More stories

  • in

    Traits of a mussel transmissible cancer are reminiscent of a parasitic life style

    1.Aktipis, A. The Cheating Cell: How Evolution Helps Us Understand and Treat Cancer (Princeton University Press, 2020).Book 

    Google Scholar 
    2.Martinez-Outschoorn, U. E. et al. Stromal–epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell. B. 43(7), 1045–1051. https://doi.org/10.1016/j.biocel.2011.01.023 (2011).CAS 
    Article 

    Google Scholar 
    3.Ujvari, B. et al. Cancer and life-history traits: lessons from host-parasite interactions. Parasitology 143, 533–541. https://doi.org/10.1017/S0031182016000147 (2016).Article 
    PubMed 

    Google Scholar 
    4.Overstreet, R. M. & Lotz, J. M. Host-symbiont relationships: understanding the change from guest to pest. In The Rasputin Effect: Why Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology (ed. Hurst, C.) (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28170-4_2.Chapter 

    Google Scholar 
    5.Combes, C. Parasitism: The Ecology and Evolution of Intimate Inter-actions (University of Chicago Press, 2001).
    Google Scholar 
    6.Dujon, A. M. et al. Transmissible cancers in an evolutionary Perspective. iScience 23(7), 101269. https://doi.org/10.1016/j.isci.2020.101269 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126(3), 477–487. https://doi.org/10.1016/j.cell.2006.05.051 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Rebbeck, C. A., Thomas, R., Breen, M., Leroi, A. M. & Burt, A. Origins and evolution of a transmissible cancer. Evolution 63(9), 2340–2349. https://doi.org/10.1111/j.1558-5646.2009.00724.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Pearse, A. M. & Swift, K. Allograft theory: transmission of devil facial-tumor disease. Nature 439(7076), 549. https://doi.org/10.1038/439549a (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113(2), 374–379. https://doi.org/10.1073/pnas.1519691113 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161(2), 255–263. https://doi.org/10.1016/j.cell.2015.02.042 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534(7609), 705–709. https://doi.org/10.1038/nature18599 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. ELife 8, 1029. https://doi.org/10.7554/eLife.47788 (2019).Article 

    Google Scholar 
    14.Garcia-Souto, D. et al. Mitochondrial genome sequencing of marine leukemias reveals cancer contagion between clam species in the Seas of Southern Europe. BioRxiv https://doi.org/10.1101/2021.03.10.434714 (2021).Article 

    Google Scholar 
    15.Hammel, M. et al. Prevalence and polymorphism of a mussel transmissible cancer in Europe. Mol. Ecol. 2, 1–16. https://doi.org/10.1111/mec.16052 (2021).CAS 
    Article 

    Google Scholar 
    16.Skazina, M. et al. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci. Rep. 11(5809), 56930 (2021).
    Google Scholar 
    17.Burioli, E. A. V. et al. Implementation of various approaches to study the prevalence, incidence and progression of disseminated neoplasia in mussel stocks. J. Invertebr. Patho. 168, 107271. https://doi.org/10.1016/j.jip.2019.107271 (2019).CAS 
    Article 

    Google Scholar 
    18.Murray, M., James, Z. H. & Martin, W. B. A study of the cytology and karyotype of the canine transmissible venereal tumour. Res. Vet. Sci. 10(6), 565–572. https://doi.org/10.1016/50034-5288(18)34394-7 (1969).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hamede, R. K., McCallum, H. & Jones, M. Biting injuries and transmission of Tasmanian devil facial tumour disease. J. Anim. Ecol. 82(1), 182–190 (2013).Article 

    Google Scholar 
    20.Sunila, I. & Farley, C. Environmental limits for survival of sarcoma cells from the soft-shell clam Mya arenaria. Dis. Aquat. Organ. 7, 111–115. https://doi.org/10.3354/dao007111 (1989).Article 

    Google Scholar 
    21.Carballal, M. J., Barber, B. J., Iglesias, D. & Villalba, A. Neoplastic diseases of marine bivalves. J. Invertebr. Pathol. 131, 83–106. https://doi.org/10.1016/J.JIP.2015.06.004 (2015).Article 
    PubMed 

    Google Scholar 
    22.Carella, F., Figueras, A., Novoa, B. & De Vico, G. Cytomorphology and PCNA expression pattern in bivalves Mytilus galloprovincialis and Cerastoderma edule with haemic neoplasia. Dis. Aquat. Org. 105, 81–87. https://doi.org/10.3354/dao02612 (2013).Article 

    Google Scholar 
    23.Baudoin, M. Host castration as a parasitic strategy. Evolution 29, 335–352. https://doi.org/10.1111/j.1558-5646.1975.tb00213.x (1975).Article 
    PubMed 

    Google Scholar 
    24.Alderman, D. J., Van Banning, P. & Perez-Colomer, A. Two abnormal European oyster (Ostrea edulis) mortalities associated with an abnormal haemocytic condition. Aquaculture 10(4), 335–340. https://doi.org/10.1016/0044-8486(77)90124-7 (1977).Article 

    Google Scholar 
    25.Cosson-Mannevy, M. A., Wong, C. S. & Cretney, W. J. Putative neoplastic disorders in mussels (Mytilus edulis) from southern Vancouver Island waters, British Columbia. J. Invertebr. Pathol. 44(2), 151–160. https://doi.org/10.1016/0022-2011(84)90006-5 (1984).Article 

    Google Scholar 
    26.Brousseau, D. J. Seasonal aspects of sarcomatous neoplasia in Mya arenaria (soft-shell clam) from Long Island Sound. J. Invertebr. Pathol. 50(3), 269–276. https://doi.org/10.1016/0022-2011(87)90092-9 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Peters, E. C. Recent investigations on the disseminated sarcomas of marine bivalve molluscs. In: W. S. Fisher, editor. Diseases processes in marine bivalve mollusc. Washington, DC: special publication No. 18, American Fisheries Society. pp. 74–92 (1988).28.Ford, S. E., Barber, B. J. & Marks, E. Disseminated neoplasia in juvenile Eastern oyster Crassostrea virginica, and its relationship to the reproductive cycle. Dis. Aquat. Org. 28, 73–77. https://doi.org/10.3354/dao028073 (1997).Article 

    Google Scholar 
    29.Barber, B. J. Neoplastic diseases of commercially important marine bivalves. Aquat. Living Resour. 17, 449–466. https://doi.org/10.1051/alr:2004052 (2004).Article 

    Google Scholar 
    30.Randriananja, G. Evolution de la maturation de Mytilus edulis sur deux sites d’élevage du pertuis Breton : bouchots et filières. https://archimer.ifremer.fr/doc/00446/55762/57424.pdf (2006).31.Levitan, D. R. Sperm limitation, gamete competition and sexual selection in external fertilizers (eds. Birkhead, T. R., Moller, A. P.) 175–217. Sperm competition and sexual selection (Academic Press, 1998).32.Arzul, I. et al. Effects of temperature and salinity on the survival of Bonamia ostreae, a parasite infecting flat oysters Ostrea edulis. Dis. Aquat. Organ. 85, 67–75. https://doi.org/10.3354/dao02047 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481(7381), 306–313. https://doi.org/10.1038/nature10762 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Scott, J. & Marusyk, A. Somatic clonal evolution: a selection-centric perspective. Biochim. Biophys. Acta Rev. Cancer 1867(2), 139–150 (2017).CAS 
    Article 

    Google Scholar 
    35.Moore, M. N. & Lowe, D. M. The cytology and cytochemistry of the hemocytes of Mytilus edulis and their response to experimentally injected carbon particles. J. Invertebr. Pathol. 29, 18–30. https://doi.org/10.1016/0022-2011(77)90167-7 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Rasmussen, L. P. D., Hage, E. & Karlog, O. An electron microscope study of the circulating leucocytes of the marine mussel, Mytilus edulis. J. Invertebr. Pathol. 45, 158–167. https://doi.org/10.1016/0022-2011(85)90005-9 (1985).Article 

    Google Scholar 
    37.Carballal, M. J., López, M. C., Azevedo, C. & Villalba, A. Hemolymph cell types of the mussel Mytilus galloprovincialis. Dis. Aquat. Org. 29, 127–135. https://doi.org/10.3354/dao029127 (1997).Article 

