Great tits feed their nestlings with more but smaller prey items and fewer caterpillars in cities than in forests
1.Mckinney, M. L. Effects of urbanization on species richness : a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
Google Scholar
2.Anderson, P. M. L., Okereke, C., Rudd, A. & Parnell, S. Urbanization, biodiversity and ecosystem services: challenges and opportunities a global assessment (Springer, Berlin, 2013). https://doi.org/10.1007/978-94-007-7088-1.Book
Google Scholar
3.Newhouse, M. J., Marra, P. P. & Johnson, L. S. Reproductive success of house wrens in suburban and rural landscapes. Wilson J. Ornithol. 120, 99–104 (2008).
Google Scholar
4.Biard, C. et al. Growing in Cities: An Urban Penalty for Wild Birds? A Study of Phenotypic Differences between Urban and Rural Great Tit Chicks (Parus major). Front. Ecol. Evol. 5, (2017). https://doi.org/10.3389/fevo.2017.000795.Seress, G. et al. Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. J. Avian Biol. 43, 403–414 (2012).
Google Scholar
6.Glądalski, M. et al. Differences in the breeding success of Blue Tits Cyanistes caeruleus between a forest and an urban area : a long-term study. Acta Ornithol. 52, 59–68 (2017).
Google Scholar
7.Teglhøj, P. G. A comparative study of insect abundance and reproductive success of barn swallows Hirundo rustica in two urban habitats. J. Avian Biol. 48, 846–853 (2017).
Google Scholar
8.Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis (Lond. 1859). 151, 1–18 (2009).
Google Scholar
9.Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS
CAS
Google Scholar
10.Capilla-Lasheras, P. et al. A global meta-analysis reveals more variable life histories in urban birds compared to their non-urban neighbours. Preprint (2021). https://doi.org/10.1101/2021.09.24.461498.11.Caizergues, A. et al. An avian urban morphotype: how the city environment shapes greattit morphology at different life stages. Urban Ecosyst. 24, 929–941 (2021).
Google Scholar
12.Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. 14, 69–84 (2021).PubMed
Google Scholar
13.Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hungaricae 61, 373–408 (2015).
Google Scholar
14.Bailly, J. et al. From eggs to fledging: negative impact of urban habitat on reproduction in two tit species. J. Ornithol. 157, 377–392 (2016).
Google Scholar
15.Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156 (2018).PubMed
Google Scholar
16.Seress, G., Sándor, K., Evans, K. L. & Liker, A. Food availability limits avian reproduction in the city: an experimental study on great tits Parus major. J. Anim. Ecol. 89, 1570–1580 (2020).PubMed
Google Scholar
17.Krištín, A. & Patočka, J. Birds as predators of Lepidoptera: Selected examples. Biologia (Bratisl). 52, 319–326 (1997).
Google Scholar
18.Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).
Google Scholar
19.Ramsay, S. L. & Houston, D. C. Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. Ibis (Lond. 1859). 145, 227–232 (2003).
Google Scholar
20.Partali, V., Liaaen-Jensen, S., Slagsvold, T. & Lifjeld, J. T. Carotenoids in food chain studies—II. The food chain of Parus SPP. Monitored by carotenoid analysis. Comp. Biochem. Physiol. Part B Comp. Biochem. 87, 885–888 (1987).
Google Scholar
21.Isaksson, C., Johansson, A. & Andersson, S. Egg yolk carotenoids in relation to habitat and reproductive investment in the great Tit Parus major. Physiol. Biochem. Zool. 81, 112–118 (2008).CAS
PubMed
Google Scholar
22.Isaksson, C., Örnborg, J., Stephensen, E. & Andersson, S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2, 138–146 (2005).
Google Scholar
23.Arnold, K. E., Ramsay, S. L., Henderson, L. & Larcombe, S. D. Seasonal variation in diet quality: antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Linn. Soc. 99, 708–717 (2010).
Google Scholar
24.Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).
Google Scholar
25.Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26, 1196–1211 (2020).ADS
PubMed
Google Scholar
26.Nadolski, J., Marciniak, B., Loga, B., Michalski, M. & Bańbura, J. Long-term variation in the timing and height of annual peak abundance of caterpillars in tree canopies: Some effects on a breeding songbird. Ecol. Indic. 121, 107120 (2021).
