More stories

  • in

    Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition

    1.Catchpole, C. K. Variation in the song of the great reed warbler Acrocephalus arundinaceus in relation to mate attraction and territorial defence. Anim. Behav. 31, 1217–1225 (1983).
    Google Scholar 
    2.Andersson, M. Sexual selection (University Press, 1994).
    Google Scholar 
    3.Searcy, W. A. & Yasukawa, K. Song and female choice. In Ecology and evolution of acoustic communication in birds (eds Kroodsma, D. E. & Miller, E. H.) 454–473 (Cornell University Press, 1996).
    Google Scholar 
    4.O’Loghlen, A. L. & Beecher, M. D. Mate, neighbour and stranger song: A female song sparrow perspective. Anim. Behav. 58, 13–20 (1999).
    Google Scholar 
    5.Gentner, T. Q. & Hulse, S. H. Female European starling preference and choice for variation in conspecific male song. Anim. Behav. 59, 443–458 (2000).CAS 
    PubMed 

    Google Scholar 
    6.Molles, L. E. & Vehrencamp, S. L. Neighbour recognition by resident males in the banded wren Thryothorus pleurostictus a tropical songbird with high song type sharing. Anim. Behav. 61, 119–127 (2001).PubMed 

    Google Scholar 
    7.Ballentine, B., Hyman, J. & Nowicki, S. Vocal performance influences female response to male bird song: An experimental test. Behav. Ecol. 15, 163–168 (2004).
    Google Scholar 
    8.Forstmeier, W., Kempenaers, B., Meyer, A. & Leisler, B. A novel song parameter correlates with extra-pair paternity and reflects male longevity. Proc. R. Soc. Lond. B 269, 1479–1485 (2002).
    Google Scholar 
    9.de Kort, S. R., Eldermire, E. R. B., Valderrama, S., Botero, C. A. & Vehrencamp, S. L. Trill consistency is an age-related assessment signal in banded wrens. Proc. R. Soc. Lond. B 276, 2315–2321 (2009).
    Google Scholar 
    10.Węgrzyn, E., Leniowski, K. & Osiejuk, T. Whistle duration and consistency reflect philopatry and harem size in great reed warblers. Anim. Behav. 79, 1363–1372 (2010).
    Google Scholar 
    11.Węgrzyn, E., Leniowski, K. & Osiejuk, T. Introduce yourself at the beginning – Possibile identification function of the initial part of the song in the great reed warbler Acrocephalus arundinaceus. Ornis Fennica 86, 61–70 (2009).
    Google Scholar 
    12.Węgrzyn, E. & Leniowski, K. Middle Spotted Woodpecker territory owners distinguish between stranger and familiar foaters based on their vocal characteristics. Eur. Zool. J. 87, 58–72 (2020).
    Google Scholar 
    13.Podos, J. Motor constraints on vocal development in a songbird. Anim. Behav. 51, 1061–1070 (1996).
    Google Scholar 
    14.Podos, J., Southall, J. A. & Rossi-Santos, M. R. Vocal mechanics in Darwin’s finches: Correlation of beak gape and song frequency. J. Exp. Biol. 207, 607–619 (2004).PubMed 

    Google Scholar 
    15.Nelson, B. S., Deckers, G. J. L. & Suthers, R. A. Vocal tract filtering and sound radiation in a songbird. J. Exp. Biol. 208, 297–308 (2005).PubMed 

    Google Scholar 
    16.Falls, J. B. Individual recognition by sounds in birds. In Acoustic communication in birds Vol. 2 (eds Kroodsma, D. E. & Miller, E. H.) 237–278 (Academic Press, 1982).
    Google Scholar 
    17.Wiley, R. H., Hatchwell, B. J. & Davies, N. B. Recognition of individual males songs by female dunnocks: A mechanism increasing the number of copulatory partners and reproductive success. Ethology 88, 145–153 (1991).
    Google Scholar 
    18.Lind, H., Dabelsteen, T. & McGregor, P. K. Female great tits can identify mates by song. Anim. Behav. 52, 667–671 (1996).
    Google Scholar 
    19.Aubin, T., Jouventin, P. & Hildebrand, C. Penguins use the two-voice system to recognize each other. Proc. R. Soc. Lond. B 267, 1081–1087 (2000).CAS 

    Google Scholar 
    20.Charrier, I., Jouventin, P., Mathevon, N. & Aubin, T. Individual identity coding depends on call type in the South Polar Skua Catharacta maccormicki. Polar Biol. 24, 378–382 (2001).
    Google Scholar 
    21.Stoddard, P. K., Beecher, M. D., Horning, C. L. & Willis, M. S. Strong neighbor– stranger discrimination in song sparrows. Condor 92, 1051–1056 (1990).
    Google Scholar 
    22.Stoddard, P. K., Beecher, M. D., Horning, C. L. & Campbell, S. E. Recognition of individual neighbors by song in the song sparrow, a species with song repertoires. Behav. Ecol. Sociobiol. 29, 211–215 (1991).
    Google Scholar 
    23.Godard, R. Long–term memory of individual neighbours in a migratory songbird. Nature 350, 228–229 (1991).ADS 

    Google Scholar 
    24.Stoddard, P. K. Vocal recognition of neighbors by territorial passerines. In Ecology and evolution of acoustic communication in birds (eds Kroodsma, D. E. & Miller, E. H.) 56–374 (Cornell University Press, 1996).
    Google Scholar 
    25.Hyman, J. Seasonal variation in response to neighbors and strangers by a territorial songbird. Ethology 111, 951–961 (2010).
    Google Scholar 
    26.Mackin, W. A. Neighbor–stranger discrimination in Audubon’s Shearwater Puffinus l. lherminieri explained by a “real enemy” effect. Behav. Ecol. Sociobiol. 59(2), 326–332 (2005).
    Google Scholar 
    27.Charrier, I., Mathevon, N., Jouventin, P. & Aubin, T. Acoustic communication in a Black-headed Gull colony: How do chicks identify their parents?. Ethology 107, 961–974 (2001).
    Google Scholar 
    28.Lengagne, T., Lauga, J. & Aubin, T. Intra–syllabic acoustic signatures used by the King Penguin in parent–chick recognition: An experimental approach. J. Exp. Biol. 204, 663–672 (2001).CAS 
    PubMed 

    Google Scholar 
    29.Jouventin, P. & Aubin, T. Acoustic systems are adapted to breeding ecologies: Individual recognition in nesting penguins. Anim. Behav. 64, 747–757 (2002).
    Google Scholar 
    30.Cucco, M. & Malacarne, G. Is the song of black restart males an honest signal of status?. Condor 101, 689–694 (1999).
    Google Scholar 
    31.Christie, P. J., Mennill, D. J. & Ratcliffe, L. M. Chickadee song structure is individually distinctive over long broadcast distances. Behaviour 141, 101–124 (2004).
    Google Scholar 
    32.Sherman, P. W., Reeve, H. K. & Pfennig D. W. Recognition systems. In: Krebs JR,DaviesNB, editors. Behavioural ecology: An evolutionary approach. Oxford: Blackwell Scientific. pp. 69–96 (1997).33.Kilham, L. Behavior and methods of communication of Pileated woodpeckers. Condor 61, 377–387 (1959).
    Google Scholar 
    34.Lawrence, L. & de Kort, S. R. A comparative life–history study of four species of woodpeckers. Ornithol. Monogr. 5, 1–155 (1967).
    Google Scholar 
    35.Winkler, H. & Short, L. A comparative analysis of acoustical signals in Pied woodpeckers (Aves, Picoides). Bull. Am. Mus. Nat. Hist. 160, 1–110 (1978).
    Google Scholar 
    36.Crusoe, D. A. Acoustic behavior and its role in the social relations of the red-headed wood-pecker: Picidae, Melanerpes erythrocephalus. Doctoral dissertation, University of Illinois at Chicago Circle (1980).37.Pardo, M. A. et al. Wild acorn woodpeckers recognize associations between individuals in other groups. Proc. R. Soc. B 285, 20181017 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    38.Leniowski, K. & Węgrzyn, E. The carotenoid-based red cap of the middle spotted woodpecker Dendrocopos medius reflects individual quality and territory size. Ibis 155(4), 804–813 (2013).
    Google Scholar 
    39.Podos, J., Lahti, D. C. & Moseley, D. L. Vocal performance and sensorimotor learning in songbirds. Adv. Study Behav. 40, 159–195 (2009).
    Google Scholar 
    40.Tremain, S. B., Swiston, K. A. & Mennill, D. J. Seasonal variation in acoustic signals of Pileated Woodpeckers. Wilson J. Ornithol. 120(3), 499–504 (2008).
    Google Scholar 
    41.Kilham, L. Reproductive behavior of red–bellied woodpeckers. Wilson Bull. 73, 237–254 (1961).
    Google Scholar 
    42.Catchpole, C. K. & Slater, P. J. B. Bird Song. Biological themes and variation 2nd edn. (Cambridge University Press, Cambridge, 2008).
    Google Scholar 
    43.Falls, J. B. & McNicholl, M. K. Neighbor–stranger discrimination by song in male blue grouse. Can. J. Zool. 57(2), 457–462 (1979).
    Google Scholar 
    44.Galeotti, P. & Pavan, G. Individual recognition of male tawny owls Strix aluco using spectrograms of their territorial calls. Ethol. Ecol. Evol. 3(2), 113–126 (1991).
    Google Scholar 
    45.Prum, R. O. Sexual selection and the evolution of mechanical sound production in manakins Aves: Pipridae. Anim. Behav. 55(4), 977–994 (1998).CAS 
    PubMed 

