More stories

  • in

    Rare inventory of trematode diversity in a protected natural reserve

    1.Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891 (2002).
    Google Scholar 
    2.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).PubMed 

    Google Scholar 
    4.EU Water Framework Directive Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy (2000).5.Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).
    Google Scholar 
    6.Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).ADS 

    Google Scholar 
    7.Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U.S.A. 111, 3251–3256 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    9.Stanton, J. C., Shoemaker, K. T., Pearson, R. G. & Akçakaya, H. R. Warning times for species extinctions due to climate change. Glob. Change Biol. 21, 1066–1077 (2015).ADS 

    Google Scholar 
    10.Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2019).ADS 

    Google Scholar 
    11.Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).
    Google Scholar 
    12.Kati, V. et al. Hotspots, complementarity or representativeness? Designing optimal small-scale reserves for biodiversity conservation. Biol. Conserv. 120, 471–480 (2004).
    Google Scholar 
    13.Everall, N. C. et al. Comparability of macroinvertebrate biomonitoring indices of river health derived from semi-quantitative and quantitative methodologies. Ecol. Indic. 78, 437–448 (2017).
    Google Scholar 
    14.Gieswein, A., Hering, D. & Lorenz, A. W. Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Sci. Total Environ. 652, 1290–1301 (2019).ADS 
    PubMed 

    Google Scholar 
    15.Coates, S., Waugh, A., Anwar, A. & Robson, M. Efficacy of a multi-metric fish index as an analysis tool for the transitional fish component of the Water Framework Directive. Mar. Pollut. Bull. 55, 225–240 (2007).CAS 
    PubMed 

    Google Scholar 
    16.Feld, C. K. & Hering, D. Community structure or function: Effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw. Biol. 52, 1380–1399 (2007).
    Google Scholar 
    17.Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).PubMed 

    Google Scholar 
    19.Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    20.Thomas, F. et al. Parasites and ecosystem engineering: What roles could they play? Oikos 84, 167 (1999).
    Google Scholar 
    21.Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).PubMed 

    Google Scholar 
    22.Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).PubMed 

    Google Scholar 
    23.Frainer, A., McKie, B. G., Amundsen, P. A., Knudsen, R. & Lafferty, K. D. Parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260–268 (2018).PubMed 

    Google Scholar 
    24.Lafferty, K. D. & Morris, A. K. Altered behavior of parasitized Killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996).
    Google Scholar 
    25.Mouritsen, K. N. & Poulin, R. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, 101–117 (2002).
    Google Scholar 
    26.Marcogliese, D. J. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1, 151–164 (2004).
    Google Scholar 
    27.Lagrue, C. & Poulin, R. Intra- and interspecific competition among helminth parasites: Effects on Coitocaecum parvum life history strategy, size and fecundity. Int. J. Parasitol. 38, 1435–1444 (2008).PubMed 

    Google Scholar 
    28.Rosenkranz, M., Poulin, R. & Selbach, C. Behavioural impacts of trematodes on their snail host: Species-specific effects or generalised response? Ethology 124, 790–795 (2018).
    Google Scholar 
    29.Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    30.Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482 (2013).
    Google Scholar 
    31.Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).CAS 
    PubMed 

    Google Scholar 
    32.Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    33.Preston, D. L., Orlofske, S. A., Lambden, J. P. & Johnson, P. T. J. Biomass and productivity of trematode parasites in pond ecosystems. J. Anim. Ecol. 82, 509–517 (2013).PubMed 

    Google Scholar 
    34.Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE 11, e0149678 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    35.Vidal-Martínez, V. M., Pech, D., Sures, B., Purucker, S. T. & Poulin, R. Can parasites really reveal environmental impact? Trends Parasitol. 26, 44–51 (2010).PubMed 

    Google Scholar 
    36.Shea, J. et al. The use of parasites as indicators of ecosystem health as compared to insects in freshwater lakes of the Inland Northwest. Ecol. Indic. 13, 184–188 (2012).
    Google Scholar 
    37.Sures, B., Nachev, M., Selbach, C. & Marcogliese, D. J. Parasite responses to pollution: What we know and where we go in ‘environmental parasitology’. Parasit. Vectors 10, 65 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    38.Esch, G. W. The transmission of digenetic trematodes: Style, elegance, complexity. Integr. Comp. Biol. 42, 304–312 (2002).PubMed 

    Google Scholar 
    39.Byers, J. E., Altman, I., Grosse, A. M., Huspeni, T. C. & Maerz, J. C. Using parasitic trematode larvae to quantify an elusive vertebrate host. Conserv. Biol. 25, 85–93 (2010).PubMed 

    Google Scholar 
    40.Moore, C. S., Gittman, R. K., Puckett, B. J., Wellman, E. H. & Blakeslee, A. M. H. If you build it, they will come: Restoration positively influences free-living and parasite diversity in a restored tidal marsh. Food Webs 25, e00167 (2020).
    Google Scholar 
    41.Dougherty, E. R. et al. Paradigms for parasite conservation. Conserv. Biol. 30, 724–733 (2016).MathSciNet 
    PubMed 

    Google Scholar 
    42.Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. 250, 108596 (2020).
    Google Scholar 
    43.Kwak, M. L., Heath, A. C. G. & Cardoso, P. Methods for the assessment and conservation of threatened animal parasites. Biol. Conserv. 248, 108696 (2020).
    Google Scholar 
    44.Votýpka, J., Kment, P., Yurchenko, V. & Lukeš, J. Endangered monoxenous trypanosomatid parasites: A lesson from island biogeography. Biodivers. Conserv. 29, 3635–3667 (2020).
    Google Scholar 
    45.Carlson, C. J. et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci. Adv. 3, e1602422 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Lafferty, K. D. Biodiversity loss decreases parasite diversity: Theory and patterns. Philos. Trans. R. Soc. B Biol. Sci. 367, 2814–2827 (2012).
    Google Scholar 
    47.Cizauskas, C. A. et al. Parasite vulnerability to climate change: An evidence-based functional trait approach. R. Soc. Open Sci. 4, 160535 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Watson, D. M., Milner, K. V. & Leigh, A. Novel application of species richness estimators to predict the host range of parasites. Int. J. Parasitol. 47, 31–39 (2017).PubMed 

    Google Scholar 
    49.Vannatta, J. T. & Minchella, D. J. Parasites and their impact on ecosystem nutrient cycling. Trends Parasitol. 34, 452–455 (2018).CAS 
    PubMed 

    Google Scholar 
    50.Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B Biol. Sci. 285, 20180072 (2018).
    Google Scholar 
    51.Faltýnková, A. Larval trematodes (Digenea) in molluscs from small water bodies near České Budějovice, Czech Republic. Acta Parasitol. 50, 49–55 (2005).
    Google Scholar 
    52.Żbikowska, E. Digenea species in chosen populations of freshwater snails in northern and central part of Poland. Wiadomości Parazytol. 53, 301–308 (2007).
    Google Scholar 
    53.Schwelm, J., Soldánová, M., Vyhlídalová, T., Sures, B. & Selbach, C. Small but diverse: Larval trematode communities in the small freshwater planorbids Gyraulus albus and Segmentina nitida (Gastropoda: Pulmonata) from the Ruhr River, Germany. Parasitol. Res. 117, 241–255 (2018).CAS 
    PubMed 

    Google Scholar 
    54.Selbach, C., Soldánová, M., Feld, C. K., Kostadinova, A. & Sures, B. Hidden parasite diversity in a European freshwater system. Sci. Rep. 10, 2694 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Gibson, D. I. & Bray, R. A. The evolutionary expansion and host-parasite relationships of the Digenea. Int. J. Parasitol. 24, 1213–1226 (1994).CAS 
    PubMed 

    Google Scholar 
    56.Gordy, M. A., Kish, L., Tarrabain, M. & Hanington, P. C. A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol. Res. 115, 3867–3880 (2016).PubMed 

    Google Scholar 
    57.Soldánová, M. et al. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 47, 327–345 (2017).PubMed 

    Google Scholar 
    58.Faltýnková, A. & Haas, W. Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): Before and today. Parasitol. Res. 99, 572–582 (2006).PubMed 

    Google Scholar 
    59.Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, pulmonata) in Central Europe: A survey of species and key to their identification. Parasite 14, 39–51 (2007).PubMed 

    Google Scholar 
    60.Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: A survey of species and key to their identification. Syst. Parasitol. 69, 155–178 (2008).PubMed 

    Google Scholar 
    61.Faltýnková, A., Sures, B. & Kostadinova, A. Biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater ecosystems of Europe. Syst. Parasitol. 93, 283–293 (2016).PubMed 

    Google Scholar 
    62.Soldánová, M., Selbach, C., Sures, B., Kostadinova, A. & Perez-del-Olmo, A. Larval trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River. Parasit. Vectors 3, 56 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    63.Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: Meta-analytical insights into patterns and causal mechanisms. Ecography (Cop.) 37, 689–697 (2014).
    Google Scholar 
    64.Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010).CAS 
    PubMed 

    Google Scholar 
    65.Lagrue, C. & Poulin, R. Local diversity reduces infection risk across multiple freshwater host-parasite associations. Freshw. Biol. 60, 2445–2454 (2015).
    Google Scholar 
    66.Song, Z. & Proctor, H. Parasite prevalence in intermediate hosts increases with waterbody age and abundance of final hosts. Oecologia 192, 311–321 (2020).ADS 
    PubMed 

    Google Scholar 
    67.Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).
    Google Scholar 
    68.Gopko, M., Mironova, E., Pasternak, A., Mikheev, V. & Taskinen, J. Freshwater mussels (Anodonta anatina) reduce transmission of a common fish trematode (eye fluke, Diplostomum pseudospathaceum). Parasitology 144, 1971–1979 (2017).CAS 
    PubMed 

    Google Scholar 
    69.Vielma, S., Lagrue, C., Poulin, R. & Selbach, C. Non-host organisms impact transmission at two different life stages in a marine parasite. Parasitol. Res. 118, 111–117 (2019).PubMed 

    Google Scholar 
    70.Kudlai, O., Stunženas, V. & Tkach, V. The taxonomic identity and phylogenetic relationships of Cercaria pugnax and C. helvetica XII (Digenea: Lecithodendriidae) based on morphological and molecular data. Folia Parasitol. (Praha) 62, 1–7 (2015).
    Google Scholar 
    71.Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. The sixth mass coextinction: Are most endangered species parasites and mutualists? Proc. R. Soc. B Biol. Sci. 276, 3037–3045 (2009).
    Google Scholar 
    72.Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A. & Sures, B. Integrative taxonomic approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from Europe with a focus on the ‘Diplostomum mergi’ species complex. Parasit. Vectors 8, 300 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    73.Marcogliese, D. J. Parasites of the superorganism: Are they indicators of ecosystem health? Int. J. Parasitol. 35, 705–716 (2005).PubMed 

    Google Scholar 
    74.MacKenzie, K., Williams, H. H., Williams, B., McVicar, A. H. & Siddall, R. Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv. Parasitol. 35, 85–144 (1995).CAS 
    PubMed 

    Google Scholar 
    75.Anderson, T. K. & Sukhdeo, M. V. K. Qualitative community stability determines parasite establishment and richness in estuarine marshes. PeerJ 2013, 1–14 (2013).
    Google Scholar 
    76.Neutel, A. M. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    77.Glöer, P. Süßwassergastropoden Nord- und Mitteleuropas: Mollusca I: Bestimmungsschlüssel, Lebensweise, Verbreitung (ConchBooks, 2002).
    Google Scholar 
    78.Welter-Schultes, F. European Non-marine Molluscs, a Guide for Species Identification (Planet Poster Editions, 2012).
    Google Scholar 
    79.Brühne, M. & Scharbert, A. Die Erschließung des Bienener Altrheins für die Rheinfischfauna. Naturschutz und Biologische Vielfalt (2005).80.Hugghins, E. J. Life history of a strigeid trematode, Hysteromorpha triloba (Rudolphi, 1819) Lutz, 1931. II. Sporocyst through adult. Trans. Am. Microsc. Soc. 73, 221 (1954).
    Google Scholar 
    81.Našincová, V. & Scholz, T. The life cycle of Asymphylodora tincae (Modeer 1790) (Trematoda: Monorchiidae): A unique development in monorchiid trematodes. Parasitol. Res. 80, 192–197 (1994).PubMed 

    Google Scholar 
    82.Georgieva, S. et al. New cryptic species of the ‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit. Vectors 6, 64 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    83.Grabner, D. S. et al. Invaders, natives and their enemies: Distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    84.Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575 (1997).CAS 
    PubMed 

    Google Scholar 
    85.Niewiadomska, K. Family Cyathocotylidae Mühling, 1898. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 201–214 (CABI Publishing Wallingford & Natural History Museum, 2002).
    Google Scholar 
    86.Möhl, K. et al. Biology of Alaria spp. and human exposition risk to Alaria mesocercariae-a review. Parasitol. Res. 105, 1–15 (2009).PubMed 

    Google Scholar 
    87.Brown, R., Soldánová, M., Barrett, J. & Kostadinova, A. Small-scale to large-scale and back: Larval trematodes in Lymnaea stagnalis and Planorbarius corneus in Central Europe. Parasitol. Res. 108, 137–150 (2011).PubMed 

    Google Scholar 
    88.Niewiadomska, K. Family Diplostomidae Poirier, 1886. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 167–196 (CABI Publishing Wallingford & Natural History Museum, 2002).
    Google Scholar 
    89.Tkach, V. V., Kudlai, O. & Kostadinova, A. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). Int. J. Parasitol. 46, 171–185 (2016).PubMed 

    Google Scholar 
    90.Kostadinova, A. & Gibson, D. A redescription of Uroproctepisthmium bursicola (Creplin, 1837) n. comb. (Digenea: Echinostomatidae), and re-evaluations of the genera Episthmium Lühe, 1909 and Uroproctepisthmium Fischthal & Kuntz, 1976. Syst. Parasitol. 50, 63–67 (2001).CAS 
    PubMed 

    Google Scholar 
    91.Kudlai, O. Biology of Neoacanthoparyphium echinatoides (Trematoda, Echinostomatidae) in north-western Priazov’ye (Ukraine). Vestn. Zool. 23, 102–106 (2009).
    Google Scholar 
    92.Selbach, C. et al. Morphological and molecular data for larval stages of four species of Petasiger Dietz, 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic. Syst. Parasitol. 89, 153–166 (2014).PubMed 

    Google Scholar 
    93.Bray, R. A. Family Lissorchiidae Magath, 1917. In Keys to the Trematoda Vol. 3 (eds Bray, R. A. et al.) 177–186 (CABI Publishing Wallingford & Natural History Museum, 2008).
    Google Scholar 
    94.Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M. & Kostadinova, A. Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Syst. Parasitol. 88, 37–54 (2014).PubMed 

    Google Scholar 
    95.Kanarek, G., Zaleśny, G., Sitko, J. & Tkach, V. V. The systematic position and structure of the genus Leyogonimus Ginetsinskaya, 1948 (Platyhelminthes: Digenea) with comments on the taxonomy of the superfamily Microphalloidea Ward, 1901. Acta Parasitol. 62, 617–624 (2017).CAS 
    PubMed 

