More stories

  • in

    Soundscape and ambient noise levels of the Arctic waters around Greenland

    1.Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).2.Wenz, G. M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962).ADS 

    Google Scholar 
    3.Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 30, 257–261 (2005).ADS 

    Google Scholar 
    4.Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science (80-). 371, eaba4658 (2021).CAS 
    PubMed 

    Google Scholar 
    5.Tyack, P., Frisk, G., Boyd, I., Urban, E. & Seeyave, S. (eds). An International Quiet Ocean Experiment Science Plan. Scientific Committee on Oceanic Research / Partnership for Observation of the Global Oceans (2015).6.Kaplan, M. B. & Solomon, S. A coming boom in commercial shipping? The potential for rapid growth of noise from commercial ships by 2030. Mar. Policy 73, 119–121 (2016).
    Google Scholar 
    7.McDonald, M. A., Hildebrand, J. A. & Wiggins, S. M. Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J. Acoust. Soc. Am. 120, 711 (2006).ADS 
    PubMed 

    Google Scholar 
    8.Kyhn, L. A. et al. Basin-wide contributions to the underwater soundscape by multiple seismic surveys with implications for marine mammals in Baffin Bay, Greenland. Mar. Pollut. Bull. 138, 474–490 (2019).CAS 
    PubMed 

    Google Scholar 
    9.Bailey, H. et al. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Mar. Pollut. Bull. 60, 888–897 (2010).CAS 
    PubMed 

    Google Scholar 
    10.Nieukirk, S. L., Stafford, K. M., Mellinger, D. K., Dziak, R. P. & Fox, C. G. Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean. J. Acoust. Soc. Am. 115, 1832–1843 (2004).ADS 
    PubMed 

    Google Scholar 
    11.Guerra, M., Thode, A. M., Blackwell, S. B. & Michael Macrander, A. Quantifying seismic survey reverberation off the Alaskan North Slope. J. Acoust. Soc. Am. 130, 3046–3058 (2011).ADS 
    PubMed 

    Google Scholar 
    12.OSPAR Commission. The North-East Atlantic Environment Strategy: Strategy of the OSPAR Commission for the Protection of the Marine Environment of the North-East Atlantic 2010–2020. OSPAR Secretariat, London (2010).13.UN. General Assembly (74th sess.: 2019–2020). Oceans and the law of the sea: Resolution/adopted by the General Assembly. A/RES/74/19 (2019).14.Arctic Council. Arctic Marine Shipping Assessment 2009 Report, second printing. Arctic Council, Tromsø, Norway (2009).15.International Maritime Organization. Guidelines from the International Maritime Organization for the reduction of underwater noise from commercial shipping, to address adverse impacts on marine life. MEPC. 1/Circ. 833. IMO, London (2014).16.European Commission. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). European Commission, Brussels (2008).17.Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. https://doi.org/10.1139/er-2019-0033 (2020).Article 

    Google Scholar 
    18.PAME. Underwater Noise in the Arctic: A State of Knowledge Report, Roveniemi, May 2019. Protection of the Arctic Marine Environment (PAME) Secretariat, Akureyri (2019).19.Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).ADS 

    Google Scholar 
    20.Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).ADS 

    Google Scholar 
    21.Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. PNAS 110, E1191–E1195 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ebinger, C. K. & Zambetakis, E. The geopolitics of Arctic melt. Int. Aff. 85, 1215–1232 (2009).
    Google Scholar 
    23.Huntington, H. P. A preliminary assessment of threats to arctic marine mammals and their conservation in the coming decades. Mar. Policy 33, 77–82 (2009).
    Google Scholar 
    24.Merchant, N. D. et al. Measuring acoustic habitats. Methods Ecol. Evol. 6, 257–265 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    25.Baumgartner, M. F., Stafford, K. M. & Latha, G. Near real-time underwater passive acoustic monitoring of natural and anthropogenic sounds. In Observing the Oceans in Real Time (eds Venkatesan, R. et al.) 203–226 (Springer Oceanography, 2018). https://doi.org/10.1007/978-3-319-66493-4_10.Chapter 

    Google Scholar 
    26.Mellinger, D. K. & Clark, C. W. Blue whale (Balaenoptera musculus) sounds from the North Atlantic. J. Acoust. Soc. Am. 114, 1108 (2003).ADS 
    PubMed 

    Google Scholar 
    27.Mustonen, M. et al. Spatial and temporal variability of ambient underwater sound in the Baltic Sea. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    28.Pieretti, N. & Danovaro, R. Acoustic indexes for marine biodiversity trends and ecosystem health. Philos. Trans. R. Soc. B 375, 20190447 (2020).
    Google Scholar 
    29.Palmer, K. J., Brookes, K. L., Davies, I. M., Edwards, E. & Rendell, L. Habitat use of a coastal delphinid population investigated using passive acoustic monitoring. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 254–270 (2019).
    Google Scholar 
    30.Sigray, P. et al. BIAS: A regional management of underwater sound in the Baltic Sea. In The Effects of Noise on Aquatic Life II (eds. Popper A., Hawkins A.) 1015–1023. Advances in Experimental Medicine and Biology. 875. (Springer New York, 2016).31.Farcas, A., Powell, C. F., Brookes, K. L. & Merchant, N. D. Validated shipping noise maps of the Northeast Atlantic. Sci. Total Environ. 735, 139509 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.Davis, G. E. et al. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 13460 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Caruso, F. et al. Long-term monitoring of dolphin biosonar activity in deep pelagic waters of the Mediterranean Sea. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    34.Thomas, L. et al. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita. J. Acoust. Soc. Am. 142, EL512–EL517 (2017).PubMed 

    Google Scholar 
    35.Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.ANSI S1.11-2004. Specification for Octave, Half-Octave, and Third Octave Band Filters. American National Standards Institute Inc., New York (2004).37.Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    38.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. J. Acoust. Soc. Am. 30, 54–62 (2008).
    Google Scholar 
    39.Gillespie, D., Caillat, M., Gordon, J. & White, P. Automatic detection and classification of odontocete whistles. J. Acoust. Soc. Am. 134, 2427–2437 (2013).ADS 
    PubMed 

    Google Scholar 
    40.Mellinger, D. K. et al. Ishmael 3.0 User Manual ISHMAEL 3.O User Guide. (2018).41.Jensen, F. H., Johnson, M., Ladegaard, M., Wisniewska, D. M. & Madsen, P. T. Narrow acoustic field of view drives frequency scaling in toothed whale biosonar. Curr. Biol. 28, 3878-3885.e3 (2018).CAS 
    PubMed 

    Google Scholar 
    42.Madsen, P. T., Wahlberg, M. & Møhl, B. Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: Implications for echolocation and communication. Behav. Ecol. Sociobiol. 53, 31–41 (2002).
    Google Scholar 
    43.Zahn, M. J., Laidre, K. L., Stilz, P., Rasmussen, M. H. & Koblitz, J. C. Vertical sonar beam width and scanning behavior of wild belugas (Delphinapterus leucas) in West Greenland. PLoS ONE 16, e0257054 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Frouin-Mouy, H., Kowarski, K., Martin, B. & Bröker, K. Seasonal trends in acoustic detection of marine mammals in Baffin Bay and Melville Bay, Northwest Greenland. Source Arct. 70, 59–76 (2017).
    Google Scholar 
    45.Commission, E. Commission Decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EU. Off. J. Eur. Union 125, 43–74 (2017).
    Google Scholar 
    46.Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110 (1998).ADS 

    Google Scholar 
    47.McGrath, J. R. Depth and Seasonal Dependence of Ambient Sea Noise Near the Marginal Ice Zone of the Greenland Sea. Naval Research Laboratory. Washington DC (1976).48.Ahonen, H. et al. The underwater soundscape in western Fram Strait: Breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).CAS 
    PubMed 

    Google Scholar 
    49.Merchant, N. D. et al. Underwater noise levels in UK waters. Sci. Rep. 6, 36942, (2016).50.Urick, R. J. Ambient Noise in the Sea (Undersea Warfare Technology Office, Naval Sea Systems Command, Department of the Navy, 1984).
    Google Scholar 
    51.Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034 (2015).ADS 
    PubMed 

    Google Scholar 
    52.Urick, R. J. The noise of melting icebergs. J. Acoust. Soc. Am. 50, 337–341 (1971).ADS 

