Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion
1.Melbourne, B. A. & Hastings, A. Highly variable spread rates in replicated biological invasions: Fundamental limits to predictability. Science 325, 1536–1539 (2009).ADS
CAS
PubMed
Google Scholar
2.Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The Mathematics Behind Biological Invasions (Springer, 2016).MATH
Google Scholar
3.Phillips, B. L. Evolutionary processes make invasion speed difficult to predict. Biol. Invasions 17, 1949–1960 (2015).
Google Scholar
4.Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and the evolutionary dynamics of a species range. Am. Nat. 185, E81–E93 (2015).PubMed
Google Scholar
5.Burton, O. J., Travis, J. M. J. & Phillips, B. L. Trade-offs and the evolution of life-histories during range expansion. Ecol. Lett. 13, 1210–1220 (2010).PubMed
Google Scholar
6.Phillips, B. L. & Perkins, T. A. Spatial sorting as the spatial analogue of natural selection. Theor. Ecol. 12, 155–163 (2019).
Google Scholar
7.Deforet, M., Carmona-Fontaine, C., Korolev, K. S. & Xavier, J. B. Evolution at the edge of expanding populations. Am. Nat. 194, 291–305 (2019).PubMed
PubMed Central
Google Scholar
8.Travis, J. M. J. & Dytham, C. Dispersal evolution during invasions. Evol. Ecol. Res. 4, 1119–1129 (2002).
Google Scholar
9.Bouin, E. et al. Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration. C. R. Math. 350, 761–766 (2012).MathSciNet
MATH
Google Scholar
10.Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl. Acad. Sci. USA 108, 5708–5711 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
11.Williams, J. L., Kendall, B. E. & Levine, J. M. Rapid evolution accelerates plant population spread in fragmented experimental landscapes. Science 353, 482–485 (2016).ADS
CAS
PubMed
Google Scholar
12.Weiss-Lehman, C., Hufbauer, R. A. & Melbourne, B. A. Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat. Commun. 8, 14303 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
13.Ochocki, B. M. & Miller, T. E. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
14.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B 274, 1413–1419 (2007).PubMed
PubMed Central
Google Scholar
15.Phillips, B. L., Brown, G. P. & Shine, R. Evolutionarily accelerated invasions: The rate of dispersal evolves upwards during the range advance of cane toads. J. Evol. Biol. 23, 2595–2601 (2010).CAS
PubMed
Google Scholar
16.Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).ADS
Google Scholar
17.Phillips, B. L., Brown, G. P., Travis, J. M. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).PubMed
Google Scholar
18.Alford, R. A., Brown, G. P., Schwarzkopf, L., Phillips, B. L. & Shine, R. Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildl. Res. 36, 23–28 (2009).
Google Scholar
19.Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. USA 110, 13452–13456 (2013).ADS
PubMed
PubMed Central
Google Scholar
20.Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: The evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).PubMed
PubMed Central
Google Scholar
21.DeVore, J., Ducatez, S. & Shine, R. Spatial ecology of cane toads (Rhinella marina) in their native range: A study from French Guiana. Sci. Rep. 11, 11817 (2021).ADS
CAS
PubMed
PubMed Central
Google Scholar
22.Brattstrom, B. H. Homing in the giant toad, Bufo marinus. Herpetologica 18, 176–180 (1962).
Google Scholar
23.Zug, G. R. & Zug, P. B. The marine toad Bufo marinus: A natural history resumé of native populations. Smithson. Contrib. Zool. 284, 1–58 (1979).
Google Scholar
24.Bayliss, P. The ecology of post-metamorphic Bufo marinus in central Amazonian savanna, Brazil. Unpublished Ph.D. thesis (The University of Queensland, 1995).25.Turvey, N. Cane Toads: A Tale of Sugar, Politics and Flawed Science (Sydney University Press, 2013).
Google Scholar
26.Carpenter, C. C. & Gillingham, J. C. Water hole fidelity in the marine toad, Bufo marinus. J. Herpetol. 21, 158–161 (1987).
Google Scholar
27.Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: Spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).PubMed
PubMed Central
Google Scholar
28.Hastings, A. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24, 244–251 (1983).MATH
Google Scholar
29.Möbius, W., et al. The collective effect of finite-sized inhomogeneities on the spatial spread of populations in two dimensions. Preprint at http://arxiv.org/abs/1910.05332 (2019).30.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).PubMed
Google Scholar
31.Macgregor, L. F., Greenlees, M., de Bruyn, M. & Shine, R. An invasion in slow motion: The spread of invasive cane toads (Rhinella marina) into cooler climates in southern Australia. Biol. Invasions 23(11), 3565–3581 (2021).
Google Scholar
32.Perkins, A. T., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).PubMed
Google Scholar
33.Seabrook, W. Range expansion of the introduced cane toad Bufo marinus in New South Wales. Aust. Zool. 27, 58–62 (1991).
Google Scholar
34.Kearney, M. R. et al. Modelling species distributions without using species distributions: The cane toad in Australia under current and future climates. Ecography 31, 423–434 (2008).
