1.Dimitrov, D., NoguĂ©s-Bravo, D. & Scharff, N. Why do tropical mountains support exceptionally high biodiversity? The eastern arc mountains and the drivers of saintpaulia diversity. PLoS One 7, e48908 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ADSÂ
Google ScholarÂ
2.Spehn, E. & Körner, C. A Global Assessment of Mountain Biodiversity and its Function, vol. 23, 393â400 (2005).3.Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347â350 (2015).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
4.Mengist, W., Soromessa, T. & Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702, 134581 (2020).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
5.Gleeson, E. H. et al. Mountains of our future earth: defining priorities for mountain research: A synthesis from the 2015 Perth III conference. Mt. Res. Dev. 36, 537â548 (2016).
Google ScholarÂ
6.Jacob, M. et al. Land use and cover dynamics since 1964 in the Afro-Alpine vegetation belt: Lib Amba Mountain in North Ethiopia. Land Degrad. Dev. 27, 641â653 (2016).
Google ScholarÂ
7.Dhakal, B. et al. Impacts of cardamom cultivation on montane forest ecosystems in Sri Lanka. For. Ecol. Manag. 274, 151â160 (2012).
Google ScholarÂ
8.Thijs, K. W. et al. Contrasting cloud forest restoration potential between plantations of different exotic tree species. Restor. Ecol. 22, 472â479 (2014).
Google ScholarÂ
9.Long, M. S. et al. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biol. Invasions 19, 749â763 (2017).
Google ScholarÂ
10.Elgar, A. T., Freebody, K., Pohlman, C. L., Shoo, L. P. & Catterall, C. P. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Front. Plant Sci. 5, 200 (2014).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
11.Rojas-Botero, S., Solorza-Bejarano, J., Kollmann, J. & Teixeira, L. H. Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecol. Eng. 158, 106031 (2020).
Google ScholarÂ
12.Hooper, E., Legendre, P. & Condit, R. Barriers to forest regeneration of deforested and abandoned land in Panama. J. Appl. Ecol. 42, 1165â1174 (2005).
Google ScholarÂ
13.Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203â215 (2013).ADSÂ
Google ScholarÂ
14.Soh, M. C. K. et al. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: A systematic map for identifying future research priorities. Front. For. Glob. Change 2, 1â18 (2019).
Google ScholarÂ
15.Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. Diverging responses of tropical andean biomes under future climate conditions. PLoSÂ One 8, e63634 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
ADSÂ
Google ScholarÂ
16.Helmer, E. H. et al. Neotropical cloud forests and pĂĄramo to contract and dry from declines in cloud immersion and frost. PLoSÂ One 14, e0213155 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
17.Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B. & Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142, 2510â2521 (2009).
Google ScholarÂ
18.Christmann, T. & Oliveras, I. Nature of alpine ecosystems in tropical mountains of South America. in Encyclopedia of the Worldâs Biomes 1â10 (Elsevier Inc., 2020). https://doi.org/10.1016/B978-0-12-409548-9.12481-919.Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003â2019 (2014).
Google ScholarÂ
20.Young, K. R. & LeĂłn, B. Tree-line changes along the Andes: Implications of spatial patterns and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 362, 263â272 (2007).
Google ScholarÂ
21.Harsch, M. A. & Bader, M. Y. Treeline formâA potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 20, 582â596 (2011).
Google ScholarÂ
22.Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol. Process. 25, 465â498 (2011).ADSÂ
Google ScholarÂ
23.Kessler, M. & Kluge, J. Diversity and endemism in tropical montane forestsâFrom patterns to processes. Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, vol. 2 (2010).24.Aide, T. M. & Grau, H. R. Globalization, migration, and Latin American ecosystems. Science 305, 1915â1917 (2004).PubMedÂ
Google ScholarÂ
25.Bender, O. Abandoned altitudes? Decrease and expansion of grassland in the Hinterland of PopayĂĄn, Southern Colombian Andes. J. Mt. Sci. 12, 123â133 (2015).
Google ScholarÂ
26.Zhang, B., Mo, S., Tan, T., Xiao, F. & Wu, H. Urbanization and De-urbanization in mountain regions of China. Mt. Res. Dev. 24, 206â209 (2004).
Google ScholarÂ
27.Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. https://doi.org/10.1111/gcb.15498 (2021).ArticleÂ
Google ScholarÂ
28.International Union for Conservation of Nature. The Bonn Challenge | Bonchallenge. Iucn (2020).29.Society for Ecological Restoration. The SER primer on ecological restoration. Sci. Policy Work. Gr. 2002, 9 (2002).