    Google Scholar 
    53.Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).ADS 
    PubMed 

    Google Scholar 
    54.Tervo, O. M., Parks, S. E. & Miller, L. A. Seasonal changes in the vocal behavior of bowhead whales (Balaena mysticetus) in Disko Bay, Western-Greenland. J. Acoust. Soc. Am. 126, 1570–1580 (2009).ADS 
    PubMed 

    Google Scholar 
    55.Boye, T. K., Simon, M. J., Laidre, K. L., Rigét, F. & Stafford, K. M. Seasonal detections of bearded seal (Erignathus barbatus) vocalizations in Baffin Bay and Davis Strait in relation to sea ice concentration. Polar Biol. 43, 1493–1502 (2020).
    Google Scholar 
    56.De Vreese, S. et al. Marine mammal acoustic detections in the Greenland and Barents Sea, 2013–2014 seasons. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    57.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).ADS 
    PubMed 

    Google Scholar 
    58.Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 23, 5344–5357 (2017).ADS 
    PubMed 

    Google Scholar 
    59.Møhl, B. Masking effects of noise: their distribution in time and space. In The question of sound from icebreaker operations: The proceedings of a workshop (ed. Peterson, N. M.) 259–266. Arctic Pilot Project. Calgary, AB (1981).60.Erbe, C. & Farmer, D. M. Masked hearing thresholds of a beluga whale (Delphinapterus leucas) in icebreaker noise. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 1373–1388 (1998).ADS 

    Google Scholar 
    61.Gordon, J. C. D. et al. A review of the effects of seismic survey on marine mammals. Mar. Technol. Soc. J. 37, 14–32 (2004).
    Google Scholar 
    62.Nowacek, D. P., Thorne, L. H., Johnston, D. W. & Tyack, P. L. Responses of cetaceans to anthropogenic noise. Mamm. Rev. 37, 81–115 (2007).
    Google Scholar 
    63.Southall, B. L. et al. Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquat. Mamm. 45, 125–232 (2019).
    Google Scholar 
    64.Frid, A. & Dill, L. Human-caused Disturbance Stimuli as a Form of Predation Risk. Conserv. Ecol. 6, 11 (2002). More

  • in

    Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins

    Porewater concentrations of dissolved oxygen and nutrientsThe sampling location and appearance of the microbial mats used in this study in cross section are shown in Fig. 1. Profound changes in dissolved oxygen concentration were observed over the diel cycle because of high rates of oxygenic photosynthesis in the daytime and oxygen-requiring respiration at night (Table 1). Briefly, Layer 1 was characterized by oxygen concentration fluctuations in the range of 200–800 µM. Layers 2 and 3 ranged from 0–1200 µM and 0–200 µM, respectively. Mat Layer 4 (3–4 mm below the surface) may contain some dissolved oxygen near noon on days when there is high solar irradiance but stays anoxic for most hours of most days. Layers 5–7 (4–7 mm from the surface) remain anoxic.Table 1 Oxygen concentrations throughout the first 4 mm of the mat measured at 100 µm resolution using microsensors, measured on 22 August, 2019.Full size tableConcentrations of ammonium (Table 1) reveal a pattern of increasing concentration with depth (34–124 µM) through the layers examined here. Nitrate concentrations ranged between 26–33 µM, with low variation across depths. The concentration of phosphate ranged between 3–6 µM, with the highest concentration detected in Layer 1 (0–1 mm from surface) at 5.5 µM.Analysis of genes and transcripts in mat layers by qPCR and RT-qPCRGene-copy number ranges for both DNA and cDNA across all layers for all genes examined are summarized as follows: Bacteria, 104−1010 per g mat and 101−105, per ng nucleic acid; Archaea, 106−108 and 102−104; nifH, 108−1011 and 104−107; archaeal-amoA, 104−105 and 2–3; bacterial-amoA, 104−107 and 3–335; Nitrospira-nxrB, 105−107 and 27–372; nosZ, 103−105 and 2–10; nirS, 105−107 and 33–1941; Planctomycetes-16S rRNA gene and cDNA of transcripts, 104−106 and 6–66 (Fig. 2, S1).Fig. 2: Vertical patterns in the abundance (DNA) and expression (cDNA) of Bacterial and Archaeal ribosomal and nitrogen cycling genes.Number of copies of DNA and cDNA genes recovered for Bacteria (A), Archaea (B), nifH (C), Archaeal-amoA (D), Bacterial-amoA (E), Nitrospira-nxrB (F), nosZ (G), nirS (H) and Planctomycetes-16S rRNA gene marker (anammox proxy) (I), per g of microbial mat, quantified by qPCR and RT-qPCR in hypersaline microbial mat profiles from different depths. P-values from Kruskal–Wallis test are overlain on each, and different letters indicate significantly different values for the given gene based on a Conover-Iman test p-value of  0.8, Table 2).Fig. 4: Non-metric multidimensional scaling (NMDS) plots of quantification of all nitrogen genes across all layers examined in this study.Genes associated with the following nitrogen transformations were examined: nitrogen fixation (nifH), nitrification (Bacterial-amoA, Archaeal-amoA, Nitrospira-nxrB), denitrification (nosZ, nirS) and Planctomycetes-16S rRNA gene marker (anammox proxy). The biotic data was standardized, and a sample resemblance matrix was generated using Bray-Curtis coefficient of similarity. In order to analyze the influence of abiotic variables (porewater nutrient and oxygen concentration) on the patterns of the biotic data, monotonic correlations of the abiotic variables were performed. In the plots, the distance between the samples’ points reflects their relative similarity, according to Bray-Curtis similarity matrices based on cDNA/DNA ratios of nitrogen genes examined. The vectors in panel A represent the cDNA/DNA ratios of nitrogen gene examined. In panel B, the vectors represent the environmental variables.Full size imageTable 2 (A) Spearman correlations coefficient (r) between the ratios of cDNA/DNA of nitrogen fixation (nifH), nitrification (Bacterial-amoA, Archaeal-amoA, Nitrospira-nxrB), denitrification (nosZ, nirS) and Planctomycetes-16S rRNA gene marker (anammox proxy) and oxygen, ammonium, nitrate and phosphate concentrations. (B) Spearman correlation p-value.Full size tablenifH, Bacterial-amoA and Archaeal-amoA were positively correlated with oxygen concentration (r ≥ 0.22, Table 2), while Nitrospira-nxrB was negatively correlated with oxygen (r = −0.68, Table 2). Denitrification genes (nosZ, nirS) and Planctomycetes-16S rRNA genes were all positively correlated with ammonium (r ≥ 0.5) and orthophosphate (r ≥ 0.13) and negatively correlated with oxygen (r  > −0.70).Metagenome analysis of nitrogen cyclingA total number of 922 324 genes were identified; 1305 of these genes were annotated with KOs that are part of KEGG’s Nitrogen Metabolism pathway (Table S2, S3). A dendrogram based on Bray-Curtis similarities of normalized coverages of all recovered nitrogen metabolism genes is shown in Fig. 5A. Overall, the similarity between the layers was >75%. According to SIMPROF analysis, there was a significant difference in the N-related gene coverages (based on an alpha value of 0.05) between Layers 1-Layer 2, Layer 3, and Layer 4 (p = 0.001) and Layer 2-Layer 3, and Layer 4 (p = 0.001), but not between Layers 3 and Layer 4 (p = 1), where the similarity was >90%.Fig. 5: Functional nitrogen gene distribution based on metagenome analysis.A Cluster analysis illustrating the similarity of normalized coverages of all recovered nitrogen metabolism genes across the uppers 4 layers examined [(Layer 1 (0–1 mm from surface), Layer 2 (1–2 mm from surface), Layer 3 (2–3 mm from surface), Layer 4 (3–4 mm from surface)]. Red lines show non-significant differences, according to SIMPROF analysis (p  > 0.05). B The bar plots show the genes of the metabolic pathways in the nitrogen cycle identified in the mat, according metagenome analysis, with relative coverage of each nitrogen cycling gene across depths examined (Fraction of Depth Integrated Coverage, FDIC). 355 unique genes were recovered from KEGG’s Nitrogen Metabolism pathway: 60 annotated as involved in nitrogen fixation, 15 in assimilatory nitrate reduction, 38 in dissimilatory nitrate reduction to ammonia (DNRA), 52 in hydroxylamine dehydrogenase EC 1.7.2.6, 121 in hydroxylamine reductase, 69 in denitrification pathway. C Values of Nitrogen-focused Coverage per Million (N-CPM). The following enzymes perform nitrogen transformation in the mat: nitrogenase molybdenum-iron protein alpha chain (nifD), nitrogenase iron protein NifH, nitrogenase molybdenum-iron protein beta chain (nifK), hydroxylamine dehydrogenase EC 1.7.2.6 (hao), hydroxylamine reductase (hcp), nitrate reductase/nitrite oxidoreductase, alpha subunit (narG, narZ, nxrA), nitrate reductase/nitrite oxidoreductase, beta subunit (narH, narY, nxrB), nitrate reductase (cytochrome) (napA), nitrate reductase (cytochrome), electron transfer subunit (napB), nitrite reductase (NO-forming) / hydroxylamine reductase (nirS), nitrogenase molybdenum-iron protein beta chain (nirK), nitric oxide reductase subunit B (norB), nitric oxide reductase subunit C (norC), nitrous-oxide reductase (nosZ), nitrate reductase gamma subunit (narI, narV), cytochrome c nitrite reductase small subunit (nrfH), nitrite reductase (cytochrome c-552) (nrfA), ferredoxin-nitrite reductase (nirA), ferredoxin-nitrate reductase (narB), MFS transporter, NNP family, nitrate/nitrite transporter (NRT, nark, nrtP, nasA). D Nitrogen cycling genes recovered in this study and the transformation that they catalyze.Full size imageThe nitrogen fixation pathway was identified with nifD, nifH, and nifK genes (Fig. 5B, C, Table S4). Of the 60 genes detected in this metabolic pathway 17 genes were annotated as nifD, 22 genes as nifH, and 21 genes as nifK. The normalized coverage of these genes showed a decreasing trend with depth. Layer 1 was characterized by the highest values of Nitrogen-focused coverage per million (N-CPM, see Supplementary Text 1) of nifD, nifH, and nifK genes: 56264.7, 54934.2 and 60059.2, respectively. On average, the three genes involved in nitrogen fixation, nifD, nifH, and nifK, decreased with depth, (2.7-fold from Layer 1 to Layer 4, with a nearly 2-fold difference solely between Layer 1 and Layer 2).Genes involved in nitrate assimilation, annotated as nirA and narB which code for ferredoxin nitrate reductase, were 3 times as abundant in Layer 1 than Layer 2, but decreased less markedly from Layer 2 to Layers 3 and 4.Genes for dissimilatory nitrite reduction (nrfA, and nrfH) were 4 and 16 times more abundant in Layer 4 than Layer 1. Similarly, the nitrate/nitrite regulator protein genes narl and narV displayed a nearly inverse pattern, with Layer 1 having the least proportion of genes, a large increase from Layer 1 to Layer 2, and additional increases from Layer 2 to Layers 3 and Layer 4 (Fig. 5B, C, Table S4).Genes associated with nitrification were very poorly represented in the metagenome. No genes associated with ammonia oxidation (amoA) were detected. Genes associated with nitrite oxidation (nrxA, nrxB) that were detected are so closely related to denitrifier genes (narG, narZ, narH, narY) as to be annotated with the same KEGG KO models (K00370 representing narG, narZ, nxrA; and K00371 representing narH, narY, nxrB).The following genes involved in denitrification were detected: napA, napB, narG, narZ, narH, narY, narI, narV, nirK, nirS, norB, norC, and nosZ (Fig. 5B, C). The nitrate reduction metabolic pathway was represented by 4 genes encoding the nitrate reductase-nitrite oxidoreductase-alpha subunit (narG, narZ, nxrA genes), 6 genes encoding the nitrate reductase-nitrite oxidoreductase-beta subunit (narH, narY, nxrB genes), 31 genes encoding the nitrate reductase gamma subunit (narI, narV), 5 genes encoding the nitrate reductase -cytochrome electron transfer subunit (napB) and 7 genes encoding the nitrate reductase -cytochrome (napA) (Table S4). The N-CPM of nitrate reductase increased with depth, but with a similar proportion of those genes in Layers 3 and 4. With respect to nitrite reductase (nirk and nirS genes, 2 and 1 genes, respectively), no nirK genes were detected in Layer 1, where the highest N-CPM of nirS was recovered (Fig. 5B). In contrast, Layer 3 had no detected nirS and the highest N-CPM of nirK. Regarding nitric oxide reductase (norB and norC genes, 6 and 1 genes, respectively), the highest normalized coverage of norB was detected in Layer 3, while highest for norC was in Layer 1. Finally, nosZ (6 genes) was detected in all the layers, steadily decreasing in normalized coverage from the top layer to the deepest (Fig. 5B, C; Table S4).DNRA metabolism was represented by nrfA (26 genes) and nrfH (12 genes), and by narI, narV (31). Layer 1 was characterized by the lowest normalized coverage of narI, narV, nrfA, and nrfH genes (6880.2, 3724.6, and 284.6 N-CPM, respectively), while Layer 3 was characterized by the greatest coverage of narI, narV, nrfA, and nrfH genes (32760.5, 14417.9 and 4504.1, respectively; Fig. 5B, C; Table S4).Genes for hydroxylamine dehydrogenase EC 1.7.2.6 and hydroxylamine reductase (hao and hcp, respectively) were the most abundant nitrogen metabolism genes in the mat: hao having a cumulative N-CPM of ~150000 and hcp having a cumulative N-CPM of nearly 350,000 across the 4 depths (Fig. 5C). Both genes increased in abundance with depth; hcp increased two-fold between Layer 1 and Layer 2, and more gradually in Layer 3 and Layer 4. Hao exhibited a three-fold increase in relative abundance from Layer 1 to Layer 2 and remained relatively constant through Layer 3 and Layer 4 (Fig. 5B, C; Table S4). More

