The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems
1.Navarra, A. & Tubiana, L. (eds) Regional Assessment of Climate Change in the Mediterranean, Advances in Global Change Research (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5772-1.Book
Google Scholar
2.Solomon, S. S. IPCC (2007): Climate Change the Physical Science Basis. AGUFM 2007, U43D-01 (2007).3.Seneviratne, S. et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment: An Overview of the IPCC SREX report, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (2012).4.Bates, B., Kundzewicz, Z. & Wu, S. Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat (2008).5.Neve, P., Vila-Aiub, M. & Phytologist, F.R.-N. Evolutionary-thinking in agricultural weed management. New Phytol. 184(4), 783–793 (2009).Article
Google Scholar
6.Harrison, M. T., Cullen, B. R. & Rawnsley, R. P. Modelling the sensitivity of agricultural systems to climate change and extreme climatic events. Agric. Syst. https://doi.org/10.1016/j.agsy.2016.07.006 (2016).Article
Google Scholar
7.Moret, D., Arrúe, J. L., López, M. V. & Gracia, R. Winter barley performance under different cropping and tillage systems in semiarid Aragon (NE Spain). Eur. J. Agron. 26, 54–63. https://doi.org/10.1016/j.eja.2006.08.007 (2007).Article
Google Scholar
8.FAO (Food and Agriculture Organization). Rome: Introduction to Conservation Agriculture (Its Principles and Benefits). http://teca.fao.org/technology/introduction-conservationagriculture-its-principles-benefits (2013).9.Kertész, À. & Madarász, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2(1), 91–96 (2014).Article
Google Scholar
10.Álvaro-Fuentes, J., López, M. V., Cantero-Martínez, C. & Arrúe, J. L. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 72, 541–547 (2008).ADS
Article
Google Scholar
11.Bouchery, Y., Ghaffari, A., Jemai, Z. & Dallery, Y. Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222, 229–240 (2012).MathSciNet
Article
Google Scholar
12.Soane, B. D. et al. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118, 66–87 (2012).Article
Google Scholar
13.Madejón, E. et al. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 105, 55–62 (2009).Article
Google Scholar
14.De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. & Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 92, 69–78. https://doi.org/10.1016/j.still.2006.01.012 (2007).Article
Google Scholar
15.Giambalvo, D. et al. Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 360, 215–227. https://doi.org/10.1007/s11104-012-1224-5 (2012).CAS
Article
Google Scholar
16.Ruisi, P. et al. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 9(560), 1–7. https://doi.org/10.4081/ija.2014.560 (2014).Article
Google Scholar
17.Plaza-Bonilla, D., Cantero-Martínez, C., Viñas, P. & Álvaro-Fuentes, J. Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193–194, 76–82 (2013).ADS
Article
Google Scholar
18.Barberi, P. & Lo Cascio, B. Long-term tillage and crop rotation effects on weed seed bank size and composition. Weed Res. 41(4), 325–340. https://doi.org/10.1046/j.1365-3180.2001.00241.x (2001).Article
Google Scholar
19.Batey, T. & McKenzie, D. C. Soil compaction: Identification directly in the field. Soil Use Manag. 22, 123–131. https://doi.org/10.1111/j.1475-2743.2006.00017.x (2006).Article
Google Scholar
20.Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 198, 59–67. https://doi.org/10.1016/j.fcr.2016.02.010 (2016).Article
Google Scholar
21.Ruisi, P. et al. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 55, 320–328. https://doi.org/10.1111/wre.12142 (2015).Article
Google Scholar
22.Mahli, S. S. & Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gasemissions in a second 4-yr rotation cycle. Soil Tillage Res. 96, 269–283. https://doi.org/10.1016/j.still.2007.06.011 (2007).Article
Google Scholar
23.Santín-Montanyá, M. I., Gandía, M. L., Zambrana, E. & Tenorio, J. L. Effects of tillage systems on wheat and weed water relationships over time when growing together, in semiarid conditions. Ann. Appl. Biol. 177, 256–265. https://doi.org/10.1111/aab.12620 (2020).Article
Google Scholar
24.Chaghazardi, H. R., Jahansouz, M. R., Ahmadi, A. & Gorji, M. Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil Tillage Res. 162, 26–33. https://doi.org/10.1016/j.still.2016.04.010 (2016).Article
Google Scholar
25.López-Bellido, L., Fuentes, M., Castillo, J. E., López-Garrido, F. J. & Fernández, E. J. Long-term tillage, crop rotation, and nitrogen fertiliser effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 88, 783–791 (1996).Article