    Google Scholar 
    38.Frei, E. 3rd. & Freireich, E. J. Progress and perspectives in the chemotherapy of acute leukemia. Adv. Chemother. 2, 269–298. https://doi.org/10.1016/b978-1-4831-9930-6.50011-3 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Ellison, R. R. & Murphy, M. L. “Apparent doubling time” of leukemic cells in marrow. Clin. Res. 12, 284 (1964).
    Google Scholar 
    40.Hirt, A., Schmid, A. M., Ammann, R. & Leibungut, K. In pediatric lymphoblastic leukemia of B-Cell origin, a small population of primitive blast cells is noncycling, suggesting them to be leukemia stem cell candidates. Pediatr. Res. 69, 194–199. https://doi.org/10.1203/PDR.0b013e3182092716 (2011).Article 
    PubMed 

    Google Scholar 
    41.Shimomatsuya, T., Tanigawa, N. & Muraoka, R. Proliferative activity of human tumors: assessment using bromodeoxyuridine and flow cytometry. Jpn. J. Cancer Res. 82(3), 357–362. https://doi.org/10.1111/j.1349-7006.1991.tb01854.x (1991).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Ford, S., Schotthoefer, A. & Spruck, C. In vivo dynamics of the microparasite Perkinsus marinus during progression and regression of infections in Eastern oysters. J. Parasitol. 85(2), 273–282. https://doi.org/10.2307/3285632 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Caza, F., Bernet, E., Veyrier, F. J., Betoulle, S. & St-Pierre, Y. Hemocytes released in seawater act as Troyan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 19696 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    44.McCallum, H. I. et al. Does terrestrial epidemiology apply to marine systems?. Trends Ecol. Evol. 19(11), 585–591. https://doi.org/10.1016/j.tree.2004.08.009 (2004).Article 

    Google Scholar 
    45.Ewald, P. W. Evolutionary biology and the treatment of signs and symptoms of infectious disease. J. Theor. Biol. 86(1), 169–176. https://doi.org/10.1016/0022-5193(80)90073-9 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Poulin, R. Chapter 5-Parasite Manipulation of Host Behavior: An Update and Frequently Asked Questions (eds: Brockmann, H. J., Roper, T. J., Naguib, M., Wynne-Edwards, K. E., Mitani, J. C., Simmons, L. W.). Advances in the Study of Behavior, Academic Press 41, 151–186. https://doi.org/10.1016/S0065-3454(10)41005-0 (2010).47.Cremonte, F., Vázquez, N. & Silva, M. R. Gonad atrophy caused by disseminated neoplasia in Mytilus chilensis cultured in the Beagle Channel, Tierra Del Fuego Province, Argentina. J. Shellfish Res. 30, 845–849. https://doi.org/10.2983/035.030.0325 (2011).Article 

    Google Scholar 
    48.Tissot, T. et al. Host manipulation by cancer cells: expectations, facts, and therapeutic implications. BioEssays 38(3), 276–285. https://doi.org/10.1002/bies/201500163 (2016).Article 
    PubMed 

    Google Scholar 
    49.Thomas, F., Guégan, J. F., Michalakis, Y. & Renaud, F. Parasites and host life-history traits: implications for community ecology and species co-existence. Int. J. Parasitol. 30(5), 669–674. https://doi.org/10.1016/s0020-7519(00)00040-0 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Charles, M. Etude des pathogènes, des conditions physiologiques et pathologiques impliqués dans les mortalités anormales de moules (Mytilus sp.). Biologie animale. Normandie Université. https://tel.archives-ouvertes.fr/tel-0.053331 (2019).51.Anderson, R. M. & May, R. M. Population biology of infectious diseases: part I. Nature 280, 361–367. https://doi.org/10.1038/280361a0 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Kuris, A. M. Trophic interactions: similarity of parasitic castrators to parasitoids. Q. Rev. Biol. 49, 129–148 (1974).Article 

    Google Scholar 
    53.Faure, M. F., David, P., Bonhomme, F. & Bierne, N. Genetic hitchhiking in a subdivided population of Mytilus edulis. BMC Evol. Biol. 8, 164. https://doi.org/10.1186/1471-2148-8-164 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Bierne, N. The distinctive footprints of local hitchhiking in a varied environment and global hitchhiking in a subdivided population. Evolution 64(11), 3254–3272. https://doi.org/10.1111/j.1558-5646.2010.01050.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Suquet, M. et al. Anesthesia in Pacific oyster Crassostrea gigas. Aquat. Living Resour. 22, 29–34. https://doi.org/10.1051/alr/2009006 (2009).CAS 
    Article 

    Google Scholar 
    56.Lubet, P. Recherches sur le cycle sexuel et l’émission des gamètes chez les Mytilidés et les Pectinidés. Rev Trav Inst Pêches marit. 23(4), 390–548 (1959).
    Google Scholar 
    57.Bierne, N. et al. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M galloprovincialis. Mol. Ecol. 12(2), 447–61. https://doi.org/10.1046/j.1365-294x.2003.01730.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Global predictors of language endangerment and the future of linguistic diversity

    1.Rehg, K. L. & Campbell, L. The Oxford Handbook of Endangered Languages (Oxford Univ. Press, 2018).2.Romaine, S. in Language and Poverty (eds Harbert, W. et al.) Ch. 8 (Multilingual Matters, 2009).3.Sallabank, J. & Austin, P. The Cambridge Handbook of Endangered Languages (Cambridge Univ. Press, 2011).4.Sutherland, W. J. Parallel extinction risk and global distribution of languages and species. Nature 423, 276–279 (2003).CAS 
    Article 

    Google Scholar 
    5.Eberhard, D. M., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 22nd edn (SIL International, 2019); https://www.ethnologue.com/6.Moseley, C. Atlas of the World’s Languages in Danger (UNESCO Publishing, 2010); http://www.unesco.org/culture/en/endangeredlanguages/atlas7.Catalogue of Endangered Languages (University of Hawaii at Manoa, 2020); http://www.endangeredlanguages.com8.Campbell, L. & Okura, E. in Cataloguing the World’s Endangered Languages 1st edn (eds Campbell, L. & Belew, A.) 79–84 (Routledge, 2018).9.The IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); http://www.iucnredlist.org10.Romaine, S. in The Routledge Handbook of Ecolinguistics (eds Fill, A. F. & Penz, H.) Ch. 3 (Routledge, 2017).11.Crystal, D. Language Death (Cambridge Univ. Press, 2000).12.Simons, G. F. Two centuries of spreading language loss. Proc. Linguist. Soc. Am. 4, 27–38 (2019).Article 

    Google Scholar 
    13.Krauss, M. The world’s languages in crisis. Language 68, 4–10 (1992).Article 

    Google Scholar 
    14.Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).15.Bowern, C. Language vitality: theorizing language loss, shift, and reclamation (Response to Mufwene). Language 93, e243–e253 (2017).Article 

    Google Scholar 
    16.Mufwene, S. S. Language vitality: The weak theoretical underpinnings of what can be an exciting research area. Language 93, e202–e223 (2017).Article 

    Google Scholar 
    17.Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).Article 

    Google Scholar 
    18.Grenoble, L. A. & Whaley, L. J. in Endangered Languages (eds Grenoble, L. A. & Whaley, L. J.) 22–54 (Cambridge Univ. Press, 1998).19.Cardillo, M., Bromham, L. & Greenhill, S. J. Links between language diversity and species richness can be confounded by spatial autocorrelation. Proc. R. Soc. B 282, 20142986 (2015).Article 

    Google Scholar 
    20.Amano, T. et al. Global distribution and drivers of language extinction risk. Proc. R. Soc. B 281, 20141574 (2014).Article 

