More stories

  • in

    The size and shape of parasitic larvae of naiads (Unionidae) are not dependent on female size

    1.MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    2.Stearns, S. C. The evolution of life history traits: A critique of the theory and a review of the data. Annu. Rev. Ecol. Evol. Syst. 8, 145–171. https://doi.org/10.1146/annurev.es.08.110177.001045 (1977).Article 

    Google Scholar 
    3.Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 92, 572–607. https://doi.org/10.1111/brv.12244 (2017).Article 
    PubMed 

    Google Scholar 
    4.Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7 (2018).Article 

    Google Scholar 
    5.Ferreira-Rodríguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87. https://doi.org/10.1016/j.biocon.2019.01.002 (2019).Article 

    Google Scholar 
    6.Haag, W. R. & Rypel, A. L. Growth and longevity in freshwater mussels: Evolutionary and conservation implications. Biol. Rev. 86, 225–247. https://doi.org/10.1111/j.1469-185X.2010.00146.x (2011).Article 
    PubMed 

    Google Scholar 
    7.Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, 2012).Book 

    Google Scholar 
    8.Ziuganov, V. et al. Life span variation of the freshwater pearl shell: A model species for testing longevity mechanisms in animals. AMBIO J. Hum. Environ. 29, 102–105. https://doi.org/10.1579/0044-7447-29.2.102 (2000).Article 

    Google Scholar 
    9.Wächtler, K., Drehen-Mansur, M. C., & Richter, T. Larval types and early postlarval biology in Naiads (Unionoida). In Ecology and Evolution of the Freshwater Mussels Unionoida (eds. Bauer, G. & Wächtler, K.) 93–119 (Springer Science & Business Media, 2001).10.Hanson, J. M., Mackay, W. C. & Prepas, E. E. Effect of size-selective predation by muskrats (Ondatra zebithicus) on a population of unionid clams (Anodonta grandis simpsoniana). J. Anim. Ecol. 58, 15–28. https://doi.org/10.2307/4983 (1989).Article 

    Google Scholar 
    11.Bauer, G. The adaptive value of offspring size among freshwater mussels (Bivalvia; Unionoidea). J. Anim. Ecol. 63, 933–944. https://doi.org/10.2307/5270 (1994).Article 

    Google Scholar 
    12.Bauer, G. Framework and driving forces for the evolution of Naiad life histories. In Ecology and Evolution of the Freshwater Mussels Unionoida (eds. Bauer, G. & Wächtler, K.) 233–257 (Springer Science & Business Media, 2001).13.Haag, W. R. The role of fecundity and reproductive effort in defining life-history strategies of North American freshwater mussels. Biol. Rev. 88, 745–766. https://doi.org/10.1111/brv.12028 (2013).Article 
    PubMed 

    Google Scholar 
    14.Wood, E. M. Development and morphology of the glochidium larva of Anodonta cygnea (Mollusca: Bivalvia). J. Zool. 173, 1–13. https://doi.org/10.1111/j.1469-7998.1974.tb01743.x (1974).Article 

    Google Scholar 
    15.Silverman, H., Steffens, W. L. & Dietz, T. Calcium from extracellular concretions in the gills of freshwater unionid mussels is mobilized during reproduction. J. Exp. Zool. 236, 137–147. https://doi.org/10.1002/jez.1402360204 (1985).CAS 
    Article 

    Google Scholar 
    16.Silverman, H., Kays, W. T. & Dietz, T. H. Maternal calcium contribution to glochidial shells in freshwater mussels (Eulamellibranchia: Unionidae). J. Exp. Zool. 242, 137–146. https://doi.org/10.1002/jez.1402420204 (1987).CAS 
    Article 

    Google Scholar 
    17.McIvor, A. L. & Aldridge, D. C. The reproductive biology of the depressed river mussel Pseudanodonta complanata (Bivalvia: Unionidae) with implications for its conservation. J. Molluscan Stud. 73, 259–266. https://doi.org/10.1093/mollus/eym023 (2007).Article 

    Google Scholar 
    18.Neves, R. J., Bogan, A. E., WIlliams, J. D., Ahlstedt, S. A., & Hartfield, P. W. Status of aquatic mollusks in the southeastern United States: A downward spiral of diversity. In Aquatic Fauna in Peril: A Southeastern Perspective (eds. Benz, W. & Collins, D. E.) 43–85 (Southeast Aquatic Research Institute, 1997).19.Kat, P. W. Parasitism and the Unionacea (Bivalvia). Biol. Rev. 59, 189–207. https://doi.org/10.1111/j.1469-185X.1984.tb00407.x (1984).Article 

    Google Scholar 
    20.Ćmiel, A. M., Zając, K., Lipińska, A. M. & Zając, T. Glochidial infestation of fish by the endangered thick-shelled river mussel Unio crassus. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 535–544. https://doi.org/10.1002/aqc.2883 (2018).Article 

    Google Scholar 
    21.Modesto, V. et al. Fish and mussels: Importance of fish for freshwater mussel conservation. Fish Fish. 19, 244–259. https://doi.org/10.1111/faf.12252 (2018).Article 

    Google Scholar 
    22.Jansen, W. A. & Hanson, M. J. Estimates of the number of glochidia produced by clams (Anodonta grandis simpsoniana Lea) attaching to yellow perch (Perca flavescens) and surviving to various ages in Narrow Lake, Alberta. Can. J. Zool. 69, 973–977. https://doi.org/10.1139/z91-141 (1991).Article 

    Google Scholar 
    23.Young, M. & Williams, J. The reproductive biology of the freshwater pearl mussel Margaritifera margaritifera (Linn.) in Scotland. II Laboratory studies. Arch. Hydrobiol. 100, 29–43 (1984).
    Google Scholar 
    24.Zimmerman, L. & Neves, R. J. Effects of temperature on duration of viability for glochidia of freshwater mussels (Bivalvia: Unionidae). Am. Malacol. Bull. 17, 31–35 (2002).
    Google Scholar 
    25.Haag, W. R. & Warren, M. L. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA. J. N. Am. Benthol. Soc. 22, 78. https://doi.org/10.2307/1467979 (2003).Article 

    Google Scholar 
    26.Ćmiel, A. M., Zając, T., Zając, K., Lipińska, A. & Najberek, K. Single or multiple spawning? Comparison of breeding strategies of freshwater Unionidae mussels under stochastic environmental conditions. Hydrobiologia 848, 3067–3075. https://doi.org/10.1007/s10750-019-04045-8 (2021).Article 

    Google Scholar 
    27.Lillie, F. R. The embryology of the unionidae. A study in cell-lineage. J. Morphol. 10, 1–100. https://doi.org/10.1002/jmor.1050100102 (1895).Article 

    Google Scholar 
    28.Lopes-Lima, M. et al. The strange case of the tetragenous Anodonta anatina. J. Exp. Zool. 325, 52–56. https://doi.org/10.1002/jez.1995 (2016).Article 

    Google Scholar 
    29.Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. N. Am. Benthol. Soc. 27, 370–394. https://doi.org/10.1899/07-093.1 (2008).Article 

    Google Scholar 
    30.Zając, K. & Zając, T. A. Seasonal patterns in the developmental rate of glochidia in the endangered thick-shelled river mussel. Unio crassus Philipsson. 1788. Hydrobiologia 848, 3077–3091. https://doi.org/10.1007/s10750-020-04240-y (2021).CAS 
    Article 

    Google Scholar 
    31.Jones, J. W., Mair, R. A. & Neves, R. J. Factors affecting survival and growth of juvenile freshwater mussels (Bivalvia: Unionidae) cultured in recirculating aquaculture systems. N. Am. J. Aquac. 67, 210–220. https://doi.org/10.1577/A04-055.1 (2005).Article 

    Google Scholar 
    32.Iwata, H. & Ukai, Y. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 93, 384–385. https://doi.org/10.1093/jhered/93.5.384 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Freeman, H. Computer processing of line drawing images. ACM Comput. Surv. 6, 57–97. https://doi.org/10.1145/356625.356627 (1974).Article 
    MATH 

    Google Scholar 
    34.Kuhl, F. P. & Giardina, C. R. Elliptic Fourier features of a closed contour. Comput. Gr. Image Process. 18, 236–258. https://doi.org/10.1016/0146-664X(82)90034-X (1982).Article 

    Google Scholar 
    35.Aldridge, D. C. & Horne, D. C. Fossil glochidia (Bivalvia. Unionidae): Identification and value in palaeoenvironmental reconstructions. J. Micropalaeontol. 17, 179–182. https://doi.org/10.1144/jm.17.2.179 (1998).Article 

    Google Scholar 
    36.Antonova, L. A. & Starobogatov, Y. I. Generic differences of glochidia of naiades (Bivalvia Unionoidea) of the fauna of USSR and problems of the evolution of glochidia. Systematics and Fauna of Gastropoda. Bivalvia and Cephalopoda. Proc. Zool. Inst. Leningr. 187, 129–154 (1988) (in Russian).
    Google Scholar 
    37.Niemeyer, B. Vergleichende Untersuchungen zur bionomischen Strategie der Teichmuschelarten Anodonta cygnea L. und Anodonta anatina L. PhD thesis, Institut für Zoologie der Tierärztlichen Hochschule (1992) (in German).38.Harms, W. Postembryonale Entwicklungsgeschichte der Unioniden. Zool. Jb. 28, 325–386 (1909) (in German).
    Google Scholar 
    39.Hüby, B. Zur Entwicklungsbiologie der Fließgewässermuschel Pseudanodonta complanata. PhD thesis, Institut für Zoologie der Tierärztlichen Hochschule (1988) (in German).40.Nagel, K. O. Anatomische, morphologische und biochemische Untersuchungen zur Taxonomie und systematik der europäischer Unionacea (Mollusca: Bivalvia). PhD Dissertation, Universitat des Landes Hessen (1988) (in German).41.Nagel, K. O. Anatomische und morphologische Merkmale europäischer Najaden (Unionoidea: Margaritiferidae und Unionidae) und ihre Bedeutung für die Systematik. Heldia 2, 3–48 (1999) (in German).
    Google Scholar 
    42.Pekkarinen, M. & Englund, V. P. M. Sizes of intramarsupial unionacean glochidia in Finland. Arch. Hydrobiol. 134, 379–391. https://doi.org/10.1127/archiv-hydrobiol/134/1995/379 (1995).Article 

