Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas
1.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–383 (2011).ADS
CAS
Article
Google Scholar
2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS
CAS
Article
Google Scholar
3.WWF. Living planet report 2020 – bending the curve of biodiversity loss. (WWF, Gland, Switzerland, 2020).4.Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978. https://doi.org/10.1038/s41467-020-19493-3 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
5.Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855. https://doi.org/10.1126/science.1259855 (2015).CAS
Article
PubMed
Google Scholar
6.Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).ADS
CAS
Article
Google Scholar
7.Hockings, M. Systems for assessing the effectiveness of management in protected areas. Bioscience 53, 823–832. https://doi.org/10.1641/0006-3568(2003)053[0823:Sfateo]2.0.Co;2 (2003).Article
Google Scholar
8.Reboredo Segovia, A. L., Romano, D. & Armsworth, P. R. Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159–166. https://doi.org/10.1002/fee.2146 (2020).Article
Google Scholar
9.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. https://doi.org/10.1016/j.biocon.2013.02.018 (2013).Article
Google Scholar
10.Heino, M. et al. Forest loss in protected areas and intact forest landscapes: A global analysis. PLoS ONE 10, e0138918. https://doi.org/10.1371/journal.pone.0138918 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
11.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, e8273. https://doi.org/10.1371/journal.pone.0008273 (2009).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
12.Ferraro, P. et al. More strictly protected areas are not necessarily more protective: Evidence from bolivia, costa rica, indonesia, and thailand. Environ. Res. Lett. 8, 025011 (2013).ADS
Article
Google Scholar
13.Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. London B Biol. Sci. 278, 1633–1638 (2011).
Google Scholar
14.Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
15.Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many natural world heritage sites. Biol. Conserv. 206, 47–55. https://doi.org/10.1016/j.biocon.2016.12.011 (2017).Article
Google Scholar
16.Watson, J., Edward, M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180. https://doi.org/10.1016/j.oneear.2019.09.004 (2019).Article
Google Scholar
17.Joppa, L. & Pfaff, A. Reassessing the forest impacts of protection. Ann. N. Y. Acad. Sci. 1185, 135–149. https://doi.org/10.1111/j.1749-6632.2009.05162.x (2010).ADS
Article
PubMed
Google Scholar
18.Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in sumatra. J. Biogeogr. 36, 2165–2175. https://doi.org/10.1111/j.1365-2699.2009.02147.x (2009).Article
Google Scholar
19.Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. 105, 16089–16094. https://doi.org/10.1073/pnas.0800437105 (2008).ADS
Article
PubMed
PubMed Central
Google Scholar
20.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).21.Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554. https://doi.org/10.1111/gcb.12605 (2014).ADS
Article
Google Scholar
22.Hughes, A. C. Understanding the drivers of southeast asian biodiversity loss. Ecosphere 8, e01624. https://doi.org/10.1002/ecs2.1624 (2017).Article
Google Scholar
23.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast asian biodiversity: An impending disaster. Trends Ecol. Evol. 19, 654–660. https://doi.org/10.1016/j.tree.2004.09.006 (2004).Article
PubMed
Google Scholar
24.Estoque, R. C. et al. The future of southeast asia’s forests. Nat. Commun. 10, 1829–1829. https://doi.org/10.1038/s41467-019-09646-4 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
25.Stolton, S. et al. Reporting Progress in Protected Areas a Site Level Management Effectiveness Tracking Tool (Gland, 2007).
Google Scholar
26.Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140281. https://doi.org/10.1098/rstb.2014.0281 (2015).Article
Google Scholar
27.CBD. Cop 10 decision x/2: Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2011).28.UNFCCC. Adoption of the Paris Agreement (Proposal by the President Draft Decision -/CP.21, 2015).29.Gaveau, D. L. A. et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. Vol. 9 (2014).30.Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005. https://doi.org/10.1038/s41598-017-14467-w (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
31.Buřivalová, Z., Hart, S. J., Radeloff, V. C. & Srinivasan, U. Early warning sign of forest loss in protected areas. Curr. Biol. https://doi.org/10.1016/j.cub.2021.07.072 (2021).Article
PubMed
Google Scholar
32.Apan, A., Suarez, L. A., Maraseni, T. & Castillo, J. A. The rate, extent and spatial predictors of forest loss (2000–2012) in the terrestrial protected areas of the philippines. Appl. Geogr. 81, 32–42. https://doi.org/10.1016/j.apgeog.2017.02.007 (2017).Article
Google Scholar
33.Graham, V., Nurhidayah, L. & Astuti, R. Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2019).
