More stories

  • in

    Diel investments in metabolite production and consumption in a model microbial system

    1.Baines SB, Pace ML. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr. 1991;36:1078–90.
    Google Scholar 
    2.Williams PJLeB. Heterotrophic bacteria and the dynamics of dissolved organic material. In: Kirchman DL (ed). Microbial Ecology of the Oceans, 1st edn. New York: Wiley-Liss; 2000. p. 153–200.3.Thornton DCO. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol. 2014;49:20–46.CAS 

    Google Scholar 
    4.Nagata T. Organic matter-bacteria interactions in seawater. In: Kirchman DL, (ed). Microbial Ecology of the Oceans. Hoboken: John Wiley and Sons, Inc; 2008. p. 207–41.
    Google Scholar 
    5.Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci. 2011;3:567–99.PubMed 

    Google Scholar 
    6.Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.
    Google Scholar 
    7.Cole JJ, Findlay S, Pace ML. Bacterial production in fresh and saltwater ecosystems – a cross-system overview. Mar Ecol Prog Ser. 1988;43:1–10.
    Google Scholar 
    8.Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Nat Acad Sci. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Comm. 2018;9:5179.
    Google Scholar 
    10.Boysen AK, Carlson LT, Durham BP, Groussman RD, Aylward FO, Ribalet F, et al. Diel oscillations of particulate metabolites reflect synchronized microbial activity in the North Pacific Subtropical Gyre. bioRxiv. 2020: 2020.05.09.086173.11.Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4:1706–15.CAS 
    PubMed 

    Google Scholar 
    12.Burney CM, Davis PG, Johnson KM, Sieburth JM. Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Mar Biol. 1982;67:311–22.CAS 

    Google Scholar 
    13.Gasol JM, Doval MD, Pinhassi J, Calderon-Paz JI, Guixa-Boixareu N, Vaque D, et al. Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea. Mar Ecol Prog Ser. 1998;164:107–24.
    Google Scholar 
    14.Kuipers B, van Noort GJ, Vosjan J, Herndl GJ. Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. Mar Ecol Prog Ser. 2000;201:13–25.
    Google Scholar 
    15.Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 2014;345:207–12.CAS 
    PubMed 

    Google Scholar 
    16.Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Frischkorn KR, Haley ST, Dyhrman ST. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. ISME J 2018;12:997–1007.PubMed 
    PubMed Central 

    Google Scholar 
    18.Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 

    Google Scholar 
    19.Bjornsen PK. Phytoplankton exudation of organic-matter – why do healthy cells do it. Limnol Oceanogr. 1988;33:151–4.
    Google Scholar 
    20.Fogg GE. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar. 1983;26:3–14.CAS 

    Google Scholar 
    21.Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    22.Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 

    Google Scholar 
    23.Guerrini F, Mazzotti A, Boni L, Pistocchi R. Bacterial-algal interactions in polysaccharide production. Aquat Micro Ecol. 1998;15:247–53.
    Google Scholar 
    24.Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004;306:79–86.CAS 
    PubMed 

    Google Scholar 
    25.Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 2004;432:910–3.CAS 
    PubMed 

    Google Scholar 
    26.Uitz J, Claustre H, Gentili B, Stramski D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem Cycles. 2010;24.27.Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 

    Google Scholar 
    28.Luo HW, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 

    Google Scholar 
    29.Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524.CAS 
    PubMed 

    Google Scholar 
    30.Denger K, Lehmann S, Cook AM. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. Microbiology 2011;157:2983–91.CAS 
    PubMed 

    Google Scholar 
    31.Schulz A, Stoveken N, Binzen IM, Hoffmann T, Heider J, Bremer E. Feeding on compatible solutes: a substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol. 2017;19:926–46.CAS 
    PubMed 

    Google Scholar 
    32.Crossette E, Gumm J, Langenfeld K, Raskin L, Duhaime M, Wigginton K. Metagenomic quantification of genes with internal standards. mBio. 2021;12:e03173-20.PubMed 
    PubMed Central 

    Google Scholar 
    33.Gifford SM, Becker JW, Sosa OA, Repeta DJ, DeLong EF. Quantitative transcriptomics reveals the growth-and nutrient-dependent response of a streamlined marine methylotroph to methanol and naturally occurring dissolved organic matter. mBio. 2016;7:e01279-16.PubMed 
    PubMed Central 

    Google Scholar 
    34.Moran MA, Satinsky B, Gifford SM, Luo HW, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.CAS 
    PubMed 

    Google Scholar 
    35.Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chyrsophyte. Phycologia 1993;32:234–6.
    Google Scholar 
    36.Uchimiya M, Tsuboi Y, Ito K, Date Y, Kikuchi J. Bacterial substrate transformation tracked by stable-isotope-guided NMR metabolomics: application in a natural aquatic microbial community. Metabolites 2017;7:52.PubMed Central 

    Google Scholar 
    37.Lewis IA, Schommer SC, Markley JL. rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Mag Res Chem. 2009;47:S123–S6.CAS 

    Google Scholar 
    38.Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, et al. HMDB 3.0-the human metabolome database in 2013. Nuc Acids Res 2013;41:D801–D7.CAS 

    Google Scholar 
    39.Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank Nuc Acids Res. 2008;36:D402–D8.CAS 

    Google Scholar 
    40.Toukach PV, Egorova KS. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nuclic Acids Res. 2016;44:D1229–D36.CAS 

    Google Scholar 
    41.Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, et al. Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. ISME J. 2019;13:2536–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Boroujerdi AFB, Lee PA, DiTullio GR, Janech MG, Vied SB, Bearden DW. Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Anal Bioanal Chem. 2012;404:777–84.CAS 
    PubMed 

    Google Scholar 
    43.Walejko JM, Chelliah A, Keller-Wood M, Gregg A, Edison AS. Global metabolomics of the placenta reveals distinct metabolic profiles between maternal and fetal placental tissues following delivery in non-labored women. Metabolites 2018;8:10.PubMed Central 

    Google Scholar 
    44.Schwämmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics 2018;34:2965–72.PubMed 

    Google Scholar 
    45.Thaben PF, Westermark PO. Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014;29:391–400.PubMed 
    PubMed Central 

    Google Scholar 
    46.Welsh J (2020). CirHeatmap. Available from: https://github.com/joadwe/cirheatmap.47.Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Satinsky BM, Gifford SM, Crump BC, Moran MA Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF (ed). Methods in Enzymology. 2013. 531: p. 237-50.49.Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 

    Google Scholar 
    51.Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Nat Acad Sci. 2020;117:6599–607.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Neidhardt F, Ingraham J, Schaechter S Physiology of the bacterial cell: a molecular approach. Massachusetts: Sinauer Associates Inc.; 1990.53.Lidbury I, Murrell JC, Chen Y. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc Nat Acad Sci. 2014;111:2710–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology 2010;156:1556–64.CAS 
    PubMed 

    Google Scholar 
    55.Mou XZ, Sun SL, Rayapati P, Moran MA. Genes for transport and metabolism of spermidine in Ruegeria pomeroyi DSS-3 and other marine bacteria. Aquat Micro Ecol. 2010;58:311–21.
    Google Scholar 
    56.Biller SJ, Coe A, Roggensack SE, Chisholm SW Heterotroph interactions alter Prochlorococcus transcriptome dynamics during extended periods of darkness. mSystems. 2018; 3 https://doi.org/10.1128/mSystems.00040-18.57.Harding L, Meeson B, Prézelin B, Sweeney B. Diel periodicity of photosynthesis in marine phytoplankton. Mar Biol. 1981;61:95–105.
    Google Scholar 
    58.Harding L, Prezelin B, Sweeney B, Cox J. Diel oscillations of the photosynthesis-irradiance (PI) relationship in natural assemblages of phytoplankton. Mar Biol. 1982;67:167–78.
    Google Scholar 
    59.Blough NV, Zepp RG Reactive oxygen species in natural waters. Active oxygen in chemistry. Dordrecht: Springer; 1995. p. 280–333.60.Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG. Photochemistry of natural waters. Environ Sci Technol. 1984;18:358A–71A.CAS 

    Google Scholar 
    61.Ziegelhoffer EC, Donohue TJ. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol. 2009;7:856–63.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lubin EA, Henry JT, Fiebig A, Crosson S, Laub MT. Identification of the PhoB regulon and role of PhoU in the phosphate starvation response of Caulobacter crescentus. J Bacteriol. 2016;198:187–200.CAS 
    PubMed 

    Google Scholar 
    63.Yang C, Huang TW, Wen SY, Chang CY, Tsai SF, Wu WF, et al. Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. Plos One. 2012;7:e47314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Hsieh YJ, Wanner BL. Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol. 2010;13:198–203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Muratore D, Boysen AK, Harke MJ, Becker KW, Casey JR, Coesel SN, et al. Community-scale synchronization and temporal partitioning of gene expression, metabolism, and lipid biosynthesis in oligotrophic ocean surface waters. bioRxiv. 2020: 2020.05.15.098020.66.Giedroc DP. Hydrogen peroxide sensing in Bacillus subtilis: it is all about the (metallo)regulator. Mol Microbiol. 2009;73:1–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.CAS 
    PubMed 