Google ScholarÂ
30.Holl, K. D. Primer of Ecological Restoration (Island Press, 2020). https://doi.org/10.1007/s13412-020-00621-w.BookÂ
Google ScholarÂ
31.Chazdon, R. REVIEW: Restoring tropical forests: A practical guide. Ecol. Restor. 33, 118â119 (2015).
Google ScholarÂ
32.Chazdon, R. L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6, 51â71 (2003).
Google ScholarÂ
33.Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161â188 (2017).
Google ScholarÂ
34.Meli, P. et al. A global review of past land use, climate, and active vs passive restoration effects on forest recovery. PLoSÂ One 12, 1â17 (2017).
Google ScholarÂ
35.Holl, K. D. Restoration of tropical forests. Restor. Ecol. New Front. https://doi.org/10.1002/9781118223130.ch9 (2012).ArticleÂ
Google ScholarÂ
36.Meli, P. Tropical forest restoration. Twenty years of academic research. Interciencia 28, 581 (2003).
Google ScholarÂ
37.Venkatesh, B., Lakshman, N. & Purandara, B. K. Hydrological impacts of afforestationâA review of research in India. J. For. Res. 25, 37â42 (2014).
Google ScholarÂ
38.Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. What is the state of tropical montane cloud forest restoration? Tropical Montane Cloud Forests: science for conservation and management. For. Ecol. Manag. https://doi.org/10.1017/CBO9780511778384.010 (2011).ArticleÂ
Google ScholarÂ
39.Guariguata, M. R. Restoring tropical montane forests. Forest Restoration in Landscapes: Beyond Planting Trees (2005). https://doi.org/10.1007/0-387-29112-1_4340.Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).PubMedÂ
Google ScholarÂ
41.Arasumani, M. et al. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island. PLoSÂ One 13, e0190003 (2018).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
42.Raman, T. R. S., Mudappa, D. & Kapoor, V. Restoring rainforest fragments: survival of mixed-native species seedlings under contrasting site conditions in the Western Ghats, India. Restor. Ecol. 17, 137â147 (2009).
Google ScholarÂ
43.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1â15 (2017).
Google ScholarÂ
44.Lewin-Koh, N. J. et al. maptools: Tools for reading and handling spatial objects. R package version 0.8-10. http://CRAN.R-project.org/package=maptools (2011).45.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019). https://www.R-project.org/46.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org47.Srinivasan, M. P., Bhatia, S. & Shenoy, K. Vegetation-environment relationships in a South Asian tropical montane grassland ecosystem: Restoration implications. Trop. Ecol. 56, 201â217 (2015).
Google ScholarÂ
48.Le Stradic, S., Buisson, E. & Fernandes, G. W. Restoration of Neotropical grasslands degraded by quarrying using hay transfer. Appl. Veg. Sci. 17, 482â492 (2014).
Google ScholarÂ
49.De De Vasconcelos, M. F. O que sĂŁo campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil?. Rev. Bras. Bot. 34, 241â246 (2011).
Google ScholarÂ
50.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.15513 (2021).ArticleÂ
Google ScholarÂ
51.Home | Trillion Trees (2020).52.AbadĂn, J. et al. Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biol. Biochem. 34, 1739â1748 (2002).
Google ScholarÂ
53.Abreu, Z., LlambĂ, L. D. & Sarmiento, L. Sensitivity of soil restoration indicators during pĂĄramo succession in the high tropical andes: Chronosequence and permanent plot approaches. Restor. Ecol. 17, 619â627 (2009).
Google ScholarÂ
54.Bueno, A. & LlambĂ, L. D. Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl. Veg. Sci. 18, 613â623 (2015).
Google ScholarÂ
55.Sarmiento, L., LlambĂ, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 63â74 (2003).
Google ScholarÂ
56.Sarmiento, L., Smith, J. K., MĂĄrquez, N., Escalona, A. & Erazo, M. C. Constraints for the restoration of tropical alpine vegetation on degraded slopes of the Venezuelan Andes. Plant Ecol. Divers. 8, 277â291 (2015).
Google ScholarÂ
57.Sarmiento, L. & Bottner, P. Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: Indications for fertility restoration. Appl. Soil Ecol. 19, 79â89 (2002).
Google ScholarÂ
58.Sarmiento, L., AbadĂn, J., GonzĂĄlez-Prieto, S. & Carballas, T. Assessing and modeling the role of the native legume Lupinus meridanus in fertility restoration in a heterogeneous mountain environment of the tropical Andes. Agric. Ecosyst. Environ. 159, 29â39 (2012).