Google Scholar
34.Graham, V., Laurance, S. G., Grech, A., McGregor, A. & Venter, O. A comparative assessment of the financial costs and carbon benefits of redd+ strategies in southeast asia. Environ. Res. Lett. 11, 114022. https://doi.org/10.1088/1748-9326/11/11/114022 (2016).ADS
CAS
Article
Google Scholar
35.Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (paddd) in africa, asia, and latin america and the caribbean, 1900–2010. Biol. Conserv. 169, 355–361. https://doi.org/10.1016/j.biocon.2013.11.021 (2014).Article
Google Scholar
36.Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv Lett 11, e12434 (2018).Article
Google Scholar
37.Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in southeast asian protected areas. Biol. Conserv. 253, 108875. https://doi.org/10.1016/j.biocon.2020.108875 (2021).Article
Google Scholar
38.Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665 (2017).ADS
CAS
Article
Google Scholar
39.Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17, 259–264. https://doi.org/10.1002/fee.2042 (2019).Article
Google Scholar
40.Carranza, T., Manica, A., Kapos, V. & Balmford, A. Mismatches between conservation outcomes and management evaluation in protected areas: A case study in the brazilian cerrado. Biol. Conserv. 173, 10–16. https://doi.org/10.1016/j.biocon.2014.03.004 (2014).Article
Google Scholar
41.Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the amazon rainforest. Conserv. Biol. 27, 155–165. https://doi.org/10.1111/j.1523-1739.2012.01930.x (2013).Article
PubMed
Google Scholar
42.Nolte, C., Agrawal, A. & Barreto, P. Setting priorities to avoid deforestation in amazon protected areas: Are we choosing the right indicators?. Environ. Res. Lett. 8, 015039. https://doi.org/10.1088/1748-9326/8/1/015039 (2013).ADS
Article
Google Scholar
43.Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in madagascar. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.107 (2019).Article
Google Scholar
44.Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).Article
Google Scholar
45.Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: How important is management?. Conserv. Lett. https://doi.org/10.1111/conl.12650 (2019).Article
Google Scholar
46.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).ADS
CAS
Article
Google Scholar
47.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
48.Wolosin, M. & Harris, N. Tropical Forests and Climate Change: The Latest Science (World Resources Institute, 2018).
Google Scholar
49.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
50.Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. https://doi.org/10.1111/cobi.13448 (2019).Article
PubMed
PubMed Central
Google Scholar
51.Rights and Resources Initiative. Who owns the world’s land? A global baseline of formally recognized Indigenous and community land rights. (Rights and Resources Initiative, Washington DC, 2015).52.Santika, T. et al. Community forest management in indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Chang. 46, 60–71. https://doi.org/10.1016/j.gloenvcha.2017.08.002 (2017).Article
Google Scholar
53.Dudley, N., Shadie, P. & Stolton, S. Guidelines for Applying Protected Area Management Categories Including IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types. (IUCN, 2013).
Google Scholar
54.Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. Multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, e22722, https://doi.org/10.1371/journal.pone.0022722 (2011).55.Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1011529108 (2011).Article
PubMed
PubMed Central
Google Scholar
56.Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141. https://doi.org/10.1111/cobi.12568 (2016).CAS
Article
PubMed
Google Scholar
57.Buchner, B. et al. The Global Landscape of Climate Finance 2015 (Climate Policy Initiative, 2015).
Google Scholar
58.Climate Focus. Progress on the New York Declaration on Forests: Finance for Forests (Climate Focus, 2017).
Google Scholar
59.Scharlemann, J. P. W. et al. Securing tropical forest carbon: The contribution of protected areas to redd. Oryx 44, 352–357 (2010).Article
Google Scholar
60.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS
CAS
Article
PubMed
Google Scholar
61.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS
CAS
Article
Google Scholar
62.Zarin, D. J. et al. Tree Biomass Loss: CO2 Emissions from Aboveground Woody Biomass Loss in the Tropics. www.globalforestwatch.org (2020).63.Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. London B Biol. Sci. 370 (2015).64.Ho, D., Imai, K., King, G. & Stuart, E. Matchit: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42 (2011).65.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS
Article
Google Scholar
66.Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).Article
Google Scholar
67.Oliveira, P. J. et al. Land-use allocation protects the peruvian amazon. Science 317, 1233–1236 (2007).ADS
CAS
Article
Google Scholar
68.Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. 34, 1452–1462. https://doi.org/10.1111/cobi.13522 (2020).Article
PubMed
PubMed Central
Google Scholar
69.Miettinen, J., Shi, C., Tan, W. J. & Liew, S. C. 2010 land cover map of insular southeast asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20. https://doi.org/10.1080/01431161.2010.526971 (2012).Article
Google Scholar
70.Stuart, E., Rubin, D. & Osborne, J. Best Practices in Quantitative Methods (Sage Publications, 2007).
Google Scholar
71.Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 18 (2015).
Google Scholar More