    Google Scholar 
    43.Escobar-Calderón, J. F. & Douda, K. Variable performance of metamorphosis success indicators in an in vitro culture of freshwater mussel glochidia. Aquaculture 513, 734404. https://doi.org/10.1016/j.aquaculture.2019.734404 (2019).CAS 
    Article 

    Google Scholar 
    44.Huber, V. M. M. Host Fish Suitability for the Endangered Native Anodonta and Impacts of the Invasive Sinanodonta Woodiana on Their Reproductive Success. PhD Thesis, Technische Universität München (2019).45.Scharsack, G. Licht-und Elektronenmikroskopische Untersuchungen an Larvalstadien einheimischer Unionacea (Bivalvia; Eulamellibranchiata). PhD Thesis, University of Hannover (1994) (in German).46.Hoggarth, M. A. Descriptions of some of the glochidia of the Unionidae (Mollusca: Bivalvia). Malacologia 41, 1–118 (1999).
    Google Scholar 
    47.Başçınar, N. S. & Düzgüneş, E. A preliminary study on reproduction and larval development of Swan Mussel [Anodonta cygnea (Linnaeus, 1758)] (Bivalvia: Unionidae) in Lake Çıldır (Kars, Turkey). Turk. J. Fish. Aquat. Sci. 9, 23–27 (2009).
    Google Scholar 
    48.Sayenko, E. M. The microsculpture of glochidia of some Anodontine bivalves (Unionidae). Biol. Bull. 43, 127–135. https://doi.org/10.1134/S1062359016020072 (2016).Article 

    Google Scholar 
    49.Claes, M. Untersuchungen zur Entwicklungsbiologie der Teichmuschel Anodonta cygnea. PhD Thesis, Institut für Zoologie, Tierärztliche Hochschule Hannover (1987) (in German).50.Maaß, S. Untersuchungen zur Fortpflanzungsbiologie einheimischer Süßwassermuscheln der Gattung Unio. PhD Dissertation, Institut für Zoologie, Tierärztliche Hochschule Hannover (1987) (in German).51.Heino, M. & Kaitala, V. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J. Evol. Biol. 12, 423–429. https://doi.org/10.1046/j.1420-9101.1999.00044.x (1999).Article 

    Google Scholar 
    52.Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316. https://doi.org/10.1086/432265 (2005).Article 
    PubMed 

    Google Scholar 
    53.Hastie, L. C. & Young, M. R. Timing of spawning and glochidial release in Scottish freshwater pearl mussel (Margaritifera margaritifera) populations. Freshw. Biol. 48, 2107–2117. https://doi.org/10.1046/j.1365-2427.2003.01153.x (2003).Article 

    Google Scholar 
    54.Glazier, D. S. Smaller amphipod mothers show stronger trade-offs between offspring size and number. Ecol. Lett. 3, 142–149. https://doi.org/10.1046/j.1461-0248.2000.00132.x (2001).Article 

    Google Scholar 
    55.Reznick, D. Hard and soft selection revisited: How evolution by natural selection works in the real world. J. Hered. 107, 3–14. https://doi.org/10.1093/jhered/esv076 (2016).Article 
    PubMed 

    Google Scholar 
    56.Haldane, J. B. S. The effect of variation on fitness. Am. Nat. 71, 337–349 (1937).Article 

    Google Scholar 
    57.Aldridge, D. C. The morphology, growth and reproduction of Unionidae (Bivalvia) in a fenland waterway. J. Molluscan Stud. 65, 47–60. https://doi.org/10.1093/mollus/65.1.47 (1999).Article 

    Google Scholar 
    58.Chernyshev, A. V., Sayenko, E. M. & Bogatov, V. V. Superspecific taxonomy of the far eastern unionids (Bivalvia. Unionidae): Review and analysis. Biol. Bull. 47, 267–275. https://doi.org/10.1134/S1062359020010045 (2020).Article 

    Google Scholar 
    59.Pfeiffer, J. M. III. & Graf, D. L. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zool. J. Linnean Soc. 175, 307–318. https://doi.org/10.1111/zoj.12282 (2015).Article 

    Google Scholar  More

  • in

    Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas

    1.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–383 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    3.WWF. Living planet report 2020 – bending the curve of biodiversity loss. (WWF, Gland, Switzerland, 2020).4.Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978. https://doi.org/10.1038/s41467-020-19493-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855. https://doi.org/10.1126/science.1259855 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Hockings, M. Systems for assessing the effectiveness of management in protected areas. Bioscience 53, 823–832. https://doi.org/10.1641/0006-3568(2003)053[0823:Sfateo]2.0.Co;2 (2003).Article 

    Google Scholar 
    8.Reboredo Segovia, A. L., Romano, D. & Armsworth, P. R. Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159–166. https://doi.org/10.1002/fee.2146 (2020).Article 

    Google Scholar 
    9.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. https://doi.org/10.1016/j.biocon.2013.02.018 (2013).Article 

    Google Scholar 
    10.Heino, M. et al. Forest loss in protected areas and intact forest landscapes: A global analysis. PLoS ONE 10, e0138918. https://doi.org/10.1371/journal.pone.0138918 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, e8273. https://doi.org/10.1371/journal.pone.0008273 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Ferraro, P. et al. More strictly protected areas are not necessarily more protective: Evidence from bolivia, costa rica, indonesia, and thailand. Environ. Res. Lett. 8, 025011 (2013).ADS 
    Article 

    Google Scholar 
    13.Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. London B Biol. Sci. 278, 1633–1638 (2011).
    Google Scholar 
    14.Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many natural world heritage sites. Biol. Conserv. 206, 47–55. https://doi.org/10.1016/j.biocon.2016.12.011 (2017).Article 

    Google Scholar 
    16.Watson, J., Edward, M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180. https://doi.org/10.1016/j.oneear.2019.09.004 (2019).Article 

    Google Scholar 
    17.Joppa, L. & Pfaff, A. Reassessing the forest impacts of protection. Ann. N. Y. Acad. Sci. 1185, 135–149. https://doi.org/10.1111/j.1749-6632.2009.05162.x (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    18.Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in sumatra. J. Biogeogr. 36, 2165–2175. https://doi.org/10.1111/j.1365-2699.2009.02147.x (2009).Article 

    Google Scholar 
    19.Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. 105, 16089–16094. https://doi.org/10.1073/pnas.0800437105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).21.Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554. https://doi.org/10.1111/gcb.12605 (2014).ADS 
    Article 

    Google Scholar 
    22.Hughes, A. C. Understanding the drivers of southeast asian biodiversity loss. Ecosphere 8, e01624. https://doi.org/10.1002/ecs2.1624 (2017).Article 

    Google Scholar 
    23.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast asian biodiversity: An impending disaster. Trends Ecol. Evol. 19, 654–660. https://doi.org/10.1016/j.tree.2004.09.006 (2004).Article 
    PubMed 

    Google Scholar 
    24.Estoque, R. C. et al. The future of southeast asia’s forests. Nat. Commun. 10, 1829–1829. https://doi.org/10.1038/s41467-019-09646-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Stolton, S. et al. Reporting Progress in Protected Areas a Site Level Management Effectiveness Tracking Tool (Gland, 2007).
    Google Scholar 
    26.Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140281. https://doi.org/10.1098/rstb.2014.0281 (2015).Article 

    Google Scholar 
    27.CBD. Cop 10 decision x/2: Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2011).28.UNFCCC. Adoption of the Paris Agreement (Proposal by the President Draft Decision -/CP.21, 2015).29.Gaveau, D. L. A. et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. Vol. 9 (2014).30.Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005. https://doi.org/10.1038/s41598-017-14467-w (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Buřivalová, Z., Hart, S. J., Radeloff, V. C. & Srinivasan, U. Early warning sign of forest loss in protected areas. Curr. Biol. https://doi.org/10.1016/j.cub.2021.07.072 (2021).Article 
    PubMed 

    Google Scholar 
    32.Apan, A., Suarez, L. A., Maraseni, T. & Castillo, J. A. The rate, extent and spatial predictors of forest loss (2000–2012) in the terrestrial protected areas of the philippines. Appl. Geogr. 81, 32–42. https://doi.org/10.1016/j.apgeog.2017.02.007 (2017).Article 

    Google Scholar 
    33.Graham, V., Nurhidayah, L. & Astuti, R. Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2019).
    Google Scholar 
    34.Graham, V., Laurance, S. G., Grech, A., McGregor, A. & Venter, O. A comparative assessment of the financial costs and carbon benefits of redd+ strategies in southeast asia. Environ. Res. Lett. 11, 114022. https://doi.org/10.1088/1748-9326/11/11/114022 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (paddd) in africa, asia, and latin america and the caribbean, 1900–2010. Biol. Conserv. 169, 355–361. https://doi.org/10.1016/j.biocon.2013.11.021 (2014).Article 

    Google Scholar 
    36.Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv Lett 11, e12434 (2018).Article 

    Google Scholar 
    37.Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in southeast asian protected areas. Biol. Conserv. 253, 108875. https://doi.org/10.1016/j.biocon.2020.108875 (2021).Article 

    Google Scholar 
    38.Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17, 259–264. https://doi.org/10.1002/fee.2042 (2019).Article 

    Google Scholar 
    40.Carranza, T., Manica, A., Kapos, V. & Balmford, A. Mismatches between conservation outcomes and management evaluation in protected areas: A case study in the brazilian cerrado. Biol. Conserv. 173, 10–16. https://doi.org/10.1016/j.biocon.2014.03.004 (2014).Article 

    Google Scholar 
    41.Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the amazon rainforest. Conserv. Biol. 27, 155–165. https://doi.org/10.1111/j.1523-1739.2012.01930.x (2013).Article 
    PubMed 

    Google Scholar 
    42.Nolte, C., Agrawal, A. & Barreto, P. Setting priorities to avoid deforestation in amazon protected areas: Are we choosing the right indicators?. Environ. Res. Lett. 8, 015039. https://doi.org/10.1088/1748-9326/8/1/015039 (2013).ADS 
    Article 

    Google Scholar 
    43.Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in madagascar. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.107 (2019).Article 

    Google Scholar 
    44.Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).Article 

    Google Scholar 
    45.Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: How important is management?. Conserv. Lett. https://doi.org/10.1111/conl.12650 (2019).Article 