  • in

    Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling

    1.Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol. 2014;4:176.PubMed 

    Google Scholar 
    2.Pogoreutz C, Voolstra CR, Rädecker N, Weis V, Cardenas A, Raina J-B. The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. In: Bosch TCG, Hadfield MG, editors. Cellular dialogues in the holobiont. CRC Press; 2020. p. 91–118.3.Stanley GD, van de Schootbrugge B. The evolution of the coral–algal symbiosis. In: van Oppen MJH, Lough JM, editors. Coral bleaching: patterns, processes, causes and consequences. Berlin, Heidelberg: Springer; 2009. p. 7–19.4.LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–80.e6.CAS 
    PubMed 

    Google Scholar 
    5.Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs. 1990;25:75–87.
    Google Scholar 
    6.Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meibom A. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol. 2011;11:316.PubMed 
    PubMed Central 

    Google Scholar 
    7.Frankowiak K, Wang XT, Sigman DM, Gothmann AM, Kitahara MV, Mazur M, et al. Photosymbiosis and the expansion of shallow-water corals. Sci Adv. 2016;2:e1601122.PubMed 
    PubMed Central 

    Google Scholar 
    8.Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, et al. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res. 2011;62:205–15.CAS 

    Google Scholar 
    9.Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC. et al. Coral reefs in the Anthropocene. Nature. 2017;546:82–90.CAS 
    PubMed 

    Google Scholar 
    10.Kleypas J, Allemand D, Anthony K, Baker AC, Beck MW, Hale LZ, et al. Designing a blueprint for coral reef survival. Biol Conserv. 2021;257:109107.
    Google Scholar 
    11.Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct Ecol. 2009;23:539–50.
    Google Scholar 
    12.Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 2018;359:80–83.CAS 
    PubMed 

    Google Scholar 
    13.Voolstra CR, Suggett DJ, Peixoto RS, John E, Parkinson KM, Quigley CB, Silveira M, et al. Extending the natural adaptive capacity of coral holobionts. Nat Rev Earth Environ. 2021;2:747–62; https://doi.org/10.1038/s43017-021-00214-3.Article 

    Google Scholar 
    14.Suggett DJ, Smith DJ. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob Chang Biol. 2020;26:68–79.PubMed 

    Google Scholar 
    15.Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    16.Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 2019;27:678–89.CAS 
    PubMed 