    Google Scholar 
    46.Rebbeck, M., Corrick, R., Eaglestone, B. & Stainton, C. Recognition of individual European Nightjars Caprimulgus europaeus from their song. Ibis 143, 468–475 (2001).
    Google Scholar 
    47.Dodenhoff, D. J. An analysis of acoustic communication within the social system of downy woodpeckers Picoides pubescens. Doctoral dissertation, The Ohio State University. (2002).48.Budka, M., Deoniziak, K., Tumiel, T. & Białas, J. T. Vocal individuality in drumming in great spotted woodpecker—A biological perspective and implications for conservation. PLoS ONE 13(2), e0191716 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Ydenberg, R. C., Giraldeau, L. A. & Falls, J. B. Neighbours, strangers, and the asymmetric war of attrition. Anim. Behav. 36(2), 343–347 (1988).
    Google Scholar 
    50.Delport, W., Kemp, A. C. & Ferguson, W. H. Vocal identification of individual African Wood Owls Strix woodfordii: a technique to monitor long-term adult turnover and residency. Ibis 144, 30–39 (2002).
    Google Scholar 
    51.Peake, T. M. et al. Individuality in Corncrake Crex crex vocalisations. Ibis 140, 120–217 (1998).
    Google Scholar 
    52.Hoodless, A. N., Inglis, J. G., Doucet, J.-P. & Aebischer, N. J. Vocal individuality in the roding calls of Woodcock Scolopax rusticola and their use to validate a survey method. Ibis 150, 80–89 (2008).
    Google Scholar 
    53.Grava, T., Mathevon, N., Place, E. & Balluet, P. Individual acoustic monitoring of the European Eagle Owl Bubo bubo. Ibis 150, 279–287 (2008).
    Google Scholar 
    54.Odom, K. J., Slaght, J. C. & Gutierrez, R. J. Distinctiveness in the territorial calls of Great horned owls within and among years. J. Raptor Res. 47, 21–30 (2013).
    Google Scholar 
    55.Aubin, T., Mathevon, N., Staszewski, V. & Boulinier, T. Acoustic communication in the Kittiwake Rissa tridactyla: potential cues for sexual and individual signatures in ling calls. Polar Biol. 30, 1027–1033 (2007).
    Google Scholar 
    56.Bretagnolle, V. & Laquette, B. Structural variation in the call of the Cory’s Shearwater (Colonectris diodemea, Aves, Procellaridae). Ethology 85, 313–323 (1990).
    Google Scholar 
    57.de Broke, M. L. Sexual differences in the voice and individual vocal recognition in the Manx Shearwater (Puffinus Puffinus). Anim. Behav. 26, 622–629 (1978).
    Google Scholar 
    58.Dreiss, A. N., Ruppli, C. A. & Roulin, A. Individual vocal signatures in barn owl nestling: does individual recognition have an adaptive role in sibling vocal competition?. J. Evol. Biol. 27, 63–75 (2014).CAS 
    PubMed 

    Google Scholar 
    59.Volodin, I. A., Volodina, E. V., Klenova, A. V. & Filatova, O. A. Individual and sexual differences in the calls of the monomorphic White-faced Whistling Duck Dendrocygna viduata. Acta Ornithol. 40, 43–52 (2005).
    Google Scholar 
    60.Bragina, E. & Beme, J. sexual and individual features in the long range and short range calls of the White-naped crane. Condor 115, 501–507 (2013).
    Google Scholar 
    61.Terry, A. M. R., Peake, T. M. & McGregor, P. K. The role of vocal individuality in conservation. Front. Zool. 2, 10 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    62.Pasinelli, G. Oaks (Quercus sp.) and only oaks? Relations between habitat structure and home range size of the middle spotted woodpecker (Dendrocopos medius). Biol. Conserv. 93(2), 227–235 (2000).
    Google Scholar 
    63.Pasinelli, G. Dendrocopos medius middle spotted woodpecker. BWP Update 5(1), 49–99 (2003).
    Google Scholar 
    64.Michalek, K. G. & Winkler, H. Parental care and parentage in monogamous great spotted woodpeckers Picoides major and middle spotted woodpeckers Picoides medius. Behaviour 138(10), 1259–1285 (2001).
    Google Scholar 
    65.Pasinelli, G., Hegelbach, J. & Reyer, H.-U. Spacing behavior of the Middle Spotted Woodpecker in central Europe. J. Wildl. Manag. 65, 432–441 (2001).
    Google Scholar 
    66.Pasinelli, G. Breeding performance of the middle spotted woodpecker Dendrocopos medius in relation to weather and territory quality. Ardea 89, 353–361 (2001).
    Google Scholar 
    67.Kosiński, Z. & Winiecki, A. Ocena liczebności dzięcioła średniego Dendrocopos medius – Porównanie metody kartograficznej z użyciem stymulacji magnetofonowej z metodą wyszukiwania gniazd. Notatki Ornitologiczne 44, 43–55 (2003).
    Google Scholar 
    68.Specht, R. Avisoft-SASLab Pro: sound analysis and synthesis laboratory (Avisoft Bioacoustics, 2002).
    Google Scholar 
    69.Mundry, R. & Sommer, C. Discriminant function analysis with nonindependent data: consequences and an alternative. Anim. Behav. 74, 965–976 (2007).
    Google Scholar 
    70.Tabachnick, B. G. & Fidell, L. S. Using multivariate statistics 4th edn. (Allyn and Bacon, 2001).
    Google Scholar 
    71.Leniowski, K. Signaling quality in the Middle Spotted Woodpecker Dendrocopos medius: home ranges, colour ornaments and calls. (PhD thesis) Adam Mickiewicz University, Poznań, Poland (2011). More

  • in

    Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata

    1.Wiens, D. Mimicry in plants. Evol. Biol. 11, 365–403 (1978).
    Google Scholar 
    2.Pasteur, G. A classificatory review of mimicry systems. Annu. Rev. Ecol. Syst. 13, 169–199 (1982).
    Google Scholar 
    3.Barrett, S. C. H. Mimicry in plants. Sci. Am. 257, 76–85 (1987).
    Google Scholar 
    4.Barlow, B. A. & Wiens, D. Host-parasite resemblance in Australian mistletoes: The case for cryptic mimicry. Evolution 31, 69–84 (1977).PubMed 

    Google Scholar 
    5.Ehleringer, J. R. et al. Mistletoes: A hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70, 234–237 (1986).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Canyon, D. V. & Hill, C. J. Mistletoe host-resemblance: A study of herbivory, nitrogen and moisture in two Australian mistletoes and their host trees. Aust. J. Ecol. 22, 395–403 (1997).
    Google Scholar 
    7.Blick, R. A. J., Burns, K. C. & Moles, A. T. Predicting network topology of mistletoe–host interactions: Do mistletoes really mimic their hosts?. Oikos 121, 761–771 (2012).
    Google Scholar 
    8.Gianoli, E. & Carrasco-Urra, F. Leaf mimicry in a climbing plant protects against herbivory. Curr. Biol. 24, 984–987 (2014).CAS 
    PubMed 

    Google Scholar 
    9.Gianoli, E., Saldaña, A., Jiménez-Castillo, M. & Valladares, F. Distribution and abundance of vines along the light gradient in a southern temperate rainforest. J. Veg. Sci. 21, 66–73 (2010).
    Google Scholar 
    10.Gianoli, E. Eyes in the chameleon vine?. Trends Plant Sci. 22, 4–5 (2017).CAS 
    PubMed 

    Google Scholar 
    11.Gianoli, E. & Molina-Montenegro, M. A. Leaf damage induces twining in a climbing plant. New Phytol. 167, 385–390 (2005).PubMed 

    Google Scholar 
    12.González-Teuber, M. & Gianoli, E. Damage and shade enhance climbing and promote associational resistance in a climbing plant. J. Ecol. 96, 122–126 (2008).
    Google Scholar 
    13.Calder, D. M. Mistletoes in focus: An introduction. In The Biology of Mistletoes (eds Calder, D. M. & Bernhardt, P.) 1–18 (Academic Press, 1983).
    Google Scholar 
    14.Cook, M. E., Leigh, A. & Watson, D. M. Hiding in plain sight: Experimental evidence for birds as selective agents for host mimicry in mistletoes. Botany 98, 525–531 (2020).
    Google Scholar 
    15.Atsatt, P. R. Mistletoe leaf shape: A host morphogen hypothesis. In The Biology of Mistletoes (eds Calder, D. M. & Bernhardt, P.) 259–275 (Academic Press, 1983).
    Google Scholar 
    16.Hall, P. J., Badenoch-Jones, J., Parker, C. W., Letham, D. S. & Barlow, B. A. Identification and quantification of cytokinins in the xylem sap of mistletoes and their hosts in relation to leaf mimicry. Aust. J. Plant Physiol. 14, 429–438 (1987).CAS 

    Google Scholar 
    17.Watson, D. M. Mistletoes of Southern Australia (CSIRO, 2019).
    Google Scholar 
    18.Holopainen, J. K. & Blande, J. D. Molecular plant volatile communication. In Sensing in Nature (ed. López-Larrea, C.) 17–31 (Springer Science, 2012).
    Google Scholar 
    19.Baldwin, I. T., Kessler, A. & Halitschke, R. Volatile signaling in plant–plant–herbivore interactions: What is real?. Curr. Opin. Plant Biol. 5, 351–354 (2002).CAS 
    PubMed 

    Google Scholar 
    20.Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144 (2010).PubMed 

    Google Scholar 
    21.Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52 (2014).PubMed 