    Google Scholar 
    96.Tkach, V. V., Snyder, S. D. & Świderski, Z. On the phylogenetic relationships of some members of Macroderoididae and Ochetosomatidae (Digenea, Plagiorchioidea). Acta Parasitol. 46, 267–275 (2001).
    Google Scholar 
    97.Roy, C. L. & St-Louis, V. Spatio-temporal variation in prevalence and intensity of trematodes responsible for waterfowl die-offs in faucet snail-infested waterbodies of Minnesota, USA. Int. J. Parasitol. Parasites Wildl. 6, 162–176 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    98.Kostadinova, A. Family Echinostomatidae Looss, 1899. In Keys to the Trematoda Vol. 2 (eds Jones, A. et al.) 9–64 (CABI Publishing Wallingford & Natural History Museum, 2005).
    Google Scholar 
    99.Niewiadomska, K. Family Strigeidae Railliet, 1919. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 231–241 (CABI Publishing & Natural History Museum, 2002).
    Google Scholar  More

  • in

    Effects of competitive pressure and habitat heterogeneity on niche partitioning between Arctic and boreal congeners

    1.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
    Google Scholar 
    2.Wethey, D. S. Biogeography, competition, and microclimate: The barnacle Chthamalus fragilis in New England. Integr. Comp. Biol. 42, 872–880 (2002).PubMed 

    Google Scholar 
    3.Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G. & Körber, J.-H. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Glob. Ecol. Biogeogr. 16, 754–763 (2007).
    Google Scholar 
    4.Bøhn, T. & Amundsen, P.-A. The competitive edge of an invading specialist. Ecology 82, 2150–2163 (2001).
    Google Scholar 
    5.Barger, C. P. & Kitaysky, A. S. Isotopic segregation between sympatric seabird species increases with nutritional stress. Biol. Lett. 8, 442–445 (2012).PubMed 

    Google Scholar 
    6.Gosselink, T. E., Deelen, T. R. V., Warner, R. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wildl. Manag. 67, 90 (2003).
    Google Scholar 
    7.Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so why?. Ecol. Res. 25, 875–881 (2010).
    Google Scholar 
    8.Pickett, E. P. et al. Spatial niche partitioning may promote coexistence of Pygoscelis penguins as climate-induced sympatry occurs. Ecol. Evol. 8, 9764–9778 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    9.Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e62897 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    10.Reif, J., Reifová, R., Skoracka, A. & Kuczyński, L. Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J. Anim. Ecol. 87, 774–789 (2018).PubMed 

    Google Scholar 
    11.Trego, C. T., Merriam, E. R. & Petty, J. T. Non-native trout limit native brook trout access to space and thermal refugia in a restored large-river system. Restor. Ecol. 27, 892–900 (2019).
    Google Scholar 
    12.Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).
    Google Scholar 
    13.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    15.Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Elmhagen, B. et al. Homage to Hersteinsson and Macdonald: Climate warming and resource subsidies cause red fox range expansion and Arctic fox decline. Polar Res. 36, 3 (2017).
    Google Scholar 
    18.IPCC. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).19.Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    20.Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).ADS 

    Google Scholar 
    21.Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago: Svalbard Norway. Glob. Change Biol. 23, 490–502 (2017).ADS 

    Google Scholar 
    22.Descamps, S., Strøm, H. & Steen, H. Decline of an arctic top predator: Synchrony in colony size fluctuations, risk of extinction and the subpolar gyre. Oecologia 173, 1271–1282 (2013).PubMed 
    ADS 

    Google Scholar 
    23.Garðarsson, A., Guðmundsson, G. A. & Lilliendahl, K. Svartfugl í íslenskum fuglabjörgum 2006–2008. Bliki 33, 35–46 (2019).
    Google Scholar 
    24.Merkel, F. et al. Declining trends in the majority of Greenland’s thick-billed murre (Uria lomvia) colonies 1981–2011. Polar Biol. 37, 1061–1071 (2014).
    Google Scholar 
    25.Fauchald, P. et al. The status and trends of seabirds breeding in Norway and Svalbard. 84 (2015).26.Williams, A. J. Site preferences and interspecific competition among guillemots Uria aalge (L.) and Uria lomvia (L.) on Bear Island. Ornis Scand. 5, 113 (1974).
    Google Scholar 
    27.Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83(1), 301–309. https://doi.org/10.1016/j.anbehav.2011.10.031 (2012).28.Luque, S. P. An Introduction to the diveMove Package. 56 (2007).29.Luque, S. P. & Fried, R. Recursive filtering for zero offset correction of diving depth time series with GNU R Package diveMove. PLoS ONE 6, e15850 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    30.QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation Project. http://qgis.osgeo.org, 2018).31.Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the Utilization Distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
    Google Scholar 
    32.Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
    Google Scholar 
    33.Geange, S. W., Pledger, S., Burns, K. C. & Shima, J. S. A unified analysis of niche overlap incorporating data of different types. Methods Ecol. Evol. 2, 175–184 (2011).
    Google Scholar 
    34.Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    35.Linnebjerg, J. F. et al. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS ONE 8, e72987 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    36.McFarlane Tranquilla, L. A. et al. Multiple-colony winter habitat use by murres Uria spp. in the Northwest Atlantic Ocean: Implications for marine risk assessment. Mar. Ecol. Prog. Ser. 472, 287–303 (2013).ADS 

    Google Scholar 
    37.Pratte, I., Robertson, G. & Mallory, M. Four sympatrically nesting auks show clear resource segregation in their foraging environment. Mar. Ecol. Prog. Ser. 572, 243–254 (2017).ADS 

    Google Scholar 
    38.Kokubun, N. et al. Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea. Biogeosciences 13, 2579–2591 (2016).ADS 

    Google Scholar 
    39.Barger, C. P., Young, R. C., Will, A., Ito, M. & Kitaysky, A. S. Resource partitioning between sympatric seabird species increases during chick-rearing. Ecosphere 7, e01447 (2016).
    Google Scholar 
    40.Huffeldt, N. P. & Merkel, F. R. Sex-specific, inverted rhythms of breeding-site attendance in an Arctic seabird. Biol. Lett. 12, 20160289 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    41.Kappes, M. A. et al. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species. Mov. Ecol. 3, 34 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    42.Benvenuti, S., Bonadonna, F., Dall’Antonia, L. & Gudmundsson, G. A. Foraging flights of breeding thick-billed murres (Uria lomvia) as revealed by bird-borne direction recorders. Auk 115, 57–66 (1998).
    Google Scholar 
    43.Hunt, G. L., Bakken, V. & Mehlum, F. Marine birds in the Marginal Ice Zone of the Barents Sea in late winter and spring. Arctic 49, 53–61 (1996).
    Google Scholar 
    44.Hein, C., Öhlund, G. & Englund, G. Future distribution of Arctic Char Salvelinus alpinus in Sweden under climate change: Effects of temperature, lake size and species interactions. Ambio 41(Suppl 3), 303–312 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    45.Mehlum, F., Watanuki, Y. & Takahashi, A. Diving behaviour and foraging habitats of Brünnich’s guillemots (Uria lomvia) breeding in the High-Arctic. J. Zool. 255, 413–423 (2001).
    Google Scholar 
    46.Frederiksen, M. et al. Seabird baseline studies in Baffin Bay, 2008–2013. Colony-based fieldwork at Kippaku and Apparsuit, NW Greenland. Report No. 110. (Aarhus University, DCE – Danish Centre for Environment and Energy, Roskilde, Denmark., 2014).47.Spagnolo, M. & Clark, C. D. A geomorphological overview of glacial landforms on the Icelandic continental shelf. J. Maps 5, 37–52 (2009).
    Google Scholar 
    48.Meier, W. N. et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).ADS 

    Google Scholar 
    49.Gaston, A. J., Smith, P. A. & Provencher, J. F. Discontinuous change in ice cover in Hudson Bay in the 1990s and some consequences for marine birds and their prey. ICES J. Mar. Sci. 69, 1218–1225 (2012).
    Google Scholar 
    50.Grémillet, D. et al. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Change Biol. 21, 1116–1123 (2015).ADS 

    Google Scholar 
    51.Valdimarsson, H., Astthorsson, O. S. & Palsson, J. Hydrographic variability in Icelandic waters during recent decades and related changes in distribution of some fish species. ICES J. Mar. Sci. 69, 816–825 (2012).
    Google Scholar  More

  • in

    A convenient polyculture system that controls a shrimp viral disease with a high transmission rate