    Google Scholar 
    21.Loh, J. & Harmon, D. Biocultural Diversity: Threatened Species, Endangered Languages (WWF, 2014).22.Fishman, J. A. Reversing Language Shift: Theoretical and Empirical Foundations of Assistance to Threatened Languages Vol. 76 (Multilingual Matters, 1991).23.Lewis, M. P. & Simons, G. F. Assessing endangerment: expanding Fishman’s GIDS. Rev. Roum. Linguist. 55, 103–120 (2010).
    Google Scholar 
    24.Hinton, L. in The Green Book of Language Revitalization in Practice (eds Hinton, L. & Hale, K.) 413–417 (Brill, 2001).25.Hobson, J. R. Re-awakening Languages: Theory and Practice in the Revitalisation of Australia’s Indigenous Languages (Sydney Univ. Press, 2010).26.Di Marco, M. et al. A novel approach for global mammal extinction risk reduction. Conserv. Lett. 5, 134–141 (2012).Article 

    Google Scholar 
    27.Cardillo, M., Mace, G. M., Gittleman, J. L. & Purvis, A. Latent extinction risk and the future battlegrounds of mammal conservation. Proc. Natl Acad. Sci. USA 103, 4157–4161 (2006).CAS 
    Article 

    Google Scholar 
    28.Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. 14, e12762 (2020).
    Google Scholar 
    29.Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).CAS 
    Article 

    Google Scholar 
    30.Brenzinger, M. Language Death: Factual and Theoretical Explorations with Special Reference to East Africa (Mouton de Gruyter, 1992).31.Aikhenvald, A. Y. in Language Endangerment and Language Maintenance: An Active Approach (eds Bradley, D. & Bradley, M.) 24–33 (Taylor & Francis, 2002).32.Aikhenvald, A. Y. in Lectures on Endangered Languages: 5. Endangered Languages of the Pacific Rim (eds Sakiyama, O. & Endo, F.) 97–142 (ELPR, 2004).33.van Driem, G. in Language Diversity Endangered (ed. Brenzinger, M.) Ch. 14 (Mouton de Gruyter, 2007).34.Muysken, P. in Historicity and Variation in Creole Studies (eds Highfield, A. & Valdman, A.) 52–78 (Karoma, 1981).35.Gal, S. Language Shift: Social Determinants of Linguistic Change in Bilingual Austria (Academic Press, 1979).36.Holmquist, J. Social correlates of a linguistic variable: a study in a Spanish village. Lang. Soc. 14, 191–203 (1985).Article 

    Google Scholar 
    37.Dobrin, L. M. in Endangered Languages: Beliefs and Ideologies in Language Documentation and Revitalization (eds Austin, P. K. & Sallabank, J.) Ch. 7 (British Academy, 2014).38.Sasse, H.-J. in Language Death: Factual and Theoretical Explorations with Special Reference to East Africa (ed Brenzinger M.) 7–30 (Mouton de Gruyter, 1992).39.Wang, Y. & Phillion, J. Minority language policy and practice in China: the need for multicultural education. Int. J. Multicult. Educ. 11, 1–14 (2009).
    Google Scholar 
    40.McCarty, T. L. in Language Policies in Education: Critical Issues (ed. Tollefson, J. W.) 285–307 (2002).41.Wiese, A.-M. & Garcia, E. E. The Bilingual Education Act: language minority students and equal educational opportunity. Biling. Res. J. 22, 1–18 (1998).Article 

    Google Scholar 
    42.Bromham, L., Hua, X., Algy, C. & Meakins, F. Language endangerment: a multidimensional analysis of risk factors. J. Lang. Evol. 5, 75–91 (2020).Article 

    Google Scholar 
    43.Gao, X. & Ren, W. Controversies of bilingual education in China. Int. J. Biling. Educ. Biling. 22, 267–273 (2019).Article 

    Google Scholar 
    44.Dimmendaal, G. J. in Investigating Obsolescence: Studies in Language Contraction and Death (ed. Dorian N. C.) 13-32 (Cambridge Univ. Press, 1989).45.Brenzinger, M. in Language Diversity Endangered (ed. Brenzinger, M.) IX–XVII (Mouton de Gruyter, 2007).46.Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 

    Google Scholar 
    47.Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).Article 

    Google Scholar 
    48.Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).Article 

    Google Scholar 
    49.Laurance, W. F. & Balmford, A. A global map for road building. Nature 495, 308–309 (2013).CAS 
    Article 

    Google Scholar 
    50.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    Article 

    Google Scholar 
    51.Crawford, J. Language politics in the U.S.A.: the paradox of bilingual education. Soc. Justice 25, 50–69 (1998).
    Google Scholar 
    52.Hallett, D., Chandler, M. J. & Lalonde, C. E. Aboriginal language knowledge and youth suicide. Cogn. Dev. 22, 392–399 (2007).Article 

    Google Scholar 
    53.Taff, A. et al. in The Oxford Handbook of Endangered Languages (eds Rehg, K. & Campbell, L.) 862–883 (Oxford Univ. Press, 2018).54.Dinku, Y. et al. Language Use is Connected to Indicators of Wellbeing: Evidence from the National Aboriginal and Torres Strait Islander Social Survey 2014/15. CAEPR Working Paper no. 132/2019 (CAEPR, 2020); https://doi.org/10.25911/5ddb9fd6394e855.Essegbey, J., Henderson, B. & McLaughlin, F. Language Documentation and Endangerment in Africa (John Benjamins, 2015).56.Davis, J. L. Language affiliation and ethnolinguistic identity in Chickasaw language revitalization. Lang. Commun. 47, 100–111 (2016).Article 

    Google Scholar 
    57.Clyne, M. in Maintenance and Loss of Minority Languages (eds Fase, W. et al.) 17–36 (John Benjamins, 1992).58.Cardillo, M. et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. B 275, 1441–1448 (2008).Article 

    Google Scholar 
    59.Evans, N. Dying Words: Endangered Languages and What They Have to Tell Us Vol. 22 (John Wiley & Sons, 2011).60.Ndhlovu, F. in Language Planning and Policy: Ideologies, Ethnicities, and Semiotic Spaces of Power (eds Abdelhay, A. et al.) 133–151 (Cambridge Scholars, 2020).61.Hammarström, H., Forkel, R. & Haspelmath, M. Glottolog 4.1. http://glottolog.org (Max Planck Institute for the Science of Human History, 2019).62.Lewis, M. P., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 17th edn http://www.ethnologue.com (SIL International, 2013).63.King, K. A., Schilling-Estes, N., Lou, J. J., Fogle, F. & Soukup, B. Sustaining Linguistic Diversity: Endangered and Minority Languages and Language Varieties (Georgetown Univ. Press, 2008).64.Lee, N. H. & van Way, J. Assessing levels of endangerment in the Catalogue of Endangered Languages (ELCat) using the Language Endangerment Index (LEI). Lang. Soc. 45, 271–292 (2016).Article 

    Google Scholar 
    65.Language Vitality and Endangerment: International Expert Meeting on UNESCO Programme Safeguarding of Endangered Languages (UNESCO, 2003).66.Tershy, B. R., Shen, K.-W., Newton, K. M., Holmes, N. D. & Croll, D. A. The importance of islands for the protection of biological and linguistic diversity. BioScience 65, 592–597 (2015).Article 

    Google Scholar 
    67.Igboanusi, H. Is Igbo an endangered language? Multilingua 25, 443–452 (2006).Article 

    Google Scholar 
    68.Ravindranath, M. & Cohn, A. C. Can a language with millions of speakers be endangered? J. Southeast Asian Linguist. Soc. 7, 64–75 (2014).
    Google Scholar 
    69.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).CAS 
    Article 

    Google Scholar 
    70.Bromham, L., Hua, X., Cardillo, M., Schneemann, H. & Greenhill, S. J. Parasites and politics: why cross-cultural studies must control for relatedness, proximity and covariation. R. Soc. Open Sci. 5, 181100 (2018).Article 

    Google Scholar 
    71.Bromham, L., Skeels, A., Schneemann, H., Dinnage, R. & Hua, X. There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk. Nat. Hum. Behav. https://doi.org/10.1038/s41562-020-01039-8 (2021).72.Purvis, A., Cardillo, M., Grenyer, R. & Collen, B. in Phylogeny and Conservation (eds Purvis, A. et al.) 295–316 (Cambridge Univ. Press, 2005).73.Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    74.Dow, M. M. Network autocorrelation regression with binary and ordinal dependent variables: Galton’s problem. Cross Cult. Res. 42, 394–419 (2008).Article 