    Google Scholar 
    46.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Wolosin, M. & Harris, N. Tropical Forests and Climate Change: The Latest Science (World Resources Institute, 2018).
    Google Scholar 
    49.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. https://doi.org/10.1111/cobi.13448 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Rights and Resources Initiative. Who owns the world’s land? A global baseline of formally recognized Indigenous and community land rights. (Rights and Resources Initiative, Washington DC, 2015).52.Santika, T. et al. Community forest management in indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Chang. 46, 60–71. https://doi.org/10.1016/j.gloenvcha.2017.08.002 (2017).Article 

    Google Scholar 
    53.Dudley, N., Shadie, P. & Stolton, S. Guidelines for Applying Protected Area Management Categories Including IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types. (IUCN, 2013).
    Google Scholar 
    54.Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. Multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, e22722, https://doi.org/10.1371/journal.pone.0022722 (2011).55.Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1011529108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141. https://doi.org/10.1111/cobi.12568 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Buchner, B. et al. The Global Landscape of Climate Finance 2015 (Climate Policy Initiative, 2015).
    Google Scholar 
    58.Climate Focus. Progress on the New York Declaration on Forests: Finance for Forests (Climate Focus, 2017).
    Google Scholar 
    59.Scharlemann, J. P. W. et al. Securing tropical forest carbon: The contribution of protected areas to redd. Oryx 44, 352–357 (2010).Article 

    Google Scholar 
    60.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Zarin, D. J. et al. Tree Biomass Loss: CO2 Emissions from Aboveground Woody Biomass Loss in the Tropics. www.globalforestwatch.org (2020).63.Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. London B Biol. Sci. 370 (2015).64.Ho, D., Imai, K., King, G. & Stuart, E. Matchit: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42 (2011).65.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS 
    Article 

    Google Scholar 
    66.Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).Article 

    Google Scholar 
    67.Oliveira, P. J. et al. Land-use allocation protects the peruvian amazon. Science 317, 1233–1236 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. 34, 1452–1462. https://doi.org/10.1111/cobi.13522 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Miettinen, J., Shi, C., Tan, W. J. & Liew, S. C. 2010 land cover map of insular southeast asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20. https://doi.org/10.1080/01431161.2010.526971 (2012).Article 

    Google Scholar 
    70.Stuart, E., Rubin, D. & Osborne, J. Best Practices in Quantitative Methods (Sage Publications, 2007).
    Google Scholar 
    71.Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 18 (2015).
    Google Scholar  More

  • in

    Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem

    1.Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46.CAS 
    PubMed 

    Google Scholar 
    2.Gast RJ, Sanders RW, Caron DA. Ecological strategies of protists and their symbiotic relationships with prokaryotic microbes. Trends Microbiol. 2009;17:563–9.CAS 
    PubMed 

    Google Scholar 
    3.Wein T, Romero Picazo D, Blow F, Woehle C, Jami E, Reusch TBH, et al. Currency, exchange, and inheritance in the evolution of symbiosis. Trends Microbiol. 2019;27:836–49.CAS 
    PubMed 

    Google Scholar 
    4.Ushida K, Newbold CJ, Jouany J-P. Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. J Gen Appl Microbiol. 1997;43:129–31.CAS 
    PubMed 

    Google Scholar 
    5.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 

    Google Scholar 
    6.Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C, Huettel B, et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature. 2021;591:445–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Bell T, Bonsall MB, Buckling A, Whiteley AS, Goodall T, Griffiths RI. Protists have divergent effects on bacterial diversity along a productivity gradient. Biol Lett. 2010;6:639–42.PubMed 
    PubMed Central 

    Google Scholar 
    8.Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator bdellovibriot. Front Ecol Evol. 2017;5:536.
    Google Scholar 
    9.Leibold MA. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat. 1996;147:784–812.
    Google Scholar 
    10.Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    11.Espinoza-Vergara G, Hoque MM, McDougald D, Noorian P. The impact of protozoan predation on the pathogenicity of Vibrio cholerae. Front Microbiol. 2020;11:17.PubMed 
    PubMed Central 

    Google Scholar 
    12.Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    13.Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 2009;3:675–84.CAS 
    PubMed 

    Google Scholar 
    14.Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD, Rahman A, et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell. 2016;167:444–.e14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nieves-Ramírez ME, Partida-Rodríguez O, Laforest-Lapointe I, Reynolds LA, Brown EM, Valdez-Salazar A, et al. Asymptomatic intestinal colonization with protist blastocystis is strongly associated with distinct microbiome ecological patterns. mSystems. 2018;3:e00007–18.PubMed 
    PubMed Central 

    Google Scholar 
    16.Mizrahi I. Rumen symbioses. In: Eugene Rosenberg, Edward F. DeLong, Stephen Lory, Erko Stackebrandt, Thompson F, editors. The Prokaryotes. Springer Berlin Heidelberg; 2013. p. 533–44.17.Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr. 2004;134:3378–84.CAS 
    PubMed 

    Google Scholar 
    18.Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6:1313.PubMed 
    PubMed Central 

    Google Scholar 
    19.Firkins JL, Yu Z, Park T, Plank JE. Extending Burk Dehority’s perspectives on the role of ciliate protozoa in the rumen. Front Microbiol. 2020;11:123.PubMed 
    PubMed Central 

    Google Scholar 
    20.Williams AG, Coleman GS. The rumen protozoa. New York, NY: Springer Science & Business Media; 2012.21.Solomon R, Jami E. Rumen protozoa: from background actors to featured role in microbiome research. Environ Microbiol Rep. 2021;13:45–49.PubMed 

    Google Scholar 
    22.Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S, Berg Miller ME, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016;10:2958.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lima J, Auffret MD, Stewart RD, Dewhurst RJ, Duthie C-A, Snelling TJ, et al. Identification of rumen microbial genes involved in pathways linked to appetite, growth, and feed conversion efficiency in cattle. Front Genet. 2019;10:701.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE. 2014;9:e85423.PubMed 
    PubMed Central 

    Google Scholar 
    25.Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, et al. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep. 2019;9:11.PubMed 
    PubMed Central 

    Google Scholar 
    26.Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci Adv. 2019;5:eaav8391.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Belanche A, de la Fuente G, Pinloche E, Newbold CJ, Balcells J. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J Anim Sci. 2012;90:3924–36.CAS 
    PubMed 

    Google Scholar 
    28.Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups. J Anim Sci. 2012;90:4495–504.CAS 
    PubMed 

    Google Scholar 
    29.Belanche A, de la Fuente G, Newbold CJ. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol Ecol. 2015;91:fiu026.PubMed 

    Google Scholar 
    30.Hackmann TJ, Firkins JL. Maximizing efficiency of rumen microbial protein production. Front Microbiol. 2015;6:465.PubMed 
    PubMed Central 

    Google Scholar 
    31.Popova M, Martin C, Rochette Y, Graviou D, Morgavi DP. Methanogenesis kinetics and fermentation patterns in the rumen of sheep with or without protozoa. In: Ruminant physiology: digestion, metabolism and effects of nutrition on reproduction and welfare. Netherlands: Wageningen Academic publishers; 2009. 320.32.Levy B, Jami E. Exploring the prokaryotic community associated within the rumen ciliate protozoa population. Front Microbiol. 2018;9:2526.PubMed 
    PubMed Central 

    Google Scholar 
    33.Borrel G, Brugère J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C. The host-associated archaeome. Nat Rev Microbiol. 2020;18:622–36.CAS 
    PubMed 

    Google Scholar 
    34.Lloyd D, Williams AG, Amann R, Hayes AJ, Durrant L, Ralphs JR. Intracellular prokaryotes in rumen ciliate protozoa: Detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. Eur J Protistol. 1996;32:523–31.
    Google Scholar 
    35.Jouany JP. Effect of rumen protozoa on nitrogen utilization by ruminants. J Nutr. 1996;126:1335S–46S.CAS 
    PubMed 

    Google Scholar 
    36.Coleman GS, Sandford DC. The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in-vivo. J Agric Sci. 1979;92:729–42.
    Google Scholar 
    37.Zachut M, Honig H, Striem S, Zick Y, Boura-Halfon S, Moallem U. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss. J Dairy Sci. 2013;96:5656–69.CAS 
    PubMed 

    Google Scholar 
    38.National Research Council. 2001. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition. Washington, DC: The National Academies Press; 2001.39.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CAS 
    PubMed 

    Google Scholar 
    40.Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol. 2007;75:165–74.CAS 
    PubMed 

    Google Scholar 
    41.NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.
    Google Scholar 
    42.Tapio I, Shingfield KJ, McKain N, Bonin A, Fischer D, Bayat AR, et al. Oral samples as non-invasive proxies for assessing the composition of the rumen microbial community. PLoS ONE. 2016;11:e0151220.PubMed 
    PubMed Central 

    Google Scholar 
    43.Wobbrock JO, Findlater L, Gergle D, Higgins JJ. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: Association for Computing Machinery; 2011. p. 143–6.44.Elkin LA, Kay M, Higgins JJ, Wobbrock JO. An aligned rank transform procedure for multifactor contrast tests. https://arxiv.org/abs/2102.11824.45.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    48.Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9.
    Google Scholar 
    49.Oksanen J. vegan: community ecology package. R package version 2.5-7. 2011. http://cran.r-project.org/package=vegan.50.van den Boogaart KG, Tolosana-Delgado R. ‘compositions’: a unified R package to analyze compositional data. Comput Geosci. 2008;34:320–38.
    Google Scholar 
    51.Krzywinski M, Altman N, Blainey P. Points of significance: nested designs. For studies with hierarchical noise sources, use a nested analysis of variance approach. Nat Methods. 2014;11:977–8.CAS 
    PubMed 

    Google Scholar 
    52.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.53.Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.PubMed 
    PubMed Central 

    Google Scholar 
    54.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.
    Google Scholar 
    55.Belanche A, de la Fuente G, Newbold CJ. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol. 2014;90:663–77.CAS 
    PubMed 

    Google Scholar 
    56.Ungerfeld EM. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol. 2020;11:589.PubMed 
    PubMed Central 

    Google Scholar 
    57.Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48:1407–12.CAS 
    PubMed 

