Transpiration rates of red maple (Acer rubrum L.) differ between management contexts in urban forests of Maryland, USA
1.Askarizadeh, A. et al. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environ. Sci. Technol. 49, 11264–11280 (2015).ADS
CAS
PubMed
Google Scholar
2.Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2, 263–275 (2005).
Google Scholar
3.Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 24, 706–723 (2005).
Google Scholar
4.US EPA. What is Green Infrastructure? US EPA. https://www.epa.gov/green-infrastructure/what-green-infrastructure (2015).5.Hoover, F. A. & Hopton, M. E. Developing a framework for stormwater management: Leveraging ancillary benefits from urban greenspace. Urban Ecosyst. 22, 1139–1148 (2019).PubMed
PubMed Central
Google Scholar
6.Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 157, 135–144 (2017).PubMed
Google Scholar
7.Konijnendijk, C. C., Ricard, R. M., Kenney, A. & Randrup, T. B. Defining urban forestry—A comparative perspective of North America and Europe. Urban For. Urban Green. 4, 93–103 (2006).
Google Scholar
8.Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177 (2017).PubMed
PubMed Central
Google Scholar
9.Bartens, J., Day, S. D., Harris, J. R., Dove, J. E. & Wynn, T. M. Can urban tree roots improve infiltration through compacted subsoils for stormwater management?. J. Environ. Qual. 37, 2048–2057 (2008).CAS
PubMed
Google Scholar
10.Geronimo, F. K. F., Maniquiz-Redillas, M. C., Tobio, J. A. S. & Kim, L. H. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter. Water Sci. Technol. 69, 2460–2467 (2014).CAS
PubMed
Google Scholar
11.Jayasooriya, V. M. & Ng, A. W. M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air. Soil Pollut. 225, 2055 (2014).ADS
Google Scholar
12.Keeley, M. et al. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environ. Manag. 51, 1093–1108 (2013).ADS
Google Scholar
13.Dhakal, K. P. & Chevalier, L. R. Urban stormwater governance: The need for a paradigm shift. Environ. Manag. 57, 1112–1124 (2016).ADS
Google Scholar
14.Dhakal, K. P. & Chevalier, L. R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 203, 171–181 (2017).
Google Scholar
15.Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81, 167–178 (2007).
Google Scholar
16.Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10, e1813 (2017).
Google Scholar
17.Law, N. L. & Hanson, J. Recommendations of the Expert Panel to Define BMP Effectiveness for Urban Tree Canopy Expansion. Center for Watershed Protection and Chesapeake Stormwater Network. 236. https://owl.cwp.org/mdocs-posts/recommendations-of-the-expert-panel-to-define-bmp-effectiveness-forurban-tree-canopy-expansion/ (Ellicott City, MD, 2016).18.Phillips, T. H., Baker, M. E., Lautar, K., Yesilonis, I. & Pavao-Zuckerman, M. A. The capacity of urban forest patches to infiltrate stormwater is influenced by soil physical properties and soil moisture. J. Environ. Manag. 246, 11–18 (2019).
Google Scholar
19.Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. 44, 873–881 (2017).ADS
Google Scholar
20.Riikonen, A., Järvi, L. & Nikinmaa, E. Environmental and crown related factors affecting street tree transpiration in Helsinki, Finland. Urban Ecosyst. 19, 1693–1715 (2016).
Google Scholar
21.Asawa, T., Kiyono, T. & Hoyano, A. Continuous measurement of whole-tree water balance for studying urban tree transpiration. Hydrol. Process. 31, 3056–3068 (2017).ADS
Google Scholar
22.Hagishima, A., Narita, K. & Tanimoto, J. Field experiment on transpiration from isolated urban plants. Hydrol. Process. 21, 1217–1222 (2007).ADS
Google Scholar
23.Moriwaki, R. & Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol. 1988–2005(43), 1700–1710 (2004).
Google Scholar
24.Spronken-Smith, R. A., Oke, T. R. & Lowry, W. P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol. 20, 1033–1047 (2000).
Google Scholar
25.Giraldo, M. A., Jackson, P. & Van-Horne, W. Suburban Forest Change and Vegetation Water Dynamics in Atlanta, USA. Southeast. Geogr. 55, 193–212 (2015).
Google Scholar
26.Peters, E. B., McFadden, J. P. & Montgomery, R. A. Biological and environmental controls on tree transpiration in a suburban landscape. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001266 (2010).Article
Google Scholar
27.Bhaskar, A. S., Hogan, D. M. & Archfield, S. A. Urban base flow with low impact development. Hydrol. Process. 30, 3156–3171 (2016).ADS
Google Scholar
28.Peters, E. B., Hiller, R. V. & McFadden, J. P. Seasonal contributions of vegetation types to suburban evapotranspiration. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001463 (2011).Article
Google Scholar
29.Zhou, W., Wang, J. & Cadenasso, M. L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 195, 1–12 (2017).ADS
Google Scholar
30.McPherson, E. G. Urban forestry: The final frontier?. J. For. 101, 20–25 (2003).
Google Scholar
31.Lefsky, M. A. & McHale, M. R. Volume estimates of trees with complex architecture from terrestrial laser scanning. J. Appl. Remote Sens. 2, 023521 (2008).