    Google Scholar 
    17.Muscatine L, Porter JW. Reef Corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–60.
    Google Scholar 
    18.Falkowski PG, Dubinsky Z, Muscatine L, Porter JW. Light and the bioenergetics of a symbiotic coral. Bioscience. 1984;34:705–9.CAS 

    Google Scholar 
    19.Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993;43:606–11.
    Google Scholar 
    20.Peng S-E, Chen C-S, Song Y-F, Huang H-T, Jiang P-L, Chen W-NU, et al. Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Biol Lett. 2012;8:434–7.PubMed 

    Google Scholar 
    21.Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Fine M, et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc R Soc B. 2020;287:20200049.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Roberty S, Béraud E, Grover R, Ferrier-Pagès C. Coral croductivity is co-limited by bicarbonate and ammonium availability. Microorganisms. 2020;8:640CAS 
    PubMed Central 

    Google Scholar 
    23.Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis. ISME J. 2018;12:921–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Cunning R, Muller EB, Gates RD, Nisbet RM. A dynamic bioenergetic model for coral- Symbiodinium symbioses and coral bleaching as an alternate stable state. J Theor Biol. 2017;431:49–62.CAS 
    PubMed 

    Google Scholar 
    25.Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 

    Google Scholar 
    26.Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang. 2012;3:160–4.
    Google Scholar 
    27.Houlbrèque F, Ferrier-Pagès C. Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc. 2009;84:1–17.PubMed 

    Google Scholar 
    28.Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.CAS 
    PubMed 

    Google Scholar 
    29.Grover R, Maguer J-F, Allemand D, Ferrier-Pagès C. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol. 2008;211:860–5.CAS 
    PubMed 

    Google Scholar 
    30.Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 

    Google Scholar 
    32.Olson ND, Lesser MP. Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa. Arch Microbiol. 2013;195:853–9.CAS 
    PubMed 

    Google Scholar 
    33.Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 

    Google Scholar 
    34.Moynihan MA, Goodkin NF, Morgan KM, Kho PYY, dos Santos AL, Lauro FM, et al. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. ISME J. 2021; https://doi.org/10.1038/s41396-021-01054-1.35.Tilstra A, Pogoreutz C, Rädecker N, Ziegler M, Wild C, Voolstra CR. Relative diazotroph abundance in symbiotic Red Sea corals decreases with water depth. Front Mar Sci. 2019;6:372.
    Google Scholar 
    36.Bednarz VN, Cardini U, van Hoytema N, Al-Rshaidat MMD, Wild C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar Ecol Prog Ser. 2015;519:141–52.
    Google Scholar 
    37.Rädecker N, Meyer FW, Bednarz VN, Cardini U, Wild C. Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix. Mar Ecol Prog Ser. 2014;511:297–302.
    Google Scholar 
    38.Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 

    Google Scholar 
    39.Bednarz VN, van de Water JAJM, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C. Unravelling the importance of diazotrophy in corals – combined assessment of nitrogen assimilation, diazotrophic community and natural stable isotope signatures. Front Microbiol. 2021;12:1638.
    Google Scholar 
    40.Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.PubMed 
    PubMed Central 

    Google Scholar 
    41.Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD, et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ Microbiol. 2016;18:2620–33.CAS 
    PubMed 

    Google Scholar 
    42.Bednarz VN, van de Water JAJM, Rabouille S, Maguer J-F, Grover R, Ferrier-Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2019;21:480–95.CAS 
    PubMed 

    Google Scholar 
    43.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 

    Google Scholar 
    44.Bednarz VN, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. mBio. 2017;8:e02058–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Petrou K, Nunn BL, Padula MP, Miller DJ, Nielsen DA. Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora. Sci Rep. 2021;11:19061.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Roth F, Rädecker N, Carvalho S, Duarte CM, Saderne V, Anton A, et al. High summer temperatures amplify functional differences between coral‐ and algae‐dominated reef communities. Ecology. 2021;102:e03226.PubMed 

    Google Scholar 
    47.Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE. 2008;3:e2836.PubMed 
    PubMed Central 

    Google Scholar 
    48.Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, et al. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol. 2013;79:4759–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE. 2012;7:e42149.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.R Core Team. R: a language and environment for statistical computing computer program. Vienna, Austria: R Foundation for Statistical Computing; 2021.52.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    53.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:631–7.
    Google Scholar 
    55.Roesch LFW, Dobbler PT, Pylro VS, Kolaczkowski B, Drew JC, Triplett EW. pime: A package for discovery of novel differences among microbial communities. Mol Ecol Resour. 2020;20:415–28.CAS 
    PubMed 

    Google Scholar 
    56.Guo K. microbial: do 16s data analysis and generate figures. R package version 1.14.4. 2021.57.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    Google Scholar 
    58.Wang Q, Quensen JF, 3rd, Fish JA, Lee TK, Sun Y, Tiedje JM. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio. 2013;4:e00592–13.PubMed 
    PubMed Central 

    Google Scholar 
    59.Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, et al. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO2 environment. Mol Ecol. 2021;30:5888–99 .60.Angel R, Nepel M, Panhölzl C, Schmidt H, Herbold CW, Eichorst SA, et al. Evaluation of primers targeting the diazotroph functional gene and development of NifMAP – a bioinformatics pipeline for analyzing nifH amplicon data. Front Microbiol. 2018;9:703.PubMed 
    PubMed Central 

    Google Scholar 
    61.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Frank IE, Turk-Kubo KA, Zehr JP. Rapid annotation of nifH gene sequences using classification and regression trees facilitates environmental functional gene analysis. Environ Microbiol Rep. 2016;8:905–16.PubMed 

    Google Scholar 
    63.Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302.PubMed 
    PubMed Central 

    Google Scholar 
    64.Hardy RW, Holsten RD, Jackson EK, Burns RC. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 1968;43:1185–207.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Breitbarth E, Mills MM, Friedrichs G, LaRoche J. The Bunsen gas solubility coefficient of ethylene as a function of temperature and salinity and its importance for nitrogen fixation assays: Bunsen coefficient and N2fixation. Limnol Oceanogr Methods 2004;2:282–8.
    Google Scholar 
    66.Zehr JP, Montoya JP. Measuring N2 fixation in the field. In: Bothe H, Ferguson SJ, Newton WE, editors. Biology of the nitrogen cycle. Elsevier; 2007. p. 193–205.67.Soper FM, Simon C, Jauss V. Measuring nitrogen fixation by the acetylene reduction assay (ARA): is 3 the magic ratio?. Biogeochemistry. 2021;152:345–51.CAS 

    Google Scholar 
    68.Lavy A, Eyal G, Neal B, Keren R, Loya Y, Ilan M. A quick, easy and non‐intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. Methods Ecol Evol. 2015;6:521–31.
    Google Scholar 
    69.Wilson ST, Böttjer D, Church MJ, Karl DM. Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Appl Environ Microbiol. 2012;78:6516–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Hoppe P, Cohen S, Meibom A. NanoSIMS: Technical aspects and applications in cosmochemistry and biological geochemistry. Geostand Geoanal Res. 2013;37:111–54.CAS 

    Google Scholar 
    71.Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 2017;11:186–200.PubMed 

    Google Scholar 
    72.Savary R, Barshis DJ, Voolstra CR, Cárdenas A, Evensen NR, Banc-Prandi G, et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat tolerant coral holobionts from the northern Red Sea. Proc Natl Acad Sci USA. 2021;118:e2023298118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science. 2004;305:997–1000.CAS 
    PubMed 

    Google Scholar 
    74.Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser. 2007;346:143–52.CAS 

    Google Scholar 
    75.Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:19460.PubMed 
    PubMed Central 

    Google Scholar 
    76.Rädecker N, Pogoreutz C, Ziegler M, Ashok A, Barreto MM, Chaidez V, et al. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa. Ecol Evol. 2017;7:6614–21.PubMed 
    PubMed Central 

    Google Scholar 
    77.Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol. 2006;72:3016–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.van de Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, van Oppen MJH. The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol. 2015;24:3390–404.PubMed 

    Google Scholar 
    79.Wada N, Ishimochi M, Matsui T, Pollock FJ, Tang S-L, Ainsworth TD, et al. Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Sci Rep. 2019;9:14662.PubMed 
    PubMed Central 

    Google Scholar 
    80.Udvardi M, Poole PS. Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol. 2013;64:781–805.CAS 
    PubMed 

