More stories

  • in

    An injured pachypleurosaur (Diapsida: Sauropterygia) from the Middle Triassic Luoping Biota indicating predation pressure in the Mesozoic

    Geological backgroundThe Luoping Biota from quarries near Daaozi Village, Luoping County, Yunnan Province, China, includes diverse arthropods, conodonts, foraminifers, molluscs, echinoderms, brachiopods, fishes, marine reptiles, plants, and trace fossils8,10,11,12,13. The fossil beds occur in Member II of the Guanling Formation which in the Daaozi section comprises approximately 16 m of dark-coloured micritic limestone, thin to moderately thickly bedded, indicating a semi-enclosed intraplatform setting10,11. The co-occurring conodont assemblages, primarily consisting of Cratognathodus sp. and Nicoraella kockeli, indicate that the Luoping Biota belongs to the Pelsonian Substage of the middle Anisian, and the U–Pb age, which is 246.6 ± 1.4 Ma, of the volcanic tuff at the bottom of Member I confirms this age10,14.Systematic palaeontologySuperorder Sauropterygia Owen, 186015.Order Eosauropterygia Rieppel, 199416.Family Incertae Sedis.Genus Diandongosaurus Shang, Wu & Li, 2011.Type speciesDiandongosaurus acutidentatus Shang, Wu & Li, 2011.Revised diagnosisSmall-to-medium-sized eosauropterygian with the following unique combination of characters: premaxilla with long, fang-shaped teeth; maxilla with single enlarged fang alongside smaller teeth; parietal foramen about level with anterior margin of supratemporal fenestra; supratemporal smaller than orbit; interorbital bridge broad; frontal excluded from orbit; posterolateral processes of frontal extending over anterior margin of supratemporal fenestra; postorbital excluded from infratemporal fenestra by contact between jugal and squamosal; ectopterygoid present; vertebral column consisting of about 38 presacral, 3 sacral, and more than 30 caudal vertebrae; anterior caudal ribs elongate without tapering distal end; clavicle with distinct anterior processes laterally; entepicondylar foramen absent; acetabular process of pubis strongly offset from the main body.Diandongosaurus cf. acutidentatus.MaterialWIGM SPC V 1105, a nearly complete skeleton exposed ventrally (Fig. 1).Figure 1Full skeleton of WIGM SPC V 1105, viewed from above. Note the missing left foot. Scale bar = 10 cm.Full size imageLocality and horizonDaaozi Village, Luoping County, Yunnan Province, China; Member II of the Guanling Formation, Anisian, Middle Triassic.DescriptionWIGM SPC V 1105 is a large pachypleurosaur with a length of 88.6 cm from the tip of the snout to the end of the caudal vertebral column (Fig. 1). The specimen is exposed in ventral view, with the cranium exposed both ventrally and dorsally. In the holotype, the cranium comprises 7.8% of the total length, neck 22.9%, trunk 32.4%, and tail 36.9% (Table 1).Table 1 Selected measurements (in mm) of WIGM SPC V 1105.Full size tableSkullThe skull of WIGM SPC V 1105 is exposed in both dorsal and ventral views and is dorsoventrally compressed (Fig. 2). The external naris and the supratemporal fenestra are oval-shaped, while the orbit is nearly circular.Figure 2Photograph and interpretative drawing of the skull of WIGM SPC V 1105. (a, b) In dorsal view; (c, d) In ventral view. ang. Angular, at.c atlantal centrum, at.nar atlantal neural arch, ax.c axial centrum, ax.nar axial neural arch, bo basioccipital, d dentary, ec ectopterygoid, eo-op exoccipital-opisthotic, f frontal, hd hyoid, j jugal, m maxilla, n nasal, p parietal, pat proatlas, pl palatine, pm premaxilla, pob postorbital, pof postfrontal, prf prefrontal, pt pterygoid, q quadrate, qrp quadrate ramus of pterygoid, rap retroarticular process, sang surangular, so supraoccipital, sp splenial, sq squamosal, vo vomer. Scale divisions in (a) = 1 mm. Scale bar in (b–d) = 2 cm. The figure is generated using CorelDRAW X7 (https://www.coreldraw.com/en/pages/coreldraw-x7/).Full size imageIn dorsal view (Fig. 2a,b), the premaxillary portion of the rostrum protrudes, defined by snout constriction at the anterior maxilla, different from the reported specimens of D. acutidentatus17,18. The premaxilla forms the anterior and the medial margins of the external naris. The nasal process extends and narrows posteriorly alongside the nasal posteromedially, reaching the anterior margin of the orbit, and contacting the anterior frontal with a cuspidal border line. The premaxilla contacts the maxilla lateral to the external naris.The maxilla is elongate, with a laterally broad anterior portion and tapering posterior process. Its anteromedial margin forms the posterolateral border of the external naris and is overlapped by the posterior premaxilla laterally. The anterior snout constriction is mostly defined by strong medial curvature of the anterolateral maxilla margin. Medially the maxilla contacts the nasal immediately posterior to the external naris, and the prefrontal posterior to that; the nasal contact is likely the longer. Posteriorly, the maxilla borders the anterolateral margin of the orbit. The posterior process of the maxilla contacts the jugal lateral to the orbit. The nasals are broken. They are separated medially by the premaxilla and make a small contribution to the posterior external naris. The external naris is subcircular.The prefrontal is an arch-shaped bone, fused with the lacrimal. Its dorsal portion expands posteriorly, with its ventral portion forming the anterodorsal margin of the orbit. Posteriorly, the prefrontal overlaps the postfrontal obliquely at the midpoint of the dorsal border of the orbit. The postfrontal is a small trapezoid-shaped bone that forms the posterodorsal margin of the orbit, and is more extensive than in Dianopachysaurus dingi19. Posteriorly, it meets the postorbital anterior to the supratemporal fenestra and has a small medial contact with the parietal, separating the postfrontal from the supratemporal fenestra. Both the prefrontal and postfrontal contact the frontal dorsally, preventing it from entering the orbit.The frontals are fused medially into a butterfly shape in dorsal view, expanding obliquely in four directions. Anteriorly the contacts with the nasals are uncertain but were likely to have been broad. The median contact with the premaxilla is narrow and irregular. The frontal meets the prefrontal and the postfrontal laterally along the arc of the dorsal orbital margin, preventing it from entering the orbit, as in Diandongsosaurus acutidentatus17, but unlike both Keichousaurus hui and Dianopachysaurus dingi19,20. The frontal does not enter the supratemporal fenestra either, being narrowly excluded by the parietal and the postorbital as in D. acutidentatus17. In Dianopachysaurus dingi19, contact between the postfrontal and parietal excludes the frontal from the supratemporal fenestra. Posteriorly, the frontal expands slightly, laterally towards the supratemporal fenestrae, and diverges into a narrow fork around the anterior processes of the parietals, separating them from the postfrontal.The parietals are partly fused, showing a suture only anterior to the pineal foramen. The anterior processes insert between the posterior frontal margins with an arch-shaped border. Laterally, the parietal extends a short process to meet the postorbital in a narrow contact at the anterior margin of the supratemporal fenestra, posterior to the postfrontal. This differs from K. hui and Dianopachysaurus dingi19,20, in which the parietal contacts the postfrontal anterolaterally. The bone forms the medial margin of the supratemporal fenestra. The narrow posterolateral processes are inserted by the dorsal processes of the squamosal. The pineal foramen is sub-circular and aligns with the anterior margin of the supratemporal fenestra, more anterior than in K. hui20 and not elongate as in Dianopachysaurus dingi19.The postorbital is roughly triradiate, developing three processes: anteroventral, anteromedial, and posterior. The anteroventral process outlines the posterior border of the orbital, overlapped by the jugal laterally. The narrow anteromedial process extends dorsally, forming the anterior margin of the supratemporal fenestra, and meeting the postfrontal and the parietal anterior to the supratemporal fenestra, unlike in the reported specimens of D. acutidentatus, K. hui, and Dianopachysaurus dingi17,19,20, and more like nothosaurs21,22. It is broadly overlapped by the postfrontal. The posterior process is triangular and extends nearly to the posterolateral margin of the supratemporal fenestra, forming the border of most of its lateral portion. Posteriorly, the tip of the process inserts into the squamosal.The jugal is boomerang-shaped, forming most of the lateral border of the orbit. It contacts the maxilla at the anteroventral margin of the orbital, dorsally overlapping it. Posteriorly, the jugal forms the anterior border of the infratemporal fenestra. Its posterior process is anteroposteriorly broad and extends dorsally, overlapping the postorbital at the posteroventral margin of the orbital. As in D. acutidentatus17, the posterior process of the jugal has a small contact dorsally with the anterior process of the squamosal.The squamosal is a large bone expanded in four directions. The anterior process forms most of the upper temporal bar, extending anterior to the level of the anterior margin of the supratemporal fenestra and partially overlapped medially by the postorbital, except where the squamosal holds the posteriormost point of the postorbital. Anteriormost on the squamosal, there is a small lateral contact with the posterior process of the jugal. The medial process of the squamosal forms almost the whole posterior margin of the supratemporal fenestra, inserting into the posterolateral process of the parietal medially. The posterolateral descending process is robust and expands ventrally, forming a sheet at the posterior margin of the cranium and contacting the lateral portion of the quadrate on its posteromedial face. However, the posterior process, the shortest of these four processes, is not as obvious as in the reported specimens of Dianopachysaurus. acutidentatus or K. hui17,20. The supratemporal fenestra is rounded and smaller than the orbit, with a straighter lateral margin. It is less elongate than in Dianopachysaurus dingi and K. hui19,20.The quadratojugal is not exposed. The supraoccipital is a rhomboid bone inserted ventral to the parietal but is substantially broken; it forms the dorsal margin of the foramen magnum. The exoccipital-opisthotic forms the lateral margin of the foramen magnum, while the basioccipital forms the ventral; these elements are also broken.In ventral view (Fig. 2c,d), the internal choana is roughly circular. The vomer is a long bone with a bifurcating posterior portion along the midline of the palate and forms the medial margin of the internal choana. Anteriorly, the bone meets the palatal portion of the premaxilla and contacts the maxilla anterolaterally. Posteriorly, the posteromedial processes of the two vomers are separated by the anterior process of the pterygoid and the posterior contact with the palatine is small, as in D. acutidentatus18,22 but unlike in K. hui20.The palatine is a strap-like bone. It forms the posterolateral margin of the internal choanae. Anterolaterally, it contacts the maxilla, and meets the vomer on its medial side. Posteromedially, there is a highly irregular, oblique suture line between the palatine and the pterygoid.The pterygoid is one of the largest bones of the skull, forming most of the palate posteriorly. The two pterygoids are fused along the midline leaving a straight groove anteriorly that becomes more irregular posteriorly. Unlike D. acutidentatus, it has neither central opening, nor posterior vacuity18. The tapering anterior process of the pterygoid inserts between the two vomers, whereas it is overlapped in K. hui20, and anterolaterally the pterygoid has a large oblique contact with the palatine. Laterally, the transverse process of the pterygoid expands ventral and posterior to the posterior margin of the ectopterygoid. The pterygoid forms almost the entirety of the subtemporal fenestra margin anteriorly, medially, and posteriorly. The elongate quadrate ramus of the pterygoid extends posterolaterally to the posterior margin of the quadrate, making a long contact with the pterygoid ramus of the quadrate.The ectopterygoid is roughly a small square bone, suturing to the transverse process of the pterygoid. It is not as prominent as in nothosaurs (e.g. Nothosaurus21, Lariosaurus22), but is relatively larger than in the reported specimens of D. acutidentatus18,23, whereas the presence of an ectopterygoid is uncertain in K. hui and Dianopachysaurus dingi19,20. The ectopterygoid contacts the palatine anteriorly, excluding the palatine from the subtemporal fenestra. Posteriorly it makes a small contribution to the subtemporal fenestra margin lateral to the transverse process of the pterygoid. The quadrate is exposed partly, contacting the quadrate ramus of the pterygoid with its pterygoid ramus. Two rod-like hyoids are ossified and well preserved, lying beneath the pterygoid. They are elongate and slightly expanded at each end.MandibleThe mandible is exposed mainly in ventral view and partly in dorsal (Fig. 2). The dentary is a long bone, occupying over one-half of the ramus as a counterpart to the premaxilla, with a laterally broader symphyseal portion than in D. acutidentatus or K. hui18,20,23. The surangular is partly exposed in dorsal view along the dorsal margin of the mandible, extending ventral to the squamosal. The angular is a long strap-shaped bone that meets the dentary anteriorly and the retroarticular process posteriorly. The articular is sutured dorsal to the angular, with a distinct retroarticular process that extends posteriorly with a tapering end.DentitionIn ventral view (Fig. 2c,d), nine premaxillary teeth and seven lower teeth are visible, which are procumbent, fang-like and with apicobasal striations. The 2nd and 3rd right and the 1st, 3rd and 5th left premaxillary teeth are fully grown, elongate and less curved compared to the other teeth. However, the reported