    Google Scholar 
    58.Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep.2015;5:1–15.
    Google Scholar 
    59.Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
    Google Scholar 
    60.Shaani Y, Zehavi T, Eyal S, Miron J, Mizrahi I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME J. 2018;12:2446–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Paul RG, Williams AG, Butler RD. Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. J Gen Microbiol. 1990;136:1981–9.CAS 
    PubMed 

    Google Scholar 
    62.Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 2019;13:2617–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Gong J, Qing Y, Zou S, Fu R, Su L, Zhang X, et al. Protist-bacteria associations: gammaproteobacteria and alphaproteobacteria are prevalent as digestion-resistant bacteria in ciliated protozoa. Front Microbiol. 2016;7:498.PubMed 
    PubMed Central 

    Google Scholar 
    64.Park T, Yu Z. Do ruminal ciliates select their preys and prokaryotic symbionts? Front Microbiol. 2018;9:1710.PubMed 
    PubMed Central 

    Google Scholar 
    65.Matz C, Nouri B, McCarter L, Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS ONE. 2011;6:e20275.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Kamke J, Soni P, Li Y, Ganesh S, Kelly WJ, Leahy SC, et al. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep. BMC Res Notes. 2017;10:367.PubMed 
    PubMed Central 

    Google Scholar 
    67.Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE. 2012;7:e33306.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA. 2009;106:1948–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Indugu N, Vecchiarelli B, Baker LD, Ferguson JD, Vanamala JKP, Pitta DW. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol. 2017;17:190.PubMed 
    PubMed Central 

    Google Scholar 
    70.Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science. 2011;333:646–8.CAS 
    PubMed 

    Google Scholar 
    71.Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1305.PubMed 

    Google Scholar 
    72.Simek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J, et al. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol. 1997;63:587–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Socolar J, Washburne A. Prey carrying capacity modulates the effect of predation on prey diversity. Am Nat. 2015;186:333–47.PubMed 

    Google Scholar 
    74.Gutierrez J. Observations on bacterial feeding by the rumen ciliate Isotricha prostoma. J Protozool. 1958;5:122–6.
    Google Scholar 
    75.Coleman GS. The metabolism of Escherichia coli and other bacteria by Entodinium caudatum. J Gen Microbiol. 1964;37:209–23.CAS 
    PubMed 

    Google Scholar 
    76.Canter EJ, Cuellar-Gempeler C, Pastore AI, Miller TE, Mason OU. Predator identity more than predator richness structures aquatic microbial assemblages in Sarracenia purpurea leaves. Ecology. 2018;99:652–60.PubMed 

    Google Scholar 
    77.Paine RT. Food web complexity and species diversity. Am Nat. 1966;100:65–75.
    Google Scholar 
    78.Audebert C, Even G, Cian A, Loywick A, Merlin S, Blastocystis Investigation Group,et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6:25255.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Chabé M, Lokmer A, Ségurel L. Gut protozoa: friends or foes of the human gut microbiota? Trends Parasitol. 2017;33:925–34.PubMed 

    Google Scholar 
    80.Asgari M, Steiner CF. Interactive effects of productivity and predation on zooplankton diversity. Oikos. 2017;126:1617–24.CAS 

    Google Scholar 
    81.Tokura M, Ushida K, Miyazaki K, Kojima Y. Methanogens associated with rumen ciliates. FEMS Microbiol Ecol. 1997;22:137–43.CAS 

    Google Scholar 
    82.Irbis C, Ushida K. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol. 2004;50:203–12.CAS 
    PubMed 

    Google Scholar 
    83.Karakoç C, Radchuk V, Harms H, Chatzinotas A. Interactions between predation and disturbances shape prey communities. Sci Rep. 2018;8:2968.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Past climate conditions predict the influence of nitrogen enrichment on the temperature sensitivity of soil respiration

    1.Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).CAS 

    Google Scholar 
    2.Raich, J. W., Potter, C. S. & Bhagawati, D. Interannual variability in global soil respiration, 1980–94. Glob. Change Biol. 8, 800–812 (2002).
    Google Scholar 
    3.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition feedbacks to climate change. Nature 440, 165–173 (2006).CAS 

    Google Scholar 
    4.Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).CAS 

    Google Scholar 
    5.Heimann, H. & Reichstein, R. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).CAS 

    Google Scholar 
    6.Fang, C. et al. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agr. Forest Meteorol. 248, 449–457 (2018).
    Google Scholar 
    7.Wang, Q., Liu, S., Wang, Y., Tian, P. & Sun, T. Influences of N deposition on soil microbial respiration and its temperature sensitivity depend on N type in a temperate forest. Agr. Forest Meteorol. 260–261, 240–246 (2018).
    Google Scholar 
    8.Zhong, Y. Q. W., Yan, W. M., Zong, Y. Z. & Shangguan, Z. P. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Global Ecol. Biogeogr. 25, 475–488 (2016).
    Google Scholar 
    9.Yu, G. R. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).CAS 

    Google Scholar 
    10.Coucheney, E., Strömgren, M., Lerch, T. Z. & Herrmann, A. M. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization. Ecol. Evol. 3, 5177–5188 (2013).
    Google Scholar 
    11.Jiang, J. S., Guo, S. L., Wang, R., Liu, Q. F. & Sun, Q. Q. Effects of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on loess plateau. Environ. Sci. 36, 1802–1809 (2015).
    Google Scholar 
    12.Wang, Q., Zhao, X., Tian, P., Liu, S. & Sun, Z. Bioclimate and arbuscular mycorrhizal fungi regulate continental biogeographic variations in effect of nitrogen deposition on the temperature sensitivity of soil organic carbon decomposition. Land Degrad. Dev. 32, 936–945 (2021).
    Google Scholar 
    13.Schindlbacher, A., Zechmeister-Boltenstern, S. & Jandl, R. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob. Change Biol. 15, 901–903 (2009).
    Google Scholar 
    14.Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. 113, 13797–13802 (2016).CAS 

    Google Scholar 
    15.Lyu, M., Giardina, C. P. & Litton, C. M. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest. Glob. Change Biol. 27, 3824–3836 (2021).
    Google Scholar 
    16.Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct. Ecol. 33, 514–523 (2019).
    Google Scholar 
    17.Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).
    Google Scholar 
    18.Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).
    Google Scholar 
    19.Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).
    Google Scholar 
    20.Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596 (2018).
    Google Scholar 
    21.Ding, J. Y. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. 39, 125460 (2019).
    Google Scholar 
    22.Eldridge, D. J. & Delgado-Baquerizo, M. The influence of climatic legacies on the distribution of dryland biocrust communities. Glob. Change Biol. 25, 327–336 (2019).
    Google Scholar 
    23.Pärtel, M., Chiarucci, A., Chytrý, M. & Pillar, V. D. Mapping plant community ecology. J. Veg. Sci. 26, 1–3 (2017).
    Google Scholar 
    24.Richter, D. D. & Yaalon, D. H. “The changing model of soil” revisited. Soil Sci. Soc. Am. J. 76, 766–778 (2012).CAS 

    Google Scholar 
    25.Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
    Google Scholar 
    26.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).CAS 

    Google Scholar 
    27.Delgado-Baquerizo, M. et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 86, 373–390 (2016).
    Google Scholar 
    28.Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J. & Singh, B. K. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. 112, 15684–15689 (2015).CAS 

    Google Scholar 
    29.Monger, C. et al. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19 (2016).
    Google Scholar 
    30.Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).CAS 

    Google Scholar 
    31.Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy. 20, GB3026 (2006).
    Google Scholar 
    32.Peng, S., Piao, S., Wang, T., Sun, J. & Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 41, 1008–1014 (2009).CAS 

    Google Scholar 
    33.Xu, Z. et al. Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Appl. Soil Ecol. 93, 105–110 (2015).
    Google Scholar 
    34.Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).
    Google Scholar 
    35.Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).CAS 

    Google Scholar 
    36.Yan, G. Y. et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition. Agr. Forest Meteorol. 248, 70–81 (2018).
    Google Scholar 
    37.Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 

    Google Scholar 
    38.Chen, Z. M. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).CAS 

    Google Scholar 
    39.Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest Meteorol. 271, 336–345 (2019).
    Google Scholar 
    40.Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).CAS 

    Google Scholar 
    41.Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).CAS 

    Google Scholar 
    42.Li, Y. et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 615, 1535–1546 (2018).CAS 

    Google Scholar 
    43.Sanderman, J. Comment on “Climate legacies drive global soil carbon stocks in terrestrial ecosystems”. Sci. Adv. 4, e1701482 (2018).
    Google Scholar 
    44.Ding, J. et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun. 10, 4195 (2019).
    Google Scholar 
    45.Gershenson, A., Bader, N. E. & Cheng, W. X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Change Biol. 15, 176–183 (2009).
    Google Scholar 
    46.Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).CAS 

    Google Scholar 
    47.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    48.Li, J., Ziegler, S. E., Lane, C. S. & Billings, S. A. Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature. Soil Biol. Biochem. 66, 204–213 (2013).CAS 

    Google Scholar 
    49.Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Chang. Biol. 27, 2061–2075 (2021).
    Google Scholar 
    50.Du, Y. et al. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. Glob. Chang. Biol. 26, 6015–6024 (2020).
    Google Scholar 
    51.Meier, I. C. & Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11, 655–669 (2008).CAS 

    Google Scholar 
    52.Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).CAS 

    Google Scholar 
    53.Katz, M. H. Multivariable Analysis: A Practical Guide for Clinicians and Public Health Researchers (Cambridge Univ. Press, Cambridge, 2006).54.Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. 112, 10967–10972 (2015).CAS 

    Google Scholar 
    55.Grace, J. B. Structural Equation Modeling Natural Systems (Cambridge Univ. Press, Cambridge, 2006).56.Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol 7, 573–579 (2016).
    Google Scholar 
    57.Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–13 (2017).
    Google Scholar  More

  • in

    Large diatom bloom off the Antarctic Peninsula during cool conditions associated with the 2015/2016 El Niño