    Google Scholar 
    22.Coyne, J. A. Fantastic and plastic mimicry in a tropical vine. Why Evolution is True Blog. http://whyevolutionistrue.com/2014/04/26/fantastic-and-plastic-mimicry-in-a-tropical-vine (2014).23.Pannell, J. R. Leaf mimicry: Chameleon-like leaves in a Patagonian vine. Curr. Biol. 24, R357–R359 (2014).CAS 
    PubMed 

    Google Scholar 
    24.Baluška, F. & Mancuso, S. Vision in plants via plant-specific ocelli?. Trends Plant Sci. 21, 727–730 (2016).PubMed 

    Google Scholar 
    25.Richardson, A. O. & Palmer, J. D. Horizontal gene transfer in plants. J. Exp. Bot. 58, 1–9 (2007).CAS 
    PubMed 

    Google Scholar 
    26.Bock, R. The give-and-take of DNA: Horizontal gene transfer in plants. Trends Plant Sci. 15, 11–22 (2010).CAS 
    PubMed 

    Google Scholar 
    27.Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328, 1128 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    28.Christin, P. A. et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol. 22, 445–449 (2012).CAS 
    PubMed 

    Google Scholar 
    29.Gao, C. et al. Horizontal gene transfer in plants. Funct. Integr. Genomics 14, 23–29 (2014).CAS 
    PubMed 

    Google Scholar 
    30.Diao, X., Freeling, M. & Lisch, D. Horizontal transfer of a plant transposon. PLoS Biol. 4, e5 (2006).PubMed 

    Google Scholar 
    31.El Baidouri, M. et al. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res. 24, 831–838 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    32.Prentice, H. C., Li, Y., Lönn, M., Tunlid, A. & Ghatnekar, L. A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population. Proc. R. Soc. B Biol. Sci. 282, 20152453 (2015).
    Google Scholar 
    33.Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl. Acad. Sci. 110, 2389–2394 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Takahashi, K. Influence of bacteria on epigenetic gene control. Cell. Mol. Life Sci. 71, 1045–1054 (2014).CAS 
    PubMed 

    Google Scholar 
    35.Ramos-Cruz, D., Troyee, A. N. & Becker, C. Epigenetics in plant organismic interactions. Curr. Opin. Plant Biol. 61, 102060 (2021).CAS 
    PubMed 

    Google Scholar 
    36.Lodewyckx, C. et al. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002).
    Google Scholar 
    37.Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: Recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).CAS 
    PubMed 

    Google Scholar 
    38.Barrett, S. C. H. Crop mimicry in weeds. Econ. Bot. 37, 255–282 (1983).
    Google Scholar 
    39.McElroy, J. S. Vavilovian mimicry: Nikolai Vavilov and his little-known impact on weed science. Weed Sci. 62, 207–216 (2014).CAS 

    Google Scholar 
    40.Ye, C.-Y. et al. Genomic evidence of human selection on Vavilovian mimicry. Nat. Ecol. Evol. 3, 1474–1482 (2019).PubMed 

    Google Scholar 
    41.Ruiz, E. Lardizabalaceae. In Flora de Chile Vol. 2 (eds Marticorena, C. & Rodríguez, R.) 24–27 (Universidad de Concepción, 2003).
    Google Scholar 
    42.Muñoz-Schick, M. Flora del Parque Nacional Puyehue (Editorial Universitaria, 1980).
    Google Scholar 
    43.Dorsch K. Hydrogeologische Untersuchungen der Geothermalfelder von Puyehue und Cordón Caulle, Chile. PhD thesis (Ludwig-Maximilians-Universität, 2003).44.Valladares, F., Saldaña, A. & Gianoli, E. Costs versus risks: Architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance. Austral Ecol. 37, 35–43 (2012).
    Google Scholar 
    45.Salgado-Luarte, C. & Gianoli, E. Shade-tolerance and herbivory are associated with RGR of tree species via different functional traits. Plant Biol. 19, 413–419 (2017).CAS 
    PubMed 

    Google Scholar 
    46.Salgado-Luarte, C. & Gianoli, E. Herbivory on temperate rainforest seedlings in sun and shade: Resistance, tolerance and habitat distribution. PLoS One 5, e11460 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Salgado-Luarte, C. & Gianoli, E. Herbivores modify selection on plant functional traits in a temperate rainforest understory. Am. Nat. 180, E42–E53 (2012).PubMed 

    Google Scholar 
    48.Sun, B. Y., Stuessy, T. F., Humaña, A. M., Riveros, G. M. & Crawford, D. J. Evolution of Rhaphithamnus venustus (Verbenaceae), a gynodioecious hummingbird-pollinated endemic of the Juan Fernandez Islands, Chile. Pac. Sci. 50, 55–65 (1996).
    Google Scholar 
    49.Saldaña, A. & Lusk, C. H. Influencia de las especies del dosel en la disponibilidad de recursos y regeneración avanzada en un bosque templado lluvioso del sur de Chile. Rev. Chil. Hist. Nat. 76, 639–650 (2003).
    Google Scholar 
    50.Gut, B. Árboles-Trees Patagonia. Árboles nativos e introducidos en Patagonia (Vázquez Mazzini, 2017).
    Google Scholar 
    51.Sahu, S. K., Thangaraj, M. & Kathiresan, K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012, 205049 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    52.Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).CAS 
    PubMed 

    Google Scholar 
    53.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    55.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).MATH 

    Google Scholar  More

  • in

    Integrate geographic scales in equity, diversity and inclusion

    1.McGill, B. M. et al. Ecol. Evol. 11, 3636–3645 (2021).Article 

    Google Scholar 
    2.Röβler, D. C., Lötters, S. & Da Fonte, L. F. M. Nature 584, 525–525 (2020).
    Google Scholar 
    3.Nuñez, M. A. et al. J. Appl. Ecol. 56, 4–9 (2019).Article 

    Google Scholar 
    4.Nuñez, M. A., Chiuffo, M. C., Pauchard, A. & Zenni, R. D. Trends Ecol. Evol. 36, 766–769 (2021).Article 

    Google Scholar 
    5.Maas, B. et al. Conserv. Lett. 14, e12797 (2021).Article 

    Google Scholar 
    6.Khelifa, R., Mahdjoub, M., Baaloudj, A. & Chaib, S. Facets https://doi.org/10.1139/facets-2021-0073 (in press).7.Haelewaters, D., Hofmann, T. A. & Romero-Olivares, A. L. PLoS Comput. Biol. 17, e1009277 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Incrimination of shrews as a reservoir for Powassan virus