specimens of D. acutidentatus and the nothosauroids Lariosaurus and Nothosaurus carry five teeth on each premaxilla17. The space between the 2nd and 3rd right premaxillary teeth suggests that there might be one or two missing teeth. There is one fang-like tooth on each maxilla, surrounded by small tapering teeth, and there are five to six corresponding teeth in the lower jaw. The caniniform teeth also have apicobasal striations like the premaxillary teeth. The row of dentary teeth is restricted to a level anterior to the posterior margin of the orbit.Vertebrae and ribsThere are 38 presacral vertebrae, 3 sacral and 33 caudal (Fig. 1); these counts are roughly the same in coeval Eosauropterygia19,24,25. The atlas and axis are dorsally exposed (Fig. 2a,b). The atlas leans anteriorly, and its neural spine does not meet its counterpart. The proatlas is a pentagonal bone, disarticulated from the atlas. The axis has been rotated laterally, but still articulates with the atlas.There are 19 cervical vertebrae, compared to 20/21 in Dianopachysaurus dingi19. The centra cylinders are rhomboidal in ventral view, increase in length posteriorly and the vertebrae articulate with one another compactly. The parapophyseal articulation on the cervical rib (CR), visible in ventral view, is robust and offset about 90° from the long axis of the rib, defined between the main body and a prominent anterior process. These posterior and anterior extensions are approximately equal in length until about CR14, where the posterior extension starts to lengthen strongly. The anterior process becomes strongly reduced from CR16 onwards.There are approximately 19 thoracolumbar vertebrae, most of which are covered by the gastralia (18 in Dianmeisaurus gracilis25); the count estimated from two gastralial rows corresponding to one vertebra. The intercentral articulation is less compact than in the cervical vertebrae. The transverse processes face posteriorly. The dorsal ribs are single-headed arch-shaped bones with slightly expanded proximal flat ends, but otherwise retain constant diameter along their whole length, ending distally in a flattened stub. Dorsal ribs DR1–6 are exposed ventrally, while the rest are mostly overlain by the gastralia. There are 24 rows of gastralia, suggesting 12 more dorsal vertebrae covered, each gastralium consisting of one medial element and four lateral elements (Fig. 4a).Three sacral vertebrae can be recognized in dorsal view (Fig. 4b), the same as in Dianmeisaurus gracilis, Dianmeisaurus dingi and K. hui19,24,26. The sacral ribs are elongate and cylindrical with thickened distal ends, and closely articulate with the centrum and possibly overlap the rib posterior to each proximally. Distally the sacral rib is expanded posteriorly into a small triangular process that overlaps the next sacral rib posteriorly. Sacral ribs SR2 and SR3 likely articulate with the ilium, while the others are overlain by pubis and ischium (Fig. 3c,d).Figure 3Photographs and interpretative drawings of the pectoral girdle, forelimb, pelvic girdle and hindlimb of WIGM SPC V 1105 in ventral view. (a, b) Pectoral girdle and forelimb. (c, d) Pelvic girdle and hindlimb. as astragalus, cal calcaneum, cl clavicle, co coracoid, cr1 caudal rib 1, cr19 cervical rib 19, cv1 caudal vertebra 1, cv19 cervical vertebra 19, dc2 distal carpal 2, dc3 distal carpal 3, dc4 distal carpal 4, dr2 dorsal rib 2, dv2 dorsal vertebra 2, dr19 dorsal rib 19, dv19 dorsal vertebra 19, f femur, fi fibular, hu humerus, icl interclavicle, il Ilium, in intermedium, is ischium, mc1 metacarpal 1, mc5 metacarpal 5, mt1 metatarsal 1, mt5 metatarsal 5, pu pubis, ra radius, sc scapula, sr1 sacral rib 1, ti tibia, ul ulna, uln ulnare. Scale bar in (a, b, d) = 2 cm. Scale divisions in (a) = 1 mm. The figure is generated using CorelDRAW X7 (https://www.coreldraw.com/en/pages/coreldraw-x7/).Full size imageThere are 33 rhomboidal caudal vertebrae that decrease in size gradually towards the posterior end of the tail. Caudal vertebrae CV13–21 have strap-shaped neural spines. Caudal ribs are present in CV1–11. They are flat, arch-shaped bones directed slightly posteriorly. The size of the ribs remains roughly the same from CR1–5, but this decreases suddenly from CR6–11 (Fig. 4c). The distal ends of CR3–8 are flat, while more posterior ribs have pointed ends.Figure 4Selected postcranial parts of WIGM SPC V 1105. (a) gastralia near the sacral region in ventral view, the arrow indicating each gastralium consists of one medial element and four lateral elements; (b) sacral region in dorsal view; (c) part of the caudal region in ventral view. cr5 caudal rib 5, cv5 caudal vertebra 5, cv15 caudal vertebra 15, dr19 dorsal rib 19, dv16 dorsal vertebra 16, dv17 dorsal vertebra 17, dv19 dorsal vertebra 19, il ilium, pu pubis, sr1 sacral rib 1, sr2 sacral rib 2, sr3 sacral rib 3, sv1 sacral vertebra 1, sv2 sacral vertebra 2, sv3 sacral vertebra 3. Scale bar = 5 cm. The figure is generated using CorelDRAW X7 (https://www.coreldraw.com/en/pages/coreldraw-x7/).Full size imagePectoral girdle and forelimbThe pectoral girdle is exposed in ventral view (Fig. 3a,b). The interclavicle is an arrowhead-shaped bone with a strongly concave posterior border and two posterolaterally directed lateral processes, unlike the more diamond shape of D. gracilis24. Its tip points anteriorly but does not reach the anterior margin of the pectoral girdle between the clavicles. The clavicle is an L-shaped, strap-like bone with a characteristic prominence anterolaterally, as in D. acutidentatus and larger than in D. gracilis17,24. The clavicle develops a tiny posterolateral process, overlying the dorsal surface of the scapula. The tapering medial process expands to meet its counterpart, forming the anterior margin of the pectoral girdle. The scapula is exposed in ventral view, so the dorsal blade is covered. In this view it is sub-rectangular, with a rounded anterior margin and two posterior facets for the clavicle and humerus, angled obliquely and separated by a small ridge. The coracoid is a strap-shaped bone with proximal and distal ends widened, and the largest element in the pectoral girdle. Its anteromedial margin is more strongly concave than the posteromedial margin. Proximally, the coracoid is flattened and meets the contralateral element in a straight median facet. Distally the coracoid is more robust and expanded anteriorly into a broad rounded process on the anterior margin. The distal margin is straight and articulates with the scapula anteriorly and has a smaller articulation with the humerus posteriorly on a smaller, triangular posterodistal process. There is a small foramen exposed near the anterodistal margin along the scapular facet, larger than in Dianmeisaurus gracilis24.Both forelimbs are nearly complete, ventrally exposed, about 13.7% of the body length (Fig. 3a,b). The humerus is strongly curved (40°) and shorter than the femur (Table 1). The proximal articular surface is rounded, with a larger facet for the scapula than the coracoid, while the articular surface of the distal end is convex, contacting the radius and the ulna with two straight, oblique facets. These facets are more strongly offset than in D. acutidentatus17. There is no evidence for an entepicondylar foramen20,24. The ulna and the radius are nearly equal in length and relatively gracile compared to the humerus (Table 1). The two ends of the ulna are equally widened, while the ends of the radius expand less obviously and are directed slightly medially.There are more than four elements in the carpus, all round and flat in ventral view. The intermedium is slightly larger than the ulnare (Table 1), unlike in D. acutidentatus17, and articulates mediodistally to the ulna, medially to the ulnare. Distal carpal 2 is the largest of the distal carpals and articulates distally between the intermedium and ulnare. Distal carpals 3 and 4 are present but extremely reduced. The metacarpals are elongate and strongly hourglass shaped. Metacarpal 1 is the shortest of the five while metacarpals 2–4 are almost equal in length, and metacarpal 5 is slightly shorter. All the digits are directed towards the ulnar side of the limb. The interosseous space between metacarpals 4 and 5 is the widest. The phalangeal elements are well preserved, but digit 5 of the right manus demonstrates unusual preservation, which will be discussed further in the Discussion. The ungual phalanges of digits 4 and 5 on the left are small and round, while the ungual phalanx of digit 5 on the right is missing. Given that, the forelimb is likely to have had a phalangeal formula of 2–3–4–4–3.Pelvic girdle and hindlimbThe pelvic girdle is exposed ventrally (Fig. 3c,d). The pubis is a large plate-like bone. Both the anterior and posterior margins of the bone are concave near the distal end (about one-third of the whole length), forming a ‘waisted’ shape that is narrower than in Dianmeisaurus gracilis24. The ischium is large and irregularly shaped. Medially it is expanded into a large, squared, plate-like portion that meets the contralateral element along a straight median symphysis. Anterodistally, the ischium is waisted, separating the large, robust anterodistal process with a broad, rounded end that contacts the distal pubis and ilium to form the acetabulum. The anterodistal process is narrower and more strongly offset from the main body than in Dianmeisaurus gracilis24. Posterodistally there is a further broad extension. The thyroid fenestra is large and rectangular and is bounded by the posterior pubis and anterior ischium on both sides. The ilium is covered by the pubis and the ischium in ventral view.The left hindlimb is well preserved and exposed in ventral view (Fig. 3c,d), and the amputated right femur is discussed below. The femur is long and rounded with a slightly waisted epiphysis; it is larger and slenderer than the humerus (Table 1). The proximal end is wider than the distal but is damaged in this specimen. The tibia and the fibula are similarly elongate bones, with the tibia somewhat more robust but more similar in size than in the holotype of D. acutidentatus17. Both have slightly expanded proximal and distal ends, but the proximal end of the fibula is hidden beneath the distal femur. The stronger waist on the fibula gives it a more strongly curved appearance and creates a large interosseous fenestra.The astragalus and calcaneum are the only elements of the tarsus. The astragalus is larger than the calcaneum and located between the distal tibia and fibula with a pointed proximal margin (Table 1). The facets of the astragalus contacting the tibia and the fibula are straight. The calcaneum is subcircular. Length increases from metatarsals 1–4, then decreases in metatarsal 5; metatarsal 1 is the shortest. All the metatarsals have an elongate hourglass shape. The pes is not so well preserved, as digits 1 and 2 are crushed together. The phalanges are less elongate than the metatarsals and shaped like waisted cylinders, except for the ungual phalanx of digit 5; consequently, there may be some missing ungual phalanges from the other digits. The pedal phalangeal formula cannot be determined due to the preservation.Phylogenetic analysisWe added WIGM SPC V 1105 to the cladistic matrix of Lin et al.27 and replicated their analytical methods in PAUP* version 4a169. Our cladistic analysis produced four most parsimonious trees (tree length = 485 steps, CI 0.388, RI 0.622). Strict consensus of these trees (Fig. 5) matches the result of former studies, in that Diandongosaurus share a close relationship with Dianmeisaurus24.Figure 5Strict consensus tree of four most parsimonious tree (TL = 485 steps, CI = 0.388, RI = 0.622), demonstrating the phylogenetic position of WIGM SPC V 1105. Bootstrap support values ≥ 50% (1000 replicates) are labelled. The figure is generated using Adobe Illustrator 2021 (https://www.adobe.com/products/illustrator.html).Full size imageDiandongosaurus shows some similarities with Keichousaurus and Dianopachysaurus18,19, but many morphological differences exist. Keichousaurus and Dianopachysaurus have small tapering teeth19,20, while Diandongosaurus has serried long fang-shaped teeth. The supratemporal fenestra of Diandongosaurus is oval-shaped and larger than in the other two taxa considering the size of the orbit. The caudal ribs of Dianopachysaurus develop a tapering distal end, different from Diandongosaurus, whose caudal ribs have a flat distal end17,20.Diandongosaurus also differs from other Triassic eosauropterygians. The strongly procumbent anterior teeth discriminate it from the pistosauroids, which have upright anterior teeth. The size of the supratemporal fenestra is noticeably larger than in Qianxisaurus28, while the characteristic tapering snout of Wumengosaurus29 differs from the blunt snout of Diandongosaurus. Its clavicle develops an anterior process, which does not exist in European pachypleurosaurs. Diandongosaurus has a smaller supratemporal fenestra than in Lariosaurus and Nothosaurus, in some species of which it is nearly twice the size of the orbit.WIGM SPC V 1105 broadly resembles D. acutidentatus but differs in several features, including being considerably larger and the constricted snout of WIGM SPC V 1105 is a novelty in pachypleurosaur. These morphological distinctions between WIGM SPC V 1105 and D. acutidentatus could be regarded as evidence for establishing a new species. Alternatively, WIGM SPC V 1105 lacks the pterygoid opening in the two referred specimens (specimen NMNS-000933-F03498 and BGPDB-R0001) of D. acutidentatus18,23, and other differences, like the larger size and the rounded ends of humerus and femur, could have been caused by ontogenetic variation or even preservational issues. Based on previous documented specimens, interspecific variation of phalangeal formula exists in D. acutidentatus, as the pedal formular counts 2–3–4–5–4 in the holotype, but 2–3–4–6–4 in the referred specimen BGPDB-R000123. In this case, WIGM SPC V 1105 could be an adult of D. acutidentatus. Given these considerations, we assigned WIGM SPC V 1105 as a conformis (cf.) of D. acutidentatus. More