    Google Scholar 
    68.Weinitschke S, Sharma PI, Stingl U, Cook AM, Smits TH. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. Appl Environ Microbiol. 2010;76:618–21.CAS 
    PubMed 

    Google Scholar 
    69.Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Hellebust JA. Excretion of some organic compounds by marine phytoplankton 1. Limnol Oceanogr. 1965;10:192–206.
    Google Scholar 
    71.Behrenfeld MJ, Halsey KH, Milligan AJ. Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc B: Biol Sci. 2008;363:2687–703.CAS 

    Google Scholar 
    72.Kiene RP, Linn LJ, Bruton JA. New and important roles for DMSP in marine microbial communities. J Sea Res. 2000;43:209–24.CAS 

    Google Scholar 
    73.Fredrickson KA, Strom SL. The algal osmolyte DMSP as a microzooplankton grazing deterrent in laboratory and field studies. J Plankton Res. 2009;31:135–52.
    Google Scholar 
    74.Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature 2002;418:317–20.CAS 
    PubMed 

    Google Scholar 
    75.Lidbury I, Kimberley G, Scanlan DJ, Murrell JC, Chen Y. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade. Environ Microbiol. 2015;17:5048–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Cunliffe M. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3. FEMS Microbiol Ecol. 2016;92:fiv150.PubMed 

    Google Scholar 
    77.Durham BP, Sharma S, Luo HW, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Nat Acad Sci. 2015;112:453–7.CAS 
    PubMed 

    Google Scholar  More

  • in

    Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids

    1.Beissinger, S. R. & Westphal, M. I. On the use of demographic models of population viability in endangered species management. J. Wildl. Manag. 62, 821–841 (1998).
    Google Scholar 
    2.Campana, S. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59, 197–242 (2001).
    Google Scholar 
    3.Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Jarman, S. N. et al. Molecular biomarkers for chronological age in animal ecology. Mol. Ecol. 24, 4826–4847 (2015).CAS 
    PubMed 

    Google Scholar 
    5.Thompson, M. J., vonHoldt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    8.Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 

    Google Scholar 
    10.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 e956 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction, and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 

    Google Scholar 
    14.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    15.Voisin, S. et al. An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle https://doi.org/10.1002/jcsm.12556 (2020).16.De Paoli-Iseppi, R. et al. Age estimation in a long-lived seabird (Ardenna tenuirostris) using DNA methylation-based biomarkers. Mol. Ecol. Resour. 19, 411–425 (2019).PubMed 

    Google Scholar 
    17.Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of chimpanzee age based on DNA methylation. Sci. Rep. 8, 9998 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    18.Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).CAS 
    PubMed 

    Google Scholar 
    20.Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi‐ supercentenarians and their offspring. Aging 7, 1159–1170 (2018).
    Google Scholar 
    21.Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    22.Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    23.Mitchell, C., Schneper, L. M. & Notterman, D. A. DNA methylation, early life environment, and health outcomes. Pediatr. Res. 79, 212–219 (2016).CAS 
    PubMed 

    Google Scholar 
    24.Pérez, R. F., Santamarina, P., Fernández, A. F., & Fraga, M. F. Epigenetics and Lifestyle: The Impact of Stress, Diet, and Social Habits on Tissue Homeostasis. In Epigenetics and Regeneration (ed. Palacios, D.) pp. 461–489 (Academic Press, 2019).25.Szyf, M., Tang, Y. Y., Hill, K. G. & Musci, R. The dynamic epigenome and its implications for behavioral interventions: a role for epigenetics to inform disorder prevention and health promotion. Transl. Behav. Med. 6, 55–62 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    26.Lee, R. S. et al. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151, 4332–4343 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    28.Biemont, C. Inbreeding effects in the epigenetic era. Nat. Rev. Genet. 11, 234 (2010).CAS 
    PubMed 

    Google Scholar 
    29.Venney, C. J., Johansson, M. L. & Heath, D. D. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon. Mol. Ecol. 25, 4521–4533 (2016).CAS 
    PubMed 

    Google Scholar 
    30.Vergeer, P., Wagemaker, N. C. & Ouborg, N. J. Evidence for an epigenetic role in inbreeding depression. Biol. Lett. 8, 798–801 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Han, W. et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112, 2677–2687 (2020).CAS 
    PubMed 

    Google Scholar 
    32.Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    35.Pinho, G. M. et al. Hibernation slows epigenetic aging in yellow-bellied marmots. Preprint at bioRxiv https://doi.org/10.1101/2021.03.07.434299 (2021).36.Moehlman, P. D. Equids: Zebras, Asses, and Horses Status Survey and Conservation Action Plan Vol. 37, 190 pp (IUCN/SSC Equid Specialist Group, 2002).37.Moehlman, P. D. & King, S. R. B. IUCN SSC Equid Specialist Group 2020 Report. https://www.iucn.org/commissions/ssc-groups/mammals/mammals-a-e/equid (2020).38.Rubinacci, S., Ribeiro, D. M., Hofmeister, R. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).CAS 
    PubMed 

    Google Scholar 
    39.Ceballos, F. C., Hazelhurst, S. & Ramsay, M. Runs of homozygosity in sub-Saharan African populations provide insights into complex demographic histories. Hum. Genet. 138, 1123–1142 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Curik, I., Ferenčaković, M. & Sölkner, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest. Sci. 166, 26–34 (2014).
    Google Scholar 
    41.Anderson, J. A. et al. The costs of competition: high social status males experience accelerated epigenetic aging in wild baboons. eLife 10, e66128 (2020).
    Google Scholar 
    42.McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. https://doi.org/10.1038/nbt.1630 (2010).43.Gronniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 6, e1000971 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    44.Robeck, T. R. et al. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun. Biol. https://doi.org/10.1038/s42003-021-02179-x (2021).45.Jonsson, H. et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl Acad. Sci. USA 111, 18655–18660 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS One 8, e55950 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Jensen-Seaman, M. I. & Hooper-Boyd, K. A. in Encyclopedia of Life Sciences (ELS) (John Wiley & Sons, Ltd., 2008).48.Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker—modeling epigenetic states under an evolutionary framework. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa585 (2020).49.Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).CAS 
    PubMed 

    Google Scholar 
    50.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA 93, 6140–6145 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Fox, C. W. Inbreeding depression increases with maternal age. Evolut. Ecol. Res. 12, 961–972 (2010).
    Google Scholar 
    52.Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).PubMed 

    Google Scholar 
    53.Mayne, B., Berry, O., Davies, C., Farley, J. & Jarman, S. A genomic predictor of lifespan in vertebrates. Sci. Rep. 9, 17866 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.McClain, A. T. & Faulk, C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging 10, 561–572 (2018).
    Google Scholar 
    55.Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).CAS 
    PubMed 

    Google Scholar 
    56.Kannan, M. B., Solovieva, V. & Blank, V. The small MAF transcription factors MAFF, MAFG, and MAFK: current knowledge and perspectives. Biochim. Biophys. Acta 1823, 1841–1846 (2012).CAS 
    PubMed 

    Google Scholar 
    57.Li, Z. et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 121, 1422–1431 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Malecki, M. T. et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 23, 323–328 (1999).CAS 
    PubMed 

    Google Scholar 
    59.Ding, Q., Joshi, P. S., Xie, Z. H., Xiang, M. & Gan, L. BARHL2 transcription factor regulates the ipsilateral/contralateral subtype divergence in postmitotic dI1 neurons of the developing spinal cord. Proc. Natl Acad. Sci. USA 109, 1566–1571 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Mo, Z., Li, S., Yang, X. & Xiang, M. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131, 1607–1618 (2004).CAS 
    PubMed 

    Google Scholar 
    61.Giampietro, C. et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat. Commun. 6, 8479 (2015).CAS 
    PubMed 

    Google Scholar 
    62.Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66, 848–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).CAS 
    PubMed 

    Google Scholar 
    64.Hiraike, Y. et al. NFIA co-localizes with PPARgamma and transcriptionally controls the brown fat gene program. Nat. Cell Biol. 19, 1081–1092 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Caricasole, A., Sala, C., Roncarati, R., Formenti, E. & Terstappen, G. C. Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLCβ1). Biochim. Biophys. Acta 1517, 63–72 (2000).CAS 
    PubMed 

    Google Scholar 
    66.McOmish, C. E., Burrows, E. L., Howard, M. & Hannan, A. J. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 18, 824–834 (2008).CAS 
    PubMed 

    Google Scholar 
    67.Mittelstaedt, T., Alvarez-Baron, E. & Schoch, S. RIM proteins and their role in synapse function. Biol. Chem. 391, 599–606 (2010).CAS 
    PubMed 

    Google Scholar 
    68.Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).CAS 
    PubMed 