    Due to contrasts in oceanographic properties along the NAP24, the sampling grid was split in two subregions: north and south (Fig. 1; see “Methods”). The north and south subregions showed from the satellite data a much higher spring/summer (November–February) mean chlorophyll-a (Chl-a) in 2015/2016 than the decadal average time series (2010–2019; Table 1). In agreement with the El Niño effects10,16, the sea surface temperature (SST) and the air temperature showed substantially lower mean values during the spring/summer of 2015/2016 along the subregions (Table 1). However, there was an evident spatial/temporal variability in sea ice concentration/duration between the subregions, with a northward (southward) lower (higher) mean value during 2015/2016 in relation to the decadal average (Table 1). Along the south subregion during the spring/summer of 2015/2016, the increased Chl-a during January followed the decline in the sea ice concentration over the spring and early summer, concurrent with increased SST, which was markedly colder throughout the seasonal phytoplankton succession (Fig. 2a). These results to the south subregion are consistent with previous studies along the WAP, in which years characterized by longer sea ice cover in winter have led to higher phytoplankton biomass in the following summer associated with a more stable water column11,16,26. To the north subregion, however, although there was a similar pattern between Chl-a and SST, the increased Chl-a during January was not related with the sea ice retreat (Fig. 2b). Moreover, there was a clear difference between the Chl-a peaks (the highest Chl-a value reached) along the subregions from the satellite data. The Chl-a peak in the south subregion occurred in early January (10 January 2016, reaching 1.73 mg m–3), whereas in the north subregion the Chl-a peak was observed in late January (29 January 2016, reaching 2.23 mg m–3).Fig. 1: Study area.Location of hydrographic stations is marked by open circles (November), stars (January), and blue circles (February). The black dashed lines indicate the subregions (north and south) along the NAP and delimit the areas used to estimate average remote sensing measurements. The decadal-mean (2010–2019) remote sensing chlorophyll-a (Chl-a) is exhibited in the background, indicating the biomass (Chl-a) distribution of phytoplankton along the NAP in the last decade. An inset map in the lower right corner shows the location of the NAP within the Atlantic sector of the Southern Ocean.Full size imageTable 1 Biological production and ocean/atmosphere parameters by measurements of remote sensing and local meteorological stations during spring/summer in the NAP subregions.Full size tableFig. 2: Biological production and sea ice dynamics in the NAP seasonal phytoplankton succession of 2015/2016.Continuum remote sensing measurements of chlorophyll-a (Chl-a; solid green line), sea surface temperature (SST; solid blue line), and sea ice concentration (gray area) along the NAP, in south (a) and north (b) subregions during spring/summer of 2015/2016. The dashed green, blue and gray lines indicate the decadal average (2010–2019) of Chl-a, SST, and sea ice concentration, respectively. The solid light green lines represent the Chl-a interpolated values. The background shades show the in situ data sampling periods. It is important to note that Chl-a remote sensing data in Antarctic coastal waters are typically underestimated in respect to in situ Chl-a data (see Supplementary Fig. 1)12,29.Full size imageIt has been estimated that drifters entrained in the Gerlache Strait Current and the Bransfield Strait Current exit the Bransfield Strait in 10–20 days17, which is consistent with the interval of 19 days between both Chl-a peaks when considering the extreme distance between the subregions (see Fig. 1). These authors also estimated that drifters deployed in the Gerlache Strait Current were quickly advected out of the Gerlache Strait in less than 1 week (i.e., low residence time)17, which supports the similar diatom species assemblages identified in our microscopic analysis between stations of the Gerlache Strait and southwestern Bransfield Strait24. Therefore, it is plausible that phytoplankton growth in the north of the Gerlache Strait may be laterally advected northward into the Bransfield Strait, explaining the observed concomitant increase of satellite Chl-a data in both subregions from spring, associated with sea ice retreat southward (Fig. 2). In addition, as phytoplankton biomass tends to accumulate northward17,27,28, the advection processes could also explain the temporal and intensity differences of the Chl-a peaks along the subregions (see Fig. 2). This suggests that there was a link between the sea ice dynamics, phytoplankton biomass (Chl-a) and advection processes along the NAP during the spring/summer of 2015/2016, in which the sea ice melting first triggered an increase in phytoplankton biomass through water column stratification along the south subregion, and the advection processes led to a subsequent increase northward.The satellite Chl-a data require extensive validation with in situ data, especially in polar regions, where cloud cover is ubiquitous and performance is typically poor, due to not properly accurate Chl-a algorithms12,29. For that, although the mean Chl-a in 2015/2016 from the satellite data was approximately twice as large as the decadal average, there was a severe discrepancy in the mean Chl-a values observed between the in situ and remote sensing data (see Table 1 and Supplementary Table 1). This highlights the importance of the in situ dataset reported here, especially evident during February 2016, when the signal of an intense diatom bloom ( > 40 mg m–3 Chl-a)24 was not captured in the satellite data (Supplementary Fig. 1), supporting that phytoplankton biomass accumulation during this summer was much higher than recorded by remote sensing observations (see Table 1). In general, the in situ Chl-a achieved its maximum (40 mg m–3) and higher mean value (17.4 mg m–3) during February comparing to November and January (Supplementary Table 1).Phytoplankton community structure during the spring/summer of 2015/2016 was assessed through Chemical taxonomy (CHEMTAX) software, using accessory pigments versus in situ Chl-a concentrations measured via high-performance liquid chromatography (HPLC; see “Methods”). The main phytoplankton group over the season were diatoms, followed by haptophytes (Phaeocystis antarctica), cryptophytes, and dinoflagellates, according to the succession stage (Fig. 3a). Diatoms dominated the phytoplankton community composition in relation to the other groups along the whole in situ sampling period, although their relative biomass (to the total in situ Chl-a) was lower in some stations compared to others in different moments during spring/summer (Fig. 3a). To assess the degree to which the water column structure was a primary driver for development and intensity of diatom growth3,24, the mixed layer depth (MLD) and water column stability were calculated as a function of seawater potential density (see “Methods”). There was an inverse polynomial relationship between MLD and mean upper ocean stability (averaged over 5−150 m depth; hereafter referred to as upper ocean stability) (Fig. 3b). The significant positive exponential relationship between the upper ocean stability and diatom absolute concentrations (in situ Chl-a) demonstrates that stability, associated with MLD, was an important driver of diatom dynamics (Fig. 3b). This elucidates the increase in biological production during summer months of 2016, when upper ocean physical structures (MLD and stability) were sufficiently shallow and stable to produce the high phytoplankton biomass (in situ Chl-a) registered here. However, as MLD and stability showed similar values between summer months (Supplementary Table 1), only the upper ocean physical structures cannot be accounted for the high differences of in situ Chl-a values observed between diatom blooms in January (maximum of 12 mg m–3) and February (maximum of 40 mg m–3). Likewise, also not explaining these differences of in situ Chl-a values between summer months, macronutrients were highly abundant throughout the seasonal phytoplankton succession (Supplementary Table 1). Furthermore, although no measurements of dissolved iron, which can be considered as a limiting factor to primary productivity30, were carried out here, the Antarctic Peninsula continental shelves have been depicted as a substantial source of this micronutrient to the upper ocean, not limiting phytoplankton growth even during intense blooms31,32.Fig. 3: Phytoplankton community composition and upper ocean physical structures along the NAP seasonal phytoplankton succession of 2015/2016.a Relative biomass (to the total in situ chlorophyll-a; Chl-a) distribution of phytoplankton groups on surface, via HPLC/CHEMTAX analysis, during spring/summer of 2015/2016 along the NAP subregions. The black open circles indicate diatoms, the blue squares indicate Phaeocystis antarctica, the gray diamonds with crosses indicate cryptophytes, the green triangles indicate dinoflagellates, and the light gray open circles indicate green flagellates. b Exponential curve (R2 = 0.57; p 40% the community composition proportion in respect to the total Chl-a (considering the three fractionated size classes). Symbol color indicates the sampling month in respect to November (brown), January (gray), and February (black). The inset shows the polynomial inverse relationship (R2 = 0.51; p  70 µm in length; ref. 24), during January a large number ( > 2.5 × 106 cells L–1) of small ( More