  • in

    First thorough assessment of de novo oocyte recruitment in a teleost serial spawner, the Northeast Atlantic mackerel (Scomber scombrus) case

    Oocyte size frequency distributionThe OSFD, based on wholemount analysis (formalin-preserved diameter measurements), did not show any hiatus between the assumingly largest PVOs and the smallest VO (Supplementary, Fig. S1). The corresponding mean threshold value, determined statistically by the Gamma/Gaussian method (see technical details below), was 192 µm (95% CI: 187–196 µm) (Supplementary, Fig. S1). Based on histology, this value was, however, at ~ 230 µm, i.e. the formalin-preserved oocyte diameter of PVO4c (Supplementary, Figs. S2B, S3, Table S1).Spawning progressAddressing firstly “the population (wholemount) data set” of 1561 individuals (Table S2), the relative frequency of early-spawning (ORC1), mid-spawning (ORC2), and late-spawning (ORC3) females changed significantly as the spawning season progressed, although with dissimilarity between 2018 and 2019 (Supplementary, Fig. S4). Overall, a significant difference was found among the ORCs frequencies between the two field-sampling years (two-way ANOVA; p = 0.003). In June 2018, over 60% of the females caught were very late spawners or spent (ORC4), this relative frequency increased to almost 90% in July 2018 (Supplementary, Fig. S4A). For 2019, the ORC4 in June was about 50% (Supplementary, Fig. S4B). Combining these 2018 and 2019 data sets, the subsequent comparison showed that July 2018 clearly differed in terms of ORC (a posteriori Tukey test; Supplementary, Fig. S5). More females in mid-spawning were recorded in May and June 2019 compared to the same months in 2018, though this noted difference was statistically insignificant (Supplementary, Fig. S5). Altogether, these outlined variations in ORC (Fig. 1) may be related to survey coverage, i.e. in 2018 these samples were collected in Nordic waters, while in 2019 exclusively within the main spawning area (Fig. 2).Figure 1Wholemount counts of previtellogenic (PVO) versus developing oocytes (VO and FOM) used within the ultrametric method to categorize the “stage of spawning” represented by the oocyte ratio category (ORC). The resulting ORC category (ORC1-4) is showed above each panel. VOs includes cortical alveoli oocytes.Full size imageFigure 2Map with location and number of all mackerel female samples collected from May 2018 to June 2019. The map was created using R v4.0.4 (https://www.r-project.org/) (see details at “Material and methods” section).Full size imagePopulation-level ORC and biometrics appeared linked, the latter represented either by total length (TL)-based gonadosomatic index (GSITL) or relative condition (Kn) (Fig. 3). The 2018 results showed that Kn was higher (p  More

  • in

    Turn taking is not restricted by task specialisation but does not facilitate equality in offspring provisioning

    1.Trivers, R. L. Parental investment and sexual selection. in Sexual Selection and the Descent of Man 1871–1971 136–207 (Aldine, 1972). doi:https://doi.org/10.1002/ajpa.13304002262.Stearns, S. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).Article 

    Google Scholar 
    3.McNamara, J. M., Gasson, C. E. & Houston, A. I. Incorporating rules for responding into evolutionary games. Nature 401, 368–371 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Houston, A. I. & Davies, N. B. The evolution of cooperation and life-history in the dunnock. Behav. Ecol. 1, 471–487 (1985).
    Google Scholar 
    5.McNamara, J. M., Houston, A. I., Barta, Z. & Osorno, J. L. Should young ever be better off with one parent than with two?. Behav. Ecol. 14, 301–310 (2003).Article 

    Google Scholar 
    6.Lessells, C. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: negotiation reduces overall care. Proc. R. Soc. B Biol. Sci. 279, 1506–1514 (2012).CAS 
    Article 

    Google Scholar 
    7.Harrison, F., Barta, Z. & Székely, T. How is sexual conflict over parental care resolved? A meta-analysis.. J. Evol. Biol. 22, 1800–1812 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Johnstone, R. A. & Hinde, C. A. Negotiation over offspring care – how should parents respond to each other’s efforts?. Behav. Ecol. 17, 818–827 (2006).Article 

    Google Scholar 
    9.Johnstone, R. A. et al. Reciprocity and conditional cooperation between great tit parents. Behav. Ecol. 25, 216–222 (2014).Article 

    Google Scholar 
    10.Gächter, S. Conditional cooperation: behavioral regularities from the lab and the field and their policy implications. In Psychology and economics: a promising new cross-disciplinary field (eds Frey, B. S. & Stutzer, A.) 19–50 (MIT Press, 2007).
    Google Scholar 
    11.Hinde, C. A. Negotiation over offspring care? – A positive response to partner-provisioning rate in great tits. Behav. Ecol. 17, 6–12 (2006).Article 

    Google Scholar 
    12.Meade, J., Nam, K.-B., Lee, J.-W. & Hatchwell, B. J. An experimental test of the information model for negotiation of biparental care. PLoS ONE 6, e19684 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Savage, J. L., Browning, L. E., Manica, A., Russell, A. F. & Johnstone, R. A. Turn-taking in cooperative offspring provisioning: by-product of individual provisioning behaviour or active response rule?. Behav. Ecol. Sociobiol. 71, 162 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Santema, P., Schlicht, E. & Kempenaers, B. Testing the conditional cooperation model: What can we learn from parents taking turns when feeding offspring?. Front. Ecol. Evol. 7, 1–6 (2019).Article 

    Google Scholar 
    15.Baldan, D., Curk, T., Hinde, C. A. & Lessells, C. M. Alternation of nest visits varies with experimentally manipulated workload in brood-provisioning great tits. Anim. Behav. 156, 139–146 (2019).Article 

    Google Scholar 
    16.Baldan, D., Hinde, C. A. & Lessells, C. M. Turn-Taking Between Provisioning Parents: Partitioning Alternation. Front. Ecol. Evol. 7, 1 (2019).Article 