    Google Scholar 
    69.Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).70.Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Invest. 120, 3455–3465 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Saidak, Z., Hay, E., Marty, C., Barbara, A. & Marie, P. J. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 11, 467–474 (2012).CAS 
    PubMed 

    Google Scholar 
    72.McClay, J. L. et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum. Mol. Genet. 23, 1175–1185 (2014).CAS 
    PubMed 

    Google Scholar 
    73.Ambeskovic, M. et al. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk. Aging 12, 3828–3847 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Burger, C., Lopez, M. C., Baker, H. V., Mandel, R. J. & Muzyczka, N. Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol. Learn Mem. 89, 379–396 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Horvath, S. et al. DNA methylation clocks show slower progression of aging in naked mole-rat queens. Preprint at bioRxiv https://doi.org/10.1101/2021.03.15.435536 (2021).76.Rapoport, S. I., Primiani, C. T., Chen, C. T., Ahn, K. & Ryan, V. H. Coordinated expression of phosphoinositide metabolic genes during development and aging of human dorsolateral prefrontal cortex. PLoS One 10, e0132675 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    77.Dube, J. B. et al. Genetic determinants of “cognitive impairment, no dementia”. J. Alzheimers Dis. 33, 831–840 (2013).CAS 
    PubMed 

    Google Scholar 
    78.Hinney, A. et al. Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 165B, 283–293 (2014).PubMed 

    Google Scholar 
    79.Ntalla, I. et al. Replication of established common genetic variants for adult BMI and childhood obesity in Greek adolescents: the TEENAGE study. Ann. Hum. Genet. 77, 268–274 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    80.Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Gao, Z. et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci. 12, 1090–1092 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Badawi, Y. & Nishimune, H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci. Res. 127, 78–88 (2018).CAS 
    PubMed 

    Google Scholar 
    83.Tollervey, J. R. et al. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res. 21, 1572–1582 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kim, B. H., Nho, K. & Lee, J. M., Alzheimer’s Disease Neuroimaging, I. Genome-wide association study identifies susceptibility loci of brain atrophy to NFIA and ST18 in Alzheimer’s disease. Neurobiol. Aging 102, 200 e201–200 e211 (2021).
    Google Scholar 
    85.Horvath, S. et al. DNA methylation aging and transcriptomic studies in horses. Preprint at bioRxiv https://doi.org/10.1101/2021.03.11.435032 (2021).86.Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9, 419–446 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Crary-Dooley, F. K. et al. A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12, 206–214 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    89.Reed, K., Poulin, M. L., Yan, L. & Parissenti, A. M. Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal. Biochem. 397, 96–106 (2010).CAS 
    PubMed 

    Google Scholar 
    90.Tost, J., Dunker, J. & Gut, I. G. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35, 152–156 (2003).CAS 
    PubMed 

    Google Scholar 
    91.Karesh, W. B. in Zoo and Wild Animal Medicine: Current Therapy (eds Fowler Murray, E. & Eric Miller, R.) 298−308 (Saunders Elsevier, 2008).92.Chiou, K. L. & Bergey, C. M. Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci. Rep. 8, 1975 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    93.Orkin, J. D. et al. The genomics of ecological flexibility, large brains, and long lives in capuchin monkeys revealed with fecalFACS. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2010632118 (2021).94.Snyder-Mackler, N. et al. Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples. Genetics 203, 699–714 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Harley, E. H., Knight, M. H., Lardner, C., Wooding, B. & Gregor, M. The Quagga project: progress over 20 years of selective breeding. South African J. Wildlife Res. https://doi.org/10.3957/056.039.0206 (2009).96.Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences Preprint at bioRxiv https://doi.org/10.1101/2021.01.07.425637 (2021).97.Kalbfleisch, T. S. et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 1, 197 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    98.Wade, C. M. et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science https://doi.org/10.1126/science.1178158 (2009).99.Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    103.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).104.Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).105.Larison, B. et al. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Mol. Ecol. 30, 379–390 (2021).CAS 
    PubMed 

    Google Scholar 
    106.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).108.Freed, D., Aldana, R., Weber, J. A. & Edwards, J. S. The Sentieon Genomics Tools—A fast and accurate solution to variant calling from next-generation sequence data. Preprint at bioRxiv https://doi.org/10.1101/115717 (2017).109.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    110.Meyermans, R., Gorssen, W., Buys, N. & Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21, 94 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.McQuillan, R. et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83, 359–372 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    114.Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. 11, 1–17 (2004).
    Google Scholar 
    115.Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-oriented implementation of clustered covariances in R. J. Stat. Softw. 95, 1–36 (2020).
    Google Scholar 
    116.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
    Google Scholar 
    117.Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. & Williams, R. M. J. Adjustment During Army Life (Princeton University Press, 1949). More

  • in

    Different increase rate in body mass of two marten species due to climate warming potentially reinforces interspecific competition

    1.Schmidt-Nielsen, K. Scaling: Why is Animal Size So Important? (Cambrige University Press, 1984).Book 

    Google Scholar 
    2.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406. https://doi.org/10.1038/nclimate1259 (2011).ADS 
    Article 

    Google Scholar 
    3.Yom-Tov, Y., Heggberget, T. M., Wiig, O. & Yom-Tov, S. Body size changes among otters, Lutra lutra, in Norway: The possible effects of food availability and global warming. Oecologia 150, 155–160. https://doi.org/10.1007/s00442-006-0499-8 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    4.Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gött Stud. 3, 595–708 (1847).
    Google Scholar 
    5.Dehnel, A. Studies on the genus Sorex L.. Ann. Univ. Mariae Curie Sklodowska 5, 17–102 (1949).
    Google Scholar 
    6.Foster, J. B. Evolution of mammals on islands. Nature 202, 234–235. https://doi.org/10.1038/202234a0 (1964).ADS 
    Article 

    Google Scholar 
    7.Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108. https://doi.org/10.1111/j.1558-5646.1956.tb02836.x (1956).Article 

    Google Scholar 
    8.Allen, J. A. The Influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 
    9.Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: A clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174. https://doi.org/10.1046/j.1472-4642.1999.00046.x (1999).Article 

    Google Scholar 
    10.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. Elife 7, 16. https://doi.org/10.7554/eLife.27166 (2018).Article 

    Google Scholar 
    11.Ashton, K. G. Patterns of within-species body size variation of birds: Strong evidence for Bergmann’s rule. Glob. Ecol. Biogeogr. 11, 505–523. https://doi.org/10.1046/j.1466-822X.2002.00313.x (2002).Article 

    Google Scholar 
    12.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351. https://doi.org/10.1046/j.1365-2699.2003.00837.x (2003).Article 

    Google Scholar 
    13.Reig, S. Geographic variation in pine marten (Martes martes) and beech marten (M. foina) in Europe. J. Mammal. 73, 744–769. https://doi.org/10.2307/1382193 (1992).Article 

    Google Scholar 
    14.Blackburn, T. M. & Hawkins, B. A. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724. https://doi.org/10.1111/j.0906-7590.2004.03999.x (2004).Article 

    Google Scholar 
    15.Diniz, J. A. F., Bini, L. M., Rodriguez, M. A., Rangel, T. & Hawkins, B. A. Seeing the forest for the trees: Partitioning ecological and phylogenetic components of Bergmann’s rule in European Carnivora. Ecography 30, 598–608. https://doi.org/10.1111/j.2007.0906-7590.04988.x (2007).Article 

    Google Scholar 
    16.Hoy, S. R., Peterson, R. O. & Vucetich, J. A. Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit. Glob. Change Biol. 24, 2488–2497. https://doi.org/10.1111/gcb.14015 (2018).ADS 
    Article 

    Google Scholar 
    17.Martin, J. M., Mead, J. I. & Barboza, P. S. Bison body size and climate change. Ecol. Evol. 8, 4564–4574. https://doi.org/10.1002/ece3.4019 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464–467. https://doi.org/10.1126/science.1173668 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Prokosch, J., Bernitz, Z., Bernitz, H., Erni, B. & Altwegg, R. Are animals shrinking due to climate change? Temperature-mediated selection on body mass in mountain wagtails. Oecologia 189, 841–849. https://doi.org/10.1007/s00442-019-04368-2 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    20.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055. https://doi.org/10.1038/nature08649 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Schloss, C. A., Nunez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U.S.A. 109, 8606–8611. https://doi.org/10.1073/pnas.1116791109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189. https://doi.org/10.1111/jbi.13395 (2018).Article 

    Google Scholar 
    23.Gordon, C. J. Effects of ambient temperature and exposure to 2450-MHz microwave radiation of evaporative heat loss in the mouse. J. Microw. Power Electromagn. Energy 17, 145–150 (1982).CAS 

    Google Scholar 
    24.Zub, K., Piertney, S., Szafranska, P. A. & Konarzewski, M. Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel Mustela nivalis. Mol. Ecol. 21, 1283–1293. https://doi.org/10.1111/j.1365-294X.2011.05436.x (2012).Article 
    PubMed 

    Google Scholar 
    25.Leyequien, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741. https://doi.org/10.1007/s11284-006-0311-6 (2007).Article 