    Mathematical model 1—the relationship among the bodyweight of the initial WSSV-infected shrimp, number of deaths, and death time distributionThe experimental data show the time course of death for the infected shrimp satisfies the Laplacian distribution (Supplementary Tables 2–4). The relationship of the bodyweight of the initial infected shrimp number of deaths and death time distribution could be expressed by a mathematical model and the establishment of the mathematical model as shown below.Suppose that one dead shrimp could infect (n) healthy shrimp at the same day. These (n) infected shrimp do not die simultaneously but on different days (time course). The value of (n) is related to the weight of the dead shrimps—larger dead shrimp can infect more healthy shrimps of the same body weight. Our experimental results (Supplementary Tables 2–4) show the death time course for these (n) infected shrimp satisfies the Laplacian distribution, as follows:$$begin{array}{c}pleft(tright)=left{begin{array}{c}{b{{exp}}}left(-frac{left|t-aright|}{{c}_{1}}right),tle a\ {b{{exp}}}left(-frac{left|t-aright|}{{c}_{2}}right),t > aend{array}right.end{array}$$
    (1)
    where (a) is the peak time of number of dead shrimps, (b) is the maximal death percentage, ({c}_{1}) is related to the mortality increases of the infected shrimps, ({c}_{2}) is related to the mortality decreases of the infected shrimp, (p(t)) is the percentage of infected shrimp that die at time (t). The open bracket “{“ in formula (1) means the function is represented by two parallel expressions as described previously.Based on the Supplementary Tables 2–4, we can determine the value of (a), (b), ({c}_{1}), and ({c}_{2}) by the least square estimation method. As different weight corresponds to different distribution of death time, we can compute the relationship of weight of death shrimps with corresponding (a), (b), ({c}_{1}), and ({c}_{2}) (Supplementary Table 25).We found the relationship of (w) with (a), or (b), or ({c}_{1}) or ({c}_{2}) is quadratic (Eq. 2), with the data in Supplementary Table 25, we have$$begin{array}{c}left{begin{array}{c} a= -0.0918{w}^{2}+0.8772w+3.3449\ b=0.0029{w}^{2}-0.0369w+0.5849;;\ {c}_{1}=-0.0186{w}^{2}+0.1739w+0.7063\ {c}_{2}=0.0002{w}^{2}+0.0108w+1.0827;;,end{array}right.end{array}$$
    (2)
    Using Model 1, we can predict the effects of different body weights of dead WSSV-infected shrimp through the ingestion pathway of WSSV-infected dead shrimp on the WSSV transmission rate.Mathematical model 2—the dynamic changes of healthy, infected, and dead shrimp during WSSV transmissionWe derived and established Model 2 to simulate the WSS transmission dynamics in cultured shrimp. Using Model 2, we predicted the dynamic changes of three states (healthy, infected, and dead shrimps) in cultured shrimp as influenced by the WSS epidemic with the following:Now we can develop a model for the spread and break out of WSS. For any given weight (w) of shrimps, let ({s}_{h}(t)), ({s}_{i}(t)), and ({s}_{d}(t)) be the number of healthy shrimp, infected shrimp and dead shrimp respectively at time (t). Let (I(t)), (d(t)) be the number of daily infected shrimp, daily dead shrimp, respectively, at time (t).According to infection process, the decrement of healthy shrimp is caused by their infection, therefore we have (frac{d{s}_{h}}{{dt}}=-I(t)). The quantity change of infected shrimp includes the infection of healthy shrimp and the death of infected shrimp, we have (frac{d{s}_{i}}{{dt}}=I(t)-d(t)). The increment of dead shrimp is caused by the death of the infected shrimp; thus we have (frac{d{s}_{d}}{{dt}}=d(t)). We obtain the following system of ordinary differential equations:$$left{begin{array}{c}frac{d{s}_{h}}{{dt}}=-Ileft(tright)hfill\ ,frac{d{s}_{i}}{{dt}}=Ileft(tright)-dleft(tright)\ frac{d{s}_{d}}{{dt}}=d(t)hfillend{array}right.$$
    (3)
    where ({s}_{h}left(0right)={s}_{{h}_{0}}), ({s}_{i}left(0right)={s}_{{i}_{0}}), ({s}_{d}left(0right)={s}_{{d}_{0}}) are as the initial value, at (t=0).In the above system of ordinary differential equations, quantity (I(t)) can be expressed as follows$$begin{array}{c}Ileft(tright)={min }left{n{s}_{d}left(tright),{s}_{h}left(tright)-alpha {s}_{{h}_{0}}right}end{array},$$
    (4)
    (d(t)) can be expressed as$$begin{array}{c}dleft(tright)={int }_{0}^{T}{min }left{n{s}_{d}left(t-tau right),{s}_{h}left(t-tau right)-alpha {s}_{{h}_{0}}right}pleft(tau right)dtau end{array}$$
    (5)
    where (n) is the number of healthy shrimp infected by one dead shrimp on the first day. (p(tau )) is the death percentage of the (n) infected shrimp on the (tau) days, (T) is the longest survival time of infected shrimp.Now we explain how to set up the formulas (I(t)) and (d(t)). In the expression of (I(t)), (n{s}_{d}(t)) is the number of daily infected shrimp at time (t). But as the number of healthy shrimp decreases, there may not be as many as (n{s}_{d}(t)) healthy shrimp to be infected. Therefore, (I(t)) is the minimum of (n{s}_{d}(t)) and ({s}_{h}left(tright)-alpha {s}_{{h}_{0}}), where (alpha (0 , < , alpha, < , 1)) represents the percentage of healthy shrimp that may have resistance to viruses, (d(t)) is the number of shrimps infected from (0) to (t) die at time (t). We use this integral to express the number of shrimp die at time (t).To evaluate the performance of the model 2, we compare the simulated scenario and the biological experimental settings. Our experiments show the quantity change of dead shrimps and live shrimps with respect to time, which is consistent with the result of simulation (Supplementary Fig. 4).Mathematical model 3—use fish to control WSSWe established Model 3 for the prevention and control of WSS using fish. In Model 3, two parameters need to be determined before this model can be applied for evaluating the fish’s capability of WSS prevention and control. The two parameters are, (1) fish-feeding quantity of dead shrimp, and (2) fish-feeding ratio of dead shrimp over healthy shrimp. We obtained 1 kg grass carp’s feeding quantity of different body weights of shrimp and the feeding selectivity through experiments. The mathematical reasoning of Model 3 is as follows:To block the transmission of WSS, we apply fish to eat dead shrimp and infected shrimp. Let ({e}_{h}(t)), ({e}_{i}(t)), and ({e}_{d}(t)), respectively be the number of healthy shrimp, infected shrimp and dead shrimp eaten by fish daily at time (t), (f(t)) is the number of fish.The decrement of healthy shrimp is related to the number of infected healthy shrimp and the number of shrimp eaten by fish, as expressed in (frac{d{s}_{h}}{{dt}}=-I(t)-{e}_{h}(t)). Similarly, the dynamics of the infected shrimp is related to the number of infected healthy shrimp, the death number of infected shrimp, and the number of infected shrimp eaten by fish, as expressed in (frac{d{s}_{i}}{{dt}}=I(t)-d(t)-{e}_{i}(t)). The dynamics of dead shrimp is related to the death number of infected shrimp, and eaten by fish, as expressed in (frac{d{s}_{d}}{{dt}}=d(t)-{e}_{d}(t)). Combining the above formulae, we can write the model as follows:$$left{begin{array}{c}frac{d{s}_{h}}{{dt}}=-Ileft(tright)-{e}_{h}left(tright)quadhfill\ ,frac{d{s}_{i}}{{dt}}=Ileft(tright)-dleft(tright)-{e}_{i}left(tright)hfill\ frac{d{s}_{d}}{{dt}}=d(t)-{e}_{d}(t)hfillend{array}right.$$ (6) where ({s}_{h}left(0right)={s}_{{h}_{0}}), ({s}_{i}left(0right)={s}_{{i}_{0}}), ({s}_{d}left(0right)={s}_{{d}_{0}}) are as the initial value at (t=0). In the above model, (I(t)), (d(t)), ({e}_{h}(t)), ({e}_{i}(t)), and ({e}_{d}(t)) are respectively given as follows:$$left{begin{array}{c};, Ileft(tright)={min }left{n{s}_{d}left(tright),{s}_{h}left(tright)-alpha {s}_{{h}_{0}}right}hfill\ ;dleft(tright)={int }_{0}^{t}{min }left{n{s}_{d}left(t-tau right),{s}_{h}left(t-tau right)-alpha {s}_{{h}_{0}}right}pleft(tau right){exp }left{{int }_{t-tau }^{t}{{{{{rm{ln}}}}}}rleft(uright){du}right}dtau hfill\ {e}_{d}left(tright)={min }left{fleft(tright)cdot mcdot beta ,{s}_{d}left(tright)+dleft(tright)right}hfill\ ,{e}_{i}left(tright)={min }left{left(fleft(tright)cdot m-{e}_{d}left(tright)right)frac{{s}_{i}left(tright)+Ileft(tright)-dleft(tright)}{{s}_{i}left(tright)+{s}_{h}left(tright)-dleft(tright)},{s}_{i}left(tright)+Ileft(tright)-dleft(tright)right}hfill\ {e}_{h}left(tright)={min }left{fleft(tright)cdot m-{e}_{d}left(tright)-{e}_{i}left(tright),{s}_{h}left(tright)-Ileft(tright)right}hfill\ ;,rleft(tright)=1-frac{{e}_{i}left(tright)}{{s}_{i}left(tright)+Ileft(tright)-dleft(tright)}hfillend{array}right.$$ (7) where, (I(t)) is the same as in Eq. (4); for (d(t)), different from Eq. (5) is that we add an exponential item ({exp }left{{int }_{t-tau }^{t}{{{{{rm{ln}}}}}}rleft(uright){du}right}) to account for the infected shrimp that may be eaten by fish during the past (t) days. As for ({e}_{d}(t)) shown in Eq. (6), (m) is for that each fish eats (m) shrimps while (beta) accounts for a percentage of dead shrimp in (m) shrimp. In ({e}_{i}(t)), we introduce (frac{{s}_{i}left(tright)+Ileft(tright)-dleft(tright)}{{s}_{i}left(tright)+{s}_{h}left(tright)-dleft(tright)}) for the percentage of infected shrimp in live shrimp. ({e}_{h}(t)) accounts for the number of healthy shrimp eaten by fish. (r(t)) represents the percentage of infected shrimp not being eaten by fish. We performed the effects of 1 kg grass carps on shrimp with four different body weights. The simulated data agreed with the experimental results (Fig. 2c).The relationship among the bodyweight of one initial WSSV-infected shrimp, number of deaths, and death time distributionThree groups of 430 shrimp with a bodyweight of 1.98 ± 0.03, 6.13 ± 0.16, and 7.95 ± 0.13 g, respectively, were used. In each group, 30 shrimp were randomly selected and subjected to a two-step WSSV PCR assay. All the tested shrimp showed negative in the assay. The remaining 400 shrimps were divided equally and introduced to three experimental and one control ponds. All 12 aquariums (220 cm × 60 cm × 80 cm) were set up with a water volume of 0.5 m3 and a salinity of 8‰. Shrimp were quarantined for seven days before the experiment started. One piece of dead WSSV-infected shrimp was then introduced to each of the experimental aquariums. In addition, one piece of frozen dead shrimp (WSSV-free) was introduced to the control aquarium. Shrimp were fed once a day with artificial feed that is 2% of their body weight. Shrimp feces were timely removed, and 50% of the water in the aquarium was exchanged every day. To prevent healthy shrimps from eating the moribund shrimp but not the initial dead WSSV-infected shrimp, shrimp were observed every 10 min to identify and remove moribund shrimp from the second day of the experiment. Moribund shrimp were identified as the ones having pleopod activity, but no response to glass rod agitation. The experiment was continued until three days after the appearance of the last moribund shrimp in each aquarium. Five pieces each of moribund and survived shrimps in each aquarium were subjected to a one-step WSSV PCR assay. All moribund shrimps showed WSSV-positive, while survived shrimps showed WSSV-negative. A mathematical model (Model 1) describing the relationship among the bodyweight of one initial WSSV-infected shrimp, number of deaths, and death time distribution was established based on the experimental results.The dynamic changes of live, infected, and dead shrimps during WSSV transmissionTo determine the changes in numbers of live and dead shrimp during WSSV transmission, 9 cement ponds (315 cm × 315 cm × 120 cm) were set up with a water volume of 5 m3 and salinity of 8‰. Regarding the stocking quantity of 7.5 × 105/ha in shrimp farming production, 750 healthy shrimp with an average body weight of 7.9 g were cultured in each of the nine ponds.To prepare the WSSV acute-infected shrimp, healthy shrimp were starved for 3 days, and then fed with parts of dead WSSV-infected shrimp that are 20% of their body weights twice a day. Five shrimp were randomly selected and subjected to a one-step WSSV PCR assay. If the tested shrimp showed WSSV positive in the assay. The rest of the shrimp in the aquarium was used as the WSSV acute-infected shrimp in the following experiments.Healthy shrimp were quarantined for seven days before the experiment started. Thirty WSSV acute-infected shrimp were then introduced in each pond. Shrimps were fed once a day with artificial feed that is 2% of their body weight. The numbers of survived shrimp were counted in three ponds on the 2nd, 4th, 8th day after WSSV infection, respectively. Five dead shrimps in each pond were subjected to a one-step WSSV PCR assay, showing WSSV-positive. Based on model 1, we established a mathematical model (Model 2) to describe the dynamic changes of healthy, infected, and dead shrimps during WSSV transmission.The dead shrimp ingestion rate of fishTo determine the dead shrimp ingestion rate of grass carp (Ctenopharyngodon idellus). Three cement ponds (315 cm × 315 cm × 120 cm) were set up with a water volume of 5 m3 and a salinity of 5‰. Three grass carps with an average body weight of 0.5 kg, 1 kg, and 1.5 kg were released in each of the three ponds, respectively. The fish were raised for four days and then fed with dead shrimps with an average weight of 5.3 g. In addition, to determine the dead shrimp ingestion rate of African sharptooth catfish (Clarias gariepinus). Four cement ponds (315 cm × 315 cm × 120 cm) were set up with a water volume of 5 m3 and salinity of 3‰. One African sharptooth catfish with bodyweight of 0.262, 0.496, 0.731, and 1.502 kg was released in each of the four ponds, respectively. The fish were raised for four days and then fed with dead shrimps with an average body weight of 6.2 g. Finally, to determine the dead shrimp ingestion rate of red drum (Sciaenops ocellatus). Three cement ponds (315 cm × 315 cm × 120 cm) were set up with water volume of 5 m3 and a salinity of 5‰. One red drum with a bodyweight of 0.590, 0.654, and 0.732 kg was released in each of the three ponds, respectively. The fish were raised for four days and then fed with dead shrimps with an average body weight of 3.9 g.During the five days of the experiment, dead shrimp that were not ingested by fish were exchanged with new dead shrimps every day. Additionally, the total body weight of dead shrimp ingested by fishes was calculated by subtracting the total body weight of dead shrimp that remained in the pond from the total body weight of dead shrimp put in the pond. The shrimp ingestion rate of fish is quantified by the daily ingestion rate (total body weight of ingested shrimps per day/total body weight of fishes). The daily ingestion rate of fish was calculated for 5 days.The healthy shrimp ingestion rate of fishTo determine the healthy shrimp ingestion rate of grass carp, three experimental ponds and one control pond (315 cm × 315 cm × 120 cm) were set up with a water volume of 5 m3 and salinity of 5‰. In total, 750 healthy shrimp with an average body weight of 5.3 g were cultured in each pond. One grass carp weighting 0.956, 1.013, and 1.050 kg was released in each of the experiment ponds, respectively. No fish was released in the control pond. Every two days, 50% of the water in each pond was changed. Live shrimp that remained in each pond were counted and weighted after 10 days of the experiment.To determine the healthy shrimp ingestion rate of African sharptooth catfish, one experimental pond and one control pond (315 cm × 315 cm × 120 cm) were set up with a water volume of 5 m3 and salinity of 3‰. In total, 750 healthy shrimp with an average body weight of 2.2 g were cultured in each pond. One African sharptooth fish weighting 1.050 kg was released in the experiment pond. No fish was released in the control pond. Every 2 days, 50% of the water in each pond was changed. Live shrimp that remained in each pond were counted and weighted after 10 days of the experiment.To determine the healthy shrimp ingestion rate of red drum, three experimental ponds and one control pond (315 cm × 315 cm × 120 cm) were set up with a water volume of 5 m3 and salinity of 5‰. In total, 750 healthy shrimp with an average body weight of 2.7 g were introduced in each pond. One red drum weighting 0.519, 0.554, and 0.595 kg was released in each of the experiment ponds, respectively. No fish was released in the control pond. Every two days, 50% of the water in each pond was changed. Live shrimp that remained in each pond were counted and weighted after 10 days of the experiment.The feeding selectivity of fish on dead, infected, and healthy shrimpsTo determine the feeding selectivity of grass carp on dead, infected, and healthy shrimp, one aquarium (220 cm × 60 cm × 80 cm) was set up with a water volume of 0.5 m3 and a salinity of 5‰. Grass carp weighting 1.58 kg was cultured in the aquarium for four days before the experiment started. The diseased shrimp infected with WSSV died within two days, which makes it hard to distinguish the initial dead shrimp from the ones that were died from diseased shrimp. The diseased shrimp had reduced activity, and the activity of shrimp was reduced after the endopods and exopods were removed. Thus, shrimp with endopods and exopods removed were utilized to resemble WSSV-infected shrimp. Thirty pieces each of dead, WSSV-infected (endopods and exopods removed), and healthy shrimps were introduced in the aquarium. The mean weight of shrimp used in the experiment is 3.5 g.To determine the feeding selectivity of African sharptooth catfish on dead, infected, and healthy shrimps, one aquarium (220 cm × 60 cm × 80 cm) was set up with a water volume of 0.5 m3 and salinity of 3‰. African sharptooth catfish with body weight of 1.03 kg was cultured in the aquarium for four days before the experiment started. Thirty pieces each of dead, WSSV-infected (endopods and exopods removed), and healthy shrimps were introduced in the aquarium. The mean weight of shrimps used in the experiment is 8.4 g.During the 9 days of the experiment, the dead, infected (endopods and exopods removed), and healthy shrimp that remained in the aquarium were counted and weighed every day. New shrimps were added to ensure there are 30 pieces each of dead, infected (endopods and exopods removed), and healthy shrimp in the aquarium. The daily total body weight of shrimp that were ingested by fish in each pond was calculated by subtracting the total body weight of shrimp that remained in the pond from the total weight of shrimp put in the pond. The shrimp ingestion rate of fish is quantified by the daily ingestion rate (total body weight of ingested shrimp per day/bodyweight of fish).The suitable bodyweight of grass carp for controlling WSSTo determine the suitable bodyweight of grass carp for controlling WSS, four experimental groups and two control groups were set up. Each group consisted of three ponds (315 cm × 315 cm × 120 cm). In total, 600 healthy and 3 WSSV-infected shrimp with an average body weight of 5 g were cultured in each pond of experimental groups. One grass carp with a bodyweight of 0.3, 0.5, 1.0, 1.5 kg was released in the ponds of each experimental group, respectively. In the positive control group, 600 healthy and 3 WSSV-infected shrimp with an average body weight of 5.0 g were cultured in each of the three ponds without introducing grass carp. In the negative control group, 600 healthy shrimp with an average body weight of 5.0 g were cocultured with one grass carp weighting 1.0 kg in each of the three ponds. The numbers of live shrimp were counted after ten days of the experiment. If there were dead shrimp in the ponds, they were subjected to a one-step WSSV PCR assay. All dead shrimps showed positive for WSSV infection.The suitable bodyweight of African sharptooth catfish for controlling WSSTo determine the suitable bodyweight of African sharptooth catfish for controlling WSS, four experimental groups and two control groups were set up. Each group consisted of three ponds (315 cm × 315 cm × 120 cm). In total, 600 healthy and WSSV carrying shrimp and 3 WSSV-infected shrimp with an average body weight of 1.5 g were cultured in each pond of experimental groups. The WSSV carrying shrimp were determined as the ones that showed positive in a two-step WSSV assay. One African sharptooth catfish with a bodyweight of 0.25, 0.5, 0.75, 1.5 kg was released in the ponds of each experimental group, respectively. In the positive control group, 600 healthy and 3 WSSV-infected shrimp with an average body weight of 1.5 g were cultured in each of the three ponds without introducing African sharptooth catfish. In the negative control group, 600 healthy shrimps with an average body weight of 1.5 g were cocultured with one African sharptooth catfish weighting 1.0 kg in each pond. The numbers of live shrimp were counted after ten days of the experiment. If there were dead shrimps in the ponds, they were subjected to a one-step WSSV PCR assay. All dead shrimps showed positive for WSSV infection.The capacity of grass carp for controlling WSSTo determine the capacity of grass carp for controlling WSS, the number of WSSV-infected shrimp that could be ingested by one grass carp weighting 1 kg was evaluated. Four groups of shrimp with different body weights (1.3 ± 0.1, 2.5 ± 0.2, 5.0 ± 0.3, 7.8 ± 0.5 g) were cocultured with 1-kg grass carp in the ponds.In 1.3 ± 0.1 g group, 750 healthy shrimp were cultured in each of the nine cement ponds (315 cm × 315 cm × 120 cm). Healthy shrimps were cultured with 3, 6, 9, 12, 15, 18, and 21 pieces of WSSV-infected shrimp in each of the seven experimental ponds, respectively. One grass carp weighting 1 kg was released in each of the seven ponds. Healthy shrimp were cultured with 3 WSSV-infected shrimps in one pond as a positive control. Additionally, healthy shrimps were cultured without WSSV-infected shrimp nor grass carp in one pond as a negative control. In 2.5 ± 0.2 g group, 750 healthy shrimp were cultured with 10, 20, 30, 40, 50, 60, and 70 pieces of WSSV-infected shrimp in each of the seven experimental ponds, respectively. One grass carp weighting 1 kg was released in each of the seven ponds. Healthy shrimp were cultured with 10 WSSV-infected shrimp in one pond as a positive control. Additionally, healthy shrimps were cultured without WSSV-infected shrimp nor grass carp in one pond as a negative control. In 5.0 ± 0.3 g group, 750 healthy shrimp were cultivated with 50, 70, 90, 110, 120, 130, and 140 pieces of WSSV-infected shrimp in each of the seven experimental ponds, respectively. One grass carp weighting 1 kg was released in each of the seven ponds. Healthy shrimp were cultured with 50 WSSV-infected shrimps in one pond as a positive control. Additionally, healthy shrimps were cultured without WSSV-infected shrimps nor grass carp in one pond as a negative control. In 7.8 ± 0.5 g group, 750 healthy shrimp were cultured with 30, 40, 50, or 60 pieces of WSSV-infected shrimps in four experimental ponds, respectively. One grass carp weighting 1 kg was released in each of the four ponds. Healthy shrimp were cultured with 30 WSSV-infected shrimps in one pond as a positive control. In addition, healthy shrimps were cultured without WSSV-infected shrimps nor grass carp in one pond as a negative control.In all the ponds, shrimp were fed with artificial feed that is 2% of their body weight. And 50% of the water was changed every day. The numbers of the remaining live shrimp were counted after 15 days of the experiment. A mathematical model (Model 3) was established based on the relationship of healthy shrimp, infected shrimp, dead shrimp, and fish.Determine the numbers of grass carp and African sharptooth catfish required for controlling WSS in L. vanmamei cultivationThe number of grass carp required for controlling WSS in shrimp production was determined in Pinggang Aquaculture Base, Yangjiang, China in 2010. Forty ponds (0.34 ± 0.04 ha/pond) were divided into eight groups; each group consisted of 5 ponds. We cultured 675,000/ha of shrimp in the ponds. Shrimp were cultured for 20 days before 45, 150, 225, 300, 450, 600, 750/ha of grass carp with an average body weight of 1.0 kg were released in the ponds of group 2 to group 8. Shrimp were cultured without fish in the ponds of group 1. These 40 ponds were managed by using the same farming method. If the WSS outbreak occurred, shrimps were harvested immediately; if not, shrimps were harvested after 110 days of cultivation.The number of African sharptooth catfish required for controlling WSS in shrimp production was determined in Pinggang Aquaculture Base, Yangjiang, China in 2010. Thirty-five ponds (0.37 ± 0.06 ha/pond) were divided into seven groups; each group consisted of 5 ponds. We cultured 675,000/ha of shrimp in the ponds. Shrimp were cultured for 10 days before 150, 300, 450, 600, 750, 900/ha of African sharptooth catfish with an average body weight of 1.0 kg were released in the ponds of group 2 to group 7. Shrimp were cultured without fish in the ponds of group 1. These 35 ponds were managed by using the same farming method. If the WSS outbreak occurred, shrimps were harvested immediately; if not, shrimps were harvested after 110 days of cultivation.Validation of coculturing shrimp and grass carp for controlling WSS in L. vanmamei farmingIn 2011, the polyculture system of coculturing L. vanmamei and grass carps was validated at a farm in Maoming, Guangdong Province, China (Farm 1). Forty-six farm ponds (17.33 ha) were divided into zone A and zone B. Zone A consisted of 18 ponds with a total area of 6.03 ha, and zone B consisted of 28 ponds with a total area of 11.30 ha. The stocking quantity of shrimp in the ponds of zone A is 900,000/ha. Shrimp were cultured in the ponds for 20 days before releasing grass carps with an average body weight of 1.0 kg. The stocking quantity of fish is 317–450/ha. Shrimp were cultured without fish in the ponds of zone B, and the stocking quantity of shrimp is 900,000/ha. In 2012, we switched zones A and B, cultivating shrimp with grass carp in zone B but without fish in zone A. The stocking quantities of shrimp and fish were the same as in 2011. If a WSS outbreak occurred, shrimps were harvested immediately; if not, shrimps were harvested after 110 days of cultivation, and yields were measured.Validation of coculturing shrimp and African sharptooth catfish for controlling WSS in L. vanmamei farmingIn 2011, the polyculture system of coculturing L. vanmamei and African sharptooth catfish was validated at a farm in Qinzhou, Guangxi Province, China (Farm 2). Ninety-five farm ponds (88.2 ha) were divided into zone A and zone B. Zone A consisted of 38 ponds with a total area of 21.2 ha, and zone B consisted of 57 ponds with a total area of 67.0 ha. The stocking quantity of shrimp in the ponds of zone A is 750,000/ha. Shrimp were cultured in the ponds for 10 days before releasing African sharptooth catfish with an average body weight of 0.5 kg. The stocking quantity of fish is 525–750/ha. Shrimp were cultured without fish in the ponds of zone B, and the stocking quantity of shrimp is 750,000/ha. In 2012, we split zone B into zones B1 and B2. Shrimp were cultivated with catfish in 38 ponds of zone A and 25 ponds (27.00 ha) of zone B1, while shrimp were cultivated without fish in 32 ponds (40.00 ha) of zone B2. The stocking quantities of shrimp and fish were the same as in 2011. If WSS outbreak occurred, shrimps were harvested immediately; if not, shrimps were harvested after 110 days of cultivation, and yields were measured.Long-term validation of coculturing shrimp and fish for controlling WSS in L. vanmamei cultivationWe tested the effectiveness of using fish for controlling WSS in shrimp production at a farm in Maoming, Guangdong Province, China (Farm 1) from 2013 to 2019. In 2013, shrimp were co-cultured with African sharptooth catfish of body weight ranging from 0.5 to 0.6 kg in 13 ponds (3.73 ha). The stocking quantity of shrimp in these ponds ranges from 878,788/ha to 1,230,769/ha. And shrimp were co-cultured with grass carp of body weight ranges from 0.7 kg to 1.0 kg and African sharptooth catfish of body weight ranges from 0.5 kg to 0.6 kg in 10 ponds (3.7 ha). The stocking quantity of shrimp in these ponds ranges from 909,091/ha to 1,212,121/ha. Additionally, shrimp were cultured without fish in 11 ponds (3.63 ha). The stocking quantity of shrimp in these ponds ranges from 878,788/ha to 969,697/ha. If WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 110 days of cultivation.In 2014, shrimp were cocultured with grass carp of body weight ranging from 0.7 to 1.0 kg in 8 ponds (2.76 ha). The stocking quantity of shrimp in these ponds ranges from 833,333/ha to 1,060,606/ha. And shrimp were co-cultured with grass carp of body weight ranges from 0.7 to 1.0 kg and African sharptooth catfish of body weight ranges from 0.5 to 0.6 kg in 12 ponds (4.03 ha). The stocking quantity of shrimp in these ponds ranges from 825,000/ha to 1,060,606/ha. Additionally, shrimp were cultured without fish in 5 ponds. The stocking quantity of shrimp in these ponds was 1,060,606/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 110 days of cultivation.In 2015, shrimp were co-cultured with grass carp of body weight ranging from 0.7 to 1.0 kg in 19 ponds (7.4 ha). The stocking quantity of shrimp in these ponds ranges from 746,269 to 1,538,462/ha. In addition, shrimp were cultured without fish in 10 ponds (3.8 ha). The stocking quantity of shrimp in these ponds ranges from 750,000 to 909,091/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 110 days of cultivation.In 2016, shrimp were co-cultured with grass carp of body weight ranging from 0.7 to 1.0 kg in 19 ponds (8.11 ha). The stocking quantity of shrimp in these ponds ranges from 488,372/ha to 636,364/ha. Additionally, shrimp were cultured without fish in 8 ponds (2.84 ha). The stocking quantity of shrimp in these ponds ranges from 543,478/ha to 636,364/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 110 days of cultivation.In 2017, shrimp were cocultured with grass carp of body weight ranging from 0.7 to 1.0 kg in 6 ponds (1.56 ha). The stocking quantity of shrimp in these ponds was 961,538/ha. And shrimps were co-cultured with grass carp of body weight ranging from 0.7 kg to 1.0 kg and African sharptooth catfish of body weight ranges from 0.5 to 0.6 kg in 12 ponds (3.96 ha). The stocking quantity of shrimp in these ponds ranges from 848,485/ha to 909,091/ha. Additionally, shrimp were cultured without fish in 9 ponds (2.76 ha). The stocking quantity of shrimp in these ponds ranges from 848,485/ha to 961,538/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 110 days of cultivation.In 2018, shrimp were cocultured with grass carp of body weight ranging from 0.7g to 1.0 kg in 22 ponds (9.24 ha). The stocking quantity of shrimp in these ponds ranges from 454,545/ha to 869,565/ha. Additionally, shrimp were cultured without fish in 9 ponds (3.36 ha). The stocking quantity of shrimp in these ponds ranges from 695,652/ha to 861,111/ha. If a WSS outbreak occurred, shrimp were harvested; if not, shrimp were harvested after 110 days of cultivation.In 2019, shrimp were cocultured with grass carp of body weight ranging from 0.7 to 1.0 kg in 30 ponds (11.31 ha). The stocking quantity of shrimp in these ponds ranges from 652,174/ha to 1,000,000/ha. Additionally, shrimp were cultured without fish in 10 ponds (3.57 ha). The stocking quantity of shrimp in these ponds ranges from 666,667/ha to 1,000,000/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 110 days of cultivation.Validation of coculturing shrimp and brown-marbled grouper for controlling WSS in P. monodon farmingIn 2013, the polyculture system of coculturing P. monodon and brown-marbled grouper was validated at a farm in Changjiang, Hainan Province, China (Farm 3). We cultured 6 × 105/ha of non-SPF shrimp in 6 ponds (1.60 ha) for 30 days and then introduced 600~750/ha of brown-marbled grouper with an average body weight of 0.1 kg. Shrimp were also cultured without fish in 3 ponds (0.8 ha). The stocking quantity of shrimp in these ponds is 6 × 105/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 150 days of cultivation, and yields were measured.In 2014, we cultured 6 × 105/ha of non-SPF shrimp in 6 ponds (1.60 ha) for 30 days and then introduced 600–750/ha of brown-marbled grouper with an average body weight of 0.1 kg. Shrimps were also cultured without fish in 3 ponds (0.8 ha). The stocking quantity of shrimp in these ponds is 6 × 105/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 150 days of cultivation, and yields were measured.Validation of coculturing shrimp and branded gobies for controlling WSS in M. japonica farmingIn 2013, the polyculture system of coculturing M. japonica and branded gobies was validated at a farm in Qingdao, Shandong Province, China (Farm 4). We cultured 1.5 × 105/ha of non-SPF shrimp in 10 ponds (13.40 ha) for 30 days and then introduced 750~900/ha of branded gobies with an average body weight of 0.05 kg. Shrimp were also cultured without fish in 5 ponds (6.70 ha). The stocking quantity of shrimp in these ponds is 1.5 × 105/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 100 days of cultivation, and yields were measured.In 2014, we cultured 1.5 × 105/ha of non-SPF shrimp in 10 ponds (13.40 ha) for 30 days and then introduced 750~900/ha of branded gobies with an average body weight of 0.1 kg. Shrimp were also cultured without fish in 5 ponds (6.70 ha). The stocking quantity of shrimp in these ponds is 1.5 × 105/ha. If a WSS outbreak occurred, shrimp were harvested immediately; if not, shrimp were harvested after 100 days of cultivation, and yields were measured.Promotion of the polyculture system at a farmers’ association in Nansha, ChinaWhen we promoted the polyculture system at the farmers’ association in 2015, only 6 farmers decided to adopt the system, as most of the farmers worried that fish would ingest healthy shrimp. Each of the 6 farmers introduced 225,000, 360,000, and 360,000 P.monodon postlarva to his/her earthen pond (3 ha) on March 28, May 8, and June 15, respectively. And 1350 grass carps with an average body weight of 1 kg were released in the ponds on April 30. These farmers harvested shrimp from May to November, and grass carp on December 14. The yields of shrimp and fish of these six ponds were recoded. The other farmers in the association introduced 225,000 and 360,000 of P.monodon postlarva to their ponds (3 ha) on March 28 and May 8, respectively. WSS outbreaks occur in their ponds from May 15 to May 23. Therefore, these farmers only harvested shrimp in May. Six ponds were randomly selected, and the yields of these ponds were recorded.Promotion of the polyculture system at a farmers’ association in Tanghai, ChinaFarmers at the farmers’ association used to culture 1500/ha of F. chinensis in earthen pond (5 ha) before the promotion of the polyculture system in 2015. The yields of 10 randomly selected ponds in 2014 were recorded. In 2015, farmers at the association started to culture 8,000/ha of F. chinensis in their ponds. The shrimp were cultured 20 days before 800/ha of branded gobies with an average body weight of 0.05 kg were released in the ponds. Branded gobies were cultivated for 15 days before introducing to the ponds. Shrimps were harvested after 120 days of cultivation. The yields of ten randomly selected ponds were recorded.Statistics and reproducibilityAlpha levels of 0.05 were regarded as statistically significant throughout the study. Three replicates were set up for each experiment to confirm the reproducibility of the data. All data are reported as the mean ± standard errors.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Climatic limit for agriculture in Brazil