Google ScholarÂ
59.HilĂĄrio, R. R., Castro, S. A. B., Ker, F. T. O. & Fernandes, G. Unexpected effects of pigeon-peas (Cajanus cajan) in the restoration of rupestrian fields [Efeito Inesperado do FeijĂŁo-Guandu (Cajanus cajan) na Restauração de Campos Rupestres]. Planta Daninha 29, 717â723 (2011).
Google ScholarÂ
60.Le Stradic, S., Buisson, E., Negreiros, D., Campagne, P. & Wilson Fernandes, G. The role of native woody species in the restoration of Campos Rupestres in quarries. Appl. Veg. Sci. 17, 109â120 (2014).
Google ScholarÂ
61.Arasumani, M., Bunyan, M. & Robin, V. V. Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands. J. Environ. Manag. 280, 111759 (2020).
Google ScholarÂ
62.Sarmiento, F. O. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24, 14â23 (1997).
Google ScholarÂ
63.Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35â46 (2008).
Google ScholarÂ
64.Middendorp, R. S., PĂ©rez, A. J., Molina, A., Lambin, E. F. & PĂ©rez Castañeda, A. J. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581â1599 (2016).
Google ScholarÂ
65.De Guevara, I.H.-L., Rojas-Soto, O. R., LĂłpez-Barrera, F., Puebla-Olivares, F. & DĂaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89â100 (2012).
Google ScholarÂ
66.Lira-Noriega, A., Guevara, S., Laborde, J. & Sanchez-Rios, G. Floristic composition in pastures of Los Tuxtlas, Veracruz, Mexico. ACTA Bot. Mex. 80, 59â87 (2007).
Google ScholarÂ
67.Muniz-Castro, M. A., Williams-Linera, G. & Benayas, J. M. R. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431â440 (2006).
Google ScholarÂ
68.RĂ€ger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. in Tropical Montane Cloud Forests: Science for Conservation and Management 584â594 (2011). https://doi.org/10.1017/CBO9780511778384.06369.Violi, H. A. et al. Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For. Ecol. Manag. 254, 276â290 (2008).
Google ScholarÂ
70.Williams-Linera, G., Alvarez-Aquino, C. & Pedraza, R. A. Forest restoration in the tropical montane cloud forest belt of central veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06771.Cole, R. J., Litton, C. M., Koontz, M. J. & Loh, R. K. Vegetation recovery 16 years after feral pig removal from a wet Hawaiian forest. Biotropica 44, 463â471 (2012).
Google ScholarÂ
72.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125â140 (2014).
Google ScholarÂ
73.Gould, R. K., Mooney, H., Nelson, L., Shallenberger, R. & Daily, G. C. Restoring native forest understory: The influence of ferns and light in a Hawaiian experiment. Sustainability 5, 1317â1339 (2013).
Google ScholarÂ
74.Hart, P. J. Tree growth and age in an ancient Hawaiian wet forest: Vegetation dynamics at two spatial scales. J. Trop. Ecol. 26, 1â11 (2010).
Google ScholarÂ
75.Ibanez, T. & Hart, P. J. Spatial patterns of tree recruitment in a montane Hawaiian wet forest after cattle removal and pig population control. Appl. Veg. Sci. 23, 197â209 (2020).
Google ScholarÂ
76.Pinto, J. R., Davis, A. S., Leary, J. J. K. & Aghai, M. M. Stocktype and grass suppression accelerate the restoration trajectory of Acacia koa in Hawaiian montane ecosystems. New For. 46, 855â867 (2015).
Google ScholarÂ
77.Hylander, K. & Nemomissa, S. Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest [Roles complementarios de jardines doážżesticos y plantaciones de âarboles exÌoticos como hÌabitats alternativos para plan. Conserv. Biol. 23, 400â409 (2009).PubMedÂ
Google ScholarÂ
78.Roose, E. & Ndayizigiye, F. Agroforestry, water and soil fertility management to fight erosion in tropical mountains of Rwanda. Soil Technol. 11, 109â119 (1997).
Google ScholarÂ
79.Uhlig, S. K. Tropical mountain ecology in Ethiopia as a basis for conservation, management and restoration. Trop. For. Transit. https://doi.org/10.1007/978-3-0348-7256-0_8 (1992).ArticleÂ
Google ScholarÂ
80.Carilla, J. & Grau, H. R. 150 years of tree establishment, land use and climate change in Montane grasslands, Northwest Argentina. Biotropica 42, 49â58 (2010).
