Functional composition of ant assemblages in habitat islands is driven by habitat factors and landscape composition
1.Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15. https://doi.org/10.1016/j.biocon.2018.07.022 (2018).Article
Google Scholar
2.Feranec, J. et al. (eds) European Landscape Dynamics: CORINE Land Cover Data (CRC Press, 2016).
Google Scholar
3.Deák, B. et al. Fragmented dry grasslands preserve unique components of species and phylogenetic diversity in agricultural landscapes. Biodivers. Conserv. https://doi.org/10.1007/s10531-020-02066-7 (2020).Article
Google Scholar
4.Fekete, R. et al. Roadside verges and cemeteries: Comparative analysis of anthropogenic orchid habitats in the Eastern Mediterranean. Ecol. Evol. 9, 6655–6664. https://doi.org/10.1002/ece3.5245 (2019).Article
PubMed
PubMed Central
Google Scholar
5.Batáry, P. et al. Biologia Futura: Landscape perspectives on farmland biodiversity conservation. Biol. Fut. 71, 9–18. https://doi.org/10.1007/s42977-020-00015-7 (2020).Article
Google Scholar
6.Deák, B. et al. Landscape and habitat filters jointly drive richness and abundance of grassland specialist plants in terrestrial habitat islands. Landsc. Ecol. 33, 1117–1132. https://doi.org/10.1007/s10980-018-0660-x (2018).Article
Google Scholar
7.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574(7780), 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS
CAS
Article
PubMed
Google Scholar
8.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
9.Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11(5), 251–259. https://doi.org/10.1890/120126 (2013).Article
Google Scholar
10.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: Eight hypotheses. Biol. Rev. 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).Article
PubMed
Google Scholar
11.Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29(1), 25–46. https://doi.org/10.1146/annurev.en.29.010184.000325 (1984).Article
Google Scholar
12.Deák, B. et al. Habitat islands outside nature reserves: Threatened biodiversity hotspots of grassland specialist plant and arthropod species. Biol. Conserv. 241, 108254. https://doi.org/10.1016/j.biocon.2019.108254 (2020).Article
Google Scholar
13.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31(1), 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).Article
Google Scholar
14.Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x (1991).Article
Google Scholar
15.Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends. Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).Article
PubMed
Google Scholar
16.Gazol, A. et al. Landscape and small-scale determinants of grassland species diversity: Direct and indirect influences. Ecography 35, 944–951. https://doi.org/10.1111/j.1600-0587.2012.07627.x (2012).Article
Google Scholar
17.Deák, B. et al. Linking environmental heterogeneity and plant diversity: The ecological role of small natural features in homogeneous landscapes. Sci. Total Env. 763, 144199. https://doi.org/10.1016/j.scitotenv.2020.144199 (2021).CAS
Article
Google Scholar
18.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052 (2015).Article
Google Scholar
19.Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: Area, age, and edge effects. Ecol. Appl. 10(4), 1230–1248. https://doi.org/10.1890/1051-0761(2000)010[1230:AIUHFI]2.0.CO;2 (2000).Article
Google Scholar
