Dynamic monitoring of urban built-up object expansion trajectories in Karachi, Pakistan with time series images and the LandTrendr algorithm
1.Seto, K. C., Fragkias, M., Gueneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE https://doi.org/10.1371/journal.pone.0023777 (2011).Article
PubMed
PubMed Central
Google Scholar
2.Huang, Q. X. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 14. https://doi.org/10.1088/1748-9326/ab858c (2020).ADS
Article
Google Scholar
3.Huang, X., Huang, J. Y., Wen, D. W. & Li, J. Y. An updated MODIS global urban extent product (MGUP) from 2001 to 2018 based on an automated mapping approach. Int. J. Appl. Earth Obs. Geoinf. 95, 15. https://doi.org/10.1016/j.jag.2020.102255 (2021).Article
Google Scholar
4.Seto, K. C., Fragkias, M., Guneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE 6, 9. https://doi.org/10.1371/journal.pone.0023777 (2011).CAS
Article
Google Scholar
5.Besthorn, F. H. Vertical farming: Social work and sustainable urban agriculture in an age of global food crises. Aust. Soc. Work. 66, 187–203. https://doi.org/10.1080/0312407x.2012.716448 (2013).Article
Google Scholar
6.FAO. 2018 The State of Food Security and Nutrition in the World. https://www.who.int/nutrition/publications/foodsecurity/state-food-security-nutrition-2018/en/. (2018).7.Mertes, C. M., Schneider, A., Sulla-Menashe, D., Tatem, A. J. & Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 158, 331–347. https://doi.org/10.1016/j.rse.2014.09.023 (2015).ADS
Article
Google Scholar
8.Xiao, P. F., Wang, X. H., Feng, X. Z., Zhang, X. L. & Yang, Y. K. Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 4095–4106. https://doi.org/10.1109/jstars.2014.2302855 (2014).ADS
Article
Google Scholar
9.Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989).Article
Google Scholar
10.Reba, M. & Seto, K. C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 242, 20. https://doi.org/10.1016/j.rse.2020.111739 (2020).Article
Google Scholar
11.He, T., Xiao, W., Zhao, Y., Deng, X. & Hu, Z. Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2020.111742 (2020).Article
Google Scholar
12.Mugiraneza, T., Nascetti, A. & Ban, Y. Continuous monitoring of urban land cover change trajectories with Landsat time series and LandTrendr-Google Earth engine cloud computing. Remote Sens. https://doi.org/10.3390/rs12182883 (2020).Article
Google Scholar
13.U.S. Geological Survey. Landsat Surface Reflectance Data (Ver. 1.1, March 27, 2019): U.S. Geological Survey Fact Sheet 2015-3034. 1. https://doi.org/10.3133/fs20153034 (2019).14.Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).ADS
Article
Google Scholar
15.Cai, S. & Liu, D. Detecting change dates from dense satellite time series using a sub-annual change detection algorithm. Remote Sens. 7, 8705–8727. https://doi.org/10.3390/rs70708705 (2015).ADS
Article
Google Scholar
16.Vogelmann, J. E., Xian, G., Homer, C. & Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 122, 92–105. https://doi.org/10.1016/j.rse.2011.06.027 (2012).ADS
Article
Google Scholar
17.Brooks, E. B., Wynne, R. H., Thomas, V. A., Blinn, C. E. & Coulston, J. W. On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data. IEEE Trans. Geosci. Remote Sens. 52, 3316–3332. https://doi.org/10.1109/tgrs.2013.2272545 (2014).ADS
Article
Google Scholar
18.Huang, C. et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 114, 183–198. https://doi.org/10.1016/j.rse.2009.08.017 (2010).ADS
Article
Google Scholar
19.Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115. https://doi.org/10.1016/j.rse.2009.08.014 (2010).ADS
Article
Google Scholar
20.Hughes, M. J., Kaylor, S. D. & Hayes, D. J. Patch-based forest change detection from landsat time series. Forests https://doi.org/10.3390/f8050166 (2017).Article
Google Scholar
21.Deng, C. B. & Zhu, Z. Continuous subpixel monitoring of urban impervious surface using Landsat time series. Remote Sens. Environ. 238, 21. https://doi.org/10.1016/j.rse.2018.10.011 (2020).Article
Google Scholar
22.Zhu, Z. et al. Continuous monitoring of land disturbance based on Landsat time series, remote sensing of environment. Remote Sens. Environ. 238(11116), 2020. https://doi.org/10.1016/j.rse.2020.111824 (2020).Article
Google Scholar
23.Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. https://doi.org/10.3390/rs10050691 (2018).Article
Google Scholar
24.Hirayama, H., Sharma, R. C., Tomita, M. & Hara, K. Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. Int. J. Remote Sens. 40, 2542–2557. https://doi.org/10.1080/01431161.2018.1528400 (2019).Article
Google Scholar
25.Carleer, A. P., Debeir, O. & Wolff, E. Assessment of very high spatial resolution satellite image segmentations. Photogramm. Eng. Remote. Sens. 71, 1285–1294. https://doi.org/10.14358/pers.71.11.1285 (2005).Article
Google Scholar
26.Su, T. C. A filter-based post-processing technique for improving homogeneity of pixel-wise classification data. Eur. J. Remote Sens. 49, 531–552. https://doi.org/10.5721/EuJRS20164928 (2016).Article
Google Scholar