    Google Scholar 
    75.Wurm, M. J., Rathouz, P. J. & Hanlon, B. M. Regularized ordinal regression and the ordinalNet R package. Preprint at https://arxiv.org/abs/1706.05003 (2017).76.Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995).Article 

    Google Scholar 
    77.Barro, R. L. & Lee, J.-W. A new data set of educational attainment in the world, 1950–2010. J. Dev. Econ. 104, 184–198 (2013).Article 

    Google Scholar 
    78.Leclerc, J. L’aménagement linguistique dans le monde http://www.axl.cefan.ulaval.ca/monde/index_alphabetique.htm (2019).79.Solt, F. The Standardized World Income Inequality Database, Version 8 https://doi.org/10.7910/DVN/LM4OWF (2019).80.Global Agro-ecological Zones (GAEZ v3.0) (FAO, IIASA, 2010). More

  • in

    Simulating grazing beef and sheep systems

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Distance sampling surveys reveal 17 million vertebrates directly killed by the 2020’s wildfires in the Pantanal, Brazil

    1.Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Spinoni, J., Naumann, G., Carrao, H., Barbosa, P. & Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 34, 2792–2804 (2014).
    Google Scholar 
    3.Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165(3), 1–21 (2021).
    Google Scholar 
    4.Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J. & Hayhoe, K. Global Pyrogeography: The current and future distribution of wildfire. PLoS ONE 4(4), e5102 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Fut. 7, 892–910 (2019).ADS 

    Google Scholar 
    6.Garcia, L. C. et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative Fire Management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293, 112870 (2021).CAS 

    Google Scholar 
    7.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 

    Google Scholar 
    8.Criado, M. G., Myers-Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29(5), 925–943 (2020).
    Google Scholar 
    9.Mancini, L. D., Corona, P. & Salvati, L. Ranking the importance of Wildfires’ human drivers through a multi-model regression approach. Environ. Impact Assess. Rev. 72, 177–186 (2018).
    Google Scholar 
    10.Moreira, F. et al. Landscape – wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 92(10), 2389–2402 (2011).
    Google Scholar 
    11.Clarke, H. et al. The proximal drivers of large fires: A pyrogeographic study. Front. Earth Sci. 8, 90 (2020).ADS 

    Google Scholar 
    12.Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1 (2021).ADS 

    Google Scholar 
    13.Daskin, J. H., Aires, F. & Staver, A. C. Determinants of tree cover in tropical floodplains. Proc. R. Soc. B. 286, 20191755 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    14.Kotze, D. C. The effects of fire on wetland structure and functioning. Afr. J. Aquat. Sci. 38(3), 237–247 (2013).
    Google Scholar 
    15.Tedim, F. et al. Defining Extreme Wildfire Events: difficulties, challenges, and impacts. Fire 1, 9 (2018).
    Google Scholar 
    16.Libonati, R. et al. Sistema ALARMES – Alerta de área queimada Pantanal, situação final de 2020 https://www.researchgate.net/publication/350103205_Nota_Tecnica_012021_LASA-UFRJ_Queimadas_Pantanal_2020?channel=doi&linkId=6051109d92851cd8ce483fb1&showFulltext=true (2021).17.Libonati, R., DaCamara, C. C., Peres, F. L., de Carvalho, L. A. S. & Garcia, L. C. Rescue Brazil’s burning Pantanal wetlands. Nature 588, 217–219 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Marengo, J. A. et al. Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes and impacts. Front. Water 3, 639204 (2021).
    Google Scholar 
    19.Marengo, J. A., Alves, L. M. & Torres, R. R. Regional climate change scenarios in the Brazilian Pantanal watershed. Clim. Res. 68(2–3), 201–213 (2016).
    Google Scholar 
    20.Hardesty, J., Myers, R. & Fulks, W. Fire, ecosystems, and people: A preliminary assessment of fire as a global conservation issue. George Wright Forum 22, 78–87 (2005).
    Google Scholar 
    21.Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl. Acad. Sci. USA 105(39), 14796–14801 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Chang. Biol. 12, 2023–2031 (2006).ADS 

    Google Scholar 
    23.Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. USA 106, 20359–20364 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Pott, A. & Pott, V. J. Features and conservation of the Brazilian Pantanal wetland. Wetl. Ecol. Manag. 12, 547–552 (2004).
    Google Scholar 
    25.Ferraz-Vicentini, K. R. & Salgado-Laboriau, M. L. Palynological analysis of a palm swamp in Central Brasil. J. South Am. Earth Sci. 9(3–4), 207–219 (1996).ADS 

    Google Scholar 
    26.Engstrom, R. T. First-order fire effects on animals: review and recommendations. Fire Ecol. 6(1), 115–130 (2010).
    Google Scholar 
    27.Whelan, R. J., Rodgerson, L., Dickman, C. R. & Sutherland, E. F. Critical life processes of plants and animals: Developing a process-based understanding of population changes in fireprone landscapes (Cambridge University Press, 2002).
    Google Scholar 
    28.van Eeden, L. M. et al. Impacts of the unprecedented 2019–2020 bushfires on Australian animals. https://www.wwf.org.au/ArticleDocuments/353/WWF_Impacts-of-the-unprecedented-2019-2020-bushfires-on-Australian-animals.pdf.aspx (2020).29.Pacheco, L. F., Quispe-Calle, L. C., Suárez-Guzmán, F. A., Ocampo, M. & Claure-Herrera, A. J. Muerte de mamíferos por los incendios de 2019 en la Chiquitania. Ecol. Boliv. 56(1), 4–16 (2021).
    Google Scholar 
    30.Berlinck, C. B. et al. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Braz. J. Biol. 82, e244200 (2021).CAS 
    PubMed 

    Google Scholar 
    31.Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658–667 (2012).
    Google Scholar 
    32.Komarek, R. Fire and the changing wildlife habitat. Proc. Tall Timbers Fire Ecol. Conf. 2, 35–43 (1963).
    Google Scholar 
    33.Layme, V. M. G., Lima, A. P. & Magnusson, W. E. Effects of fire, food availability and vegetation on the distribution of the rodent Bolomys lasiurus in an Amazonian savanna. J. Trop. Ecol. 20, 183–187 (2004).
    Google Scholar 
    34.Roberts, S. L., van Wagtendonk, J. W., Miles, A. K., Kelt, D. A. & Lutz, J. A. Modeling the effects of fire severity and spatial complexity on small mammals in Yosemite National Park, California. Fire Ecol. 4(2), 83–104 (2008).
    Google Scholar 
    35.Smith, J. K. Wildland Fire in Ecosystems: Effects of Fire on Fauna (Rocky Mountain Research Station, Colorado, 2000).36.Woinarski, J. C. Z. & Legge, S. The impacts of fire on birds in Australia’s tropical savannas. Emu 113(4), 319–352 (2013).
    Google Scholar 
    37.Pires, A. S., Fernandez, F. A., de Freitas, D. & Feliciano, B. R. Influence of edge and fire-induced changes on spatial distribution of small mammals in Brazilian Atlantic Forest fragments. Stud. Neotrop. Fauna Environ. 40(1), 7–14 (2005).
    Google Scholar 
    38.Silveira, L. F., Rodrigues, H. G., Jácomo, A. T. A. & Diniz Filho, J. A. F. Impact of wildfires on the megafauna of Emas National Park, Central Brazil. Oryx 33, 108–114 (1999).39.Tomas, W. M. et al. Checklist of mammals from Mato Grosso do Sul, Brazil. Iheringia, Sér. zool. 107(Suppl), e2017155 (2017).40.Tomas, W. M. et al. Mammals in the Pantanal wetland, Brazil (Pensoft Publishers, 2010).
    Google Scholar 
    41.Burnham, K. P., Anderson, D. R. & Laake, J. L. Estimation of density from line transect sampling of biological populations. Ecol. Monogr. 72, 1–202 (1980).
    Google Scholar 
    42.Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    43.Thielen, D. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLoS ONE 15(1), e0227437 (2020).44.Ciemer, C. et al. An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic Sea surface temperatures. Environ. Res. Lett. 15, 094087 (2020).45.Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bergier, I. et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 619–620, 1116–1125 (2018).ADS 
    PubMed 