  • in

    Sustainable intensification for a larger global rice bowl

    Data sourcesEighteen rice-producing countries were selected for our analysis (Supplementary Table 1). Those countries account for 88 and 86% of global rice production and harvested rice area2, respectively (FAOSTAT, 2015–2017). We followed two steps to select the dominant cropping systems in each country. Within each country, our study focused on the main rice-producing area(s) (Supplementary Tables 2 and 3). For example, in the case of Brazil, we selected the southern and northern regions, which together account for nearly all rice production in this country. In the case of Vietnam, we selected the Mekong Delta region, which accounts for nearly 60% of national rice production57. While we tried to cover all major rice cropping systems in each country, this was not possible in the case of rainfed lowland rice cropping systems in northeastern Thailand and eastern India because of lack of reliable estimates of yield potential and access to farmer yield and management data. Once the main rice-producing region(s) in each country was (were) identified, we then determined the dominant rice cropping system(s) for each of them (Supplementary Table 3). We note that “cropping system” refers to a unique combination of a number of rice crops planted on the same piece of land within a 12-month period (and their temporal arrangement), water regime (rainfed or irrigated), and ecosystem (upland or lowland) (Supplementary Fig. 1 and Supplementary Table 2). In our study, rice cropping systems are single-, double-, or triple-season rice; none of the cropping systems are ratoon rice. Following the previous examples, two cropping systems were selected for Brazil (rainfed upland single rice and lowland irrigated single rice in the northern and southern regions, respectively) and two systems (double and triple) were selected for the Mekong Delta region in Vietnam. These systems account for nearly all rice harvested areas in these regions. We distinguished between rice-based cropping systems sowing hybrid versus inbred cultivars in the southern USA. Across the 18 countries, this study included a total of 32 rice cropping systems, which, in turn, covered 51% of the global rice harvested area (Supplementary Tables 1 and 3). Note that the area coverage reported here corresponds to that accounted by 32 cropping systems (and not by the countries where the cropping systems were located). These systems portrayed a wide range of biophysical and socio-economic backgrounds (Supplementary Figs. 1 and 2 and Supplementary Tables 1 and 2), leading to average rice yields ranging from 2–10.4 Mg ha−1 (Supplementary Fig. 3). For data analysis purposes, rice cropping systems were classified into tropical and non-tropical9,58,59 and also based upon water regime and crop season.Agronomic information was collected via structure questionnaires completed by agricultural specialists in each country or region (Supplementary Table 6). The collected data included field size, tillage method, crop establishment method, degree of mechanization for each field operation, seeding rate, crop establishment, and harvest dates, nutrient fertilizer rates, manure type, and rate, pesticides (number of applications, products, and rates), irrigation amount (in irrigated systems), energy source for irrigation pumping, labor input, and straw management (Supplementary Tables 4 and 5). Average values for each cropping system reported by country experts were retrieved from survey data available from previous projects (Supplementary Table 7). Rice grain yield was reported at a standard moisture content of 140 g H2O kg−1 grain, separately for each crop cycle, using data from, at least, three recent cropping seasons in each cropping system. In the case of irrigated rice cropping system in Nigeria and Mali, data were only available for one crop cycle in double-season rice. In this case, we assumed management and actual yield to be identical in the two crop cycles.In all cases, and wherever possible, data were cross-validated with other independent datasets (e.g., FAOSTAT, World Bank, IFA, and published journal papers), which gives confidence about the representativeness and accuracy of the survey data. For example, we estimated area-weighted national yield according to actual yield provided for each cropping system and annual rice harvested area in each system for each of the 18 countries. Comparison of these yields against those reported by FAOSTAT2 showed a strong association and agreement between data sources (Supplementary Fig. 10). We also cross-validated actual yield, N fertilizer, labor, and irrigation from our database with those reported by previous studies (published after the year 2000) based on on-farm data collected in ten selected countries. Due to the lack of on-farm data on irrigation, we used published data collected from experiments that follow typical farmer irrigation practices. In the case of irrigation, our cross-validation differentiated between crop seasons (wet versus dry) in the case of irrigated double-season rice cropping systems. In all cases, average yield, N fertilizer, labor, and irrigation from our database fell within (or very close) the range of values reported in previously published studies for those same cropping systems (Supplementary Table 8). Measured daily weather data, including daily solar radiation, minimum and maximum temperatures, and precipitation, were derived from representative weather stations in each region (Supplementary Fig. 2 and Supplementary Table 9). Data on per-capita gross domestic product (GDP) during 2015–2017 were retrieved for each country to explore relationships between yield gap and economic development60 (Supplementary Fig. 9 and Supplementary Table 1).Estimation of yield gapsThe yield gap is defined as the difference between yield potential and average farmer yield. Estimates of yield potential for irrigated rice or water-limited yield potential for rainfed rice were adopted from Global Yield Gap Atlas (GYGA)61 (Supplementary Table 7). Yield potential simulation in GYGA was performed using crop growth and development model ORYZA2000 or ORYZA (v3) (except for APSIM in the case of India) and based on actual data on crop management, soil data, measured daily weather data, and representative rice varieties planted in each region (see details for yield potential simulation in Supplementary Information Text Section 1). Data on yield potential were not available for Australia (AUIS) in GYGA; hence, we used estimates of yield potential from Lacy et al.62. Yield potential (or water-limited yield potential for rainfed rice) and average yields were computed separately for each rice crop in each rice cropping system (Supplementary Fig. 3). The coefficient of variation (CV) of yield potential (or water-limited yield potential) was estimated for each cropping system (Supplementary Fig. 4). In this study, average rice yield was expressed as percentage of the yield potential (or water-limited yield potential for rainfed rice) for each cropping system (Fig. 1 and Supplementary Fig. 5). In those cropping systems where more than one rice crop is grown within a 12-month period, we estimated yield potential and average yield on both per-crop and annual basis by averaging and summing up the estimates for each rice crop, respectively. In the case of per-crop averages, for those cropping systems in which the harvested rice area changed between crop cycles, we weighted the values for each cycles based on the associated harvested rice area. However, for simplicity, the main text reports only the values on a per-crop basis; annual estimates are provided in the Supplementary Information. Normalizing average yield by the yield potential at each site provides a direct comparison of yield gap closure across systems with diverse biophysical backgrounds (e.g., variation in solar radiation, temperature, and water supply). Without this normalization, one might make biased assessment in relation to the available room for improving yield. For example, an actual yield of 8 Mg ha−1 is equivalent to 80% of yield potential in the cropping system of central China, whereas a yield of 8 Mg ha−1 achieved by irrigated rice farmers in Brazil only represents 55% of yield potential (Supplementary Fig. 3).Quantifying resource-use efficiencyWe assessed the performance of rice production by calculating the following metrics: global warming potential (GWP), fossil-fuel energy inputs, water supply (irrigation plus in-season precipitation), number of pesticide applications, nitrogen (N) balance, and labor input, each expressed on an area and yield-scaled basis (Figs. 2, 3 and 4 and Supplementary Figs. 6, 7 and 11). We estimated metrics on both per-crop and annual basis and report the values on a per-crop basis in the main text while the annual estimates are provided in the Supplementary Information. In the case of GWP, it includes CO2, CH4, and N2O emissions (expressed as CO2-eq) from (i) production, packaging, and transportation of agricultural inputs (seed, fertilizer, pesticides, machinery, etc.), (ii) fossil-fuel energy directly used for farm operations (including irrigation pumping), and (iii) CH4 and N2O emission during rice cultivation63. Emissions from agricultural inputs were calculated on application rates and associated GHG emissions factors (see details in Supplementary Information Text Section 2, Supplementary Table 10). In the case of fossil fuel used for field operations, it was calculated based on the number and type of farm operations and associated fuel requirements (Supplementary Table 11). Total N2O emissions were calculated as the sum of direct and indirect N2O emissions. A previous meta-analysis including rice showed that direct soil N2O emissions can be estimated from the magnitude of N-surplus, which was calculated as applied N inputs minus accumulated N in aboveground biomass at physiological maturity21. Therefore, direct soil N2O emissions for a given rice crop cycle were estimated following van Groenigen et al. N-balance approach21. Indirect N2O emissions were estimated based on the Intergovernmental Panel on Climate Change (IPCC) methodology64, assuming indirect N2O emissions represent 20% of direct N2O emissions. The CH4 emissions from rice paddy field were calculated following IPCC65. Following this approach, CH4 emissions are estimated considering the duration of the rice cultivation period, water regime during the cultivation period and during the pre-season before the cultivation period, and type and amount of organic amendment applied (e.g., straw, manure, compost) based on a baseline emission factor. We assumed no net change in soil carbon stocks as soil organic matter is typically at steady state in lowland rice66. We did not attempt to estimate changes on soil C in the upland rice system in Brazil. All emissions were converted to CO2-eq, with GWP for CH4 set at 25 relatives to CO2 and 298 for N2O on a per mass basis over a 100-year time horizon67. For each rice crop cycle in each of the 32 rice systems, GWP was calculated as the sum of CO2, CH4, and N2O emissions expressed as CO2-eq. (Details on N2O and CH4 emissions estimates and GWP calculations are provided in Supplementary Information Text Section 2).Calculation of energy inputs was similar to that of GWP and was based on the reported rates of agricultural inputs and field operations and associated embodied energy (see details for energy input estimates in Supplementary Information Text Section 2, Supplementary Table 12). Human labor was also included in the calculation of energy inputs. There was a strong positive relationship between energy input and GWP on both per-crop (r = 0.81; p  More

  • in

    Snake escape: imported reptiles gobble an island’s lizards

    .readcube-buybox { display: none !important;}

    Two of the three native reptiles on to Gran Canaria have nearly vanished from some parts of the Spanish island — eaten by an invasive snake species originally imported as a pet1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-03647-4

    References1.Piquet, J. C. & López-Darias, M. Proc. R. Soc. B https://doi.org/10.1098/rspb.2021.1939 (2021).Article 

    Google Scholar 
    Download references

    Subjects

    Conservation biology

    Jobs

    Research Associate (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    PhD Position in Cybersecurity

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) position in Structural Proteomics with EU Training network ALLODD

    Karolinska Institutet, doctoral positions
    Solna, Sweden

    Post-doctoral Fellow

    Luxembourg Institute of Health (LIH)
    Esch Sur Alzette, Luxembourg More

  • in

    Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA

    1.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 

    Google Scholar 
    3.Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.). 39, 240–252 (2016).
    Google Scholar 
    5.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Bakker, E. S., Pagès, J. F., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography (Cop.). 39, 162–179 (2016).
    Google Scholar 
    7.Brault, M. O., Mysak, L. A., Matthews, H. D. & Simmons, C. T. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate. Clim 9, 1761–1771 (2013).ADS 

    Google Scholar 
    8.Doughty, C. E., Faurby, S. & Svenning, J. C. The impact of the megafauna extinctions on savanna woody cover in South America. Ecography (Cop.). 39, 213–222 (2016).
    Google Scholar 
    9.Doughty, C. E., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).ADS 
    CAS 

    Google Scholar 
    10.Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 1–6 (2015).
    Google Scholar 
    11.Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Smith, F. A. et al. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proc. Natl Acad. Sci. USA 113, 201502547 (2015).
    Google Scholar 
    13.le Roux, E., Kerley, G. I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African Savanna Ecosystem. Curr. Biol. 28, 2493–2499.e3 (2018).PubMed 

    Google Scholar 
    14.Boulanger, M. T. & Lyman, R. L. Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat. Sci. Rev. 85, 35–46 (2013).ADS 

    Google Scholar 
    15.Rozas-Dávila, A., Valencia, B. G. & Bush, M. B. The functional extinction of Andean megafauna. Ecology 97, 2533–2539 (2016).PubMed 

    Google Scholar 
    16.Guthrie, R. D. New Carbon Dates Link Climatic Change with Human Colonization and Pleistocene Extinctions. Nature 441, 207–209 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Meltzer, D. J. Overkill, glacial history, and the extinction of North America’s Ice Age megafauna. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2015032117 (2020).18.Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. Lond. B Biol. Sci. 281, 20133254 (2014).
    Google Scholar 
    19.Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 354–403 (University of Arizona Press, 1984).20.Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14–23 (2013).
    Google Scholar 
    21.Smith, F. A., Smith, R. E. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science. 360, 310–313 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    22.Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Zimov, S. A. et al. Steppe-Tundra Transition: A Herbivore-Driven Biome Shift at the End of the Pleistocene. Am. Nat. 146, 765–794 (1995).
    Google Scholar 
    24.Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. 94, 328–352 (2019).
    Google Scholar 
    26.Zazula, G. D. et al. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change. Proc. Natl Acad. Sci. USA 111, 18460–18465 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 414–433 (2015).
    Google Scholar 
    28.Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).ADS 

    Google Scholar 
    29.Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl Acad. Sci. USA 112, 14301–14306 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Rabanus-Wallace, M. T. et al. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nat. Ecol. Evol. 1, 1–5 (2017).
    Google Scholar 
    31.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, I. S. Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).ADS 