Google Scholar
26.Cantero-Martínez, C., Angás, P. & Lampurlanés, J. Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Ann. Appl. Biol. 150, 293–305. https://doi.org/10.1111/j.1744-7348.2007.00142.x (2007).Article
Google Scholar
27.Campiglia, E., Mancinelli, R., De Stefanis, E., Pucciarmati, S. & Radicetti, E. The long-term effects of conventional and organic ropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of central Italy. Field Crops Res. 176, 34–44. https://doi.org/10.1016/j.fcr.2015.02.021 (2015).Article
Google Scholar
28.Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).Article
Google Scholar
29.Plourde, J. D., Pijanowski, B. C. & Pekin, B. K. Evidence for increased monoculture cropping in the Central United States. Agric. Ecosyst. Environ. 165, 50–59 (2013).Article
Google Scholar
30.Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F. & French, R. J. Break-crop benefits to wheat in Western Australia—Insights from over three decades of research. Crop Pasture Sci. 63, 1 (2012).Article
Google Scholar
31.Wang, H. & Ortiz-Bobea, A. Market-driven corn monocropping in the U.S. Midwest. Agric. Resour. Econ. Rev. 48, 274–296 (2019).Article
Google Scholar
32.Tekin, S., Yazar, A. & Barut, H. Comparison of wheat-based rotation systems vs monocropping under dryland Mediterranean conditions. Int. J. Agric. Biol. Eng. 10, 203–213. https://doi.org/10.25165/j.ijabe.20171005.3443 (2017).Article
Google Scholar
33.Ryan, J., Singh, M. & Pala, M. Long-term cereal-based rotation trials in the Mediterranean region: Implications for cropping sustainability. Adv. Agron. 97, 273–319. https://doi.org/10.1016/S0065-2113(07)00007-7 (2008).CAS
Article
Google Scholar
34.Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article
Google Scholar
35.Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15(12), 124011 (2020).Article
Google Scholar
36.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS
CAS
Article
Google Scholar
37.Amato, G. et al. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 105, 1317–1327 (2013).Article
Google Scholar
38.Loke, P. F., Kotzé, E. & Du Preez, C. C. Impact of long-term wheat production management practices on soil acidity, phosphorus and some micronutrients in a semi-arid Plinthosol. Soil Res. 51, 415–426. https://doi.org/10.1071/SR12359 (2013).CAS
Article
Google Scholar
39.Martin-Rueda, I. et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 92, 1–9 (2007).Article
Google Scholar
40.Hadjichristodoulou, A. The relationship of grain yield with harvest index and total biological yield of barley in drylands. Tech. Bull. 126, 1–10 (1991).
Google Scholar
41.Zimdahl, R. L. Weed-Crop Competition: A Review 49–50, 109–145 (Blackwell Publishing, 2004).42.Nkoa, R., Owen, M. D. K. & Swanton, C. J. Weed abundance, distribution, diversity, and community analyses. Weed Sci. 63, 64–90. https://doi.org/10.1614/ws-d-13-00075.1 (2015).Article
Google Scholar
43.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article
Google Scholar
44.Fried, G., Petit, S. & Reboud, X. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. BMC Ecol. 10, 20 (2010).Article
Google Scholar
45.Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 36, 1–22. https://doi.org/10.1007/s13593-016-0350-5 (2016).Article
Google Scholar
46.Acevedo, E. H., Silva, P. C., Silva, H. R. & Solar, B. R. Wheat production in Mediterranean environments. In Wheat: Ecology and Physiology of Yield Determination 295–331 (1999).47.Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.00095 (2017).CAS
Article
Google Scholar
48.Calzarano, F. et al. Durum wheat quality, yield and sanitary status under conservation agriculture. Agriculture https://doi.org/10.3390/agriculture8090140 (2018).Article
Google Scholar
49.Santín-Montanyá, M. I., Fernández-Getino, A. P., Zambrana, E. & Tenorio, J. L. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 31(3), 269–282. https://doi.org/10.1080/15324982.2017.1307289 (2017).Article
Google Scholar
50.Shimshi, D., Bielorai, H. & Mantell, A. Irrigation of field crops. In Arid Zone Irrigation 369–381 (Springer, 1973).51.Schultz, J. E. Crop production in a rotation trial at Tarlee, South Australia. Aust. J. Exp. Agric. 35, 865–876. https://doi.org/10.1071/EA9950865 (1995).Article
Google Scholar