    Google Scholar 
    47.Hofmann, G. et al. The Brazilian Cerrado is becoming hotter and drier. Glob. Chang. Biol. 00, 1–14 (2021).
    Google Scholar 
    48.Tomas, W. M. et al. Sustainability Agenda for the Pantanal Wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30 (2019).ADS 

    Google Scholar 
    49.Schulz, C. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: Synthesis and research agenda. Sci. Total Environ. 687, 1011–1027 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Harris, M. B. et al. Safeguarding the Pantanal wetlands: Threats and conservation initiatives. Conserv. Biol. 19(3), 714–720 (2005).
    Google Scholar 
    51.Ely, P., Fantin-Cruz, I., Tritico, H. M., Girard, P. & Kaplan, D. Dam-induced hydrologic alterations in the rivers feeding the Pantanal. Front. Environ. Sci. 8, 256 (2020).
    Google Scholar 
    52.Roque, F. O. et al. Simulating land use changes, sediment yields, and pesticide use in the Upper Paraguay River Basin: Implications for conservation of the Pantanal wetland. Agric. Ecosyst. Environ. 314, 107405 (2021).53.Guerra, A. et al. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91, 104388 (2020).54.Berlinck, C. N., Lima, L. H. A. & Carvalho Junior, E. A. R. Historical survey of research related to fire management and fauna conservation in the world and in Brazil. Biota Neotropica 21(3), e20201144 (2021).55.Estado de Mato Grosso do Sul. DECRETO Nº 15.654, de 15 de abril de 2021. Institui o Plano Estadual de Manejo Integrado do Fogo, e Dá Outras Providências. (Diário Oficial do Estado, Mato Grosso do Sul nº 10.477, 2021).56.Marino, E. et al. Forest fuel management for wildfire prevention in Spain: A quantitative SWOT analysis. Int. J. Wildland Fire 23, 373–384 (2014).
    Google Scholar 
    57.Finney, M. A. & Cohen, J. D. Expectation and Evaluation of Fuel Management Objectives (Rocky Mountain Research Station, Colorado, 2003).58.Amiro, B. D., Stocks, B. J., Alexander, M. E., Flannigan, M. D. & Wotton, B. M. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10(4), 405–413 (2001).
    Google Scholar 
    59.Rocca, M. E., Brown, P. M., MacDonald, L. H. & Carrico, C. M. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. Forest Ecol. Manag. 327, 290–305 (2014).
    Google Scholar 
    60.Pott, V. J., Pott, A., Lima, L. C. P., Moreira, S. N. & Oliveira, A. K. M. Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Braz. J. Biol. 71(1), 255–563 (2011).CAS 
    PubMed 

    Google Scholar 
    61.Britski, H. A., Silimon, K. Z. S. & Lopes, B. S. Peixes do Pantanal: Manual de Identificação (EMPRAPA, Brasília, 2007).62.Sousa, T. P. et al. Cytogenetic and molecular data Support the occurrence of three Gymnotus species (Gymnotiformes: Gymnotidae) used as live bait in Corumbá, Brazil: Implications for conservation and management of professional fishing. Zebrafish 14(2), 177–186 (2017).PubMed 

    Google Scholar 
    63.Piva, A., Caramaschi, U. & Albuquerque, N. R. A new species of Elachistocleis (Anura: Microhylidae) from the Brazilian Pantanal. Phyllomedusa 16(2), 143–154 (2017).
    Google Scholar 
    64.Strüssmann, C., Ribeiro, R. A. K., Ferreira, V. L., & Beda, A. D. F. Herpetofauna do Pantanal Brasileiro [Herpetofauna of the Brazilian Pantanal]. (Sociedade Brasileira de Herpetologia, Belo Horizonte, 2007).65.Ferreira, V. L. et al. Répteis do Mato Grosso do Sul [Reptiles from Mato Grosso do Sul]. Brazil. Iheringia Sér. Zool. 107(Suppl), e2017153 (2017).66.Nunes, A. P. Quantas espécies de aves ocorrem no Pantanal? [How many bird species do occur in the Pantanal?]. Atualidades Ornitológicas 160, 45–54 (2011).
    Google Scholar 
    67.Tubelis, D. P. & Tomas, W. M. Bird species of the Pantanal wetland, Brazil.. Ararajuba 11(1), 5–37 (2003).
    Google Scholar 
    68.Thomas, L. et al. Distance software: design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14 (2010).PubMed 

    Google Scholar  More

  • in

    Statistical inference, scale and noise in comparative anthropology

    To the Editor — In an insightful Comment Bliege Bird and Codding1 highlight a number of important issues to consider in the analysis of cross-cultural anthropological data. However, a casual reader of the Comment could be forgiven for taking away the message that cross-cultural data in anthropology is inherently flawed, and so is of limited use. We want to emphasize that comparative analysis plays an essential role in all non-experimental sciences, including anthropology and archaeology. This is because when systems cannot be manipulated due to scales of time and space, or issues of logistics or ethics, the only way to evaluate alternative outcomes is by analysing the results of natural experiments. More

  • in

    Drivers of language loss

    1.Nettle, D. Linguistic Diversity (Oxford Univ. Press, USA, 1999).2.Campbell, L. & Belew, A. Cataloguing the World’s Endangered Languages (Routledge, 2018).3.Bromham, L. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01604-y (2021).4.Amano, T. et al. Proc. R. Soc. B 281, 20141574 (2014).Article 

    Google Scholar 
    5.Austin, P. K. & Sallabank, J. The Cambridge Handbook of Endangered Languages (Cambridge Univ. Press, 2011).6.Kandler, A., Unger, R. & Steele, J. Phil. Trans. R. Soc. B 365, 3855–3864 (2010).Article 

    Google Scholar 
    7.Kik, A. et al. Proc. Natl Acad. Sci. USA 118, e2100096118 (2021).CAS 
    Article 

    Google Scholar 
    8.Lewis, M. P., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 17th edn (SIL International, 2013).9.Fischer, S. D. in The Routledge Handbook of Historical Linguistics (ed. Bowern, C. & Evans, B.) Ch. 20, 443–465 (CRC Press, Routledge, 2015).10.Hou, L. & Kusters, A. in The Routledge Handbook of Linguistic Ethnography (ed. Tusting, K.) Ch. 25 (CRC Press, Routledge, 2019).11.Turner, M. K. & McDonald, B. M. J. Iwenhe Tyerrtye: What it Means to be an Aboriginal Person (IAD Press, 2010).12.Hercus, L. A. & Sutton, P. This is What Happened: Historical Narratives by Aborigines (Australian Institute of Aboriginal Studies, 1986).13.Meek, B. A. Annu. Rev. Anthropol. 48, 95–115 (2019).Article 