    1.Brazil. USDA Foreign Agricultural Service https://www.fas.usda.gov/regions/brazil (2019).2.Planilha do PIB do Agronegócio Brasileiro de 1996 a 2018 (Centro de Estudos Avançados em Economia Aplicada, 2018); https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx3.Boletim da Safra de Grãos. Companhia Nacional de Abastecimento https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (2020).4.Projeções do Agronegócio: Brasil 2017/18 a 2027/28 Projeções de Longo Prazo (Ministério da Agricultura, Pecuária e Abastecimento, 2018).5.Atlas Irrigação: Uso da Água na Agricultura Irrigada (Agência Nacional de Águas, 2017).6.Costa, M. H. et al. Climate risks to Amazon agriculture suggest a rationale to conserve local ecosystems. Front. Ecol. Environ. 17, 584–590 (2019).
    Google Scholar 
    7.Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).CAS 

    Google Scholar 
    8.Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).
    Google Scholar 
    9.Abrahão, G. M. & Costa, M. H. Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: the rise (and possible fall) of double-cropping systems. Agric. Meteorol. 256–257, 32–45 (2018).
    Google Scholar 
    10.Silvério, D. V. et al. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environ. Res. Lett. 10, 104015 (2015).
    Google Scholar 
    11.Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331 (2019).
    Google Scholar 
    12.Barkhordarian, A., von Storch, H., Zorita, E., Loikith, P. C. & Mechoso, C. R. Observed warming over northern South America has an anthropogenic origin. Clim. Dyn. 51, 1901–1914 (2018).
    Google Scholar 
    13.Leite‐Filho, A. T., Costa, M. H. & Fu, R. The southern Amazon rainy season: the role of deforestation and its interactions with large‐scale mechanisms. Int. J. Climatol. 40, 2328–2341 (2020).
    Google Scholar 
    14.FAOSTAT (Food and Agriculture Organization of the United Nations, 2020); http://www.fao.org/faostat/en/#data/QC15.Presidência da República Secretaria-Geral Subchefia para Assuntos Jurídicos (Ministério da Agricultura, 2015).16.Rashid, M. A. et al. Impact of heat-wave at high and low VPD on photosynthetic components of wheat and their recovery. Environ. Exp. Bot. 147, 138–146 (2018).CAS 

    Google Scholar 
    17.Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).CAS 

    Google Scholar 
    18.Fletcher, A. L., Sinclair, T. R. & Allen, L. H. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ. Exp. Bot. 61, 145–151 (2007).CAS 