Google Scholar
32.Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s urban forest ecosystem: Results of the Chicago urban forest climate project.(eds. McPherson, E. G., Nowak, D. J. & Rowntree, R. A.). 83–94 (Gen. Tech. Rep. NE-186. Radnor, PA: U.S. Department of Agriculture, Forest Service, 1994)33.Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21, 661–677 (2011).PubMed
Google Scholar
34.Yılmaz, S., Toy, S., Irmak, M. A. & Yilmaz, H. Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Build. Environ. 42, 1604–1612 (2007).
Google Scholar
35.Nowak, D. J., Stevens, J. C., Sisinni, S. M. & Luley, C. J. Effects of urban tree management and species selection on atmospheric carbon dioxide. J. Arboric. 28(3), 113–122 (2002).
Google Scholar
36.Nowak, D. J. et al. A ground-based method of assessing urban forest structure and ecosystem services. Aboricult. Urban For. 34(6), 347–358 (2008).
Google Scholar
37.Zipperer, W. C., Sisinni, S. M., Pouyat, R. V. & Foresman, T. W. Urban tree cover: An ecological perspective. Urban Ecosyst. 1, 229–246 (1997).
Google Scholar
38.Oke, T. R. Boundary Layer Climates (Routledge, 1987).
Google Scholar
39.McCarthy, H. R. & Pataki, D. E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosyst. 13, 393–414 (2010).
Google Scholar
40.MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).
Google Scholar
41.Day, S. D., Wiseman, P. E., Dickinson, S. B. & Harris, J. R. Contemporary concepts of root system architecture of urban trees. Arboric. Urban For. 36, 149–159 (2010).
Google Scholar
42.Harrison, J. L., Blagden, M., Green, M. B., Salvucci, G. D. & Templer, P. H. Water sources for red maple trees in a northern hardwood forest under a changing climate. Ecohydrology 13, e2248 (2020).
Google Scholar
43.Marchionni, V. et al. Groundwater buffers drought effects and climate variability in urban reserves. Water Resour. Res. 56, e2019WR026192 (2020).ADS
Google Scholar
44.Chen, L. et al. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 402, 388–400 (2011).ADS
Google Scholar
45.Oogathoo, S., Houle, D., Duchesne, L. & Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 291, 108063 (2020).ADS
Google Scholar
46.Rodríguez-Gamir, J., Primo-Millo, E. & Forner-Giner, M. Á. An integrated view of whole-tree hydraulic architecture. Does stomatal or hydraulic conductance determine whole tree transpiration?. PLoS ONE 11, e0155246 (2016).PubMed
PubMed Central
Google Scholar
47.Rogiers, S. Y., Greer, D. H., Hutton, R. J. & Clarke, S. J. Transpiration efficiency of the grapevine cv. Semillon is tied to VPD in warm climates. Ann. Appl. Biol. 158, 106–114 (2011).
Google Scholar
48.Tirpak, R. A., Hathaway, J. M. & Franklin, J. A. Evaluating the influence of design strategies and meteorological factors on tree transpiration in bioretention suspended pavement practices. Ecohydrology 11, e2037 (2018).
Google Scholar
49.Fair, B. A., Metzger, J. D. & Vent, J. Characterization of physical, gaseous, and hydrologic properties of compacted subsoil and its effects on growth and transpiration of two maples grown under greenhouse conditions. Arboric. Urban For. 38, 151–159 (2012).
Google Scholar
50.Kjelgren, R. K. & Clark, J. R. Growth and water relations of Liquidambar styraciflua L. in an urban park and plaza. Trees 7, 195–201 (1993).
Google Scholar
51.Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, 2003).
Google Scholar
52.Wullschleger, S. D., Wilson, K. B. & Hanson, P. J. Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agric. For. Meteorol. 104, 157–168 (2000).ADS
Google Scholar
53.Band, L., Nowak, D., Yang, Y., Endreny, T. & Wang, J. Modeling in the Chesapeake Bay Watershed: effects of trees on stream flow in the Chesapeake Bay. Rep. For. Serv. Agreem. No07CO‐11242300‐145 (2010).54.Goddard, H. C. Cap and trade for stormwater management. In Economic Incentives for Stormwater Control (ed. Thurston, H.) 211–232 (CRC Press, 2012).
Google Scholar
55.Blanken, P. D. et al. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res. Atmos. 102, 28915–28927 (1997).ADS
Google Scholar
56.Wullschleger, S. D., Hanson, P. J. & Todd, D. E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For. Ecol. Manag. 143, 205–213 (2001).
Google Scholar
57.USDA Forest Service. Baltimore Cooperating Experimental Forest – Northern Research Station – USDA Forest Service. https://www.nrs.fs.fed.us/ef/locations/md/baltimore/ (2016).58.NOAA. Find a Station | Data Tools | Climate Data Online (CDO) | National Climatic Data Center (NCDC). https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (2007).59.Campbell, G. S. & Norman, J. An Introduction to Environmental Biophysics (Springer, 2012).
Google Scholar
60.Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).CAS
PubMed
Google Scholar
61.Lu, P. A direct method for estimating the average sap flux density using a modified Granier measuring system. Funct. Plant Biol. 24, 701–705 (1997).
Google Scholar
62.Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 42, 193–200 (1985).
Google Scholar
63.Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139–143 (2016).ADS
Google Scholar
64.Bates, D. M. & Pinheiro, J. C. Linear and nonlinear mixed-effects models. Conf. Appl. Stat. Agric. https://doi.org/10.4148/2475-7772.1273 (1998).Article
Google Scholar
65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Google Scholar
66.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. Nlme: Linear and nonlinear mixed effects models (R package version 3.1. 140)[Computer software]. (2019).67.Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package 1(3), 4 (2019).
Google Scholar More