More stories

  • in

    Altered fire regimes modify lizard communities in globally endangered Araucaria forests of the southern Andes

    1.Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).PubMed 

    Google Scholar 
    2.Harvey, B. J., Donato, D. C. & Turner, M. G. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology 97, 2272–2282 (2016).PubMed 

    Google Scholar 
    3.Prichard, S. J., Stevens-Rumann, C. S. & Hessburg, P. F. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 396, 217–233 (2017).
    Google Scholar 
    4.González, M. E., Lara, A., Urrutia, R. & Bosnich, J. Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42° S). Bosque 32, 215–219 (2011).
    Google Scholar 
    5.Perfetti-Bolaño, A., González-acuña, D., Barrientos, C. & Moreno, L. Efectos del fuego sobre la avifauna del cerro Cayumanque, región del Bío-bío, Chile. Boletín Chil. Ornitol. 19, 1–11 (2013).
    Google Scholar 
    6.Engstrom, R. T. First-order fire effects on animals: Review and recommendations. Fire Ecol. 6, 115–130 (2010).
    Google Scholar 
    7.Doherty, T. S. et al. Ecosystem responses to fire: Identifying cross-taxa contrasts and complementarities to inform management strategies. Ecosystems 20, 872–884 (2017).
    Google Scholar 
    8.Kowaljow, E. et al. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degrad. Dev. 30, 266–277 (2019).
    Google Scholar 
    9.Ferreira, C. C., Santos, X. & Carretero, M. A. Does ecophysiology mediate reptile responses to fire regimes? Evidence from Iberian lizards. PeerJ 4, e2107 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    10.Russell, K. R., Van Lear, D. H. & Guynn, D. C. Prescribed fire effects on herpetofauna: Review and management implications. Wildl. Soc. Bull. 27, 374–384 (1999).
    Google Scholar 
    11.Shine, R., Brown, G. P. & Elphick, M. J. Effects of intense wildfires on the nesting ecology of oviparous montane lizards. Austral. Ecol. 41, 756–767 (2016).
    Google Scholar 
    12.Driscoll, D. A., Smith, A. L., Blight, S. & Maindonald, J. Reptile responses to fire and the risk of post-disturbance sampling bias. Biodivers. Conserv. 21, 1607–1625 (2012).
    Google Scholar 
    13.Hu, Y., Kelly, L. T., Gillespie, G. R. & Jessop, T. S. Lizard responses to forest fire and timber harvesting: Complementary insights from species and community approaches. For. Ecol. Manag. 379, 206–215 (2016).
    Google Scholar 
    14.Hromada, S. J. et al. Response of reptile and amphibian communities to the reintroduction of fire in an oak/hickory forest. For. Ecol. Manag. 428, 1–13 (2018).
    Google Scholar 
    15.Chergui, B., Pleguezuelos, J. M., Fahd, S. & Santos, X. Modelling functional response of reptiles to fire in two Mediterranean forest types. Sci. Total Environ. 732, 139205 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Costa, B. M., Pantoja, D. L., Sousa, H. C., de Queiroz, T. A. & Colli, G. R. Long-term, fire-induced changes in habitat structure and microclimate affect Cerrado lizard communities. Biodivers. Conserv. 29, 1659–1681 (2020).
    Google Scholar 
    17.Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
    Google Scholar 
    18.Arroyo, M. T. K., Cavieres, L., Peñaloza, A., Riveros, M. & Faggi, A. Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Ecología de los Bosques Nativos de Chile (eds Armesto, J. et al.) 71–100 (1995).19.González, M. E., Veblen, T. T. & Sibold, J. S. Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32, 1187–1202 (2005).
    Google Scholar 
    20.Veblen, T. T. Regeneration patterns in Araucaria araucana forests in Chile. J. Biogeogr. 9, 11 (1982).
    Google Scholar 
    21.Aagesen, D. L. Indigenous resource rights and conservation of the monkey-puzzle tree (Araucaria araucana, Araucariaceae): A case study from southern Chile. Econ. Bot. 52, 146–160 (1998).
    Google Scholar 
    22.Aagesen, D. Burning monkey-puzzle: Native fire ecology and forest management in northern Patagonia. Agric. Human Values 21, 233–242 (2004).
    Google Scholar 
    23.Pollmann, W. & Veblen, T. T. Nothofagus regeneration dynamics in south-central Chile: A test of a general model. Ecol. Monogr. 74, 615–634 (2004).
    Google Scholar 
    24.Ortega, M., Ponce, X. & Tamarín, R. Manual con medidas para la prevención de incendios forestales, IX Región (Corporación Nacional Forestal (CONAF), 2006).
    Google Scholar 
    25.Ferreira, D., Pinho, C., Brito, J. C. & Santos, X. Increase of genetic diversity indicates ecological opportunities in recurrent-fire landscapes for wall lizards. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    26.Nimmo, D. G. et al. Predicting the century-long post-fire responses of reptiles. Glob. Ecol. Biogeogr. 21, 1062–1073 (2012).
    Google Scholar 
    27.Smith, A. L., Michael Bull, C. & Driscoll, D. A. Successional specialization in a reptile community cautions against widespread planned burning and complete fire suppression. J. Appl. Ecol. 50, 1178–1186 (2013).
    Google Scholar 
    28.Kelly, L. T., Bennett, A. F., Clarke, M. F. & Mccarthy, M. A. Optimal fire histories for biodiversity conservation. Conserv. Biol. 29, 473–481 (2015).PubMed 

    Google Scholar 
    29.Valentine, L. E., Reaveley, A., Johnson, B., Fisher, R. & Wilson, B. A. Burning in banksia woodlands: How does the fire-free period influence reptile communities?. PLoS ONE 7, e34448 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Uribe, S. & Estades, C. F. Reptiles in monterey pine plantations of the coastal range of central Chile. Rev. Chil. Hist. Nat. 87, 1–8 (2014).
    Google Scholar 
    31.Santos, X., Badiane, A. & Matos, C. Contrasts in short- and long-term responses of Mediterranean reptile species to fire and habitat structure. Oecologia 180, 205–216 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Ferreira, D., Mateus, C. & Santos, X. Responses of reptiles to fire in transition zones are mediated by bioregion affinity of species. Biodivers. Conserv. 25, 1543–1557 (2016).
    Google Scholar 
    33.Zúñiga, A. H. Changes in the structure of assemblages of three liolaemus lizards (Iguania, liolaemidae) in a protected area of south-central Chile affected by a mixed-severity wildfire. Zoodiversity 54, 265–274 (2020).
    Google Scholar 
    34.Rubio, A. V. & Simonetti, J. A. Lizard assemblages in a fragmented landscape of central Chile. Eur. J. Wildl. Res. 57, 195–199 (2011).
    Google Scholar 
    35.Driscoll, D. A. & Henderson, M. K. How many common reptile species are fire specialists? A replicated natural experiment highlights the predictive weakness of a fire succession model. Biol. Conserv. 141, 460–471 (2008).
    Google Scholar 
    36.Lindenmayer, D. B., Claridge, A. W., Gilmore, A. M., Michael, D. & Lindenmayer, B. D. The ecological roles of logs in Australian forests and the potential impacts of harvesting intensification on log-using biota. Pacific Conserv. Biol. 8, 121–140 (2002).
    Google Scholar 
    37.Evans, M. J., Newport, J. S. & Manning, A. D. A long-term experiment reveals strategies for the ecological restoration of reptiles in scattered tree landscapes. Biodivers. Conserv. 28, 2825–2843 (2019).
    Google Scholar 
    38.Mella, J. E. Guía de Campo Reptiles de Chile. Tomo: 1 Zona Central (2017).39.Whitford, K. R. & McCaw, W. L. Coarse woody debris is affected by the frequency and intensity of historical harvesting and fire in an open eucalypt forest. Aust. For. 82, 56–69 (2019).
    Google Scholar 
    40.Vidal, M. A. & Labra, A. Herpetología de Chile (GráficAndes, 2008).
    Google Scholar 
    41.Meiri, S. & Chapple, D. G. Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’. Biol. Conserv. 204, 6–15 (2016).
    Google Scholar 
    42.Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Conserv. 204, 1–5 (2016).
    Google Scholar 
    43.Watson, J. E. M., Whittaker, R. J. & Dawson, T. P. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120, 311–327 (2004).
    Google Scholar 
    44.Scott, D. M. et al. The impacts of forest clearance on lizard, small mammal and bird communities in the arid spiny forest, southern Madagascar. Biol. Conserv. 127, 72–87 (2006).
    Google Scholar 
    45.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 

    Google Scholar 
    46.Hu, Y., Urlus, J., Gillespie, G., Letnic, M. & Jessop, T. S. Evaluating the role of fire disturbance in structuring small reptile communities in temperate forests. Biodivers. Conserv. 22, 1949–1963 (2013).
    Google Scholar 
    47.Gutiérrez, J. A., Krenz, J. D. & Ibargüengoytía, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332–337 (2010).
    Google Scholar 
    48.Artacho, P., Saravia, J., Perret, S., Bartheld, J. L. & Le Galliard, J. F. Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. J. Therm. Biol. 63, 78–87 (2017).PubMed 

    Google Scholar 
    49.Elzer, A. L. et al. Forest-fire regimes affect thermoregulatory opportunities for terrestrial ectotherms. Austral. Ecol. 38, 190–198 (2013).
    Google Scholar 
    50.Todd, B. D. & Andrews, K. M. Response of a reptile guild to forest harvesting. Conserv. Biol. 22, 753–761 (2008).PubMed 