    Google Scholar 
    17.Iserbyt, A., Fresneau, N., Kortenhoff, T., Eens, M. & Müller, W. Decreasing parental task specialization promotes conditional cooperation. Sci. Rep. 7, 6565 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Lessells, C. M. Sexual selection. in The evolution of parental care (eds. Royle, N. J., Smiseth, P. T. & Kolliker, M.) 150–170 (Oxford university press, 2012).19.Barta, Z., Székely, T., Liker, A. & Harrison, F. Social role specialization promotes cooperation between parents. Am. Nat. 183, 747–761 (2014).PubMed 
    Article 

    Google Scholar 
    20.Andreasson, F., Nord, A. & Nilsson, J. -Å. Brood size constrains the development of endothermy in blue tits. J. Exp. Biol. 219, 2212–2219 (2016).PubMed 
    Article 

    Google Scholar 
    21.Perrins, C. M. British tits. (Collins, 1979).22.Banbura, J. et al. Sex differences in parental care in a Corsican Blue Tit Parus caeruleus population. Ardea 89, 517–526 (2001).
    Google Scholar 
    23.García-Navas, V., Ferrer, E. S. & Sanz, J. J. Plumage yellowness predicts foraging ability in the blue tit Cyanistes caeruleus. Biol. J. Linn. Soc. 106, 418–429 (2012).Article 

    Google Scholar 
    24.Mainwaring, M. C. et al. Latitudinal variation in blue tit and great tit nest characteristics indicates environmental adjustment. J. Biogeogr. 39, 1669–1677 (2012).Article 

    Google Scholar 
    25.Pagani-Núñez, E. & Senar, J. C. One hour of sampling is enough: Great tit Parus major parents feed their nestlings consistently across time. Acta Ornithol. 48, 194–200 (2013).Article 

    Google Scholar 
    26.Griffioen, M., Müller, W. & Iserbyt, A. A fixed agreement—consequences of brood size manipulation on alternation in blue tits. PeerJ 7, e6826 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Ihle, M., Pick, J. L., Winney, I. S., Nakagawa, S. & Burke, T. Measuring up to reality: Null models and analysis simulations to study parental coordination over provisioning offspring. Front. Ecol. Evol. 7, 142 (2019).Article 

    Google Scholar 
    28.Schlicht, E., Santema, P., Schlicht, R. & Kempenaers, B. Evidence for cooperation in biparental care systems? A comment on Johnstone et al.. Behav. Ecol. 27, 1 (2016).Article 

    Google Scholar 
    29.Griffioen, M., Iserbyt, A. & Müller, W. Handicapping males does not affect their rate of parental provisioning, but impinges on their partners’ turn taking behavior. Front. Ecol. Evol. 7, 1–7 (2019).Article 

    Google Scholar 
    30.Andreasson, F., Nord, A. & Nilsson, J.-Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. Biol. e01620, (2018).31.Iserbyt, A., Griffioen, M., Eens, M. & Müller, W. Enduring rules of care within pairs – how blue tit parents resume provisioning behaviour after experimental disturbance. Sci. Rep. 9, 2776 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Lucass, C., Fresneau, N., Eens, M. & Müller, W. Sex roles in nest keeping – how information asymmetry contributes to parent-offspring co-adaptation. Ecol. Evol. 6, 1825–1833 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Yoon, J., Sofaer, H. R., Sillett, T. S., Morrison, S. A. & Ghalambor, C. K. The relationship between female brooding and male nestling provisioning: Does climate underlie geographic variation in sex roles ?. J. Avian Biol. 47, 1–9 (2016).Article 

    Google Scholar 
    34.Amininasab, S. M., Kingma, S. A., Birker, M., Hildenbrandt, H. & Komdeur, J. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-016-2167-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Bryan, S. M. & Bryant, D. M. Heating nest-boxes reveals an energetic constraint on incubation behaviour in great tits, Parus major. Proc. R. Soc. B 266, 157 (1999).PubMed Central 
    Article 

    Google Scholar 
    36.Sanz, J. J. & Moreno, J. Mass loss in brooding female pied flycatchers ficedula hypoleuca: No evidence for reproductive stress. J. Avian Biol. 26, 313 (1995).Article 

    Google Scholar 
    37.Chastel, O. & Kersten, M. Brood size and body condition in the House Sparrow Passer domesticus: The influence of brooding behaviour. Ibis (Lond. 1859). 144, 284–292 (2002).38.Stearns, S. The evolution of life histories. (Oxford University Press (OUP), 1992). https://doi.org/10.5962/bhl.title.166231.39.Ardia, D. R., Perez, J. H. & Clotfelter, E. D. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. R. Soc. B – Biol. Sci. 277, 1881–1888 (2010).40.Perez, J. H., Ardia, D. R., Chad, E. K. & Clotfelter, E. D. Experimental heating reveals nest temperature affects nestling condition in tree swallows ( Tachycineta bicolor ). Biol. Lett. 4, 468–471 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Nour, N., Currie, D., Matthysen, E., Van Damme, R. & Dhondt, A. A. Effects of habitat fragmentation on provisioning rates, diet and breeding success in two species of tit (great tit and blue tit). Oecologia 114, 522–530 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Grieco, F. Time constraint on food choice in provisioning blue tits, Parus caeruleus: The relationship between feeding rate and prey size. Anim. Behav. 64, 517–526 (2002).Article 

    Google Scholar 
    43.Jenkins, J. B., Mueller, A. J., Thompson, C. F., Sakaluk, S. K. & Bowers, E. K. Female birds monitor the activity of their mates while brooding nest-bound young. Anim. Cogn. https://doi.org/10.1007/s10071-020-01453-5 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Johnstone, R. A. & Savage, J. L. Conditional cooperation and turn-taking in parental care. Front. Ecol. Evol. 7, 1 (2019).Article 

    Google Scholar 
    45.Santema, P., Schlicht, E., Schlicht, L. & Kempenaers, B. Blue tits do not return faster to the nest in response to either short- or long-term begging playbacks. Anim. Behav. 123, 117–127 (2017).Article 

    Google Scholar 
    46.Székely, T. Sexual Conflict Between Parents: Offspring Desertion and Asymmetrical Parental Care. Cold Spring Harb. Perspect. Biol. 6, 1–20 (2014).Article 

    Google Scholar 
    47.Griffith, S. C. Cooperation and Coordination in Socially Monogamous Birds: Moving Away From a Focus on Sexual Conflict. Front. Ecol. Evol. 7, 1–15 (2019).Article 

    Google Scholar 
    48.Patrick, S. C., Corbeau, A., Réale, D. & Weimerskirch, H. Coordination in parental effort decreases with age in a long-lived seabird. Oikos 129, 1763–1772 (2020).Article 

    Google Scholar 
    49.Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. 7, 1–15 (2019).Article 

    Google Scholar 
    50.Baldan, D. & Ouyang, J. Q. Urban resources limit pair coordination over offspring provisioning. Sci. Rep. 1, 1–11. https://doi.org/10.1038/s41598-020-72951-2 (2020).CAS 
    Article 

    Google Scholar 
    51.Bebbington, K. & Hatchwell, B. J. Coordinated parental provisioning is related to feeding rate and reproductive success in a songbird. Behav. Ecol. 27, 652–659 (2016).Article 

    Google Scholar 
    52.Koenig, W. D. & Walters, E. L. Provisioning patterns in the cooperatively breeding acorn woodpecker: does feeding behaviour serve as a signal?. Anim. Behav. 119, 125–134 (2016).Article 

    Google Scholar 
    53.Leniowski, K. & Węgrzyn, E. Synchronisation of parental behaviours reduces the risk of nest predation in a socially monogamous passerine bird. Sci. Rep. 8, 7385 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Tyson, C. et al. Coordinated provisioning in a dual foraging pelagic seabird. Anim. Behav. 132, 73–79 (2017).Article 

    Google Scholar 
    55.Wojczulanis-Jakubas, K., Araya-Salas, M. & Jakubas, D. Seabird parents provision their chick in a coordinated manner. PLoS ONE 13, 1–13 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard

    1.Perini, L., Gostinčar, C. & Gunde-Cimerman, N. Fungal and bacterial diversity of Svalbard subglacial ice. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. Sci. Rep. 27, 20230. https://doi.org/10.1038/s41598-019-56290-5 (2019).CAS 
    Article 

    Google Scholar 
    2.Margesin, R., Schinner, F. Cold-adapted organisms. In Ecology, Physiology, Enzymology and Molecular Biology (eds. Margesin, R. & Schinner, F) (Springer, 1999).3.Mueller, D. R. & Pollard, W. H. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol. 27, 66–74 (2004).Article 

    Google Scholar 
    4.Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).Article 

    Google Scholar 
    5.Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282. https://doi.org/10.1111/jpy.12952 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Kol, E. & Eurola, S. Red snow algae from Spitsbergen. Astarte. J. Arct. Biol. 7, 61–66 (1974).
    Google Scholar 
    7.Stibal, M., Elster, J., Sabacká, M. & Kastovská, K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 59, 265–273 (2007).CAS 
    Article 

    Google Scholar 
    8.Kviderová, J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep. 2, 8–19 (2012).Article 

    Google Scholar 
    9.Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments, and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).CAS 
    Article 

    Google Scholar 
    10.Takeuchi, N. et al. Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard. Front. Earth Sci. https://doi.org/10.3389/feart.2019.00004 (2019).Article 

    Google Scholar 
    11.Leya, T., Müller, T., Ling, H. U., Fuhr, G. Snow algae from north-western Spitsbergen (Svalbard). In The Coastal Ecosystem of Kongsfjorden, Svalbard. Synopsis of Biological Research Performed at the Koldewey Station in the Years 1991–2003. Ber. (ed. Wiencke, C.) 46–54 (Polarforsch. Meeresforsch, 2004).12.Remias, D., Holzinger, A., Aigner, S. & Lütz, C. Ecophysiology and ultrastructure of Ancylonema nordenskioeldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic). Polar Biol. 35, 899–908 (2011).Article 

    Google Scholar 
    13.Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H. & Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci. 4, 71–80 (2010).ADS 
    Article 

    Google Scholar 
    14.Takeuchi, N. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol. Process. 15, 3447–3459 (2001).ADS 
    Article 

    Google Scholar 
    15.Takeuchi, N. & Kohshima, S. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct. Antarct. Alp. Res. 36, 92–99 (2004).Article 

    Google Scholar 
    16.Yoshimura, Y., Kohshima, S. & Ohtani, S. A community of snow algae on a Himalayan glacier: Change of algal biomass and community structure with altitude. Arct. Antarct. Alp. Res. 29, 126–137 (1997).Article 