    Samples of host-seeking nymphal black-legged ticks were collected during 2018–2020 from Massachusetts and Rhode Island sites where DTV is enzootic (Fig. 1). Individual DTV-infected ticks were identified by RT-PCR; all ticks (including virus-negative ticks) were also analyzed for B. burgdorferi infection by PCR. Host bloodmeal remnant identification using assays targeting family and order specific retrotransposons was performed as described11, with the addition of newly described primers (see Table 1). Assays targeted likely mammalian reservoir hosts within our study sites.Fig. 1: Map of the field sites included in this study.Ticks were collected from two sites in Washington County, Rhode Island, MB and Trust, as well as, from three islands off the coast of Massachusetts: Nantucket, Martha’s Vineyard, and Naushon Island.Full size imageTable 1 Primers and probes targeting mammalian retrotransposons used in the study for bloodmeal identification in ticks.Full size tableWe identified 20 nymphal ticks that contained DTV RNA from 13 different sites (prevalence, 0.4–7%, Table 2) and confirmed viral identity by sequencing a 248 bp section of the NS5 gene and 286 bp section of the envelope gene. Cognate viral sequences from these ticks were assigned to the DTV lineage (Fig. 2). Sequences from ticks collected from field sites in close geographic proximity often clustered together. Borrelia burgdorferi prevalence was more variable, ranging from 0 to 21%., and B. burgdorferi infection was not associated with DTV infection (p = 0.5, Fig. 3), as sites with high numbers of ticks infected with spirochetes were not the same as those that had high numbers of DTV-infected ticks (Table 2).Table 2 Infection rate of deer tick virus (DTV) and Borrelia burgdorferi in ticks at each study site.Full size tableFig. 2: Maximum likelihood tree of deer tick virus (DTV) detected in this study.A 248 bp piece of the NS5 gene and the 286 bp piece of the envelope gene were sequenced from each positive tick in the study, as well as the positive shrew. These pieces were concatenated and aligned with deer tick virus (DTV) and Powassan virus (POW) sequences downloaded from GenBank (GenBank numbers are listed on the tree). A maximum likelihood tree was then created using MEGAX.Full size imageFig. 3: Correlation analysis of the percentage of ticks that fed on shrews compared to the percentage of infected ticks at our field sites.The B. burgdorferi (Borr) data are shown in panel a and deer tick virus (DTV) data are shown in panel b. The percentage of DTV (n = 20, p = 0.01), but not B. burgdorferi (n = 128, p = 0.5), in ticks at a site is associated with the percentage of ticks that fed on shrews.Full size imageThe source of the infectious larval bloodmeal was identified from 16 of the 20 DTV-infected ticks (80%), 13 of which were identified as shrews (65%) (Table 3). The other DTV-infected ticks had fed on diverse hosts such as bird, squirrel, and cat. One tick showed evidence of having fed on multiple hosts (shrew and deer). None of the ticks had fed on a mouse. We conclude that in our sites, during the years that we sampled, larval ticks feeding on shrews were more likely to be infected by DTV than by feeding on any other animal. Using the 0.1% estimated rate of transmission of adult female ticks to larval progeny for the related tick-borne encephalitis virus12, we calculated that up to four ticks (95% binomial confidence interval of 0 to 0.4% of ticks) from our study could derive from inheritance. Thus, we cannot exclude this as the source of the single infected ticks derived from a bird, squirrel, and cat. However, more than four infected ticks were derived from shrews, suggesting that inheritance alone cannot explain the apparent association.Table 3 Bloodmeal host identified from deer tick virus-infected ticks from each study site.Full size tableDuring the years that we sampled our study sites, mice did not contribute as many larval bloodmeals as might be expected13,14. The proportion of nymphal ticks that fed on mice ranged from 2 to 20% (median 10.5%) (Table 4). Our previous publication identified sites where the majority of ticks had fed on mice (Nantucket 2018, 100%, and Robin’s Island 2018 and 2019, 91% and 53%, respectively11), but DTV was not identified from these collections. Squirrels, or other Sciuridae, contributed ticks at only two sites (median host contribution, 1%). In contrast, shrews were common hosts at our study sites, with a median host contribution of 40.5% (range, 0–68%). The proportion of nymphal ticks that fed on shrews as larvae at a site was associated with the prevalence of DTV infection in ticks at that site (R2 = 0.44 p = 0.01, Fig. 3b), but not the prevalence of B. burgdorferi (R2 = 0.04, p = 0.5, Fig. 3a). DTV-infected nymphs were highly likely to had fed on a shrew (OR = 139, 95% confidence interval 42–456, but not a mouse, squirrel (or other Sciuridae) or other host (Fig. 4a). By contrast, B. burgdorferi-infected ticks were likely to have fed on mice, but not shrews (OR = 1.1, 95% confidence interval 0.6–1.9) (Fig. 4b). This excludes the hypothesis that shrews were found to have served as virus sources simply because these hosts were the dominant host in these sites.Table 4 The percentage of ticks at each site that tested positive for having fed on either a shrew (Soricidae), mouse (Peromyscus), squirrel (Sciuridae), or all other hosts tested (Odocoileus, Aves, Felis, Arvicolinae, or Lagomorpha).Full size tableFig. 4: The likelihood that an infected tick had fed on either a shrew, mouse, squirrel (or other Sciuridae), or other host.The data for deer tick virus-infected ticks are shown in panel a, and the data for B. burgdorferi-infected ticks are shown in panel b. Data are represented by boxplots of odds ratios (OR) with 95% confidence intervals, and all field sites are combined (n = 20 deer tick virus-infected ticks, n = 128 B. burgdorferi-infected ticks). A line is drawn at OR = 1, and any confidence interval that crosses it is not statistically significant. Sqrl= squirrel (or other Sciuridae).Full size imageThree B. brevicauda shrews were trapped from two of our study sites in September of 2020. DTV was detected in the brain of one shrew. Attempts to isolate virus by suckling mouse inoculation failed. Sequencing of two gene targets demonstrates greatest similarity to virus found in a tick from the same site (Fig. 2) and not to standard laboratory strains.DTV, like other tick-borne encephalitis viruses, may be perpetuated by three mechanisms15. Virus may be inherited by the tick, transovarial transmission16. We found that a greater number of ticks were associated with a specific host from all study sites than expected by vertical transmission, indicating that these ticks were not likely to have inherited the infection. There may be co-feeding or nonsystemic transmission in which an infected tick may serve as the direct source of infection for uninfected ticks attached to the skin around it, with no requirement for hematogenous viral dissemination17. Finally, horizontal transmission, in which a larval tick acquires infection from a viremic vertebrate host, requires a reservoir host that is susceptible to infection and allows for sufficient viremia to infect ticks as well as being sufficiently infested by the tick vector16. We focused solely on host-seeking nymphal ticks because they would only have one bloodmeal source, that of the larvae. Although adult ticks are also infected by DTV, they would have had two opportunities to become infected (a bloodmeal during the larval as well as the nymphal stage) and it would not be possible to determine whether the bloodmeal host that was identified from an adult was the source of the virus. Accordingly, we did not analyze adult ticks. Our analysis thus incriminates horizontal transmission between shrews and larval ticks, but we cannot exclude co-feeding transmission.Shrews (likely Blarina brevicauda, the most common shrew in our study sites; our retrotransposon assay, however, may also detect Sorex spp.) were the larval bloodmeal host for the majority (65%) of DTV-infected ticks. The infected ticks were collected from eight different sites over the course of three field seasons, indicating that the finding is not spatiotemporally specific. Although our sample size is small, the positive association between the proportion of shrew-fed ticks and the prevalence of DTV infection in ticks also supports a general finding; no association was found between DTV-infected ticks and either mouse-fed or Sciuridae-fed ticks. Finally, we detected virus in the brain of a shrew and find that it is genetically similar to virus within ticks from that site. Shrews are thus the main candidate for the vertebrate DTV reservoir but we cannot now rank the contribution of horizontal transmission relative to other modes of perpetuation. Shrews may be more likely to sustain an infectious viremia, or be more likely to simultaneously serve as host to nymphs and larvae (co-feeding), than the other mammals present in our study sites. Virus has been detected from xenodiagnostic ticks removed from skunks, raccoons and opossum in New York18. As with other tick-transmitted infections, contributions to the DTV enzootic cycle are likely to be dependent on local conditions and other hosts than shrews may contribute to maintenance. However, the association of shrews with DTV-infected ticks across multiple transmission seasons and across diverse sites, suggests that additional studies of shrews would be useful. Further investigations, including laboratory transmission studies are necessary to quantify the reservoir capacity of these hosts.Shrews have not previously been suggested as reservoir hosts for DTV or POWV, but they appear to be competent reservoirs for the related TBE virus in Eurasia19,20,21. When DTV was identified, white-footed mice were considered the likely reservoir given that these rodents maintained the tick-transmitted agents of Lyme disease, babesiosis, and human granulocytic anaplasmosis10,22. Shrews were considered to be poorly infested by ticks and thus were considered to have lower reservoir capacity for B. burgdorferi and B. microti23; this suggestion has been reconsidered24,25. Mammal surveys in DTV endemic sites have failed to detect virus or specific antibody in shrews18. Our use of host bloodmeal remnant analysis on infected ticks directly identified the source of the infecting animal reservoir without needing to extrapolate from indirect evidence such as comparative host density, tick infestation indices, and prevalence of pathogen exposure, and could be used to better understand the mode of perpetuation of other high consequence tick-borne pathogens such as the rickettsial agent of Rocky Mountain spotted fever, or those causing American tick-borne hemorrhagic fevers (Bourbon or Heartland virus). More

  • in

    Variation in fine root traits with thinning intensity in a Chinese fir plantation insights from branching order and functional groups

    1.Crotteau, J. S., Keyes, C. R., Hood, S. M. & Larson, A. J. Vegetation dynamics following compound disturbance in a dry pine forest: Fuel treatment then bark beetle outbreak. Ecol. Appl. 30, 1–19 (2019).
    Google Scholar 
    2.del Río, M., Bravo-Oviedo, A., Pretzsch, H., Löf, M. & Ruiz-Peinado, R. A review of thinning effects on scots pine stands: From growth and yield to new challenges under global change. For. Syst. 26, eR03S (2017).
    Google Scholar 
    3.Dang, P., Gao, Y., Liu, J., Yu, S. & Zhao, Z. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Sci. Total Environ. 630, 171–180 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Cabon, A., Mouillot, F., Lempereur, M. & Ourcival, J. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice forest ecology and management thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak. For. Ecol. Manag. 409, 333–342 (2018).
    Google Scholar 
    5.Drobyshev, I., Widerberg, M. K., Andersson, M. & Wang, X. Thinning around old oaks in spruce production forests: Current practices show no positive effect on oak growth rates and need fine tuning. Scand. J. For. Res. 34, 126–132 (2019).
    Google Scholar 
    6.Zhou, D., Zhao, S. Q., Liu, S. & Oeding, J. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 10, 3691–3703 (2013).ADS 

    Google Scholar 
    7.Schaedel, M. S. et al. Early forest thinning changes aboveground carbon distribution among pools, but not total amount. For. Ecol. Manag. 389, 187–198 (2017).
    Google Scholar 
    8.Wang, P., Diao, F., Yin, L. & Huo, C. Absorptive roots trait plasticity explains the variation of root foraging strategies in Cunninghamia lanceolata. Environ. Exp. Bot. 129, 127–135 (2016).
    Google Scholar 
    9.Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. U. S. A. 113, 8741–8746 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Ellsworth, P. Z. & Sternberg, L. S. L. Linking soil nutrient availability, fine root production and turnover, and species composition in a seasonally dry plant community. Plant Soil 442, 49–63 (2019).CAS 

    Google Scholar 
    11.Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. https://doi.org/10.1038/s41467-018-05460-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Weemstra, M. Functional ecology. doi:https://doi.org/10.1111/1365-2435.13520.13.Lõhmus, K. et al. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale mining areas. Plant Soil 283, 1–10 (2006).
    Google Scholar 
    14.Ostonen, I. et al. Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol. 215, 977–991 (2017).CAS 
    PubMed 

    Google Scholar 
    15.Ostonen, I. et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob. Chang. Biol. 17, 3620–3632 (2011).ADS 

    Google Scholar 
    16.Wurzburger, N. & Wright, S. J. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).PubMed 

    Google Scholar 
    17.Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).
    Google Scholar 
    18.Burton, A. J., Pregitzer, K. S., Zogg, G. P. & Zak, D. R. Drought reduces root respiration in sugar maple forests. Ecol. Appl. 8, 771 (1998).
    Google Scholar 
    19.Jia, S., Wang, Z., Li, X., Zhang, X. & Mclaughlin, N. B. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiol. 31, 718–726 (2011).PubMed 