    Google Scholar 
    51.Santos, X., Sillero, N., Poitevin, F. & Cheylan, M. Realized niche modelling uncovers contrasting responses to fire according to species-specific biogeographical affinities of amphibian and reptile species. Biol. J. Linn. Soc. 126, 55–67 (2019).
    Google Scholar 
    52.Farnsworth, L. M., Nimmo, D. G., Kelly, L. T., Bennett, A. F. & Clarke, M. F. Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. Divers. Distrib. 20, 663–673 (2014).
    Google Scholar 
    53.Vera-Escalona, I. M., Coronado, T., Muñoz-Mendoza, C. & Victoriano, P. F. Distribución histórica y actual de la lagartija Liolaemus pictus (Dumeril & Bibron 1837) (Liolaemidae) y nuevo límite continental sur de distribución. Gayana 74, 139–146 (2010).
    Google Scholar 
    54.Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B Biol. Sci. 285, 20172241 (2018).
    Google Scholar 
    55.Bowman, D. M. J. S. & Haberle, S. G. Paradise burnt: How colonizing humans transform landscapes with fire. Proc. Natl. Acad. Sci. USA. 107, 21234–21235 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Maia-Carneiro, T., Dorigo, T. A. & Rocha, C. F. D. Influences of seasonality, thermal environment and wind intensity on the thermal ecology of Brazilian sand lizards in a restinga remnant. South Am. J. Herpetol. 7, 241–251 (2012).
    Google Scholar 
    57.Nimmo, D. G., Kelly, L. T., Farnsworth, L. M., Watson, S. J. & Bennett, A. F. Why do some species have geographically varying responses to fire history?. Ecography 37, 805–813 (2014).
    Google Scholar 
    58.Jones, G. M. et al. Megafires: An emerging threat to old-forest species. Front. Ecol. Environ. 14, 300–306 (2016).
    Google Scholar 
    59.Chergui, B., Fahd, S., Santos, X. & Pausas, J. G. Socioeconomic factors drive fire-regime variability in the mediterranean basin. Ecosystems 21, 619–628 (2018).
    Google Scholar 
    60.Hellmich, W. & Goetsch, W. Die eidechsen Chiles, insbesondere die gattung Liolaemus, nach den sammlungen Goetsch-Hellmich, Vol. 24 (1934).61.Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., Villalba,
    A. The ecology of the conifers of southern South America. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S.) 129–135 (Melbourne University Press, Carlton, Victoria, 1995).
    Google Scholar 
    62.Donoso, C. Bosques templados de Chile y Argentina. Variación, Estructura y Dinámica (Editorial Universitaria S.A., 1993).
    Google Scholar 
    63.Fuentes-Ramirez, A., Barrientos, M., Almonacid, L., Arriagada-Escamilla, C. & Salas-Eljatib, C. Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests. Appl. Soil Ecol. 131, 99–106 (2018).
    Google Scholar 
    64.Urrutia-Estrada, J., Fuentes-Ramírez, A. & Hauenstein, E. Diferencias en la composición florística en bosques de Araucaria-Nothofagus afectados por distintas severidades de fuego. Gayana Bot. 75, 12–25 (2018).
    Google Scholar 
    65.González, M. E., Szejner, M., Muñoz, A. A. & Silva, J. Incendios catastróficos en bosques andinos de Araucaria-Nothofagus: Efecto de la severidad y respuesta de la vegetación. Bosque Nativ. 46, 12–17 (2009).
    Google Scholar 
    66.Luebert, F. & Pliscoff, P. Sinopsis bioclimática y vegetacional de Chile (Editorial Universitaria S.A., 2006).
    Google Scholar 
    67.(CONAF), C. N. F. Análisis de la afectación y severidad de los incendios forestales (2017).68.Zúñiga, A. H. et al. Rodent assemblage composition as indicator of fire severity in a protected area of south-central Chile. Austral. Ecol. 46, 249–260 (2021).
    Google Scholar 
    69.Demangel, D. Reptiles en Chile (Fauna Nativa Ediciones, 2016).
    Google Scholar 
    70.Vera-Escalona, I. et al. Lizards on ice: Evidence for multiple refugia in Liolaemus pictus (Liolaemidae) during the last glacial maximum in the southern Andean beech forests. PLoS ONE 7, e48358 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Ibarra, J. T. & Martin, K. Biotic homogenization: Loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).
    Google Scholar 
    72.Buckland, S. T., Rexstad, E. A., Marques, T. A. & Oedekoven, C. S. Methods in Statistical Ecology (Springer, 2015).MATH 

    Google Scholar 
    73.Ibarra, J. T. & Martin, K. Beyond species richness: An empirical test of top predators as surrogates for functional diversity and endemism. Ecosphere 6, 1–15 (2015).
    Google Scholar 
    74.Royle, J. A., Dawson, D. K. & Bates, S. Modeling abundance effects in distance sampling. Ecology 85, 1591–1597 (2004).
    Google Scholar 
    75.Marques, T. A., Thomas, L., Fancy, S. G. & Buckland, S. T. Improving estimates of bird density using multiple-covariate distance sampling. Auk 124, 1229–1243 (2007).
    Google Scholar 
    76.Fiske, I. J. & Chandler, R. B. Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).
    Google Scholar 
    77.R Core Team. R: A Language and Environment for Statistical Computing (2019).78.Furnas, B. J., Newton, D. S., Capehart, G. D. & Barrows, C. W. Hierarchical distance sampling to estimate population sizes of common lizards across a desert ecoregion. Ecol. Evol. 9, 3046–3058 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    79.Burnham, K. P. & Anderson, D. R. Model Selection and Inference. A Practical Information-Theoretical Approach (Springer, 2002).MATH 

    Google Scholar 
    80.Pinheiro, J. & Bates, D. Package ‘nlme’: Linear and Nonlinear Mixed Effects Models (2020).81.Mazerolle, J. M. Package ‘AICcmodavg’: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).82.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Effects of soil texture and nitrogen fertilisation on soil bacterial community structure and nitrogen uptake in flue-cured tobacco

    Accumulation and distribution of N in flue-cured tobacco growing in different soilsAccumulation dynamics of N in different soilsNitrogen gradually increased in loam soil, clay loam, and sandy loam soils with plant growth (Fig. 1), attaining a maximum at the mature-plant stage(2.10 g/plant, 1.43 g/plant, and 2.90 g/plant, respectively). Nitrogen accumulation was lower in plants grown in clay loam than in plants grown in loam soil and sandy loam during the entire growth period, indicating that the N supply capacity of clay loam was relatively weak, and tobacco plants grown in this soil had the lowest levels of N uptake and utilisation. The N uptake and accumulation in flue-cured tobacco grown in loam soil and sandy loam were basically the same before the ceiling stage, but at the mature stage, N accumulation was significantly higher in plants grown in sandy loam than in plants grown in loam soil and clay loam (P  More

  • in

    Inferring functional traits in a deep-sea wood-boring bivalve using dynamic energy budget theory

    1.Howell, K. L. et al. A decade to study deep-sea life. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01352-5 (2020).Article 

    Google Scholar 
    2.Howell, K. L. et al. A blueprint for an inclusive, global deep-sea ocean decade field program. Front. Mar. Sci. 7, 1–25. https://doi.org/10.3389/fmars.2020.584861 (2020).ADS 
    Article 

    Google Scholar 
    3.Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, 22588. https://doi.org/10.1371/journal.pone.0022588 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Bernardino, A. F., Levin, L. A., Thurber, A. R. & Smith, C. R. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE 7, e33515. https://doi.org/10.1371/journal.pone.0033515 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Thiel, M. & Gutow, L. The ecology of rafting in the marine environment. II. The rafting organisms and community. Ocean. Mar. Biol. 43, 279–418. https://doi.org/10.1201/9781420037449.ch7 (2005).Article 

    Google Scholar 
    6.McClain, C. & Barry, J. Beta-diversity on deep-sea wood falls reflects gradients in energy availability. Biol. Lett. 10, 20140129. https://doi.org/10.1098/rsbl.2014.0129 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Knudsen, J. The Bathyal and Abyssal Xylophaga (Pholadidae, Bivalvia) (Danish Science Press Ltd., 1961).
    Google Scholar 
    8.Turner, R. Wood-boring bivalves, opportunistic species in the deep sea. Science 180, 1377–1379. https://doi.org/10.1126/science.180.4093.1377 (1973).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Voight, J. R. Deep-sea wood-boring bivalves of Xylophaga (Myoida: Pholadidae) on the continental shelf: A new species described. J. Mar. Biol. Assoc. UK 88, 1459–1464. https://doi.org/10.1017/S0025315408002117 (2008).Article 

    Google Scholar 
    10.Turner, R. D. A survey and Illustrated Catalogue of the Teredinidae (Mollusca: Bivalvia) (Harvard University, 1966).Book 

    Google Scholar 
    11.Hoppe, K. N. Teredo Navalis—the Cryptogenic Shipworm. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management. (ed. Leppäkoski E., Gollasch S., O. S.) 116–119, https://doi.org/10.1007/978-94-015-9956-6_12 (2002).12.Distel, D. L. & Roberts, S. J. Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and X. washingtona. Biol. Bull. 192, 253–261. https://doi.org/10.2307/1542719 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Distel, D. L., Morrill, W., MacLaren-Toussaint, N., Franks, D. & Waterbury, J. Teredinibacter turnerae gen. nov., sp. Nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int. J. Syst. Evol. Microbiol. 52, 2261–2269 (2002).CAS 
    PubMed 

    Google Scholar 
    14.O’Connor, R. M. et al. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc. Natl. Acad. Sci. U. S. A. 111, 5096–5104. https://doi.org/10.1073/pnas.1413110111 (2014).CAS 
    Article 

    Google Scholar 
    15.Sabbadin, F. et al. Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. Biotechnol. Biofuels 11, 1–14. https://doi.org/10.1186/s13068-018-1058-3 (2018).CAS 
    Article 

    Google Scholar 
    16.Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge University Press, 2010).
    Google Scholar 
    17.Sarà, G., Palmeri, V., Montalto, V., Rinaldi, A. & Widdows, J. Parameterisation of bivalve functional traits for mechanistic eco-physiological dynamic energy budget (DEB) models. Mar. Ecol. Prog. Ser. 480, 99–117. https://doi.org/10.3354/meps10195 (2013).ADS 
    Article 

    Google Scholar 
    18.Sarà, G., Rinaldi, A. & Montalto, V. Thinking beyond organism energy use: A trait-based bioenergetic mechanistic approach for predictions of life-history traits in marine organisms. Mar. Ecol. 35, 506–515. https://doi.org/10.1111/maec.12106 (2014).ADS 
    Article 

    Google Scholar 
    19.Mangano, M. C. et al. Moving toward a strategy for addressing climate displacement of marine resources: A proof-of-concept. Front. Mar. Sci. 7, 1–16. https://doi.org/10.3389/fmars.2020.00408 (2020).ADS 
    Article 

    Google Scholar 
    20.Romano, C. et al. Wooden stepping stones: Diversity and biogeography of deep-sea wood-boring Xylophagaidae (Mollusca: Bivalvia) in the North-East Atlantic Ocean, with the description of a new genus. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.579959 (2020).Article 

    Google Scholar 
    21.Culliney, J. L. & Turner, R. D. Larval development of the deep-water wood boring bivalve, Xylophaga atlantica Richards (Mollusca, bivalvia, pholadidae). Ophelia 15, 149–161. https://doi.org/10.1080/00785326.1976.10425455 (1976).Article 

    Google Scholar 
    22.Romey, W., Bullock, R. & Dealteris, J. Rapid growth of a deep-sea wood-boring bivalve. Cont. Shelf Res. 14, 1349–1359. https://doi.org/10.1016/0278-4343(94)90052-3 (1994).ADS 
    Article 

    Google Scholar 
    23.Gaudron, S. M. et al. Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna. Mar. Environ. Res. 70, 1–12. https://doi.org/10.1016/j.marenvres.2010.02.002 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Gaudron, S. M., Haga, T., Wang, H., Laming, S. R. & Duperron, S. Plasticity in reproduction and nutrition in wood-boring bivalves (Xylophaga atlantica) from the Mid-Atlantic Ridge. Mar. Biol. 163, 1–12. https://doi.org/10.1007/s00227-016-2988-6 (2016).CAS 
    Article 

    Google Scholar 
    25.Childress, J. J., Cowles, D. L., Favuzzi, J. A. & Mickel, T. J. Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep Sea Res. Part A Oceanogr. Res. Pap. 37, 929–949. https://doi.org/10.1016/0198-0149(90)90104-4 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals?. Trends Ecol. Evol. 10, 30–36. https://doi.org/10.1016/S0169-5347(00)88957-0 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Tittensor, D. P., Rex, M. A., Stuart, C. T., Mcclain, C. R. & Smith, C. R. Species—energy relationships in deep-sea molluscs subject collections species—energy relationships in deep-sea molluscs. Biol. Lett. 7, 718–722 (2011).Article 

    Google Scholar 
    28.McClain, C. R., Allen, A. P., Tittensor, D. P. & Rex, M. A. Energetics of life on the deep seafloor. Proc. Natl. Acad. Sci. U. S. A. 109, 15366–15371. https://doi.org/10.1073/pnas.1208976109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Mickel, T. J. & Childress, J. J. Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea Thermydron (Brachyura). Biol. Bull. 162, 70–82. https://doi.org/10.2307/1540971 (1982).Article 

    Google Scholar 
    30.Voight, J. R., Cooper, J. C. & Lee, R. W. Stable isotopic evidence of mixotrophy in Xylophagaids, deep-sea wood-boring bivalves. Front. Mar. Sci. 7, 50. https://doi.org/10.3389/fmars.2020.00050 (2020).Article 

