More stories

  • in

    Extreme climate event promotes phenological mismatch between sexes in hibernating ground squirrels

    1.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    2.IPCC. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (2014).3.Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. 97, 1630–1633 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Adamík, P. & Král, M. Climate- and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J. Zool. 275, 209–215 (2008).Article 

    Google Scholar 
    5.Ozgul, A. et al. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482–485 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Chang. Biol. 17, 2455–2469 (2011).ADS 
    Article 

    Google Scholar 
    7.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83 (2009).PubMed 
    Article 

    Google Scholar 
    8.Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B Biol. Sci. 265, 1867–1870 (1998).Article 

    Google Scholar 
    9.Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang. Biol. 16, 3304–3313 (2010).ADS 
    Article 

    Google Scholar 
    10.Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Chang. Biol. 24, 4521–4531 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Sheriff, M. J., Boonstra, R., Palme, R., Loren Buck, C. & Barnes, B. M. Coping with differences in snow cover: The impact on the condition, physiology and fitness of an arctic hibernator. Conserv. Physiol. 5, 1–12 (2017).Article 

    Google Scholar 
    12.Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2075 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    13.IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change. (2012).14.Krause, J. S. et al. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic. Gen. Comp. Endocrinol. 237, 10–18 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Latimer, C. E. & Zuckerberg, B. How extreme is extreme? Demographic approaches inform the occurrence and ecological relevance of extreme events. Ecol. Monogr. 89, 1–15 (2019).Article 

    Google Scholar 
    16.Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Bailey, L. D. & van de Pol, M. Tackling extremes: Challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B Biol. Sci. 275, 419–425 (2008).Article 

    Google Scholar 
    19.Boucek, R. E. & Rehage, J. S. Climate extremes drive changes in functional community structure. Glob. Chang. Biol. 20, 1821–1831 (2014).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Hale, S. et al. Fire and climatic extremes shape mammal distributions in a fire-prone landscape. Divers. Distrib. 22, 1127–1138 (2016).Article 

    Google Scholar 
    21.Frederiksen, M., Daunt, F., Harris, M. P. & Wanless, S. The demographic impact of extreme events: Stochastic weather drives survival and population dynamics in a long-lived seabird. J. Anim. Ecol. 77, 1020–1029 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Wingfield, J. C., Kelley, J. P. & Angelier, F. What are extreme environmental conditions and how do organisms cope with them?. Curr. Zool. 57, 363–374 (2011).Article 

    Google Scholar 
    23.Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B Biol. Sci. 280, 1–10 (2013).
    Google Scholar 
    24.Sheriff, M. J., Richter, M. M., Buck, C. L. & Barnes, B. M. Changing seasonality and phenological responses of free-living male Arctic ground squirrels: The importance of sex. Philos. Trans. R. Soc. B Biol. Sci. 368, (2013).25.Michener, G. R. & Locklear, L. Differential costs of reproductive effort for male and female Richardson’s ground squirrels. Ecology 71, 855–868 (1990).Article 

    Google Scholar 
    26.Williams, C. T., Barnes, B. M., Kenagy, G. J. & Buck, C. L. Phenology of hibernation and reproduction in ground squirrels: Integration of environmental cues with endogenous programming. J. Zool. 292, 112–124 (2014).Article 

    Google Scholar 
    27.Michener, G. R. Age, sex, and species differences in the annual cycles of ground-dwelling sciurids: Implications for sociality. in The biology of ground-dwelling squirrels: annual cycles, behavioral ecology, and sociality (eds. Murie, J. O. & Michener, G. R.) 81–107 (University of Nebraska Press, Lincoln, 1984).28.Kenagy, G. J., Sharbaugh, S. M. & Nagy, K. A. Annual cycle of energy and time expenditure in a golden-mantled ground squirrel population. Oecologia 78, 269–282 (1989).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Michener, G. R. Sexual Differences in over-winter torpor patterns of Richardson’s ground squirrels in natural hibernacula. Oecologia 89, 397–406 (1992).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Michener, G. R. Effect of climatic conditions on the annual activity and hibernation cycle of Richardson’s ground squirrels and Columbian ground squirrels. Can. J. Zool. 55, 693–703 (1977).Article 

    Google Scholar 
    31.Michener, G. R. The circannual cycle of Richardson’s ground squirrels in southern Alberta. J. Mammal. 60, 760–768 (1979).Article 

    Google Scholar 
    32.Sheriff, M. J., Buck, C. L. & Barnes, B. M. Autumn conditions as a driver of spring phenology in a free-living arctic mammal. Clim. Chang. Responses 2, 1–7 (2015).Article 

    Google Scholar 
    33.Edic, M. N., Martin, J. G. A. & Blumstein, D. T. Heritable variation in the timing of emergence from hibernation. Evol. Ecol. 34, 763–776 (2020).Article 

    Google Scholar 
    34.Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Dobson, F. S., Lane, J. E., Low, M. & Murie, J. O. Fitness implications of seasonal climate variation in Columbian ground squirrels. Ecol. Evol. 6, 5614–5622 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Armitage, K. B. Climate change and the conservation of marmots. Nat. Sci. 05, 36–43 (2013).
    Google Scholar 
    37.Neuhaus, P., Bennett, R. & Hubbs, A. Effects of a late snowstorm and rain on survival and reproductive success in Columbian ground squirrels (Spermophilus columbianus). Can. J. Zool. 77, 879–884 (1999).Article 

    Google Scholar 
    38.Williams, C. T. et al. Sex-dependent phenological plasticity in an arctic hibernator. Am. Nat. 190, 854–859 (2017).PubMed 
    Article 

    Google Scholar 
    39.Barnes, B. M. Relationship between hibernation and reproduction in male ground squirrels. in Adaptations to the Cold: Tenth International Hibernation Symposium (eds. Geiser, F., Hulbert, A. J. & Nicol, S. C.) 71–80 (University of New England Press, 1996).40.Lee, T. M., Pelz, K., Licht, P. & Zucker, I. Testosterone influences hibernation in golden-mantled ground squirrels. Am. J. Physiol. Regul. Integr. Comput. Physiol. 259, 760–767 (1990).Article 

    Google Scholar 
    41.Richter, M. M., Barnes, B. M., Reilly, K. M. O., Fenn, A. M. & Buck, C. L. The influence of androgens on hibernation phenology of free-livingmale arctic ground squirrels. Horm. Behav. 89, 92–97 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Michener, G. R. Spring emergence schedules and vernal behavior of Richardson’s ground squirrels: Why do males emerge from hibernation before females?. Behav. Ecol. Sociobiol. 14, 29–38 (1983).Article 

    Google Scholar 
    43.Wells, L. J. Seasonal sexual Rhythm and its experimental modification in the male of the thirteen-lined ground squirrel (Citellus tridecemlineatus). Anat. Rec. 62, 409–447 (1935).Article 

    Google Scholar 
    44.Michener, G. R. & Locklear, L. Over-winter weight loss by Richardson’s ground squirrels in relation to sexual differences in mating effort. J. Mammal. 71, 489–499 (1990).Article 

    Google Scholar 
    45.Poiani, A. Complexity of seminal fluid: A review. Behav. Ecol. Sociobiol. 60, 289–310 (2006).Article 

    Google Scholar 
    46.Michener, G. R. Estrous and gestation periods in Richardson’s ground squirrels. J. Mammal. 61, 531–534 (1980).Article 

    Google Scholar 
    47.Michener, G. R. Chronology of reproductive events for female Richardson’s ground aquirrels. J. Mammal. 66, 280–288 (1985).Article 

    Google Scholar 
    48.Michener, G. R. & McLean, I. G. Reproductive behaviour and operational sex ratio in Richardson’s ground squirrels. Anim. Behav. 52, 743–758 (1996).Article 

    Google Scholar 
    49.Hare, J. F., Todd, G. & Untereiner, W. A. Multiple mating results in multiple paternity in Richardson’s Ground Squirrels Spermophilus richardsonii. Can. Field Nat. 118, 90–94 (2004).Article 

    Google Scholar 
    50.Grumm, R., Arnott, J. & Halblaub, J. The epic eastern North American warm episode of March 2012. J. Oper. Meteorol. 2, 36–50 (2014).Article 

    Google Scholar 
    51.Environment and Climate Change Canada (ECCC). Top ten weather stories for 2012: story four—March’s meteorological mildness. (2017). Available at: https://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=70B4A3E9-1. (Accessed: 20th May 2020)52.Wilson, D. F. & Hare, J. F. Ground squirrel uses ultrasonic alarms. Nature 430, 523 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Waterman, J. M., Macklin, G. F. & Enright, C. Sex-biased parasitism in Richardson’s ground squirrels (Urocitellus richardsonii) depends on the parasite examined. Can. J. Zool. 92, 73–79 (2014).Article 

    Google Scholar 
    54.Murie, J. O. & Harris, M. A. Annual variation of spring emergence and breeding in Columbian ground squirrels (Spermophilus columbianus). J. Mammal. 63, 431–439 (1982).Article 

    Google Scholar 
    55.Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Article 

    Google Scholar 
    56.Gannon, W. L. & Sikes, R. S. Guidelines of the American society of mammalogists for the use of wild mammals in research. J. Mammal. 88, 809–823 (2007).Article 

    Google Scholar 
    57.Zucker, I. & Boshes, M. Circannual body weight rhythms of ground squirrels: Role of gonadal hormones. Am. J. Physiol. Regul. Int. Comput. Physiol. 12, 546–551 (1982).Article 

    Google Scholar 
    58.Boonstra, R., Hubbs, A. H., Lacey, E. A. & McColl, C. J. Seasonal changes in glucocorticoid and testosterone concentrations in free-living arctic ground squirrels from the boreal forest of the Yukon. Can. J. Zool. 79, 49–58 (2001).Article 

