Impacts of hydropower on the habitat of jaguars and tigers
1.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS
Google Scholar
2.Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).CAS
PubMed
Google Scholar
3.ICOLD. International Commission on Large Dams. http://www.icold-cigb.org/ (2016).4.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
Google Scholar
5.Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy? Trends Ecol. Evol. 32, 922–935 (2017).PubMed
Google Scholar
6.Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).
Google Scholar
7.Palmeirim, A. F., Peres, C. A. & Rosas, F. C. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol. Conserv. 174, 30–38 (2014).
Google Scholar
8.Fearnside, P. M. Decision making on amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 6, 313–325 (2013).9.Fearnside, P. M. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ. Res. Lett. 11, 011002 (2016).
Google Scholar
10.Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).CAS
PubMed
PubMed Central
Google Scholar
11.Chen, G., Powers, R. P., de Carvalho, L. M. & Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 63, 1–8 (2015).
Google Scholar
12.Hunter, W. C., Anderson, B. W. & Ohmart, R. D. Avian community structure changes in a mature floodplain forest after extensive flooding. J. Wildl. Manag. 51, 495–502 (1987).13.Andriolo, A. et al. Severe population decline of marsh deer, Blastocerus dichotomus (Cetartiodactyla: Cervidae), a threatened species, caused by flooding related to a hydroelectric power plant. Zool. Curitiba 30, 630–638 (2013).
Google Scholar
14.Irving, G. J., Round, P. D., Savini, T., Lynam, A. J. & Gale, G. A. Collapse of a tropical forest bird assemblage surrounding a hydroelectric reservoir. Glob. Ecol. Conserv. 16, e00472 (2018).
Google Scholar
15.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).CAS
PubMed
Google Scholar
16.Quigley, H. et al. Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436 (2017).17.Dinerstein, E. et al. The fate of wild tigers. BioScience 57, 508–514 (2007).
Google Scholar
18.Goodrich, J. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015: e.T15955A50659951 (2015).19.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS
PubMed
PubMed Central
Google Scholar
20.Roberge, J. & Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85 (2004).
Google Scholar
21.Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution—application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).PubMed
PubMed Central
Google Scholar
22.GTRP. Global Tiger Recovery Program. Glob. Tiger Initiat. Secr. (World Bank, 2010).23.Desbiez, A. L. & de Paula, R. C. Species conservation planning: the jaguar National Action Plan for Brazil. Cat News 7, 4–7 (2012).
Google Scholar
24.Achard, F. et al. Determination of deforestation rates of the world’s humid tropical forests. Science 297, 999–1002 (2002).CAS
PubMed
Google Scholar
25.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS
Google Scholar
26.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).CAS
PubMed
Google Scholar
27.Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).CAS
PubMed
PubMed Central
Google Scholar
28.Sollmann, R., Torres, N. M. & Silveira, L. Jaguar conservation in Brazil: the role of protected areas. Cat News 4, 15 (2008).
Google Scholar
29.Cullen Junior, L., Sana, D. A., Lima, F., de Abreu, K. C. & Uezu, A. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), in the upper Paraná River, Brazil. Zool. Curitiba 30, 379–387 (2013).
Google Scholar
30.Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology https://doi.org/10.1002/ecy.3543 (2021).31.Sanderson, E. W. How many animals do we want to save? The many ways of setting population target levels for conservation. BioScience 56, 911–922 (2006).
Google Scholar
32.Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1–9 (2017).
Google Scholar
33.Wikramanayake, E. et al. A landscape‐based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).
Google Scholar
34.Sunarto, S. et al. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS ONE 7, e30859 (2012).CAS
PubMed
PubMed Central
Google Scholar
35.Hyde, J. L., Bohlman, S. A. & Valle, D. Transmission lines are an under-acknowledged conservation threat to the Brazilian Amazon. Biol. Conserv. 228, 343–356 (2018).
Google Scholar
36.Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).PubMed
PubMed Central
Google Scholar
37.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).
Google Scholar
38.Linkie, M., Haidir, I. A., Nugroho, A. & Dinata, Y. Conserving tigers Panthera tigris in selectively logged Sumatran forests. Biol. Conserv. 141, 2410–2415 (2008).
Google Scholar
39.Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 20131506 (2013).
Google Scholar
40.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17, 245–257 (2003).
Google Scholar
41.Ramesh, K. et al. Status of tiger and prey species in Panna Tiger Reserve, Madhya Pradesh: capture-recapture and distance sampling estimates. Technical Report (Wildlife Institute of India, 2013).42.Romero‐Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2019).
Google Scholar
43.Alho, C. J. Hydropower dams and reservoirs and their impacts on Brazil’s biodiversity and natural habitats: a review. World J. Adv. Res. Rev. 6, 205–215 (2020).
Google Scholar
44.Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).PubMed
Google Scholar
45.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS
Google Scholar
46.Fearnside, P. M. Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ. Manag. 13, 401–423 (1989).
Google Scholar
47.Fearnside, P. M. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River Basin. Environ. Manag. 38, 16–27 (2006).
Google Scholar
48.Milder, J. C., Scherr, S. J. & Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 15, 4 (2010).49.Ceballos, G. et al. Jaguar distribution, biological corridors and protected areas in Mexico: from science to public policies. Landsc. Ecol. https://doi.org/10.1007/s10980-021-01264-0 (2021).50.Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).PubMed
Google Scholar
51.Sabu, M. M., Pasha, S. V., Reddy, C. S., Singh, R. & Jaishanker, R. The effectiveness of tiger conservation landscapes in decreasing deforestation in South Asia: a remote sensing-based study. Spat. Inf. Res. 1–13, https://doi.org/10.1007/s41324-021-00411-8 (2021).52.Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).PubMed
PubMed Central
Google Scholar
53.Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).
Google Scholar
54.Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457–3466 (2021).CAS
PubMed
Google Scholar
55.Food and agriculture organization of the united nations. AQUASTAT – FAO’s global information system on water and agriculture. https://www.fao.org/aquastat/en/databases/dams (2016).56.Tortato, F. R. et al. Infanticide in a jaguar (Panthera onca) population—does the provision of livestock carcasses increase the risk? Acta Ethol. 20, 69–73 (2017).
Google Scholar
57.Chanchani, P., Gerber, B. D. & Noon, B. R. Elevated potential for intraspecific competition in territorial carnivores occupying fragmented landscapes. Biol. Conserv. 227, 275–283 (2018).
Google Scholar More