    Google Scholar 
    26.Briscoe, N. J., Krockenberger, A., Handasyde, K. A. & Kearney, M. R. Bergmann meets Scholander: Geographical variation in body size and insulation in the koala is related to climate. J. Biogeogr. 42, 791–802. https://doi.org/10.1111/JBI.12445 (2015).Article 

    Google Scholar 
    27.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming? Trends Ecol. Evol. 26, 285–291. https://doi.org/10.1016/J.TREE.2011.03.005 (2011).Article 
    PubMed 

    Google Scholar 
    28.Reyer, C. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71, 211–225. https://doi.org/10.1007/s13595-013-0306-8 (2014).Article 

    Google Scholar 
    29.Laidre, K. L. et al. Transient benefits of climate change for a high-Arctic polar bear (Ursus maritimus) subpopulation. Glob. Change Biol. 26, 6251–6265. https://doi.org/10.1111/gcb.15286 (2020).ADS 
    Article 

    Google Scholar 
    30.Yunger, J. A. Response of two low-density populations of Peromyscus leucopus to increased food availability. J. Mammal. 83, 267–279. https://doi.org/10.1644/1545-1542(2002)083%3c0267:rotldp%3e2.0.co;2 (2002).Article 

    Google Scholar 
    31.Monterroso, P., Francisco, D. R., Lukacs, P. M., Alves, P. C. & Ferreras, P. Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology. https://doi.org/10.1002/ecy.3059 (2020).Article 
    PubMed 

    Google Scholar 
    32.Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894. https://doi.org/10.1111/j.1461-0248.2005.00791.x (2005).Article 

    Google Scholar 
    33.Creel, S. & Creel, N. M. Limitation of African wild dogs by competition with larger carnivores. Conserv. Biol. 10, 526–538. https://doi.org/10.1046/j.1523-1739.1996.10020526.x (1996).Article 

    Google Scholar 
    34.Wereszczuk, A. & Zalewski, A. Spatial niche segregation of sympatric stone marten and pine marten—Avoidance of competition or selection of optimal habitat? PLoS ONE 10, e0139852. https://doi.org/10.1371/journal.pone.0139852 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Pereboom, V. et al. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can. J. Zool. 86, 983–991. https://doi.org/10.1139/Z08-076 (2008).Article 

    Google Scholar 
    36.Virgos, E., Zalewski, A., Rosalino, L. M. & Mergey, M. Habitat ecology of Martens species in Europe. A review of the evidence. In Biology and Conservation of Martens, Sables and Fishers: A New Synthesis (eds Aubry, K. B. et al.) 255–266 (Cornell University Press, 2012).
    Google Scholar 
    37.Goszczyński, J., Posłuszny, M., Pilot, M. & Gralak, B. Patterns of winter locomotion and foraging in two sympatric marten species: Martes martes and Martes foina. Can. J. Zool. 85, 239–249. https://doi.org/10.1139/Z06-212 (2007).ADS 
    Article 

    Google Scholar 
    38.Larroque, J., Ruette, S., Vandel, J. M. & Devillard, S. Where to sleep in a rural landscape? A comparative study of resting sites pattern in two syntopic Martes species. Ecography 38, 1129–1140. https://doi.org/10.1111/ecog.01133 (2015).Article 

    Google Scholar 
    39.Monakhov, V. G. & Hamilton, M. J. Spatial trends in the size structure of pine Marten Martes martes Linnaeus, 1756 (Mammalia: Mustelidae) within the species range. Russ. J. Ecol. 51, 250–259. https://doi.org/10.1134/s1067413620030108 (2020).CAS 
    Article 

    Google Scholar 
    40.Meiri, S., Dayan, T. & Simberloff, D. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588. https://doi.org/10.1111/j.1095-8312.2004.00310.x (2004).Article 

    Google Scholar 
    41.Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127. https://doi.org/10.1111/geb.12509 (2017).Article 

    Google Scholar 
    42.Bailey, L. D. et al. Using different body size measures can lead to different conclusions about the effects of climate change. J. Biogeogr. 47, 1687–1697. https://doi.org/10.1111/jbi.13850 (2020).Article 

    Google Scholar 
    43.Buskirk, S. W. & Harlow, H. J. Body-fat dynamics of the American marten (Martes americana) in winter. J. Mammal. 70, 191–193. https://doi.org/10.2307/1381687 (1989).Article 

    Google Scholar 
    44.Wereszczuk, A.et al. Various responses of pine marten
    morphology and demography to temporal climate changes and primary productivity. PREPRINT (Version 1) available at
    Research Square https://doi.org/10.21203/rs.3.rs-1021314/v1 (2021)45.Desy, E. A. & Batzli, G. O. Effects of food availability and predation on prairie vole demography—A field experiment. Ecology 70, 411–421. https://doi.org/10.2307/1937546 (1989).Article 

    Google Scholar 
    46.Geist, V. Bergmann rule is invalid. Can. J. Zool. 65, 1035–1038. https://doi.org/10.1139/z87-164 (1987).Article 

    Google Scholar 
    47.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563. https://doi.org/10.1126/science.1082750 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Svensson, B. M., Carlsson, B. A. & Melillo, J. M. Changes in species abundance after seven years of elevated atmospheric CO2 and warming in a Subarctic birch forest understorey, as modified by rodent and moth outbreaks. PeerJ 6, e4843. https://doi.org/10.7717/peerj.4843 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Zalewski, A., Jedrzejewski, W. & Jedrzejewska, B. Mobility and home range use by pine martens (Martes martes) in a Polish primeval forest. Ecoscience 11, 113–122. https://doi.org/10.1080/11956860.2004.11682815 (2004).Article 

    Google Scholar 
    50.Krebs, C. J., Cowcill, K., Boonstra, R. & Kenney, A. J. Do changes in berry crops drive population fluctuations in small rodents in the southwestern Yukon? J. Mammal. 91, 500–509. https://doi.org/10.1644/09-mamm-a-005.1 (2010).Article 

    Google Scholar 
    51.Selas, V., Kobro, S. & Sonerud, G. A. Population fluctuations of moths and small rodents in relation to plant reproduction indices in southern Norway. Ecosphere 4, 1–11. https://doi.org/10.1890/es13-00228.1 (2013).Article 

    Google Scholar 
    52.Yom-Tov, Y., Yom-Tov, S. & Jarrell, G. Recent increase in body size of the American marten Martes americana in Alaska. Biol. J. Linn. Soc. 93, 701–707. https://doi.org/10.1111/j.1095-8312.2007.00950.x (2008).Article 

    Google Scholar 
    53.Caryl, F. M., Quine, C. P. & Park, K. J. Martens in the matrix: the importance of nonforested habitats for forest carnivores in fragmented landscapes. J. Mammal. 93, 464–474. https://doi.org/10.1644/11-mamm-a-149.1 (2012).Article 

    Google Scholar 
    54.Zalewski, A. Factors affecting the duration of activity by pine martens (Martes martes) in the Bialowieza National Park, Poland. J. Zool. 251, 439–447. https://doi.org/10.1111/j.1469-7998.2000.tb00799.x (2000).Article 

    Google Scholar 
    55.Zalewski, A. Factors affecting selection of resting site type by pine marten in primeval deciduous forests (Bialowieza National Park, Poland). Acta Theriol. 42, 271–288. https://doi.org/10.4098/AT.arch.97-29 (1997).Article 

    Google Scholar 
    56.Gilbert, J. H., Zollner, P. A., Green, A. K., Wright, J. L. & Karasov, W. H. Seasonal field metabolic rates of American martens in Wisconsin. Am. Midl. Nat. 162, 327–334. https://doi.org/10.1674/0003-0031-162.2.327 (2009).Article 

    Google Scholar 
    57.Zub, K., Szafranska, P. A., Konarzewski, M. & Speakman, J. R. Effect of energetic constraints on distribution and winter survival of weasel males. J. Anim. Ecol. 80, 259–269. https://doi.org/10.1111/j.1365-2656.2010.01762.x (2011).Article 
    PubMed 

    Google Scholar 
    58.Hantak, M. M., McLean, B. S., Li, D. & Guralnick, R. P. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun. Biol. https://doi.org/10.1038/s42003-021-02505-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Yom-Tov, Y., Yom-Tov, S. & Baagoe, H. Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the twentieth century: An effect of improved diet? Evol. Ecol. Res. 5, 1037–1048 (2003).
    Google Scholar 
    60.Wereszczuk, A., Leblois, R. & Zalewski, A. Genetic diversity and structure related to expansion history and habitat isolation: Stone marten populating rural-urban habitats. BMC Ecol. 17, 46. https://doi.org/10.1186/s12898-017-0156-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803. https://doi.org/10.1038/439803a (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Sidorovich, V., Kruuk, H. & Macdonald, D. W. Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J. Zool. 248, 521–527. https://doi.org/10.1017/s0952836999008110 (1999).Article 