Google Scholar
27.Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life?. Glob. Chang. Biol. 24, 1452–1469 (2018).ADS
PubMed
Google Scholar
28.Miyashita, T., Shinkai, A. & Chida, T. The effects of forest fragmentation on web spider communities in urban areas. Biol. Conserv. 86, 357–364 (1998).
Google Scholar
29.Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).ADS
CAS
PubMed
Google Scholar
30.Ishitani, M., Kotze, D. J. & Niemelä, J. Changes in carabid beetle assemblages across an urban-rural gradient in Japan. Ecography (Cop.) 26, 481–489 (2003).
Google Scholar
31.Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7, 5014 (2017).ADS
PubMed
PubMed Central
Google Scholar
32.Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 193, 377–388 (2020).ADS
PubMed
PubMed Central
Google Scholar
33.Isaksson, C. & Andersson, S. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564–572 (2007).
Google Scholar
34.Sinkovics, C. A fiókatáplálék mennyisége , minősége és szezonalitása városi és erdei széncinege (Parus major) populációkban. (Szent István University, 2014).35.Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond. 1859). 147, 17–24 (2005).
Google Scholar
36.Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).
Google Scholar
37.Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).CAS
Google Scholar
38.Riddington, R. & Gosler, A. G. Differences in reproductive success and parental qualities between habitats in the Great Tit Parus major. Ibis (Lond. 1859) 137, 371–378 (1995).
Google Scholar
39.Mennechez, G. & Clergeau, P. Effect of urbanisation on habitat generalists: starlings not so flexible?. Acta Oecologica 30, 182–191 (2006).ADS
Google Scholar
40.Shawkey, M. D., Bowman, R. & Woolfenden, G. E. Why is brood reduction in Florida Scrub-Jays higher in suburban than in wildland habitats?. Can. J. Zool. 82, 1427–1435 (2004).
Google Scholar
41.Robb, G. N., McDonald, R. A., Chamberlain, D. E. & Bearhop, S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484 (2008).
Google Scholar
42.Sauter, A., Bowman, R., Schoech, S. J. & Pasinelli, G. Does optimal foraging theory explain why suburban Florida scrub-jays (Aphelocoma coerulescens) feed their young human-provided food ?. Behav. Ecol. Sociobiol. 60, 465–474 (2006).
Google Scholar
43.Heiss, R. S., Clark, A. B. & McGowan, K. J. Growth and nutritional state of American Crow nestlings vary between urban and rural habitats. Ecol. Appl. 19, 829–839 (2009).PubMed
Google Scholar
44.Graveland, J. & van Gijzen, T. Arthropods and seeds are not sufficient as calcium sources for shell formation and skeletal growth in passerines. Ardea 82, 299–314 (1994).
Google Scholar
45.Ricklefs, R. In Avian Biology (eds. Farner, D., King, J. & Parkes, K.) 1–83 (Academic Press, 1983).46.Peach, W. J., Vincent, K. E., Fowler, J. A. & Grice, P. V. Reproductive success of house sparrows along an urban gradient. Anim. Conserv. 11, 493–503 (2008).
Google Scholar
47.Johnston, R. D. Effects of diet quality on the nestling growth of a wild insectivorous passerine, the house martin Delichon urbica. Funct. Ecol. 7, 255–266 (1993).
Google Scholar
48.Marciniak, B., Nadolski, J., Nowakowska, M., Loga, B. & Bańbura, J. Habitat and annual variation in arthropod abundance affects Blue Tit Cyanistes caeruleus reproduction. Acta Ornithol. 42, 53–62 (2007).
Google Scholar
49.Pagani-Núñez, E. & Senar, J. C. One hour of sampling is enough: great tit Parus major parents feed their nestlings consistently across time. Acta Ornithol. 48, 194–200 (2013).
Google Scholar
50.Betts, M. M. The behaviour of a pair of great tits at the nest. Br. Birds 48, 77–82 (1955).
Google Scholar
51.Van Balen, J. H. A comparative study of the breeding ecology of the great tit Parus major in different habitats. Ardea 61, 1–93 (1973).