    Google Scholar 
    19.Bunce, J. A. Comparative responses of leaf conductance to humidity in single attached leaves. J. Exp. Bot. 32, 629–634 (1981).
    Google Scholar 
    20.Kiniry, J. et al. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum. Field Crops Res. 56, 265–270 (1998).
    Google Scholar 
    21.Spera, S. A. et al. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 9, 064010 (2014).
    Google Scholar 
    22.Dias, L. C. P., Pimenta, F. M., Santos, A. B., Costa, M. H. & Ladle, R. J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Change Biol. 22, 2887–2903 (2016).
    Google Scholar 
    23.Cohn, A. S., Vanwey, L. K., Spera, S. A. & Mustard, J. F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Change 6, 601–604 (2016).
    Google Scholar 
    24.Morton, D. C. et al. Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Glob. Environ. Change 37, 92–101 (2016).
    Google Scholar 
    25.Duursma, R. A. et al. The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis. Agric. Meteorol. 189–190, 2–10 (2014).
    Google Scholar 
    26.Spera, S. A., Winter, J. M. & Partridge, T. F. Brazilian maize yields negatively affected by climate after land clearing. Nat. Sustain. 3, 845–852 (2020).
    Google Scholar 
    27.Cirino, P. H., Féres, J. G., Braga, M. J. & Reis, E. Assessing the impacts of ENSO-related weather effects on the Brazilian agriculture. Proc. Econ. Financ. 24, 146–155 (2015).
    Google Scholar 
    28.Pereira, P. A. A., Martha, G. B., Santana, C. A. & Alves, E. The development of Brazilian agriculture: future technological challenges and opportunities. Agric. Food Secur. 1, 4 (2012).
    Google Scholar 
    29.Marengo, J. A. & Bernasconi, M. Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change 129, 103–115 (2015).
    Google Scholar 
    30.Naylor, R. L. Energy and resource constraints on intensive agricultural production. Annu. Rev. Energy Environ. 21, 99–123 (1996).
    Google Scholar 
    31.Getirana, A. Extreme water deficit in Brazil detected from space. J. Hydrometeorol. 17, 591–599 (2016).
    Google Scholar 
    32.Lathuillière, M. J., Coe, M. T. & Johnson, M. S. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia? Hydrol. Earth Syst. Sci. 20, 2179–2194 (2016).
    Google Scholar 
    33.Dobrovolski, R. & Rattis, L. Water collapse in Brazil: the danger of relying on what you neglect. Nat. Conserv. 13, 80–83 (2015).
    Google Scholar 
    34.da Silva, A. L. et al. Water appropriation on the agricultural frontier in western Bahia and its contribution to streamflow reduction: revisiting the debate in the Brazilian Cerrado. Water 13, 1054 (2021).
    Google Scholar 
    35.Pousa, R. et al. Climate change and intense irrigation growth in western Bahia, Brazil: the urgent need for hydroclimatic monitoring. Water 11, 933 (2019).
    Google Scholar 
    36.Ort, D. R. & Long, S. P. Limits on yields in the corn belt. Science 344, 484–485 (2014).CAS 

    Google Scholar 
    37.de Bossoreille de Ribou, S., Douam, F., Hamant, O., Frohlich, M. W. & Negrutiu, I. Plant science and agricultural productivity: why are we hitting the yield ceiling? Plant Sci. 210, 159–176 (2013).
    Google Scholar 
    38.Long, S. P. & Ort, D. R. More than taking the heat: crops and global change. Curr. Opin. Plant Biol. 13, 240–247 (2010).
    Google Scholar 
    39.Pommer, C. V. & Barbosa, W. The impact of breeding on fruit production in warm climates of Brazil. Rev. Bras. Frutic. 31, 612–634 (2009).
    Google Scholar 
    40.Lenka, N. K. et al. Carbon dioxide and temperature elevation effects on crop evapotranspiration and water use efficiency in soybean as affected by different nitrogen levels. Agric. Water Manag. 230, 105936 (2020).
    Google Scholar 
    41.Soares, W. R., Marengo, J. A. & Nobre, C. A. Assessment of warming projections and probabilities for Brazil in Climate Change Risks in Brazil (eds Nobre, C. et al.) 7–30 (Springer, 2019); https://doi.org/10.1007/978-3-319-92881-4_242.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).CAS 

    Google Scholar 
    43.Schwalm, C. R., Glendon, S. & Duffy, P. B. Reply to Hausfather and Peters: RCP8.5 is neither problematic nor misleading. Proc. Natl Acad. Sci. USA 117, 27793–27794 (2020).CAS 

    Google Scholar 
    44.Sistematização das Informações sobre Recursos Naturais—Mapa de Biomas do Brasil (Instituto Brasileiro de Geografia e Estatística, 2006); https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15842-biomas.html?=&t=downloads45.Base Cartográfica Continua Do Brasil, Escala 1:250.000—BC250 (Instituto Brasileiro de Geografia e Estatística, 2019); https://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bc250/versao2019/informacoes_tecnicas/Documentacao_bc250_v2019.pdf46.Campos, J., de, O. & Chaves, H. M. L. Tendências e variabilidades nas séries históricas de precipitação mensal e anual no bioma Cerrado no período 1977–2010. Rev. Bras. Meteorol. 35, 157–169 (2020).
    Google Scholar 
    47.Debortoli, N. S. et al. Rainfall patterns in the southern Amazon: a chronological perspective (1971–2010). Climatic Change 132, 251–264 (2015).
    Google Scholar 
    48.Oliveira, P. T. S. et al. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 50, 7100–7114 (2014).
    Google Scholar 
    49.Panisset, J. S. et al. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. Int. J. Climatol. 38, 1096–1104 (2018).
    Google Scholar 
    50.Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).
    Google Scholar 
    51.Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).
    Google Scholar 
    52.Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).
    Google Scholar 
    53.Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
    Google Scholar 
    54.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
    Google Scholar 
    55.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    56.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    Google Scholar 
    57.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).58.Challinor, A. J. & Wheeler, T. R. Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric. Meteorol. 148, 343–356 (2008).
    Google Scholar 
    59.Bates, D. et al. lme4. R package version (2012).60.Barton, K. MuMIn: Multi-model inference. R package version 1.0.0 (2009).61.Arvor, D., Dubreuil, V., Ronchail, J., Simões, M. & Funatsu, B. M. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int. J. Climatol. 34, 2622–2633 (2014).
    Google Scholar 
    62.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    Google Scholar 
    63.Brill, F., Passuni Pineda, S., Espichán Cuya, B. & Kreibich, H. A data-mining approach towards damage modelling for El Niño events in Peru. Geomat. Nat. Hazards Risk 11, 1966–1990 (2020).
    Google Scholar 
    64.Rattis, L. ludmilarattis/effect-of-climate-on–agriculture: Rattis_etal_NCC_2021. Zenodo https://zenodo.org/badge/latestdoi/271879616 (2021).65.Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).CAS 

    Google Scholar 
    66.Castanho, A. D. A. et al. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environ. Res. Lett. 15, 034053 (2020).
    Google Scholar 
    67.Allen, R. G. et al. The ASCE Standardized Reference Evapotranspiration Equation (American Society of Civil Engineers, 2005).68.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).69.Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K. & Papadimitriou, L. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim. Dyn. 47, 1881–1898 (2016).
    Google Scholar 
    70.Análise Territorial para o Desenvolvimento da Agricultura Irrigada no Brasil (Ministério da Integração Nacional, 2014). More

  • in

    Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel

    1.O’Connor. Whale Watching Worldwide: Tourism Numbers, Expenditures and Expanding Economic Benefits. A special report from the International Fund for Animal Welfare Yarmouth, USA. Prepared by Economists at Large. www.ecolarge.com (2009). Accessed 15 Apr 2021.2.Cisneros-Montemayor, A. M., Sumaila, U. R., Kaschner, K. & Pauly, D. The global potential for whale watching. Mar. Policy 34, 1273–1278 (2010).Article 

    Google Scholar 
    3.Parsons, E. C. M. The negative impacts of whale-watching. J. Mar. Biol. 2012, 1–9 (2012).ADS 
    Article 

    Google Scholar 
    4.Hoyt, E. & Hvenegaard, G. T. A review of whale-watching and whaling. Coast. Manag. 30, 381–399 (2002).Article 

    Google Scholar 
    5.Cunningham, P. A., Huijbens, E. H. & Wearing, S. L. From whaling to whale watching: Examining sustainability and cultural rhetoric. J. Sustain. Tour. 20, 143–161 (2012).Article 

    Google Scholar 
    6.Senigaglia, V. et al. Meta-analyses of whale-watching impact studies: Comparisons of cetacean responses to disturbance. Mar. Ecol. Prog. Ser. 542, 251–263 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Bejder, L. et al. Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv. Biol. 20, 1791–1798 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Lusseau, D., Slooten, L. & Currey, R. J. C. Unsustainable dolphin-watching tourism in Fiordland, New Zealand. Tour. Mar. Environ. 3, 173–178 (2006).Article 

    Google Scholar 
    9.Erbe, C. Underwater noise of whale-watching boats and potential effects on killer whales (Orcinus orca), based on an acoustic impact model. Mar. Mamm. Sci. 18, 394–418 (2002).Article 

    Google Scholar 
    10.Sprogis, K. R., Videsen, S. & Madsen, P. T. Vessel noise levels drive behavioural responses of humpback whales with implications for whale-watching. Elife 9, 1–17 (2020).Article 

    Google Scholar 
    11.Au, W. W. L. The Sonar of Dolphins (Springer, 1993).Book 

    Google Scholar 
    12.Tyack, P. L. & Clark, C. W. Communication and acoustic behavior of dolphins and whales. In Hearing by Whales and Dolphins (eds. Au, W. W. L., Fay, R. R. & Popper, A. N.) 156–224 (Springer, 2000). https://doi.org/10.1007/978-1-4612-1150-1_4.13.Lesage, V., Barrette, C., Kingsley, M. C. S. & Sjare, B. The effect of vessel noise on the vocal behavior of belugas in the St. Lawrence River estuary, Canada. Mar. Mamm. Sci. 15, 65–84 (1999).Article 

    Google Scholar 
    14.Jensen, F. H. et al. Vessel noise effects on delphinid communication. Mar. Ecol. Prog. Ser. 395, 161–175 (2009).ADS 
    Article 

    Google Scholar 
    15.Pirotta, E. et al. Vessel noise affects beaked whale behavior: Results of a dedicated acoustic response study. PLoS One 7, e42535 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).PubMed 
    Article 

    Google Scholar 
    17.Andrew, R. K., Howe, B. M. & Mercer, J. A. Long-time trends in ship traffic noise for four sites off the North American West Coast. J. Acoust. Soc. Am. 129, 642–651 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    18.Miksis-Olds, J. L. & Nichols, S. M. Is low frequency ocean sound increasing globally?. J. Acoust. Soc. Am. 139, 501–511 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    19.Payne, R. & Webb, D. Orientation by means of long range acoustic signaling in Baleen whales. Ann. N. Y. Acad. Sci. 188, 110–141 (1971).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Melcón, M. L. et al. Blue whales respond to anthropogenic noise. PLoS One 7, e32681 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Romagosa, M. et al. Underwater ambient noise in a baleen whale migratory habitat off the Azores. Front. Mar. Sci. 4, 1–14 (2017).Article 

    Google Scholar 
    22.Aguilar Soto, N. et al. Does intense ship noise disrupt foraging in deep-diving cuvier’s beaked whales (Ziphius cavirostris)?. Mar. Mamm. Sci. 22, 690–699 (2006).Article 

    Google Scholar 
    23.Wisniewska, D. M. et al. High rates of vessel noise disrupt foraging in wild harbour porpoises (Phocoena phocoena). Proc. R. Soc. B Biol. Sci. 285, 20172314 (2018).Article 

    Google Scholar 
    24.Hermannsen, L., Beedholm, K., Tougaard, J. & Madsen, P. T. High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena). J. Acoust. Soc. Am. 136, 1640–1653 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    25.Wladichuk, J., Hannay, D. E., MacGillivray, A. O., Li, Z. & Thornton, S. J. Systematic source level measurements of whale watching vessels and other small boats. J. Ocean Technol. 14, 108–126 (2019).
    Google Scholar 
    26.Arranz, P., Aguilar de Soto, N., Madsen, P. T. & Sprogis, K. R. Whale-watch vessel noise levels with applications to whale-watching guidelines and conservation. Mar. Policy 134, 104776 (2021).Article 

    Google Scholar 
    27.Higham, J., Bejder, L. & Williams, R. Whale-Watching: Sustainable Tourism and Ecological Management (Cambridge University Press, 2014).Book 

    Google Scholar 
    28.Montero, R. & Arechavaleta, M. Distribution patterns: Relationships between depths, sea surface temperature, and habitat use of Short-finned pilot whales south-west of Tenerife. Eur. Res. Cetaceans 10, 193–198 (1996).
    Google Scholar 
    29.Servidio, A. et al. Site fidelity and movement patterns of short-finned pilot whales within the Canary Islands: Evidence for resident and transient populations. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 227–241 (2019).Article 

    Google Scholar 
    30.Würsig, B. Ethology and Behavioral Ecology of Odontocetes (Springer, 2019). https://doi.org/10.1007/978-3-030-16663-2_23.Book 

    Google Scholar 
    31.Sequeira, M. et al. Review of whalewatching activities in mainland Portugal, the Azores, Madeira and Canary archipelagos and the Strait of Gibraltar. J. Cetacean Res. Manag. SC61/WW11, 1–40 (2009).
    32.IWC whale-watching handbook. https://wwhandbook.iwc.int/es/case-studies/canary-islands-spain#Accessed 15 Apr 2021.33.Hoyt, E. Tourism. In Encyclopedia of Marine Mammals 1010–1014 (2018). https://doi.org/10.1016/B978-0-12-804327-1.00262-4.
    34.Kasuya, T. & Matsui, S. Age determination and growth of the short-finned pilot whale off the Pacific coast of Japan. Sci. Rep. Whales Res. Inst. 35, 57–91 (1984).
    Google Scholar 
    35.Reddy, M., Kamolnick, T., Skaar, D., Curry, C. & Ridgway, S. Bottlenose dolphins: Energy consumption during pregnancy, lactation, and growth. Int. Mar. Mammal Trainers Assoc. Conf. Proc. 30–37 (1991).36.Srinivasan, M., Swannack, T. M., Grant, W. E., Rajan, J. & Würsig, B. To feed or not to feed? Bioenergetic impacts of fear-driven behaviors in lactating dolphins. Ecol. Evol. 8, 1384–1398 (2018).PubMed 
    Article 

    Google Scholar 
    37.Marsh, H. & Kasuya, T. Changes in the role of a female pilot whale with age. In Dolphin Societies (eds. Pryor, K. & Norris, K.S.) 281–286 (University of California Press, 1991).38.Augusto, J. F., Frasier, T. R. & Whitehead, H. Characterizing alloparental care in the pilot whale (Globicephala melas) population that summers off Cape Breton, Nova Scotia, Canada. Mar. Mamm. Sci. 33, 440–456 (2017).Article 

    Google Scholar 
    39.Quick, N., Scott-hayward, L., Sadykova, D., Nowacek, D. & Read, A. Effects of a scientific echo sounder on the behavior of short-finned pilot whales (Globicephala macrorhynchus). Can. J. Fish. Aquat. Sci. 74, 716–726 (2017).Article 

    Google Scholar 
    40.Würsig, B. & Jefferson, T. A. Methods of photo-identification for small cetaceans. Report of the International Whaling Commission (1990).41.Greenhow, D. R., Brodsky, M. C., Lingenfelser, R. G. & Mann, D. A. Hearing threshold measurements of five stranded short-finned pilot whales (Globicephala macrorhynchus). J. Acoust. Soc. Am. 135, 531–536 (2014).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Tougaard, J. & Beedholm, K. Practical implementation of auditory time and frequency weighting in marine bioacoustics. Appl. Acoust. 145, 137–143 (2019).Article 

    Google Scholar 
    43.Pérez, J. M., Jensen, F. H., Rojano-Doñate, L. & Aguilar de Soto, N. Different modes of acoustic communication in deep-diving short-finned pilot whales (Globicephala macrorhynchus). Mar. Mamm. Sci. 33, 59–79 (2017).Article 