    Google Scholar 
    63.Pagh, S., Hansen, M. S., Jensen, B., Pertoldi, C. & Chriel, M. Variability in body mass and sexual dimorphism in Danish red foxes (Vulpes vulpes) in relation to population density. Zool. Ecol. 28, 1–9. https://doi.org/10.1080/21658005.2017.1409997 (2018).Article 

    Google Scholar 
    64.Zalewski, A. & Bartoszewicz, M. Phenotypic variation of an alien species in a new environment: The body size and diet of American mink over time and at local and continental scales. Biol. J. Linn. Soc. 105, 681–693. https://doi.org/10.1111/j.1095-8312.2011.01811.x (2012).Article 

    Google Scholar 
    65.Balestrieri, A. et al. Range expansion of the pine marten (Martes martes) in an agricultural landscape matrix (NW Italy). Mamm. Biol. 75, 412–419. https://doi.org/10.1016/j.mambio.2009.05.003 (2010).Article 

    Google Scholar 
    66.Rosellini, S., Osorio, E., Ruiz-Gonzalez, A., Isabel, A. P. & Barja, I. Monitoring the small-scale distribution of sympatric European pine martens (Martes martes) and stone martens (Martes foina): A multievidence approach using faecal DNA analysis and camera-traps. Wildl. Res. 35, 434–440. https://doi.org/10.1071/wr07030 (2008).Article 

    Google Scholar 
    67.Delibes, M. Interspecific competition and the habitat of the stone marten Martes foina (Erxleben 1777) in Europe. Acta Zool. Fennica 174, 229–231 (1983).
    Google Scholar 
    68.Zabala, J., Zuberogoitia, I. & Antonio Martinez-Climent, J. Testing for niche segregation between two abundant carnivores using presence-only data. Folia Zool. 58, 385–395 (2009).
    Google Scholar 
    69.Jacob, D. et al. Climate impacts in Europe under +1.5 degrees C global warming. Earths Fut. 6, 264–285. https://doi.org/10.1002/2017ef000710 (2018).ADS 
    Article 

    Google Scholar 
    70.Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R. & Wilson, J. D. Analysis of population trends for farmland birds using generalized additive models. Ecology 81, 1970–1984. https://doi.org/10.2307/177286 (2000).Article 

    Google Scholar 
    71.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 

    Google Scholar 
    72.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).73.Lenssen, N. J. L. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326. https://doi.org/10.1029/2018jd029522 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Mathematical model for predicting oxygen concentration in tilapia fish farms

    Dissolved oxygen modelThe dissolved oxygen in this model had a number of interactions to consider. Oxygen consumption through the processes of both respiration and nitrification. On the other hand, the water receives oxygen through water agitation as it is pumped through the system and from the oxygen generator. Oxygen is added to the water by oxygen generator and flow aeration (Fig. 1).Figure 1Dissolved oxygen model.Full size imageThe required oxygen supplementation is a sum of the pervious components as follows:$$ DO_{FR} + DO_{B} + DO_{N} = DO_{sup } + DO_{PF} $$
    (1)
    where DOFR is the dissolved oxygen consumption through fish respiration, g O2 m−3 h−1. DOB is the dissolved oxygen consumption through the biofilter, g O2 m−3 h−1. DON is the dissolved oxygen consumption through nitrification, g O2 m−3 h−1. DOPF is the dissolved oxygen addition through pipe flow, g O2 m−3 h−1. DOsup is the required oxygen supplementation (oxygen generator), g O2 m−3 h−1.The rate of change in DO concentration in fish tank:$$ frac{dDO}{{dt}} = DO_{FR} + DO_{B} + DO_{N} – DO_{PF} $$
    (2)
    where (frac{dDO}{{dt}}) is the rate of change in DO concentration during the time interval, g O2 m−3 h−1. dt is the rate of change in the time interval, hAfter calculating oxygen concentration for each element at each time step, the net oxygen change is then added to or subtracted from the previous time step`s oxygen concentration. DO concentrations can be calculated at any time (t) as:$$ DO_{t} = DO_{t – 1} + left( {frac{dDO}{{dt}} cdot dt} right) $$
    (3)
    where DOt is the DO concentration (g m−3) at time t. DOt−1 is the DO concentration (g m−3) at time t−1.The rate of oxygen consumption through fish respiration can be calculated on water temperature and average fish weight. This calculation is shown in the following equation10:$$ FR = 2014.45 + 2.75W – 165.2T + 0.007W^{2} + 3.93T^{2} – 0.21WT $$
    (4)
    $$ DO_{FR} = frac{FR times SD}{{1000}} $$
    (5)
    where FR is rate of oxygen consumption through fish respiration, mg O2 kg−1 fish. h−1. W is average of individual fish mass, g. T is water temperature, °C. SD is the stocking density of fish, kg m−3.The correlation coefficient for the equation was 0.99. Data used in preparing the equation ranged from 20 to 200 g for fish weight and from 24 to 32 °C.The rate of oxygen consumption through nitrification is calculated in terms of Total Ammonia Nitrogen (TAN) that is converted from ammonia to nitrate. The rate found in the literature is 4.57 g O2 g−1 TAN6.The oxygen consumption in nitrification process can be calculated as11:$$ DO_{N} = 4.57 times K_{NR} times {{{text{Nr}}} mathord{left/ {vphantom {{{text{Nr}}} {text{V}}}} right. kern-nulldelimiterspace} {text{V}}} $$
    (6)
    $$ K_{NR} = 0.1left( {1.08} right)^{{left( {T – 20} right)}} $$
    (7)
    $$ Nr = frac{{0.03 times F_{r} times W times N_{F} }}{24 times 1000} $$
    (8)
    where KNR is the coefficient of nitrification. Nr is the nitrification rate, g TAN h−1. Fr is the feeding ratio, % of body fish day−1. NF is the number of fish. V is the water volume, m3.The feeding ratio can be calculated as the following equation:$$ F_{r} = 17.02 times e^{{left[ {{raise0.7exhbox{${left( {ln W + 1.14} right)^{2} }$} !mathord{left/ {vphantom {{left( {ln W + 1.14} right)^{2} } { – 19.52}}}right.kern-nulldelimiterspace} !lower0.7exhbox{${ – 19.52}$}}} right]}} $$
    (9)
    The bacteria in the biofilter are a second source of oxygen consumption. Lawson explains that the biofilter oxygen demand is approximated 2.3 times the BOD5 production rate of fish6. The oxygen consumption of the biofilter is calculated using following equation:$$ DO_{B} = frac{{(2.3)left( {BOD_{5} } right)left( {W_{n} } right)}}{{left( V right)left( {24} right)left( {1000} right)}} $$
    (10)
    where BOD5 is average unfiltered BOD5 excretion rate, 2160 mg O2 kg−1 fish day−1. Wn is biomass, kg fish.The water pumping cycle was a source of oxygen addition to the system. The amount of oxygen addition through the water pumping cycle was calculated on an hourly basis. The method of calculating aeration from a pipe is detailed by12:$$ DO_{PF} = frac{PC times f times E times OTR}{V} $$
    (11)
    where PC is pump cycle length, h. f is pumping frequency, h−1. E is efficiency, %. OTR is oxygen transfer rate, g O2 h−1.This model sums the DOFR, DOB, DON, and DOPF to determine the supplemental DO demand in kg h−1. This number can be used to estimate the oxygen consumption if pure oxygen transfers system is used.Fish growth modelFish growth is affected by environmental and physical factors, such as water temperature, dissolved oxygen, unionized ammonia, photoperiod, fish stocking density, food availability, and food quality.In order to calculate the fish growth rate (g day−1) for individual fish, the following model was used13 as it includes the main environmental factors influencing fish growth. These factors are temperature, dissolved oxygen and unionized ammonia.$$ FGR = left( {0.2919 , tau , kappa , delta , varphi , h , f , W^{m} } right) – K.W^{n} $$
    (12)
    Where FGR is the fish growth rate, g day−1. τ is the temperature factor (0  > τ  к  δ  φ  ƒ  More

  • in

    Global controls on phosphatization of fossils during the toarcian oceanic anoxic event

    1.Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 34–39 (1970).2.Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M. Exceptional Fossil Preservation. A Unique View on the Evolution of Marine Life. (2002).3.Schiffbauer, J. D. & Laflamme, M. Lagerstätten through time: A collection of exceptional preservational pathways from the terminal Neoproterozoic through today. Palaios 27, 275–278 (2012).ADS 

    Google Scholar 
    4.Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Ann. Rev. Earth Planet. Sci. 31, 275–301 (2003).ADS 
    CAS 

    Google Scholar 
    5.Allison, P. A. & Briggs, D. E. G. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).ADS 

    Google Scholar 
    6.Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).ADS 
    CAS 

    Google Scholar 
    7.Ansorge, J. Insects from the Lower Toarcian of Middle Europe and England. Acta Zool. Crac. 46, 291–310 (2003).
    Google Scholar 
    8.Klug, C., Riegraf, W. & Lehmann, J. Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55, 1307–1331 (2012).
    Google Scholar 
    9.Martindale, R. C., Them, T. R., Gill, B. C., Marroquín, S. M. & Knoll, A. H. A new Early Jurassic (ca183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada. Geol. 45, 255–258 (2017).ADS 