    Google Scholar 
    17.Komárek, O. & Komárek, J. Contribution to the taxonomy and ecology of cryosestic algae in the summer season 1995–96 at King George Island, S. Shetland Islands. Nova Hedwig. Beih. 123, 121–140 (2001).
    Google Scholar 
    18.Kagami, M., de Bruin, A., Ibelings, B. W. & Van Donk, E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007).Article 

    Google Scholar 
    19.Gromov, B. V., Pljusch, A. V. & Mamkaeva, K. A. Morphology and possible host range of Rhyizophydium algavorum sp. nov. (Chytridiales) – An obligate parasite of algae. Protistology 1, 62–65 (1999).
    Google Scholar 
    20.Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).CAS 
    Article 

    Google Scholar 
    21.Hassett, B. T. et al. Arctic marine fungi: Biomass, functional genes, and putative ecological roles. ISME J. 13, 1484–1496 (2019).CAS 
    Article 

    Google Scholar 
    22.Rämä, T. et al. Fungi sailing the Arctic Ocean: Speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb. Ecol. 72, 295–304 (2016).Article 

    Google Scholar 
    23.Rämä, T., Hassett, B. T. & Bubnova, E. Arctic marine fungi: From filaments and flagella to operational taxonomic units and beyond. Bot. Mar. 60, 433–452 (2017).Article 

    Google Scholar 
    24.Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep. 5, 14524. https://doi.org/10.1038/srep14524 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity, and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic): aquatic fungi in the Arctic. Microb. Ecol. 71, 543–554 (2016).Article 

    Google Scholar 
    26.Remy, W., Taylor, T. N. & Hass, H. Early Devonian fungi: A Blastocladalean fungus with sexual reproduction. Am. J. Bot. 81, 690–702 (1994).Article 

    Google Scholar 
    27.Senanayake, I. C. et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754 (2020).Article 

    Google Scholar 
    28.Fiołka, M. J., Takeuchi, N., Sofińska-Chmiel, W., Mieszawska, S. & Treska, I. Morphological and physicochemical diversity of snow algae from Alaska. Sci. Rep. 10, 19167. https://doi.org/10.1038/s41598-020-76215-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Monheit, J. E., Cowan, D. F. & Moore, D. G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch. Pathol. Lab. Med. 108, 616–618 (1984).CAS 
    PubMed 

    Google Scholar 
    30.Semedo, M. C., Karmali, A. & Fonseca, L. A high throughput colorimetric assay of β-1,3-d-glucans by Congo red dye. J. Microbiol. Methods. 10, 140–148 (2015).Article 

    Google Scholar 
    31.Herburger, K. & Holzinger, A. Aniline blue and Calcofluor white staining of callose and cellulose in the streptophyte green algae Zygnema and Klebsormidium. Bio Protoc. 6, 1969. https://doi.org/10.21769/BioProtoc.1969 (2016).Article 

    Google Scholar 
    32.Müller, U. & Sengbusch, P. Visualization of aquatic fungi (Chytridiales) parasitizing on algae by means of induced fluorescence. Arch. Hydrobiol. 97, 471–485 (1983).
    Google Scholar 
    33.Yang, Y., Xiang, Y. & Xu, M. From red to green: The propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable. Sci. Rep. 5, 18583. https://doi.org/10.1038/srep18583 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Luo, Z. et al. Preparation and properties of enzyme-modified cassava starch−zinc complexes. Agric. Food Chem. 61, 4631–4638 (2013).CAS 
    Article 

    Google Scholar 
    35.Beamson, G., Briggs, D. High Resolution XPS of Organic Polymers—The Scienta ESCA300 Database (Wiley Interscience, 1992).36.Miller, D. J., Biesinger, M. C. & McIntyre, N. S. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: One possible mechanism for surface contamination?. Surf. Interface Anal. 33, 299–305 (2002).CAS 
    Article 

    Google Scholar 
    37.Payne, B. P., Biesinger, M. C. & McIntyre, N. S. The study of polycrystalline nickel metal oxidation by water vapour. J. Electron Spectros. Relat. Phenom. 184, 29–37 (2011).CAS 
    Article 

    Google Scholar 
    38.Oh, Y. J. et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrachem. Acta. 116, 118–128 (2014).CAS 
    Article 

    Google Scholar 
    39.Procházková, L., Leya, T., Křížková, H. & Nedbalová, L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz064 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms. https://doi.org/10.3390/microorganisms9051103 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Müller, T., Bleiss, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).Article 

    Google Scholar 
    42.Domozych, D. et al. The cell walls of green algae: A journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Holzinger, A. & Lütz, C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37, 190–207 (2006).Article 

    Google Scholar 
    44.Rad-Menéndez, C. et al. Rediscovering Zygorhizidium affluenscanter: molecular taxonomy, infectious cycle, and cryopreservation of a chytrid infecting the bloom-forming diatom Asterionella formosa. Appl. Environ. Microbiol. 84, e01826-e1918. https://doi.org/10.1128/AEM.01826-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Canter-Lund, H., Lund, J.G. Freshwater Algae: Their Microscopic World Explored. (ed. Canter-Lund, H.). 21–93. (Biopress, 1995).46.Kol, E. Kryobiologie. Biologie und Limnologie des Schneesund Eises. I. Kryovegetation. Die Binnengewa¨sser, Band XXIV. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (1968).47.Stein, J. R. & Amundsen, C. C. Studies on snow algae and fungi from the front range of Colorado. Can. J. Bot. 45, 2033–2045 (1967).Article 

    Google Scholar 
    48.Hoham, R. W., Laursen, A. E., Clive, S. O., Duval, B. Snow algae and other microbes in several alpine areas in New England. in Proceedings of the 61st Annual Western Snow Conference, Quebec City, Canada. 165–173 (1993).49.Brown, P. S., Olson, B. J. S. C. & Jumpponen, A. Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs?. Arct. Antarct. Alp. Res. 47, 729–749 (2015).Article 

    Google Scholar 
    50.Jumpponen, A., Egerton-Warburton, L. Mycorrhizal fungi in successional environments—A community assembly model incorporating host plant, environmental and biotic filters. In Dighton (ed. White, J. & Oudemans, P.) 139–180 (CRC Press, 2005).51.Freeman, K. R. et al. Evidence that chytrids dominate fungal communities in high elevation soils. PNAS 106, 18315–18320 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Sime-Ngando, T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00361 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Powell, M. J. Looking at mycology with a Janus face. A glimpse at Chytridiomycetes active in the environment. Mycologia 85, 1–20 (1993).Article 

    Google Scholar 
    54.Ibelings, B. W. et al. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol. 40, 437–453 (2004).Article 

    Google Scholar 
    55.Scholz, B., Küpper, F. C., Vyverman, W., Ólafsson, H. G. & Karsten, U. Chytridiomycosis of marine diatoms—The role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar. Drugs. 15, 26. https://doi.org/10.3390/md15020026 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    56.Müehlstein, L. K., Amon, J. P. & Leffler, D. L. Chemotaxis in the marine fungus Rhizophydium littoreum. Appl. Environ. Microbiol. 54, 1668–1672 (1988).ADS 
    Article 

    Google Scholar 
    57.Moss, A. S., Reddy, N. S., Dortaj, I. M. & San Francisco, M. J. Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100, 1–5 (2008).CAS 
    Article 

    Google Scholar 
    58.Powell, M. J. Production, and modifications of extracellular structures during development of Chytridiomycetes. Protoplasma 181, 123–141 (1994).Article 

    Google Scholar 
    59.Konishi, H., Hio, M., Kobayashi, M., Takase, R. & Hashimoto, W. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci. Rep. 10, 3977. https://doi.org/10.1038/s41598-020-60274-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bruning, K. Effects of temperature and light on the population-dynamics of the Asterionella-Rhizophydium association. J. Plankton Res. 13, 707–719 (1991).Article 

    Google Scholar  More

  • in

    Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence

    Soil-derived microbial communities were subject to diversity removal by treatments with dilution (D0  > D1  > D2), filtering (bacteria predominantly “Bonly”), and heat (spore forming “SF”), and incubated under different moisture and temperature in order to generate distinct microbial communities in a model soil matrix [6]. In a sibling study aiming to disentangle the biotic and abiotic drivers of carbon use efficiency, we observed that the microbial community characteristics, e.g. bacterial community structure, bacterial diversity, fungi presence, and enzymatic activity influenced microbial community carbon use efficiency [6]. Here, we analyzed the formed SOM after four months of growth on cellobiose, using a method commonly used to quantify thermal stability and gradual stabilization of SOM [10]. The hydrocarbon compounds released at each temperature for each sample during the pyrolytic phase of Rock-Eval® was used to calculate the Bray–Curtis-based chemical dissimilarity of the soil samples as a proxy for soil C composition, and the and the Rock-Eval® thermal stability index (R-index) was calculated as a proxy for C persistence, as previously [10]. Bacterial or fungal diversity did not drive SOM composition. However, the resultant NMDS and analysis of similarity (ANOSIM) (R = 0.198, P  D2); selection of spore-forming microorganisms (SF); fungal exclusion (“Bonly”); inoculated into a model soil and grown on cellobiose as sole carbon source for 120 days under two temperatures (15 oC and 25 oC) and two moistures (30% and 60% WHC) in a full factorial design. Non-metric multidimensional scaling of Bray–Curtis distance from the pyrolyzed fraction of SOM based on Rock-Eval® analysis. Red contour lines represent the SOM thermal-stability R-index with higher numbers indicating more thermal-stable SOM. Significant explanatory variables (P  More

  • in

    Evidence of spatial genetic structure in a snow leopard population from Gansu, China

    Alexander JS, Zhang C, Shi K, Riordan P (2016) A granular view of a snow leopard population using camera traps in Central China. Biol Conserv 197:27–31
    Google Scholar 
    Aryal A, Brunton D, Ji W, Karmacharya D, McCarthy T, Bencini R et al. (2014) Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. J Mammal 95:871–881
    Google Scholar 
    Atzeni L, Cushman SA, Bai D, Wang J, Chen P, Shi K et al. (2020) Meta-replication, sampling bias, and multi-scale model selection: a case study on snow leopard (Panthera uncia) in western China. Ecol Evol 10:7686–7712PubMed 
    PubMed Central 

    Google Scholar 
    Bai D-F, Chen P-J, Atzeni L, Cering L, Li Q, Shi K (2018) Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool Res 39:373–386PubMed 
    PubMed Central 

    Google Scholar 
    Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds (2016) Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UKBauman D, Vleminckx J, Hardy OJ, Drouet T (2018c) Testing and interpreting the shared space-environment fraction in variation partitioning analyses of ecological data. Oikos 128:274–285
    Google Scholar 
    Bauman D, Drouet T, Dray S, Vleminckx J (2018b) Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography 41:1638–1649
    Google Scholar 
    Bauman D, Drouet T, Fortin M, Dray S (2018a) Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99:2159–2166PubMed 