    Google Scholar 
    59.Bottini Luzardo, M., Centurion Castro, F., Alfaro Gamboa, M., Lopez, A. & Ake Lopez, A. Osmolarity of coconut water (Cocos nucifera) based diluents and their effect over viability of frozen boar semen. Am. J. Anim. Vet. Sci. 5, 187–191 (2010).Article 

    Google Scholar 
    60.Mollineau, W. M., Adogwa, A. O. & Garcia, G. W. Liquid and frozen storage of agouti (Dasyprocta leporina) semen extended with UHT milk, unpasteurized coconut water, and pasteurized coconut water. Vet. Med. Int. 2011, 1–5 (2011).Article 

    Google Scholar 
    61.Schulte-Hostedde, A. I., Millar, J. S. & Hickling, G. J. Evaluating body condition in small mammals. Can. J. Zool. 79, 1021–1029 (2001).Article 

    Google Scholar 
    62.Møller, A. P. & Birkhead, T. R. Copulation behaviour in mammals: Evidence that sperm competition is widespread. Biol. J. Linn. Soc. 38, 119–131 (1989).Article 

    Google Scholar 
    63.Sugg, D. W. & Chesser, R. K. Effective population sizes with multiple paternity. Genetics 137, 1147–1155 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Murie, J. O. & Harris, M. A. Territoriality and dominance in male Columbian ground squirrels (Spermophilus columbianus). Can. J. Zool. 56, 2402–2412 (1978).Article 

    Google Scholar 
    65.Morton, M. L. & Gallup, J. S. Reproductive cycle of the Belding ground squirrel (Spermophilus beldingi beldingi): Seasonal and age differences. Gt. Basin Nat. 35, 427–433 (1975).
    Google Scholar 
    66.Barnes, B. M., Kretzmann, M., Licht, P. & Zucker, I. The influence of hibernation on testis growth and spermatogenesis in the golden-mantled ground squirrel Spermophilus lateralis. Biol. Reprod. 35, 1289–1297 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    The origin and impeded dissemination of the DNA phosphorothioation system in prokaryotes

    1.Eckstein, F. Phosphorothioation of DNA in bacteria. Nat. Chem. Biol. 3, 689–690 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Wang, L. et al. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 3, 709–710 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Zhou, X. et al. A novel DNA modification by sulphur. Mol. Microbiol. 57, 1428–1438 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Chen, S., Wang, L. & Deng, Z. Twenty years hunting for sulfur in DNA. Protein cell 1, 14–21 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Xu, T. et al. DNA phosphorothioation in Streptomyces lividans: mutational analysis of the dnd locus. BMC Microbiol. 9, 41 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.You, D., Wang, L., Yao, F., Zhou, X. & Deng, Z. A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces liVidans. Biochemistry 46, 6126–6133 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Chen, F. et al. Crystal structure of the cysteine desulfurase DndA from Streptomyces lividans which is involved in DNA phosphorothioation. PLoS ONE 7, e36635 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.An, X. et al. A novel target of IscS in Escherichia coli: participating in DNA phosphorothioation. PLoS ONE 7, e51265 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Wang, L., Jiang, S., Deng, Z., Dedon, P. C. & Chen, S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol. Rev. 43, 109–122 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Yao, F., Xu, T., Zhou, X., Deng, Z. & You, D. Functional analysis of spfD gene involved in DNA phosphorothioation in Pseudomonas fluorescens Pf0-1. FEBS Lett. 583, 729–733 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Hu, W. et al. Structural insights into DndE from Escherichia coli B7A involved in DNA phosphorothioation modification. Cell Res. 22, 1203–1206 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Cheng, Q. et al. Regulation of DNA phosphorothioate modifications by the transcriptional regulator DptB in Salmonella. Mol. Microbiol. 97, 1186–1194 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Xiong, W., Zhao, G., Yu, H. & He, X. Interactions of Dnd proteins involved in bacterial DNA phosphorothioate modification. Front. Microbiol. 6, 1139 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Dai, D. et al. DNA phosphorothioate modification plays a role in peroxides resistance in Streptomyces lividans. Front. Microbiol. 7, 1380 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    15.Xie, X. et al. Phosphorothioate DNA as an antioxidant in bacteria. Nucleic Acids Res. 40, 9115–9124 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Yang, Y. et al. DNA backbone sulfur-modification expands microbial growth range under multiple stresses by its anti-oxidation function. Sci. Rep. 7 (2017).17.Xu, T., Yao, F., Zhou, X., Deng, Z. & You, D. A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res. 38, 7133–7141 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Liu, G. et al. Cleavage of phosphorothioated DNA and methylated DNA by the Type IV restriction endonuclease ScoMcrA. PLoS Genet. 6, e1001253 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Tong, T. et al. Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc. Natl Acad. Sci. USA 115, E2988–E2996 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Xiong, L. et al. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10 (2019).21.Xiong, X. et al. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat. Microbiol. 5, 917–928 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dai, D., Pu, T., Liang, J., Wang, Z. & Tang, A. Regulation of dndB gene expression in Streptomyces lividans. Front. Microbiol. 9, 2387 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Zhou, X., Deng, Z., Firmin, J. L., Hopwood, D. A. & Kieser, T. Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res. 16, 4341–4352 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Sun, Y. et al. DNA phosphorothioate modifications are widely distributed in the human microbiome. Biomolecules 10, 1175 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    25.Khan, H. et al. DNA phosphorothioate modification facilitates the dissemination of mcr-1 and blaNDM-1 in drinking water supply systems. Environ. Pollut. 268, 115799 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Wang, L. et al. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc. Natl Acad. Sci. USA 108, 2963–2968 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Blow, M. J. et al. The epigenomic landscape of prokaryotes. PLoS Genet. 12, e1005854 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Yang, X., Jian, H. & Wang, F. pSW2, a novel low-temperature-inducible gene expression vector based on a filamentous phage of the deep-sea bacterium Shewanella piezotolerans WP3. Appl. Environ. Microbiol. 81, 5519–5526 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Cao, B. et al. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat. Commun. 5, 3951 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Jian, H. et al. Multiple mechanisms are involved in repression of filamentous phage SW1 transcription by the DNA-binding protein FpsR. J. Mol. Biol. 431, 1113–1126 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Lai, C. et al. In vivo mutational characterization of DndE involved in DNA phosphorothioate modification. PLoS ONE 9, e107981 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Schoemaker, J. M., Gayda, R. C. & Markovitz, A. Regulation of cell division in Escherichia coli: SOS induction and cellular location of the SulA protein, a key to lon-associated filamentation and death. J. Bacteriol. 158, 551–561 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Jian, H., Xiong, L., Xu, G., Xiao, X. & Wang, F. Long 5′ untranslated regions regulate the RNA stability of the deep-sea filamentous phage SW1. Sci. Rep. 6, 21908 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Chen, C. et al. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc. Natl Acad. Sci. USA 114, 4501–4506 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Maleki, F., Khosravi, A., Nasser, A., Taghinejad, H. & Azizian, M. Bacterial heat shock protein activity. J. Clin. Diagnostic Res. 10, BE01–BE03 (2016).CAS 

    Google Scholar 
    36.Knoll, A. H. Paleobiological perspectives on early microbial evolution. Cold Spring Harb. Perspect. Biol. 7, a018093 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58, 769–785 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 4, 698–702 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Bontognali, T. R. R. et al. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl Acad. Sci. USA 109, 15146–15151 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Schirrmeister, B. E., Vos, J. M. D., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Pang, K. et al. Nitrogen-fixing heterocystous Cyanobacteria in the tonian period. Curr. Biol. 28, 616–622 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Demoulin, C. F. et al. Cyanobacteria evolution: Insight from the fossil record. Free Radic. Biol. Med. in press (2021).44.Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Ou, H.-Y. et al. dndDB: a database focused on phosphorothioation of the DNA backbone. PLoS ONE 4, e5132 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Janda, J. M. & Abbott, S. L. The genus Shewanella: from the briny depths below to human pathogen. Crit. Rev. Microbiol. 40, 293–312 (2014).PubMed 
    Article 

    Google Scholar 
    47.Fredrickson, J. K. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Nealson, K. H. & Scott, J. Ecophysiology of the Genus Shewanella. Prokaryotes 6, 1133–1151 (2006).Article 

    Google Scholar 
    50.Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Hay, I. D. & Lithgow, T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep. 20, e47427 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Mai-Prochnow, A. et al. ‘Big things in small packages: the genetics of filamentous phage and effects on fitness of their host’. FEMS Microbiol. Rev. 39, 465–487 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Middelboe, M., Glud, R. N. & Finster, K. Distribution of viruses and bacteria in relation to diagenetic activity in an estuarine sediment. Limnol. Oceanogr. 48, 1447–1456 (2003).ADS 
    Article 

    Google Scholar 
    54.Engelhardt, T., Orsi, W. D. & Jørgensen, B. B. Viral activities and life cycles in deep subseafloor sediments. Environ. Microbiol. Rep. 7, 868–873 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Rakonjac, J. Filamentous Bacteriophages: Biology and Applications. eLS (2012).57.Güemes, A. G. C. et al. Viruses as winners in the game of life. Annu. Rev. Virol. 3, 197–214 (2016).Article 
    CAS 

    Google Scholar 
    58.Breitbart, M. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4, 425–448 (2012).ADS 
    Article 

    Google Scholar 
    59.Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Touchon, M., Bernheim, A. & Rocha, E. P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10, 2744–2754 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Harrison, E. & Brockhurst, M. A. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. Bioessays 39, 201700112 (2017).Article 