    Google Scholar 
    31.Lika, K. et al. The ‘covariation method’ for estimating the parameters of the standard dynamic energy budget model I: Philosophy and approach. J. Sea Res. 66, 270–277. https://doi.org/10.1016/j.seares.2011.07.010 (2011).ADS 
    Article 

    Google Scholar 
    32.Marques, G. M. et al. The AmP project: Comparing species on the basis of dynamic energy budget parameters. PLoS Comput. Biol. 14, 1–23. https://doi.org/10.1371/journal.pcbi.1006100 (2018).CAS 
    Article 

    Google Scholar 
    33.Mariño, J., Augustine, S., Dufour, S. C. & Hurford, A. Dynamic Energy Budget theory predicts smaller energy reserves in thyasirid bivalves that harbour symbionts. J. Sea Res. 143, 119–127. https://doi.org/10.1016/j.seares.2018.07.015 (2019).ADS 
    Article 

    Google Scholar 
    34.Brown, A. et al. Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab Lithodes maja. J. Exp. Biol. 220, 3916–3926. https://doi.org/10.1242/jeb.158543 (2017).Article 
    PubMed 

    Google Scholar 
    35.Eisenmenger, M. J. & Reyes-De-Corcuera, J. I. High pressure enhancement of enzymes: A review. Enzyme Microb. Technol. 45, 331–347. https://doi.org/10.1016/j.enzmictec.2009.08.001 (2009).CAS 
    Article 

    Google Scholar 
    36.Kalenitchenko, D. et al. Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea. ISME J. 12, 367–379. https://doi.org/10.1038/ismej.2017.163 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Levesque, C., Limén, H. & Juniper, S. K. Origin, composition and nutritional quality of particulate matter at deep-sea hydrothermal vents on Axial Volcano NE pacific. Mar. Ecol. Prog. Ser. 289, 43–52. https://doi.org/10.3354/meps289043 (2005).ADS 
    Article 

    Google Scholar 
    38.Limén, H., Levesque, C. & Kim Juniper, S. POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Mar. Biol. 153, 129–139. https://doi.org/10.1007/s00227-007-0790-1 (2007).Article 

    Google Scholar 
    39.Culliney, J. L. Comparative larval development of the shipworms Bankia gouldi and Teredo navalis. Mar. Biol. 29, 245–251. https://doi.org/10.1007/BF00391850 (1975).Article 

    Google Scholar 
    40.Ramirez Llodra, E. Fecundity and life-history strategies in marine invertebrates. Adv. Mar. Biol. 43, 87–170. https://doi.org/10.1016/S0065-2881(02)43004-0 (2002).Article 
    PubMed 

    Google Scholar 
    41.Fernandez-Arcaya, U. et al. Bathymetric gradients of fecundity and egg size in fishes: A Mediterranean case study. Deep Sea Res. Part A Oceanogr. Res. Pap. 116, 106–117. https://doi.org/10.1016/j.enzmictec.2009.08.001 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Young, C. M., Emson, R. H., Rice, M. E. & Tyler, P. A. A paradoxical mismatch of fecundity and recruitment in deep-sea opportunists: cocculinid and pseudococculinid limpets colonizing vascular plant remains on the Bahamian Slope. Deep Sea Res. 92, 36–45. https://doi.org/10.1016/j.dsr2.2013.01.027 (2013).ADS 
    Article 

    Google Scholar 
    43.Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45. https://doi.org/10.1111/j.1469-185X.1950.tb00585.x (1950).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Hitt, N. T. et al. Growth and longevity of New Zealand black corals. Deep. Res. Part I Oceanogr. Res. Pap. 162, e103298. https://doi.org/10.1016/j.dsr.2020.103298 (2020).Article 

    Google Scholar 
    45.McNichol, J. et al. Primary productivity below the seafloor at deep-sea hot springs. Proc. Natl. Acad. Sci. U. S. A. 115, 6756–6761. https://doi.org/10.1073/pnas.1804351115 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Mar. Sci. 3, 1–23. https://doi.org/10.3389/fmars.2016.00072 (2016).ADS 
    Article 

    Google Scholar 
    47.Nedoncelle, K., Lartaud, F., de Rafelis, M., Boulila, S. & Le Bris, N. A new method for high-resolution bivalve growth rate studies in hydrothermal environments. Mar. Biol. 160, 1427–1439. https://doi.org/10.1007/s00227-013-2195-7 (2013).CAS 
    Article 

    Google Scholar 
    48.Turekian, K. K., Cochran, J. K. & Bennett, J. T. Growth rate of a vesicomyid clam from the 21° N East Pacific Rise hydrothermal area. Nature 303, 55–56. https://doi.org/10.1038/303055a0 (1983).ADS 
    Article 

    Google Scholar 
    49.Lutz, R. A. et al. Rapid growth at deep-sea vents. Nature 371, 663–664. https://doi.org/10.1038/371663a0 (1994).ADS 
    Article 

    Google Scholar 
    50.Reed, A. J., Morris, J. P., Linse, K. & Thatje, S. Plasticity in shell morphology and growth among deep-sea protobranch bivalves of the genus Yoldiella (Yoldiidae) from contrasting Southern ocean regions. Deep. Res. Part I Oceanogr. Res. Pap. 81, 14–24. https://doi.org/10.1016/j.dsr.2013.07.006 (2013).ADS 
    Article 

    Google Scholar 
    51.Oliver, G., Allen, J. A. & Yonge, M. The functional and adaptive morphology of the deep-sea species of the Arcacea (Mollusca: Bivalvia) from the Atlantic. Philos. Trans. R. Soc. London. B Biol. Sci. 291, 45–76. https://doi.org/10.1098/rstb.1980.0127 (1980).ADS 
    Article 

    Google Scholar 
    52.Romano, C., Voight, J. R., Pérez-Portela, R. & Martin, D. Morphological and genetic diversity of the wood-boring Xylophaga (Mollusca, Bivalvia): New species and records from deep-sea Iberian canyons. PLoS ONE 9, 102887. https://doi.org/10.1371/journal.pone.0102887 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Saulsbury, J. et al. Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology 45, 405–420. https://doi.org/10.1017/pab.2019.20 (2019).Article 

    Google Scholar 
    54.Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine bivalvia, with implications for phanerozoic evolution. Proc. R. Soc. B Biol. Sci. 283, 20161364. https://doi.org/10.1098/rspb.2016.1364 (2016).Article 

    Google Scholar 
    55.Tyler, P. A., Young, C. M. & Dove, F. Settlement, growth and reproduction in the deep-sea wood-boring bivalve mollusc Xylophaga depalmai. Mar. Ecol. Prog. Ser. 343, 151–159. https://doi.org/10.3354/meps06832 (2007).ADS 
    Article 

    Google Scholar 
    56.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000 (2004).Article 

    Google Scholar 
    57.Maino, J. L., Kearney, M. R., Nisbet, R. M. & Kooijman, S. A. L. M. Reconciling theories for metabolic scaling. J. Anim. Ecol. 83, 20–29. https://doi.org/10.1111/1365-2656.12085 (2014).Article 
    PubMed 

    Google Scholar 
    58.Gaudron, S. M., Demoyencourt, E. & Duperron, S. Reproductive traits of the cold-seep symbiotic mussel Idas modiolaeformis: gametogenesis and larval biology. Biol. Bull. 222, 6–16. https://doi.org/10.1086/bblv222n1p6 (2012).Article 

    Google Scholar 
    59.Hilário, A. et al. Estimating dispersal distance in the deep sea: Challenges and applications to marine reserves. Front. Mar. Sci. 2, 6. https://doi.org/10.3389/fmars.2015.00006 (2015).ADS 
    Article 

    Google Scholar 
    60.Marsh, A. G., Mullineaux, L. S., Young, C. M. & Manahan, D. T. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411, 77–80. https://doi.org/10.1038/35075063 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Young, C. M. et al. Dispersal of deep-sea larvae from the intra-American seas: Simulations of trajectories using ocean models. Integr. Comp. Biol. 52, 483–496. https://doi.org/10.1093/icb/ics090 (2012).Article 
    PubMed 

    Google Scholar 
    62.Yearsley, J. M., Salmanidou, D. M., Carlsson, J., Burns, D. & Van Dover, C. L. Biophysical models of persistent connectivity and barriers on the northern Mid-Atlantic Ridge. Deep. Res. Part II Top. Stud. Oceanogr. 180, 104819. https://doi.org/10.1016/j.dsr2.2020.104819 (2020).Article 

    Google Scholar 
    63.Levin, L. A. et al. Global observing needs in the deep ocean. Front. Mar. Sci. 6, 1–32. https://doi.org/10.3389/fmars.2019.00241 (2019).ADS 
    Article 

    Google Scholar 
    64.McClain, C. R., Boyer, A. G. & Rosenberg, G. The island rule and the evolution of body size in the deep sea. J. Biogeogr. 33, 1578–1584. https://doi.org/10.1111/j.1365-2699.2006.01545.x (2006).Article 

    Google Scholar 
    65.Zonneveld, C. & Kooijman, S. A. L. M. Application of a dynamic energy budget model to Lymnaea stagnalis (L.). Funct. Ecol. 3, 269–278. https://doi.org/10.2307/2389365 (1989).Article 

    Google Scholar 
    66.Mueller, C. A., Augustine, S., Kooijman, S. A. L. M., Kearney, M. R. & Seymour, R. S. The trade-off between maturation and growth during accelerated development in frogs. Comp. Biochem. Physiol. A 163, 95–102. https://doi.org/10.1016/j.cbpa.2012.05.190 (2012).CAS 
    Article 

    Google Scholar 
    67.MacArthur, R.H. & Wilson, E. The Theory of Island Biogeography (1967).68.Kooijman, S. A. L. M. Metabolic acceleration in animal ontogeny: An evolutionary perspective. J. Sea Res. 94, 128–137. https://doi.org/10.1016/j.seares.2014.06.005 (2014).ADS 
    Article 

    Google Scholar  More

  • in

    Successful microbial colonization of space in a more dispersed manner

    Simulating competition for space using the “BacGo” modelTo investigate how spatial positioning of populations affects the outcome of microbial competition, we simulated two populations competing for space with a limiting size by building an individual-based model (named “BacGo”). The model was implemented in discrete grid boxes of a 20 × 20 array. As shown in Fig. 1a, our simulations were based on three basic assumptions. First, the two competing populations possess the same inherent growth rate and equal initial cell numbers, thus the only differences between them are their manners of colonizing free space. Second, the newly born daughter cell is located around its mother cell but with a random direction of spatial positioning [34], resulted in a microcolony with different spatial patterning. Lastly, if the selected box has been occupied, the newborn cell will compete for the box against the original occupants of the box and possesses a probability of 50% to survive [37].We first explored the outcome of spatial competition, which started by randomly distributing two populations on the grids with the same initial cell numbers of 10 for each. Based on our basic assumptions and the predictions of competitive exclusion theory [38], we hypothesized that only one population could win the competition and finally occupy all grids. As shown in 20,000 independent simulations with random initial distributions, we discovered that at the end of each simulation, only one population survived (Video S1 and Video S2). The Chi-square test showed no significant difference (P = 0.211) between the simulated winning times (10,177 of 20,000 simulations) and the random winning times (10,051 of 20,000 simulations) of the focus population. This result conformed with our initial assumption that cells possess a probability of 50% to survive in competing with original occupants. When we replicated simulations initiated with the same cell distribution, we found that the winning probabilities for each population changed in line with the initial distributions (Fig. S1). However, the winning probabilities never reached 100% no matter how the initial distribution changes. Together, these results suggested that unknown random factors may affect the final outcome of the competition.Next, we analyzed the dynamics of microbial colonization during our simulations. As summarized in Fig. 1b, we divided the competition process into two stages, the “occupation stage” and the “exclusion stage” (see Methods). To statistically characterize the competitive outcome at t3, we defined the winning asymmetry index, WinR, and the abundance asymmetry index, AbunR (see Methods). As shown in Fig. S2a, we found a strong positive correlation (R2 = 0.740, P  More