    Google Scholar 
    Benone NL, Soares BE, Lobato CMC, Seabra LB, Bauman D, Montag LF de A (2020) How modified landscapes filter rare species and modulate the regional pool of ecological traits? HydrobiologiaBlair C, Weigel DE, Lazik M, Keeley AT, Walker FM, Landguth E et al. (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833PubMed 

    Google Scholar 
    Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632PubMed 

    Google Scholar 
    Bothwell HM, Cushman SA, Woolbright SA, Hersch-Green EI, Evans LM, Whitham TG et al. (2017) Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol Ecol 26:5114–5132PubMed 

    Google Scholar 
    Breyne P, Mergeay J, Casaer J (2014) Roe deer population structure in a highly fragmented landscape. Eur J Wildl Res 60:909–917
    Google Scholar 
    Bruggeman DJ, Wiegand T, Fernández N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol Ecol 19:3679–3691PubMed 

    Google Scholar 
    Burgess SM, Garrick RC (2020) Regional replication of landscape genetics analyses of the Mississippi slimy salamander, Plethodon mississippi. Landsc Ecol 35:337–351
    Google Scholar 
    Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856PubMed 

    Google Scholar 
    Chambers SM (1995) Spatial structure, genetic variation, and the neighborhood adjustment to effective population size. Conserv Biol 9:1312–1315PubMed 

    Google Scholar 
    Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205CAS 
    PubMed 

    Google Scholar 
    Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Heredity 100:106–113CAS 

    Google Scholar 
    Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979
    Google Scholar 
    Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27:369–380
    Google Scholar 
    Cushman SA, Shirk AJ, Landguth EL (2013) Landscape genetics and limiting factors. Conserv Genet 14:263–274
    Google Scholar 
    Cushman SA, McRae BH, McGarigal K (2015) Basics of landscape ecology: an introduction to landscapes and population processes for landscape geneticists. In: Balkhenol N, Cushman S, Storfer A, Waits L (Eds) Landscape genetics: concepts, methods, applications. Wiley, Ofxord, UK, p 11–34
    Google Scholar 
    Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Naturalist 168:486–499
    Google Scholar 
    Dalongeville A, Andrello M, Mouillot D, Lobreaux S, Fortin M, Lasram F et al. (2018) Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl 11:1437–1447CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dharmarajan G, Beasley JC, Fike JA, Rhodes OE (2014) Effects of landscape, demographic and behavioral factors on kin structure: testing ecological predictions in a mesopredator with high dispersal capability. Anim Conserv 17:225–234
    Google Scholar 
    Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CAS 
    PubMed 

    Google Scholar 
    Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20
    Google Scholar 
    Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493
    Google Scholar 
    Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, et al. (2020) adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. https://CRAN.R-project.org/package=adespatialEvans JS (2020) spatialEco. R package version 1.3-1, https://github.com/jeffreyevans/spatialEcoForester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25:104–120CAS 
    PubMed 

    Google Scholar 
    François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784PubMed 

    Google Scholar 
    Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508
    Google Scholar 
    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140
    Google Scholar 
    Galpern P, Peres-Neto PR, Polfus J, Manseau M (2014) MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol Evolution 5:1116–1120
    Google Scholar 
    Galpern P, Manseau M, Hettinga P, Smith K, Wilson P (2012) Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 12:771–778PubMed 

    Google Scholar 
    Guerrero J, Byrne AW, Lavery J, Presho E, Kelly G, Courcier EA et al. (2018) The population and landscape genetics of the European badger (Meles meles) in Ireland. Ecol Evol 8:10233–10246PubMed 
    PubMed Central 

    Google Scholar 
    Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756PubMed 

    Google Scholar 
    Hearn AJ, Cushman SA, Goossens B, Ross J, Macdonald EA, Hunter LTB et al. (2019) Predicting connectivity, population size and genetic diversity of Sunda clouded leopards across Sabah, Borneo. Landsc Ecol 34:275–290
    Google Scholar 
    Hein C, Moniem HEA, Wagner HH (2021) Can we compare effect size of spatial genetic structure between studies and species using moran eigenvector maps? Frontiers. Ecol Evol 9:612718
    Google Scholar 
    Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214
    Google Scholar 
    Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968
    Google Scholar 
    Janecka J, Jackson R, Yuquang Z et al. (2008) Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv 11:401–411
    Google Scholar 
    Janecka JE, Janecka JE, Yu-Guang Z, Di-Qiang L, Munkhtsog B, Bayaraa M et al. (2017) Range-wide snow leopard phylogeography supports three subspecies. J Hered 108:597–607PubMed 

    Google Scholar 
    Johansson Ö, Rauset G, Samelius G, McCarthy T, Andrén H, Tumursukh L et al. (2016) Land sharing is essential for snow leopard conservation. Biol Conserv 203:1–7
    Google Scholar 
    Johansson Ö, Koehler G, Rauset G, Samelius G, Andrén H, Mishra C et al. (2018) Sex-specific seasonal variation in puma and snow leopard home range utilization. Ecosphere 9(8):e02371. https://doi.org/10.1002/ecs2.2371.Article 

    Google Scholar 
    Johansson Ö, Ausilio G, Low M, Lkhagvajav P, Weckworth B, Sharma K (2021) The timing of breeding and independence for snow leopard females and their cubs. Mamm Biol 101:173–180
    Google Scholar 
    Jombart T (2008b) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CAS 
    PubMed 

    Google Scholar 
    Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341CAS 
    PubMed 

    Google Scholar 
    Jombart T, Devillard S, Dufour A-B, Pontier D (2008a) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:hdy200834
    Google Scholar 
    Jombart T (2017) An introduction to adegenet 2.1.0. https://github.com/thibautjombart/adegenet/wiki/TutorialsKarmacharya DB, Thapa K, Shrestha R, Dhakal M, Janecka JE (2011) Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Research Notes 4:516PubMed 
    PubMed Central 

    Google Scholar 
    Kaszta Ż, Cushman SA, Hearn AJ, Burnham D, Macdonald EA, Goossens B et al. (2019) Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol Conserv 235:63–76
    Google Scholar 
    Kaszta Ż, Cushman SA, Htun S, Naing H, Burnham D, Macdonald DW (2020) Simulating the impact of Belt and Road initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa. Landsc Ecol 35:727–746
    Google Scholar 
    Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi (Kenya). http://www.worldagroforestry.org/output/tree-diversity-analysisKorablev MP, Poyarkov AD, Karnaukhov AS, Zvychaynaya EYU, Kuksin AN, Malykh SV et al. (1776) Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conserv Genet 22:397–410
    Google Scholar 
    Kuhn A, Bauman D, Darras H, Aron S (2017) Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system. Heredity 119:207–213CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landguth E, Cushman S, Schwz M, Mckelvey K, Mury M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191CAS 
    PubMed 

    Google Scholar 
    Landguth EL, Cushman SA (2010) cdpop: A spatially explicit cost distance population genetics program. Mol Ecol Resour 10:156–161CAS 
    PubMed 

    Google Scholar 
    Landguth EL, Fedy BC, Oyler-Mccance SJ, Garey AL, Emel SL, Mumma M et al. (2012) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour 12:276–284
    Google Scholar 
    Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277
    Google Scholar 
    Legendre P, Fortin M-J, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247
    Google Scholar 
    Li J, Weckworth BV, McCarthy TM, Liang X, Liu Y, Xing R et al. (2020) Defining priorities for global snow leopard conservation landscapes. Biol Conserv 241:108387
    Google Scholar 
    Macdonald EA, Cushman SA, Landguth EL, Hearn AJ, Malhi Y, Macdonald DW (2018) Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. Plos One 13:e0196974PubMed 
    PubMed Central 

    Google Scholar 
    Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–35PubMed 

    Google Scholar 
    Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landscape Ecol 30:1405–1420
    Google Scholar 
    McCarthy TM, Fuller TK, Munkhtsog B (2005) Movements and activities of snow leopards in Southwestern Mongolia. Biol Conserv 124:527–537
    Google Scholar 
    McCarthy T, Mallon D, Jackson R, Zahler P, McCarthy K (2017) Panthera uncia. The IUCN red list of threatened species 2017: e.T22732A50664030. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T22732A50664030.en. Accessed 29 June 2019Miquel C, Bellemain E, Poillot C, Bessiere J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988
    Google Scholar 
    Neel MC, McKelvey K, Ryman N, Lloyd MW, Bull RS, Allendorf FW et al. (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111:189–199CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2019) vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegancitatOyler-McCance SJ, Fedy BC, Landguth EL (2013) Sample design effects in landscape genetics. Conserv Genet 14:275–285
    Google Scholar 
    Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420CAS 
    PubMed 

    Google Scholar 
    Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. Plos Genet 2:e190PubMed 
    PubMed Central 

    Google Scholar 
    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572
    Google Scholar 
    Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMed 

    Google Scholar 
    Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259
    Google Scholar 
    Riordan P, Cushman SA, Mallon D, Shi K, Hughes J (2016) Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography 39:419–426
    Google Scholar 
    Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 

    Google Scholar 
    Ruiz-Gonzalez A, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ (2015) Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape. Mol Ecol 24:5110–5129PubMed 

    Google Scholar 
    Savary P, Foltête J, Moal H, Vuidel G, Garnier S (2021) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21:1167–1185PubMed 

    Google Scholar 
    Schwartz MK, McKelvey KS (2008) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441
    Google Scholar 
    Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934CAS 
    PubMed 

    Google Scholar 
    Shirk AJ, Cushman SA (2014) Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Front Ecol Evolution 2:62
    Google Scholar 
    Shirk AJ, Landguth EL, Cushman SA (2020) The effect of gene flow from unsampled demes in landscape genetic analysis. Mol Ecol Resour 21:394–403PubMed 

    Google Scholar 
    Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619CAS 
    PubMed 

    Google Scholar 
    Shirk AJ, Landguth EL, Cushman SA (2017a) A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol Ecol Resour 18:55–67Shirk AJ, Landguth EL, Cushman SA (2017b) A comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Resour 17:1308–1317Short-Bull RA, Cushman S, Mace R, Chilton T, Kendall K, Landguth E et al. (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107
    Google Scholar 
    Shrestha B, Kindlmann P (2020) Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Sci Rep 10:19853CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stekhoven DJ (2013) missForest: nonparametric missing value imputation using random forest. R package version 1.4Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514PubMed 