    Google Scholar 
    81.Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 2012;6:1314–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Shashar N, Cohen Y, Loya Y, Sar N. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser. 1994;111:259–64.CAS 

    Google Scholar 
    83.Inomura K, Bragg J, Riemann L, Follows MJ. A quantitative model of nitrogen fixation in the presence of ammonium. PLoS ONE. 2018;13:e0208282.PubMed 
    PubMed Central 

    Google Scholar 
    84.Agawin NSR, Rabouille S, Veldhuis MJW, Servatius L, Hol S, van Overzee HMJ, et al. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnol Oceanogr. 2007;52:2233–48.CAS 

    Google Scholar 
    85.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 

    Google Scholar 
    86.Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B. 2002;269:1205–10.PubMed 
    PubMed Central 

    Google Scholar 
    87.Sangsawang L, Casareto BE, Ohba H, Vu HM, Meekaew A, Suzuki T, et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R Soc Open Sci. 2017;4:171201.PubMed 
    PubMed Central 

    Google Scholar 
    88.Fine M, Roff G, Ainsworth TD, Hoegh-Guldberg O. Phototrophic microendoliths bloom during coral “white syndrome. Coral Reefs. 2006;25:577–81.
    Google Scholar 
    89.Fine M, Steindler L, Loya Y. Endolithic algae photoacclimate to increased irradiance during coral bleaching. Mar Freshw Res. 2004;55:115–21.CAS 

    Google Scholar 
    90.Meunier V, Bonnet S, Benavides M, Ravache A, Grosso O, Lambert C, et al. Diazotroph-derived nitrogen assimilation strategies differ by scleractinian coral species. Front Mar Sci. 2021;8:1018.
    Google Scholar  More

  • in

    In vitro interaction network of a synthetic gut bacterial community

    Probing directional interactions of OMM12 strains using spent culture mediaTo characterize directional interactions of the OMM12 consortium members, we chose an in vitro approach to explore how the bacterial strains alter their chemical environment by growth to late stationary phase.Growth of the individual monocultures in a rich culture medium that supports growth of all members (AF medium, Methods, Table S1) was monitored over time (Fig. S1; SI data table 1) and growth rates (Table S2) were determined. Strains were grouped by growth rate (GR) into fast growing strains (GR  > 1.5 h–1, E. faecalis KB1, B. animalis YL2, C. innocuum I46 and B. coccoides YL58), strains with intermediate growth rate (GR  > 1 h–1, M. intestinale YL27, F. plautii YL31, E. clostridioformis YL32, B. caecimuris I48 and L.reuteri I49) and slow growing strains (GR  More

  • in

    Intestinal microbiota modulation and improved growth in pigs with post-weaning antibiotic and ZnO supplementation but only subtle microbiota effects with Bacillus altitudinis

    1.Food and Agriculture Organization & World Health Organization. Health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria. (FAO food and nutrition paper, 85, 2001).2.Barba-Vidal, E., Martín-Orúe, S. M. & Castillejos, L. Review: Are we using probiotics correctly in post-weaning piglets?. Animal 12, 2489–2498 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Bernardeau, M., Lehtinen, M. J., Forssten, S. D. & Nurminen, P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 54, 2570–2584 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Hong, H. A., Duc, L. H. & Cutting, S. M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835 (2005).CAS 
    PubMed 

    Google Scholar 
    5.Duc, L. H., Hong, H. A. & Cutting, S. M. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21, 4215–4224 (2003).CAS 

    Google Scholar 
    6.Leser, T. D., Knarreborg, A. & Worm, J. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J. Appl. Microbiol. 104, 1025–1033 (2008).CAS 
    PubMed 

    Google Scholar 
    7.Cutting, S. M. Bacillus probiotics. Food Microbiol. 28, 214–220 (2011).PubMed 

    Google Scholar 
    8.Prieto, M. L. et al. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp. Mar. Drugs 10, 2280–2299 (2012).CAS 
    PubMed 

    Google Scholar 
    9.Prieto, M. L. et al. In vitro assessment of marine Bacillus for use as livestock probiotics. Mar. Drugs 12, 2422–2445 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    10.Prieto, M. L. et al. Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs. PLoS ONE 9, e88599 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.National Research Council. Nutrient Requirements of Swine (The National Academies Press, 2012).
    12.Berends, B. R., Urlings, H. A. P., Snijders, J. M. A. & Van Knapen, F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 30, 37–53. https://doi.org/10.1016/0168-1605(96)00990-7 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Miller, M. F., Carr, M. A., Bawcom, D. B., Ramsey, C. B. & Thompson, L. D. Microbiology of pork carcasses from pigs with differing origins and feed withdrawal times†. J. Food Prot. 60, 242–245. https://doi.org/10.4315/0362-028x-60.3.242 (1997).Article 
    PubMed 

    Google Scholar 
    14.Adewole, D. I., Kim, I. H. & Nyachoti, C. M. Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives—A review. Asian-Austr. J. Anim. Sci. 29, 909–924 (2016).CAS 

    Google Scholar 
    15.Department of Agriculture and Food and Rural Development. European communities (pig carcase (grading)) (amendment) regulations. (S.I. No. 413/2001, 2001).16.Gardiner, G. E. et al. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl. Environ. Microbiol. 70, 1895–1906 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.McCormack, U. M. et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol. 83, e00380-e417 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Buzoianu, S. G. et al. High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab (Bt maize) for 31 days. Appl. Environ. Microbiol. 78, 4217–4224 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).20.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).24.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar 
    25.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    26.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Jadamus, A., Vahjen, W. & Simon, O. Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch. Tierernahr. 54, 1–17 (2001).CAS 
    PubMed 

    Google Scholar 
    28.Duc, L. H., Hong, H. A., Barbosa, T. M., Henriques, A. O. & Cutting, S. M. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70, 2161–2171 (2004).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Tam, N. K. M. et al. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Casula, G. & Cutting, S. M. Bacillus Probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68, 2344–2352 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Kidder, D. E. & Manners, M. J. Digestion in the pig. (Scientechnica, 1978).32.Crespo-Piazuelo, D. et al. Maternal supplementation with Bacillus altitudinis spores improves porcine offspring growth performance and carcass weight. Br. J. Nutr. https://doi.org/10.1017/S0007114521001203 (2021).Article 
    PubMed 

    Google Scholar 
    33.Zhou, H., Wang, C., Ye, J., Chen, H. & Tao, R. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J. 86, 790–799 (2015).CAS 
    PubMed 

    Google Scholar 
    34.Kim, S. J., Kwon, C. H., Park, B. C., Lee, C. Y. & Han, J. H. Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. J. Anim. Sci. Technol. 57, 4 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    35.Pérez, V. G. et al. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J. Anim. Sci. 89, 414–425 (2011).PubMed 

    Google Scholar 
    36.Ventrella, D. et al. The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet. Res. 13, 23 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    37.Thorn, C. E. Hematology of the pig. in Schalm’s Veterinary Hematology, 6th edition (eds. Weiss, D. J. & Wardrop, K. J.) 843–851 (2010). https://doi.org/10.1111/j.1939-165X.2011.00324.x38.Morrow-Tesch, J. L., McGlone, J. J. & Salak-Johnson, J. L. Heat and social stress effects on pig immune measures. J. Anim. Sci. 72, 2599–2609 (1994).CAS 
    PubMed 

    Google Scholar 
    39.Schmid, L., Heit, W. & Flury, R. Agranulocytosis associated with semisynthetic penicillins and cephalosporins. Report of 7 cases. Blut 48, 11–18 (1984).CAS 
    PubMed 

    Google Scholar 
    40.Kloubert, V. et al. Influence of zinc supplementation on immune parameters in weaned pigs. J. Trace Elem. Med. Biol. 49, 231–240 (2018).CAS 
    PubMed 

    Google Scholar 
    41.The European Agency for the Evaluation of Medicinal Products (EMEA). Commitee for veterinary medicinal products: Apramycin. (1999).42.Frese, S. A., Parker, K., Calvert, C. C. & Mills, D. A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3, 28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    43.Slifierz, M. J., Friendship, R. M. & Weese, J. S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 15, 184 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    44.Ivarsson, E., Roos, S., Liu, H. Y. & Lindberg, J. E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal 8, 1777–1787 (2014).CAS 
    PubMed 