  • in

    Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

    SamplingWater was sampled from Cep lake in Czechia, at a regular sampling site of 10 m depth (48.944 °N, 14.877 °E). The lake originates from sand mining in the 1970–80s. It is a permanent meso-oligotrophic (chlorophyll-a concentrations ranged from 1.4–16.4 µg L−1) seepage reservoir filled with groundwater penetrating from the nearby river Lužnice. The lake area is about 1.16 km2, with the maximum depth about 11–12 m. These characteristics are representative for most of temperate and boreal lakes [16].Samples were collected every four weeks from April till October in 2018, and from April till November in 2019. Ten liters of water were collected from 0.5 m depth using a Ruttner Water Sampler (model 11.003KC Denmark AS). Temperature and oxygen profiles were taken with an EXO1 multi-parameter probe (YSI Inc., Yellow Springs, USA). Water was transported to the laboratory within 2 h from the collection in a closed container made from high-density polyethylene, rinsed three times with the sampled water and stored in a cooled box.NutrientsSamples were filtered through glass fiber filters with 0.4 µm nominal porosity (GF-5, Macherey-Nagel, Düren, Germany). Concentrations of soluble reactive phosphorus (SRP) were determined spectrophotometrically [17, 18]. Concentrations of nitrate and ammonium were measured according to Procházková [19] and Kopáčkek and Procházková [20]. Dissolved organic carbon (DOC) and dissolved nitrogen (DN) were measured with a TOC 5000 A analyzer (Shimadzu, Kyoto, Japan).PigmentsSeston from 1.43 to 3.65 L of water was collected onto GF-5 glass fiber filters (diameter 47 mm, Macherey-Nagel). The filters were dried of excess water by gently pressing in a paper towel, and flush frozen in liquid nitrogen. Pigments were extracted and analyzed by HPLC as described in Piwosz et al. [21].Net primary production (NPP) and community respiration (oxygen measurements)Oxygen concentration was measured with the Winkler method [22]. It was chosen because it allows O2 concentration to be measured directly in the water without the need to consider carbonic equilibrium, which is the case when changes in CO2 concentration is measured [23]. Samples were unfiltered to avoid the removal of particle-associated bacteria and also of free-living AAP bacteria, which tend to be larger than average freshwater bacteria [12]. Glass stoppered Winkler type oxygen bottles (115 mL nominal capacity, VTR glass, Prague, Czechia) were filled with the sampled water directly from the sampler via a rubber tube. Each bottle was first rinsed three times and then filled without the formation of air bubbles. Water was allowed to overflow the neck of the bottle for about 1 min, and the bottle was closed with a glass stopper to avoid air bubbles. The closed bottles were kept in the dark in a cooled box. On the shore, three bottles were selected as T0, and 1.2 mL of manganese (II) chloride solution (concentration 3 mol L−1) was addded, followed by the addition of 1.2 mL of a mixture containing 4 mol L−1 of sodium iodide solution and 8 mol L−1 of sodium hydroxide solution. These samples were processed in the laboratory within 3 h. The remaining bottles were incubated for 24 h at in situ temperature in the IR-box prepared from the MAKROLON IR polycarbonate sheet (4 mm thickness, Professional Plastics, Inc. Fullerton, CA, USA). These panels have a maximum transmittance of 90% in the infrared region 850–2000 nm, 50% at 780 nm, and 0% 10 °C according to our measurements (180 days, Equation 3 in Supplementary File S1). Subsequently, the differences in the Cep Lake’s carbon budget for the surface layer (down to 0.5 m depth) were calculated by multiplying the integrated values by the volume of this layer (Equation 4 and 5 in Supplementary File S1).HCO3
    − incorporationTriplicated water samples (32 mL) were incubated for 3.2–5.2 h in the IR light and the dark at in situ temperature, as described for respiration. Total activity added to each bottle was measured from 1 mL aliquot of the incubated sample that was transferred to a scintillation vial containing 20 μl of 5 mol L−1 NaOH (to prevent a loss of 14C-bicarbonate). Thirty mL of sample was filtered through 2.5 μm nitrate cellulose filters (Pragopor, Prague, Czechia, diameter 25 mm). Five mL of the filtered water was collected and subsequently filtered through a 0.17 μm nitrate cellulose filter. The resulting cell-free filtrate, which contained 14C-DOC was collected. The filtration was done at a low vacuum (0.02 MPa) to avoid cell breakage. The total CO2 assimilation rate was calculated as the sum of all these fractions.The filters were kept in an HCl-saturated atmosphere for 24 h at room temperature in a fume hood. They were placed in scintillation vials and dissolved in 1 mL of ethyl acetate (Penta, Prague, Czechia). Then, 5 mL of Ultima Golt LLT scintillation cocktail (PerkinElmer, Waltham, MA, USA) was added. Five mL of cell-free filtrates were acidified by adding 100 μL 5 mol L−1 HCl to volatilize non-incorporated H14CO3 and incubated 24 h at room temperature in a fume hood. Then, 10 mL of the scintillation cocktail was added. Finally, 5 mL of the scintillation cocktail was added to the total activity samples. Subsequently, the samples were gently mixed and left in the dark for 48 h. The radioactivity in the samples was measured using a Tri-Carb 2810 TR scintillation counter (PerkinElmer).To estimate carbon fluxes (μmol C L–1 h–1), a fraction of the added H14CO3 incorporated or released was corrected for the incubation time and multiplied by the concentration of total dissolved inorganic carbon (DIC). The DIC concentration was calculated based on temperature, pH, and alkalinity measurements (Inolab pH 720, WTW Xylem Inc. Rye Brook, NY, US) determined by Gran titration.Assimilation of organic monomersThe difference between microbial activity in the IR light and dark was also estimated based on assimilation rates of radiolabeled glucose, pyruvate, leucine and thymidine (American Radiolabeled Chemicals, St. Louis, MO, USA). Tritiated glucose (specific activity (SA): 2220 GBq mmol−1), leucine (SA: 4440 GBq mmol−1) and thymidine (SA: 2275.5 GBq mmol−1) were added to 5 mL samples to a final concentration of 5 nmol L−1. 14C-pyruvate (SA: 2.035 GBq mmol−1) was added to a final concentration of 10 nmol L−1. Trichloroacetic acid (TCA) was added to the killed controls to a final concentration of 1%. Samples were incubated for 1 h in the dark and IR light as described for respiration. The incubations were terminated as the killed controls and kept at 4 °C in the dark until processed within 65% except for the samples from 9th May and 29th Aug 2018 (10% each), 1st Aug 2018 (21%), 25th Nov 2018 (1%), and 14th Aug 2019 (22%), Supplementary Fig. S1A). Thus, we decided to concatenate the fastaq files and analyze both fractions together as the total community. This also facilitated statistical analysis, as the activity rates were measured for the whole community without fractionations.Reads quality was evaluated using FastQC v0.11.7 (Babraham Bioinformatics, Cambridge, UK). After primer sequences trimming using Cutadapt [29] (v1.16), the number of reads per sample ranged from 49,354 to 188,942. Subsequent analyses were done in the R/Bioconductor environment using the dada2 package (version 1.14.1) [30]. Forward and reverse reads were truncated to 225 bp and low quality sequences were filtered out with the filterAndTrim function (truncLen = c(225, 225), maxN = 0, maxEE = c(2, 2), truncQ = 2), which reduced the number of reads per sample to range from 30,190 to 143,552. After merging and chimera removal using the removeBimeraDenovo function, 4,893 amplicon sequence variants (ASV) were obtained. Rare ASVs (not seen >3 times in at least 20% of the samples) were removed, which reduced the number of ASVs to 658, and the number of reads to 14,613–69,046 per sample. Taxonomic assignment was done using SILVA 138.1 database [31, 32] released on August 27, 2020. ASVs identified as Chloroplast or Cyanobacteria were excluded from the analyses, giving the final number of 546 ASVs and from 10,819 to 54,799 reads per sample. The bacterial community composition graphs were done using phyloseq [33] and ggplot2 [34] packages.AAP community compositionThe composition of AAP community was analyzed by amplicon sequencing of pufM gene encoding the M subunit of bacterial type-2 reaction centers. This gene is routinely used for diversity studies of AAP bacteria [35].PufM gene amplicons (approx. 245 bp) were prepared using pufM_UniF (5′-GGN AAY YTN TWY TAY AAY CCN TTY CA-3′) and pufM_WAW (5′-AYN GCR AAC CAC CAN GCC CA-3′) primers [36]. PCR was performed in triplicate 20 μL reactions using Phusion™ High-Fidelity DNA Polymerase (Thermo Scientific, USA) with the following reaction conditions: 98 °C for 3 min, 27 cycles at 98 °C for 10 s, 58 °C for 30 s, 72 °C for 30 s, and a final extension at 72 °C for 5 min. The triplicate product reactions for each sample were pooled and gel purified using the kit Wizard SV Gel and PCR Clean-Up System (Promega, USA). The sequencing was performed on the Illumina MiSeq platform (2 × 150 bp) at Macrogen, South Korea.The fastq files were concatenated as described for bacteria communities. The Bray-Curtis similarity between two fractions for each sampling day was >70%, except for the samples from 1st Aug 2018 (47%) and 14th Aug 2019 (18%, Supplementary Fig. S1B).The samples were analyzed as described for bacterial communities. The number of reads per sample ranged from 192,360 to 239,418 after the cutadapt trimming. Forward and reverse reads were truncated to 130 bp, and the number of reads per sample after the quality filtering and denoising ranged from 189,432 to 235,311. Merging the forward and reverse reads with mergePairs function created 12,692 ASVs and reduced the number of reads to 183,136–221,281 per sample. The chimera removal lowered the number of ASVs to 1816, and the number of reads to 159,451–208,679. Rare ASVs (not seen >3 times in at least 20% of the samples) were removed, which resulted in the final 566 ASVs, and a number of reads ranging from 155,915 to 203,021 per sample. A manually curated taxonomic database was used for taxonomic assignment following the naïve Bayesian classifier method [37]. It contained 1580 unique pufM sequences, downloaded from the Fungene repository on May 16, 2019 (http://fungene.cme.msu.edu [38]), from metagenomes from the Římov Reservoir [39, 40] and from the Genome Taxonomy database accessed on September 16, 2020 [41].Statistical analysisLinear mixed-effects models were calculated in R (version 3.6.2) using lme function from the nlme package (version 3.1.143) on untransformed activity data and log10 transformed environmental variables [42]. Models’ parameters were estimated using maximum likelihood method and their significance was tested with ANOVA. Relationships between the activity measures, the environmental variables and the composition of AAP communities were investigated with distance-based linear models (DistLM) [43, 44] in Primer (version 7.0.13) with PERMANOVA + 1 add on (e-Primer, Plymouth, UK) [45]. The sequence reads were transformed with the varianceStabilizingTransformation function of the DESeq2 package [46] (version 1.14.1, blind = FALSE, fitType = “mean”).Data accessibilityThe sequences of 16S and pufM amplicons that support the findings of this study have been deposited in the EMBL database as the BioProject with the accession number PRJEB41596, together with most of the environmental metadata. The scripts and the remaining data supporting the results are included in the Supplementary Material. More