    Google Scholar 
    Wagner HH, Fortin M-J (2012) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261
    Google Scholar 
    Wagner HH, Fortin MJ (2016) Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds. Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UK. pp. 77–98Wahlund S (1928) Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65–106
    Google Scholar 
    Wan HY, Cushman SA, Ganey JL (2019) Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas. Landsc Ecol 34:503–519
    Google Scholar 
    Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612
    Google Scholar 
    Weckworth B (2021) Snow leopard (Panthera uncia) genetics: the knowledge gaps, needs, and implications for conservation. J Indian I Sci 101:279–290
    Google Scholar 
    Wollenberg AL, van den (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219
    Google Scholar 
    Wright S (1943) Isolation by distance. Genetics 28:114–138CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu S, Qinye Y, Du Z (2003) Delineation of eco-geographic regional system of China. J Geogr Sci 13:309
    Google Scholar 
    Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers Distrib 24:868–879
    Google Scholar 
    Zhang Y, Hacker C, Zhang Y, Xue Y, Wu L, Dai Y et al. (2019) An analysis of genetic structure of snow leopard populations in Sanjiang-Yuan and Qilianshan National Parks. Acta Theriologica Sin 39:442–449
    Google Scholar  More

  • in

    Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest

    1.Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.
    Google Scholar 
    2.Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst. 2016;47:143–64.
    Google Scholar 
    3.Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367:eaba1223.CAS 
    PubMed 

    Google Scholar 
    4.Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 2010;25:468–78.PubMed 
    PubMed Central 

    Google Scholar 
    5.Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Ke PJ, Miki T. Incorporating the soil environment and microbial community into plant competition theory. Front Microbiol. 2015;6:1066.PubMed 
    PubMed Central 

    Google Scholar 
    7.Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.CAS 
    PubMed 

    Google Scholar 
    8.Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.CAS 
    PubMed 

    Google Scholar 
    9.Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science. 2017;355:173–6.CAS 
    PubMed 

    Google Scholar 
    10.Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv. 2018;4:eaau4578.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen L, Swenson NG, Ji N, Mi X, Ren H, Guo L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–8.CAS 
    PubMed 

    Google Scholar 
    12.LaManna JA, Walton ML, Turner BL, Myers JA. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol Lett. 2016;19:657–67.PubMed 

    Google Scholar 
    13.Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol Evol. 2018;2:1403–7.PubMed 

    Google Scholar 
    14.Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002;154:275–304.PubMed 

    Google Scholar 
    15.van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature. 2018;558:243–8.PubMed 

    Google Scholar 
    16.Schroeder JW, Martin JT, Angulo DF, Razo IAD, Barbosa JM, Perea R, et al. Host plant phylogeny and abundance predict root‐associated fungal community composition and diversity of mutualists and pathogens. J Ecol. 2019;107:1557–66.
    Google Scholar 
    17.Jiang J, Karen CA, Mara B, Maarten BE, James AE, James DB. Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications for plant competition and succession. Am Nat. 2020;195:591–602.
    Google Scholar 
    18.Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA. Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nat Commun. 2020;11:2204.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen‐host range. Proc Natl Acad Sci USA. 2007;104:4979–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S. Experimental evidence for a phylogenetic Janzen‐Connell effect in a subtropical forest. Ecol Lett. 2012;15:111–8.PubMed 

    Google Scholar 
    21.Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S. Arbuscular mycorrhizal fungi counteract the Janzen‐Connell effect of soil pathogens. Ecology. 2015;96:562–74.PubMed 

    Google Scholar 
    22.Benítez MS, Hersh MH, Vilgalys R, Clark JS. Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol. 2013;28:705–11.PubMed 

    Google Scholar 
    23.Klironomos J, Zobel M, Tibbett M. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol. 2011;189:366–70.PubMed 

    Google Scholar 
    24.van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco Lett. 2008;11:296–310.
    Google Scholar 
    25.Wiegand T, Moloney KA. Rings, circles, and null‐models for point pattern analysis in ecology. Oikos. 2004;104:209–29.
    Google Scholar 
    26.Perry GL, Miller BP, Enright NJ. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol. 2006;187:59–82.
    Google Scholar 
    27.Law R, Illian J, Burslem DF, Gratzer G, Gunatilleke CV, Gunatilleke IA. Ecological information from spatial patterns of plants: insights from point process theory. J Ecol. 2009;97:616–28.
    Google Scholar 
    28.Liang M, Liu X, Parker IM, Johnson D, Zheng Y, Luo S, et al. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Sci Adv. 2019;5:eaax5088.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Chen Y, Jia P, Cadotte MW, Wang P, Liu X, Qi Y, et al. Rare and phylogenetically distinct plant species exhibit less diverse root-associated pathogen communities. J Ecol. 2019;107:1226–37.
    Google Scholar 
    30.Peters HA. Neighbour‐regulated mortality: the influence of positive and negative density dependence on tree populations in species‐rich tropical forests. Ecol Lett. 2003;6:757–65.
    Google Scholar 
    31.Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, et al. Random forests for classification in ecology. Ecology. 2007;88:2783–92.PubMed 

    Google Scholar 
    32.Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY – a global database of plant traits. Glob Chang Biol. 2011;17:2905–35.PubMed Central 

    Google Scholar 
    33.Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012;195:844–56.CAS 
    PubMed 

    Google Scholar 
    34.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Google Scholar 
    35.Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, Jonathan R, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794–805.PubMed 
    PubMed Central 

    Google Scholar 
    36.Wang Z, Jiang Y, Deane DC, He F, Shu W, Liu Y. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytol. 2019;223:462–74.PubMed 

    Google Scholar 
    37.Zhao Z, Li X, Liu MF, Merckx VS, Saunders RM, Zhang D. Specificity of assemblage, not fungal partner species, explains mycorrhizal partnerships of mycoheterotrophic Burmannia plants. ISME J. 2021;15:1614–27.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Peay KG, Baraloto C, Fine PV. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Barberán A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, et al. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett. 2015;18:1397–405.PubMed 

    Google Scholar 
    40.LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat Ecol Evol. 2017;1:1107–15.PubMed 

    Google Scholar 
    41.Peh KS, Lewis SL, Lloyd J. Mechanisms of monodominance in diverse tropical tree‐dominated systems. J Ecol. 2011;99:891–8.
    Google Scholar 
    42.Johnson DJ, Clay K, Phillips RP. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia. 2018;186:195–204.PubMed 

    Google Scholar 
    43.Waud M, Busschaert P, Lievens B, Jacquemyn H. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol. 2016;20:155–65.
    Google Scholar 
    44.Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 2018;217:1230–9.PubMed 

    Google Scholar 
    45.Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.
    Google Scholar 
    46.Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol. 1997;85:561–73.
    Google Scholar 
    47.Bardgett RD, Wardle DA. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. New York: Oxford University Press; 2010.48.Kandlikar GS, Johnson CA, Yan X, Kraft NJ, Levine JM. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol Lett. 2019;22:1178–91.PubMed 

    Google Scholar 
    49.Swenson NG, Iida Y, Howe R, Wolf A, Umaña MN, Petprakob K, et al. Tree co-occurrence and transcriptomic response to drought. Nat Commun. 2017;8:1996.PubMed 
    PubMed Central 

    Google Scholar 
    50.Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia. 2016;59:179–87.
    Google Scholar 
    51.Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.
    Google Scholar 
    52.Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 2018;220:971–6.PubMed 

    Google Scholar 
    54.Egan CP, Rummel A, Kokkoris V, Klironomos J, Lekberg Y, Hart MM. Using mock communities of arbuscular mycorrhizal fungi to evaluate fidelity associated with Illumina sequencing. Fungal Ecol. 2018;33:52–64.
    Google Scholar  More

  • in

    Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state

    1.Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    2.Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    3.Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425–48.PubMed 

    Google Scholar 
    4.Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.5.Breitbart M, Thompson L, Suttle C, Sullivan M. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
    Google Scholar 
    6.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.7.Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007;1:492–501.CAS 
    PubMed 

    Google Scholar 
    8.Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife. 2014;3:e03125.9.Trubl G, Jang H Bin, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–18.10.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    11.Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.CAS 
    PubMed 

    Google Scholar 
    12.Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 2021;15:981–98.PubMed 

    Google Scholar 
    13.Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.PubMed 

    Google Scholar 
    14.Cassman N, Prieto-Davó A, Walsh K, Silva GGZ, Angly F, Akhter S, et al. Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol. 2012;14:3043–65.CAS 
    PubMed 

    Google Scholar 
    15.Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.16.Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Tiano L, Garcia-Robledo E, Dalsgaard T, Devol AH, Ward BB, Ulloa O, et al. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones. Deep Res Part I Oceanogr Res Pap. 2014;94:173–83.CAS 

    Google Scholar 
    18.Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.CAS 
    PubMed 

    Google Scholar 
    19.Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr. 2009;80:113–28.
    Google Scholar 
    20.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS 
    PubMed 

    Google Scholar 
    21.Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;1:723–9.22.Codispoti LA, Friedrich GE, Packard TT, Glover HE, Kelly PJ, Spinrad RW, et al. High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate. Science. 1986;233:1200 LP–1202.
    Google Scholar 
    23.Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science. 2010;330:1375–8.CAS 
    PubMed 

    Google Scholar 
    24.Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci USA. 2014;111:10714 LP–10719.
    Google Scholar 
    25.Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al. Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA. 2017;114:8319–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep. 2010;2:728–38.CAS 
    PubMed 

    Google Scholar 
    27.Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci USA. 2012;109:15996–6003.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol. 2004;70:2941–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Weinbauer MG, Brettar I, Höfle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.
    Google Scholar 
    30.Heldal M, Bratbak G. Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser. 1991;72:205–12.
    Google Scholar 
    31.Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343:60–62.
    Google Scholar 
    32.Brum JR, Morris J, Décima M, Stukel M. Mortality in the oceans: causes and consequences. In Eco-DAS IX Symposium Proceedings. Association for the Sciences of Limnology and Oceanography; 2014.33.Colombet J, Sime-Ngando T. Seasonal depth-related gradients in virioplankton: lytic activity and comparison with protistan grazing potential in Lake Pavin (France). Micro Ecol. 2012;64:67–78.
    Google Scholar 
    34.Colombet J, Sime-Ngando T, Cauchie HM, Fonty G, Hoffmann L, Demeure G. Depth-related gradients of viral activity in Lake Pavin. Appl Environ Microbiol. 2006;72:4440–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Brum J, Steward G, Jiang S, Jellison R. Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Micro Ecol. 2005;41:247–60.
    Google Scholar 
    36.Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013;7:1738–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.CAS 
    PubMed 

    Google Scholar 
    38.Székely AJ, Breitbart M. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol Lett. 2016;363:27.
    Google Scholar 
    39.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: Mining viral signal from microbial genomic data. PeerJ. 2015;2015:e985.
    Google Scholar 
    40.Hurwitz BL, Sullivan MB. The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8:e57355.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Aldunate M, Henríquez-Castillo C, Ji Q, Lueders-Dumont J, Mulholland MR, Ward BB, et al. Nitrogen assimilation in picocyanobacteria inhabiting the oxygen-deficient waters of the eastern tropical North and South Pacific. Limnol Oceanogr. 2020;65:437–53.CAS 