Google ScholarÂ
81.Camelo, O. J., Urrego, L. E. & Orrego, S. A. Environmental and socioeconomic drivers of woody vegetation recovery in a human-modified landscape in the Rio Grande basin (Colombian Andes). Restor. Ecol. 25, 912â921 (2017).
Google ScholarÂ
82.Wilson, S. J., Coomes, O. T. & Dallaire, C. O. The `ecosystem service scarcity pathâ to forest recovery: A local forest transition in the Ecuadorian Andes. Reg. Environ. Change 19, 2437â2451 (2019).
Google ScholarÂ
83.Middendorp, R. S., PĂ©rez, A. J., Molina, A. & Lambin, E. F. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581â1599 (2016).
Google ScholarÂ
84.Bingli, L., Weide, Z. & Rongyuan, Z. The rebirth of tropical rainforest – ecological restoration planning for Sanda Mountain of Xishuangbanna, China. Landsc. Archit. Front. 8, 108â125 (2020).
Google ScholarÂ
85.Byers, A. C. Alpine habitat conservation and restoration in tropical and sub-tropical high mountains. Routledge Handb. Ecol. Environ. Restor. https://doi.org/10.4324/9781315685977 (2017).ArticleÂ
Google ScholarÂ
86.Guariguata, M. R. Restoring tropical montane forests. in Forest Restoration in Landscapes: Beyond Planting Trees 298â302 (2005). https://doi.org/10.1007/0-387-29112-1_4387.GonzĂĄlez-Espinosa, M. et al. Restoration of forest ecosystems in fragmented landscapes of temperate and montane tropical Latin America. in Biodiversity Loss and Conservation in Fragmented Forest Landscapes: The Forests of Montane Mexico and Temperate South America 335â369 (2007).88.Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. U.S.A. 114, 9635â9640 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
89.Holl, K. D. Research directions in tropical forest restoration. Ann. Mo. Bot. Gard. 102, 237â250 (2017).
Google ScholarÂ
90.Roose, E., Ndayizigiye, F. & Sekayange, L. Agroforestry and land husbandry in Rwanda. How to restore the acid soils productivity in tropical mountains densely populated? [Lâagroforesterie et la GCES au Rwanda. Comment restaurer la productivite des terres acides dans une region tropicale de montagn. Cah. ORSTOM Ser. Pedol. 28, 327â349 (1993).
Google ScholarÂ
91.Diego Leon, J., Isabel Gonzalez, M. & Fernando Gallardo, J. Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia. Rev. Biol. Trop. 59, 1883â1894 (2011).
Google ScholarÂ
92.Chazdon, R. L. et al. Erratum: Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002. https://doi.org/10.1088/1748-9326/ab79e6 (2020).ArticleÂ
ADSÂ
Google ScholarÂ
93.Miranda-Castro, L. & PadrĂłn, S. From the mountains to the sea: Restoring shaded coffee plantations to protect tropical coastal ecosystems. in Proceedings of MTS/IEEE OCEANS, 2005 vol. 2005 662â669 (2005).94.Hakim, L. & Miyakawa, H. Integrating ecosystem restoration and development of recreation sites in degraded tropical mountain areas in East Java, Indonesia. AIP Conf. Proc. 2019 (2018).95.Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503â507 (2014).ADSÂ
Google ScholarÂ
96.RĂ€ger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06397.Chen, T.-S., Lin, C.-Y., Ho, S.-H., Lin, C.-Y. & Yang, Y.-L. Evaluation of priority order for the landslide treatment using biodiversity index in a watershed. J. Chin. Soil Water Conserv. 45, 119â127 (2014).
Google ScholarÂ
98.Liu, H., Yi, Y., Blagodatsky, S. & Cadisch, G. Impact of forest cover and conservation agriculture on sediment export: A case study in a montane reserve, south-western China. Sci. Total Environ. 702, 134802 (2020).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
99.Crespo, P. et al. Land use change impacts on the hydrology of wet Andean paramo ecosystems. in Status and Perspectives of Hydrology in Small Basins (Proceedings of the Workshop held at Goslar-Hahnenklee, Germany, 30 Marchâ2 April 2009) (IAHS, 2010). doi:https://doi.org/10.13140/2.1.5137.6320100.Muñoz-Villers, L. E. & McDonnell, J. J. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 17, 3543â3560 (2013).ADSÂ
Google ScholarÂ
101.Calle, Z., Henao-Gallego, N., Giraldo, C. & Armbrecht, I. A comparison of vegetation and ground-dwelling ants in abandoned and restored gullies and landslide surfaces in the Western Colombian Andes. Restor. Ecol. 21, 729â735 (2013).