  • in

    Direct and indirect effects of roads on space use by jaguars in Brazil

    1.Hughes, A. C. et al. Horizon scan of the belt and road initiative. Trends Ecol. Evol. 35(7), 583–593. https://doi.org/10.1016/j.tree.2020.02.005 (2020).Article 
    PubMed 

    Google Scholar 
    2.Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13(6), 064006. https://doi.org/10.1088/1748-9326/aabd42 (2018).ADS 
    Article 

    Google Scholar 
    3.DNIT. Sistema de Gerencia de Pavimentos. Relatório dos levantamentos funcionais das rodovias federais. Departamento Nacional de Infraenstrutura de Transporte (2013). www.dnit.gov.br.4.Teixeira, F. et al. The need to improve and integrate science and environmental licensing to mitigate wildlife mortality on roads in Brazil. Trop. Conserv. Sci. 9, 24–42. https://doi.org/10.1177/194008291600900104 (2016).Article 

    Google Scholar 
    5.Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209. https://doi.org/10.1016/j.biocon.2014.07.004 (2014).Article 

    Google Scholar 
    6.Reid, J. & Souza, W. C. Infrastructure and conservation policy in Brazil. Conserv. Biol. 19, 740–746. https://doi.org/10.1111/j.1523-1739.2005.00699.x (2005).Article 

    Google Scholar 
    7.Bowman, J., Ray, C. R., Magoun, A. J. & Johnson, D. F. N. Roads, logging, and the large-mammal community of an eastern Canadian boreal forest. Can. J. Zool. 88(5), 454–467. https://doi.org/10.1139/z10-019 (2010).Article 

    Google Scholar 
    8.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14(1), 21 (2009).Article 

    Google Scholar 
    9.Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669. https://doi.org/10.1016/j.tree.2009.06.009 (2009).Article 
    PubMed 

    Google Scholar 
    10.Ruiz-Capillas, P., Mata, C. & Malo, J. E. Road verges are refuges for small mammal populations in extensively managed Mediterranean landscapes. Biol. Conserv. 158, 223–229. https://doi.org/10.1016/j.biocon.2012.09.025 (2013).Article 

    Google Scholar 
    11.Grilo, C. et al. Individual spatial responses towards roads: Implications for mortality risk. PLoS ONE 7(9), e43811. https://doi.org/10.1371/journal.pone.0043811 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Jacobson, S. L., Bliss-Ketchum, L. L., de Rivera, C. E. & Smith, W. P. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7, e01345. https://doi.org/10.1002/ecs2.1345 (2016).Article 

    Google Scholar 
    13.Li, T. et al. Fragmentation of China’s landscape by roads and urban areas. Landsc. Ecol. 25, 839–853. https://doi.org/10.1007/s10980-010-9461-6 (2010).Article 

    Google Scholar 
    14.Walker, R. et al. Modeling spatial decisions with graph theory: Logging roads and forest fragmentation in the Brazilian Amazon. Ecol. Appl. 23, 239–254. https://doi.org/10.1890/11-1800.1 (2013).Article 
    PubMed 

    Google Scholar 
    15.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).Article 

    Google Scholar 
    16.Püttker, T. et al. Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biol. Conserv. 241, 108368. https://doi.org/10.1016/j.biocon.2019.108368 (2020).Article 

    Google Scholar 
    17.Signorelli, L., Bastos, R. P., De Marco, P. & With, K. A. Landscape context affects site occupancy of pond-breeding anurans across a disturbance gradient in the Brazilian Cerrado. Landsc. Ecol. 31, 1997. https://doi.org/10.1007/s10980-016-0376-8 (2016).Article 

    Google Scholar 
    18.Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: Scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364. https://doi.org/10.1093/beheco/aru134 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Jaeger, J. A. G. et al. Predicting when animal populations are at risk from roads: An interactive model of road avoidance behaviour. Ecol. Model. 185, 329–348. https://doi.org/10.1016/j.ecolmodel.2004.12.015 (2005).Article 

    Google Scholar 
    20.Jaeger, J. A. G., Fahrig, L., Ewald, K. C. Does the configuration of road networks influence the degree to which roads affect wildlife populations? In Proceedings of the 2005 International Conference on Ecology and Transportation (ICOET) (eds Irwin, C. L., Garrett, P. & McDermott, K. P.) 151–163 (Center for Transportation and the Environment, North Carolina State University, Raleigh, NC, 2006).21.Rytwinski, T. & Fahrig, L. Reproductive rates and body size predict road impacts on mammal abundance. Ecol. Appl. 21(2), 589–600. https://doi.org/10.1890/10-0968.1 (2011).Article 
    PubMed 

    Google Scholar 
    22.Rytwinski, T. & Fahrig, L. Do species life history traits explain population responses to roads? A meta-analysis. Biol. Conserv. 147(1), 87–98. https://doi.org/10.1016/j.biocon.2011.11.023 (2012).Article 

    Google Scholar 
    23.Nowell, K. & Jackson, P. Wilds Cats: Status Survey e Conservation Action Plan (IUCN, 1996).
    Google Scholar 
    24.de La Torre, J., Zarza, H., Ceballos, G. & Medellin, R. The jaguars’ spots are darker than they appear: Assessing the global conservation status of the jaguar Panthera onca. Oryx 51, 1–16. https://doi.org/10.1017/S0030605316001046 (2017).Article 

    Google Scholar 
    25.Morrison, J. C., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. F. Persistence of large mammal faunas as indicators of global human impacts. J. Mammal. 88(6), 1363–1380. https://doi.org/10.1644/06-MAMM-A-124R2.1 (2007).Article 

    Google Scholar 
    26.Alvarenga, G. C. et al. Multi-scape path-level analysis of jaguar habitat use in the Pantanal ecosystem. Biol. Conserv. 253, 108900. https://doi.org/10.1016/j.biocon.2020.108900 (2021).Article 

    Google Scholar 
    27.Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13(1), e0189740. https://doi.org/10.1371/journal.pone.0189740 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Pallares, E., Manterolla, C., Conde, D. A. & Colchero, F. Case Study: roads and jaguars in the Mayan Forest. In Handbook of Road Ecology (eds Van der Ree, R. et al.) 313–136 (Wiley, 2015).
    Google Scholar 
    29.Zeilhofer, P., Cezar, A., Tôrres, N. M., Jácomo, A. T. A. & Silveira, L. Jaguar Panthera onca habitat modeling in landscapes facing high land-use transformation pressure—Findings from Mato Grosso, Brazil. Biotropica 46(1), 98–105. https://doi.org/10.1111/btp.12074 (2014).Article 

    Google Scholar 
    30.Colchero, F., Conde, D. A., Manterola, C., Rivera, A. & Ceballos, G. Jaguars on the move: Modeling movement to mitigate fragmentation from road expansion in the Mayan Forest. Anim. Conserv. 4, 158–166. https://doi.org/10.1111/j.1469-1795.2010.00406.x (2011).Article 

    Google Scholar 
    31.Conde, D. A. et al. Sex matters: Modeling male and female habitat differences for jaguar conservation. Biol. Conserv. 143(9), 1980–1988. https://doi.org/10.1016/j.biocon.2010.04.049 (2010).Article 

    Google Scholar 
    32.De Angelo, C., Paviolo, A., Wiegand, T., Kanagaraj, R. & Di Bitetti, M. S. Understanding species persistence for defining conservation actions: A management landscape for jaguars in the Atlantic Forest. Biol. Conserv. 159, 422–433. https://doi.org/10.1016/j.biocon.2012.12.021 (2013).Article 

    Google Scholar 
    33.Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Book 

    Google Scholar 
    34.Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368. https://doi.org/10.1890/08-1034.1 (2009).Article 

    Google Scholar 
    35.Morato, R. G. et al. Jaguar movement database: A GPS-based movement dataset of an apex predator in the Neotropics. Ecology 99, 1691–1691. https://doi.org/10.1002/ecy.2379 (2018).Article 
    PubMed 

    Google Scholar 
    36.Geofabrik. OpenStreetMap-Shapefiles (2019). http://download.geofabrik.de. Accessed 15 Aug 2019.37.Projeto MapBiomas – Coleção 2 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil, acessado em 12/04/2019 através do link. http://mapbiomas.org/pages/database/mapbiomas_collection_download.38.Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240. https://doi.org/10.1016/j.biocon.2018.10.022 (2018).Article 

    Google Scholar 
    39.ESRI. Environmental Systems Research Institute. ArcGIS. Geographic Information System for Desktop, version 10.3.1 (2015).40.RStudio Team. RStudio: Integrated Development for R (RStudio Inc, 2016).
    Google Scholar 
    41.Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).Article 

    Google Scholar 
    42.Grace, J. B., Adler, P. B., Harpole, W. S., Borer, E. T. & Seabloom, E. W. Causal networks clarify productivity–richness interrelations, bivariate plots do not. Funct. Ecol. 28, 787–798. https://doi.org/10.1111/1365-2435.12269 (2014).Article 

    Google Scholar 
    43.Bollen, K. A. & Pearl, J. Eight myths about causality and structural equation models. In Handbook of Causal Analysis for Social Research (ed. Morgan, S. L.) 301–328 (Springer, 2013).Chapter 

    Google Scholar 
    44.Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process 5, 19. https://doi.org/10.1186/s13717-016-0063-3 (2016).Article 

    Google Scholar 
    45.Cressie, N. A. C. Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics (Wiley, 1993).
    Google Scholar 
    46.Haining, R. Spatial Data Analysis: Theory and Practice (Cambridge University Press, 2003).Book 

    Google Scholar 
    47.Amrhein, V., Greenland, S. & McShane, B. Retire statistical significance. Nature 567(7748), 305–307. https://doi.org/10.1038/d41586-019-00857-9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biol. Conserv. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).Article 

    Google Scholar 
    49.Torres, A., Jaeger, J. A. & Alonso, J. C. Assessing large-scale wildlife responses to human infrastructure development. Proc. Natl. Acad. Sci. USA 113(30), 8472–8477. https://doi.org/10.1073/pnas.1522488113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Morato, R. G., Ferraz, K. M. P. M. B., Paula, R. C. & Campos, C. B. Identification of priority conservation areas and potential corridors for jaguars in the Caatinga biome, Brazil. PLoS ONE 9(4), e92950. https://doi.org/10.1371/journal.pone.0092950 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Rodríguez-Soto, C. et al. Predicting potential distribution of the jaguar (Panthera onca) in Mexico: Identification of priority areas for conservation. Divers. Distrib. 17, 350–361. https://doi.org/10.1111/j.1472-4642.2010.00740.x (2011).Article 

    Google Scholar 
    52.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343(6167), 1241484. https://doi.org/10.1126/science.1241484 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Rabinowitz, A. & Zeller, K. A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 143(4), 939–945. https://doi.org/10.1016/j.biocon.2010.01.002 (2010).Article 

    Google Scholar 
    54.Jaeger, J. Landschaftszerschneidung. Eine transdisziplinäre Studie gemäß dem Konzept der Umweltgefährdung (Landscape Fragmentation. A Transdisciplinary Study According to the Concept of Environmental Threat) (Eugen Ulmer, 2002).
    Google Scholar 
    55.Torres, A., Jaeger, J. A. G. & Alonso, J. C. Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development. Landsc. Ecol. 31, 2291–2305. https://doi.org/10.1007/s10980-016-0400-z (2016).Article 

    Google Scholar 
    56.Morato, R. G. et al. space use and movement of a neotropical top predator: The endangered jaguar. PLoS ONE 11(12), e0168176. https://doi.org/10.1371/journal.pone.0168176 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movement using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 144, 1017–1024. https://doi.org/10.1016/j.biocon.2010.12.011 (2011).Article 