    Google Scholar  More

  • in

    Experimental evidence for recovery of mercury-contaminated fish populations

    Mercury additions to the study catchmentMETAALICUS was conducted on the Lake 658 catchment at the Experimental Lakes Area (ELA; now IISD-ELA), a remote area in the Precambrian Shield of northwestern Ontario, Canada (49° 43′ 95″ N, 93° 44′ 20″ W) set aside for whole-ecosystem research31. The Lake 658 catchment includes upland (41.2 ha), wetland (1.7 ha) and lake surface (8.4 ha) areas. Lake 658 is a double basin (13 m depth), circumneutral, headwater lake, with a fish community consisting of forage (yellow perch (P. flavescens) and blacknose shiner (Notropis heterolepis)), benthivorous (lake whitefish (C. clupeaformis) and white sucker (Catostomus commersonii)), and piscivorous (northern pike (E. lucius)) fishes. The lake is closed to fishing.Hg addition methods used in METAALICUS have been described in detail elsewhere19,32,33. In brief, three Hg spikes, each enriched with a different stable Hg isotope, were applied separately to the lake surface, upland and wetland areas. Upland and wetland spikes were applied once per year (when possible; Fig. 1a) by fixed-wing aircraft (Cessna 188 AGtruck). Mercury spikes (as HgNO3) were diluted in acidified water (pH 4) in a 500 l fiberglass tank and sprayed with a stainless-steel boom on upland (approximately 79.9% 200Hg) and wetland (approximately 90.1% 198Hg) areas. Spraying was completed during or immediately before a rain event, with wind speeds less than 15 km h−1 to minimize drift of spike Hg outside of target areas. Aerial spraying of upland and wetland areas left a 20-m buffer to the shoreline, which was sprayed by hand with a gas-powered pump and fire hose to within about 5 m of the lake32. Average net application rates of isotopically labelled Hg to the upland and wetland areas were 18.5 μg m−2 yr−1 and 17.8 μg m−2 yr−1, respectively.The average net application rate for lake spike Hg was 22.0 μg m−2 yr−1. For each lake addition, inorganic Hg enriched with approximately 89.7% 202Hg was added as HgNO3 from four 20-l carboys filled with acidified lake water (pH 4). Nine lake additions were conducted bi-weekly at dusk over an 18-week (wk) period during the open-water season of each year (2001–2007) by injecting at 70-cm depth into the propeller wash of trolling electric motors of two boats crisscrossing each basin of the lake32,33. It was previously demonstrated with 14C additions to an ELA lake that this approach evenly distributed spike added in the evening by the next morning34.We did not attempt to simulate Hg in rainfall for isotopic lake additions because it is impossible to simulate natural rainfall concentrations (about 10 ng l−1) in the 20-l carboys used for additions. Instead, our starting point for the experiment was to ensure that the spike was behaving as closely as possible to ambient surface water Hg very soon after it entered the lake. Several factors support this assertion. By the next morning each spike addition had increased epilimnetic Hg concentrations by only 1 ng l−1 202Hg. Average ambient concentrations were 2 ng l−1. Thus, while the Hg concentrations in the carboys were high (2.6 mg l−1), the receiving waters were soon at trace levels. Furthermore, we investigated if the additions altered the degree of bioavailability or photoreactivity of Hg(ii) in the receiving surface water. We examined the bioavailability of spike Hg(ii) as compared to ambient Hg in the lake itself using a genetically engineered bioreporter bacterium35. On seven occasions, epilimnetic samples were collected on the day before and within 12 h of spike additions. The spike was added to the lake as Hg(NO3)2, which is bioavailable to the bioreporter bacterium (detection limit = 0.1 ng Hg(ii) l−1), but we never saw bioavailable ambient or spike Hg(ii) in the lake, presumably because it was quickly bound to dissolved organic carbon (DOC). This indicates that, in terms of bioavailability, the spike Hg was behaving like ambient Hg soon after additions. Photoreactivity in the surface water was examined on seven occasions, by measuring the % of total Hg(ii) that was dissolved gaseous Hg for spike and ambient Hg, either 24 h or 48 h after the lake was spiked36. There was no significant difference (paired t-test, P > 0.05), demonstrating that by then the lake spike was behaving in the same way as ambient Hg during gaseous Hg production.Lake, food web and fish samplingWater samples were collected from May to October every four weeks at the deepest point of Lake 658. Water was pumped from six depths through acid-cleaned Teflon tubing into acid-cleaned Teflon or glass bottles. Water samples were filtered in-line using pre-ashed quartz fibre filters (Whatman GFQ, 0.7 µm). Subsequently, Hg species were measured in the filtered water samples (dissolved Hg and MeHg) and in particles collected on the quartz fibre filter (particulate Hg and MeHg).From 2001 to 2012, Lake 658 sediments were sampled at 4 fixed sites up to 5 times per year. Sampling frequency was highest in 2001, with monthly sampling from May to September, and declined over the course of the study. Fixed sites were located at depths of 0.5, 2, 3 and 7 m. A sediment survey of up to 12 additional sites was also conducted once or twice each year. Survey sites were selected to represent the full range of water depths in both basins. Cores were collected by hand by divers, or by subsampling sediments collected using a small box corer. Cores were capped and returned to the field station for processing within a few hours. For each site, three separate cores were sectioned and composited in zipper lock bags for a 0- to 2-cm depth sampling horizon, and then frozen at −20 °C.Bulk zooplankton and Chaoborus samples were collected from Lake 658 for MeHg analysis. Zooplankton were collected during the day from May to October (bi-weekly: 2001–2007; monthly: 2008–2015). A plankton net (150 μm, 0.5 m diameter) was towed vertically through the water column from 1 m above the lake bottom at the deepest point to the surface of the lake. Samples were frozen in plastic Whirl-Pak bags after removal of any Chaoborus using acid-washed tweezers. Dominant zooplankton taxa in Lake 658 included calanoid copepods (Diaptomus oregonensis) and Cladocera (Holopedium glacialis, Daphnia pulicaria and Daphnia mendotae). Chaoborus samples were collected monthly in the same manner at least 1 h after sunset. After collection, Chaoborus were picked from the sample using forceps and frozen in Whirl-Pak bags. Chaoborus were not separated by species for MeHg analyses, but both C. flavicans and C. punctipennis occur in the lake. Profundal chironomids were sampled at the deepest part of the lake using a standard Ekman grab sampler. Grab material was washed using water from a nearby lake and individual chironomids were picked by hand.All work with vertebrate animals was approved by Animal Care Committees (ACC) through the Canadian Council on Animal Care (Freshwater Institute ACC for Fisheries and Oceans Canada, 2001–2013; University of Manitoba ACC for IISD-ELA, 2014–2015). Licenses to Collect Fish for Scientific Purposes were granted annually by the Ontario Ministry of Natural Resources and Forestry. Prior to any Hg additions, a small-mesh fence was installed at the outlet of Lake 658 to the downstream lake to prevent movement of fish between lakes. Sampling for determination of MeHg concentrations (measured as total mercury (THg), see below) occurred each autumn (August–October; that is, the end of the growing season in north temperate lakes) for all fish species in Lake 658, and for northern pike and yellow perch in nearby reference Lake 240 (Extended Data Tables 2, 3). Fish collections occurred randomly throughout the lakes. Forage fish (YOY and 1+ yellow perch, and blacknose shiner) were captured using small mesh gillnets (6–10 mm) set for 90% of the Hg in muscle tissue from yellow perch in Lake 658 is MeHg40,41, here we report fish mercury data as MeHg.THg concentrations (ambient, lake spike, upland spike and wetland spike) in fish muscle samples were quantified by ICP-MS39. Samples were digested with HNO3/H2SO4 (7:3 v/v) and heated at 80 °C until brown NOx gases no longer formed. The THg in sample digests was reduced by SnCl2 to Hg0 which was then quantified by ICP-MS (Thermo-Finnigan Element2) using a continuous flow cold vapour generation technique41. To correct for procedural recoveries, all samples were spiked with 201HgCl2 prior to sample analysis. Samples of CRMs (DORM2 (2001–2011), DORM3 (2012–2013), DORM4 (2014–2015); National Research Council of Canada) were submitted to the same procedures; measured THg concentrations in the reference materials were not statistically different from certified values (P > 0.05). Detection limit for each of the spikes was 0.5% of ambient Hg.Calculations and statistical methodsAnalyses were completed with Statistica (6.1, Statsoft) and Sigmaplot (11.0, Systat Software). We present wet weight (w.w.) MeHg concentrations for all samples, except sediments which are dry weight (d.w.) concentrations. For zooplankton, Chaoborus, and profundal chironomids, d.w. MeHg concentrations were multiplied by a standard proportion (0.15) to yield w.w. concentrations for each sample42. The resulting w.w. concentrations were averaged over each open water season to determine annual means. For fish muscle biopsies, d.w. MeHg concentrations were multiplied by individual d.w. proportions to yield w.w. MeHg concentrations for each sample. To avoid any size-related biases, we calculated standardized annual MeHg concentrations (ambient and lake spike) for northern pike and lake whitefish by determining best-fit relationships between FL and MeHg concentrations for each year (quadratic polynomial, except for a linear fit for lake whitefish in 2004), and using the resulting regression equations to estimate MeHg concentrations at a standard FL43 (the mean FL of all fish sampled for each species: northern pike, 475 mm; lake whitefish, 530 mm). Square root transformation of raw northern pike data was required to satisfy assumptions of normality and homoscedasticity prior to standardization. The resulting data represent standardized concentrations of lake spike and ambient MeHg for each species each year.We used the ratio of lake spike and ambient Hg in each sample as a measure of the amount by which Hg concentrations were changed with the addition of isotopically enriched Hg:$${rm{P}}{rm{e}}{rm{r}}{rm{c}}{rm{e}}{rm{n}}{rm{t}},{rm{i}}{rm{n}}{rm{c}}{rm{r}}{rm{e}}{rm{a}}{rm{s}}{rm{e}}={[{rm{l}}{rm{a}}{rm{k}}{rm{e}}{rm{s}}{rm{p}}{rm{i}}{rm{k}}{rm{e}}{rm{H}}{rm{g}}]}_{i}/{[{rm{a}}{rm{m}}{rm{b}}{rm{i}}{rm{e}}{rm{n}}{rm{t}}{rm{H}}{rm{g}}]}_{i}times 100$$
    (1)
    where [lake spike Hg]i is the concentration of lake spike MeHg in sample i, and [ambient Hg]i is the concentration of ambient MeHg in sample i. For northern pike and lake whitefish, we calculated the mean annual relative increase from all individuals (not the size-standardized concentration data).Biomagnification factors (BMF) were calculated to describe differences in Hg concentrations between predator and prey5:$${rm{BMF}}={log }_{10}({[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{d}}{rm{a}}{rm{t}}{rm{o}}{rm{r}}}/{[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{y}}})$$
    (2)
    where [MeHg]predator is the mean (forage fish) or standardized (large-bodied fish) concentration of MeHg in the predator (ng g−1 w.w.) and [MeHg]prey is the mean concentration of MeHg in the prey (ng g−1 w.w.). MeHg concentration of prey items were averaged from samples collected throughout the open-water season immediately prior to autumn sampling of fish species to represent an integrated exposure for calculation of BMF. We used a dominant prey item to represent the diet of each fish species. For age 1+ yellow perch, northern pike, and lake whitefish, dominant prey items were zooplankton, forage fishes (YOY and 1+ yellow perch, and blacknose shiner) and Chaoborus, respectively.To assess loss of lake spike MeHg by northern pike during the recovery period (2008–2015), we calculated28 whole body burdens (in μg) of lake spike MeHg for the standardized population and for individuals that had been sampled in autumn 2007 (t0 is the final time spike Hg was added to the lake) and again in at least one subsequent year during annual autumn sampling (n = 16 fish, of which 1–9 individuals were recaptured annually from 2008–2015). This calculation of MeHg burden is a relative measure of whole fish Hg content because MeHg is higher in muscle tissue than in other tissue types28,40. For the standardized population data, we used best-fit relationships between FL (in mm) and body weight (in g; quadratic polynomial) to determine body weight at the standard FL. We multiplied this body weight by standard ambient and spike MeHg concentrations (in ng g−1 w.w.) in muscle tissue for each year to determine body burdens over time (in ng). For individual fish, we multiplied spike MeHg concentration (in ng g−1 w.w.) by body weight (in g) to yield individual body burdens (in ng). To account for differences among individuals and between individuals and the population, we normalized the data to examine the mean proportion of original (t0) lake spike MeHg burden present in northern pike each year of the recovery period (2008–2015).$${rm{change}},{rm{in}},{rm{burden}},{rm{from}},{t}_{0}={{rm{burden}}}_{{rm{tx}}}/{{rm{burden}}}_{{rm{t}}0}$$
    (3)
    We used a best fit regression (exponential decay, beginning in the second year of recovery) to estimate the half-life (50% of original burden) of lake spike MeHg for the population.Northern pike and lake whitefish ages were determined by cleithra and otoliths, respectively, if mortality had occurred, but most ages were quantified using fin rays collected from live fish44 (K. H. Mills, DFO or North/South Consultants). Northern pike of the sizes selected for biopsy sampling had a median age of 3 years (range: 2–12 years; n = 305); the median age of lake whitefish was 17 years (range: 3–38 years; n = 86).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More