52.Alarcón, R. et al. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res. 179, 54–62. https://doi.org/10.1016/j.still.2018.01.014 (2018).Article
Google Scholar
53.Šíp, V., Vavera, R., Chrpová, J., Kusá, H. & Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 132, 77–85. https://doi.org/10.1016/j.still.2013.05.002 (2013).Article
Google Scholar
54.Woźniak, A. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. Int. J. Plant Prod. 14, 1–8. https://doi.org/10.1007/s42106-019-00062-8 (2020).Article
Google Scholar
55.Schulte, B. J., Tomasek, B. J., Davis, A. S., Andersson, L. & Benoit, D. L. An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Res. 54, 1–12. https://doi.org/10.1111/wre.12054 (2014).Article
Google Scholar
56.Calado, J. M. G., Basch, G. & de Carvalho, M. Weed emergence as influenced by soil moisture and air temperature. J. Pest Sci. 82, 81–88. https://doi.org/10.1007/s10340-008-0225-x (2009).Article
Google Scholar
57.Siddique, K. H. M. et al. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 32, 45–64 (2012).Article
Google Scholar
58.Payne, W. A., Rasmussen, P. E., Chen, C. & Ramig, R. E. Assessing simple wheat and pea models using data from a long-term tillage experiment. Agron. J. 93, 250–260. https://doi.org/10.2134/agronj2001.931250x (2001).Article
Google Scholar
59.Machado, S., Petrie, S., Rhinhart, K. & Ramig, R. E. Tillage effects on water use and grain yield of winter wheat and green pea in rotation. Agron. J. 100, 154–162. https://doi.org/10.2134/agrojnl2006.0218 (2008).Article
Google Scholar
60.Copec, K., Filipovic, D., Husnjak, S., Kovacev, I. & Kosustic, S. Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 61(5), 213–219. https://doi.org/10.17221/156/2015-pse (2015).Article
Google Scholar
61.López-Bellido, L., López-Bellido, R. J., Redondo, R. & Benítez, J. Faba bean nitrogen fixation in a wheat-based rotation under rainfed Mediterranean conditions: Effect of tillage system. Field Crop Res. 98, 253–260 (2006).Article
Google Scholar
62.López-Bellido, R. J., López-Bellido, L., Benítez-Vega, J. & López-Bellido, F. J. Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: I. Soil water content. Agron. J. 99, 59–65. https://doi.org/10.2134/agronj2006.0025 (2007).Article
Google Scholar
63.López-Bellido, L., Muñoz-Romero, V., Fernández-García, P. & López-Bellido, R. J. Ammonium accumulation in soil: The long-term effects of tillage, rotation and N rate in a Mediterranean vertisol. Soil Use Manag. 30(4), 471–479 (2014).Article
Google Scholar
64.Bilalis, D., Efthimiadis, P. & Sidiras, N. Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci. 186, 135–141. https://doi.org/10.1046/j.1439-037X.2001.00458.x (2001).Article
Google Scholar
65.Feledyn-Szewczyk, B., Smagacz, J., Kwiatkowski, C. A., Harasim, E. & Woźniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture https://doi.org/10.3390/agriculture10050186 (2020).Article
Google Scholar
66.Pala, M., Ryan, J., Zhang, H., Singh, M. & Harris, H. C. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 93, 136–144. https://doi.org/10.1016/j.agwat.2007.07.001 (2007).Article
Google Scholar
67.Légère, A., Stevenson, F. C. & Benoit, D. L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 45, 303–315. https://doi.org/10.1111/j.1365-3180.2005.00459.x (2005).Article
Google Scholar
68.Sans, F. X., Berner, A., Armengot, L. & Mäder, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 51, 413–421. https://doi.org/10.1111/j.1365-3180.2011.00859.x (2011).Article
Google Scholar
69.Sarani, M., Oveisi, M., Mashhadi, H. R., Alizade, H. & Gonzalez-Andujar, J. L. Interactions between the tillage system and crop rotation on the crop yield and weed populations under arid conditions. Weed Biol. Manag. 14, 198–208. https://doi.org/10.1111/wbm.12047 (2014).Article
Google Scholar
70.Pardo, G. et al. Effects of reduced and conventional tillage on weed communities: Results of a long-term experiment in Southwestern Spain. Planta Daninha https://doi.org/10.1590/s0100-83582019370100152 (2019).Article
Google Scholar
71.Fennimore, S. A. & Jackson, L. E. Organic amendment and tillage effects on vegetable field weed emergence and seedbanks 1. Weed Technol. 17, 42–50. https://doi.org/10.1614/0890-037x(2003)017[0042:oaateo]2.0.co;2 (2003).Article
Google Scholar
72.Francis, A. & Warwick, S. I. The biology of Canadian weeds. 3. Lepidium draba L., L. chalepense L., L. appelianum Al-Shehbaz (updated). Can. J. Plant Sci. 88, 379–401. https://doi.org/10.4141/CJPS07100 (2008).Article
Google Scholar More