    Google Scholar 
    10.Williams, M., Benton, M. J. & Ross, A. The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life. J. Geol. Soc. 172, 683–692 (2015).ADS 

    Google Scholar 
    11.Feldmann, R. M., Villamil, T. & Kauffman, E. G. Decapod and stomatopod crustaceans from mass mortality Lagerstatten: Turonian (Cretaceous) of Colombia. J. Paleontol. 73, 91–101 (1999).
    Google Scholar 
    12.Martill, D. M. et al. A new Plattenkalk Konservat Lagerstätte in the Upper Cretaceous of Gara Sbaa, south-eastern Morocco. Cretac. Res. 32, 433–446 (2011).
    Google Scholar 
    13.Fuchs, D., Ifrim, C. & Stinnesbeck, W. A new Palaeoctopus (Cephalopoda: Coleoidea) from the Late Cretaceous of Vallecillo, north-eastern Mexico, and implications for the evolution of Octopoda. Palaeontology 51, 1129–1139 (2008).
    Google Scholar 
    14.Ifrim, C., Stinnesbeck, W. & Frey, E. Upper Cretaceous (Cenomanian-Turonian and Turonian-Coniacian) open marine plattenkalk deposits in NE Mexico. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 245, 71–81 (2007).
    Google Scholar 
    15.Schmid-Röhl, A., Röhl, H. J., Oschmann, W., Frimmel, A. & Schwark, L. Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): Global versus regional control. Geobios 35, 13–20 (2002).
    Google Scholar 
    16.Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 27–52 (2001).
    Google Scholar 
    17.Allison, P. A. The role of anoxia in the decay and mineralization of proteinaceous macro- fossils. Paleobiology 14, 139–154 (1988).
    Google Scholar 
    18.Muscente, A. D., Martindale, R. C., Schiffbauer, J. D., Creighton, A. L. & Bogan, B. A. Taphonomy of the Lower Jurassic Konservat-Lagerstätte at Ya Ha Tinda (Alberta, Canada) and its significance for exceptional fossil preservation during oceanic anoxic events. Palaios 34, 514–541 (2019).ADS 

    Google Scholar 
    19.Little, C. T. S. & Benton, M. J. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–498 (1995).ADS 

    Google Scholar 
    20.Svensen, H. et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256, 554–566 (2007).ADS 
    CAS 

    Google Scholar 
    21.Ruebsam, W., Reolid, M. & Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10, 1–8 (2020).ADS 

    Google Scholar 
    22.Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, 1–15 (2012).
    Google Scholar 
    23.Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: A possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett. 212, 307–320 (2003).ADS 
    CAS 

    Google Scholar 
    24.Dera, G. et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet. Sci. Lett. 286, 198–207 (2009).ADS 
    CAS 

    Google Scholar 
    25.Jenkyns, H. C. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. Am. J. Sci. 288, 101–151 (1988).ADS 
    CAS 

    Google Scholar 
    26.Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, (2010).27.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).
    Google Scholar 
    28.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction: a North American perspective. Geol. Soc. Am. Spec. Papers 505, 225–243 (2014).
    Google Scholar 
    29.Them, T. R. et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc. Natl. Acad. Sci. U.S.A. 115, 6596–6601 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Seilacher, A. Posidonia Shales (Toarcian, S. Germany): Stagnant basin model revalidated. in Palaeontology, Essential of Historical Geology (ed. Gallitelli, Motanaro, E.) 279–298 (1982).31.Vincent, P. A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany. J. Vertebr. Paleontol. 31, 340–351 (2011).
    Google Scholar 
    32.Littke, R., Leythaeuser, D., Rullkötter, J. & Baker, D. R. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany. Geol. Soc. Spec. Pub. 58, 311–333 (1991).
    Google Scholar 
    33.Golonka, J. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 297–307 (2007).
    Google Scholar 
    34.Boomer, I. et al. The biostratigraphy of the Upper Pliensbachian-Toarcian (Lower Jurassic) sequence at Ilminster, Somerset. J. Micropalaeontol. 28, 67–85 (2009).
    Google Scholar 
    35.Boomer, I. et al. Biotic and stable-isotope characterization of the Toarcian Ocean Anoxic Event through a carbonate-clastic sequence from Somerset, UK. Geological Society, London, Special Publications (2021).36.Moore, C. On the Middle and Upper Lias of the South West of England. Proc. Somerset Archaeol. Nat. Hist. Soc. 13, 19–244 (1866).
    Google Scholar 
    37.Rayner, D. H. The structure of certain Jurassic holostean fishes with special reference to their neurocrania. Philos. Trans. R. Soc. Lond. B Biol. Sci. 233, 287–345 (1948).ADS 

    Google Scholar 
    38.Patterson, C. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philos. Trans. R. Soc. Lond. B Biol. Sci. 269, 275–579 (1975).ADS 
    CAS 
    PubMed 

    Google Scholar 
    39.McGowan, C. Further evidence for the wide geographical distribution of ichthyosaur taxa (Reptilia: Ichthyosauria). J. Paleontol. 52, 1155–1162 (1978).
    Google Scholar 
    40.Duffin, C. Pelagosaurus (Mesosuchia, Crocodilia) from the English Toarcian (Lower Jurassic). Neues Jb. Geol. Paläontol. Monat. 1979, 475–485 (1979).
    Google Scholar 
    41.Woodward, A. S. Notes on the collection of fossil fishes from the Upper Lias of Ilminster in the Bath Museum. Proc. Bath Nat. Hist. Antiqu. Field Club 8, 233–242 (1897).
    Google Scholar 
    42.Pierce, S. E. & Benton, M. J. Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. J. Vertebr. Paleontol. 26, 621–635 (2006).
    Google Scholar 
    43.Caine, H. & Benton, M. J. Ichthyosauria from the Upper Lias of Strawberry Bank, England. Palaeontology 54, 1069–1093 (2011).
    Google Scholar 
    44.Marek, R. D., Moon, B. C., Williams, M. & Benton, M. J. The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology 58, 723–742 (2015).
    Google Scholar 
    45.Urlichs, M. The Lower Jurassic in southwestern Germany. Stuttgarter Beitrage zur Naturkunde series b Number 24, 1–45 (1977).
    Google Scholar 
    46.Riegraf, W., Werner, G. & Lörcher, F. Der Posidonienschiefer: Biostratigraphie Fauna und Fazies des südwestdeutschen Untertoarciums (Lias ε). (1984).47.Hauff, B. Untersuchungen der Fossilfundstätten von Holzmaden im Posidonienschiefer des Oberen Lias Württembergs. Palaeontographica 64, 1–42 (1921).
    Google Scholar 
    48.Röhl, H.-J., Schmid-Röhl, A. Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: A Sequence Stratigraphic Case Study from the SW German Posidonia Shale. in The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences: (ed. Harris, N.) 165–189 (Society for Sedimentary Geology Special Publications 82, 2005).49.Parrish, J. T. Climate of the supercontinent Pangaea. J. Geol. 101, 215–233 (1993).ADS 

    Google Scholar 
    50.Hall, R. L. New, biostratigraphically significant ammonities from the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 43, 555–570 (2006).ADS 

    Google Scholar 
    51.Hall, R. L., McNicoll, V., Grocke, D. R., Craig, J. & Johnston, K. Integrated stratigraphy of the lower and middle Fernie Formation in Alberta and British Columbia, Western Canada. Riv. Ital. Paleontol. Stratigr. 110, 61–68 (2004).
    Google Scholar 
    52.Them, T. R. et al. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth Planet. Sci. Lett. 459, 118–126 (2017).ADS 
    CAS 

    Google Scholar 
    53.Hall, R.L., Poulton, T.P., and Monger, J. W. H. Field Trip A1: Calgary–Vancouver. in Field Guide for the Fifth International Symposium on the Jurassic System (ed. Smith, P. L.) 29–61 (International Union of Geological Sciences Subcommission on Jurassic Stratigraphy, 1998).54.Hall, R. L. New lower jurassic ammonite faunas from the fernie formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 24, 1688–1704 (1987).ADS 

    Google Scholar 
    55.Stronach, N. J. Depositional environments and cycles in the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. Soc. Pet. Geol. Memoir 9, 43–67 (1984).
    Google Scholar 
    56.Maxwell, E. E. & Martindale, R. C. New Saurorhynchus (Actinopterygii: Saurichthyidae) material from the Early Jurassic of Alberta, Canada. Can. J. Earth Sci. 54, 714–719 (2017).ADS 