    Google Scholar 
    63.Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Wu, X. et al. Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. PNAS 117, 14322–14330 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Willbanks, A. et al. The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet. Epigenet. 8, 25–36 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Razin, A. & Cedar, H. DNA methylation and gene expression. Microbiol. Rev. 55, 451–458 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Iyer, L. M., Abhiman, S. & Aravind, L. Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101, 25–104 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Gan, R. et al. DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks. Sci. Rep. 4, 6642 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Chen, L. et al. Theoretical study on the relationship between Rp-phosphorothioation and base-step in S-DNA: based on energetic and structural analysis. J. Phys. Chem. B 119, 474–481 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Kellner, S. et al. Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat. Chem. Biol. 13, 888–894 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ślesak, I., Kula, M., Ślesak, H., Miszalski, Z. & Strzałka, K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic. Biol. Med. 140, 61–73 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    74.Brioukhanov, A. L., Thauer, R. K. & Netrusov, A. I. Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Microbiol. (Russ. Acad. Sci.) 71, 330–335 (2002).
    Google Scholar 
    75.Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    76.Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–D205 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).CAS 

    Google Scholar 
    84.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood treesfor large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kwak, S. G. & Kim, J. H. Central limit theorem: the cornerstone of modern statistics. Korean J. Anesthesiol. 70, 144–156 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2013).90.Chok, N. S. Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data Master of Science thesis, University of Pittsburgh, (2010).91.Jian, H., Xu, G., Gai, Y., Xu, J. & Xiao, X. The histone-like nucleoid structuring protein (H-NS) is a negative regulator of the lateral flagellar system in the deep-sea bacterium Shewanella piezotolerans WP3. Appl. Environ. Microbiol. 82, 2388–2398 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Wang, F. et al. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE 3, e1937 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Jian, H., Xu, J., Xiao, X. & Wang, F. Dynamic modulation of DNA replication and gene transcription in deep-sea filamentous phage SW1 in response to changes of host growth and temperature. PLoS ONE 7, e41578 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2016).Article 
    CAS 

    Google Scholar 
    95.Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    98.Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    99.Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Gao, H. et al. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J. 3, 966–976 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Am. Naturalist 138, 1315–1341 (1991).Article 

    Google Scholar  More

  • in

    Antibiotic resistance in the environment

    1.D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011). This study shows that different ARGs are present in 30,000-year-old permafrost.
    Google Scholar 
    2.Bhullar, K. et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7, e34953 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lugli, G. A. et al. Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome 5, 5 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    4.Perry, J., Waglechner, N. & Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6, a025197 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    5.Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010). This authoritative and educational review discusses in an insightful way the evolution of resistance, including its origins and future implications.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 

    Google Scholar 
    7.Martinez, J. L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. R. Soc. B Biol. Sci. 276, 2521–2530 (2009).
    Google Scholar 
    8.Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz935 (2019).Article 
    PubMed Central 

    Google Scholar 
    9.Mackenzie, J. S. & Jeggo, M. The one health approach — why is it so important? Trop. Med. Infect. Dis. 4, 88 (2019).PubMed Central 

    Google Scholar 
    10.Buschhardt, T. et al. A one health glossary to support communication and information exchange between the human health, animal health and food safety sectors. One Health 13, 100263 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    11.Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).CAS 
    PubMed 

    Google Scholar 
    12.Wellington, E. M. et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 13, 155–165 (2013).CAS 
    PubMed 

    Google Scholar 
    13.Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fux053 (2017).Article 
    PubMed Central 

    Google Scholar 
    14.Chow, L. K. M., Ghaly, T. M. & Gillings, M. R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 99, 21–27 (2021).
    Google Scholar 
    15.Andersson, D. I. et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 44, 171–188 (2020).CAS 
    PubMed 

    Google Scholar 
    16.Singer, A. C., Shaw, H., Rhodes, V. & Hart, A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01728 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.United Nations Environment Programme. Frontiers 2017: emerging issues of environmental concern, https://www.unenvironment.org/resources/frontiers-2017-emerging-issues-environmental-concern (2017).18.Access to Medicines Foundation. 2020 antimicrobial resistance benchmark, https://accesstomedicinefoundation.org/publications/2020-antimicrobial-resistance-benchmark (2020).19.Review on Antimicrobial Resistance. Antimicrobials in agriculture and the environment: reducing unnecessary waste, https://amr-review.org/Publications.html (2015).20.European Parliament. Strategic approach to pharmaceuticals in the environment, https://www.europarl.europa.eu/doceo/document/TA-9-2020-0226_EN.pdf (2020).21.WHO. Technical brief on water, sanitation, hygiene (WASH) and wastewater management to prevent infections and reduce the spread of antimicrobial resistance (AMR)., https://www.who.int/water_sanitation_health/publications/wash-wastewater-management-to-prevent-infections-and-reduce-amr/en/ (2020).22.Graham, D. W. et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 1441, 17–30 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    23.Smalla, K., Cook, K., Djordjevic, S. P., Klümper, U. & Gillings, M. Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy195 (2018).Article 
    PubMed 

    Google Scholar 
    24.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).CAS 
    PubMed 

    Google Scholar 
    25.Schulz, F. et al. Towards a balanced view of the bacterial tree of life. Microbiome https://doi.org/10.1186/s40168-017-0360-9 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012). This study demonstrates numerous identical resistance gene loci between multiresistant soil bacteria and diverse human pathogens, providing evidence for recent gene exchange across species and environments.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Berglund, F. et al. Identification of 76 novel B1 metallo-beta-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5, 134 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    28.Dantas, G., Sommer, M. O. A., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).CAS 
    PubMed 

    Google Scholar 
    29.Berglund, F. et al. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microb. Genomics https://doi.org/10.1099/mgen.0.000455 (2020).Article 

    Google Scholar 
    30.Pawlowski, A. C. et al. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat. Commun. 7, 13803 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Morar, M. & Wright, G. D. The genomic enzymology of antibiotic resistance. Annu. Rev. Genet. 44, 25–51 (2010).CAS 
    PubMed 

    Google Scholar 
    32.Andersson, D. I., Jerlström-Hultqvist, J. & Näsvall, J. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb. Perspect. Biol. 7, a017996 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    33.Razavi, M., Kristiansson, E., Flach, C.-F. & Larsson, D. G. J. The association between insertion sequences and antibiotic resistance genes. mSphere https://doi.org/10.1128/msphere.00418-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.00088-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Gillings, M. et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190, 5095–5100 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Razavi, M. et al. Discovery of the fourth mobile sulfonamide resistance gene. Microbiome https://doi.org/10.1186/s40168-017-0379-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Flach, C.-F. et al. Does antifouling paint select for antibiotic resistance? Sci. Total Environ. 590–591, 461–468 (2017).PubMed 

    Google Scholar 
    38.Shintani, M. et al. Plant species-dependent increased abundance and diversity of IncP-1 plasmids in the rhizosphere: new insights into their role and ecology. Front. Microbiol. 11, 590776 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Baquero, F., Coque, T. M., Martínez, J.-L., Aracil-Gisbert, S. & Lanza, V. F. Gene transmission in the one health microbiosphere and the channels of antimicrobial resistance. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02892 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Vandecraen, J., Chandler, M., Aertsen, A. & Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43, 709–730 (2017).CAS 
    PubMed 

    Google Scholar 
    41.Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E. & Courvalin, P. Modes and modulations of antibiotic resistance gene expression. Clin. Microbiol. Rev. 20, 79–114 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Jutkina, J., Marathe, N. P., Flach, C. F. & Larsson, D. G. J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616-617, 172–178 (2018).CAS 
    PubMed 

    Google Scholar 
    43.Scornec, H., Bellanger, X., Guilloteau, H., Groshenry, G. & Merlin, C. Inducibility of Tn916 conjugative transfer in Enterococcus faecalis by subinhibitory concentrations of ribosome-targeting antibiotics. J. Antimicrob. Chemother. 72, 2722–2728 (2017).CAS 
    PubMed 

    Google Scholar 
    44.Aminov, R. I. Horizontal gene exchange in environmental microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2011.00158 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Knöppel, A., Näsvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01495-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Kimura, M. & Ohta, T. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Letten, A. D., Hall, A. R. & Levine, J. M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat. Ecol. Evol. 5, 431–441 (2021).PubMed 

    Google Scholar 
    48.Waglechner, N. & Wright, G. D. Antibiotic resistance: it’s bad, but why isn’t it worse? BMC Biol. https://doi.org/10.1186/s12915-017-0423-1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Ebmeyer, S., Erik, K. & Larsson, D. G. J. A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun. Biol. https://doi.org/10.1038/s42003-020-01545-5 (2021). This study amends, summarizes and scrutinizes current evidence for proposed recent origin species for mobile ARGs.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Andersson, D. I. & Hughes, D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 35, 901–911 (2011).CAS 
    PubMed 

    Google Scholar 
    51.Wang, J., Chu, L., Wojnárovits, L. & Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total. Environ. 744, 140997 (2020).CAS 
    PubMed 

    Google Scholar 
    52.Tran, N. H., Reinhard, M. & Gin, K. Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 133, 182–207 (2018).CAS 
    PubMed 

    Google Scholar 
    53.Szymańska, U. et al. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchem. J. 147, 729–740 (2019).
    Google Scholar 
    54.Anwar, M., Iqbal, Q. & Saleem, F. Improper disposal of unused antibiotics: an often overlooked driver of antimicrobial resistance. Expert Rev. Antiinfect Ther. https://doi.org/10.1080/14787210.2020.1754797 (2020).Article 

    Google Scholar 
    55.Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).PubMed 

    Google Scholar 
    56.Cabello, F. C., Godfrey, H. P., Buschmann, A. H. & Dölz, H. J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 16, e127–e133 (2016).PubMed 