    Google Scholar 
    20.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    21.Chen, W., Koide, R. T. & Eissenstat, D. M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 106, 148–156 (2018).CAS 

    Google Scholar 
    22.Fortier, J., Truax, B., Gagnon, D. & Lambert, F. Abiotic and biotic factors controlling fine root biomass, carbon and nutrients in closed-canopy hybrid poplar stands on post-agricultural land. Sci. Rep. 9, 1–15 (2019).
    Google Scholar 
    23.Tian, D. L. et al. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in masson pine plantations. Pedosphere 20, 486–493 (2010).
    Google Scholar 
    24.Noguchi, K. et al. Fine-root dynamics in a young hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning. J. For. Res. 16, 284–291 (2011).CAS 

    Google Scholar 
    25.López, B. C., Sabate, S. & Gracia, C. A. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest. Tree Physiol. 23, 1217–1224 (2003).PubMed 

    Google Scholar 
    26.López-Serrano, F. R. et al. Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model. Eur. J. For. Res. 134, 167–185 (2015).
    Google Scholar 
    27.Shen, Y. et al. Short-term effects of low intensity thinning on the fine root dynamics of Pinus massoniana plantations in the three Gorges Reservoir Area, China. Forests 8, 1–13 (2017).
    Google Scholar 
    28.Mosca, E., Di Pierro, E. A., Budde, K. B., Neale, D. B. & González-Martínez, S. C. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species. Mol. Ecol. 27, 647–658 (2018).PubMed 

    Google Scholar 
    29.López, B., Sabaté, S. & Gracia, C. Fine roots dynamics in a Mediterranean forest: Effects of drought and stem density. Tree Physiol. 18, 601–606 (1998).PubMed 

    Google Scholar 
    30.Comas, L. H., Bouma, T. J. & Eissenstat, D. M. Linking root traits to potential growth rate in six temperate tree species. Oecologia 132, 34–43 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    31.Wang, C., McCormack, M. L., Guo, D. & Li, J. Global meta-analysis reveals different patterns of root tip adjustments by angiosperm and gymnosperm trees in response to environmental gradients. J. Biogeogr. 46, 123–133 (2019).
    Google Scholar 
    32.Borden, K. A. & Isaac, M. E. Management strategies differentially affect root functional trait expression in cocoa agroforestry systems. Agron. Sustain. Dev. 39, 1–10 (2019).
    Google Scholar 
    33.McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518 (2015).PubMed 

    Google Scholar 
    34.Hishi, T. Heterogeneity of individual roots within the fine root architecture: Causal links between physiological and ecosystem functions. J. For. Res. 12, 126–133 (2007).
    Google Scholar 
    35.Huang, G., Zhao, X., Zhao, H., Huang, Y. & Zuo, X. Linking root morphology, longevity and function to root branch order: A case study in three shrubs. Plant Soil 336, 197–208 (2010).CAS 

    Google Scholar 
    36.Rewald, B. et al. Root order-based traits of Manchurian walnut & larch and their plasticity under interspecific competition. Sci. Rep. 8, 1–14 (2018).ADS 

    Google Scholar 
    37.Yan, H. et al. Contrasting root foraging strategies of two subtropical coniferous forests under an increased diversity of understory species. Plant Soil 436, 427–438 (2019).CAS 

    Google Scholar 
    38.Wang, Y., Gao, G., Wang, N., Wang, Z. & Gu, J. Effects of morphology and stand structure on root biomass and length differed between absorptive and transport roots in temperate trees. Plant Soil 442, 355–367 (2019).CAS 

    Google Scholar 
    39.Zadworny, M., McCormack, M. L., Mucha, J., Reich, P. B. & Oleksyn, J. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. New Phytol. 212, 389–399 (2016).PubMed 

    Google Scholar 
    40.Yang, Q., Liu, L., Zhang, W., Xu, M. & Wang, S. Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees Struct. Funct. 29, 1207–1218 (2015).CAS 

    Google Scholar 
    41.Tian, D. et al. A long-term evaluation of biomass production in first and second rotations of Chinese fir plantations at the same site. Forestry 84, 411–418 (2011).
    Google Scholar 
    42.Li, L. et al. Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. For. Ecol. Manag. 433, 64–72 (2019).
    Google Scholar 
    43.Sword, M. A. Seasonal development of loblolly pine lateral roots in response to stand density and fertilization. Plant Soil 200, 21–25 (1998).ADS 
    CAS 

    Google Scholar 
    44.Bloom, A. J., Chapin, F. S. & Mooney, H. A. Resource limitation in plants—An economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392. https://doi.org/10.1146/annurev.es.16.110185.002051 (1985).Article 

    Google Scholar 
    45.Terzaghi, M. et al. Forest canopy reduction stimulates xylem production and lowers carbon concentration in fine roots of European beech. For. Ecol. Manag. 379, 81–90 (2016).
    Google Scholar 
    46.Jevon, F. Fine root respiration is more strongly correlated with root traits than tree species identity. Ecosphere https://doi.org/10.1002/ecs2.2944 (2019).Article 

    Google Scholar 
    47.Luke Mccormack, M., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 195, 823–831 (2012).CAS 
    PubMed 

    Google Scholar 
    48.Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F. & Dierig, D. A. Root traits contributing to plant productivity under drought. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00442 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Erktan, A. et al. Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. J. Ecol. 106, 2031–2042 (2018).
    Google Scholar 
    50.Young, D. J. N. et al. Forest recovery following extreme drought in California, USA: Natural patterns and effects of pre-drought management. Ecol. Appl. 30, 1–18 (2019).
    Google Scholar 
    51.Laughlin, D. C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 17, 771–784 (2014).PubMed 

    Google Scholar 
    52.Weemstra, M. et al. Towards a multidimensional root trait framework: A tree root review. New Phytol. 211, 1159–1169 (2016).CAS 
    PubMed 

    Google Scholar 
    53.Prieto, I. et al. Root functional parameters along a land-use gradient: Evidence of a community-level economics spectrum. J. Ecol. 103, 361–373 (2015).
    Google Scholar 
    54.Roumet, C. et al. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytol. 210, 815–826 (2016).PubMed 

    Google Scholar 
    55.Kong, D. et al. The root economics spectrum: Divergence of absorptive root strategies with root diameter. Biogeosci. Discuss. 12, 13041–13067 (2015).ADS 

    Google Scholar 
    56.Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).PubMed 

    Google Scholar 
    57.Chen, G. S. et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300, 68–76 (2013).
    Google Scholar 
    58.Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).
    Google Scholar 
    59.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. The Quarterly Review of Biology Vol. 84 (Springer, New York, 2009).MATH 

    Google Scholar  More

  • in

    Rapid phenotypic change in a polymorphic salamander over 43 years

    1.Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original in German) 1, 595–708 (1847).
    Google Scholar 
    2.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. Trends Ecol. Evol. 26, 285–291 (2011).PubMed 

    Google Scholar 
    3.Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).PubMed 

    Google Scholar 
    4.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).
    Google Scholar 
    5.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. Elife 7, e27166 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    6.Mousseau, T. A. Ectotherms follow the converse to Bergmann’s rule. Evolution 51, 630–632 (1997).PubMed 

    Google Scholar 
    7.Ashton, K. G. & Feldman, C. R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 57, 1151–1163 (2003).PubMed 

    Google Scholar 
    8.Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007).
    Google Scholar 
    9.Adams, D. C. & Church, J. O. Amphibians do not follow Bergmann’s rule. Evolution 62, 413–420 (2008).PubMed 

    Google Scholar 
    10.Angilletta, M. J. Jr. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 333–342 (2003).
    Google Scholar 
    11.Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).ADS 

    Google Scholar 
    12.Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. M. & Williams, S. E. Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Google Scholar 
    13.Ohlberger, J. Climate warming and ectotherm body size—from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).
    Google Scholar 
    14.Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).CAS 
    PubMed 

    Google Scholar 
    15.West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (A Review). Proc. Natl. Acad. Sci. USA 83, 1388–1392 (1986).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Forsman, A., Ahnesjö, J., Caesar, S. & Karisson, M. A model of ecological and evolutionary consequences of color polymorphism. Ecology 89, 34–40 (2008).PubMed 

    Google Scholar 
    17.McLean, C. A. & Stuart-Fox, D. Geographic variation in animal colour polymorphisms and its role in speciation. Biol. Rev. 89, 860–873 (2014).PubMed 

    Google Scholar 
    18.Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).
    Google Scholar 
    19.Cabe, P. R. et al. Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98, 53–60 (2007).CAS 
    PubMed 

    Google Scholar 
    20.Peterman, W. E. & Semlitsch, R. D. Fine-scale habitat associations of a terrestrial salamander: The role of environmental gradients and implications for population dynamics. PLoS ONE 8, e62184 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Farallo, V. R. & Miles, D. B. The importance of microhabitat: A comparison of two microendemic species of Plethodon to the widespread P. cinereus. Copeia 104, 67–77 (2016).
    Google Scholar 
    22.Burton, T. M. & Likens, G. E. Salamander populations and biomass in the Hubbard Brook experimental forest, New Hampshire. Copeia 1975, 541–546 (1975).
    Google Scholar 
    23.Mathis, A. Territories of male and female terrestrial salamanders: Costs, benefits, and intersexual spatial associations. Oecologia 86, 433–440 (1991).ADS 
    PubMed 