    Google Scholar 
    58.Marchini, S. & Macdonald, D. W. Mind over matter: Perceptions behind the impact of jaguars on human livelihoods. Biol. Conserv. 224, 230–237. https://doi.org/10.1016/j.biocon.2018.06.001 (2018).Article 

    Google Scholar 
    59.González-Gallina, A. et al. Home range of a male jaguar spatially associated with the landfill of the city of Playa del Carmen, Mexico. Mammalia 82(1), 54–61. https://doi.org/10.1515/mammalia-2016-0065 (2017).Article 

    Google Scholar 
    60.Associação Onçafari. Enteda o caso da onça-pintada de Juiz de Fora (2019). https://oncafari.org/2019/06/03/entenda-o-caso-da-onca-pintada-de-juiz-de-fora/. Accessed 09 Oct 2020.61.Dickson, B. G., Jenness, J. S. & Beier, P. Influence of vegetation, topography, and roads on cougar movement in southern California. J. Wildl. Manag. 69, 264–276. https://doi.org/10.2193/0022-541X(2005)069%3c0264:IOVTAR%3e2.0.CO;2 (2005).Article 

    Google Scholar 
    62.Thatte, P., Joshi, A., Vaidyanathan, S., Landguth, E. & Ramakrishnan, U. Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biol. Conserv. 218, 181–191. https://doi.org/10.1016/j.biocon.2017.12.022 (2018).Article 

    Google Scholar 
    63.Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31(15), 3457–3466. https://doi.org/10.1016/j.cub.2021.06.029 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Dickson, B. G. & Beier, P. Home-range and habitat selection by adult cougars in southern California. J. Wildl. Manag. 66, 1235–1245. https://doi.org/10.2307/3802956 (2002).Article 

    Google Scholar 
    65.Poessel, S. A. et al. Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape. Biol. Conserv. 180, 224–232. https://doi.org/10.1016/j.biocon.2014.10.010 (2014).Article 

    Google Scholar 
    66.Johnson, D. H. The comparison of usage and availability measurements for evaluation of resource preference. Ecology 61, 65–71. https://doi.org/10.2307/1937156 (1980).Article 

    Google Scholar 
    67.Silva, L. G., Cherem, J., Kasper, C., Trigo, T. & Eizirik, E. Mapping wild cat roadkills in southern Brazil: An assessment of baseline data for species conservation. Cat News (Bougy) 61, 04–07. https://doi.org/10.13140/RG.2.2.17640.88327 (2014).Article 

    Google Scholar 
    68.Srbek-Araujo, A. C., Mendes, S. L. & Chiarello, A. G. Jaguar (Panthera onca Linnaeus, 1758) roadkill in Brazilian Atlantic Forest and implications for species conservation. Braz. J. Biol. 75, 581–586. https://doi.org/10.1590/1519-6984.17613 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Kerley, L. L. et al. Effects of roads and human disturbance on Amur tigers. Conserv. Biol. 16, 97–108. https://doi.org/10.1046/j.1523-1739.2002.99290.x (2002).Article 

    Google Scholar 
    70.Teixeira, F. Z., Rytwinski, T. & Fahrig, L. Inference in road ecology: What we know versus what we think we know. Biol. Lett. https://doi.org/10.1098/rsbl.2020.0140 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Laurance, W. F. The anthropocene. Curr. Biol. 29, 942–995. https://doi.org/10.1016/j.cub.2019.07.055 (2019).CAS 
    Article 

    Google Scholar 
    72.Kanda, C. Z. et al. Spatiotemporal dynamics of conspecific movement explain a solitary carnivore’s space use. J. Zool. 308, 66–74. https://doi.org/10.1111/jzo.12655 (2019).Article 

    Google Scholar 
    73.Zarco-González, M. M., Monroy-Vilchis, O. & Alaníz, J. Spatial model of livestock predation by jaguar and puma in Mexico: Conservation planning. Biol. Conserv. 159, 80–87. https://doi.org/10.1016/j.biocon.2012.11.007 (2013).Article 

    Google Scholar 
    74.Bager, A., Borghi, C. E. & Secco, H. The influence of economics, politics, and environment on road ecology in South America. In Handbook of Road Ecology (eds Van der Ree, R. et al.) 407–413 (Wiley, 2015).
    Google Scholar 
    75.Kaszta, Z. et al. Simulating the impact of Belt and Road initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa. Landsc. Ecol. 35, 727–746. https://doi.org/10.1007/s10980-020-00976-z (2020).Article 

    Google Scholar 
    76.Cullen, L. Jr. et al. Implications of fine-grained habitat fragmentation and road mortality for jaguar conservation in the Atlantic Forest, Brazil. PLoS ONE 11(12), e0167372. https://doi.org/10.1371/journal.pone.0167372 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ceia-Hasse, A., Borda-de-Agua, L., Grilo, C. & Pereira, H. M. Global exposure of carnivores to roads. Glob. Ecol. Biogeogr. 26, 592–600. https://doi.org/10.1111/geb.12564 (2017).Article 

    Google Scholar 
    78.Grilo, C., Koroleva, E., Andrášik, R., Bíl, M. & González-Suárez, M. Roadkill risk and population vulnerability in European birds and mammals. Front. Ecol. Environ. 18(6), 323–328. https://doi.org/10.1002/fee.2216 (2020).Article 

    Google Scholar 
    79.Cerqueira, R. C. et al. Potential movement corridor and high road-kill likelihood do not spatially coincide for felids in Brazil: Implications for road mitigation. Environ. Manag. 67, 412–423 (2021).Article 

    Google Scholar 
    80.Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).Article 

    Google Scholar 
    81.Spanowicz, A. G., Teixeira, F. Z. & Jaeger, J. A. G. An adaptive plan for prioritizing road sections for fencing to reduce animal mortality. Conserv. Biol. 34(5), 1210–1220. https://doi.org/10.1111/cobi.13502 (2020).Article 
    PubMed 

    Google Scholar 
    82.Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232. https://doi.org/10.1038/nature13717 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: Assessing the range-wide risks for tigers. Sci. Adv. 6(18), eaaz9619. https://doi.org/10.1126/sciadv.aaz9619 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Galetti, M. et al. Atlantic rainforest’s jaguars in decline. Science 342, 930. https://doi.org/10.1126/science.342.6161.930-a (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    85.Paviolo, A. et al. A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147. https://doi.org/10.1038/srep37147 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Freitas, S. R., Hawbaker, T. J. & Metzger, J. P. Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. For. Ecol. Manag. 259, 410–417. https://doi.org/10.1016/j.foreco.2009.10.036 (2010).Article 

    Google Scholar  More

  • in

    Spatial distribution of conspecific genotypes within chimeras of the branching coral Stylophora pistillata

    1.Rinkevich, B. & Weissman, I. L. Chimeras in colonial inverebrates: A synergistic symbiosis or somatic- and cell-germ parasitism? Symbiosis 4, 117–134 (1987).
    Google Scholar 
    2.Buss, L. W. Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc. Natl. Acad. Sci. U.S.A. 79, 5337–5341. https://doi.org/10.1073/pnas.79.17.5337 (1982).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Foster, K. R., Fortunato, A., Strassmann, J. E. & Queller, D. C. The costs and benefits of being a chimera. Proc. R. Soc. Lond. B 269, 2357–2362. https://doi.org/10.1098/rspb.2002.2163 (2002).Article 

    Google Scholar 
    4.Money, N. P. Fungal get-together. Nature 405, 751. https://doi.org/10.1038/35015659 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Franks, T., Botta, R., Thomas, M. & Franks, J. Chimerism in grapevines: Implications for cultivar identity, ancestry and genetic improvement. Theor. Appl. Genet. 104, 192–199. https://doi.org/10.1007/s001220100683 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Casares, A. & Sylvain, F. F. Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes. Evol. Ecol. 30, 953–972. https://doi.org/10.1007/s10682-016-9849-0 (2016).Article 

    Google Scholar 
    7.Santelices, B., González, A. V., Beltrán, J. & Flores, V. Coalescing red algae exhibit noninvasive, reversible chimerism. J. Phycol. 53, 59–69. https://doi.org/10.1111/jpy.12476 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Gauthier, M. & Degnan, B. M. Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica. Dev. Comp. Immunol. 32, 1270–1280. https://doi.org/10.1016/j.dci.2008.04.002 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Fidler, A. E., Bacq-Labreuil, A., Rachmilovitz, E. & Rinkevich, B. Efficient dispersal and substrate acquisition traits in a marine invasive species via transient chimerism and colony mobility. PeerJ 2018, 1–23. https://doi.org/10.7717/peerj.5006 (2018).CAS 
    Article 

    Google Scholar 
    10.Rinkevich, B. & Weissman, I. Chimeras in colonial invertebrates: A synergistic symbiosis or somatic-and germ-cell parasitism. Symbiosis 4, 117–134 (1987).
    Google Scholar 
    11.Amar, K.-O., Chadwick, N. E. & Rinkevich, B. Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol. Biol. 8, 126–126. https://doi.org/10.1186/1471-2148-8-126 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Puill-Stephan, E., Willis, B., van Herwerden, L. & van Oppen, M. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS One 4, e7751. https://doi.org/10.1371/journal.pone.0007751 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Hoeg, J. T. & Lutzen, J. Life cycle and reproduction in the Cirripedia, Rhizocephala. Oceanogr. Mar. Biol. Annu. Rev. 33, 427–485 (1995).
    Google Scholar 
    14.Gianasi, B. L., Hamel, J. F. & Mercier, A. Full allogeneic fusion of embryos in a holothuroid echinoderm. Proc. R. Soc. Lond. B 285, 1–7. https://doi.org/10.1098/rspb.2018.0339 (2018).CAS 
    Article 

    Google Scholar 
    15.Rinkevich, B. Human natural chimerism: An acquired character or a vestige of evolution?. Hum. Immunol. 62, 651–657. https://doi.org/10.1016/S0198-8859(01)00249-X (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Gill, D. E., Chao, L., Perkins, S. L. & Wolf, J. B. Genetic mosaicism in plants and clonal animals. Annu. Rev. Ecol. Syst. 26, 423–444 (1995).Article 

    Google Scholar 
    17.Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307–320 (2013).CAS 
    Article 

    Google Scholar 
    18.Devlin-Durante, M. K., Miller, M. W., Precht, W. F. & Baums, I. B. How old are you? Genet age estimates in a clonal animal. Mol. Ecol. 25, 5628–5646. https://doi.org/10.1111/mec.13865 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Dubé, C. E., Planes, S., Zhou, Y., Berteaux-Lecellier, V. & Boissin, E. On the occurrence of intracolonial genotypic variability in highly clonal populations of the hydrocoral Millepora platyphylla at Moorea (French Polynesia). Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-14684-3 (2017).CAS 
    Article 

    Google Scholar 
    20.Maier, E., Buckenmaier, A., Tollrian, R. & Nürnberger, B. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix. Coral Reefs 31, 505–517. https://doi.org/10.1007/s00338-011-0857-9 (2012).ADS 
    Article 

    Google Scholar 
    21.Schweinsberg, M., Weiss, L. C., Striewski, S., Tollrian, R. & Lampert, K. P. More than one genotype: How common is intracolonial genetic variability in scleractinian corals? Mol. Ecol. 24, 2673–2685. https://doi.org/10.1111/mec.13200 (2015).Article 
    PubMed 

    Google Scholar 
    22.van Oppen, M. J., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals? Diversity 3, 405–423 (2011).Article 

    Google Scholar 
    23.Rinkevich, B. A critical approach to the definition of Darwinian units of selection. Biol. Bull. 199, 231–240. https://doi.org/10.2307/1543179 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Rinkevich, B. The apex set-up for the major transitions in individuality. Evol. Biol. 46, 217–228. https://doi.org/10.1007/s11692-019-09481-x (2019).Article 