    Google Scholar 
    44.Pacini, A. F. et al. Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas) measured using auditory evoked potentials. J. Exp. Biol. 213, 3138–3143 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Christiansen, F., Rojano-Doñate, L., Madsen, P. T. & Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 3, 1–9 (2016).Article 

    Google Scholar 
    46.Christiansen, F., Nielsen, M. L. K., Charlton, C., Bejder, L. & Madsen, P. T. Southern right whales show no behavioral response to low noise levels from a nearby unmanned aerial vehicle. Mar. Mamm. Sci. 36, 953–963 (2020).Article 

    Google Scholar 
    47.Giles, A. B. et al. Responses of bottlenose dolphins (Tursiops spp.) to small drones. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 677–684 (2021).Article 

    Google Scholar 
    48.Nielsen, M. L. K., Sprogis, K. R., Bejder, L., Madsen, P. T. & Christiansen, F. Behavioural development in southern right whale calves. Mar. Ecol. Prog. Ser. 629, 219–234 (2019).ADS 
    Article 

    Google Scholar 
    49.Hofmann, B., Scheer, M. & Behr, I. P. Underwater behaviors of short-finned pilot whales (Globicephala macrorhynchus) off Tenerife. Mammalia 68, 221–224 (2004).Article 

    Google Scholar 
    50.Lockyer, C. All creatures great and smaller: A study in cetacean life history energetics. J. Mar. Biol. Assoc. U. K. 87, 1035–1045 (2007).Article 

    Google Scholar 
    51.Hin, V., Harwood, J. & de Roos, A. M. Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. Ecol. Appl. 29, 1–19 (2019).Article 

    Google Scholar 
    52.Christiansen, F., Rasmussen, M. H. & Lusseau, D. Inferring energy expenditure from respiration rates in minke whales to measure the effects of whale watching boat interactions. J. Exp. Mar. Biol. Ecol. 459, 96–104 (2014).Article 

    Google Scholar 
    53.Mann, J., Connor, R. C., Tyack, P. L. & Whitehead, H. Cetacean Societies: Field Studies of Dolphins and Whales (The University of Chicago Press, 2000).
    Google Scholar 
    54.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    55.R Development Core Team. R: A Language and Environment for Statistical Computing. (2018).56.National Marine Fisheries Service. Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing underwater acoustic thresholds for onset of permanent and temporary threshold shifts. NOAA Technical Memorandum NMFS-OPR-55. (2016).57.Heimlich-Boran, J. R. Social Organisation of the Short-finned Pilot Whale, Globicephala macrorhynchus, with Special Reference to the Comparative Social Ecology of Delphinids (University of Cambridge, 1993).
    Google Scholar 
    58.Hastie, G. D., Wilson, B., Tufft, L. H. & Thompson, P. M. Bottlenose dolphins increase breathing synchrony in response to boat traffic. Mar. Mamm. Sci. 19, 74–084 (2003).Article 

    Google Scholar 
    59.Williams, R. & Noren, D. P. Swimming speed, respiration rate, and estimated cost of transport in adult killer whales. Mar. Mamm. Sci. 25, 327–350 (2009).Article 

    Google Scholar 
    60.Senigaglia, V. & Whitehead, H. Synchronous breathing by pilot whales. Mar. Mamm. Sci. 28, 213–219 (2012).Article 

    Google Scholar 
    61.Aguilar Soto, N. et al. Cheetahs of the deep sea: Deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J. Anim. Ecol. 77, 936–947 (2008).PubMed 
    Article 

    Google Scholar 
    62.Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. 157, 82–91 (2016).Article 

    Google Scholar 
    63.Owen, K., Andrews, R. D., Baird, R. W., Schorr, G. S. & Webster, D. L. Lunar cycles influence the diving behavior and habitat use of short-finned pilot whales around the main Hawaiian Islands. Mar. Ecol. Prog. Ser. 629, 193–206 (2019).ADS 
    Article 

    Google Scholar 
    64.Kasuya, T. & Marsh, H. Life history and reproductive biology of the short-finned pilot whale, Globicephala macrorhynchus, off the Pacific coast of Japan. Rep. Int. Whal. Commun. Spec. Iss. 6, 259–310 (1984).
    Google Scholar 
    65.Barton, E. et al. The transition zone of the canary current upwelling region. Prog. Ocean. 41, 455–504 (1998).Article 

    Google Scholar 
    66.Olson, P. A. Pilot Whales: Globicephala melas and G. macrorhynchus. In Encyclopedia of Marine Mammals, 3rd ed (eds. Würsig, B., Thewissen, J. G. M. & Kovacs, K. M.) 701–705 (Academic Press, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00194-1.67.Puig-Lozano, R. et al. Retrospective study of fishery interactions in stranded cetaceans, Canary Islands. Front. Vet. Sci. 7, 1–15 (2020).Article 

    Google Scholar 
    68.Almunia, J., Delponti, P. & Rosa, F. Using automatic identification system (AIS) data to estimate whale watching effort. Front. Mar. Sci. 8, 827 (2021).Article 

    Google Scholar 
    69.Schlundt, C. E. et al. Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus). J. Acoust. Soc. Am. 129, 1111–1116 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    70.Visser, F. et al. Risso’s dolphins alter daily resting pattern in response to whale watching at the Azores. Mar. Mamm. Sci. 27, 366–381 (2011).Article 

    Google Scholar 
    71.Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncatus) behaviour. Biol. Conserv. 117, 299–307 (2004).Article 

    Google Scholar 
    72.Stensland, E. & Berggren, P. Behavioural changes in female Indo-Pacific bottlenose dolphins in response to boat-based tourism. Mar. Ecol. Prog. Ser. 332, 225–234 (2007).ADS 
    Article 

    Google Scholar 
    73.Jensen, F. H., Perez, J. M., Johnson, M., Soto, N. A. & Madsen, P. T. Calling under pressure: Short-finned pilot whales make social calls during deep foraging dives. Proc. R. Soc. B Biol. Sci. 278, 3017–3025 (2011).Article 

    Google Scholar 
    74.Kiszka, J. J., Caputo, M., Méndez-Fernandez, P. & Fielding, R. Feeding ecology of elusive Caribbean killer whales inferred from bayesian stable isotope mixing models and whalers’ ecological knowledge. Front. Mar. Sci. 8, 1–11 (2021).Article 

    Google Scholar 
    75.Whitehead, H. Babysitting, dive synchrony, and indications of alloparental care in sperm whales. Behav. Ecol. Sociobiol. 38, 237–244 (1996).Article 

    Google Scholar 
    76.Konrad, C. M. Kinship in Sperm Whale Society: Effects on Association, Alloparental Care and Vocalization (Dalhousie University, 2017).
    Google Scholar 
    77.Leung, E. S., Vergara, V. & Barrett-Lennard, L. G. Allonursing in captive belugas (Delphinapterus leucas). Zoo Biol. 29, 633–637 (2010).PubMed 
    Article 

    Google Scholar 
    78.Houston, A. I. & Carbone, C. The optimal allocation of time during the diving cycle. Behav. Ecol. 3, 255–265 (1992).Article 

    Google Scholar 
    79.Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).Article 

    Google Scholar 
    80.Aoki, K., Sato, K., Isojunno, S., Narazaki, T. & Miller, P. J. O. High diving metabolic rate indicated by high-speed transit to depth in negatively buoyant long-finned pilot whales. J. Exp. Biol. 220, 3802–3811 (2017).PubMed 
    Article 

    Google Scholar 
    81.New, L. F. et al. The modelling and assessment of whale-watching impacts. Ocean Coast. Manag. 115, 10–16 (2015).Article 

    Google Scholar 
    82.Parsons, M. J. G., Duncan, A. J., Parsons, S. K. & Erbe, C. Reducing vessel noise: An example of a solar-electric passenger ferry. J. Acoust. Soc. Am. 147, 3575–3583 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    83.Dale, S. J., Hebner, R. E. & Sulligoi, G. Electric ship technologies. Proc. IEEE 103, 2225–2228 (2015).Article 

    Google Scholar 
    84.Anwar, S., Zia, M. Y. I., Rashid, M., De Rubens, G. Z. & Enevoldsen, P. Towards ferry electrification in the maritime sector. Energies 13, 1–22 (2020).Article 
    CAS 

    Google Scholar 
    85.Filby, N. E., Christiansen, F., Scarpaci, C. & Stockin, K. A. Effects of swim-with-dolphin tourism on the behaviour of a threatened species, the Burrunan dolphin Tursiops Australis. Endanger. Species Res. 32, 479–490 (2017).Article 

    Google Scholar 
    86.Sprogis, K. R., Bejder, L., Hanf, D. & Christiansen, F. Behavioural responses of migrating humpback whales to swim-with-whale activities in the Ningaloo Marine Park, Western Australia. J. Exp. Mar. Bio. Ecol. 522, 151254 (2020).Article 

    Google Scholar  More

  • in

    Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community

    1.Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24.CAS 
    PubMed 

    Google Scholar 
    3.Rumbaugh KP, Sauer K. Biofilm dispersion. Nat Rev Microbiol. 2020;18:571–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.CAS 
    PubMed 

    Google Scholar 
    5.Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416:740–3.CAS 
    PubMed 

    Google Scholar 
    6.de Carvalho CCCR. Marine biofilms: a successful microbial strategy with economic implications. Front Mar Sci. 2018;5:126.7.McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10:39–50.CAS 

    Google Scholar 
    8.Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA. 2008;105:19052–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Yan J, Monaco H, Xavier JB. The ultimate guide to bacterial swarming: an experimental model to study the evolution of cooperative behavior. Annu Rev Microbiol. 2019;73:293–312.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Gokhale S, Conwill A, Ranjan T, Gore J. Migration alters oscillatory dynamics and promotes survival in connected bacterial populations. Nat Commun. 2018;9:5273.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Hallatschek O, Fisher DS. Acceleration of evolutionary spread by long-range dispersal. Proc Natl Acad Sci USA. 2014;111:E4911–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Birzu G, Hallatschek O, Korolev KS. Fluctuations uncover a distinct class of traveling waves. Proc Natl Acad Sci USA. 2018;115:E3645–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, Kuehn S. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J. 2020;14:2007–18.PubMed 
    PubMed Central 

    Google Scholar 
    14.Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, et al. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol. 2014;10:e1003979.PubMed 
    PubMed Central 

    Google Scholar 
    15.Patra P, Kissoon K, Cornejo I, Kaplan HB, Igoshin OA. Colony expansion of socially motile Myxococcus xanthus cells is driven by growth, motility, and exopolysaccharide production. PLoS Comput Biol. 2016;12:e1005010.PubMed 
    PubMed Central 

    Google Scholar 
    16.Chapman BB, Brönmark C, Nilsson J-Å, Hansson L-A. The ecology and evolution of partial migration. Oikos. 2011;120:1764–75.
    Google Scholar 
    17.Lundberg P. Partial bird migration and evolutionarily stable strategies. J Theor Biol. 1987;125:351–60.
    Google Scholar 
    18.Kokko H. Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos. 2011;120:1826–37.
    Google Scholar 
    19.Singh NJ, Leonardsson K. Partial migration and transient coexistence of migrants and residents in animal populations. PloS One. 2014;9:e94750.PubMed 
    PubMed Central 

    Google Scholar 
    20.Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol. 2012;10:743.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015;3. https://doi.org/10.1128/microbiolspec.UTI-0017-2013.22.Jones BV, Young R, Mahenthiralingam E, Stickler DJ. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun. 2004;72:3941–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Li X, Zhao H, Lockatell CV, Drachenberg CB, Johnson DE, Mobley HL. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun. 2002;70:389–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pr Urol. 2008;5:598–608.CAS 

    Google Scholar 
    25.Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008;21:26–59.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003;57:249–73.CAS 
    PubMed 

    Google Scholar 
    27.Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008;16:496–506.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Wu Y, Jiang Y, Kaiser AD, Alber M. Self-organization in bacterial swarming: lessons from myxobacteria. Phys Biol. 2011;8:055003.PubMed 

    Google Scholar 
    30.Howery KE, Şimşek E, Kim M, Rather PN. Positive autoregulation of the flhDC operon in Proteus mirabilis. Res Microbiol. 2018;169:199–204.CAS 
    PubMed 

    Google Scholar 
    31.Little K, Austerman J, Zheng J, Gibbs KA. Cell shape and population migration are distinct steps of Proteus mirabilis swarming that are decoupled on high-percentage agar. J Bacteriol. 2019;201:e00726–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Furness RB, Fraser GM, Hay NA, Hughes C. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol. 1997;179:5585–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Claret L, Hughes C. Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol. 2000;303:467–78.CAS 
    PubMed 

    Google Scholar 
    34.Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9.CAS 

    Google Scholar 
    35.Andac T, Weigmann P, Velu SKP, Pinçe E, Volpe G, Volpe G, et al. Active matter alters the growth dynamics of coffee rings. Soft Matter. 2019;15:1488–96.CAS 
    PubMed 

    Google Scholar 
    36.Nellimoottil TT, Rao PN, Ghosh SS, Chattopadhyay A. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria. Langmuir. 2007;23:8655–8.CAS 
    PubMed 

    Google Scholar 
    37.Clemmer KM, Rather PN. Regulation of flhDC expression in Proteus mirabilis. Res Microbiol. 2007;158:295–302.CAS 
    PubMed 

    Google Scholar 
    38.Howery KE, Clemmer KM, Rather PN. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet. 2016;62:775–89.CAS 
    PubMed 

    Google Scholar 
    39.Howery KE, Clemmer KM, Şimşek E, Kim M, Rather PN. Regulation of the min cell division inhibition complex by the Rcs phosphorelay in Proteus mirabilis. J Bacteriol. 2015;197:2499–507.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Wang Q, Zhao Y, McClelland M, Harshey RM. The RcsCDB signaling system and swarming motility in Salmonella enterica Serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol. 2007;189:8447–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Samanta P, Clark ER, Knutson K, Horne SM, Prüß BM. OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm. BMC Microbiol. 2013;13:182.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Girgis HS, Liu Y, Ryu WS, Tavazoie S. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 2007;3:e154.PubMed Central 

    Google Scholar 
    43.Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanié-Cornet MP, et al. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol. 2003;49:823–32.CAS 
    PubMed 

    Google Scholar 
    44.Rieck VT, Palumbo SA, Witter LD. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens. J Gen Microbiol. 1973;74:1–8.CAS 
    PubMed 

    Google Scholar 
    45.Shao X, Mugler A, Kim J, Jeong HJ, Levin BR, Nemenman I. Growth of bacteria in 3-d colonies. PLoS Comput Biol. 2017;13:e1005679.PubMed 
    PubMed Central 

    Google Scholar 
    46.Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. Elife. 2019;8:e41093.PubMed 
    PubMed Central 

    Google Scholar 
    47.Lavrentovich MO, Koschwanez JH, Nelson DR. Nutrient shielding in clusters of cells. Phys Rev E Stat Nonlin Soft Matter Phys. 2013;87:062703. -PubMed 
    PubMed Central 

    Google Scholar 
    48.Dal Co A, van Vliet S, Ackermann M. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos Trans R Soc Lond B Biol Sci. 2019;374:20190080.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Huang YH, Ferrières L, Clarke DJ. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol. 2006;157:206–12.CAS 
    PubMed 

    Google Scholar 
    50.Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol. 2005;59:379–405.CAS 
    PubMed 

    Google Scholar 
    51.Fraebel DT, Mickalide H, Schnitkey D, Merritt J, Kuhlman TE, Kuehn S. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife. 2017;6:e24669.PubMed 
    PubMed Central 