    Google Scholar 
    57.Taylor, P. & Reeder, R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric. Biosci. https://doi.org/10.1186/s43170-020-00001-y (2020).Article 

    Google Scholar 
    58.Larsson, D. G. J. Pollution from drug manufacturing: review and perspectives. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130571 (2014).
    Google Scholar 
    59.Larsson, D. G. J., De Pedro, C. & Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 148, 751–755 (2007).CAS 
    PubMed 

    Google Scholar 
    60.Milaković, M. et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ. Int. 123, 501–511 (2019).PubMed 

    Google Scholar 
    61.Bielen, A. et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 126, 79–87 (2017).CAS 
    PubMed 

    Google Scholar 
    62.Fick, J. et al. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 28, 2522–2527 (2009).CAS 
    PubMed 

    Google Scholar 
    63.Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016). This study uses a simplified approach based on available MIC data for many species to predict concentrations of 111 antibiotics that are not likely to select for resistance.CAS 
    PubMed 

    Google Scholar 
    64.Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. https://doi.org/10.1038/s41467-018-07992-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Yang, Y., Li, B., Zou, S., Fang, H. H. P. & Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106 (2014).CAS 
    PubMed 

    Google Scholar 
    67.Bengtsson-Palme, J. et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 572, 697–712 (2016).CAS 
    PubMed 

    Google Scholar 
    68.Manaia, C. M. et al. Antibiotic resistance in wastewater treatment plants: tackling the black box. Environ. Int. 115, 312–324 (2018).CAS 
    PubMed 

    Google Scholar 
    69.Flach, C. F., Genheden, M., Fick, J. & Joakim Larsson, D. G. A comprehensive screening of Escherichia coli isolates from Scandinavia’s largest sewage treatment plant indicates no selection for antibiotic resistance. Environ. Sci. Technol. 52, 11419–11428 (2018).CAS 
    PubMed 

    Google Scholar 
    70.Kraupner, N. et al. Evidence for selection of multi-resistant E. coli by hospital effluent. Environ. Int. 150, 106436 (2021).CAS 
    PubMed 

    Google Scholar 
    71.Flach, C. F. et al. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. J. Antimicrob. Chemother. 70, 2709–2717 (2015).CAS 
    PubMed 

    Google Scholar 
    72.Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. J. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00648 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Marathe, N. P. et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ. Int. 112, 279–286 (2018).CAS 
    PubMed 

    Google Scholar 
    74.Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils–a review. J. Plant Nutr. Soil Sci. 166, 145–167 (2003).CAS 

    Google Scholar 
    75.Li, W., Shi, Y., Gao, L., Liu, J. & Cai, Y. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China. Sci. Total. Environ. 445–446, 306–313 (2013).PubMed 

    Google Scholar 
    76.Reinthaler, F. F. et al. Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. J. Water Health 11, 13–20 (2013).PubMed 

    Google Scholar 
    77.Rutgersson, C. et al. Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. Environ. Int. 137, 105339 (2020).CAS 
    PubMed 

    Google Scholar 
    78.Jechalke, S., Heuer, H., Siemens, J., Amelung, W. & Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 22, 536–545 (2014).CAS 
    PubMed 

    Google Scholar 
    79.Boxall, A. B. et al. Pharmaceuticals and personal care products in the environment: what are the big questions? Environ. Health Perspect. 120, 1221–1229 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    80.Song, J., Rensing, C., Holm, P. E., Virta, M. & Brandt, K. K. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environ. Sci. Technol. 51, 3040–3047 (2017).CAS 
    PubMed 

    Google Scholar 
    81.Jechalke, S. et al. Plasmid-mediated fitness advantage of Acinetobacter baylyi in sulfadiazine-polluted soil. FEMS Microbiol. Lett. 348, 127–132 (2013). This study shows that a commonly used antibiotic in pig farming has the potential to select for a resistant Acinetobacter strain in manure-amended soils.CAS 
    PubMed 

    Google Scholar 
    82.Pal, C. et al. Metal resistance and its association with antibiotic resistance. Adv. Microb. Physiol. 70, 261–313 (2017).CAS 
    PubMed 

    Google Scholar 
    83.Wales, A. & Davies, R. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4, 567–604 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    84.Pal, C., Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics https://doi.org/10.1186/s12864-015-2153-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Klümper, U. et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11, 152–165 (2017).PubMed 

    Google Scholar 
    86.Jutkina, J., Rutgersson, C., Flach, C. F. & Joakim Larsson, D. G. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Total. Environ. 548–549, 131–138 (2016).PubMed 

    Google Scholar 
    87.Wang, Y. et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 14, 2179–2196 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Klumper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015). This study shows that plasmids that are common in pathogens can easily be taken up by diverse environmental bacteria, thereby providing pathways for the exchange of resistance genes.CAS 
    PubMed 

    Google Scholar 
    89.Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Genomics and the evolution of antibiotic resistance. Ann. N. Y. Acad. Sci. 1388, 92–107 (2017).PubMed 

    Google Scholar 
    90.Heuer, H. & Smalla, K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol. Rev. 36, 1083–1104 (2012).CAS 
    PubMed 

    Google Scholar 
    91.Bengtsson-Palme, J. & Larsson, D. G. Antibiotic resistance genes in the environment: prioritizing risks. Nat. Rev. Microbiol. 13, 396 (2015).CAS 
    PubMed 

    Google Scholar 
    92.Leonard, A. F. C. et al. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 114, 326–333 (2018). This is one of few studies showing that people more likely to ingest surface waters are also more prone to be carriers of resistant bacteria compared with matched controls.PubMed 

    Google Scholar 
    93.Manaia, C. M. Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol. 25, 173–181 (2017).CAS 
    PubMed 

    Google Scholar 
    94.Schijven, J. F., Blaak, H., Schets, F. M. & De Roda Husman, A. M. Fate of extended-spectrum β-lactamase-producing Escherichia coli from faecal sources in surface water and probability of human exposure through swimming. Environ. Sci. Technol. 49, 11825–11833 (2015).CAS 
    PubMed 

    Google Scholar 
    95.Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. & Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet. Health 2, e398–e405 (2018).PubMed 

    Google Scholar 
    96.Dancer, S. J. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 27, 665–690 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    97.Weber, D. J., Anderson, D. & Rutala, W. A. The role of the surface environment in healthcare-associated infections. Curr. Opin. Infect. Dis. 26, 338–344 (2013).PubMed 

    Google Scholar 
    98.Søraas, A., Sundsfjord, A., Sandven, I., Brunborg, C. & Jenum, P. A. Risk factors for community-acquired urinary tract infections caused by ESBL-producing Enterobacteriaceae –a case–control study in a low prevalence country. PLoS ONE 8, e69581 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    99.Zhou, S.-Y.-D. et al. Prevalence of antibiotic resistome in ready-to-eat salad. Front. Public Health https://doi.org/10.3389/fpubh.2020.00092 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Uyttendaele, M. et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 14, 336–356 (2015).
    Google Scholar 
    101.Reid, C. J., Blau, K., Jechalke, S., Smalla, K. & Djordjevic, S. P. Whole genome sequencing of Escherichia coli from store-bought produce. Front. Microbiol. 10, 3050 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    102.Blau, K. et al. The transferable resistome of produce. mBio 9, e01300-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    103.Zhu, Y.-G. et al. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 131, 105059 (2019).PubMed 

    Google Scholar 
    104.Pal, C., Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. The structure and diversity of human, animal and environmental resistomes. Microbiome 4, 54 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Kozajda, A., Jeżak, K. & Kapsa, A. Airborne Staphylococcus aureus in different environments — a review. Environ. Sci. Pollut. Res. 26, 34741–34753 (2019).CAS 

    Google Scholar 
    106.Ashbolt, N. J. et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 121, 993–1001 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    107.Franz, E., Schijven, J., De Roda Husman, A. M. & Blaak, H. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water. Environ. Sci. Technol. 48, 6763–6771 (2014).CAS 
    PubMed 

    Google Scholar 
    108.Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug. Discov. 12, 371–387 (2013).CAS 
    PubMed 

    Google Scholar 
    109.Linton, K. B., Richmond, M. H., Bevan, R. & Gillespie, W. A. Antibiotic resistance and R factors in coliform bacilli isolated from hospital and domestic sewage. J. Med. Microbiol. 7, 91–103 (1974).CAS 
    PubMed 

    Google Scholar 
    110.Huijbers, P., Joakim Larsson, D. G. & Flach, C. F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 261, 114200 (2020).CAS 
    PubMed 

    Google Scholar 
    111.Hutinel, M. et al. Population-level surveillance of antibiotic resistance in Escherichia coli through sewage analysis. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2019.24.37.1800497 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of antimicrobial resistance. Science 367, 630–632 (2020).CAS 
    PubMed 

    Google Scholar 
    113.Kwak, Y. K. et al. Surveillance of antimicrobial resistance among Escherichia coli in wastewater in Stockholm during 1 year: does it reflect the resistance trends in the society? Int. J. Antimicrob. Agents 45, 25–32 (2015).CAS 
    PubMed 

    Google Scholar 
    114.Parnanen, K. M. M. et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 5, eaau9124 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    115.Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019). This is the most comprehensive survey of ARGs in sewage across the world to date, showing distinct differences between regions.PubMed 
    PubMed Central 

    Google Scholar 
    116.Huijbers, P. M. C., Flach, C. F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).CAS 
    PubMed 

    Google Scholar 
    117.Böhm, M.-E., Razavi, M., Marathe, N. P., Flach, C.-F. & Larsson, D. G. J. Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. Microbiome https://doi.org/10.1186/s40168-020-00814-z (2020). Using a functional assay targeting mobile genes, this study explores environment communities and finds a completely novel resistance gene that had escaped discovery in clinics despite its presence in pathogens on different continents.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C. & Larsson, D. G. J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 200, 117261 (2021).CAS 
    PubMed 