    Google Scholar 
    32.Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).
    Google Scholar 
    33.Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    34.Jackson, S. T. Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quat. Sci. Rev. 49, 1–15 (2012).ADS 

    Google Scholar 
    35.Froese, D. G. et al. The Klondike goldfields and Pleistocene environments of Beringia. GSA Today 19, 4–10 (2009).
    Google Scholar 
    36.Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. 99, 305–328 (2021).CAS 

    Google Scholar 
    37.Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Clark, P. U. The last glacial maximum. Science 325, 710–714 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    39.Zazula, G. D. et al. A middle Holocene steppe bison and paleoenvironments from the versleuce meadows, Whitehorse, Yukon, Canada. Can. J. Earth Sci. 54, 1138–1152 (2017).ADS 

    Google Scholar 
    40.Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the Ice Free Corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057–8063 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vartanyan, S. L., Arslanov, K. A., Karhu, J. A., Possnert, G. & Sulerzhitsky, L. D. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quat. Res. 70, 51–59 (2008).CAS 

    Google Scholar 
    43.Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Signor, P. W. & Lipps, J. H. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. GSA Spec. Pap. 190, 291–296 (1982).
    Google Scholar 
    45.Fiedel, S. in American Megafaunal Extinctions at the End of the Pleistocene (ed. Haynes, G.) 21–37 (Springer Netherlands, 2009).46.Graf, K. E. Uncharted Territory: Late Pleistocene Hunter-Gatherer Dispersals in the Siberian Mammoth-Steppe (University of Nevada, 2008).47.Kuzmina, S. A. et al. The late Pleistocene environment of the Eastern West Beringia based on the principal section at the Main River, Chukotka. Quat. Sci. Rev. 30, 2091–2106 (2011).ADS 

    Google Scholar 
    48.Hoffecker, J. F., Elias, S. A. & Rourke, D. H. O. Out of Beringia? Science 343, 979–980 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    49.Zazula, G. D. et al. Ice-age steppe vegetation in East Beringia. Nature 423, 603 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Guthrie, R. D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat. Sci. Rev. 20, 549–574 (2001).ADS 

    Google Scholar 
    51.Pavelková Řičánková, V., Robovský, J. & Riegert, J. Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium. PLoS ONE 9, e85056 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bocherens, H. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 117, 42–71 (2015).ADS 

    Google Scholar 
    53.Ritchie, J. C. & Cwynar, L. C. in Paleoecology of Beringia (eds. Hopkins, D. M. et al.) 113–126 (Academic Press, 1982).54.Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0481-y (2018).55.Hopkins, D. M., Matthews, J. V., and Schweger, C. E. eds. Paleoecology of Beringia. (Academic Press, 1982).56.Stivrins, N. et al. Biotic turnover rates during the Pleistocene-Holocene transition. Quat. Sci. Rev. 151, 100–110 (2016).ADS 

    Google Scholar 
    57.Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).PubMed 

    Google Scholar 
    58.Bradshaw, R. H. W., Hannon, G. E. & Lister, A. M. A long-term perspective on ungulate-vegetation interactions. Ecol. Manag. 181, 267–280 (2003).
    Google Scholar 
    59.Gill, J. L. Ecological impacts of the late Quaternary megaherbivore extinctions. N. Phytologist 201, 1163–1169 (2014).
    Google Scholar 
    60.Gill, J. L., Williams, J. W., Jackson, S. T., Donnelly, J. P. & Schellinger, G. C. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34, 66–80 (2012).ADS 

    Google Scholar 
    61.Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    62.Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. Biol. Sci. 276, 2509–2519 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Owen-Smith, N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1992).64.Wright, J. P. & Jones, C. G. The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56, 203 (2006).
    Google Scholar 
    65.Gutierrez, J. L. & Jones, C. G. Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56, 227 (2006).
    Google Scholar 
    66.Berke, S. K. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50, 147–157 (2010).PubMed 

    Google Scholar 
    67.Ries, L., Fletcher, R. J. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol., Evolution, Syst. 35, 491–522 (2004).
    Google Scholar 
    68.Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, 1–16 (2006).
    Google Scholar 
    69.Swift, J. A. et al. Micro methods for Megafauna: novel approaches to late quaternary extinctions and their contributions to faunal conservation in the Anthropocene. Bioscience 69, 877–887 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    70.Andersen, K. et al. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 21, 1966–1979 (2012).CAS 
    PubMed 

    Google Scholar 
    71.Comandini, O. & Rinaldi, A. C. Tracing megafaunal extinctions with dung fungal spores. Mycologist 18, 140–142 (2004).
    Google Scholar 
    72.Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).ADS 
    PubMed 

    Google Scholar 
    73.Courchamp, F., Berec, L. & Gascoigne, J. Allee Effects in Ecology and Conservation. Allee Effects in Ecology and Conservation (Oxford University Press, 2008).74.Allee, W. C. Animal aggregations. Q. Rev. Biol. 2, 367–398 (1927).
    Google Scholar 
    75.Allee, W. C. & Bowen, E. S. Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61, 185–207 (1932).CAS 

    Google Scholar 
    76.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring. (Oxford University Press, 2018).77.Edwards, M. E. et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28, 2006–2016 (2018).ADS 

    Google Scholar 
    78.Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    79.Anderson-Carpenter, L. L. et al. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol. Biol. 11, 1–15 (2011).
    Google Scholar 
    80.Bellemain, E. et al. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176–1189 (2013).CAS 
    PubMed 

    Google Scholar 
    81.Ahmed, E. et al. Archaeal community changes in Lateglacial lake sediments: evidence from ancient DNA. Quat. Sci. Rev. 181, 19–29 (2018).ADS 

    Google Scholar 
    82.Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).CAS 
    PubMed 

    Google Scholar 
    83.Rawlence, N. J. et al. Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. J. Quat. Sci. 29, 610–626 (2014).
    Google Scholar 
    84.Blum, S. A. E., Lorenz, M. G. & Wackernagel, W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microbiol. 20, 513–521 (1997).CAS 

    Google Scholar 
    85.Greaves, M. P. & Wilson, M. J. The degradation of nucleic acids and montmorillonite-nucleic-acid complexes by soil microorganisms. Soil Biol. Biochem. 2, 257–268 (1970).CAS 

    Google Scholar 
    86.Gardner, C. M. & Gunsch, C. K. Adsorption capacity of multiple DNA sources to clay minerals and environmental soil matrices less than previously estimated. Chemosphere 175, 45–51 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    87.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl. Environ. Microbiol. 53, 2948–2952 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Ogram, A., Sayler, G., Gustin, D. & Lewis, R. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22, 982–984 (1988).ADS 
    CAS 
    PubMed 

    Google Scholar 
    89.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation of adsorbed DNA. Appl. Environ. Microbiol. 53, 2948–2952 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Morrissey, E. M. et al. Dynamics of extracellular DNA decomposition and bacterial community composition in soil. Soil Biol. Biochem. 86, 42–49 (2015).CAS 

    Google Scholar 
    91.Arnold, L. J. et al. Paper II – Dirt, dates and DNA: OSL and radiocarbon chronologies of perennially frozen sediments in Siberia, and their implications for sedimentary ancient DNA studies. Boreas 40, 417–445 (2011).
    Google Scholar 
    92.Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.1745 (2012).93.Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Cribdon, B., Ware, R., Smith, O., Gaffney, V. & Allaby, R. G. PIA: more accurate taxonomic assignment of metagenomic data demonstrated on sedaDNA from the North Sea. Front. Ecol. Evol. 8, 1–12 (2020).
    Google Scholar 
    95.Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).CAS 
    PubMed 

    Google Scholar 
    96.Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).CAS 

    Google Scholar 
    97.Burn, C. R., Michel, F. A. & Smith, M. W. Stratigraphic, isotopic, and mineralogical evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory. Can. J. Earth Sci. 23, 794–803 (1986).ADS 
    CAS 

    Google Scholar 
    98.Kotler, E. & Burn, C. R. Cryostratigraphy of the Klondike ‘muck’ deposits, west-central Yukon Territory. Can. J. Earth Sci. 37, 849–861 (2000).ADS 
    CAS 

    Google Scholar 
    99.Fraser, T. A. & Burn, C. R. On the nature and origin of ‘muck’ deposits in the Klondike area, Yukon Territory. Can. J. Earth Sci. 34, 1333–1344 (1997).ADS 

    Google Scholar 
    100.Mahony, M. E. 50,000 years of paleoenvironmental change recorded in meteoric waters and coeval paleoecological and cryostratigraphic indicators from the Klondike goldfields, Yukon, Canada. (University of Alberta, 2015). https://doi.org/10.7939/R34T6FF58.101.Lydolph, M. C. et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl. Environ. Microbiol. 71, 1012–1017 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    103.Haile, J. et al. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol. 24, 982–989 (2007).CAS 
    PubMed 

    Google Scholar 
    104.Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).PubMed 

    Google Scholar 
    105.Hansen, A. J. et al. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173, 1175–1179 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).ADS 
    PubMed 

    Google Scholar 
    107.Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Hebsgaard, M. B. et al. ‘The Farm Beneath the Sand’- an archaeological case study on ancient ‘dirt’ DNA. Antiquity 83, 430–444 (2009).
    Google Scholar 
    109.Sadoway, T. R. A Metagenomic Analysis of Ancient Sedimentary DNA Across the Pleistocene-Holocene Transition (McMaster University, 2014).110.Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).ADS 

    Google Scholar 
    111.Reimer, P. J. et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 

    Google Scholar 
    112.Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 18, 927–939 (2018).CAS 

    Google Scholar 
    113.Wei, N., Nakajima, F. & Tobino, T. A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison. Environ. Sci. Technol. 52, 12428–12435 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    114.Matesanz, S. et al. Estimating belowground plant abundance with DNA metabarcoding. Mol. Ecol. Resour. 19, 1265–1277 (2019).CAS 
    PubMed 

    Google Scholar 
    115.Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS ONE 7, 3–10 (2012).
    Google Scholar 
    116.Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10, 1–11 (2015).
    Google Scholar 
    117.Debruyne, R. et al. Out of America: ancient DNA evidence for a new world origin of late Quaternary Woolly Mammoths. Curr. Biol. 18, 1320–1326 (2008).CAS 
    PubMed 