Google Scholar
52.Seress, G. et al. Effects of capture and video-recording on the behavior and breeding success of Great Tits in urban and forest habitats. J. F. Ornithol. 88, 299–312 (2017).
Google Scholar
53.Free Software Foundation. vlc. (1991).54.Sinkovics, C., Seress, G., Fábián, V., Sándor, K. & Liker, A. Obtaining accurate measurements of the size and volume of insects fed to nestlings from video recordings. J. F. Ornithol. 89, 165–172 (2018).
Google Scholar
55.R Core Team. R: A language and environment for statistical computing. (2017). Available at: https://www.r-project.org/.56.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021). R package version 3.1-153, https://CRAN.R-project.org/package=nlme.57.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2018). R package version 1.3.1. https://CRAN.R-project.org/package=emmeans58.Venables, W. N. & Ripley, B. D. Modern applied statistics with S (Springer, Berlin, 2002).MATH
Google Scholar
59.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2011).
Google Scholar
60.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 3, 346–363 (2008).MathSciNet
MATH
Google Scholar
61.Ruxton, G. D. & Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 19, 690–693 (2008).
Google Scholar
62.Bolker, B. M. et al. Generalized linear mixed models :a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed
Google Scholar
63.Vincze, E. et al. Great tits take greater risk toward humans and sparrowhawks in urban habitats than in forests. Ethology 125, 686–701 (2019).
Google Scholar
64.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).MATH
Google Scholar
65.Serrano-Davies, E. & Sanz, J. J. Habitat structure modulates nestling diet composition and fitness of Blue Tits Cyanistes caeruleus in the Mediterranean region. Bird Study 64, 295–305 (2017).
Google Scholar
66.Senar, J. C., Manzanilla, A. & Mazzoni, D. A comparison of the diet of urban and forest great tits in a Mediterranean habitat. Anim. Biodivers. Conserv. 44(2), 321–327 (2021).
Google Scholar
67.Narango, D. L., Tallamy, D. W. & Marra, P. P. Nonnative plants reduce population growth of an insectivorous bird. Proc. Natl. Acad. Sci. 115, 201809259 (2018).
Google Scholar
68.de Satgé, J. et al. Urbanisation lowers great tit Parus major breeding success at multiple spatial scales. J. Avian Biol. 50, (2019). https://doi.org/10.1111/jav.0210869.Baldan, D. & Ouyang, J. Q. Urban resources limit pair coordination over offspring provisioning. Sci. Rep. 10, 15888 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
70.Mennechez, G. & Clergeau, P. In Avian Ecology and Conservation in an Urbanizing World (ed. Marzluff, J. M.) 275–287 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1531-9_1371.Meyrier, E. et al. Happy to breed in the city? Urban food resources limit reproductive output in Western Jackdaws. Ecol. Evol. 7, 1363–1374 (2017).PubMed
PubMed Central
Google Scholar
72.Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiol. Zool. 70, 631–638 (1997).CAS
PubMed
Google Scholar
73.Warren, M. S. et al. The decline of butterflies in Europe: Problems, significance, and possible solutions. Proc. Natl. Acad. Sci. 118, e2002551117 (2021).CAS
PubMed
PubMed Central
Google Scholar
74.Burghardt, K. T., Tallamy, D. W., Philips, C. & Shropshire, K. J. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1, 1–22 (2010).
Google Scholar
75.Tallamy, D. W. & Shriver, W. G. Are declines in insects and insectivorous birds related?. Condor 123, 1–8 (2021).
Google Scholar
76.Mackenzie, J. A., Hinsley, S. A. & Harrison, N. M. Parid foraging choices in urban habitat and the consequences for fitness. Ibis (Lond. 1859) 156, 591–605 (2014).
Google Scholar
77.Narango, D. L., Tallamy, D. W. & Marra, P. P. Native plants improve breeding and foraging habitat for an insectivorous bird. Biol. Conserv. 213, 42–50 (2017).
Google Scholar
78.Cholewa, M. & Wesołowski, T. Nestling food of European hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons?. Acta Ornithol. 46, 105–116 (2011).
Google Scholar More