    Google Scholar 
    119.Karkman, A., Berglund, F., Flach, C.-F., Kristiansson, E. & Larsson, D. G. J. Predicting clinical resistance prevalence using sewage metagenomic data. Commun. Biol. https://doi.org/10.1038/s42003-020-01439-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    120.European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2017 (Stockholm, Sweden, 2018).121.Hovi, T. et al. Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiol. Infect. 140, 1–13 (2012).CAS 
    PubMed 

    Google Scholar 
    122.Agrawal, S., Orschler, L. & Lackner, S. Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in southern Germany. Sci. Rep. https://doi.org/10.1038/s41598-021-84914-2 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. & Brouwer, A. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ. Sci. Technol. Lett. 7, 511–516 (2020).CAS 

    Google Scholar 
    124.Lundstrom, S. V. et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci. Total Environ. 553, 587–595 (2016).PubMed 

    Google Scholar 
    125.McCann, C. M. et al. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ. Int. 125, 497–504 (2019).CAS 
    PubMed 

    Google Scholar 
    126.Pruden, A., Arabi, M. & Storteboom, H. N. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ. Sci. Technol. 46, 11541–11549 (2012).CAS 
    PubMed 

    Google Scholar 
    127.Zhu, Y.-G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).CAS 
    PubMed 

    Google Scholar 
    128.Zhu, Y.-G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. USA 110, 3435–3440 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    129.Knapp, C. W., Dolfing, J., Ehlert, P. A. I. & Graham, D. W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580–587 (2010).CAS 
    PubMed 

    Google Scholar 
    130.Nesme, J. & Simonet, P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ. Microbiol. 17, 913–930 (2015).PubMed 

    Google Scholar 
    131.Finley, R. L. et al. The scourge of antibiotic resistance: the important role of the environment. Clin. Infect. Dis. 57, 704–710 (2013).PubMed 

    Google Scholar 
    132.Sjölund, M. et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg. Infect. Dis. 14, 70–72 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    133.Zhu, G. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. https://doi.org/10.1038/s41396-020-00780-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    134.Nichols, D. et al. Use of Ichip for high-throughput in situ cultivation of “Uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    135.Ashton, P. M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).CAS 
    PubMed 

    Google Scholar 
    136.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS 
    PubMed 

    Google Scholar 
    137.Rice, E. W., Wang, P., Smith, A. L. & Stadler, L. B. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ. Sci. Technol. Lett. 7, 282–291 (2020).CAS 

    Google Scholar 
    138.Sivalingam, P., Poté, J. & Prabakar, K. Extracellular DNA (eDNA): neglected and potential sources of antibiotic resistant genes (ARGs) in the aquatic environments. Pathogens 9, 874 (2020).CAS 
    PubMed Central 

    Google Scholar 
    139.Bengtsson-Palme, J., Larsson, D. G. J. & Kristiansson, E. Using metagenomics to investigate human and environmental resistomes. J. Antimicrob. Chemother. 72, 2690–2703 (2017).CAS 
    PubMed 

    Google Scholar 
    140.Karkman, A. et al. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 92, https://doi.org/10.1093/femsec/fiw014 (2016).141.Gillings, M. R. et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9, 1269–1279 (2015).CAS 
    PubMed 

    Google Scholar 
    142.Gaze, W. H., Abdouslam, N., Hawkey, P. M. & Wellington, E. M. H. Incidence of Class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob. Agents Chemother. 49, 1802–1807 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Sommer, M. O. A., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol. 15, 689–696 (2017). This article highlights the needs to consider the environmental gene reservoir and other factors influencing resistance evolution in the development process for new antibiotics.CAS 
    PubMed 

    Google Scholar 
    144.Pehrsson, E. C., Forsberg, K. J., Gibson, M. K., Ahmadi, S. & Dantas, G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00145 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    145.Kim, C., Ryu, H.-D., Chung, E. G., Kim, Y. & Lee, J.-K. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: sample preparation, liquid chromatography, and mass spectrometry. J. Environ. Manag. 217, 629–645 (2018).CAS 

    Google Scholar 
    146.Fahrenfeld, N. & Bisceglia, K. J. Emerging investigators series: sewer surveillance for monitoring antibiotic use and prevalence of antibiotic resistance: urban sewer epidemiology. Environ. Sci. Water Res. Technol. 2, 788–799 (2016).CAS 

    Google Scholar 
    147.Anliker, S. et al. Assessing emissions from pharmaceutical manufacturing based on temporal high-resolution mass spectrometry data. Environ. Sci. Technol. 54, 4110–4120 (2020). This recent study elegantly uses the erratic emission profiles of drugs from manufacturing plants to attribute a large portion of the pharmaceutical residues found in a Swiss river to industrial emissions, further showing that curbing such pollution is an ongoing, worldwide challenge.CAS 
    PubMed 

    Google Scholar 
    148.Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    149.Kraupner, N. et al. Selective concentrations for trimethoprim resistance in aquatic environments. Environ. Int. 144, 106083 (2020).CAS 
    PubMed 

    Google Scholar 
    150.Murray, A. K. et al. Novel insights into selection for antibiotic resistance in complex microbial communities. mBio https://doi.org/10.1128/mbio.00969-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    151.Government of India. Environment (Protection) Amendment Rules, 2020 – Inviting comments/suggestions on Environmental Standards for Bulk Drug and Formulation (Pharmaceutical) Industry, http://moef.gov.in/g-s-r-44-e-date-23-01-2020-environment-protection-amendment-rules-2020-inviting-commentssuggestions-on-environmental-standards-for-bulk-drug-and-formulation-pharmaceutical-indu/ (2020).152.Tell, J. et al. Science-based targets for antibiotics in receiving waters from pharmaceutical manufacturing operations. Integr. Environ. Assess. Manag. 15, 312–319 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Greenfield, B. K. et al. Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01686-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    154.Murray, A. K. et al. The ‘Selection end points in Communities of bacTeria’ (SELECT) method: a novel experimental assay to facilitate risk assessment of selection for antimicrobial resistance in the environment. Environ. Health Perspect. 128, 107007 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    155.Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).CAS 
    PubMed 

    Google Scholar 
    156.Stanton, I. C., Murray, A. K., Zhang, L., Snape, J. & Gaze, W. H. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun. Biol. https://doi.org/10.1038/s42003-020-01176-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Nijsingh, N., Munthe, C. & Larsson, D. G. J. Managing pollution from antibiotics manufacturing: charting actors, incentives and disincentives. Environ. Health 18, 95 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    158.Sundin, G. W. & Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56, 161–180 (2018).CAS 
    PubMed 

    Google Scholar 
    159.Government of Sweden. Uppdrag angående försöksverksamhet för en miljöpremie i läkemedelsförmånssystemet, https://www.regeringen.se/499677/contentassets/36dcec65be904fd58e5e6b01c2f99709/uppdrag-angaende-forsoksverksamhet-for-en-miljopremie-i-lakemedelsformanssystemet-tlv.pdf (2021).160.Norwegian Hospital Procurement Trust. New environmental criteria for the procurement of pharmaceuticals, https://sykehusinnkjop.no/nyheter/new-environmental-criteria-for-the-procurement-of-pharmaceuticals (2019).161.Swedish Procurement Agency. Pharmaceuticals, https://www.upphandlingsmyndigheten.se/kriterier/sjukvard-och-omsorg/lakemedel/ (2021).162.G7. G7 Health Ministers’ Declaration, Oxford, 4 June 2021, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/992268/G7-health_ministers-communique-oxford-4-june-2021_5.pdf (2021).163.Årdal, C. et al. Supply chain transparency and the availability of essential medicines. Bull. World Health Organ. 99, 319–320 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    164.Graham, D., Giesen, M. & Bunce, J. Strategic approach for prioritising local and regional sanitation interventions for reducing global antibiotic resistance. Water 11, 27 (2018).
    Google Scholar 
    165.Margot, J. et al. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci. Total. Environ. 461–462, 480–498 (2013).PubMed 

    Google Scholar 
    166.Larsson, D. G. J. et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 117, 132–138 (2018).PubMed 

    Google Scholar 
    167.Laxminarayan, R. et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect. Dis. 20, e51–e60 (2020).PubMed 

    Google Scholar 
    168.Ahammad, Z. S., Sreekrishnan, T. R., Hands, C. L., Knapp, C. W. & Graham, D. W. Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ. Sci. Technol. 48, 3014–3020 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    169.Kookana, R. S. et al. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130586 (2014).
    Google Scholar  More

  • in

    Functional forest restoration

    1.Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate (United Nations Environment Programme, 2021).2.Bongers, F. J. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01564-3 (2021).Article 

    Google Scholar 
    3.Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar 
    4.Guerrero-Ramírez, N. R. et al. Nat. Ecol. Evol. 1, 1639–1642 (2017).Article 

    Google Scholar 
    5.Fargione, J. et al. Proc. R. Soc. B 274, 871–876 (2007).Article 

    Google Scholar 
    6.Montagnini, F. & Piotto, D. In Silviculture in the Tropics (eds Günter, S. et al.) 501–511 (Springer-Verlag, 2011).7.Aerts, R. & Honnay, O. BMC Ecol. 11, 29 (2011).Article 

    Google Scholar 
    8.Messier, C. et al. Conserv. Lett. https://doi.org/gk82nr (2021).9.Sacco, A. D. et al. Global Change Biol. 27, 1328–1348 (2021).Article 