    Google Scholar 
    45.Pajarillo, E. A. B., Chae, J.-P., Balolong, M. P., Bum Kim, H. & Kang, D.-K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J. Gen. Appl. Microbiol. 60, 140–146 (2014).CAS 

    Google Scholar 
    46.Yu, T. et al. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Front. Microbiol. 8, 1–9 (2017).
    Google Scholar 
    47.Shen, J. et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br. J. Nutr. 111, 2123–2134 (2014).CAS 
    PubMed 

    Google Scholar 
    48.Rattigan, R., Sweeney, T., Vigors, S., Rajauria, G. & O’Doherty, J. V. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 104, 1471–1483 (2020).CAS 

    Google Scholar 
    49.López-Colom, P., Estellé, J., Bonet, J., Coma, J. & Martín-Orúe, S. M. Applicability of an unmedicated feeding program aimed to reduce the use of antimicrobials in nursery piglets: Impact on performance and fecal microbiota. Animals 10, 242 (2020).PubMed Central 

    Google Scholar 
    50.Wei, X. et al. ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms 8, 146 (2020).CAS 
    PubMed Central 

    Google Scholar 
    51.Vahjen, W., Pieper, R. & Zentek, J. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. J. Anim. Sci. 89, 2430–2439 (2011).CAS 
    PubMed 

    Google Scholar 
    52.Pieper, R., Vahjen, W., Neumann, K., Van Kessel, A. G. & Zentek, J. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 96, 825–833 (2012).CAS 

    Google Scholar 
    53.Yu, T. et al. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    54.Xia, T. et al. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 8, 64878–64891 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Poulsen, A.-S.R. et al. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE 13, e0207382 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    56.Hagerty, S. L., Hutchison, K. E., Lowry, C. A. & Bryan, A. D. An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE 15, e0229204 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 

    Google Scholar 
    58.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Ryden, R. & Moore, B. J. The in vitro activity of apramycin, a new aminocyditol antibiotic. J. Antimicrob. Chemother. 3, 609–613 (1977).CAS 
    PubMed 

    Google Scholar 
    60.Jones, N., Ray, B., Ranjit, K. T. & Manna, A. C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008).CAS 
    PubMed 

    Google Scholar 
    61.Gardiner, G. E., Metzler-Zebeli, B. U. & Lawlor, P. G. Impact of intestinal microbiota on growth and feed efficiency in pigs: A review. Microorganisms 8, 1886 (2020).CAS 
    PubMed Central 

    Google Scholar 
    62.Ghanbari, M., Klose, V., Crispie, F. & Cotter, P. D. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci. Rep. 9, 4062 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Zeineldin, M., Aldridge, B. & Lowe, J. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front. Microbiol. 10, 1035 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    64.On, S. L. W. Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9, 405–422 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Bergström, S., Garon, C. F., Barbour, A. G. & MacDougall, J. Extrachromosomal elements of spirochetes. Res. Microbiol. 143, 623–628 (1992).PubMed 

    Google Scholar 
    66.Oh, J. K. et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Anim. Sci. J. 91, e13418 (2020).CAS 
    PubMed 

    Google Scholar 
    67.Ruiz, V. L. A. et al. Case–control study of pathogens involved in piglet diarrhea. BMC Res. Notes 9, 22 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    68.Yang, Q. et al. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. Microbiologyopen 8, e923 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    69.Wang, S. et al. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet. Res. 15, 239 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    70.Looft, T. et al. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8, 1566–1576 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Quan, J. et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci. Rep. 8, 4536 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    73.Che, L. et al. Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model. J. Nutr. Biochem. 74, 108246 (2019).CAS 
    PubMed 

    Google Scholar 
    74.Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).CAS 
    PubMed 

    Google Scholar 
    75.Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut 47, 397–403 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Roediger, W. E. The colonic epithelium in ulcerative colitis: An energy-deficiency disease?. Lancet (London, England) 2, 712–715 (1980).CAS 

    Google Scholar 
    77.Jewell, K. A., Scott, J. J., Adams, S. M. & Suen, G. A phylogenetic analysis of the phylum Fibrobacteres. Syst. Appl. Microbiol. 36, 376–382. https://doi.org/10.1016/j.syapm.2013.04.002 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Abdul Rahman, N. et al. A phylogenomic analysis of the bacterial phylum Fibrobacteres. Front. Microbiol. 6, 1469–1469. https://doi.org/10.3389/fmicb.2015.01469 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling

    1.Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
    Google Scholar 
    2.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).CAS 

    Google Scholar 
    3.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
    Google Scholar 
    4.Verma, M. et al. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences 11, 2185–2200 (2014).
    Google Scholar 
    5.MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021).CAS 

    Google Scholar 
    6.Wang, L., Manzoni, S., Ravi, S., Riveros-Iregui, D. & Caylor, K. Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems. Ecosphere 6, 1–27 (2015).
    Google Scholar 
    7.Oleson, K. W. et al. Technical Description of the Community Land Model (CLM). Technical Note NCAR/TN-461+ STR (NCAR, 2004).8.Bonan, G. B. & Levis, S. Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J. Clim. 19, 2290–2301 (2006).
    Google Scholar 
    9.Brovkin, V., Ganopolski, A. & Svirezhev, Y. A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol. Modell. 101, 251–261 (1997).
    Google Scholar 
    10.Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628 (1996).CAS 

    Google Scholar 
    11.Haxeltine, A. & Prentice, I. C. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles 10, 693–709 (1996).CAS 

    Google Scholar 
    12.Sitch, S. The Role of Vegetation Dynamics in the Control of Atmospheric CO2 Content. Dissertation, Lund Univ. (2000).13.Levis, S., Bonan, G. B., Vertenstein, M. & Oleson, K. W. The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User’s Guide. NCAR Technical Note TN-459+ IA 50 (NCAR, 2004).14.Woodward, F. I., Lomas, M. R. & Betts, R. A. Vegetation-climate feedbacks in a greenhouse world. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 29–39 (1998).
    Google Scholar 
    15.Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).
    Google Scholar 
    16.Turner, D. P. et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 102, 282–292 (2006).
    Google Scholar 
    17.Loik, M. E., Breshears, D. D., Lauenroth, W. K. & Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141, 269–281 (2004).
    Google Scholar 
    18.Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).
    Google Scholar 
    19.Biederman, J. A. et al. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob. Change Biol. 22, 1867–1879 (2016).
    Google Scholar 
    20.Wilcox, B. P., Sorice, M. G. & Young, M. H. Dryland ecohydrology in the Anthropocene: taking stock of human–ecological interactions. Geogr. Compass 5, 112–127 (2011).21.Biederman, J. A. et al. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob. Change Biol. 23, 4204–4221 (2017).
    Google Scholar 
    22.Lauenroth, W. K. & Bradford, J. B. Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought. Ecohydrology 2, 173–181 (2009).
    Google Scholar 
    23.Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).
    Google Scholar 
    24.Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).CAS 

    Google Scholar 
    25.Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).
    Google Scholar 
    26.Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K. & Palmquist, K. A. Robust ecological drought projections for drylands in the 21st century. Glob. Change Biol. 26, 3906–3919 (2020).
    Google Scholar 
    27.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
    Google Scholar 
    28.Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).
    Google Scholar 
    29.Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).CAS 

    Google Scholar 
    30.Xiao, J. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).
    Google Scholar 
    31.Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).CAS 

    Google Scholar 
    32.Joiner, J. & Yoshida, Y. Satellite-based reflectances capture large fraction of variability in global gross primary production (GPP) at weekly time scales. Agric. For. Meteorol. 291, 108092 (2020).
    Google Scholar 
    33.Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).CAS 