    Google Scholar 
    25.Santelices, B. How many kinds of individual are there? Trends Ecol. Evol. 14, 152–155. https://doi.org/10.1016/S0169-5347(98)01519-5 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Pineda-Krch, M. & Lehtilä, K. Costs and benefits of genetic heterogeneity within organisms. J. Evol. Biol. 17, 1167–1177. https://doi.org/10.1111/j.1420-9101.2004.00808.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Rinkevich, B. Quo vadis chimerism? Chimerism 2, 1–5. https://doi.org/10.4161/chim.14725 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Rinkevich, B. & Yankelevich, I. Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J. Exp. Biol. 207, 3531–3536. https://doi.org/10.1242/jeb.01184 (2004).Article 
    PubMed 

    Google Scholar 
    29.Raymundo, L. J. & Maypa, A. P. Getting bigger faster: Mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol. Appl. 14, 281–295. https://doi.org/10.1890/02-5373 (2004).Article 

    Google Scholar 
    30.Rinkevich, B., Shaish, L., Douek, J. & Ben-Shlomo, R. Venturing in coral larval chimerism: A compact functional domain with fostered genotypic diversity. Sci. Rep. 6, 19493. https://doi.org/10.1038/srep19493 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rinkevich, B. Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Glob. Chang Biol. 25, 1198–1206. https://doi.org/10.1111/gcb.14576 (2019).ADS 
    Article 

    Google Scholar 
    32.Amar, K.-O., Chadwick, N. E. & Rinkevich, B. Coral planulae as dispersion vehicles: Biological properties of larvae released early and late in the season. Mar. Ecol. Prog. Ser. 350, 71–78. https://doi.org/10.3354/meps07125 (2007).ADS 
    Article 

    Google Scholar 
    33.Rinkevich, B. Immunology of human implantation: From the invertebrate’s point of view. Hum. Reprod. 13, 455–459. https://doi.org/10.1093/humrep/13.2.503 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.González, A. V. & Santelices, B. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile. PLoS One 12, 1–20. https://doi.org/10.1371/journal.pone.0169182 (2017).CAS 
    Article 

    Google Scholar 
    35.Nozawa, Y. & Hirose, M. When does the window close? The onset of allogeneic fusion 2–3 years post-settlement in the scleractinian coral, Echinophyllia aspera. Zool. Stud. 50, 396 (2011).
    Google Scholar 
    36.Puill-Stephan, E., van Oppen, M. J. H., Pichavant-Rafini, K. & Willis, B. L. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora. Proc. R. Soc. Lond. B Biol. Sci. 279, 699–708. https://doi.org/10.1098/rspb.2011.1035 (2012).CAS 
    Article 

    Google Scholar 
    37.Frank, U., Oren, U., Loya, Y. & Rinkevich, B. Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, 4 months post-metamorphosis. Proc. R. Soc. Lond. B Biol. Sci. 264, 99–104. https://doi.org/10.1098/rspb.1997.0015 (1997).ADS 
    Article 

    Google Scholar 
    38.Rinkevich, B. The branching coral Stylophora pistillata: Contribution of genetics in shaping colony landscape. Isr. J. Zool. 48, 71–82. https://doi.org/10.1560/BCPA-UM3A-MKBP-HGL2 (2002).Article 

    Google Scholar 
    39.Highsmith, R. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226. https://doi.org/10.3354/meps007207 (1982).ADS 
    Article 

    Google Scholar 
    40.Barfield, S., Aglyamova, G. V. & Matz, M. V. Evolutionary origins of germline segregation in Metazoa: Evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc. R. Soc. Lond. B Biol. Sci. 283, 20152128. https://doi.org/10.1098/rspb.2015.2128 (2016).CAS 
    Article 

    Google Scholar 
    41.Chang, E. S., Orive, M. E. & Cartwright, P. Nonclonal coloniality: Genetically chimeric colonies through fusion of sexually produced polyps in the hydrozoan Ectopleura larynx. Evol. Lett. 2, 442–455. https://doi.org/10.1002/evl3.68 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Hancock, J. P., Goulden, N. J., Oakhill, A. & Steward, C. G. Quantitative analysis of chimerism after allogeneic bone marrow transplantation using immunomagnetic selection and fluorescent microsatellite PCR. Leukemia 17, 247–251. https://doi.org/10.1038/sj.leu.2402759 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Broestl, L., Rubin, J. B. & Dahiya, S. Fetal microchimerism in human brain tumors. Brain Pathol. 28, 484–494. https://doi.org/10.1111/bpa.12557 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Olsen, K. C., Moscoso, J. A. & Levitan, D. R. Somatic mutation is a function of clone size and depth in orbicella reef-building corals. Biol. Bull. 236, 1–12. https://doi.org/10.1086/700261 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Schweinsberg, M., Tollrian, R. & Lampert, K. P. Inter- and intra-colonial genotypic diversity in hermatypic hydrozoans of the family Milleporidae. Mar. Ecol. 38, 1–11. https://doi.org/10.1111/maec.12388 (2017).Article 

    Google Scholar 
    46.Santelices, B., Alvarado, J. L. & Flores, V. Size increments due to interindividual fusions: How much and for how long? J. Phycol. 46, 685–692. https://doi.org/10.1111/j.1529-8817.2010.00864.x (2010).Article 

    Google Scholar 
    47.Rinkevich, B. & Weissman, I. L. Chimeras vs genetically homegeneous individuals: Potential fitness costs and benefits. Oikos 63, 119–124 (1992).Article 

    Google Scholar 
    48.Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Groups travel further: Pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33, 443–448. https://doi.org/10.1007/s00338-014-1135-4 (2014).ADS 
    Article 

    Google Scholar 
    49.Lambert, N. C. et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: Studies of healthy women and women with scleroderma. Arthritis Rheumatol. 50, 906–914. https://doi.org/10.1002/art.20200 (2004).CAS 
    Article 

    Google Scholar 
    50.Magor, B. G., De Tomoso, A., Rinkevich, B. & Weissman, I. L. Allorecognition in colonial tunicates: Protection against predatory cell lineages? Immunol. Rev. 167, 69–79. https://doi.org/10.1111/j.1600-065x.1999.tb01383.x (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Duerden, J. E. Aggregated colonies in madreporarian corals. Am. Nat. 34, 461–471 (1902).Article 

    Google Scholar 
    52.Barki, Y., Gateño, D., Graur, D. & Rinkevich, B. Soft-coral natural chimerism: A window in ontogeny allows the creation of entities comprised of incongruous parts. Mar. Ecol. Prog. Ser. 231, 91–99. https://doi.org/10.3354/meps231091 (2002).ADS 
    Article 

    Google Scholar 
    53.Linden, B., Huisman, J. & Rinkevich, B. Circatrigintan instead of lunar periodicity of larval release in a brooding coral species. Sci. Rep. 8, 5668. https://doi.org/10.1038/s41598-018-23274-w (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Shefy, D., Shashar, N. & Rinkevich, B. The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Mar. Biol. 165, 27. https://doi.org/10.1007/s00227-017-3280-0 (2018).Article 

    Google Scholar 
    55.Shafir, S., Van Rijn, J. & Rinkevich, B. Steps in the construction of underwater coral nursery, an essential component in reef restoration acts. Mar. Biol. 149, 679–687. https://doi.org/10.1007/s00227-005-0236-6 (2006).Article 

    Google Scholar 
    56.Rinkevich, B. & Loya, Y. The reproduction of the Red Sea coral Stylophora pistillata. I. Gonads and planulae. Mar. Ecol. Prog. Ser. 1, 133–144 (1979).ADS 
    Article 

    Google Scholar 
    57.Santelices, B. Mosaicism and chimerism as components of intraorganismal genetic heterogeneity. J. Evol. Biol. 17, 1187–1188. https://doi.org/10.1111/j.1420-9101.2004.00813.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Graham, D. E. The isolation of high molecular weight DNA from whole organisms or large tissue masses. Anal. Biochem. 85, 609–613. https://doi.org/10.1016/0003-2697(78)90262-2 (1978).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Douek, J., Barki, Y., Gateño, D. & Rinkevich, B. Possible cryptic speciation within the sea anemone Actinia equina complex detected by AFLP markers. Zool. J. Linn. Soc. 136, 315–320. https://doi.org/10.1046/j.1096-3642.2002.00034.x (2002).Article 

    Google Scholar 
    60.Banguera-Hinestroza, E., Saenz-Agudelo, P., Bayer, T., Berumen, M. L. & Voolstra, C. R. Characterization of new microsatellite loci for population genetic studies in the smooth cauliflower coral (Stylophora sp.). Conserv. Genet. Resour. 5, 561–563. https://doi.org/10.1007/s12686-012-9852-x (2013).Article 

    Google Scholar 
    61.Diwan, N. & Cregan, P. B. Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95, 723–733. https://doi.org/10.1007/s001220050618 (1997).CAS 
    Article 

    Google Scholar 
    62.Hearne, C. M., Ghosh, S. & Todd, J. A. Microsatellites for linkage analysis of genetic traits. Trends Genet. 8, 288–294. https://doi.org/10.1016/0168-9525(92)90256-4 (1992).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Functional diversity of Himalayan bat communities declines at high elevation without the loss of phylogenetic diversity