    Google Scholar 
    24.Anthony, C. D. & Pfingsten, R. A. Eastern red-backed salamander. Plethodon cinereus (Green 1818). In Amphibians of Ohio. Ohio Biological Survey (eds Pfingsten, R. A. et al.) 335–360 (2013).
    25.Moore, J.-D. & Ouellet, M. Questioning the use of an amphibian colour morph as an indicator of climate change. Glob. Change Biol. 21, 566–571 (2015).ADS 

    Google Scholar 
    26.Highton, R. Revision of North American salamanders of the genus Plethodon. Bull. Fla. State Mus. 6, 236–367 (1962).
    Google Scholar 
    27.Acord, M. A., Anthony, C. D. & Hickerson, C. M. Assortative mating in a polymorphic salamander. Copeia 2013, 676–683 (2013).
    Google Scholar 
    28.Reiter, M. K., Anthony, C. D. & Hickerson, C. A. M. Territorial behavior and ecological divergence in a polymorphic salamander. Copeia 2014, 481–488 (2014).
    Google Scholar 
    29.Paluh, D. J., Eddy, C., Ivanov, K., Hickerson, C. M. & Anthony, C. D. Selective foraging on ants by a terrestrial polymorphic salamander. Am. Midl. Nat. 174, 265–277 (2015).
    Google Scholar 
    30.Stuczka, A., Hickerson, C. M. & Anthony, C. D. Niche partitioning along the diet axis in a colour polymorphic population of Eastern Red-backed Salamanders, Plethodon cinereus. Amphibia-Reptilia 37, 283–290 (2016).
    Google Scholar 
    31.Otaibi, B. W., Johnson, Q. K. & Cosentino, B. J. Postautotomy tail movement differs between colour morphs of the red-backed salamander (Plethodon cinereus). Amphibia-Reptilia 38, 395–399 (2017).
    Google Scholar 
    32.Hantak, M. M., Brooks, K. M., Hickerson, C. M., Anthony, C. D. & Kuchta, S. R. A spatiotemporal assessment of dietary partitioning between color morphs of a terrestrial salamander. Copeia 108, 727–736 (2020).
    Google Scholar 
    33.Moreno, G. Behavioral and physiological differentiation between the color morphs of the salamander, Plethodon cinereus. J. Herpetol. 23, 335–341 (1989).
    Google Scholar 
    34.Anthony, C. D., Venesky, M. D. & Hickerson, C. A. M. Ecological separation in a polymorphic terrestrial salamander. J. Anim. Ecol. 77, 646–653 (2008).PubMed 

    Google Scholar 
    35.Evans, A. E., Urban, M. C. & Jockusck, E. L. Developmental temperature alters color polymorphism but not hatchling size in a woodland salamander. Oecoloiga 192, 909–918 (2020).ADS 

    Google Scholar 
    36.Petruzzi, E. E., Niewiarowski, P. H. & Moore, F. B. G. The role of thermal niche selection in maintenance of a colour polymorphism in redback salamanders (Plethodon cinereus). Front. Zool. 5, 3–10 (2006).
    Google Scholar 
    37.Muñoz, D. J., Hesed, K. M., Grant, E. H. C. & Miller, D. A. W. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change. Ecol. Evol. 6, 8740–8755 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    38.Lotter, F. & Scott, N. J. Jr. Correlation between climate and distribution of the color morphs of the salamander Plethodon cinereus. Copeia 1977, 681–690 (1977).
    Google Scholar 
    39.Gibbs, J. P. & Karraker, N. E. Effects of warming conditions in eastern North American forests on Red-Backed Salamander morphology. Conserv. Biol. 20, 913–917 (2006).PubMed 

    Google Scholar 
    40.Cosentino, B. J., Moore, J.-D., Karraker, N. E., Ouellet, M. & Gibbs, J. P. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander. Ecol. Evol. 7, 5426–5434 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    41.Evans, A. E., Forester, B. R., Jockusch, E. L. & Urban, M. C. Salamander morph frequencies do not evolve as predicted in response to 40 years of climate change. Ecography 41, 1687–1697 (2018).
    Google Scholar 
    42.Vose, R., Easterling, D., Kunkel, K., LeGrande, A. & Wehner, M. Temperature changes in the United States. In (eds Wuebbles, D. J. et al.). Climate Science Special Report: Fourth National Climate Assessment, Vol. 1, 185–206 (2017).43.Highton, R. Correlating costal grooves with trunk vertebrae in salamanders. Copeia 1957, 107–109 (1957).
    Google Scholar 
    44.Fisher-Reid, C. M. & Wiens, J. J. Is geographic variation within species related to macroevolutionary patterns between species?. J. Evol. Biol. 28, 1502–1515 (2015).CAS 
    PubMed 

    Google Scholar 
    45.Wake, D. B. Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. South. Calif. Acad. Sci. 4, 1–111 (1966).
    Google Scholar 
    46.Jockush, E. L. Geographic variation and phenotypic plasticity of number of trunk vertebrae in Slender Salamanders, Batrachoseps (Caudata: Plethodontidae). Evolution 51, 1966–1982 (1997).
    Google Scholar 
    47.Parra-Olea, G. & Wake, D. B. Extreme morphological and ecological homoplasy in tropical salamanders. Proc. Natl. Acad. Sci. USA 98, 7888–7891 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Pike, D. A. & Mitchell, J. C. Burrow-dwelling ecosystem engineers provide thermal refugia throughout the landscape. Anim. Conserv. 16, 694–703 (2013).
    Google Scholar 
    49.Caruso, N. M., Sears, M. W., Adams, D. C. & Lips, K. R. Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob. Change Biol. 20, 1751–1759 (2014).ADS 

    Google Scholar 
    50.Radomski, T., Hantak, M. M., Brown, A. D. & Kuchta, S. R. Multilocus phylogeography of the Eastern Red-backed Salamander (Plethodon cinereus): Cryptic Appalachian diversity and post-glacial range expansion. Herpetologica 76, 61–73 (2020).
    Google Scholar 
    51.Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    52.Hill, A. W. et al. The Notes from Nature tool for unlocking biodiversity records from museum records through citizen science. ZooKeys 209, 219–223 (2012).
    Google Scholar 
    53.Constable, H., Guralnick, R., Wieczorek, J., Spencer, C. & Peterson, A. T. VertNet: A new model for biodiversity data sharing. PLoS Biol. 8, e1000309 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    54.Guralnick, R. & Constable, H. VertNet: Creating a data-sharing community. Bioscience 60, 258–259 (2010).
    Google Scholar 
    55.Guralnick, R. P. et al. The importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    56.Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    57.Hollister, J., Shah, T., Robitaille, A., Beck, M. & Johnson, M. elevatr: Access elevation data from various APIs. R package version 0.3.1. https://doi.org/10.5281/zenodo.4282962 (2020).58.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).59.Barton, K. Package ‘MuMIn’. Model Selection and Model Averaging Based on Information Criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html (2012).60.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    61.Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    62.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).ADS 

    Google Scholar 
    63.Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 

    Google Scholar 
    64.Fisher-Reid, M. C., Engstrom, T. N., Kuczynski, C. A., Stephens, P. R. & Wiens, J. J. Parapatric divergence of sympatric morphs in a salamander: Incipient speciation on Long Island?. Mol. Ecol. 22, 4681–4694 (2013).PubMed 

    Google Scholar 
    65.Brodie, E. D. III. & Brodie, E. D. Jr. Tetrodotoxin resistance in garter snakes: An evolutionary response of predators to dangerous prey. Evolution 44, 651–659 (1990).PubMed 

    Google Scholar 
    66.Brodie, E. D. Jr., Ridenhour, B. J. & Brodie, E. D. III. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56, 2067–2082 (2002).PubMed 

    Google Scholar 
    67.Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).PubMed 

    Google Scholar 
    68.Siepielski, A. M. et al. Spatial patterns of directional phenotypic selection. Ecol. Lett. 16, 1382–1392 (2013).PubMed 

    Google Scholar 
    69.Thompson, J. N. Coevolution: The geographic mosaic of coevolutionary arms races. Curr. Biol. 15, 992–994 (2005).
    Google Scholar 
    70.Corl, A., Davis, A. R., Kuchta, S. R. & Sinervo, B. Selective loss of polymorphic mating types is associated with rapid phenotype evolution during morphic speciation. Proc. Natl. Acad. Sci. 107, 4254–4259 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Roulin, A. Melanin-based colour polymorphism responding to climate change. Glob. Change Biol. 20, 3344–3350 (2014).ADS 

    Google Scholar 
    72.Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).PubMed 

    Google Scholar 
    73.Delhey, K. Gloger’s rule. Curr. Biol. 27, R689–R691 (2017).CAS 
    PubMed 

    Google Scholar 
    74.Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).
    Google Scholar 
    75.Hantak, M. M. & Kuchta, S. R. Predator perception across space and time: Relative camouflage in a colour polymorphic salamander. Biol. J. Linn. Soc. 123, 21–33 (2018).
    Google Scholar 
    76.Atkinson, D. Temperature and organism size—A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).
    Google Scholar 
    77.Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).PubMed 

    Google Scholar 
    78.Martof, B. S. & Rose, F. L. Geographic variation in southern populations of Desmognathus ochrophaeus. Am. Midl. Nat. 69, 376–425 (1963).
    Google Scholar 
    79.Tilley, S. G. Life histories and comparative demography of two salamander populations. Copeia 1980, 806–821 (1980).
    Google Scholar 
    80.Peterman, W. E., Crawford, J. A. & Hocking, D. J. Effects of elevation on plethodontid salamander body size. Copeia 104, 202–208 (2016).
    Google Scholar 
    81.Williams, E. E., Highton, R. & Cooper, D. M. Breakdown of polymorphism of the red-backed salamander on Long Island. Evolution 22, 76–86 (1968).PubMed 