20.Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20(5), 591–599. https://doi.org/10.1111/ddi.12187 (2014).Article
Google Scholar
21.Marques, L. Collapse of terrestrial biodiversity. In Capitalism and Environmental Collapse 247–273 (Springer, 2020).Chapter
Google Scholar
22.Biró, M., Bölöni, J. & Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32(3), 660–671. https://doi.org/10.1111/cobi.13038 (2018).Article
PubMed
Google Scholar
23.Dembicz, I. et al. Steppe islands in a sea of fields: Where island biogeography meets the reality of a severely transformed landscape. J. Veg. Sci. https://doi.org/10.1111/jvs.12930 (2020).Article
Google Scholar
24.Deák, B. et al. Cultural monuments and nature conservation: A review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers. Conserv. 25(12), 2473–2490. https://doi.org/10.1007/s10531-016-1081-2 (2016).Article
Google Scholar
25.Dembicz, I. et al. Isolation and patch size drive specialist plant species density within steppe islands: A case study of kurgans in southern Ukraine. Biodivers. Conserv. 25(12), 2289–2307. https://doi.org/10.1007/s10531-016-1077-y (2016).Article
Google Scholar
26.Tóth, C. A. et al. Iron age burial mounds as refugia for steppe specialist plants and invertebrates: Case study from the Zsolca mounds (NE Hungary). Hacquetia 18(2), 195–206. https://doi.org/10.2478/hacq-2019-0009 (2019).Article
Google Scholar
27.Lisetskii, F. N., Goleusov, P. V., Moysiyenko, I. I. & Sudnik-Wójcikowska, B. Microzonal distribution of soils and plants along the catenas of mound structures. Contemp. Probl. Ecol. 7(3), 282–293. https://doi.org/10.1134/S1995425514030111 (2014).Article
Google Scholar
28.Deák, B. et al. The effects of micro-habitats and grazing intensity on the vegetation of burial mounds in the Kazakh steppes. Plant Ecol. Divers. 10(5–6), 509–520. https://doi.org/10.1080/17550874.2018.1430871 (2017).Article
Google Scholar
29.Marcolin, F., Lakatos, T., Gallé, R. & Batáry, P. Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Glob. Ecol. Conserv. 28, e01687. https://doi.org/10.1016/j.gecco.2021.e01687 (2021).Article
Google Scholar
30.Crist, T. O. Biodiversity, species interactions, and functional roles of ants (Hymenoptera: Formicidae) in fragmented landscapes: A review. Myrmecol. News. 12, 3–13 (2009).
Google Scholar
31.Sobrinho, T. G., Schoereder, J. H., Sperber, C. F. & Madureira, M. S. Does fragmentation alter species composition in ant communities (Hymenoptera: Formicidae)?. Sociobiology 42, 329–342 (2003).
Google Scholar
32.Underwood, E. C. & Fisher, B. L. The role of ants in conservation monitoring: If, when, and how. Biol. Conserv. 132(2), 166–182. https://doi.org/10.1016/j.biocon.2006.03.022 (2006).Article
Google Scholar
33.Hölldobler, B. & Wilson, E. O. The Ants 732 (Belknap of Harvard University Press, 1990).Book
Google Scholar
34.Konečná, et al. Anthills as habitat islands in a sea of temperate pasture. Biodivers. Conserv. 30, 1–19. https://doi.org/10.1007/s10531-021-02134-6 (2021).Article
Google Scholar
35.Philpott, S. M., Perfecto, I., Armbrecht, I. & Parr, C. L. Ant diversity and function in disturbed and changing habitats. In Ant Ecology (eds Lach, L. et al.) 37–156 (Oxford University Press, 2010).
Google Scholar
36.Stadler, B. & Dixon, T. Mutualism Ants and Their Insect Partners (Cambridge University Press, 2008).Book
Google Scholar
37.Frouz, J. & Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 11(11), 191–199 (2008).