    Google Scholar 
    118.Metcalfe, J. Z., Longstaffe, F. J. & Zazula, G. D. Nursing, weaning, and tooth development in woolly mammoths from Old Crow, Yukon, Canada: Implications for Pleistocene extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 257–270 (2010).
    Google Scholar 
    119.Shapiro, B. et al. Rise and fall of the Beringian steppe bison. Science 306, 1561–1565 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    120.Sinclair, P. H., Nixon, W. A., Eckert C. D. & Hughes, N. L.Hughes, eds. Birds of the Yukon Territory. (UBC Press, 2003).121.Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African Savanna. Bioscience 64, 487–495 (2014).
    Google Scholar 
    122.Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).PubMed 

    Google Scholar 
    123.Chevalier, M. et al. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Sci. Rev. 210, 103384 (2020).
    Google Scholar 
    124.Wang, X.-C. & Geurts, M.-A. Post-glacial vegetation history of the Ittlemit Lake basin, southwest Yukon Territory. Arctic 44, 23–30 (1991).
    Google Scholar 
    125.Wang, X.-C. & Geurts, M.-A. Late Quaternary pollen records and vegetation history of the southwest Yukon Territory: a review. Geogr. Phys. Quat. 45, 175–193 (1991).
    Google Scholar 
    126.Rainville, R. A. & Gajewski, K. Holocene environmental history of the Aishihik region, Yukon, Canada. Can. J. Earth Sci. 50, 397–405 (2013).ADS 
    CAS 

    Google Scholar 
    127.Lacourse, T. & Gajewski, K. Late Quaternary vegetation history of Sulphur Lake, southwest Yukon Territory, Canada. Arctic 53, 27–35 (2000).
    Google Scholar 
    128.Bunbury, J. & Gajewski, K. Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quat. Sci. Rev. 28, 354–369 (2009).ADS 

    Google Scholar 
    129.Gajewski, K., Bunbury, J., Vetter, M., Kroeker, N. & Khan, A. H. Paleoenvironmental studies in Southwestern Yukon. Arctic 67, 58–70 (2014).
    Google Scholar 
    130.Schofield, E. J., Edwards, K. J. & McMullen, A. J. Modern Pollen-Vegetation Relationships in Subarctic Southern Greenland and the Interpretation of Fossil Pollen Data from the Norse landnám. J. Biogeogr. 34, 473–488 (2007).
    Google Scholar 
    131.Pennington, W. & Tutin, T. G. Modern pollen samples from west greenland and the interpretation of pollen data from the british late-glacial (late Devesian). N. Phytol. 84, 171–201 (1980).
    Google Scholar 
    132.Bradshaw, R. H. W. Modern pollen-representation factors for Woods in South-East England. J. Ecol. 69, 45 (1981).
    Google Scholar 
    133.Roy, I. et al. Over-representation of some taxa in surface pollen analysis misleads the interpretation of fossil pollen spectra in terms of extant vegetation. Trop. Ecol. 59, 339–350 (2018).
    Google Scholar 
    134.Bryant, J. P. et al. Biogeographic evidence for the evolution of chemical defense by boreal birch and willow against mammalian browsing. Am. Nat. 134, 20–34 (1979).
    Google Scholar 
    135.Christie, K. S. et al. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: a synthesis. Bioscience 65, 1123 (2015).
    Google Scholar 
    136.Bryant, J. P. et al. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra? Ecography (Cop.). 37, 204–211 (2014).137.Bryant, J. P. & Kuropat, P. J. Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu. Rev. Ecol. Syst. 11, 261–285 (1980).CAS 

    Google Scholar 
    138.Fox-Dobbs, K., Leonard, J. A. & Koch, P. L. Pleistocene megafauna from eastern Beringia: Paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 261, 30–46 (2008).
    Google Scholar 
    139.Gardner, C., Berger, M. & Taras, M. Habitat assessment of potential wood bison relocation sites in Alaska. Arctic 1–30 (2007).140.Jiménez-Hidalgo, E. et al. Species diversity and paleoecology of late pleistocene horses from Southern Mexico. Front. Ecol. Evol. 7, 1–18 (2019).
    Google Scholar 
    141.van Geel, B. et al. The ecological implications of a Yakutian mammoth’s last meal. Quat. Res. 69, 361–376 (2008).
    Google Scholar 
    142.van Geel, B. et al. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia). Quat. Sci. Rev. 30, 3935–3946 (2011).ADS 

    Google Scholar 
    143.Guthrie, R. D. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426, 169–171 (2003).ADS 
    PubMed 

    Google Scholar 
    144.Bourgeon, L. Bluefish Cave II (Yukon Territory, Canada): Taphonomic Study of a Bone Assemblage. PaleoAmerica 1, 105–108 (2015).
    Google Scholar 
    145.Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the last glacial maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    146.Bourgeon, L. Revisiting the mammoth bone modifications from Bluefish Caves (YT, Canada). J. Archaeol. Sci. Rep. 37, 102969 (2021).147.Bourgeon, L. & Burke, A. Horse exploitation by Beringian hunters during the Last Glacial Maximum. Quat. Sci. Rev. 261, (2021).148.Vachula, R. S., Sae-Lim, J. & Russell, J. M. Sedimentary charcoal proxy records of fire in Alaskan tundra ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109564 (2020).149.Vachula, R. S. Alaskan lake sediment records and their implications for the Beringian standstill hypothesis. PaleoAmerica 6, 303–307 (2020).
    Google Scholar 
    150.Vachula, R. S. et al. Evidence of Ice Age humans in eastern Beringia suggests early migration to North America. Quat. Sci. Rev. 205, 35–44 (2019).ADS 

    Google Scholar 
    151.Vachula, R. S. et al. Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period. Boreas 49, 514–525 (2020).
    Google Scholar 
    152.Abramova, Z. A. in Paleolit Kavkaza i Severnoi Azii (ed. Boriskovskii, P. I.) 145–243 (Nauka, 1989).153.Abramova, Z. A., Astakhov, S. N., Vasil’ev, S. A., Ermolva, N. M. & Lisitsyn, N. F. Paleolit Eniseya. (Nauka, 1991).154.Goebel, T. in Encyclopedia of prehistory. Vol 2: Arctic and Subarctic (eds. Peregrine, P. N. & Ember, M.) 192–196 (Kluwer Academic Publishers, 2002).155.Ermolova, N. M. Teriofauna doliny Angary v pozdem antropogene. (Nauka, 1978).156.Hoffecker, J. F. & Elias, S. A. Human Ecology of Beringia. (Columbia University Press, 2007).157.Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. Biol. Sci. 269, 2221–2227 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Laland, K. N. & O’Brien, M. J. Niche Construction Theory and Archaeology. J. Archaeol. Method Theory 17, 303–322 (2010).
    Google Scholar 
    159.Riede, F. Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial. Philos. Trans. R. Soc. Lond. 366, 793–808 (2011).
    Google Scholar 
    160.Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1805259115 (2018).161.Pinter, N., Fiedel, S. & Keeley, J. E. Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. Quat. Sci. Rev. 30, 269–272 (2011).ADS 

    Google Scholar 
    162.Haynes, G. Extinctions in North America’s Late Glacial landscapes. Quat. Int. 285, 89–98 (2013).
    Google Scholar 
    163.Graf, K. E. in Paleoamerican Odyssey (eds. Graf, K. E., Ketron, C. V. & Waters, M. R.) 65–80 (Texas A&M University Press, 2014).164.Pečnerová, P. et al. Mitogenome evolution in the last surviving woolly mammoth population reveals neutral and functional consequences of small population size. Evol. Lett. 1, 292–303 (2017).165.Conroy, K. J. et al. Tracking late-Quaternary extinctions in interior Alaska using megaherbivore bone remains and dung fungal spores. Quat. Res. https://doi.org/10.1017/qua.2020.19 (2020).166.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    167.Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    168.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 5, pdb.prot5448 (2010).169.Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, 1–8 (2012).
    Google Scholar 
    170.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    171.Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).CAS 

    Google Scholar 
    172.Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).173.Huson, D. H. et al. MEGAN Community Edition – Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    174.Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    175.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    176.Bronk Ramsey, C. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).
    Google Scholar 
    177.Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).
    Google Scholar 
    178.Davies, L. J., Jensen, B. J. L., Froese, D. G. & Wallace, K. L. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quat. Sci. Rev. 146, 28–53 (2016).ADS 

    Google Scholar 
    179.Westgate, J. A., Preece, S. J., Kotler, E. & Hall, S. Dawson tephra: a prominent stratigraphic marker of Late Wisconsinan age in west-central Yukon, Canada. Can. J. Earth Sci. 37, 621–627 (2000).ADS 
    CAS 

    Google Scholar 
    180.Froese, D., Westgate, J., Preece, S. & Storer, J. Age and significance of the Late Pleistocene Dawson tephra in eastern Beringia. Quat. Sci. Rev. 21, 2137–2142 (2002).ADS 

    Google Scholar 
    181.Zazula, G. D. et al. Vegetation buried under Dawson tephra (25,300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 242, 253–286 (2006).
    Google Scholar 
    182.Froese, D. G., Zazula, G. D. & Reyes, A. V. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. Quat. Sci. Rev. 25, 1542–1551 (2006).ADS 

    Google Scholar 
    183.Klunk, J. et al. Genetic resiliency and the Black Death: no apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark. Am. J. Phys. Anthropol. 169, 240–252 (2019).PubMed 

    Google Scholar 
    184.Renaud, G., Stenzel, U. & Kelso, J. LeeHom: Adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res 42, e141 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    185.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    186.Adobe Inc. Adobe Illustrator. (2020). https://adobe.com/products/illustrator.187.Lebart, L., Morineau, A. & Tabard, N. Techniques De La Description Statistique Méthodes Et Logiciels Pour L’analyse Des Grands Tableaux. (Dunod, 1977).188.Potter, B. A. et al. Current evidence allows multiple models for the peopling of the Americas. Sci. Adv. 4, 1–9 (2018).
    Google Scholar 
    189.Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. J. Geophys. Res. Ocean. 102, 26455–26470 (1997).ADS 
    CAS 

    Google Scholar 
    190.Wolbach, W. S. et al. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments. J. Geol. 126, 185–205 (2018).ADS 
    CAS 

    Google Scholar  More