Google ScholarÂ
102.Posada, J. M., Mitche, T. & Cavelier, J. Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restor. Ecol. 8, 370â379 (2000).
Google ScholarÂ
103.Lemenih, M. & Teketay, D. Changes in soil seed bank composition and density following deforestation and subsequent cultivation of a tropical dry Afromontane forest in Ethiopia. Trop. Ecol. 47, 1â12 (2006).
Google ScholarÂ
104.Galindo, V., Calle, Z., CharĂĄ, J. & Armbrecht, I. Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restor. Ecol. 25, 731â737 (2017).
Google ScholarÂ
105.Slocum, M. G., Aide, T. M., Zimmerman, J. K. & Navarro, L. A strategy for restoration of montane forest in anthropogenic fern thickets in the Dominican Republic. Restor. Ecol. 14, 526â536 (2006).
Google ScholarÂ
106.Rurangwa, M. L., Matthews, T. J., Niyigaba, P., Tobias, J. A. & Whittaker, R. J. Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study. For. Ecol. Manag. 10, 118765. https://doi.org/10.1016/j.foreco.2020.118765 (2020).ArticleÂ
Google ScholarÂ
107.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala Weerasinghe, H. M. S. P. & Burslem, D. F. R. P. Barriers to tree seedling emergence on human-induced grasslands in Sri Lanka. J. Appl. Ecol. 47, 157â165 (2010).
Google ScholarÂ
108.Le Stradic, S., Fernandes, G. W. & Buisson, E. No recovery of campo rupestre grasslands after gravel extraction: implications for conservation and restoration. Restor. Ecol. 26, S151âS159 (2018).
Google ScholarÂ
109.Sanchez-De Leon, Y., Zou, X., Borges, S. & Ruan, H. Recovery of native earthworms in abandoned tropical pastures. Conserv. Biol. 17, 999â1006 (2003).
Google ScholarÂ
110.Wilms, J. & Kappelle, M. Frugivorous birds, habitat preference and seed dispersal in a fragmented Costa Rican montane oak forest landscape. in Ecology and conservation of neotropical montane oak forests 309â324 (Springer, 2006).111.Shoo, L. P., Storlie, C., Vanderwal, J., Little, J. & Williams, S. E. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186â193 (2011).ADSÂ
Google ScholarÂ
112.Edwards, D. P., Massam, M. R., Haugaasen, T. & Gilroy, J. J. Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biol. Conserv. 209, 432â439 (2017).
Google ScholarÂ
113.Gutierrez-Chacon, C., Valderrama-A, C. & Klein, A.-M. Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. J. Insect Conserv. 24, 187â197 (2020).
Google ScholarÂ
114.Kattan, G. H., Correa, D., Escobar, F. & Medina, C. Leaf-litter arthropods in restored forests in the Colombian Andes: A comparison between secondary forest and tree plantations. Restor. Ecol. 14, 95â102 (2006).
Google ScholarÂ
115.Davies, R. W., Edwards, D. P. & Edwards, F. A. Secondary tropical forests recover dung beetle functional diversity and trait composition. Anim. Conserv. 23, 617â627 (2020).
Google ScholarÂ
116.Marian, F. et al. Conversion of Andean montane forests into plantations: Effects on soil characteristics, microorganisms, and microarthropods. Biotropica https://doi.org/10.1111/btp.12813 (2020).ArticleÂ
Google ScholarÂ
117.Brancalion, P. H. S. & Holl, K. D. Functional composition trajectory: A resolution to the debate between Suganuma, Durigan, and Reid. Restor. Ecol. 24, 1â3 (2016).
Google ScholarÂ
118.Matos, I. S., Eller, C. B., Oliveras, I., Mantuano, D. & Rosado, B. H. P. Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. J. Ecol. https://doi.org/10.1111/1365-2745.13481 (2020).ArticleÂ
Google ScholarÂ
119.Eller, C. B., Lima, A. L. & Oliveira, R. S. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489â501 (2016).CASÂ
PubMedÂ
Google ScholarÂ
120.Barnes, A. D. & Chapman, H. M. Dispersal traits determine passive restoration trajectory of a Nigerian montane forest. Acta Oecol. 56, 32â40 (2014).ADSÂ
Google ScholarÂ
121.Dimson, M. & Gillespie, T. W. Trends in active restoration of tropical dry forest: Methods, metrics, and outcomes. For. Ecol. Manage. 467, 118150 (2020).