Google Scholar
35.McCann, S. M., Kosmala, G. K., Greenlees, M. J. & Shine, R. Physiological plasticity in a successful invader: Rapid acclimation to cold occurs only in cool-climate populations of cane toads (Rhinella marina). Conserv. Physiol. 6, cox072 (2018).PubMed
PubMed Central
Google Scholar
36.Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).
Google Scholar
37.Seebacher, F. & Alford, R. A. Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: Seasonal variation and environmental correlates. J. Herpetol. 33, 208–214 (1999).
Google Scholar
38.Phillips, B. L., Brown, G. P., Greenlees, M., Webb, J. K. & Shine, R. Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. Austral Ecol. 32, 169–176 (2007).
Google Scholar
39.Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the Australian semi-desert. PLoS ONE 6, e25979 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
40.Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).
Google Scholar
41.Pettit, L. J., Greenlees, M. J. & Shine, R. Is the enhanced dispersal rate seen at invasion fronts a behaviourally plastic response to encountering novel ecological conditions? Biol. Lett. 12, 20160539 (2016).PubMed
PubMed Central
Google Scholar
42.Jessop, T. S. et al. Exploring mechanisms and origins of reduced dispersal in island Komodo Dragons. Proc. R. Soc. B 285, 20181829 (2018).PubMed
PubMed Central
Google Scholar
43.Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).
Google Scholar
44.Duckworth, R. A. The role of behavior in evolution: A search for mechanism. Evol. Ecol. 23, 513–531 (2009).
Google Scholar
45.Muñoz, M. M. & Losos, J. B. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191, E15–E26 (2017).PubMed
Google Scholar
46.Carroll, S. P. et al. And the beak shall inherit–evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).PubMed
Google Scholar
47.Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).ADS
CAS
PubMed
Google Scholar
48.Acevedo, A. A., Lampo, M. & Cipriani, R. The cane or marine toad, Rhinella marina (Anura, Bufonidae): Two genetically and morphologically distinct species. Zootaxa 4103, 574–586 (2016).PubMed
Google Scholar
49.Reilly, S. M. et al. Conquering the world in leaps and bounds: Hopping locomotion in toads is actually bounding. Funct. Ecol. 29, 1308–1316 (2015).
Google Scholar
50.Griffis-Kyle, K. L., Kyle, S. & Jungels, J. Use of breeding sites by arid-land toads in rangelands: Landscape-level factors. Southwest. Nat. 56, 251–255 (2011).
Google Scholar
51.Sinsch, U. Movement ecology of amphibians: From individual migratory behaviour to spatially structured populations in heterogeneous landscapes. Can. J. Zool. 92, 491–502 (2014).
Google Scholar
52.Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 1–36 (2020).
Google Scholar
53.Child, T., Phillips, B. L., Brown, G. P. & Shine, R. The spatial ecology of cane toads (Bufo marinus) in tropical Australia: Why do metamorph toads stay near the water? Austral Ecol. 33, 630–640 (2008).
Google Scholar
54.Pettit, L., Ducatez, S., DeVore, J. L., Ward-Fear, G. & Shine, R. Diurnal activity in cane toads (Rhinella marina) is geographically widespread. Sci. Rep. 10, 5723 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
55.Shine, R., Ward-Fear, G. & Brown, G. P. A famous failure: Why were cane toads an ineffective biocontrol in Australia? Conserv. Sci. Pract. 2, e296 (2020).
Google Scholar
56.Shine, R., Everitt, C., Woods, D. & Pearson, D. J. An evaluation of methods used to cull invasive cane toads in tropical Australia. J. Pest Sci. 91, 1081–1091 (2018).
Google Scholar
57.Silvester, R., Greenlees, M., Shine, R. & Oldroyd, B. Behavioural tactics used by invasive cane toads (Rhinella marina) to exploit apiaries in Australia. Austral Ecol. 44, 237–244 (2019).
Google Scholar
58.Finnerty, P. B., Shine, R. & Brown, G. P. The costs of parasite infection: Effects of removing lungworms on performance, growth and survival of free-ranging cane toads. Funct. Ecol. 32, 402–415 (2018).
Google Scholar
59.Pettit, L., Greenlees, M. & Shine, R. The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 184, 411–422 (2017).ADS
PubMed
Google Scholar
60.Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis (Springer, 2008).
Google Scholar
61.McCann, S., Greenlees, M. J. & Shine, R. On the fringe of the invasion: The ecological impact of cane toads in marginally suitable habitats. Biol. Invasions 19, 2729–2737 (2017).
Google Scholar
62.S. Kaiser et al., unpubl. Data.63.Finnerty, P., Shine, R. & Brown, G. P. Survival of the faeces: Does a nematode lungworm adaptively manipulate the behaviour of its cane toad host? Ecol. Evol. 8, 4606–4618 (2018).PubMed
PubMed Central
Google Scholar
64.Brown, G. P., Kelehear, C., Pizzatto, L. & Shine, R. The impact of lungworm parasites on rates of dispersal of their anuran host, the invasive cane toad. Biol. Invasions 18, 103–114 (2016).
Google Scholar
65.G. Ward-Fear et al., unpubl. Data. More