Google Scholar
38.Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7(9), 1221–1244. https://doi.org/10.1023/A:1008891901953 (1998).Article
Google Scholar
39.Azcárate, F. M., Alameda-Martín, A., Escudero, A. & Sánchez, A. M. Ant communities resist even in small and isolated gypsum habitat remnants in a Mediterranean agroecosystem. Front. Ecol. Evol. 9, 33. https://doi.org/10.3389/fevo.2021.619215 (2021).Article
Google Scholar
40.Bátori, Z. et al. Karst dolines provide diverse microhabitats for different functional groups in multiple phyla. Sci. Rep. 9(1), 1–13. https://doi.org/10.1038/s41598-019-43603-x (2019).ADS
CAS
Article
Google Scholar
41.Hoffmann, B. D. & Andersen, A. N. Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral. Ecol. 28(4), 444–464. https://doi.org/10.1046/j.1442-9993.2003.01301.x (2003).Article
Google Scholar
42.Csősz, S. et al. The myrmecofauna (Hymenoptera: Formicidae) of Hungary: Survey of ant species with an annotated synonymic inventory. Insects 12(1), 78. https://doi.org/10.3390/insects12010078 (2021).Article
PubMed
PubMed Central
Google Scholar
43.Dröse, W., Podgaiski, L. R., Dias, C. F. & Mendonca, M. D. S. Jr. Local and regional drivers of ant communities in forest-grassland ecotones in South Brazil: A taxonomic and phylogenetic approach. PLoS ONE 14(4), e0215310. https://doi.org/10.1371/journal.pone.0215310 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
44.Bátori, Z. et al. Managing climate change microrefugia for vascular plants in forested karst landscapes. For. Ecol. Manag. 496, 119446. https://doi.org/10.1016/j.foreco.2021.119446 (2021).Article
Google Scholar
45.Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970. https://doi.org/10.1038/srep40970 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
46.King, J. R., Warren, R. J., Maynard, D. S. & Bradford, M. A. Ants: Ecology and impacts in Dead Wood. In Saproxylic Insects. Zoological Monographs Vol. 1 (ed. Ulyshen, M.) (Springer, 2018).
Google Scholar
47.Tölgyesi, C. et al. Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography 43, 848–859. https://doi.org/10.1111/ecog.04906 (2020).Article
Google Scholar
48.Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecol. Manag. 384, 287–302. https://doi.org/10.1016/j.foreco.2016.10.057 (2017).Article
Google Scholar
49.Pacheco, R., Vasconcelos, H. L., Groc, S., Camacho, G. P. & Frizzo, T. L. The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodivers. Conserv. 22, 983–997. https://doi.org/10.1007/s10531-013-0463-y (2013).Article
Google Scholar
50.Pihlgren, A., Lenoir, L. & Dahms, H. Ant and plant species richness in relation to grazing, fertilisation and topography. J. Nat. Conserv. 18(2), 118–125. https://doi.org/10.1016/j.jnc.2009.06.002 (2010).Article
Google Scholar
51.Bátori, Z. et al. Karstic microrefugia host functionally specific ant assemblages. Front. Ecol. Evol. 8, 482. https://doi.org/10.3389/fevo.2020.613738 (2020).Article
Google Scholar
52.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article
Google Scholar
53.Seifert, B. The Ants of Central and North Europe 408( – lutra Verlags – und Vertriebsgesellschaft, 2018).54.Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The Ants of Poland with Reference to the Myrmecofauna of Europe 496 (Natura optima dux Foundation, 2012).55.EOTR (Uniform National Mapping System of Hungary) 1:10,000 Scale Topographic Maps. FÖMI (Institute of Geodesy, Cartography and Remote Sensing).56.Ministry of Agriculture. Ökoszisztéma Alaptérkép és Adatmodell Kialakítása. (Ecosystem Basemap and Datamodel Design). https://doi.org/10.34811/osz.alapterkep (2019).57.Lanan, M. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). Myrmecol. News 20, 53 (2014).PubMed
PubMed Central
Google Scholar
58.QGIS Development Team. QGIS Geographic Information System, Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).59.Faraway, J. J. Linear Models with R 2nd edn. (Chapman and Hall/CRC, London, 2014).MATH
Google Scholar
60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-3. (R Foundation for Statistical Computing, 2016).61.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305. https://doi.org/10.1890/08-2244.1 (2010).Article
PubMed
Google Scholar
62.Galipaud, M., Gillingham, M. A. & Dechaume-Moncharmont, F. X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evol. 8(12), 1668–1678. https://doi.org/10.1111/2041-210X.12835 (2017).Article
Google Scholar
63.Hegyi, G. & Garamszegi, L. Z. Using information theory as a substitute for stepwise regression in ecology and behavior. Behav. Ecol. Sociobiol. 65(1), 69–76. https://doi.org/10.1007/s00265-010-1036-7 (2011).Article
Google Scholar
64.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/. More