Google ScholarÂ
122.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1âS46 (2019).
Google ScholarÂ
123.Wilson, S. J. & Rhemtulla, J. M. Acceleration and novelty: Community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecol. Appl. 26, 203â218 (2016).PubMedÂ
Google ScholarÂ
124.Muñiz-Castro, M. A. et al. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431â440 (2006).
Google ScholarÂ
125.Van Do, T., Osawa, A. & Thang, N. T. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. For. Ecol. Manag. 259, 1650â1659 (2010).
Google ScholarÂ
126.Joshua Atondo-Bueno, E., Bonilla-Moheno, M. & Lopez-Barrera, F. Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. For. Ecol. Manag. 409, 399â406 (2018).
Google ScholarÂ
127.Trujillo-Miranda, A. L., Toledo-Aceves, T., Lopez-Barrera, F. & Guenter, S. Tree diversity and timber productivity in planted forests: Pinus patula versus mixed cloud forest species. New For. https://doi.org/10.1007/s11056-020-09787-1 (2020).ArticleÂ
Google ScholarÂ
128.Gallegos, S. C., Hensen, I., Saavedra, F. & Schleuning, M. Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. For. Ecol. Manag. 337, 135â143 (2015).
Google ScholarÂ
129.PelĂĄez-Silva, J. A., LeĂłn-PelĂĄez, J. D. & Lema-Tapias, A. Conifer tree plantations for land rehabilitation: An ecological-functional evaluation. Restor. Ecol. 27, 607â615 (2019).
Google ScholarÂ
130.Ortega-Pieck, A., LĂłpez-Barrera, F., RamĂrez-Marcial, N. & GarcĂa-Franco, J. G. Early seedling establishment of two tropical montane cloud forest tree species: The role of native and exotic grasses. For. Ecol. Manag. 261, 1336â1343 (2011).
Google ScholarÂ
131.Muniz-Castro, M.-A. et al. Restoring montane cloud forest: Establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restor. Ecol. 23, 26â33 (2015).
Google ScholarÂ
132.Zhang, Z. H., Hu, G., Zhu, J. D. & Ni, J. Stand structure, woody species richness and composition of subtropical karst forests in Maolan, south-west China. J. Trop. For. Sci. 24, 498â506 (2012).
Google ScholarÂ
133.Garcia-De La Cruz, Y., Lopez-Barrera, F. & MariaRamos-Prado, J. Germination and seedling emergence of four endangered oak species. Madera y Bosques 22, 77â87 (2016).
Google ScholarÂ
134.Bare, M. C. & Ashton, M. S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For. 47, 333â355 (2016).
Google ScholarÂ
135.Borja, P., Molina, A., Govers, G. & Vanacker, V. Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains. CATENA 165, 42â53 (2018).
Google ScholarÂ
136.Gomez-Ruiz, P. A., Saenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine-oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215â1223 (2020).
Google ScholarÂ
137.Toledo-Aceves, T. & Del-Val, E. Do plant-herbivore interactions persist in assisted migration plantings? Restor. Ecol. 29, (2020).138.Urgiles, N. et al. Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: A step towards reforestation with native species in the Andes of Ecuador. New For. 38, 229â239 (2009).
Google ScholarÂ
139.Braasch, M., Garcia-Barrios, L., Ramirez-Marcial, N., Huber-Sannwald, E. & Cortina-Villar, S. Can cattle grazing substitute fire for maintaining appreciated pine savannas at the frontier of a montane forest biosphere-reserve?. Agric. Ecosyst. Environ. 250, 59â71 (2017).
Google ScholarÂ
140.Hernandez-Ladron De Guevara, I., Rojas-Soto, O. R., Lopez-Barrera, F., Puebla-Olivares, F. & Diaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89â100 (2012).
Google ScholarÂ
141.Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339â349 (2000).
Google ScholarÂ
142.Derroire, G., Coe, R. & Healey, J. R. Isolated trees as nuclei of regeneration in tropical pastures: Testing the importance of niche-based and landscape factors. J. Veg. Sci. 27, 679â691 (2016).
Google ScholarÂ
143.Rhoades, C. C., Eckert, G. E. & Coleman, D. C. Effect of pasture trees on soil nitrogen and organic matter: Implications for tropical montane forest restoration. Restor. Ecol. 6, 262â270 (1998).