    Google Scholar 
    57.Hall, R. L. Seirocrinus subangularis (Miller, 1821), a Pliensbachian (Lower Jurassic) crinoid from the Fernie Formation, Alberta, Canada. J. Paleontol. 65, 300–307 (1991).
    Google Scholar 
    58.Feldman, R. M. & Copeland, M. J. A new species of erymid lobster from Lower Jurassic strata (Sinemurian/Pliensbachian), Fernie Formation, southwestern Alberta. Geol. Surv. Can. Bull. 379, 93–101 (1988).
    Google Scholar 
    59.Schweigert, G., Garassino, A., Hall, R. L., Hauff, R. B. & Karasawa, H. The lobster genus Uncina Quenstedt, 1851 (Crustacea: Decapoda: Astacidea: Uncinidae) from the Lower Jurassic. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 332, 1–43 (2003).
    Google Scholar 
    60.Martindale, R. C. & Aberhan, M. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 103–120 (2017).
    Google Scholar 
    61.Hall, R. L. Paraplesioteuthis hastata (Munster), the first teuthid squid recorded from the Jurassic of North America. J. Paleontol. 59, 870–874 (1985).
    Google Scholar 
    62.Marroquín, S. M., Martindale, R. C. & Fuchs, D. New records of the late Pliensbachian to early Toarcian (Early Jurassic) gladius-bearing coleoid cephalopods from the Ya Ha Tinda Lagerstätte, Canada. Papers Palaeontol. 4, 245–276 (2018).
    Google Scholar 
    63.Muscente, A. D. & Xiao, S. Resolving three-dimensional and subsurficial features of carbonaceous compressions and shelly fossils using backscattered electron scanning electron microscopy (BSE-SEM). Palaios 30, 462–481 (2015).ADS 

    Google Scholar 
    64.Lindgren, J. et al. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564, 359–365 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Seilacher, A., Andalib, F., Dietl, G. & Gocht, H. Preservational history of compressed Jurassic ammonites from Southern Germany. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 152, 307–356 (1976).
    Google Scholar 
    66.Them, T. R. et al. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Earth Planet. Sci. Lett. 7, 1–10 (2017).CAS 

    Google Scholar 
    67.Szpak, P. Fish bone chemistry and ultrastructure: Implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011).
    Google Scholar 
    68.Kunkel, J. G., Nagel, W. & Jercinovic, M. J. Mineral fine structure of the American lobster cuticle. J. Shellfish Res. 31, 515–526 (2012).
    Google Scholar 
    69.Doguzhaeva, L. A. & Mutvei, H. Gladius composition and ultrastructure in extinct squid-like coleoids: Loligosepia, Trachyteuthis and Teudopsis. Rev. Paleobiol. 22, 877–894 (2003).
    Google Scholar 
    70.Glass, K. et al. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. U.S.A. 109, 10218–10223 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Schiffbauer, J. D., Wallace, A. F., Broce, J. & Xiao, S. Exceptional fossil conservation through phosphatization. The Paleontol. Soc. Papers 20, 59–82 (2014).
    Google Scholar 
    72.Muscente, A. D., Hawkins, A. D. & Xiao, S. Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 434, 46–62 (2015).
    Google Scholar 
    73.Glenn, C. R. Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geol. Helv. 87, 747–788 (1994).
    Google Scholar 
    74.Arning, E. T., Birgel, D., Brunner, B. & Peckmann, J. Bacterial formation of phosphatic laminites off Peru. Geobiology 7, 295–307 (2009).CAS 
    PubMed 

    Google Scholar 
    75.Dera, G. et al. Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 39–51 (2009).
    Google Scholar 
    76.Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth-Sci. Rev. 198, 102932 (2019).CAS 

    Google Scholar  More

  • in

    Ontogenetic shifts from social to experiential learning drive avian migration timing

    1.Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552–1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    2.Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 

    Google Scholar 
    3.Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).PubMed 

    Google Scholar 
    4.Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 20, 741–749 (2018).
    Google Scholar 
    5.Fryxell, J. M., Greever, J. & Sinclair, A. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).
    Google Scholar 
    6.Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188–4 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    7.Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009–20170016 (2018).
    Google Scholar 
    9.Campioni, L., Dias, M. P., Granadeiro, J. P. & Catry, P. An ontogenetic perspective on migratory strategy of a long‐lived pelagic seabird: timings and destinations change progressively during maturation. J. Anim. Ecol. 89, 29–43 (2020).PubMed 

    Google Scholar 
    10.Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 1–17 (2014).MathSciNet 

    Google Scholar 
    11.Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA 104, 18115–18119 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 34, e12599–7 (2018).
    Google Scholar 
    14.Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kendal, R. L., Coe, R. L. & Laland, K. N. Age differences in neophilia, exploration, and innovation in family groups of callitrichid monkeys. Am. J. Primatol. 66, 167–188 (2005).CAS 
    PubMed 

    Google Scholar 
    16.French, J. B. et al. Whooping cranes past and present. in Whooping Cranes (eds. French, J. B. Jr, Conserve, S. J. & Austin, J. E.) (Academic Publisher, 2019).17.Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory Whooping Cranes Grus americana. Bird. Conserv. Int. 20, 43–54 (2009).
    Google Scholar 
    18.Sorte, F. A. L. & Graham, C. H. Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J. Anim. Ecol. 90, 343–355 (2021).PubMed 

    Google Scholar 
    19.Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 

    Google Scholar 
    20.Xu, F. & Si, Y. The frost wave hypothesis: how the environment drives autumn departure of migratory waterfowl. Ecol. Indic. 101, 1018–1025 (2019).
    Google Scholar 
    21.Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2013).
    Google Scholar 
    22.Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 485–18 (2019).
    Google Scholar 
    23.Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).ADS 

    Google Scholar 
    24.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 

    Google Scholar 
    25.Thurfjell, H., Ciuti, S. & Boyce, M. S. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS ONE 12, e0178082–20 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Reader, S. M. & Laland, K. N. Primate innovation: sex, age and social rank differences. Int. J. Primatol. 22, 787–805 (2001).
    Google Scholar 
    27.Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not? Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
    Google Scholar 
    30.Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    32.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    33.Gurarie, E. et al. Tactical departures and strategic arrivals: divergent effects of climate and weather on caribou spring migrations. Ecosphere 10, 407–432 (2019).
    Google Scholar 
    34.Burnside, R. J., Salliss, D., Collar, N. J. & Dolman, P. M. Birds use individually consistent temperature cues to time their migration departure. Proc. Natl Acad. Sci. USA 118, e2026378118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).PubMed 

    Google Scholar 
    36.Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2004).
    Google Scholar 
    37.Roth, T. C. II & Krochmal, A. R. The role of age-specific learning and experience for turtles navigating a changing landscape. Curr. Biol. 25, 333–337 (2015).CAS 
    PubMed 

    Google Scholar 
    38.Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    39.Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green‐wave surfing for a migratory ungulate. Glob. Change Biol. 23, 239–11 (2020).
    Google Scholar 
    40.Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
    Google Scholar 
    41.Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130195–20130195 (2014).
    Google Scholar 
    42.Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 65, 502–510 (2017).
    Google Scholar 
    43.Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2010).PubMed 

    Google Scholar 
    44.Paradis, E., Claude, J. & Strimmer, K. Ape: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    45.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach Vol. 72 (Springer, 1998).46.Nally, R. M., Duncan, R. P., Thomson, J. R. & Yen, J. D. L. Model selection using information criteria, but is the “best” model any good? J. Appl. Ecol. 55, 1441–1444 (2017).
    Google Scholar 
    47.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    48.Fox, J. & Weisberg, S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Softw. 87, 1–27 (2018).
    Google Scholar 
    49.“R Core Team”. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).50.Abrahms, B., Teitelbaum, C., Mueller, T. & Converse, S. Data from: ontogenetic shifts from social to experiential learning drive avian migration timing. Movebank Data Repository https://doi.org/10.5441/001/1.t23vm852 (2021).51.Abrahms, B. Code from: ontogenetic shifts from social to experiential learning drive avian migration timing. Github Repository. https://doi.org/10.5281/zenodo.5719357 (2021). More

  • in

    Outcrossing rates in an experimentally admixed population of self-compatible and self-incompatible Arabidopsis lyrata

    Study speciesArabidopsis lyrata subsp. lyrata (Brassicaceae) is a small, insect-pollinated, short-lived perennial native to the Great Lakes region of North America. It grows in relatively dry habitats with porous soils, such as sand dunes and rocky outcrops (Mable et al. 2005). Like many other Brassicaceae, this plant is usually characterized by sporophytic SI (Mable et al. 2003) and thus obligately outcrossing, although hand-pollinations have indicated that SC individuals occur at low frequencies in otherwise SI populations (Mable et al. 2005). A few populations consist of only SC plants and are characterized by a mating system with high selfing rates (Foxe et al. 2010) and shorter-life spans (Gorman et al. 2020b). Evidence suggests that there have been at least two relatively recent ( More

  • in

    Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism

    1.Tigano A, Colella JP, MacManes MD. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent. Mol Ecol. 2020;29:1300–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, et al. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol. 2014;23:753–73.PubMed 

    Google Scholar 
    3.Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92.CAS 
    PubMed 

    Google Scholar 
    4.Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales-one thousand and one interactions with land plants. New Phytol. 2016;211:20–40.PubMed 