    Google Scholar 
    82.Wake, D. B. & Lynch, J. F. The distribution, ecology and evolutionary history of plethodontid salamanders in tropical America. Sci. Bull. Nat. Hist. Mus. Los Angel Cty. 25, 1–65 (1976).
    Google Scholar 
    83.Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486 (2020).PubMed 

    Google Scholar 
    84.Wake, D. B. Homoplasy: The result of natural selection, or evidence of design limitations?. Am. Nat. 138, 543–567 (1991).
    Google Scholar 
    85.Farallo, V. R., Wier, R. & Miles, D. B. The bogert effect revisited: Salamander regulatory behaviors are differently constrained by time and space. Ecol. Evol. 8, 11522–11532 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    86.Connette, G. M., Crawford, J. A. & Peterman, W. E. Climate change and shrinking salamanders: Alternative mechanisms for changes in plethodontid salamander body size. Glob. Change Biol. 21, 2834–2843 (2015).ADS 

    Google Scholar 
    87.Karell, P., Ahola, K., Karstinen, T., Valkama, J. & Brommer, J. E. Climate change drives microevolution in a wild bird. Nat. Commun. 2, 208 (2011).ADS 
    PubMed 

    Google Scholar 
    88.Lepetz, V., Massot, M., Chaine, A. S. & Clobert, J. Climate warming and the evolution of morphotypes in a reptile. Glob. Change Biol. 15, 454–466 (2009).ADS 

    Google Scholar 
    89.Panayotova, I. N. & Horth, L. Modeling the impact of climate change on a rare color morph in fish. Ecol. Model. 387, 10–16 (2018).
    Google Scholar 
    90.Clusella-Trullas, S. & Nielsen, M. The evolution of insect body coloration under changing climates. Curr. Opin. Insect Sci 41, 25–32 (2020).PubMed 

    Google Scholar 
    91.Sullivan, C. N. & Koski, M. H. The effects of climate change on floral anthocyanin polymorphisms. Proc. R. Soc. B Biol. Sci. 288, 20202693 (2021).
    Google Scholar 
    92.Hugall, A. F. & Stuart-Fox, D. Accelerated speciation in colour-polymorphic birds. Nature 485, 631–634 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    93.Gray, S. M. & Mckinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007).PubMed 

    Google Scholar 
    94.Mckinnon, J. S. & Pierotti, M. R. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).PubMed 

    Google Scholar 
    95.Hantak, M. M. et al. Do genetic structure and landscape heterogeneity impact color morph frequency in a polymorphic salamander?. Ecography 42, 1383–1394 (2019).
    Google Scholar 
    96.U. S. Geological Survey – Gap Analysis Project. Eastern Red-backed Salamander (Plethodon cinereus) aERBSx_CONUS_2001v1 Range Map. https://doi.org/10.5066/F7P26X90 (2017). More

  • in

    Altered fire regimes modify lizard communities in globally endangered Araucaria forests of the southern Andes

    1.Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).PubMed 

    Google Scholar 
    2.Harvey, B. J., Donato, D. C. & Turner, M. G. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology 97, 2272–2282 (2016).PubMed 

    Google Scholar 
    3.Prichard, S. J., Stevens-Rumann, C. S. & Hessburg, P. F. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 396, 217–233 (2017).
    Google Scholar 
    4.González, M. E., Lara, A., Urrutia, R. & Bosnich, J. Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42° S). Bosque 32, 215–219 (2011).
    Google Scholar 
    5.Perfetti-Bolaño, A., González-acuña, D., Barrientos, C. & Moreno, L. Efectos del fuego sobre la avifauna del cerro Cayumanque, región del Bío-bío, Chile. Boletín Chil. Ornitol. 19, 1–11 (2013).
    Google Scholar 
    6.Engstrom, R. T. First-order fire effects on animals: Review and recommendations. Fire Ecol. 6, 115–130 (2010).
    Google Scholar 
    7.Doherty, T. S. et al. Ecosystem responses to fire: Identifying cross-taxa contrasts and complementarities to inform management strategies. Ecosystems 20, 872–884 (2017).
    Google Scholar 
    8.Kowaljow, E. et al. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degrad. Dev. 30, 266–277 (2019).
    Google Scholar 
    9.Ferreira, C. C., Santos, X. & Carretero, M. A. Does ecophysiology mediate reptile responses to fire regimes? Evidence from Iberian lizards. PeerJ 4, e2107 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    10.Russell, K. R., Van Lear, D. H. & Guynn, D. C. Prescribed fire effects on herpetofauna: Review and management implications. Wildl. Soc. Bull. 27, 374–384 (1999).
    Google Scholar 
    11.Shine, R., Brown, G. P. & Elphick, M. J. Effects of intense wildfires on the nesting ecology of oviparous montane lizards. Austral. Ecol. 41, 756–767 (2016).
    Google Scholar 
    12.Driscoll, D. A., Smith, A. L., Blight, S. & Maindonald, J. Reptile responses to fire and the risk of post-disturbance sampling bias. Biodivers. Conserv. 21, 1607–1625 (2012).
    Google Scholar 
    13.Hu, Y., Kelly, L. T., Gillespie, G. R. & Jessop, T. S. Lizard responses to forest fire and timber harvesting: Complementary insights from species and community approaches. For. Ecol. Manag. 379, 206–215 (2016).
    Google Scholar 
    14.Hromada, S. J. et al. Response of reptile and amphibian communities to the reintroduction of fire in an oak/hickory forest. For. Ecol. Manag. 428, 1–13 (2018).
    Google Scholar 
    15.Chergui, B., Pleguezuelos, J. M., Fahd, S. & Santos, X. Modelling functional response of reptiles to fire in two Mediterranean forest types. Sci. Total Environ. 732, 139205 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Costa, B. M., Pantoja, D. L., Sousa, H. C., de Queiroz, T. A. & Colli, G. R. Long-term, fire-induced changes in habitat structure and microclimate affect Cerrado lizard communities. Biodivers. Conserv. 29, 1659–1681 (2020).
    Google Scholar 
    17.Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
    Google Scholar 
    18.Arroyo, M. T. K., Cavieres, L., Peñaloza, A., Riveros, M. & Faggi, A. Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Ecología de los Bosques Nativos de Chile (eds Armesto, J. et al.) 71–100 (1995).19.González, M. E., Veblen, T. T. & Sibold, J. S. Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32, 1187–1202 (2005).
    Google Scholar 
    20.Veblen, T. T. Regeneration patterns in Araucaria araucana forests in Chile. J. Biogeogr. 9, 11 (1982).
    Google Scholar 
    21.Aagesen, D. L. Indigenous resource rights and conservation of the monkey-puzzle tree (Araucaria araucana, Araucariaceae): A case study from southern Chile. Econ. Bot. 52, 146–160 (1998).
    Google Scholar 
    22.Aagesen, D. Burning monkey-puzzle: Native fire ecology and forest management in northern Patagonia. Agric. Human Values 21, 233–242 (2004).
    Google Scholar 
    23.Pollmann, W. & Veblen, T. T. Nothofagus regeneration dynamics in south-central Chile: A test of a general model. Ecol. Monogr. 74, 615–634 (2004).
    Google Scholar 
    24.Ortega, M., Ponce, X. & Tamarín, R. Manual con medidas para la prevención de incendios forestales, IX Región (Corporación Nacional Forestal (CONAF), 2006).
    Google Scholar 
    25.Ferreira, D., Pinho, C., Brito, J. C. & Santos, X. Increase of genetic diversity indicates ecological opportunities in recurrent-fire landscapes for wall lizards. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    26.Nimmo, D. G. et al. Predicting the century-long post-fire responses of reptiles. Glob. Ecol. Biogeogr. 21, 1062–1073 (2012).
    Google Scholar 
    27.Smith, A. L., Michael Bull, C. & Driscoll, D. A. Successional specialization in a reptile community cautions against widespread planned burning and complete fire suppression. J. Appl. Ecol. 50, 1178–1186 (2013).
    Google Scholar 
    28.Kelly, L. T., Bennett, A. F., Clarke, M. F. & Mccarthy, M. A. Optimal fire histories for biodiversity conservation. Conserv. Biol. 29, 473–481 (2015).PubMed 