Google ScholarÂ
144.Sheldon, K. S. & Nadkarni, N. M. The use of pasture trees by birds in a tropical montane landscape in Monteverde, Costa Rica. J. Trop. Ecol. 29, 459â462 (2013).
Google ScholarÂ
145.Sprenkle-Hyppolite, S. D., Latimer, A. M., Young, T. P. & Rice, K. J. Landscape factors and restoration practices associated with initial reforestation success in Haiti. Ecol. Restor. 34, 306â316 (2016).
Google ScholarÂ
146.Pang, C.-C., Ma, X.K.-K., Hung, T.T.-H. & Hau, B.C.-H. Early ecological succession on landslide trails, Hong Kong, China. Ecoscience 25, 153â161 (2018).
Google ScholarÂ
147.Scowcroft, P. G. & Jeffrey, J. Potential significance of frost, topographic relief, and Acacia koa stands to restoration of mesic Hawaiian forests on abandoned rangeland. For. Ecol. Manag. 114, 447â458 (1999).
Google ScholarÂ
148.Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded areas in the tropics. Restor. Ecol. 13, 92â102 (2005).
Google ScholarÂ
149.Dhakal, B., Pinard, M. A., Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. & Burslem, D. F. R. P. Strategies for restoring tree seedling recruitment in high conservation value tropical montane forests underplanted with cardamom. Appl. Veg. Sci. 18, 121â133 (2015).
Google ScholarÂ
150.Wilson, S. J. & Coomes, O. T. âCrisis restorationâ in post-frontier tropical environments: Replanting cloud forests in the Ecuadorian Andes. J. Rural Stud. 67, 152â165 (2019).
Google ScholarÂ
151.Pethiyagoda, R. S. & Manamendra-Arachchi, K. Endangered anurans in a novel forest in the highlands of Sri Lanka. Wildl. Res. 39, 641â648 (2012).
Google ScholarÂ
152.Del Castillo, R. F. & Blanco-MacĂas, A. Secondary succession under a slash-and-burn regime in a tropical montane cloud forest: soil and vegetation characteristics. Biodivers. loss Conserv. Fragm. For. landscapes. For. Mont. Mex. Temp. South Am. CABI, Wallingford, Oxfordshire, UK 158â180 (2007).153.Bautista-Cruz, A., Del Castillo, R. F., Etchevers-Barra, J. D., GutiĂ©rrez-Castorena, M. D. C. & Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 277, 74â80 (2012).
Google ScholarÂ
154.Sarmiento, L., LlambĂ, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 145â156 (2003).
Google ScholarÂ
155.Raman, T. R. S. Effects of habitat structure and adjacent habitats on birds in tropical rainforest fragments and shaded plantations in the Western Ghats, India. Biodivers. Conserv. 15, 1577â1607 (2006).
Google ScholarÂ
156.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala, H. M. S. P. & Burslem, D. F. R. P. Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects. For. Ecol. Manag. 329, 340â350 (2014).
Google ScholarÂ
157.Mendoza-Vega, J., Ku-Quej, V. M., Messing, I. & PĂ©rez-JimĂ©nez, J. C. Effects of native tree planting on soil recovery in tropical montane cloud forests. For. Sci. 66, 700â711 (2020).
Google ScholarÂ
158.Calle, A. & Holl, K. D. Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. For. Ecol. Manag. 452, 117563 (2019).
Google ScholarÂ
159.Holl, K. D. Factors limiting tropical rain forest regeneration in abandoned pasture: Seed rain, seed germination, microclimate, and soil. Biotropica 31, 229â242 (1999).
Google ScholarÂ
160.Mullah, C. J. A., Klanderud, K., Totland, O. & Kigomo, B. Recovery of plant species richness and composition in an abandoned forest settlement area in Kenya. Restor. Ecol. 52, 77â87 (2011).
Google ScholarÂ
161.Liu, X., Lu, Y., Yang, Z. & Zhou, Y. Regeneration and development of native plant species in restored mountain forests, Hainan Island, China. Mt. Res. Dev. 34, 396â404 (2014).CASÂ
Google ScholarÂ
162.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Weerasinghe, H. M. S. P. M. & Burslem, D. F. R. P. Release from root competition promotes tree seedling survival and growth following transplantation into human-induced grasslands in Sri Lanka. For. Ecol. Manag. 262, 229â236 (2011).163.Cole, R. J., Holl, K. D., Keene, C. L. & Zahawi, R. A. Direct seeding of late-successional trees to restore tropical montane forest. For. Ecol. Manag. 261, 1590â1597 (2011).