    Google Scholar 
    10.Coleman, E. A. et al. Nat. Sustain. https://doi.org/gzhx (2021).11.Forrester, D. I. For. Ecol. Manage. 312, 282–292 (2014).Article 

    Google Scholar 
    12.Eisenhauer, N., Reich, P. B. & Scheu, S. Basic Appl. Ecol. 13, 571–578 (2012).Article 

    Google Scholar 
    13.Zemp, D. C. et al. Agric. Ecosyst. Environ. 283, 106564 (2019).Article 

    Google Scholar 
    14.Laughlin, D. C. et al. Nat. Ecol. Evol. 5, 1123–1134 (2021).Article 

    Google Scholar 
    15.Rodrigues, R. R. et al. Práticas de restauração nos diferentes biomas brasileiros. in BPBES/IIS: Relatório Temático sobre Restauração de Paisagens e Ecossistemas (eds. Crouzeilles, R. et al.) (Editora Cubo, 2019). More

  • in

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    1.Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).2.Bastin, J. F. et al. The global tree restoration potential. Science 366, 76–79 (2019).
    Google Scholar 
    3.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Zhang, J., Fu, B., Stafford-smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).8.Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).
    Google Scholar 
    9.Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    10.Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 285, 20181240 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    14.Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    15.Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).
    Google Scholar 
    16.Staples, T. L., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biogeogr. 28, 1417–1429 (2019).
    Google Scholar 
    17.Cheesman, A. W., Preece, N. D., van Oosterzee, P., Erskine, P. D. & Cernusak, L. A. The role of topography and plant functional traits in determining tropical reforestation success. J. Appl. Ecol. 55, 1029–1039 (2018).CAS 

    Google Scholar 
    18.Ma, L. et al. Species identity and composition effects on community productivity in a subtropical forest. Basic Appl. Ecol. 55, 87–97 (2021).
    Google Scholar 
    19.Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017)..20.Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    21.Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bruelheide, H. et al. Global trait— environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    24.van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Google Scholar 
    26.Chiang, J. M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Turnbull, L., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    31.Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).
    Google Scholar 
    32.Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).
    Google Scholar 
    33.Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    34.Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    35.Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    36.Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).
    Google Scholar 
    37.Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V. & Sterck, F. J. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 376, 321–332 (2016).
    Google Scholar 
    38.Toïgo, M. et al. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 106, 1073–1082 (2018).
    Google Scholar 
    39.Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).
    Google Scholar 
    40.Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).41.Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).
    Google Scholar 
    42.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 303, 35–45 (2013).
    Google Scholar 
    47.Mayoral, C., van Breugel, M., Cerezo, A. & Hall, J. S. Survival and growth of five Neotropical timber species in monocultures and mixtures. For. Ecol. Manag. 403, 1–11 (2017).
    Google Scholar 
    48.Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    49.Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    50.Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).
    Google Scholar 
    51.Ruiz-Jaen, M. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    52.Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    53.Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    54.Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).
    Google Scholar 
    55.Piston, N. et al. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).
    Google Scholar 
    56.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    57.O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686 (2017).
    Google Scholar 
    58.Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).59.Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).
    Google Scholar 
    60.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    61.Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).
    Google Scholar 
    62.Fiedler, S., Perring, M. P. & Tietjen, B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol. Evol. 8, 6369–6380 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    63.Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
    Google Scholar 
    64.Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).
    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).66.Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211 (2014).67.Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J. Ecol. 103, 1667–1679 (2015).CAS 

    Google Scholar 
    68.Krober, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).70.Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110 (2017).
    Google Scholar  More

  • in

    Associations between carabid beetles and fungi in the light of 200 years of published literature

    One of the striking features of the Anthropocene is a rapid degradation of natural ecosystems1,2, and an alarming decline of many species, which ultimately may lead to extinctions3,4,5. Whereas conserving ecosystem functions is increasingly recognised as a vital need for humans6,7,8, the interspecific interactions underpinning these functions are poorly understood9,10. However, conserving such interactions can be particularly important when taxa providing high-value ecosystem services are involved10,11.Ground beetles (Coleoptera: Carabidae) have been long known for their benefits in agroecosystems12,13. They play an important role in suppressing pests14, but several carabid species also consume seeds of herbaceous plants, making them a valuable asset for weed control as well15.Fungi are also of vital significance in most of the world’s terrestrial ecosystems16. Mycorrhizal fungi improve nutrient uptake by a large range of plant species through intimate and specialised associations17, other fungi play a crucial role in decomposition18, and yet others are pathogens of both crops and pests in agroecosystems19. Fungal parasitism is one of the crucial agents of evolution20.Fungi and carabids often co-occur, and they can potentially interact in many ways. The soil environment carabids often inhabit is a reservoir of fungal propagules where the beetles can feed on spores, hyphae or fruiting bodies21. They may also be responsible for dispersal of spores of certain fungi22. Several parasitic or entomopathogenic fungi are in an obligatory relationship with their beetle hosts23, therefore, the population decline of a ground beetle species could potentially lead to overlooked extinction cascades24. However, our knowledge of the fungal-carabid interactions is still limited concerning the frequency of these interactions and on how their exact nature affect the parties involved. Indeed, we do not even have a catalogue of the carabid-fungi interactions, and they have not yet been organized into a comprehensive database. Such a database would be of particular importance from an integrated pest management point of view because both fungi and carabids can deliver ecosystem services, but how their interactions, and potential synergies or antagonisms, influence the delivery of these services is poorly understood.In order to have a detailed overview of the interactions between Carabidae and the fungal kingdom, we collated a database containing previously reported associations between these taxa. Carabid and fungal species involved in the interaction, the type of the interaction (e. g. parasitic, pathogenic, mutualistic, or trophic interactions), the location (country) the interaction was reported from, and the publication source combined with detailed notes to each questionable entry comprised one record. Publications available in printed formats only were either digitized and data were extracted using semi-automatic text-mining processes, or they were manually screened. We aimed at possible completeness, using a wide range of databases and search engines and several languages to cover most of the published literature.Both ground beetle and fungal names were validated and their higher taxonomical classifications were also extracted. When it was possible, historical localities were converted to their current country names. The full bibliographical details were also stored in the database.The database covers a time-period from 1793 to 2020, spans over all geographic sub-regions defined by the United Nations (“UNSD — Methodology”, unstats.un.org. Retrieved 2020–10–11) with recorded associations from 129 countries. Our effort yielded 3,378 unique associations in 5,564 records between 1,776 carabid and 676 fungal species. Although rapidly developing molecular methods have largely facilitated the mapping of complex interaction networks in ecological studies25,26,27, due to the historic nature of our dataset, most of the records rely on traditional taxonomical identification. Yet, 16 records were based purely on metabarcoding studies; comments linked to these associations clearly identify them.Whilst we found relatively few pathogenic interactions, a great diversity between ectoparasitic Laboulbeniales fungi and carabids was revealed (Fig. 1). Soft bodied, cave-dwelling members of the Trechinae subfamily were particularly prone to these parasitic infections. Little information was available on mutualistic relationships but the presence of Yarrowia yeast reported from the gut of several carabid species28 is probably beneficial for both parties. The data show two distinct peaks in publications registering new associations, in the early 19th century and in the late 20th century (Fig. 2a) but the steady increase in the cumulative number of associations (Fig. 2b) suggests that further research is required to fully resolve this association network. Although we believe that most of the data published so far were collected, data submission will remain open to researchers wishing to contribute.Fig. 1The number of unique associations between Carabidae subfamilies and fungal classes. Side bar plots show the number of species in each subfamily/class recorded in our dataset.Full size imageFig. 2The number of recorded unique associations over time. Changes in the number of new records (a) and in the cumulative number (b) per year. Dark green lines indicate smoothed trends.Full size image More

  • in

    Responses of turkey vultures to unmanned aircraft systems vary by platform

    1.Christie, K. S., Gilbert, S. L., Brown, C. L., Hatfield, M. & Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 14, 241–251 (2016).Article 

    Google Scholar 
    2.Anderson, K. & Gaston, K. J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11, 138–146 (2013).Article 

    Google Scholar 
    3.Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Syst. 3, 137–155 (2015).Article 

    Google Scholar 
    4.Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 4, 1015–1020 (2003).
    Google Scholar 
    5.Wiegmann, D. A. & Taneja, N. Analysis of injuries among pilots involved in fatal general aviation airplane accidents. Accid. Anal. Prev. 35, 571–577 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: first experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 22574. https://doi.org/10.1038/srep22574 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Egan, C. C., Blackwell, B. F., Fernández-Juricic, E. & Klug, P. E. Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?. The Condor 122, 1–15. https://doi.org/10.1093/condor/duaa014 (2020).Article 

    Google Scholar 
    9.Hahn, N. et al. Unmanned aerial vehicles mitigate human–elephant conflict on the borders of Tanzanian Parks: A case study. Oryx 51, 513–516 (2017).Article 

    Google Scholar 
    10.FAA. Protocol for the Conduct and Review of Wildlife Hazard Site Visits, Wildlife Hazard Assessments, and Wildlife Hazard Management Plan. (2018).11.Dolbeer, R. A., Begier, M. J., Miller, P. R., Weller, J. R. & Anderson, A. L. Wildlife strikes to civil aircraft in the United States 1990–2019. 124 (Federal Aviation Administration, Washington, D.C., USA, 2021).12.Bivings, A. in Bird Strike Committee Europe. 481–487.13.Wandrie, L. J., Klug, P. E. & Clark, M. E. Evaluation of two unmanned aircraft systems as tools for protecting crops from blackbird damage. Crop Prot. 117, 15–19 (2019).Article 

    Google Scholar 
    14.Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    15.Cooper, W. E., Samia, D. S. & Blumstein, D. T. Chapter five-FEAR, spontaneity, and artifact in economic escape theory: A review and prospectus. Adv. Study Behav. 47, 147–179 (2015).Article 