    Study area and sampling locationsWe conducted this study in Kedarnath Wildlife Sanctuary (30° 25′–30° 41′ N, 78° 55′–79° 22′ E), located in Uttarakhand state in the western Himalayas of India. This sanctuary covers a broad elevational gradient from 1400 to 4000 m above sea level (asl) (Fig. 1), with corresponding changes in habitat types: from Himalayan moist temperate forests dominated by Quercus spp. at low elevations, to sub-alpine forests dominated by Rhododendron spp. and alpine meadows at high elevations34. This sanctuary is known to harbour 26 species of bats35.Figure 1Map of India showing the location of the study area, Kedarnath Wildlife Sanctuary, and the sampling locations within the study area. Elevation is in m asl. The map was created using QGIS (v 3.6.3-Noosa) (QGIS Geographical Information System, www.qgis.org). Please note that the geographical boundaries represented in the map may contain areas considered disputed.Full size imageWe sampled at four locations spanning an elevational gradient of 2200 m. Sampling points within each location were spread across the elevations mentioned in parentheses: Mandal (1500–1800 m), Ansuya (2000–2200 m), Chopta (2700–3000 m) and Tungnath (3300–3700 m) (Fig. 1). Sampling was conducted between late-March and mid-May in 2018 and 2019, starting at lower elevations and then moving to higher elevations. This sampling duration coincides with summer in the Himalaya. To comprehensively sample the bat diversity, we employed a combination of automated ultrasonic recorders and capture sampling using mist-netting. Fieldwork was approved by the Internal Committee for Ethics and Animal Welfare, Institute for Zoo and Wildlife Research (approval no. 2018-06-01), and conducted under a permit issued by the Uttarakhand State Forest Department, Government of India (permit no. 2261/5-6).Sampling strategyFor acoustic sampling, we placed full spectrum passive ultrasonic recorders (SongMeter SM4BAT, Wildlife Acoustics, Maynard, MA, USA) in different habitat types (open, forest edge, and forest) at each elevation (hereafter, “passive recordings”). The recorders were programmed to record bat calls for two consecutive nights at each sampling point, from dusk to dawn (9–10 h/night), using a sample rate of 500 kHz/s, an amplitude threshold of 16 dB and a frequency threshold of 5 kHz. The dominant habitats at Ansuya and Tungnath are montane evergreen forests and alpine meadows respectively, therefore only these habitats were sampled at these elevations. The exact number of sampling points per habitat for each elevation is given in Table S1. On separate days after completing acoustic sampling at a site, we set up nylon and monofilament mist nets of 4, 6 or 9 m length, 16 × 16 and 19 × 19 mesh sizes (Ecotone GOC, Sopot, Poland) for four hours following dusk (starting between 18.30 h in early summer and 19.30 h in late summer). The captured bats were handled and measured following the guidelines of the American Society of Mammalogists36. To further refine identification in light of the paucity of taxonomic knowledge in the region, we collected only one specimen each of taxonomically-challenging species in accordance with our field research permit. We measured body mass (accuracy 0.1 g) using a spring balance (Pesola, Schindellegi, Switzerland), and forearm length (accuracy 0.01 mm) with vernier calipers (Swiss Precision Instruments SPI Inc., Melville, NY, USA). Next, we gently stretched the left wing and placed the live animal perpendicular to the background of a graph sheet of 1 × 1 cm grids. We photographed the outstretched wing using a Nikon D3400 DSLR camera at 55 mm zoom from a distance of about 90 cm. Subsequently, we released the bats and recorded their echolocation calls at a distance of 5 to 10 m using a handheld ultrasonic detector (Anabat Walkabout, Titley Scientific, Brendale, QLD, Australia) and saved them as audio files of .wav format. These recordings (henceforth referred to as “reference recordings”) formed the dataset used to develop a call library for identification.Call classifier and analysis of passive recordingsReference recordings from 2018 and 2019 were labelled using Raven Pro 1.5 (Cornell Lab of Ornithology, Ithaca, NY, USA) to generate a dataset of acoustic parameters for identification. We visualized calls using a spectrogram with Hanning window, size 1024 samples with 95% overlap. From each recording, we selected 10 clear pulses and measured the following parameters: average peak frequency, maximum peak frequency, centre frequency, minimum peak frequency, peak frequency at the start and end of the call, bandwidth at 90% peak amplitude, average entropy, and call duration. All frequency variables were measured in Hz and time variables in ms. We used the peak frequency contour to determine start and end frequencies and also used bandwidth at 90% peak amplitude because higher frequencies attenuate quickly with distance from the emitting bat (causing changes to the bandwidth), and these measures are therefore more reliable in field circumstances. Using this labelled call library as a training dataset, we trained a fine K-nearest neighbours classifier using supervised learning within the ‘Classification Learner’ app in MATLAB (Mathworks, Inc., Natick, MA, USA). We further employed fivefold cross-validation to obtain estimates of the accuracy of each classifier in assigning calls to species. Using these pairwise values of relative accuracy (%), we generated confusion matrices for these classifiers where the species identities were represented in the columns and rows as ‘True’ and ‘Predicted’ classes, respectively. Any species with classification accuracy below 85% was clubbed with possible confusion species into a “sonotype”, to improve accuracy of the classifier in the most conservative way possible (Fig. S4). The complete list of sonotypes and their mean echolocation call parameters is presented in Table 1. The classifier identified these sonotypes with  > 80% accuracy, with the exception of Miniopterus and the Plecotus type B call (which, however, we could manually identify because of their call structures and frequencies). For all subsequent analyses on functional diversity and phylogenetic diversity, we used these sonotypes to ensure accurate identification.Table 1 Trait matrix of the sonotypes in our assemblage (FA in mm; fmaxe, pfc.min, and pfc.max in kHz; Duration in ms).Full size tableNext, we analysed the passive recordings manually in Raven Pro. We labelled calls in subsets of 15 min per hour of the passive recordings. For each hour, the 15-min subsets were in the time windows 0–5 min, 20–25 min and 40–45 min, so as to spread out our sampling window across the hour. Following labelling, we obtained sonotype IDs using the classifier, and then verified them manually by visual comparison to the call library to improve discrimination. For every 5-min interval, we made a presence-absence matrix where 1 indicated the presence of a sonotype and 0 indicated its absence. The number of 5-min intervals in which a sonotype was detected (hereby “acoustic detections”) was summed up for each sampling point. We measured the relative abundance of sonotypes as the proportion of its total number of acoustic detections relative to the total number of acoustic detections of all sonotypes in a given elevational location. The use of such a presence-absence framework is akin to ‘Acoustic Activity Index’37 which represents a relatively less biased index of activity that is less affected by differences in vocal behaviour and echolocation frequencies of different species of bats.Assessing detectabilityTo assess the completeness of our species inventory, we estimated the species richness of each sampling point using the first-order Jackknife Estimator (Jack 1)38. Jack 1 is a nonparametric procedure for estimating species richness using presence or absence of a species in a given plot rather than its abundance39. Mean species detectability was calculated as the ratio of the observed to estimated species richness for different sampling point-year combinations40,41. We then assessed whether this mean species detectability depended on the habitat type, year, and location by fitting a linear model with the above-mentioned variables as fixed factor predictors and the mean detectability as a response. We also determined species-level detectability by following the approach of Kéry and Plattner42. If a sonotype was detected by mistnetting or acoustic sampling in sampling event i, we modelled its probability to be detected in sampling event i + 1. For each sonotype, we fitted a generalized linear mixed-effects model (logit link and binomial error distribution) with detection/non-detection as the response variable, and habitat type, location, and year as the fixed factor predictors. Site and species were included as random intercepts. The significance of the fixed effects was assessed with the Likelihood Ratio Test. This test allows one to choose the best of two nested models by assessing the ratio of their likelihoods. The significance of the random effect (species) was assessed by applying a parametric bootstrap (number simulations = 100) to the model with and without the random effect, using the function bootMer of ‘lme4’ package. In short, a parametric bootstrap consists of fitting the model to the data and bootstrapping the obtained residuals. For these and other statistical analyses we used R version 4.0.2 (R Core Team 2020).Taxonomic diversityWe calculated rarefied incidence-based species richness (SR) and Simpson diversity extrapolated to 50 sampling events (the number of sampling events in Mandal) using the ‘iNEXT’ R package43. The calculations were performed on a sonotype-by-sampling point presence-absence matrix with detections from both acoustic sampling and mistnetting pooled together. In the matrix, columns represented sampling units (Night 1, Night 2 and so on) and rows represented sonotype. By using sonotypes instead of species, we likely underestimated the SR, but this underestimation was uniform across elevations and is unlikely to change the pattern of SR with elevation.Functional diversityOur functional trait matrix (Table 1) comprised seven morphological and acoustic traits involved in guild classification, foraging and micro-habitat preferences (abbreviation followed by units): forearm length (FA, mm), aspect ratio (AR), wing loading (WL, N/m2), tip-shape index (I), echolocation peak frequency/frequency of maximum energy (FmaxE, kHz), minimum and maximum frequencies of the peak frequency contour (pfc.min and pfc.max, kHz) and call duration (D, ms). FA was measured in the field using vernier calipers. We used ImageJ (National Institutes of Health, Bethesda, MD, USA)44 to measure total wing area, areas of hand and arm wings and the wingspan from the standardised wing photos that were taken in the field. We calculated AR, WL, and I from these measurements following the equations given in Norberg and Rayner45. AR and WL both represent parameters that are correlated with flight aerodynamics and behaviour. I is influenced by the shape of the wing tip where values of 1 and above indicate broad, triangular tips, while those below 1 indicate acute wing tips. The four acoustic traits represent the shape of the echolocation call and they were measured from the reference recordings using Raven Pro, as described above.We first calculated the means for each of the seven traits across all species within a sonotype (thus obtaining one average trait value for each sonotype) (Table 1) and then used those to compute four multivariate functional diversity (FD) indices: functional richness (FRic), divergence (FDiv), evenness (FEve)46, and dispersion (FDis)47, using the function dbFD() in the ‘FD’ R package47. Our FD measures are unlikely to be underestimated due to the pooling of species into sonotypes because these species were similar in acoustic and morphological traits. FRic is the convex hull volume of the traits of species present in a community, measured in the multidimensional trait space. This measurement is not weighted by abundance, relative abundance or biomass of the species in the community, but, it is standardised such that it ranges from 0 to 1. FDiv reflects the distribution of abundance across taxa (sonotypes in our case) in the functional space. High FDiv means the taxa with extreme trait values are more abundant in a community whereas low FDiv means that those with the trait values close to the centre of the functional space are more abundant48. FEve, on the other hand, measures the evenness in the abundance distribution of taxa in the functional space. FEve is high when all taxa have similar abundances, and it is low when some functional groups are abundant while others are rare48. Lastly, FDis is measured as the mean distance of all taxa to the abundance-weighted trait community centroid. We performed two sets of analyses: one using the number of mistnet captures as a proxy for relative abundance, and another using the number of detections of different sonotypes in 5-min intervals in the passive recordings as a proxy of relative abundance. We did not pool acoustic detections and mistnet captures as they have inherently different detection probabilities and measure different entities (relative number of detections vs. number of captured individuals). Owing to rhinolophid bats at lower elevations being taxonomically and functionally different from the remaining species pool, we performed another set of FD calculations, excluding the four rhinolophid species and using acoustic detections as relative abundance. One species, Tadarida teniotis was commonly detected at all elevations on acoustic recorders, but we were unable to capture it as it foraged high above the ground, and thus were unable to collect morphological trait data. Additionally, in using acoustic detections as a measure of relative abundance, we had to exclude the non-echolocating pteropodid bat Sphaerias blanfordi which was caught only once at Chopta. Therefore, our FD values are likely systematically underestimated across all elevational communities, which does not affect the comparison of community composition across elevations.Phylogenetic diversityUsing the nexus file of a published phylogeny49, we pruned the tree to represent species in the 14 sonotypes. For each of these types, we chose the species most commonly mist-netted as representative of its group. Published DNA sequences are lacking for some of the species in this region, so we chose their closest relatives from the phylogeny instead. Thus, we made the following replacements: (a) Nyctalus leisleri represented the AMN sonotype, (b) Eptesicus serotinus represented the EH sonotype, (c) Murina aurata for Murina sonotype, (d) Myotis longipes for MS sonotype, (e) Pipistrellus javanicus for MP sonotype, and (f) Plecotus turkmenicus for Plecotus sonotype. After pruning the tree, we calculated three indices of phylogenetic diversity using the ‘picante’ R package50: Faith’s phylogenetic diversity (PD), Mean pairwise distance (MPD) and Mean nearest-taxon distance (MNTD). Faith’s PD is a measure of phylogenetic richness which is obtained by summing the branch lengths of the tree connecting the species in the community. MPD and MNTD measure phylogenetic dispersion of communities; whereas MPD measures the average phylogenetic distance among all the taxa in a community, MNTD measures the same for the nearest neighbouring taxa51. We weighted MPD and MNTD by relative abundance of the sonotypes in each community (like FD, the number of detections in five-minute intervals in the passive recordings was used as a proxy of relative abundance).Null model testingAs FD and PD are strongly correlated to species richness52, we used a null model to assess whether the observed was significantly different than expected due to chance alone. We produced the null distribution of each FD and PD index by randomizing the community matrix 999 times using the ‘independent swap’ method53,54, so as to preserve the species richness at each site and the number of sites in which each species can be found. Our randomization was further constrained by elevation, so that the abundances were randomized among the sampling points within each elevation. The null model allows for calculation of an effect size (difference between the observed value and mean of the null distribution). Given the range of FD and PD values, the effect sizes are not comparable across communities with vastly different species richness55. Therefore, standardized effect sizes (SES) of each index were calculated at each site as the difference between the observed value and the mean of the null distribution, divided by the standard deviation of the null distribution. SES  > 1 and SES  More