    Google Scholar 
    42.Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, Konstantinidis K, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genom. 2013;14:320.CAS 

    Google Scholar 
    43.Duhaime MB, Deng L, Poulos BT, Sullivan MB. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol. 2012;14:2526–37.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ganesh S, Bristow LA, Larsen M, Sarode N, Thamdrup B, Stewart FJ. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 2015;9:2682–96.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Allen LZ, Allen EE, Badger JH, McCrow JP, Paulsen IT, Elbourne LD, et al. Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME J. 2012;6:1403–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.47.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    48.Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 

    Google Scholar 
    49.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 

    Google Scholar 
    50.Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:e234.PubMed 
    PubMed Central 

    Google Scholar 
    51.Bragg JG, Chisholm SW. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS One. 2008;3:e3550.PubMed 
    PubMed Central 

    Google Scholar 
    52.Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 2018;12:1273–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.White AE, Foster RA, Benitez-Nelson CR, Masqué P, Verdeny E, Popp BN, et al. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Prog Oceanogr. 2013;109:1–17.
    Google Scholar 
    54.Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Fuchsman CA, Devol AH, Saunders JK, McKay C, Rocap G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front Microbiol. 2017;8:2384.PubMed 
    PubMed Central 

    Google Scholar 
    56.Zhang Y, Pohlmann EL, Halbleib CM, Ludden PW, Roberts GP. Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regula. J Bacteriol. 2001;183:1610–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Tong W-H. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 2000;19:5692–5700.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Py B, Barras F. Building Feg-S proteins: bacterial strategies. Nat Rev Microbiol. 2010;8:436–46.59.Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T. Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997;272:23031–6.CAS 
    PubMed 

    Google Scholar 
    60.Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.61.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757 LP–760.
    Google Scholar 
    62.Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1729.PubMed 
    PubMed Central 

    Google Scholar 
    63.Carolan MT, Smith JM, Beman JM. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front Microbiol. 2015;6:334.PubMed 
    PubMed Central 

    Google Scholar 
    64.Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018;1:2706–22.65.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 

    Google Scholar 
    66.Lill R, Dutkiewicz R, Elsässer HP, Hausmann A, Netz DJA, Pierik AJ, et al. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta Mol Cell Res. 2006;1763:652–67.67.Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol. 2006;2:171–4.CAS 
    PubMed 

    Google Scholar 
    68.Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta Bioenerg. 2013;1827:455–69.CAS 

    Google Scholar 
    69.Xu XM, Møller SG. Iron-sulfur clusters: Biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal. 2011;15:271–307.PubMed 

    Google Scholar 
    70.Miller HK, Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics. 2015;7:943–56.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Sharon I, Battchikova N, Aro E-M, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. Biogenesis of Fe-S cluster by the bacterial suf system. SufS and SufE form a new type of cysteine desulfurase. J Biol Chem. 2003;278:38352–9.CAS 
    PubMed 

    Google Scholar 
    73.Outten FW, Wood MJ, Muñoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem. 2003;278:45713–9.CAS 
    PubMed 

    Google Scholar 
    74.Ayala-Castro C, Saini A, Outten FW. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev. 2008;72:110–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Shepard EM, Boyd ES, Broderick JB, Peters JW. Biosynthesis of complex iron-sulfur enzymes. Curr Opin Chem Biol. 2011;15:319–27.76.Lill R. Function and biogenesis of iron–sulphur proteins. Nature. 2009;460:831–8.CAS 
    PubMed 

    Google Scholar 
    77.Seidler A, Jaschkowitz K, Wollenberg M. Incorporation of iron-sulphur clusters in membrane-bound proteins. Biochem Soc Trans. 2001;29:418–21.CAS 
    PubMed 

    Google Scholar 
    78.Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot J-P. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res. 2002;73:215–22.CAS 
    PubMed 

    Google Scholar 
    79.Dubnau D, Losick R. Bistability in bacteria. Mol Microbiol. 2006;61:564–72.CAS 
    PubMed 

    Google Scholar 
    80.Resnekov O, Driks A, Losick R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J Bacteriol. 1995;177:5628–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Sonenshein AL. Bacteriophages: how bacterial spores capture and protect phage DNA. Curr Biol. 2006;16:R14–R16.82.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 

    Google Scholar 
    83.Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.PubMed 
    PubMed Central 

    Google Scholar 
    84.Mobberley J, Nathan Authement R, Segall AM, Edwards RA, Slepecky RA, Paul JH. Lysogeny and sporulation in Bacillus isolates from the Gulf of Mexico. Appl Environ Microbiol. 2010;76:829–42.CAS 
    PubMed 

    Google Scholar 
    85.Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.PubMed 
    PubMed Central 

    Google Scholar 
    86.Meinhart A, Alonso JC, Strater N, Saenger W. Crystal structure of the plasmid maintenance system /: functional mechanism of toxin and inactivation by 2 2 complex formation. Proc Natl Acad Sci. 2003;100:1661–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett. 2013;340:73–85.88.Kawano M. Divergently overlapping cis -encoded antisense RNA regulating toxin-antitoxin systems from E. coli. RNA Biol. 2012;9:1520–7.CAS 
    PubMed 

    Google Scholar 
    89.Smith MA, Bidochka MJ. Bacterial fitness and plasmid-loss: the importance of culture conditions and plasmid size. Can J Microbiol. 1998;44:351–5.CAS 
    PubMed 

    Google Scholar 
    90.Summers DK. The kinetics of plasmid loss. Trends Biotechnol. 1991;9: 273–8.91.Persad AK, Williams ML, LeJeune JT. Rapid loss of a green fluorescent plasmid in Escherichia coli O157:H7. AIMS Microbiol. 2017;3:872–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013;499:219–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Hargreaves KR, Kropinski AM, Clokie MR. Bacteriophage behavioral ecology. Bacteriophage. 2014;4:e29866.PubMed 
    PubMed Central 

    Google Scholar 
    94.Naught LE, Gilbert S, Imhoff R, Snook C, Beamer L, Tipton P. Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase. Biochemistry. 2002;41:9637–45.CAS 
    PubMed 

    Google Scholar 
    95.Dong C, Flecks S, Unversucht S, Haupt C, van Pee K-H, Naismith JH. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science. 2005;309:2216–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Fouces R, Mellado E, Diez B, Barredo JL. The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology. 1999;145:855–68.CAS 
    PubMed 

    Google Scholar 
    97.Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Poonsuk K, Bluhm AP, Cabanas D, et al. Novel dual regulators of Pseudomonas aeruginosa essential for productive biofilms and virulence. Mol Microbiol. 2018;109:401–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kurtov D, Kinghorn JR, Unkles SE. The Aspergillus nidulans panB gene encodes ketopantoate hydroxymethyltransferase, required for biosynthesis of pantothenate and Coenzyme A. Mol Gen Genet. 1999;262:115–20.CAS 
    PubMed 

    Google Scholar 
    99.Huisjes R, Card DJ. Methods for assessment of pantothenic acid (Vitamin B5). In: Harrington D, editor. Laboratory assessment of vitamin status. London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK : Elsevier Inc.; 2019. p. 265–299. https://doi.org/10.1038/s41396-021-01143-1.100.Leonardi R, Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2:2.101.Begley TP, Kinsland C, Strauss E. The biosynthesis of coenzyme a in bacteria. Vitam Horm. 2001;61:157–71.CAS 
    PubMed 

    Google Scholar 
    102.Cameron B, Guilhot C, Blanche F, Cauchois L, Rouyez MC, Rigault S, et al. Genetic and sequence analyses of a Pseudomonas denitrificans DNA fragment containing two cob genes. J Bacteriol. 1991;173:6058–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Doxey AC, Kurtz DA, Lynch MD, Sauder LA, Neufeld JD. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J. 2015;9:461–71.CAS 
    PubMed 

    Google Scholar 
    104.Heal KR, Qin W, Amin SA, Devol AH, Moffett JW, Armbrust EV, et al. Accumulation of NO2-cobalamin in nutrient-stressed ammonia-oxidizing archaea and in the oxygen deficient zone of the eastern tropical North Pacific. Environ Microbiol Rep. 2018;10:453–7.CAS 
    PubMed 

    Google Scholar 
    105.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    106.Streisinger G, Emrich J, Stahl MM. Chromosome structure in phage T4, III. Terminal redundancy and length determination. Proc Natl Acad Sci USA. 1967;57:292–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci USA. 2017;114:E4324–E4333.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Brum J. 5m intervals of CTD profiles from R/V New Horizon cruise NH1315 in the Eastern Tropical North Pacific (ETNP) during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-08-31 (2020). https://doi.org/10.26008/1912/bco-dmo.822818.1.109.Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Micro Ecol. 1998;14:113–8.
    Google Scholar 
    110.Brum J. Estimated abundances of viruses and bacteria determined in samples collected in the Eastern Tropical North Pacific (ETNP) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823094.1.111.Binder B. Reconsidering the relationship between vitally induced bacterial mortality and frequency of infected cells. Aquat Micro Ecol. 1999;18:207–15.
    Google Scholar 
    112.Brum J. Estimated frequency of lytic viral infection from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-01 (2020). https://doi.org/10.26008/1912/bco-dmo.822914.1.113.Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004;11:36–42.114.Brum J. Morphotypes, capsid widths, and tail lengths of viruses from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823131.1.115.John SG, Mendez CB, Deng L, Poulos B, Kauffman AKM, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    116.Duhaime MB, Sullivan MB. Ocean viruses: Rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology. 2012;434:181–6.CAS 
    PubMed 

    Google Scholar 
    117.Brum J. Accession numbers of viral metagenomes from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-04 (2020) https://doi.org/10.26008/1912/bco-dmo.823295.1.118.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.CAS 
    PubMed 

    Google Scholar 
    119.Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinforma. 2003; Chapter 10: Unit 10.3.120.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230.121.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:1002195.
    Google Scholar 
    122.Team RCR. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.123.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York: 2016.124.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community Ecology Package. R package version 2.5-2. 2013 http://RForge.R-project.org/projects/vegan/.125.Wilkinson L. venneuler: Venn and Euler diagrams. R package version 1.1-0. 2011 https://CRAN.Rproject.org/package=venneuler.126.Harrell FE, With contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous. R package version 4.3-0. 2019 https://CRAN.R-project.org/package=Hmisc.127.Wei T, Simko V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available from https://github.com/taiyun/corrplot.128.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang H Bin, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.129.Sturges HA. The choice of a class interval. J Am Stat Assoc. 1926;21:65–66.130.Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.CAS 
    PubMed 

    Google Scholar  More