    Google Scholar 
    16.Lima, S. L., Blackwell, B. F., DeVault, T. L. & Fernandez-Juricic, E. Animal reactions to oncoming vehicles: A conceptual review. Biol. Rev. Camb. Philos. Soc. 90, 60–76. https://doi.org/10.1111/brv.12093 (2015).Article 
    PubMed 

    Google Scholar 
    17.Bernhardt, G. E., Blackwell, B. F., DeVault, T. L. & Kutschbach-Brohl, L. Fatal injuries to birds from collisions with aircraft reveal anti-predator behaviours. Ibis https://doi.org/10.1111/j.1474-919X.2010.01043.x (2010).Article 

    Google Scholar 
    18.McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 4, e1831 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, e0178448 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Tinbergen, N. Social releasers and the experimental method required for their study. Wilson Bull., 6–51 (1948).21.Kirk, D. A. & Mossman, M. J. in Bird of the World (ed Cornell Lab of Ornithology) (Poole, A.F.,Gill, F.B., Ithaca, NY, USA, 2020).22.FAA. Wildlife Strike Database, wildlife.faa.gov (2020).23.DeVault, T. L. et al. Estimating interspecific economic risk of bird strikes with aircraft. Wildl. Soc. Bull. 42, 94–101 (2018).Article 

    Google Scholar 
    24.DeVault, T. L., Blackwell, B. F., Seamans, T. W. & Belant, J. L. Identification of off airport interspecific avian hazards to aircraft. J. Wildl. Manag. 80, 746–752 (2016).Article 

    Google Scholar 
    25.Kluever, B. M., Pfeiffer, M. B., Barras, S. C., Dunlap, B. G. & Humberg, L. A. Black vulture conflict and management in the United States: Damage trends, management overview, and research needs. Hum. Wildl. Interact. 14, 8 (2020).
    Google Scholar 
    26.Walters, J. R. Anti-predatory behavior of lapwings: field evidence of discriminative abilities. Wilson Bull., 49–70 (1990).27.Septon, G. Peregrine falcon strikes turkey vulture. Passenger Pigeon 53, 192 (1991).
    Google Scholar 
    28.Coleman, J. S. & Fraser, J. D. Predation on black and Turkey vultures. Wilson Bull. 98, 600–601 (1986).
    Google Scholar 
    29.Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 9, 2142. https://doi.org/10.1038/s41598-019-38610-x (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).Article 

    Google Scholar 
    32.Belant, J. L., Seamans, T. W., Gabrey, S. W. & Dolbeer, R. A. Abundance of gulls and other birds at landfills in northern Ohio. Am. Midl. Nat. 134, 30–40 (1995).Article 

    Google Scholar 
    33.Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).Article 

    Google Scholar 
    34.DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernández-Juricic, E. Effects of vehicle speed on flight initiation by turkey vultures: implications for bird-vehicle collisions. PLoS ONE 9, e87944 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Doppler, M. S., Blackwell, B. F., DeVault, T. L. & Fernández-Juricic, E. Cowbird responses to aircraft with lights tuned to their eyes: Implications for bird–aircraft collisions. The Condor 117, 165–177 (2015).Article 

    Google Scholar 
    36.Blackwell, B. F., Fernandez-Juricic, E., Seamans, T. W. & Dolan, T. Avian visual system configuration and behavioural response to object approach. Anim. Behav. 77, 673–684 (2009).Article 

    Google Scholar 
    37.DeVault, T. L., Reinhart, B. D., Brisbin, I. L., Rhodes, O. E. & Bechard. Flight Behavior of Black and Turkey Vultures: Implications for reducing bird–aircraft collisions. J. Wildl. Manag. 69, 601–608. https://doi.org/10.2193/0022-541X(2005)069[0601:FBOBAT]2.0.CO;2 (2005).38.Runyan, A. M. & Blumstein, D. T. Do individual differences influence flight initiation distance?. J. Wildl. Manag. 68, 1124–1129 (2004).Article 

    Google Scholar 
    39.Rebolo-Ifrán, N., Grilli, M. G. & Lambertucci, S. A. Drones as a threat to wildlife: YouTube complements science in providing evidence about their effect. Environ. Conserv. 46, 205–210 (2019).Article 

    Google Scholar 
    40.Fernández-Juricic, E., Deisher, M., Stark, A. C. & Randolet, J. Predator detection is limited in microhabitats with high light intensity: An experiment with Brown-headed Cowbirds. Ethology 118, 341–350 (2012).Article 

    Google Scholar 
    41.Koch, D. D. Glare and contrast sensitivity testing in cataract patients. J. Cataract Refract. Surg. 15, 158–164 (1989).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. Royal Soc. B. 265, 351–358 (1998).CAS 
    Article 

    Google Scholar 
    43.Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Hill, G. E., Hill, G. E., McGraw, K. J. & Kevin, J. Bird coloration: mechanisms and measurements. Vol. 1 (Harvard University Press, 2006).45.Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M. & Shawkey, M. D. pavo: Asn R package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4, 906–913 (2013).
    Google Scholar 
    46.Lakens, D. Sample Size Justification. (2021).47.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).Article 

    Google Scholar 
    49.Garamszegi, L. Z. A simple statistical guide for the analysis of behaviour when data are constrained due to practical or ethical reasons. Anim. Behav. 120, 223–234 (2016).Article 

    Google Scholar 
    50.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer Science & Business Media, 2002).51.Nauman, L. E. Spatial distribution in a turkey vulture roost, The Ohio State University, (1965).52.Bertram, B. C. Living in groups: predators and prey. Behavioural ecology: an evolutionary approach, 221–248 (1978).53.Blackwell, B. F. et al. Social information affects Canada goose alert and escape responses to vehicle approach: Implications for animal–vehicle collisions. PeerJ 7, e8164. https://doi.org/10.7717/peerj.8164 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Blackwell, B. F., Seamans, T. W., Fernández-Juricic, E., Devault, T. L. & Outward, R. J. Avian responses to aircraft in an airport environment. J. Wildl. Manag. 83, 893–901 (2019).Article 

    Google Scholar 
    55.Beauchamp, G. Social predation: how group living benefits predators and prey. (Elsevier, 2013).56.Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. The R Journal 5, 39–52 (2013).Article 

    Google Scholar 
    57.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823(2014).58.DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernandez-Juricic, E. Speed kills: Ineffective avian escape responses to oncoming vehicles. Proc. R. Soc. B. 282, 20142188. https://doi.org/10.1098/rspb.2014.2188 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.DeVault, T. L. et al. Can experience reduce collisions between birds and vehicles?. J. Zool. 301, 17–22. https://doi.org/10.1111/jzo.12385 (2016).Article 

    Google Scholar 
    60.Rhoades, E. & Blumstein, D. T. Predicted fitness consequences of threat-sensitive hiding behavior. Behav. Ecol. 18, 937–943 (2007).Article 

    Google Scholar 
    61.Cooper Jr, W. E. Factors affecting risk and cost of escape by the broad-headed skink (Eumeces laticeps): predator speed, directness of approach, and female presence. Herpetologica, 464–474 (1997).62.Cooper, W. E. Jr., Hawlena, D. & Pérez-Mellado, V. Interactive effect of starting distance and approach speed on escape behavior challenges theory. Behav. Ecol. 20, 542–546 (2009).Article 

    Google Scholar 
    63.Fernández-Juricic, E., Jimenez, M. D. & Lucas, E. Alert distance as an alternative measure of bird tolerance to human disturbance: Implications for park design. Environ. Conserv. 28, 263–269. https://doi.org/10.1017/S0376892901000273 (2001).Article 

    Google Scholar 
    64.Dill, L. M. The escape response of the zebra danio (Brachydanio rerio) I. The stimulus for escape. Anim. Behav. 22, 711–722 (1974).Article 

    Google Scholar 
    65.Sun, H. & Frost, B. J. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat. Neurosci. 1, 296–303 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Pfeiffer, M. B., Iglay, R. B., Seamans, T. W., Blackwell, B. F. & DeVault, T. L. Deciphering interactions between white-tailed deer and approaching vehicles. Transp. Res. D Transp. Environ. 79, 102251. https://doi.org/10.1016/j.trd.2020.102251 (2020).Article 

    Google Scholar 
    67.Collins, S. A., Giffin, G. J. & Strong, W. T. Using flight initiation distance to evaluate responses of colonial-nesting Great Egrets to the approach of an unmanned aerial vehicle. J. Field. Ornithol. 90, 382–390 (2019).Article 

    Google Scholar 
    68.Kane, S. A., Fulton, A. H. & Rosenthal, L. J. When hawks attack: Animal-borne video studies of goshawk pursuit and prey-evasion strategies. J. Exp. Biol. 218, 212–222 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6 (2002).70.Lambertucci, S. A., Shepard, E. L. & Wilson, R. P. Human-wildlife conflicts in a crowded airspace. Science 348, 502–504 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Ballejo, F., Plaza, P., Speziale, K. L., Lambertucci, A. P. & Lambertucci, S. A. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas. Sci. Total Environ. 755, 142421. https://doi.org/10.1016/j.scitotenv.2020.142421 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Conover, M. R. Resolving human-wildlife conflicts: the science of wildlife damage management. (CRC press, 2001).73.Pfeiffer, M. B., Blackwell, B. F. & DeVault, T. L. Collective effect of landfills and landscape composition on bird–aircraft collisions. Hum.–Wildl. Interact. 14, 43–54 (2020).74.Dolbeer, R. A. Aerodrome bird hazard prevention: case study at John F. Kennedy International Airport. (1999).75.Blackwell, B. F. et al. Exploiting avian vision with aircraft lighting to reduce bird strikes. J. Appl. Ecol. 49, 758–766 (2012).Article 