Google ScholarÂ
164.Alvarez-Aquino, C., Williams-Linera, G. & Newton, A. C. Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restor. Ecol. 12, 412â418 (2004).
Google ScholarÂ
165.Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forestâgrassland mosaic; But alien tree invasion and warming can disrupt this balance. J. Ecol. https://doi.org/10.1111/1365-2745.13239 (2019).ArticleÂ
Google ScholarÂ
166.Singh, K. P., Mandal, T. N. & Tripathi, S. K. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the Sal forest ecosystem of Nepal Himalaya. Ecol. Eng. 17, 385â401 (2001).
Google ScholarÂ
167.Wilcke, W. et al. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. CATENA 53, 79â95 (2003).
Google ScholarÂ
168.Diaz-Garcia, J. M., Pineda, E., Lopez-Barrera, F. & Moreno, C. E. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodivers. Conserv. 26, 2569â2589 (2017).
Google ScholarÂ
169.Doust, S. J., Erskine, P. D. & Lamb, D. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For. Ecol. Manag. 234, 333â343 (2006).
Google ScholarÂ
170.Howorth, R. T. & Pendry, C. A. Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodivers. Conserv. 15, 693â715 (2006).
Google ScholarÂ
171.Gomes, L. G. L., Oostra, V., Nijman, V., Cleef, A. M. & Kappelle, M. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biol. Conserv. 141, 860â871 (2008).
Google ScholarÂ
172.Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255â1269 (2010).CASÂ
PubMedÂ
Google ScholarÂ
173.PĂ©rez-GarcĂa, O. & del Castillo, R. F. Shifts in swidden agriculture alter the diversity of young fallows: Is the regeneration of cloud forest at stake in southern Mexico?. Agric. Ecosyst. Environ. 248, 162â174 (2017).
Google ScholarÂ
174.Gallegos, S. C. et al. Factors limiting montane forest regeneration in bracken-dominated habitats in the tropics. For. Ecol. Manag. 381, 168â176 (2016).
Google ScholarÂ
175.Riviere, J.-N. et al. Role of tree ferns in flowering plant settlement in the tropical montane rainforests of La Reunion (Mascarene Archipelago, Indian Ocean). Rev. D Ecol. TERRE LA VIE 63, 199â207 (2008).
Google ScholarÂ
176.Mohandass, D., Chhabra, T., Singh Pannu, R. & Beng, K. C. Recruitment of saplings in active tea plantations of the Nilgiri mountains: Implications for restoration ecology. Trop. Ecol. 57, 101â118 (2016).CASÂ
Google ScholarÂ
177.Wassie, A., Bongers, F., Sterck, F. J. & Teketay, D. Church forestsârelics of dry afromontane forests of Northern Ethiopia: opportunities and challenges for conservation and restauration. Degrad. For. East. Africa Manag. Restor. 123â133 (2010).178.Townsend, P. A. & Masters, K. L. Lattice-work corridors for climate change: A conceptual framework for biodiversity conservation and social-ecological resilience in a tropical elevational gradient. Ecol. Soc. https://doi.org/10.5751/ES-07324-200201 (2015).ArticleÂ
Google ScholarÂ
179.NoguĂ©s-Bravo, D., AraĂșjo, M. B., Errea, M. P. & MartĂnez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420â428 (2007).
Google ScholarÂ
180.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424â430 (2015).ADSÂ
Google ScholarÂ
181.Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207â212 (2018).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
182.Peters, M. K. et al. Climateâland-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88â92 (2019).CASÂ
PubMedÂ
ADSÂ
Google ScholarÂ
183.Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl. Acad. Sci. 112, E6084âE6084 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
ADSÂ
Google ScholarÂ
184.GĂłmez-Ruiz, P. A., SĂĄenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pineâoak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215â1223 (2020).
Google ScholarÂ
185.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoSÂ One 4, 1â6 (2009).
Google ScholarÂ
186.von Holle, B., Yelenik, S. & Gornish, E. S. Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Curr. Landsc. Ecol. Rep. 5, 85â97 (2020).
Google ScholarÂ
187.Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. xx, 1â9 (2020).
Google ScholarÂ
188.Monitoring Task Force. Briefing note on the Task Force on Monitoring for the UN Decade on Ecosystem Restoration 2021â2030 (2020).189.Elliott, S. The potential for automating assisted natural regeneration of tropical forest ecosystems. Biotropica 48, 825â833 (2016).
Google Scholar More