  • in

    Biogeochemical extremes and compound events in the ocean

    1.Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1980–1996 (2011). Identifies the potential synegistic threat to marine ecosystems resulting from ocean warming, deoxygenation and acidification.ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    4.Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 

    Google Scholar 
    6.Keeling, R. F., Kortzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    7.Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).ADS 

    Google Scholar 
    8.Sallée, J. B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).10.Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, GB2002 (2006).ADS 

    Google Scholar 
    11.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    12.Doney, S. C., Busch, D. S., Cooley, S. R. & Kroeker, K. J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
    Google Scholar 
    13.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    14.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl Acad. Sci. USA 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 

    Google Scholar 
    16.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    17.Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).18.Lavell, A. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 25–64 (2012).19.Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteor. Soc. 81, 443–450 (2000).ADS 

    Google Scholar 
    20.Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).
    Google Scholar 
    21.Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    22.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018). Quantifies the future evolution of marine heatwaves under different climate scenarios and their attribution to climate change.ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018). Highlights the strong increase in the occurrence and intensity of marine heatwaves in recent decades.ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
    Google Scholar 
    25.Benedetti-Cecchi, L. Complex networks of marine heatwaves reveal abrupt transitions in the global ocean. Sci. Rep. 11, 1739 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019). Assesses the potential for global ocean ecosystem impacts of marine heatwaves.ADS 

    Google Scholar 
    27.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2012). Demonstrates marked ocean ecosystem changes in response to a heatwave.ADS 

    Google Scholar 
    28.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 

    Google Scholar 
    29.Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).ADS 

    Google Scholar 
    31.Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the west coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).ADS 

    Google Scholar 
    32.Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016). A synthesis of the ecosystem impacts of the 2013–2015 Blob heatwave.33.Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 north Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).ADS 

    Google Scholar 
    34.Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).
    Google Scholar 
    35.Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013). Models the evolution of ocean-acidification-related extremes in the California Current System.ADS 

    Google Scholar 
    38.Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).ADS 
    CAS 

    Google Scholar 
    39.Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5, 113–128 (2014).
    Google Scholar 
    40.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
    Google Scholar 
    41.Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).ADS 

    Google Scholar 
    42.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
    Google Scholar 
    43.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).44.Limburg, K. E., Breitburg, D., Swaney, D. P. & Jacinto, G. Ocean deoxygenation: a primer. One Earth 2, 24–29 (2020).
    Google Scholar 
    45.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 

    Google Scholar 
    46.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 

    Google Scholar 
    47.Allen, M. R. et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 49–91 (IPCC, 2018).48.Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Pilo, G. S., Holbrook, N. J., Kiss, A. E. & Hogg, A. M. C. sensitivity of marine heatwave metrics to ocean model resolution. Geophys. Res. Lett. 46, 14604–14612 (2019).ADS 

    Google Scholar 
    50.Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
    Google Scholar 
    51.Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).52.Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).ADS 

    Google Scholar 
    53.Amaya, D. J., Miller, A. J., Xie, S. P. & Kosaka, Y. Physical drivers of the summer 2019 north Pacific marine heatwave. Nat. Commun. 11, 1903 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Negrete-García, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M. & Lauvset, S. K. Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nat. Clim. Change 9, 313–317 (2019).ADS 

    Google Scholar 
    55.Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).ADS 

    Google Scholar 
    56.Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).ADS 

    Google Scholar 
    57.Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).ADS 

    Google Scholar 
    58.Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Frenger, I. et al. Biogeochemical role of subsurface coherent eddies in the ocean: tracer cannonballs, hypoxic storms, and microbial stewpots? Glob. Biogeochem. Cycles 32, 226–249 (2018).ADS 
    CAS 

    Google Scholar 
    60.Schütte, F. et al. Characterization of ‘dead-zone’ eddies in the eastern tropical north Atlantic. Biogeosciences 13, 5865–5881 (2016).ADS 

    Google Scholar 
    61.Lauvset, S. K. et al. Processes driving global interior ocean pH distribution. Glob. Biogeochem. Cycles 34, e2019GB006229 (2020).ADS 
    CAS 

    Google Scholar 
    62.Gaube, P., Chelton, D. B., Strutton, P. G. & Behrenfeld, M. J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 118, 6349–6370 (2013).ADS 
    CAS 

    Google Scholar 
    63.Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans 120, 7413–7449 (2015).ADS 

    Google Scholar 
    64.Hauss, H. et al. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies. Biogeosciences 13, 1977–1989 (2016).ADS 
    CAS 

    Google Scholar 
    65.Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).ADS 

