Scholar 
    11.Abbott, L. K. & Manning, D. A. C. Soil health and related ecosystem services in organic agriculture. Sustain. Agric. Res. 4, 116 (2015).
    Google Scholar 
    12.de Graaff, M.-A., Hornslein, N., Throop, H. L., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis. in Advances in Agronomy vol. 155 1–44 (Elsevier, 2019).13.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).ADS 

    Google Scholar 
    15.Iglesias, A. & Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manage. 155, 113–124 (2015).
    Google Scholar 
    16.Pörtner, H. O. et al. IPBES-IPCC Co-sponsored Workshop Report Synopsis on Biodiversity and Climate Change. https://zenodo.org/record/4920414 (2021).17.Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).ADS 
    PubMed 

    Google Scholar 
    18.Holmstrup, M. et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Sci. Rep. 7, 41388 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Fry, E. L. et al. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology 99, 2260–2271 (2018).PubMed 

    Google Scholar 
    20.Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Schimel, J. P. Life in dry soils: Effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    22.Kundel, D. et al. Drought effects on nitrogen provisioning in different agricultural systems: Insights gained and lessons learned from a field experiment. Nitrogen 2, 1–17 (2021).
    Google Scholar 
    23.Abbasi, A. O. et al. Reviews and syntheses: Soil responses to manipulated precipitation changes: An assessment of meta-analyses. Biogeosciences 17, 3859–3873 (2020).ADS 
    CAS 

    Google Scholar 
    24.Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Yin, R. et al. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 147, 107847 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).ADS 
    CAS 

    Google Scholar 
    28.Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).
    Google Scholar 
    29.Iizumi, T. & Wagai, R. Leveraging drought risk reduction for sustainable food, soil and climate via soil organic carbon sequestration. Sci. Rep. 9, 19744 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).
    Google Scholar 
    31.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. PNAS 109, 18226–18231 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: A novel experimental infrastructure. Ecosphere 10, e02635 (2019).
    Google Scholar 
    33.Birkhofer, K. et al. Ecosystem services: Current challenges and opportunities for ecological research. Front. Ecol. Evol. 2, 87 (2015).
    Google Scholar 
    34.Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018).
    Google Scholar 
    35.Chabert, A. & Sarthou, J.-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric. Ecosyst. Environ. 292, 106815 (2020).CAS 

    Google Scholar 
    36.Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. PNAS 117, 28140–28149 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity: A meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    38.Kundel, D. et al. Effects of simulated drought on biological soil quality, microbial diversity and yields under long-term conventional and organic agriculture. FEMS Microbiol. Ecol. 96, fiaa205 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Chen, Q.-L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).CAS 

    Google Scholar 
    40.Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).
    Google Scholar 
    41.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vazquez, C., de Goede, R. G. M., Rutgers, M., de Koeijer, T. J. & Creamer, R. E. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. Eur. J. Soil. Sci. 72, 1624–1639 (2020).
    Google Scholar 
    43.Zwetsloot, M. J. et al. Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil. Sci. 72, 1640–1654 (2020).
    Google Scholar 
    44.Delgado-Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 20, 1295–1305 (2017).PubMed 

    Google Scholar 
    45.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Meyer, S., Kundel, D., Birkhofer, K., Fliessbach, A. & Scheu, S. Soil microarthropods respond differently to simulated drought in organic and conventional farming systems. Ecol. Evol. 11, 10369–10380 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    47.De Smedt, P. et al. Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landscape Ecol. 33, 407–421 (2018).
    Google Scholar 
    48.Liu, W. P. A., Phillips, L. M., Terblanche, J. S., Janion-Scheepers, C. & Chown, S. L. An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia 195, 873–885 (2021).ADS 
    PubMed 

    Google Scholar 
    49.Birkhofer, K. et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 40, 2297–2308 (2008).CAS 

    Google Scholar 
    50.Mäder, P. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).ADS 
    PubMed 

    Google Scholar 
    51.Birkhofer, K., Bezemer, T. M., Hedlund, K. & Setälä, H. Community composition of soil organisms under different wheat farming systems. in Microbial Ecology in Sustainable Agroecosystems 89–111 (CRC press Boca Raton, 2012).52.Birkhofer, K. et al. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biol. Biochem. 43, 2200–2207 (2011).CAS 

    Google Scholar 
    53.Siebert, J. et al. Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. Adv. Ecol. Res. 60, 25–58 (2019).
    Google Scholar 
    54.de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).ADS 

    Google Scholar 
    55.Torode, M. D. et al. Altered precipitation impacts on above-and below-ground grassland invertebrates: Summer drought leads to outbreaks in spring. Front. Plant Sci. 7, 1468 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    56.Jonas, J. L., Wilson, G. W. T., White, P. M. & Joern, A. Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biol. Biochem. 39, 2594–2602 (2007).CAS 

    Google Scholar 
    57.Susanti, W. I., Pollierer, M. M., Widyastuti, R., Scheu, S. & Potapov, A. Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol. Evol. 9, 9027–9039 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    58.Seres, A. et al. Collembola decrease the nitrogen uptake of maize through arbuscular mycorrhiza. ekol 28, 242–247 (2009).
    Google Scholar 
    59.Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS 

    Google Scholar 
    60.Carson, J. K. et al. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 76, 3936–3942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Krause, H.-M., Fliessbach, A., Mayer, J. & Mäder, P. Implementation and management of the DOK long-term system comparison trial. in Long-Term Farming Systems Research 37–51, (Elsevier, 2020).62.Richner, W. et al. Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017). Agrarforschung Schweiz 8, 47–66 (2017).
    Google Scholar 
    63.Kundel, D. et al. Design and manual to construct rainout-shelters for climate change experiments in agroecosystems. Front. Environ. Sci. 6, 14 (2018).
    Google Scholar 
    64.Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 109, 600–613 (2021).
    Google Scholar 
    65.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). in Wiley StatsRef: Statistics Reference Online 1–15.66.Fletcher, D. J. & Underwood, A. J. How to cope with negative estimates of components of variance in ecological field studies. J. Exp. Mar. Biol. Ecol. 273, 89–95 (2002).
    Google Scholar 
    67.Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org.69.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar  More