    Google Scholar 
    29.Valentine, L. E., Reaveley, A., Johnson, B., Fisher, R. & Wilson, B. A. Burning in banksia woodlands: How does the fire-free period influence reptile communities?. PLoS ONE 7, e34448 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Uribe, S. & Estades, C. F. Reptiles in monterey pine plantations of the coastal range of central Chile. Rev. Chil. Hist. Nat. 87, 1–8 (2014).
    Google Scholar 
    31.Santos, X., Badiane, A. & Matos, C. Contrasts in short- and long-term responses of Mediterranean reptile species to fire and habitat structure. Oecologia 180, 205–216 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Ferreira, D., Mateus, C. & Santos, X. Responses of reptiles to fire in transition zones are mediated by bioregion affinity of species. Biodivers. Conserv. 25, 1543–1557 (2016).
    Google Scholar 
    33.Zúñiga, A. H. Changes in the structure of assemblages of three liolaemus lizards (Iguania, liolaemidae) in a protected area of south-central Chile affected by a mixed-severity wildfire. Zoodiversity 54, 265–274 (2020).
    Google Scholar 
    34.Rubio, A. V. & Simonetti, J. A. Lizard assemblages in a fragmented landscape of central Chile. Eur. J. Wildl. Res. 57, 195–199 (2011).
    Google Scholar 
    35.Driscoll, D. A. & Henderson, M. K. How many common reptile species are fire specialists? A replicated natural experiment highlights the predictive weakness of a fire succession model. Biol. Conserv. 141, 460–471 (2008).
    Google Scholar 
    36.Lindenmayer, D. B., Claridge, A. W., Gilmore, A. M., Michael, D. & Lindenmayer, B. D. The ecological roles of logs in Australian forests and the potential impacts of harvesting intensification on log-using biota. Pacific Conserv. Biol. 8, 121–140 (2002).
    Google Scholar 
    37.Evans, M. J., Newport, J. S. & Manning, A. D. A long-term experiment reveals strategies for the ecological restoration of reptiles in scattered tree landscapes. Biodivers. Conserv. 28, 2825–2843 (2019).
    Google Scholar 
    38.Mella, J. E. Guía de Campo Reptiles de Chile. Tomo: 1 Zona Central (2017).39.Whitford, K. R. & McCaw, W. L. Coarse woody debris is affected by the frequency and intensity of historical harvesting and fire in an open eucalypt forest. Aust. For. 82, 56–69 (2019).
    Google Scholar 
    40.Vidal, M. A. & Labra, A. Herpetología de Chile (GráficAndes, 2008).
    Google Scholar 
    41.Meiri, S. & Chapple, D. G. Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’. Biol. Conserv. 204, 6–15 (2016).
    Google Scholar 
    42.Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Conserv. 204, 1–5 (2016).
    Google Scholar 
    43.Watson, J. E. M., Whittaker, R. J. & Dawson, T. P. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120, 311–327 (2004).
    Google Scholar 
    44.Scott, D. M. et al. The impacts of forest clearance on lizard, small mammal and bird communities in the arid spiny forest, southern Madagascar. Biol. Conserv. 127, 72–87 (2006).
    Google Scholar 
    45.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 

    Google Scholar 
    46.Hu, Y., Urlus, J., Gillespie, G., Letnic, M. & Jessop, T. S. Evaluating the role of fire disturbance in structuring small reptile communities in temperate forests. Biodivers. Conserv. 22, 1949–1963 (2013).
    Google Scholar 
    47.Gutiérrez, J. A., Krenz, J. D. & Ibargüengoytía, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332–337 (2010).
    Google Scholar 
    48.Artacho, P., Saravia, J., Perret, S., Bartheld, J. L. & Le Galliard, J. F. Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. J. Therm. Biol. 63, 78–87 (2017).PubMed 

    Google Scholar 
    49.Elzer, A. L. et al. Forest-fire regimes affect thermoregulatory opportunities for terrestrial ectotherms. Austral. Ecol. 38, 190–198 (2013).
    Google Scholar 
    50.Todd, B. D. & Andrews, K. M. Response of a reptile guild to forest harvesting. Conserv. Biol. 22, 753–761 (2008).PubMed 

    Google Scholar 
    51.Santos, X., Sillero, N., Poitevin, F. & Cheylan, M. Realized niche modelling uncovers contrasting responses to fire according to species-specific biogeographical affinities of amphibian and reptile species. Biol. J. Linn. Soc. 126, 55–67 (2019).
    Google Scholar 
    52.Farnsworth, L. M., Nimmo, D. G., Kelly, L. T., Bennett, A. F. & Clarke, M. F. Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. Divers. Distrib. 20, 663–673 (2014).
    Google Scholar 
    53.Vera-Escalona, I. M., Coronado, T., Muñoz-Mendoza, C. & Victoriano, P. F. Distribución histórica y actual de la lagartija Liolaemus pictus (Dumeril & Bibron 1837) (Liolaemidae) y nuevo límite continental sur de distribución. Gayana 74, 139–146 (2010).
    Google Scholar 
    54.Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B Biol. Sci. 285, 20172241 (2018).
    Google Scholar 
    55.Bowman, D. M. J. S. & Haberle, S. G. Paradise burnt: How colonizing humans transform landscapes with fire. Proc. Natl. Acad. Sci. USA. 107, 21234–21235 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Maia-Carneiro, T., Dorigo, T. A. & Rocha, C. F. D. Influences of seasonality, thermal environment and wind intensity on the thermal ecology of Brazilian sand lizards in a restinga remnant. South Am. J. Herpetol. 7, 241–251 (2012).
    Google Scholar 
    57.Nimmo, D. G., Kelly, L. T., Farnsworth, L. M., Watson, S. J. & Bennett, A. F. Why do some species have geographically varying responses to fire history?. Ecography 37, 805–813 (2014).
    Google Scholar 
    58.Jones, G. M. et al. Megafires: An emerging threat to old-forest species. Front. Ecol. Environ. 14, 300–306 (2016).
    Google Scholar 
    59.Chergui, B., Fahd, S., Santos, X. & Pausas, J. G. Socioeconomic factors drive fire-regime variability in the mediterranean basin. Ecosystems 21, 619–628 (2018).
    Google Scholar 
    60.Hellmich, W. & Goetsch, W. Die eidechsen Chiles, insbesondere die gattung Liolaemus, nach den sammlungen Goetsch-Hellmich, Vol. 24 (1934).61.Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., Villalba,
    A. The ecology of the conifers of southern South America. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S.) 129–135 (Melbourne University Press, Carlton, Victoria, 1995).
    Google Scholar 
    62.Donoso, C. Bosques templados de Chile y Argentina. Variación, Estructura y Dinámica (Editorial Universitaria S.A., 1993).
    Google Scholar 
    63.Fuentes-Ramirez, A., Barrientos, M., Almonacid, L., Arriagada-Escamilla, C. & Salas-Eljatib, C. Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests. Appl. Soil Ecol. 131, 99–106 (2018).
    Google Scholar 
    64.Urrutia-Estrada, J., Fuentes-Ramírez, A. & Hauenstein, E. Diferencias en la composición florística en bosques de Araucaria-Nothofagus afectados por distintas severidades de fuego. Gayana Bot. 75, 12–25 (2018).
    Google Scholar 
    65.González, M. E., Szejner, M., Muñoz, A. A. & Silva, J. Incendios catastróficos en bosques andinos de Araucaria-Nothofagus: Efecto de la severidad y respuesta de la vegetación. Bosque Nativ. 46, 12–17 (2009).
    Google Scholar 
    66.Luebert, F. & Pliscoff, P. Sinopsis bioclimática y vegetacional de Chile (Editorial Universitaria S.A., 2006).
    Google Scholar 
    67.(CONAF), C. N. F. Análisis de la afectación y severidad de los incendios forestales (2017).68.Zúñiga, A. H. et al. Rodent assemblage composition as indicator of fire severity in a protected area of south-central Chile. Austral. Ecol. 46, 249–260 (2021).
    Google Scholar 
    69.Demangel, D. Reptiles en Chile (Fauna Nativa Ediciones, 2016).
    Google Scholar 
    70.Vera-Escalona, I. et al. Lizards on ice: Evidence for multiple refugia in Liolaemus pictus (Liolaemidae) during the last glacial maximum in the southern Andean beech forests. PLoS ONE 7, e48358 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Ibarra, J. T. & Martin, K. Biotic homogenization: Loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).
    Google Scholar 
    72.Buckland, S. T., Rexstad, E. A., Marques, T. A. & Oedekoven, C. S. Methods in Statistical Ecology (Springer, 2015).MATH 

    Google Scholar 
    73.Ibarra, J. T. & Martin, K. Beyond species richness: An empirical test of top predators as surrogates for functional diversity and endemism. Ecosphere 6, 1–15 (2015).
    Google Scholar 
    74.Royle, J. A., Dawson, D. K. & Bates, S. Modeling abundance effects in distance sampling. Ecology 85, 1591–1597 (2004).
    Google Scholar 
    75.Marques, T. A., Thomas, L., Fancy, S. G. & Buckland, S. T. Improving estimates of bird density using multiple-covariate distance sampling. Auk 124, 1229–1243 (2007).
    Google Scholar 
    76.Fiske, I. J. & Chandler, R. B. Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).
    Google Scholar 
    77.R Core Team. R: A Language and Environment for Statistical Computing (2019).78.Furnas, B. J., Newton, D. S., Capehart, G. D. & Barrows, C. W. Hierarchical distance sampling to estimate population sizes of common lizards across a desert ecoregion. Ecol. Evol. 9, 3046–3058 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    79.Burnham, K. P. & Anderson, D. R. Model Selection and Inference. A Practical Information-Theoretical Approach (Springer, 2002).MATH 

    Google Scholar 
    80.Pinheiro, J. & Bates, D. Package ‘nlme’: Linear and Nonlinear Mixed Effects Models (2020).81.Mazerolle, J. M. Package ‘AICcmodavg’: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).82.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Effects of soil texture and nitrogen fertilisation on soil bacterial community structure and nitrogen uptake in flue-cured tobacco

    Accumulation and distribution of N in flue-cured tobacco growing in different soilsAccumulation dynamics of N in different soilsNitrogen gradually increased in loam soil, clay loam, and sandy loam soils with plant growth (Fig. 1), attaining a maximum at the mature-plant stage(2.10 g/plant, 1.43 g/plant, and 2.90 g/plant, respectively). Nitrogen accumulation was lower in plants grown in clay loam than in plants grown in loam soil and sandy loam during the entire growth period, indicating that the N supply capacity of clay loam was relatively weak, and tobacco plants grown in this soil had the lowest levels of N uptake and utilisation. The N uptake and accumulation in flue-cured tobacco grown in loam soil and sandy loam were basically the same before the ceiling stage, but at the mature stage, N accumulation was significantly higher in plants grown in sandy loam than in plants grown in loam soil and clay loam (P  More