    Google Scholar 
    34.Bacour, C. et al. Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. J. Geophys. Res. Biogeosci. 124, 3281–3306 (2019).
    Google Scholar 
    35.MacBean, N. et al. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Sci. Rep. 8, 1973 (2018).
    Google Scholar 
    36.Xiao, J. et al. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agric. For. Meteorol. 151, 60–69 (2011).
    Google Scholar 
    37.Ropelewski, C. F. & Halpert, M. S. Global and REGIONAL SCALE PRECIPITATION PATTERNS ASSociated with the El Niño/Southern Oscillation. Mon. Wea. Rev. 115, 1606–1626 (1987).
    Google Scholar 
    38.Trenberth, K. E. The definition of El Niño. Bull. Amer. Meteor. Soc. 78, 2771–2778 (1997).
    Google Scholar 
    39.Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).40.Kogan, F. & Guo, W. Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens. 38, 161–178 (2017).
    Google Scholar 
    41.Berntson, G. G., Lozano, D. L. & Chen, Y. J. Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology 42, 246–252 (2005).
    Google Scholar 
    42.von Neumann, J., Kent, R. H., Bellinson, H. R. & Hart, B. I. The mean square successive difference. Ann. Math. Stat. 12, 153–162 (1941).
    Google Scholar 
    43.Jenerette, G. D., Barron-Gafford, G. A., Guswa, A. J., McDonnell, J. J. & Villegas, J. C. Organization of complexity in water limited ecohydrology. Ecohydrology 5, 184–199 (2012).
    Google Scholar 
    44.IPCC 2013. Climate Change 2013 – The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).45.Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).46.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, nclimate3114 (2016).
    Google Scholar 
    47.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).
    Google Scholar 
    48.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 

    Google Scholar 
    49.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).
    Google Scholar 
    50.Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
    Google Scholar 
    51.Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).CAS 

    Google Scholar 
    52.MacDonald, G. M. Water, climate change, and sustainability in the Southwest. Proc. Natl Acad. Sci. USA 107, 21256–21262 (2010).CAS 

    Google Scholar 
    53.van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).
    Google Scholar 
    54.Collier, N. et al. The International Land Model Benchmarking (ILAMB) System: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).
    Google Scholar 
    55.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).57.Kuhn, M. caret: Classification and regression training. R package version 6.0-88. https://CRAN.R-project.org/package=caret (2021).58.Didan, K. MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13C1.006 (NASA EOSDIS Land Processes DAAC, 2015).59.Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.5-2. https://CRAN.R-project.org/package=raster (2021).60.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    61.Climatic Research Unit (University of East Anglia) & Met Office. CRU TS Version 4.04. http://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/ (CRU, 2020).62.Hijmans, R. J. geosphere: Spherical trigonometry. Package version 1.5-10. https://CRAN.R-project.org/package=geosphere (2019).63.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    64.Barnes, M. L. et al. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes. Ecosphere 7, n/a–n/a (2016).
    Google Scholar 
    65.Vicente-Serrano, S. M. et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27 (2012).
    Google Scholar 
    66.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696–1718 (2010).
    Google Scholar 
    67.Beguería, S. & Vicente-Serrano, S. M. SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. R package version 1.7. https://CRAN.R-project.org/package=SPEI (2017).68.Beguería, S., Vicente-Serrano, S. M. & Angulo-Martínez, M. A Multiscalar Global Drought Dataset: the SPEI base: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91, 1351–1356 (2010).
    Google Scholar 
    69.Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).
    Google Scholar 
    70.Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
    Google Scholar 
    71.Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).
    Google Scholar 
    72.Sörensen, L. A spatial analysis approach to the global delineation of dryland areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands. Dataset based on spatial analysis between WWF terrestrial ecoregions (WWF-US, 2004) and aridity zones https://www.unep-wcmc.org/resources-and-data/a-spatial-analysis-approach-to-the-global-delineation-of-dryland-areas-of-relevance-to-the-cbd-programme-of-work-on-dry-and-subhumid-lands (CRU/UEA; UNE, 2007). Data accessed: 6/27/2021.73.Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).
    Google Scholar 
    74.Freitag, D. Information Extraction from HTML: Application of a General Machine Learning Approach, 517–523 (AAAI/IAAI, 1998).75.Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. & Van Der Laan, M. J. Survival ensembles. Biostatistics 7, 355–373 (2006).
    Google Scholar 
    76.Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 307 (2008).
    Google Scholar 
    77.Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).
    Google Scholar 
    78.Running, S., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD17A2H.006 (NASA EOSDIS Land Processes DAAC, 2015).79.Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).CAS 

    Google Scholar 
    80.Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).
    Google Scholar 
    81.Von Neumann, J., Kent, R., Bellinson, H. & Hart, B. The mean square successive difference. Ann. Math. Stat. 12, 153–162 (1941).82.Revelle, W. R. psych: Procedures for personality and psychological research. R package version 2.1.6. https://CRAN.R-project.org/package=psych (2021).83.Farella, M. Code and data for ‘Improved dryland carbon flux predictions with explicit consideration of water–carbon coupling’. zenodo https://doi.org/10.5281/ZENODO.5540015 (2021). More

  • in

    Ecological changes have driven biotic exchanges across the Indian Ocean

    1.Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267 (2013).ADS 

    Google Scholar 
    2.Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).ADS 
    PubMed 

    Google Scholar 
    3.Ashwal, L. D., Wiedenbeck, M. & Torsvik, T. H. Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius. Nat. Commun. 8, 14086 (2017).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    4.Agnarsson, I. & Kuntner, M. The Generation of a biodiversity hotspot: Biogeography and phylogeography of the Western Indian Ocean islands. In Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems (ed. Anamthawat-Jónsson, K.) 33–82 (InTech, 2012).
    Google Scholar 
    5.Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41 (2012).ADS 

    Google Scholar 
    6.Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1–33 (2013).ADS 

    Google Scholar 
    7.Aitchison, J. C., Ali, J. R. & Davis, A. M. When and where did India and Asia collide?. JGR https://doi.org/10.1029/2006JB004706 (2007).Article 

    Google Scholar 
    8.Chatterjee, S. & Scotese, C. R. The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period. In New Aspects of Mesozoic Biodiversity (ed. Bandyopadhyay, S.) (Springer-Verlag, 2010).
    Google Scholar 
    9.Gourlan, A. T., Meynadier, L. & Allègre, C. J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence. Earth Planet. Sci. Lett. 267, 353–364 (2008).ADS 
    CAS 

    Google Scholar 
    10.Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).ADS 

    Google Scholar 
    11.Collier, J. S. et al. Age of Seychelles-India break-up. Earth Planet. Sci. Lett. 272, 264–277 (2008).ADS 
    CAS 

    Google Scholar 
    12.Plummer, Ph. S. & Belle, E. R. Mesozoic tectono-stratigraphic evolution of the Seychelles microcontinent. Sediment. Geol. 96, 73–91 (1995).ADS 

    Google Scholar 
    13.Ashalatha, B., Subrahmanyam, C. & Singh, R. N. Origin and compensation of Chagos-Laccadive ridge, Indian ocean, from admittance analysis of gravity and bathymetry data. Earth Planet. Sci. Lett. 105, 47–54 (1991).ADS 

    Google Scholar 
    14.de Queiroz, A. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73 (2005).PubMed 

    Google Scholar 
    15.Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).PubMed 

    Google Scholar 
    16.Verma, O., Khosla, A., Goin, F. J. & Kaur, J. Historical biogeography of the late cretaceous vertebrates of India: Comparison of geophysical and paleontological data. New Mex. Mus. Nat. Hist. Sci. Bull. 71, 317–330 (2016).
    Google Scholar 
    17.Krause, D. W. Washed up in Madagascar. Nature 463, 613 (2010).ADS 
    PubMed 
    CAS 

    Google Scholar 
    18.Reeves, C. & De Wit, M. Making ends meet in Gondwana: Retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova 12, 272–280 (2000).ADS 

    Google Scholar 
    19.Pillon, Y. & Buerki, S. How old are island endemics?. Biol. J. Linn. Soc. 121, 469–474 (2017).
    Google Scholar 
    20.Thornton, I. W. B. et al. How important were stepping stones in the colonization of Krakatau?. Biol. J. Linn. Soc. 77, 275–317 (2002).
    Google Scholar 
    21.Crisp, M. D., Trewick, S. A. & Cook, L. G. Hypothesis testing in biogeography. Trends Ecol. Evol. 26, 66–72 (2011).PubMed 

    Google Scholar 
    22.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    23.Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).PubMed 
    CAS 

    Google Scholar 
    24.Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R. R. Evolutionary rates and HBV: Issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).PubMed 

    Google Scholar 
    25.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Meth. 9, 772–772 (2012).CAS 

    Google Scholar 
    26.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    27.Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536 (1997).
    Google Scholar 
    28.Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    29.Raftery, A. et al. Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. Bayesian Stat. 8, 1–45 (2007).
    Google Scholar 
    30.Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006).CAS 