27.Zhu, X. Land cover classification using moderate resolution satellite imagery and random forests with post-hoc smoothing. J. Spat. Sci. 58, 323–337. https://doi.org/10.1080/14498596.2013.819600 (2013).Article
Google Scholar
28.Xu, H. Z. Y., Wei, Y. C., Liu, C., Li, X. & Fang, H. A scheme for the long-term monitoring of impervious-relevant land disturbances using high frequency Landsat archives and the Google Earth Engine. Remote Sens. 11, 27. https://doi.org/10.3390/rs11161891 (2019).Article
Google Scholar
29.Baqa, M. F. et al. Monitoring and modeling the patterns and trends of urban growth using urban sprawl matrix and CA-Markov model: A case study of Karachi, Pakistan. Land https://doi.org/10.3390/land10070700 (2021).Article
Google Scholar
30.Group, W. B. Transforming Karachi into a Livable and Competitive Megacity—A City Diagnostic and Transformation Strategy. (2018).31.Arif, H., Noman, A., Mansoor, R. & Asiya, S. Land Ownership, Control and Contestation in Karachi and Implications for Low-Income Housing. (Human Settlements Group, International Institute for Environment and Development (IIED), 2013).32.Karachi’s Population—Fiction and Reality. The Express Tribune. https://tribune.com.pk/story/1505657/karachis-population-fiction-reality. Accessed 1 May 2021.33.Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 170, 166–177. https://doi.org/10.1016/j.rse.2015.09.019 (2015).ADS
Article
Google Scholar
34.Mi, J. X. et al. Tracking the land use/land cover change in an area with underground mining and reforestation via continuous landsat classification. Remote Sens. https://doi.org/10.3390/rs11141719 (2019).Article
Google Scholar
35.de Jong, S. M. et al. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. Int. J. Appl. Earth Observ. Geoinf. https://doi.org/10.1016/j.jag.2020.102293 (2021).Article
Google Scholar
36.Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.111510 (2020).Article
Google Scholar
37.Xu, H., Wei, Y., Liu, C., Li, X. & Fang, H. A scheme for the long-term monitoring of impervious-relevant land disturbances using high frequency Landsat archives and the Google earth engine. Remote Sens. https://doi.org/10.3390/rs11161891 (2019).Article
Google Scholar
38.Li, X. C. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9be3 (2020).Article
Google Scholar
39.Global Human Settlement Layer. https://ghsl.jrc.ec.europa.eu/. Accessed 1 May 2021.40.Raza, D. et al. Satellite Based Surveillance of LULC with Deliberation on Urban Land Surface Temperature and Precipitation Pattern Changes of Karachi, Pakistan. (2019).41.Yu, L., Wang, J. & Gong, P. Improving 30m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach. Int. J. Remote Sens. 34, 5851–5867. https://doi.org/10.1080/01431161.2013.798055 (2013).Article
Google Scholar
42.Kennedy, R. E., Yang, Z. G. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008 (2010).ADS
Article
Google Scholar
43.Meigs, G. W., Kennedy, R. E. & Cohen, W. B. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 115, 3707–3718. https://doi.org/10.1016/j.rse.2011.09.009 (2011).ADS
Article
Google Scholar
44.Yin, H. et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 210, 12–24. https://doi.org/10.1016/j.rse.2018.02.050 (2018).ADS
Article
Google Scholar
45.Yin, H., Pflugmacher, D., Li, A., Li, Z. & Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 204, 918–930. https://doi.org/10.1016/j.rse.2017.08.030 (2018).ADS
Article
Google Scholar
46.Zhu, L., Liu, X., Wu, L., Tang, Y. & Meng, Y. Long-term monitoring of cropland change near Dongting Lake, China, using the LandTrendr algorithm with Landsat imagery. Remote Sens. https://doi.org/10.3390/rs11101234 (2019).Article
Google Scholar
47.Kennedy, R. E. et al. Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens. Environ. 166, 271–285. https://doi.org/10.1016/j.rse.2015.05.005 (2015).ADS
Article
Google Scholar
48.Zhu, Z. et al. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.03.009 (2020).Article
Google Scholar
49.Yan, J. et al. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J. Photogramm. Remote Sens. 158, 249–262. https://doi.org/10.1016/j.isprsjprs.2019.10.003 (2019).ADS
Article
Google Scholar
50.Crist, E. P. & Kauth, R. J. The tasseled cap de-mystified. Photogramm. Eng. Remote Sens. 52, 81–86 (1986).
Google Scholar
51.Lin, L. et al. Monitoring land cover change on a rapidly urbanizing island using Google Earth Engine. Appl. Sci.-Basel. https://doi.org/10.3390/app10207336 (2020).Article
PubMed
PubMed Central
Google Scholar
52.Chen, C. et al. Analysis of regional economic development based on land use and land cover change information derived from Landsat imagery. Sci. Rep. https://doi.org/10.1038/s41598-020-69716-2 (2020).Article
PubMed
PubMed Central
Google Scholar
53.Zhang, X. Y., Feng, X. Z. & Wang, K. Integration of classifiers for improvement of vegetation category identification accuracy based on image objects. N. Z. J. Agric. Res. 50, 1125–1133. https://doi.org/10.1080/00288230709510394 (2007).Article
Google Scholar More