    Google Scholar 
    68.Peterson, W. T., Bond, N. A. & Robert, M. The Blob (part three): going, going, gone? PICES Press 24, 46–48 (2016).
    Google Scholar 
    69.Frischknecht, M., Münnich, M. & Gruber, N. Local atmospheric forcing driving an unexpected California Current System response during the 2015–2016 El Niño. Geophys. Res. Lett. 44, 304–311 (2017).ADS 

    Google Scholar 
    70.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).72.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar. Ecol. Progr. Ser. 373, 203–217 (2008).ADS 

    Google Scholar 
    74.Stillman, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Straub, S. C. et al. Resistance, extinction, and everything in between—the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 
    76.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018). Demonstrates the global-scale impact of marine heatwaves on warm-water corals.ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Donovan, M. K. et al. Local conditions magnify coral loss following marine heatwaves. Science 372, 977–980 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. https://doi.org/10.1111/gcb.15818 (2021).79.McMahon, B. R. Physiological responses to oxygen depletion in intertidal animals. Am. Zool. 28, 39–53 (1988).
    Google Scholar 
    80.Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Change Biol. 26, 54–67 (2020).ADS 

    Google Scholar 
    81.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Spisla, C. et al. Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study. Front. Mar. Sci. 7, 611157 (2021).
    Google Scholar 
    83.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Bednaršek, N. et al. El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California current system with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018). Shows the impact of a compound event on pteropods, a keystone zooplankton species in many marine ecosystems.
    Google Scholar 
    85.Calderón-Liévanos, S. et al. Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes. Mar. Freshw. Behav. Physiol. 52, 1–15 (2019).
    Google Scholar 
    86.Mieszkowska, N., Burrows, M. T., Hawkins, S. J. & Sugden, H. Impacts of pervasive climate change and extreme events on rocky intertidal communities: evidence from long-term data. Front. Mar. Sci. 8, 642764 (2021).87.Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several northeast Pacific marine ecosystems. Glob. Chang. Biol. 27, 506–520 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Garrabou, J. et al. Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).ADS 

    Google Scholar 
    90.Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940 (2013).ADS 

    Google Scholar 
    91.Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).ADS 

    Google Scholar 
    92.Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the Northern Gulf of Alaska. Front. Mar. Sci. 8, 556820 (2021).93.Samuels, T., Rynearson, T. A. & Collins, S. Surviving heatwaves: thermal experience predicts life and death in a Southern Ocean Diatom. Front. Mar. Sci. 8, 600343 (2021).94.Vajedsamiei, J., Wahl, M., Schmidt, A. L., Yazdanpanahan, M. & Pansch, C. The higher the needs, the lower the tolerance: extreme events may select ectotherm recruits with lower metabolic demand and heat sensitivity. Front. Mar. Sci. 8, 660427 (2021).
    Google Scholar 
    95.Bindoff, N. L. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 5 (IPCC, 2021).96. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 6 (Cambridge Univ. Press, 2014).97.Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    98.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    99.Seifert, M., Rost, B., Trimborn, S. & Hauck, J. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO2. Glob. Change Biol. 26, 6787–6804 (2020).ADS 

    Google Scholar 
    100.Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    101.Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments: adaptation to changing environments. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190454 (2020).
    Google Scholar 
    102.Somero, G. N. The cellular stress response and temperature: function, regulation, and evolution. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 379–397 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Fordyce, A. J., Ainsworth, T. D., Heron, S. F. & Leggat, W. Marine heatwave hotspots in coral reef environments: physical drivers, ecophysiological outcomes and impact upon structural complexity. Front. Mar. Sci. 6, 498 (2019).
    Google Scholar 
    104.Krueger, T. et al. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J. Phycol. 50, 1035–1047 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    106.Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2, e1501660 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Change 4, 1024–1030 (2014).ADS 

    Google Scholar 
    108.Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    109.Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    110.Hinder, S. L. et al. Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change. Glob. Change Biol. 20, 140–146 (2014).ADS 

    Google Scholar 
    111.Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl Acad. Sci. USA 118, e2017105118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).
    Google Scholar 
    113.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    114.Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).
    Google Scholar 
    115.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    116.Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Glob. Change Biol. 27, 1196–1213 (2021).ADS 

    Google Scholar 
    117.Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    118.Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 5–8 (2017).ADS 

    Google Scholar 
    119.Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).
    Google Scholar 
    120.Vallina, S. M. & Le Quéré, C. Stability of complex food webs: resilience, resistance and the average interaction strength. J. Theor. Biol. 272, 160–173 (2011).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    121.Neutel, A. M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    122.Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Nagelkerken, I., Goldenber, S. U., Ferreir, C. M., Ullah, H. & Conne, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369, 829–832 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    124.Carpenter, S. R. et al. Cascading trophic interactions and lake productivity. Bioscience 35, 634–639 (1985).
    Google Scholar 
    125.Bideault, A. et al. Thermal mismatches in biological rates determine trophic control and biomass distribution under warming. Glob. Change Biol. 27, 257–269 (2021).ADS 

    Google Scholar 
    126.Dee, L. E., Okamtoto, D., Gårdmark, A., Montoya, J. M. & Miller, S. J. Temperature variability alters the stability and thresholds for collapse of interacting species: species interactions facing variability. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190457 (2020).
    Google Scholar 
    127.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a south central Pacific reef. Sci. Rep. 8, 9680 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 

    Google Scholar 
    129.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Glob. Change Biol. 22, 2633–2650 (2016).ADS 

    Google Scholar 
    130.Ainsworth, T. D., Hurd, C. L., Gates, R. D. & Boyd, P. W. How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes? Glob. Change Biol. 26, 343–354 (2020).ADS 

    Google Scholar 
    131.Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010). Develops the concept of how other stressors can interact with each other in marine ectotherms.PubMed 
    PubMed Central 

    Google Scholar 
    132.Deutsch, C., Ferrel, A., Seibel, B., Portner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    134.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    135.Bertolini, C. & Pastres, R. Tolerance landscapes can be used to predict species-specific responses to climate change beyond the marine heatwave concept: using tolerance landscape models for an ecologically meaningful classification of extreme climate events. Estuar. Coast. Shelf Sci. 252, 107284 (2021).
    Google Scholar 
    136.Le Gland, G., Vallina, S. M., Smith, S. L. & Cermeño, P. SPEAD 1.0—simulating plankton evolution with adaptive dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea. Geosci. Model Dev. 14, 1949–1985 (2021).ADS 

    Google Scholar 
    137.Merico, A., Bruggeman, J. & Wirtz, K. A trait-based approach for downscaling complexity in plankton ecosystem models. Ecol. Modell. 220, 3001–3010 (2009).CAS 

    Google Scholar 
    138.Walworth, N. G., Zakem, E. J., Dunne, J. P., Collins, S. & Levine, N. M. Microbial evolutionary strategies in a dynamic ocean. Proc. Natl Acad. Sci. USA 117, 5943–5948 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    139.Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).ADS 
    CAS 

    Google Scholar 
    140.Collins, M. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 6 (IPCC, 2021).141.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    142.Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science 354, 1591–1594 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Rashid Sumaila, U. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    144.Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).
    Google Scholar 
    145.Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with Biogeochemical-Argo. Ann. Rev. Mar. Sci. 12, 23–48 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    146.Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1, 315–326 (2020).ADS 

    Google Scholar 
    147.Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019).
    Google Scholar 
    148.Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    149.Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).ADS 

    Google Scholar 
    151.Boyd, P. & Hutchins, D. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).ADS 

    Google Scholar 
    152.Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).ADS 

    Google Scholar 
    153.Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Modell. 222, 3823–3837 (2011).
    Google Scholar 
    154.Bruggeman, J. & Kooijman, S. A. L. M. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnol. Oceanogr. 52, 1533–1544 (2007).ADS 

    Google Scholar 
    155.Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91–93 (2013).ADS 

    Google Scholar 
    156.Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    159.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
    Google Scholar 
    160.Liquete, C. et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS ONE 8, e67737 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    161.Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Nino-coincident coral mortality. Coral Reefs 8, 181–191 (1990).ADS 

    Google Scholar 
    162.Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Gardner, J., Manno, C., Bakker, D. C. E., Peck, V. L. & Tarling, G. A. Southern Ocean pteropods at risk from ocean warming and acidification. Mar. Biol. 165, 8 (2018).PubMed 
    PubMed Central 

    Google Scholar  More