    Google Scholar 
    5.Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep. 2018;8:6321.PubMed 
    PubMed Central 

    Google Scholar 
    6.Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–29.CAS 
    PubMed 

    Google Scholar 
    7.Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev. 2007;21:51–66.
    Google Scholar 
    8.Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69:2–9.
    Google Scholar 
    9.Miller JD, Sumarah MW, Adams GW. Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol. 2008;34:362–8.CAS 
    PubMed 

    Google Scholar 
    10.White JF Jr, Torres MS. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant. 2010;138:440–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.May G, Nelson P. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol. 2014;28:356–63.
    Google Scholar 
    12.Carroll G. The foraging ascomycete, in: Abstracts of the 16th International Botanical Congress. St Louis, Missouri, USA, 1999.13.Müller MM, Valjakka R, Suokko A, Hantula J. Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol. 2001;10:1801–10.PubMed 

    Google Scholar 
    14.Thomas DC, Vandegrift R, Ludden A, Carroll GC, Roy BA. Spatial ecology of the fungal genus Xylaria in a tropical cloud forest. Biotropica. 2016;48:381–93.
    Google Scholar 
    15.Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed 
    PubMed Central 

    Google Scholar 
    16.Oono R, Lutzoni F, Arnold AE, Kaye L, U’Ren JM, May G, et al. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am J Bot. 2014;101:1362–74.PubMed 

    Google Scholar 
    17.Shao S, Jin Z. In Species Diversity and Extinction (ed. Tepper, GH) Ch. 15. Nova Science Publishers. 2010.18.Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG. From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol. 2011;115:197–213.PubMed 

    Google Scholar 
    19.Yuan ZL, Verkley GJM. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience. 2014;56:205–13.
    Google Scholar 
    20.Sieber T. Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev. 2007;21:75–89.
    Google Scholar 
    21.Levis NA, Martin RA, O’Donnell KA, Pfennig DW. Intraspecific adaptive radiation: competition, ecological opportunity, and phenotypic diversification within species. Evolution. 2017;71:2496–509.PubMed 

    Google Scholar 
    22.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704.CAS 
    PubMed 

    Google Scholar 
    23.Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.CAS 
    PubMed 

    Google Scholar 
    24.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:W36–W41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.PubMed 
    PubMed Central 

    Google Scholar 
    27.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 

    Google Scholar 
    29.Enright AJ, Dongen SV, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol. 2013;30:1987–97.CAS 
    PubMed 

    Google Scholar 
    31.Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics. 2016;17:1014.PubMed 
    PubMed Central 

    Google Scholar 
    32.Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.PubMed 
    PubMed Central 

    Google Scholar 
    33.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    34.Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1–11.10.33.
    Google Scholar 
    35.Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hutter S, Vilella AJ, Rozas J. Genome-wide DNA polymorphism analyses using VariScan. BMC Bioinform. 2006;7:409.
    Google Scholar 
    38.Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, et al. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet. 2019;15:e1008223.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.CAS 
    PubMed 

    Google Scholar 
    40.Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.PubMed 

    Google Scholar 
    41.Looney B, Miyauchi S, Morin E, Drula E, Courty PE, Kohler A, et al. Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: is preadaptation a requirement? bioRxiv. 2021. https://doi.org/10.1101/2021.02.23.432530.42.Wey T, Schlegel M, Stroheker S, Gross A. MAT-gene structure and mating behavior of Hymenoscyphus fraxineus and Hymenoscyphus albidus. Fungal Genet Biol. 2016;87:54–63.CAS 
    PubMed 

    Google Scholar 
    43.Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol. 2005;53:147–62.
    Google Scholar 
    44.Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Zuccaro A, et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci USA. 2017;114:E9403–E9412.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J, et al. The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol. 2016;120:26–42.CAS 
    PubMed 

    Google Scholar 
    46.Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 2018;220:1141–7.PubMed 

    Google Scholar 
    47.Wrzosek M, Ruszkiewicz-Michalska M, Sikora K, Damszel M, Sierota Z. The plasticity of fungal interactions. Mycol Prog. 2017;16:101–8.
    Google Scholar 
    48.Parrent JL, James TY, Vasaitis R, Taylor AF. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol. 2009;9:148.PubMed 
    PubMed Central 

    Google Scholar 
    49.Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M, Kemppainen M, et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 2018;220:1309–21.CAS 
    PubMed 

    Google Scholar 
    50.Mesny F, Miyauchi S, Thiergart T, Pickel B, Atanasova L, Karlsson M, et al. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat Commun. 2021;12:7227.CAS 
    PubMed 

    Google Scholar 
    51.Schulz B, Sucker J, Aust HJ. Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res. 1995;99:1007–15.CAS 

    Google Scholar 
    52.Tanney JB, McMullin DR, Miller JD. Toxigenic Foliar Endophytes from the Acadian Forest. In: Pirttilä A, Frank A (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. 2018;343–81.53.Yue Q, Li Y, Chen L, Zhang X, Liu X, An Z, et al. Genomics-driven discovery of a novel self-resistance mechanism in the echinocandin-producing fungus Pezicula radicicola. Environ Microbiol. 2018;20:3154–67.CAS 
    PubMed 

    Google Scholar 
    54.Rogers RL, Grizzard SL, Titus-McQuillan JE, Bockrath K, Patel S, Wares JP, et al. Gene family amplification facilitates adaptation in freshwater unionid bivalve Megalonaias nervosa. Mol Ecol. 2021;30:1155–73.CAS 
    PubMed 

    Google Scholar 
    55.Mäkinen M, Kuuskeri J, Laine P, Smolander OP, Kovalchuk A, Zeng Z, et al. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics. 2019;20:430.PubMed 
    PubMed Central 

    Google Scholar 
    56.Yang Y, Liu X, Cai J, Chen Y, Li B, Guo Z, et al. Genomic characteristics and comparative genomics analysis of the endophytic fungus Sarocladium brachiariae. BMC Genomics. 2019;20:782.PubMed 
    PubMed Central 

    Google Scholar 
    57.Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, et al. Secondary metabolism drives ecological breadth in the Xylariaceae. bioRxiv. 2021. https://doi.org/10.1101/2021.06.01.446356.58.Matsuda Y, Yamakawa M, Inaba T, Obase K, Ito S. Intraspecific variation in mycelial growth of Cenococcum geophilum isolates in response to salinity gradients. Mycoscience. 2017;58:369–77.
    Google Scholar 
    59.Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, et al. Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol Spectr. 2017;5:1–21.CAS 

    Google Scholar 
    60.Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 2018;220:1161–71.CAS 
    PubMed 

    Google Scholar 
    61.McCutcheon TL, Carroll GC, Schwab S. Genotypic diversity in populations of a fungal endophyte from Douglas Fir. Mycologia. 1993;85:180–6.
    Google Scholar 
    62.Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil. 2002;244:41–53.CAS 

    Google Scholar 
    63.Müller MM, Valjakka R, Hantula J. Genetic diversity of Lophodermium piceae in South Finland. For Pathol. 2007;37:329–37.
    Google Scholar 
    64.Morgenstern K, Polster J-U, Krabel D. Genetic variation between and within two populations of Rhabdocline pseudotsugae in Germany. Can J Res. 2016;46:716–24.CAS 

    Google Scholar 
    65.Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol. 2015;6:996.PubMed 
    PubMed Central 

    Google Scholar 
    66.Gasca-Pineda J, Velez P, Hosoya T. Phylogeography of post-Pleistocene population expansion in Dasyscyphella longistipitata (Leotiomycetes, Helotiales), an endemic fungal symbiont of Fagus crenata in Japan. MycoKeys. 2020;65:1–24.PubMed 
    PubMed Central 

    Google Scholar 
    67.Groenewald M, Linde CC, Groenewald JZ, Crous PW. Indirect evidence for sexual reproduction in Cercospora beticola populations from sugar beet. Plant Pathol. 2008;57:25–32.CAS 

    Google Scholar 
    68.Nordborg M, Charlesworth B, Charlesworth D. Increased levels of polymorphism surrounding selectively maintained sites in highly selfing species. Proc R Soc B. 1996;263:1033–9.
    Google Scholar 
    69.Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, et al. Long-term balancing selection drives evolution of immunity genes in Capsella. Elife. 2019;8:e43606.PubMed 
    PubMed Central 

    Google Scholar 
    70.Carbone I, Jakobek JL, Ramirez-Prado JH, Horn BW. Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of Aspergillus parasiticus. Mol Ecol. 2007;16:4401–17.CAS 
    PubMed 

    Google Scholar 
    71.Drott MT, Debenport T, Higgins SA, Buckley DH, Milgroom MG. Fitness cost of aflatoxin production in Aspergillus flavus when competing with soil microbes could maintain balancing selection. mBio. 2019;10:e02782–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Chen F, Goodwin PH, Khan A, Hsiang T. Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Can J Microbiol. 2002;48:427–36.CAS 
    PubMed 

    Google Scholar  More