    Google Scholar 
    76.Goller, B., Blackwell, B. F., DeVault, T. L., Baumhardt, P. E. & Fernández-Juricic, E. Assessing bird avoidance of high-contrast lights using a choice test approach: Implications for reducing human-induced avian mortality. PeerJ 6, e5404 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Analysing the distance decay of community similarity in river networks using Bayesian methods

    1.Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).Article 

    Google Scholar 
    2.Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).Article 

    Google Scholar 
    3.Whittaker, R. H. Communities and Ecosystems (MacMillan Publishing, 1975).
    Google Scholar 
    4.Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).Article 

    Google Scholar 
    5.Pulliam, H. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    6.Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Linn. Soc. 42, 3–16 (1991).Article 

    Google Scholar 
    7.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).Book 

    Google Scholar 
    8.Tuomisto, H. & Ruokolainen, K. Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87, 2697–2708 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Astorga, A. et al. Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules?: Decay of similarity in freshwater communities. Glob. Ecol. Biogeogr. 21, 365–375 (2012).Article 

    Google Scholar 
    10.Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    11.Nekola, J. C. & Brown, J. H. The wealth of species: Ecological communities, complex systems and the legacy of Frank Preston. Ecol. Lett. 10, 188–196 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Hubbell, S. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, 2001).
    Google Scholar 
    13.Fodelianakis, S., Valenzuela-Cuevas, A., Barozzi, A. & Daffonchio, D. Direct quantification of ecological drift at the population level in synthetic bacterial communities. ISME J. https://doi.org/10.1038/s41396-020-00754-4 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: The continuum hypothesis: Reconciling niche and neutrality. Ecol. Lett. 9, 399–409 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Legendre, P., Borcard, D. & Peres-Neto, P. R. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435–450 (2005).Article 

    Google Scholar 
    16.Wilson, K. A., Cabeza, M. & Klein, C. J. Fundamental concepts of spatial conservation prioritization. In Spatial Conservation Prioritization: Quantitative Methods & Computational Tools (eds Moilanen, A. et al.) 16–27 (Oxford University Press, 2009).
    Google Scholar 
    17.Morlon, H. et al. A general framework for the distance-decay of similarity in ecological communities. Ecol. Lett. 11, 904–917 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Tuomisto, H. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241–244 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gómez-Rodríguez, C. & Baselga, A. Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography 41, 1825–1834 (2018).Article 

    Google Scholar 
    20.Stella, J. C., Rodríguez-González, P. M., Dufour, S. & Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 719(1), 291–315 (2013).Article 

    Google Scholar 
    21.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    22.Rouquette, J. R. et al. Species turnover and geographic distance in an urban river network. Divers. Distrib. 19, 1429–1439 (2013).Article 

    Google Scholar 
    23.Kuglerová, L., Jansson, R., Sponseller, R. A., Laudon, H. & Malm-Renöfält, B. Local and regional processes determine plant species richness in a river-network metacommunity. Ecology 96, 381–391 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Zhang, Z., Gao, J. & Cai, Y. The effects of environmental factors and geographic distance on species turnover in an agriculturally dominated river network. Environ. Monit. Assess. 191, 201 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Jost, L., Chao, A. & Chazdon, R. Compositional similarity and beta diversity. In Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. & McGill, B.) 66–84 (Oxford University Press, 2011).
    Google Scholar 
    26.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).Article 

    Google Scholar 
    27.Miranda, P., Coelho, F., Tomé, A. & Valente, M. Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures—SIAM Project (Gradiva, 2002).
    Google Scholar 
    28.CIS-WFD. River and lakes—Typology, reference conditions and classification systems, Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance document no 10. 94 (2003).29.INAG. Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a DQA—Protocolo de amostragem e análise para os macrófitos (2008).30.Agência Portuguesa do Ambiente. Plano de Gestão da Região Hidrográfica do Tejo, Relatório técnico, Versão Extensa Parte 2—Caracterização e Diagnóstico da Região Hidrográfica. (2012).31.Oksanen, J. et al. vegan: Community Ecology Package—Version 2.7-7. https://CRAN.R-project.org/package=vegan (2021).32.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).33.Peterson, E. E., Theobald, D. M. & Ver Hoef, J. M. Geostatistical modelling on stream networks: Developing valid covariance matrices based on hydrologic distance and stream flow. Freshw. Biol. 52, 267–279 (2007).Article 

    Google Scholar 
    34.Csardi, G. & Nepusz, T. The Igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2005).
    Google Scholar 
    35.Lu, B., Sun, H., Harris, P., Xu, M. & Charlton, M. Shp2graph: Tools to convert a spatial network into an Igraph graph in R. ISPRS Int. J. Geo-Inf. 7, 293 (2018).Article 

    Google Scholar 
    36.Vogt, J. & Foisneau, S. CCM River and Catchment Database—Version 2.0 Analysis Tools. (2007).37.Monteiro-Henriques, T. et al. Bioclimatological mapping tackling uncertainty propagation: Application to mainland Portugal. Int. J. Climatol. 36, 400–411 (2016).Article 

    Google Scholar 
    38.Ward, J. V. & Stanford, J. A. The serial discontinuity concept: Extending the model to floodplain rivers. Regul. Rivers Res. Manag. 10, 159–168 (1995).Article 

    Google Scholar 
    39.Dias, F. S., Betancourt, M., Rodríguez-González, P. M. & Borda-de-Água, L. A Bayesian Approach for Analysing Pairwise Comparisons: A Case Study Using Species Composition Similarity (2021) https://doi.org/10.32942/osf.io/sn5jr.40.Stan Development Team. Stan Functions Reference Version 2.25. (2020).41.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2020).Book 

    Google Scholar 
    42.Rodríguez-González, P. M., Ferreira, M. T., Albuquerque, A., Santo, D. E. & Rego, P. R. Spatial variation of wetland woods in the latitudinal transition to arid regions: A multiscale approach. J. Biogeogr. 35, 1498–1511 (2008).Article 

    Google Scholar 
    43.Stan Development Team. RStan: the R interface to Stan Version 2.21. https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started (2020).44.Betancourt, M. Hierarchical Modeling (2020).45.Muneepeerakul, R., Weitz, J. S., Levin, S. A., Rinaldo, A. & Rodriguez-Iturbe, I. A neutral metapopulation model of biodiversity in river networks. J. Theor. Biol. 245, 351–363 (2007).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    46.Thompson, R. & Townsend, C. A truce with neutral theory: Local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates: Neutral theory and local determinism. J. Anim. Ecol. 75, 476–484 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Steinitz, O., Heller, J., Tsoar, A., Rotem, D. & Kadmon, R. Environment, dispersal and patterns of species similarity. J. Biogeogr. 33, 1044–1054 (2006).Article 

    Google Scholar 
    48.Nilsson, C., Brown, R. L., Jansson, R. & Merritt, D. M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. Camb. Philos. Soc. 85, 837–858 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    49.Gelmi-Candusso, T. A. et al. Estimating seed dispersal distance: A comparison of methods using animal movement and plant genetic data on two primate-dispersed Neotropical plant species. Ecol. Evol. 9, 8965–8977 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rodríguez-González, P. M. et al. A spatial stream-network approach assists in managing the remnant genetic diversity of riparian forests. Sci. Rep. 9, 6741 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Ward, J. V., Tockner, K., Arscott, D. B. & Claret, C. Riverine landscape diversity. Freshw. Biol. 47, 517–539 (2002).Article 

    Google Scholar 
    52.Fraaije, R. G. A. et al. Spatial patterns of water-dispersed seed deposition along stream riparian gradients. PLoS ONE 12, e0185247 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Bendix, J. Flood disturbance and the distribution of riparian species diversity. Geogr. Rev. 87, 468–483 (1997).Article 

    Google Scholar 
    54.Kuglerová, L., Dynesius, M., Laudon, H. & Jansson, R. Relationships between plant assemblages and water flow across a boreal forest landscape: A comparison of liverworts, mosses, and vascular plants. Ecosystems 19, 170–184 (2016).Article 
    CAS 

    Google Scholar 
    55.Wubs, E. R. J. et al. Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshw. Biol. 61, 580–595 (2016).CAS 
    Article 

    Google Scholar 
    56.Carrera, M., Gyakum, J. & Lin, C. Observational study of wind channeling within the St. Lawrence river valley. J. Appl. Meteorol. Climatol. 48, 2341–2361 (2009).ADS 
    Article 

    Google Scholar 
    57.Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B Biol. Sci. 276, 3081–3087 (2009).Article 

    Google Scholar 
    58.Soomers, H. et al. Wind and water dispersal of wetland plants across fragmented landscapes. Ecosystems 16, 434–451 (2013).Article 

    Google Scholar 
    59.Jones, K. N. Analysis of pollinator foraging: Tests for non-random behaviour. Funct. Ecol. 11, 255–259 (1997).Article 

    Google Scholar 
    60.Ferreira, M. T. & Aguiar, F. Riparian and aquatic vegetation in Mediterranean-type streams (western Iberia). Limnetica 25, 411–424 (2005).
    Google Scholar 
    61.Petts, G. E. & Amoros, C. Fluvial hydrosystems: a management perspective. In The Fluvial Hydrosystems (eds Petts, G. E. & Amoros, C.) 263–278 (Springer Netherlands, 1996) https://doi.org/10.1007/978-94-009-1491-9_12.Chapter 

    Google Scholar 
    62.Benda, L. et al. The network dynamics hypothesis: How channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).Article 

    Google Scholar 
    63.QGIS Development Team. QGIS Geographic Information System-Version 3.20.3. (2021). More