    Google Scholar 
    52.Yi X, Dean AM. Phenotypic plasticity as an adaptation to a functional trade-off. Elife. 2016;5:e19307.PubMed 
    PubMed Central 

    Google Scholar 
    53.van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD, Déziel É, et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 2013;4:697–708.PubMed 
    PubMed Central 

    Google Scholar 
    54.Auer GK, Oliver PM, Rajendram M, Lin T-Y, Yao Q, Jensen GJ, et al. Bacterial swarming reduces Proteus mirabilis and Vibrio parahaemolyticus cell stiffness and increases β-Lactam susceptibility. mBio. 2019;10:e00210–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kaiser D. Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol. 2007;17:R561–R70.CAS 
    PubMed 

    Google Scholar 
    56.Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol. 2007;189:950–7.CAS 
    PubMed 

    Google Scholar 
    57.Dong T, Joyce C, Schellhorn H. The role of RpoS in bacterial adaptation. In: El-Sharoud W, editor. Bacterial physiology. Heidelberg: Springer, Berlin; 2008. pp 313-37.58.Phaiboun A, Zhang Y, Park B, Kim M. Survival kinetics of starving bacteria is biphasic and density-dependent. PLoS Comput Biol. 2015;11:e1004198.PubMed 
    PubMed Central 

    Google Scholar 
    59.Majdalani N, Hernandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol. 2002;46:813–26.CAS 
    PubMed 

    Google Scholar 
    60.Peterson CN, Carabetta VJ, Chowdhury T, Silhavy TJ. LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol. 2006;188:3175–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Lok T, Overdijk O, Piersma T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol Lett. 2015;11:20140944.PubMed 
    PubMed Central 

    Google Scholar 
    62.Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, Mitropolsky M, et al. Costs of migratory decisions: a comparison across eight white stork populations. Sci Adv. 2016;2:e1500931.PubMed 
    PubMed Central 

    Google Scholar 
    63.Rankin MA, Burchsted JCA. The cost of migration in insects. Annu Rev Entomol. 1992;37:533–59.
    Google Scholar 
    64.Ni B, Colin R, Link H, Endres RG, Sourjik V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA. 2020;117:595–601.CAS 
    PubMed 

    Google Scholar 
    65.Amsler CD, Cho M, Matsumura P. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol. 1993;175:6238–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Yokota T, Gots JS. Requirement of adenosine 3’, 5’-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1970;103:513–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, et al. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol. 1999;181:7500–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Silverman M, Simon M. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol. 1974;120:1196–203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. Bioessays. 2008;30:542–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216–26.71.Ferrières L, Clarke DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol. 2003;50:1665–82.PubMed 

    Google Scholar 
    72.Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37:849–71.CAS 

    Google Scholar  More

  • in

    Indigenous sex-selective salmon harvesting demonstrates pre-contact marine resource management in Burrard Inlet, British Columbia, Canada

    1.Drucker, P. Indians of the Northwest Coast (McGraw-Hill, 1955).Book 

    Google Scholar 
    2.Kroeber, A. Culture and natural areas of Native North America (University of California Press, 1939).
    Google Scholar 
    3.Introduction, S. W. In Handbook of North American Indians volume 7: Northwest Coast (ed. Suttles, W.) 1–15 (Smithsonian Institution, 1990).
    Google Scholar 
    4.Suttles, W. Coping with abundance: subsistence on the Northwest Coast. In Coast Salish Essays (ed. Suttles, W.) (Talon Books, 1987).
    Google Scholar 
    5.Barnett, H. G. The Coast Salish of British Columbia (University of Oregon Press, 1955).
    Google Scholar 
    6.Ames, K. The Northwest Coast: Complex hunter-gatherers, ecology, and social evolution. Annu. Rev. Anthropol. 23, 209–229 (1994).Article 

    Google Scholar 
    7.Carlson, R. L., Szpak, P. & Richards, M. The Pender Canal site and the beginnings of the Northwest Coast cultural system. Can. J. Archaeol. 41, 1–29 (2017).
    Google Scholar 
    8.Cannon, A. & Yang, D. Y. Early storage and sedentism on the Pacific Northwest Coast: ancient DNA analysis of salmon remains from Namu, British Columbia. Am. Antiquity 71, 123–140 (2006).Article 

    Google Scholar 
    9.Matson, R. G. The evolution of Northwest Coast subsistence. In Research in Economic Anthropology Supplement 6: Long-Term Subsistence Change in Prehistoric North America (eds Croes, D. et al.) 366–428 (JAI Press Inc., 1992).
    Google Scholar 
    10.Caldwell, M. et al. A bird’s eye view of northern Coast Salish intertidal resource management features, southern British Columbia. J. Island Coast. Archaeol. 7, 219–233 (2012).Article 

    Google Scholar 
    11.Caldwell, M. & Lepofsky, D. Indigenous marine resource management on the Northwest Coast of North America. Ecol. Process. 2(1), 12 (2013).
    Google Scholar 
    12.Croes, D. R. (ed.). The Qwu?gwes Archaeological Site and Fish Trap (45TN240), and Tested Homestead (45TN396), Eleven-year South Puget Sound Community College Summer Field School Investigations with the Squaxin Island Tribe—Final Report. Report on file, Washington State Department of Archaeology and Historic Preservation, Olympia (2013).13.Lepofsky, D. et al. Shellfish mariculture on the Northwest Coast of North America. Am. Antiq. 80, 236–259 (2015).Article 

    Google Scholar 
    14.Mathews, D. L. & Turner, N. J. Ocean cultures: northwest coast ecosystems and indigenous management systems. In Conservation for the Anthropocene Ocean: Interdisciplinary Science in Support of Nature and People (eds Levin, P. S. & Poe, M. R.) 169–201 (Academic Press, 2017).Chapter 

    Google Scholar 
    15.Williams, J. Clam gardens: aboriginal mariculture on Canada’s West Coast (New Star Books, 2006).
    Google Scholar 
    16.Campbell, S. & Butler, V. Archaeological evidence for resilience of Pacific Northwest salmon populations and the socioecological system over the last~7,500 years. Ecol. Soc. 15(1), 17 (2000).Article 

    Google Scholar 
    17.Thornton, T., Deur, D. & Kitka, H. Cultivation of salmon and other marine resources on the Northwest Coast of North America. Hum. Ecol. 43, 189–199 (2015).Article 

    Google Scholar 
    18.Thornton, T. The ideology and practice of Pacific Herring cultivation among the Tlingit and Haida. Hum. Ecol. 43, 213–223 (2015).Article 

    Google Scholar 
    19.Petersen, J. R. et al. Use of the traditional halibut hook of the Makah Tribe, the čibu⋅d, reduces bycatch in recreational halibut fisheries. PeerJ 8, e9288 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ritchie, M. & Angelbeck, B. “Coyote broke the dams”: Power, reciprocity, and conflict in fish weir narratives and implications for traditional and contemporary fisheries. Ethnohistory 67(2), 191–220 (2020).Article 

    Google Scholar 
    21.Royle, T. C. A. et al. An efficient and reliable DNA-based sex identification method for archaeological Pacific salmonid (Oncorhynchus spp.) remains. PLoS ONE 13(3), e0193212 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Royle, T. C. A. et al. Investigating the sex-selectivity of a Middle Ontario Iroquoian Atlantic salmon (Salmo salar) and lake trout (Salvelinus namaycush) fishery through ancient DNA analysis. J. Archaeol. Sci. Rep. 31, 102301 (2020).
    Google Scholar 
    23.George, G. National Energy Board Hearing Order OH-001-2014. Trans Mountain Pipeline ULC. Trans Mountain Expansion Project. Volume 6 (2014).24.Morin, J. Tsleil-Waututh Nation’s History, Culture and Aboriginal Interests in Eastern Burrard Inlet. Report on file, Gowlings, Lafleur, Henderson LLP, Vancouver (2015).25.Suttles, W. Central Coast Salish. In Handbook of North American Indians Volume 7: Northwest Coast (ed. Suttles, W.) 453–475 (Smithsonian Institution, 1990).26.Hancock, M. J. & Marshall, D.E. Catalogue of Salmon Streams and Spawning Escapements of Statistical Area 28 Howe Sound-Burrard Inlet. Canadian Data Report of Fisheries and Aquatic Sciences No. 557 (1986).27.Harris, G. The salmon and trout streams of Vancouver. Waters J. Vanc. Aquar. 3, 4–23 (1978).
    Google Scholar 
    28.Ricker, W. E. Effects of the Fishery and of Obstacles to Migration on the Abundance of Fraser River Sockeye Salmon (Oncorhynchus nerka). Canadian Technical Report of Fisheries and Aquatic Sciences No. 1522 (1987).29.Charlton, A. S. The Belcarra Park Site. (Department of Archaeology, Simon Fraser University, 1980).30.Lepofsky, D., Trost, D. & Morin, J. Coast Salish interaction: a view from the inlets. Can. J. Archaeol. 31, 190–223 (2007).
    Google Scholar 
    31.Morin, J., Lepofsky, D., Ritchie, M., Porcic, M. & Edinborough, K. Assessing continuity in the ancestral territory of the Tsleil-Waututh-Coast Salish, southwest British Columbia, Canada. J. Anthropol. Archaeol. 51, 77–87 (2018).Article 

    Google Scholar 
    32.Morin, J., Muir, B., Ritchie, M. & Sellers, I. Tsleil-Waututh and Simon Fraser University Archaeological Investigations at Port Moody (Reed Point, Shoreline Park, Old Orchard Park, Slaughterhouse Creek, Carraholly Point, and Barnet Beach). Permit 2014–344. Report on file, British Columbia Archaeology Branch, Victoria (2020).33.Harris, C. Voices of disaster: smallpox around the Strait of Georgia in 1782. Ethnohistory 41, 591–626 (1994).Article 

    Google Scholar 
    34.Chisholm, B. S. Reconstructions of Prehistoric Diet in British Columbia Using Stable-Carbon Isotopic Analysis. PhD dissertation. (Simon Fraser University, 1986).35.Hanson, D. K. Late Prehistoric Subsistence in the Strait of Georgia Region of the Northwest Coast. Master’s thesis. (Simon Fraser University, 1991).36.Trost, T. Forgotten Waters: A Zooarchaeological Analysis of the Cove Cliff Site (DhRr 18), Indian Arm, British Columbia. Master’s thesis. (Simon Fraser University, 2005).37.Pierson, N. Bridging Troubled Waters: Zooarchaeology and Marine Conservation on Burrard Inlet, Southwest British Columbia. Master’s thesis. (Simon Fraser University, 2011).38.Morin, J. et al. DNA-based species identification of ancient salmonid remains provides new insight into pre-contact Coast Salish salmon fisheries in Burrard Inlet, British Columbia, Canada. J. Archaeol. Sci. Rep. 37, 102956 (2021).
    Google Scholar 
    39.Sproat, G. June 15, 1877. Copy of minute of decision, Joint Indian Reserve Commission. Signed by Dominion Commissioner Alex Anderson, Provincial Commissioner Arch. McKinley and Joint Commissioner G.M. Sproat. Federal set of JIRC’s Minutes and plans, surveyor’s copy. Aboriginal and Northern Affairs Canada, BC Regional Office Specific Claims Branch, Resource Library, Vancouver. AAND Lands and Trusts registration #15215. Also LAC, RG10, Volume 3612, File 3756-23, Reel C10106 (1877).40.Mortimer, H. & George, D. You Call Me Chief: Impressions of the Life of Dan George (Doubleday, 1981).
    Google Scholar 
    41.Talbot, M. Old Legends and Customs of the British Columbia Coast Indians. s.n., New Westminster (1952).42.Thornton, M. Indian Lives and Legends (Mitchell Press, 1966).
    Google Scholar 
    43.MacDonald, C., Drake, D., Doerksen, J. & Cotton, M. Between Forest and Sea: Memories of Belcarra (Belcarra Historical Group, 1998).
    Google Scholar 
    44.Romanoff, S. Fraser Lillooet Fishing. In A Complex Culture of the British Columbia Plateau, Vancouver (ed. Hayden, B.) 222–265 (University of British Columbia Press, 1992).
    Google Scholar 
    45.Kennedy, D. & Bouchard, R. Sliammon Life, Sliammon Lands (Talonbooks, 1983).
    Google Scholar 
    46.Mathisen, O. A. The effect of altered sex ratios on the spawning of red salmon. In Studies of Alaska Red Salmon (ed. Koo, T.) 137–246 (University of Washington Press, 1962).
    Google Scholar 
    47.Reed, W. J. Sex-selective harvesting of Pacific salmon: a theoretically optimal solution. Ecol. Model. 14, 261–271 (1982).Article 

    Google Scholar 
    48.Salo, E. O. Life history of chum salmon (Oncorhynchus keta). In Pacific Salmon Life Histories (eds Margolis Groot, C. & Margolis, L.) 231–310 (UBC Press, 1991).
    Google Scholar 
    49.Jenness, D. The Faith of a Coast Salish Indian (British Columbia Provincial Museum, 1955).50.Richling, B. (ed.) The W̲SÁNEĆ and Their Neighbours: Diamond Jenness on the Coast Salish of Vancouver Island, 1935 (Rock’s Mills Press, 2016).51.Dale, C. & Natcher, D. C. What is old is new again: the reintroduction of Indigenous fishing technologies in British Columbia. Local Environ. 20(11), 1309–1321 (2015).Article 

    Google Scholar 
    52.Ritchie, M. P. & Springer, C. Harrison River Chum Fishery: The Ethnographic and Archaeological Perspective. Report on file, Sts′ailes, Agassiz (2010).53.Simeone, W. E. & Valentine, E. M. Ahtna Knowledge of Long-Term Changes in Salmon runs in the Upper Copper River Drainage, Alaska (Alaska Department of Fish and Game, Division of Subsistence, 2007).54.Langdon, S. J. Traditional Knowledge and Harvesting of Salmon by Huna and Hinyaa Tlingit. (U.S. Fish and Wildlife Service, Office of Subsistence Management, Fisheries Resource Monitoring Program, 2006).55.Ratner, N. C. et al. Local Knowledge, Customary Practices, and Harvest of Sockeye salmon from the Klawock and Sarkar Rivers, Prince of Wales Island, Alaska (Alaska Department of Fish and Game, Division of Subsistence, 2006)56.Curtis, E. The North American Indian: being a series of volumes picturing and describing the Indians of the United States, the Dominion of Canada, and Alaska, Vol. 13 (Plimpton Press, 1924).
    Google Scholar 
    57.Kennedy, D. & Bouchard, R. Stl’atl’imx fishing. In A Complex Culture of the British Columbia Plateau (ed. Hayden, B.) 266–354 (UBC Press, 1992).
    Google Scholar 
    58.Yang, D. Y. & Watt, K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J. Archaeol. Sci. 32(3), 331–336 (2005).Article 

    Google Scholar 
    59.Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    60.Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105(4), 539–543 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Yang, D. Y., Liu, L., Chen, X. & Speller, C. F. Wild or domesticated: DNA analysis of ancient water buffalo remains from North China. J. Archaeol. Sci. 35(10), 2778–2785 (2008).Article 

    Google Scholar 
    62.Bertho, S. et al. The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proc. Natl. Acad. Sci. U.S.A. 115(50), 12781–12786 (2008).Article 
    CAS 