    Google Scholar 
    31.Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772–780 (2013).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Erpenbeck, D. et al. Phylogenetic analyses under secondary structure-specific substitution models outperform traditional approaches: Case studies with diploblast LSU. J. Mol. Evol. 64, 543–557 (2007).ADS 
    PubMed 
    CAS 

    Google Scholar 
    33.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), 2010 1–8 (2010).34.Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49 (2015).PubMed 

    Google Scholar 
    35.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 19694 (2013).
    Google Scholar 
    36.Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).PubMed 

    Google Scholar 
    37.Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    38.Warren, B. H., Strasberg, D., Bruggemann, J. H., Prys-Jones, R. P. & Thébaud, C. Why does the biota of the Madagascar region have such a strong Asiatic flavour?. Cladistics 26, 526–538 (2010).
    Google Scholar 
    39.Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bull. 107, 1164–1191 (1995).
    Google Scholar 
    40.Yoder, A. D. & Nowak, M. D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 37, 405–431 (2006).
    Google Scholar 
    41.Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. PNAS 109, 5358–5363 (2012).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    42.Ali, J. R. & Krause, D. W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: Refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 38, 1855–1872 (2011).
    Google Scholar 
    43.Kocsis, Á. T. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 213, 103463 (2021).
    Google Scholar 
    44.Hay, W. W. Cretaceous oceans and ocean modeling. In Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance (eds Hu, X. et al.) 244–271 (Sepm Society for Sedimentary, 2009).
    Google Scholar 
    45.Sereno, P. C., Wilson, J. A. & Conrad, J. L. New dinosaurs link southern landmasses in the Mid-Cretaceous. Proc. R. Soc. Lond. B 271, 1325–1330 (2004).
    Google Scholar 
    46.Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234 (2018).
    Google Scholar 
    47.Speijer, R. P. & Morsi, A.-M.M. Ostracode turnover and sea-level changes associated with the Paleocene-Eocene thermal maximum. Geology 30, 23–26 (2002).ADS 

    Google Scholar 
    48.McInerney, F. A. & Wing, S. L. The paleocene-eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).ADS 
    CAS 

    Google Scholar 
    49.Henehan, M. J. et al. Revisiting the middle eocene climatic optimum “Carbon Cycle Conundrum” with new estimates of atmospheric pCO2 from boron isotopes. Palaeogeogr. Palaeoclimatol. 35, e2019PA003713 (2020).
    Google Scholar 
    50.Legendre, S. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: Structures, milieux et évolution. Münchner Geowiss. Abh. 16, 1–110 (1989).
    Google Scholar 
    51.Hartenberger, J.-L. Palaeontology: An Asian Grande Coupure. Nature 394, 321 (1998).ADS 
    CAS 

    Google Scholar 
    52.Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    PubMed 
    CAS 

    Google Scholar 
    53.Lohman, D. J. et al. Biogeography of the Indo-Australian Archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).
    Google Scholar 
    54.Fernández, D. A., Palazzesi, L., González Estebenet, M. S., Tellería, M. C. & Barreda, V. D. Impact of mid Eocene greenhouse warming on America’s southernmost floras. Commun. Biol. 4, 1–9 (2021).
    Google Scholar 
    55.Ivany, L. C., Patterson, W. P. & Lohmann, K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000).ADS 
    PubMed 
    CAS 

    Google Scholar 
    56.Masters, J. C. et al. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. J. Biogeogr. 48, 492–510 (2021).
    Google Scholar 
    57.Ali, J. R. & Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656 (2010).ADS 
    PubMed 
    CAS 

    Google Scholar 
    58.Ohba, M., Samonds, K. E., LaFleur, M., Ali, J. R. & Godfrey, L. R. Madagascar’s climate at the K/P boundary and its impact on the island’s biotic suite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 688–695 (2016).
    Google Scholar 
    59.Godfrey, L. R. et al. Mid-Cenozoic climate change, extinction, and faunal turnover in Madagascar, and their bearing on the evolution of lemurs. BMC Evol. Biol. 20, 97 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    60.Behrensmeyer, A. K. et al. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (University of Chicago Press, 1992).
    Google Scholar 
    61.Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci. Rev. 88, 145–166 (2008).ADS 

    Google Scholar 
    62.Klaus, S., Morley, R. J., Plath, M., Zhang, Y.-P. & Li, J.-T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 (2016).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    63.Le Houedec, S., Meynadier, L., Cogné, J.-P., Allègre, C. J. & Gourlan, A. T. Oceanwide imprint of large tectonic and oceanic events on seawater Nd isotope composition in the Indian Ocean from 90 to 40 Ma. Geochem. Geophys. 13, 6. https://doi.org/10.1029/2011GC003963 (2012).Article 
    CAS 

    Google Scholar 
    64.Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697 (2009).PubMed 

    Google Scholar 
    65.Kayaalp, P., Stevens, M. I. & Schwarz, M. P. ‘Back to Africa’: Increased taxon sampling confirms a problematic Australia-to-Africa bee dispersal event in the Eocene. Syst. Entomol. 42, 724–733 (2017).
    Google Scholar 
    66.Gillespie, R. G. et al. Long-distance dispersal: A framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).PubMed 

    Google Scholar  More

  • in

    Emergence of a neopelagic community through the establishment of coastal species on the high seas

    Much remains to be learned across disciplines about the neopelagic community and ecosystem. That coastal species can survive for years in the open ocean environment has changed our prior understanding of the availability of trophic resources and of a conducive physiochemical environment to support coastal species in open ocean environments, which were previously considered inhospitable for long-term survival of coastal biota.Colonization and persistenceAt present, we have limited understanding of the ecology of neopelagic communities. Basic questions remain unanswered, such as what is the extent of the biodiversity of coastal species persisting at sea and how often do coastal species co-occur with neustonic species on plastic rafts? Raft characteristics are known to affect neopelagic community structure, with species diversity increasing with plastic raft surface area9,10, but research is needed to investigate how raft characteristics shape the ecological interactions between coastal and pelagic species. Perhaps most fundamentally, we need to know to what extent neopelagic communities self-sustain or require continued input of rafts, propagules, and gene flow from coastlines. For these communities to self-sustain, coastal species traits and life histories, the physical environment, and trophic resources must align for survival, successful reproduction, and population persistence. Understanding what trophic resources coastal species utilize in the open ocean as well as the ecological roles that they play in neopelagic communities and oceanic ecosystems is crucial to understanding the impact of permanent communities of coastal species on the open ocean.BiogeographyThe motion of floating plastic rafts is integral to future research on dynamics of coastal biota at sea since the physical oceanic environment shapes neopelagic communities. Origin might constrain neopelagic community development and composition. For example, a plastic buoy that comes loose from an offshore aquaculture facility, which is heavily fouled with coastal species upon departure, might undergo very different community succession dynamics than a plastic water bottle that falls overboard mid-ocean and is newly colonized by both neustonic and coastal species. How these objects are transported on ocean currents through space and time and the abiotic conditions encountered will further affect the neopelagic community associated with them.In addition to transport, aggregation of floating plastic rafts in the open ocean, and specifically in gyres where plastics can remain for years, might have important implications for recruitment and gene flow of coastal species. Differences in physical oceanic features and sources of plastics among ocean regions might further contribute to a complex biogeography of neopelagic communities. Many factors could influence the biogeography of these novel communities, including the scale of plastic input and their residence times, spatial and temporal patterns of productivity, temperature, and other environmental variables. An important early step is to determine whether neopelagic communities like those found in the North Pacific form in other oceans, and if so, to what extent these communities differ among ocean basins.Biological invasionsUnderstanding the ecology and biogeography of the neopelagic communities on floating plastics will provide essential insights about the role of plastics as vectors of non-native species. The persistence of coastal species on plastic debris might increase the potential for successful transoceanic dispersal of coastal species to new continents by increasing the duration and distance of dispersal than would be possible otherwise. Additionally, colonization of plastic debris at sea by coastal species suggests that the continued expansion of the plastisphere creates a novel source pool of non-native species on the high seas. Thus, the increase of plastic inputs to the global ocean, when combined with discovery of the neopelagic community, points to an underestimation of floating plastics as vectors of transoceanic invasive species dispersal and introductions. More