    Google Scholar 
    63.Yano, A. et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 22(15), 1423–1428 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Yano, A. et al. The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol. Appl. 6(3), 486–496 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Yang, D., Cannon, A. & Sanders, S. R. DNA species identification of archaeological salmon bone from the Pacific Northwest Coast of North America. J. Archaeol. Sci. 31, 619–631 (2004).Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).67.Kim, K. et al. A real-time PCR-based amelogenin Y allele dropout assessment model in gender typing of degraded DNA samples. Int. J. Legal Med. 127, 55–61 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Sinding, M. et al. Sex determination of baleen whale artefacts: Implications for ancient DNA use in zooarchaeology. J. Archaeol. Sci. Rep. 10, 345–349 (2016).
    Google Scholar 
    69.Cooper, A. & Poinar, H. Ancient DNA: do it right or not at all. Science 289(5482), 1139 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.McKechnie, I. Investigating the complexities of sustainable fishing at a prehistoric village on western Vancouver Island, British Columbia, Canada. J. Nat. Conserv. 15(3), 208–222 (2007).Article 

    Google Scholar 
    71.Cannon, A., Yang, D. Y. & Speller, C. Site-specific salmon fisheries on the central coast of British Columbia. In The Archaeology of North Pacific Fisheries (eds Moss, M. & Cannon, A.) 57–74 (University of Alaska Press, 2011).
    Google Scholar 
    72.McKechnie, I. & Moss, M. Meta-analysis in zooarchaeology expands perspectives on Indigenous fisheries of the Northwest Coast of North America. J. Archaeol. Sci. Rep. 8, 470–485 (2016).
    Google Scholar 
    73.Orchard, T. J. & Szpak, P. Zooarchaeological and isotopic insights into locally variable economic patterns: a case study from late Holocene southern Haida Gwaii, British Columbia. BC Stud. 187, 107–147 (2015).
    Google Scholar 
    74.Rodrigues, A. T., McKechnie, I. & Yang, D. Y. Ancient DNA analysis of indigenous rockfish use on the Pacific Coast: implications for marine conservation areas and fisheries management. PLoS ONE 13(2), e0192716 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.McGregor, D. Coming full circle: Indigenous knowledge, environment, and our future. Am. Indian Q. 28(3), 385–410 (2004).Article 

    Google Scholar 
    76.Suttles, W. Economic Life of the Coast Salish of Hario and Rosario Straits. PhD Dissertation. (University of Washington, 1951).77.Caldwell, M. E. Northern Coast Salish Marine Resource Management. PhD dissertation. (University of Alberta, 2015).78.Deur, D. Tending the garden, making the soil: Northwest Coast estuarine gardens as engineered environments. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N.) (UBC Press, 2005).
    Google Scholar 
    79.Hoffmann, T. et al. Engineered feature used to enhance gardening at a 3800-year-old site on the Pacific Northwest coast. Sci. Adv. 2(12), e1601282 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    80.Lepofsky, D. et al. Documenting pre-contact plant management on the Northwest Coast: an example of prescribed burning in the Central and Upper Fraser Valley, British Columbia. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N.) 218–239 (UBC Press, 2005).
    Google Scholar 
    81.Turner, N. J., Deur, D. & Lepofsky, D. Plant management systems of British Columbia’s First Peoples. BC Stud. 179, 107–133 (2013).
    Google Scholar 
    82.Turner, N. J., Smith, R. & Jones, J. A fine line between two nations: ownership patterns for plant resources among Northwest Coast indigenous peoples. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N. J.) 151–180 (UBC Press, 2005).
    Google Scholar 
    83.Turner, N. J. & Peacock, S. Solving the perennial paradox: ethnobotanical evidence for plant resource management on the Northwest Coast. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N. J.) 101–151 (UBC Press, 2005).
    Google Scholar 
    84.Limburg, K. E., Walther, Y., Hong, B., Olson, C. & Stora, J. Prehistoric versus modern Baltic Sea cod fisheries: selectivity across the millennia. Proc. R. Soc. B 275, 2659–2665 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Sanchez, G. Indigenous stewardship of marine and estuarine fisheries? Reconstructing the ancient size of Pacific herring through linear regression models. J. Archaeol. Sci. Rep. 29, 102061 (2020).
    Google Scholar 
    86.Slaney, T. L., Hyatt, K. D., Northcote, T. G. & Fielden, R. J. Status of anadromous salmon and trout in British Columbia and Yukon. Fisheries 21(10), 20–35 (1996).Article 

    Google Scholar 
    87.Kope, R. & Wainwright, T. Trends in the status of Pacific salmon populations in Washington, Oregon, California, and Idaho. N. Pac. Anadr. Fish Comm. Bull. 1, 1–12 (1998).
    Google Scholar 
    88.Gustafson, R. G. et al. Pacific salmon extinctions: Quantifying lost and remaining diversity. Conserv. Biol. 21(4), 1009–1020 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Price, M. H., English, K. K., Rosenberger, A. G., MacDuffee, M. & Reynolds, J. D. Canada’s wild salmon policy: an assessment of conservation progress in British Columbia. Can. J. Fish. Aquat. Sci. 74(10), 1507–1518 (2017).Article 

    Google Scholar 
    90.Gayeski, N. J. et al. The failure of wild salmon management: need for a place-based conceptual foundation. Fisheries 43(7), 303–309 (2018).Article 

    Google Scholar 
    91.Morales, Q. E., Lepofsky, D. & Berkes, F. Ethnobiology and fisheries: Learning from the past for the present. J. Ethnobiol. 37(3), 369–379 (2017).Article 

    Google Scholar 
    92.Reid, A. J. et al. Two-eyed seeing: an Indigenous framework to transform fisheries research and management. Fish Fish. 00, 1–19 (2020).
    Google Scholar 
    93.Atlas, W. I. et al. Indigenous systems of management for culturally and ecologically resilient Pacific salmon (Oncorhynchus spp.) fisheries. Bioscience 71(2), 1–19 (2021).Article 

    Google Scholar  More

  • in

    Adaptation strategies and collective dynamics of extraction in networked commons of bistable resources

    Agent-resource affiliation networksWe consider games involving populations of agents that extract from multiple common-pool sources (which term we use for nodes representing resources in accord with previous related work15,16). Agents’ access to sources is defined by bipartite networks, wherein a link between an agent and a source indicates that the agent can access that source. This access is determined by some exogenous factors and remains fixed in time. The set of agents affiliated with a particular source (s) is denoted as ({mathbf{A}}_{s}), while the set of sources affiliated with a particular agent (a) is denoted as ({mathbf{S}}_{a}). The degree of an agent (a) is denoted by (m(a)), and the degree of a source (s) by (n(s)).To explore the effects of network topology upon extraction dynamics and wealth distributions, we generate ensembles of ({10}^{3}) networks, each having (50) agents and (50) sources and sharing mean agent degree (langle mrangle =5) and mean source degree (langle nrangle =5). All networks thus share the same total numbers of agents, sources, and links, but differ in how these links are distributed among agents and sources. We generate 9 network ensembles, each generated to represent a particular combination of one of three types of degree heterogeneity in its source degree distribution (U: uniform-degree, L: low-heterogeneity, or H: high-heterogeneity) with one of three similar distributions of agent degree (u, l, or h39) (Supplementary Information S1.1). Degree histograms, averaged over each ensemble, provide a representative source degree distribution ({P}_{mathbf{S}}(n)) and agent degree distribution ({P}_{mathbf{A}}(m)) for each network type (Fig. 2a and b). It is worth noting that the results of the simulations depend primarily on the degree distributions of agents and sources rather than on the overall size of the networks used (Supplementary Information S3.1).Figure 2(a) Source degree distributions and (b) Agent degree distributions for 9 network ensembles, each representing a combination of a Uniform-degree (U), Low-heterogeneity (L), or High-heterogeneity (H) source degree distribution with a uniform-degree (u), low-heterogeneity (l), or high-heterogeneity (h) agent degree distribution. Ensemble mean time-averaged quantities from pure free adaptation dynamics: (c) Agent payoffs (f(a)) as a function of agent degree (m(a)); (d) Collective extraction (overrightarrow{q}(s)) as a function of source degree (n(s)); (e) Source quality (b(s)) as a function of source degree (n(s)); and (f) Period of oscillation (T(s)) as a function of source degree (n(s)). Means are computed from simulations on ({10}^{3}) networks of each type.Full size imageNetworked CPR extraction gameOn these networks, we simulate iterative games in which agents vary the extraction effort that they apply to their affiliated sources, altering the quality of these sources; in turn, these changes in source quality then influence how agents adapt their extraction levels in subsequent rounds. The extraction effort exerted by agent (a) upon its affiliated source (s) is denoted as (q(a,s)). The total effort exerted by an agent (a), its individual extraction, is denoted by (overleftarrow{q}left(aright)=sum_{sin {mathbf{S}}_{a}}q(a,s)). The total effort exerted upon source (s), or its collective extraction, is denoted by (overrightarrow{q}left(sright)=sum_{ain {mathbf{A}}_{s}}q(a,s)). The quality of a source (s) is quantified by the benefit (b(s)) per unit extraction effort applied that the source provides. The cost associated with extraction is given by a convex (quadratic) function of (overleftarrow{q}left(aright)), such that marginal costs increase with individual extraction15,16. In addition to modelling the increasing costs (i.e., diminishing returns) associated with the physical act of extraction itself, this could also reflect escalating, informal social penalties that result from increasing extraction (i.e., “graduated sanctions”1,40). The net payoff accumulated by an agent (a) in a game iteration is thus$$fleft( a right) = left[ {mathop sum limits_{{s in {mathbf{S}}_{a} }} qleft( {a,s} right) cdot bleft( s right)} right] – frac{gamma }{2}{ }mathop{q}limits^{leftarrow} left( a right)^{2} ,$$
    (1)

    where (gamma) is a positive cost parameter.Bistable model of CPR depletion and remediationSources are bistable, meaning that at any time they can occupy one of two states: (1) a viable state, during which the source provides a benefit of magnitude (alpha) in return for each unit of extraction effort, and (2) a depleted state, during which this benefit is reduced by (beta) ((0 vec{q}_{{text{D}}} left( s right)} \ {0, } & {{text{if }} chi_{t – 1} left( s right) = 1{text{ and }}vec{q}_{t} left( s right) le vec{q}_{R} left( s right)} \ {chi_{t – 1} left( s right),} & {text{otherwise }} \ end{array} } right.$$
    (3)
    In the results that follow, we focus upon a uniform capacity scenario, wherein all sources share identical threshold values (vec{q}_{{text{D}}} left( s right) equiv vec{q}_{{text{D}}}) and (vec{q}_{{text{R}}} left( s right) equiv vec{q}_{{text{R}}} left( s right)). An alternative degree-proportional capacity scenario, in which threshold values increase with source degree, is discussed in the Supplementary Information (S3.4.2).Free adaptationUnder the free adaptation strategy, an agent updates its extraction levels independently at each of its affiliated sources depending on the state of each (Fig. 1b). As in the replicator rule often applied in networked evolutionary game models17,41,42, the rate at which an agent adapts its extraction levels within a time interval ({Delta }t) is proportional to the marginal payoff that the agent expects to attain thereby:$$frac{{{Delta }qleft( {a,s} right)}}{{{Delta }t}} = kfrac{partial fleft( a right)}{{partial qleft( {a,s} right)}},$$
    (4)
    where (k) is a rate constant. So, each extraction level (qleft( {a,s} right)) is updated according to$$q_{t + 1} left( {a,s} right) = q_{t} left( {a,s} right) + kleft[ {alpha – beta chi_{t} left( s right) – gamma {mathop{q}limits^{leftarrow}}_{t} left( a right)} right].$$
    (5)
    The higher an agent’s individual extraction (overleftarrow{q}(a)), the more slowly it will increase its extraction from viable sources, and the more rapidly it will reduce its extraction from depleted sources.Uniform adaptationWhen applying the uniform adaptation strategy, an agent adjusts each of its extraction levels by the same magnitude (Delta qleft(a,sright)equivDelta overleftarrow{q}(a)/mleft(aright)) (Fig. 1c). Assuming again that the rate at which an agent enacts this update is proportional to the associated marginal payoff, an agent adapts its extraction levels at all of its affiliated sources (s) by$$q_{t + 1} left( {a,s} right) = q_{t} left( {a,s} right) + kleft[ {alpha – beta overline{chi }left( a right) – gamma {mathop{q}limits^{leftarrow}}_{t} left( a right)} right],$$
    (6)
    where (overline{chi }left( a right) = left[ {mathop sum nolimits_{{s^{prime} in {mathbf{S}}_{a} }} chi left( {s^{prime}} right)} right]/mleft( a right)) is the mean state of the agent’s affiliated sources.ReallocationWhen practicing reallocation, an agent shifts an increment of extraction effort from a depleted source to a viable source such that its overall individual extraction (mathop{q}limits^{leftarrow} left( a right)) remains unchanged (Fig. 1d). The agent thus randomly selects one depleted source (s_{{text{D}}} in {mathbf{S}}_{a}) and one viable source (s_{{text{V}}} in {mathbf{S}}_{a}), if available. Since the marginal payoff per unit reallocated is (beta), updates its extraction levels such that$$q_{t + 1} left( {a,s} right) = left{ {begin{array}{*{20}c} {q_{t} left( {a,s} right) – kbeta , } & {{text{if}} s = s_{{text{D}}} } \ {q_{t} left( {a,s} right) + kbeta , } & {{text{if}} s = s_{{text{V}}} } \ {q_{t} left( {a,s} right),} & {text{otherwise }} \ end{array} } right.$$
    (7)

    When an agent’s affiliated sources all share the same quality value, no such reallocation is possible, and so the agent retains its present extraction levels: (q_{t + 1} left( {a,s} right) = q_{t} left( {a,s} right)) for all (s in {mathbf{S}}_{a}).Mixed strategiesAn agent’s adaptation strategy (({p}_{0},{p}_{updownarrow },{p}_{leftrightarrow })) comprises the probabilities that it will practice each of these update rules in any given round: its free adaptation propensity (({p}_{0})), its uniform adaptation propensity (({p}_{updownarrow })), and its reallocation propensity (({p}_{leftrightarrow })). An agent’s choice of a particular update rule is thus based only on its own innate inclinations, but the rate at which it enacts the selected rule is influenced by current resource conditions. We first simulate dynamics in which the same adaptation strategy is shared by all members of a population throughout the entire course of a simulation. We then consider games in which agents’ individual adaptation strategies are each allowed to independently evolve under generalized reinforcement learning38,43 (Supplementary Information S1.3.4). That is, after enacting a chosen update rule in an iteration (t), each agent (a) observes the payoff change (Delta {f}_{t}left(aright)={f}_{t}left(aright)-{f}_{t-1}(a)). If (Delta {f}_{t}left(aright) >0), then the agent’s relative propensity to practice this update rule in subsequent rounds is increased. If the agent’s payoffs decreased ((Delta {f}_{t}left(aright)0) or remediation threshold ({overrightarrow{q}}_{mathrm{R}}left(sright)). That is, all resource depletion events are assumed to be extreme enough to motivate agents to continuously “self-regulate” by remediating depleted sources (see Supplementary Information S5 for a more thorough discussion of these parameter settings).In simulations where reinforcement learning is applied, all agents are initialized with ({p}_{updownarrow }={p}_{leftrightarrow }=.333). For pure free adaptation simulations (({p}_{0}=1)), initial extraction levels were randomized (({q}_{t=0}left(a,sright)in [0,frac{{overrightarrow{q}}_{mathrm{D}}left(sright)}{nleft(sright)}])). All other simulations (({p}_{0} More