Forest defoliator outbreaks alter nutrient cycling in northern waters
1.Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130164 (2013).Article 
 CAS 
 Google Scholar 
 2.Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).CAS 
 Article 
 Google Scholar 
 3.Tanentzap, A. J. et al. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, e1601765 (2017).ADS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 4.Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).Article 
 Google Scholar 
 5.Williamson, C. E., Morris, D. P., Pace, M. L. & Olson, O. G. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol. Oceanogr. 44, 795–803 (1999).ADS 
 CAS 
 Article 
 Google Scholar 
 6.Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509 (2009).ADS 
 CAS 
 PubMed 
 Article 
 Google Scholar 
 7.Tanentzap, A. J. et al. Cooling lakes while the world warms: effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnol. Oceanogr. 53, 404–410 (2008).CAS 
 Article 
 Google Scholar 
 8.Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P. & Ackerman, J. D. The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environ. Toxicol. Chem. 29, 2519–2528 (2010).CAS 
 PubMed 
 Article 
 Google Scholar 
 9.Hessen, D. O. Inorganic nitrogen deposition and its impacts on N:P-ratios and lake productivity. Water 5, 327–341 (2013).ADS 
 CAS 
 Article 
 Google Scholar 
 10.Bergström, A. K., Blomqvist, P. & Jansson, M. Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol. Oceanogr. 50, 987–994 (2005).ADS 
 Article 
 Google Scholar 
 11.Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).ADS 
 Article 
 Google Scholar 
 12.Mikkelson, K. M. et al. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 115, 1–21 (2013).CAS 
 Article 
 Google Scholar 
 13.Huber, C. Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National park. J. Environ. Qual. 34, 1772–1779 (2005).CAS 
 PubMed 
 Article 
 Google Scholar 
 14.Tokuchi, N., Ohte, N., Hobara, S., Kim, S.-J. & Masanori, K. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan. Hydrol. Process. 18, 2727–2736 (2004).ADS 
 Article 
 Google Scholar 
 15.Clow, D. W., Rhoades, C., Briggs, J., Caldwell, M. & Lewis, W. M. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA. Appl. Geochem. 26, S174–S178 (2011).CAS 
 Article 
 Google Scholar 
 16.Mikkelson, K. M., Dickenson, E. R., Maxwell, R. M., McCray, J. E. & Sharp, J. O. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Change 3, 218–222 (2013).ADS 
 CAS 
 Article 
 Google Scholar 
 17.Rhoades, C. C. et al. Biogeochemistry of beetle-killed forests: explaining a weak nitrate response. Proc. Natl. Acad. Sci. 110, 1756–1760 (2013).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 18.Hollinger, D. Y. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 70, 291–297 (1986).ADS 
 PubMed 
 Article 
 Google Scholar 
 19.Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).Article 
 Google Scholar 
 20.le Mellec, A., Gerold, G. & Michalzik, B. Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant Soil 342, 393–403 (2011).CAS 
 Article 
 Google Scholar 
 21.Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 22.Carlisle, A., Brown, A. H. F. & White, E. J. Litter fall, leaf production and the effects of defoliation by tortrix viridana in a sessile Oak (Quercus Petraea) woodland. J. Ecol. 54, 65–85 (1966).Article 
 Google Scholar 
 23.Volney, W. J. A. & Fleming, R. A. Climate change and impacts of boreal forest insects. Agric. Ecosyst. Environ. 82, 283–294 (2000).Article 
 Google Scholar 
 24.le Mellec, A., Habermann, M. & Michalzik, B. Canopy herbivory altering C to N ratios and soil input patterns of different organic matter fractions in a Scots pine forest. Plant Soil 325, 255–262 (2009).Article 
 CAS 
 Google Scholar 
 25.Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. BioScience 52, 335–341 (2002).Article 
 Google Scholar 
 26.Lovett, G. M. & Ruesink, A. E. Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104, 133–138 (1995).ADS 
 PubMed 
 Article 
 Google Scholar 
 27.Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in Oak mesocosms. Ecology 85, 3335–3347 (2004).Article 
 Google Scholar 
 28.Eimers, M. C., Watmough, S. A., Paterson, A. M., Dillon, P. J. & Yao, H. Long-term declines in phosphorus export from forested catchments in south-central Ontario. Can. J. Fish. Aquat. Sci. 66, 1682–1692 (2009).CAS 
 Article 
 Google Scholar 
 29.Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).ADS 
 Article 
 Google Scholar 
 30.Kuiters, A. T. & Sarink, H. M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480 (1986).CAS 
 Article 
 Google Scholar 
 31.Madritch, M. D., Donaldson, J. R. & Lindroth, R. L. Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biol. Biochem. 39, 1192–1201 (2007).CAS 
 Article 
 Google Scholar 
 32.Hall, R. J., Skakun, R. S. & Aresenault, E. Remotely Sensed Data in the Mapping of Insect Defoliation. in Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches 85–111 (2007).33.Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).Article 
 Google Scholar 
 34.Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).ADS 
 CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 35.Webb, J. R., Cosby, B. J., Deviney, F. A., Eshleman, K. N. & Galloway, J. N. Change in acid-base status of an appalachian mountain catchment following forest defoliation by the gypsy moth. Water Air. Soil Pollut. 85, 535–540 (1995).ADS 
 CAS 
 Article 
 Google Scholar 
 36.Eshleman, K. N. et al. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resour. Res. 34, 2005–2116 (1998).ADS 
 CAS 
 Article 
 Google Scholar 
 37.Reynolds, B. C., Hunter, M. D. & Crossley, D. A. Jr. Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina. Selbyana 21, 74–78 (2000).
 Google Scholar 
 38.Lewis, G. P. & Likens, G. E. Changes in stream chemistry associated with insect defoliation in a Pennsylvania hemlock-hardwoods forest. Forest Ecol. Manag. 238, 199–211 (2007).Article 
 Google Scholar 
 39.Wilkinson, G. M., Walter, J., Fleck, R. & Pace, M. L. Beyond the trends: the need to understand multiannual dynamics in aquatic ecosystems. Limnol. Oceanogr. Lett. 5, 281–286 (2020).Article 
 Google Scholar 
 40.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 
 Article 
 Google Scholar 
 41.Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).PubMed 
 Article 
 Google Scholar 
 42.Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).ADS 
 CAS 
 PubMed 
 Article 
 Google Scholar 
 43.Vuorenmaa, J. et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 625, 1129–1145 (2018).ADS 
 CAS 
 PubMed 
 Article 
 Google Scholar 
 44.ICP Waters contributors. Dataset: trends in annual surface water chemistry for acid-sensitive regions in Europe and North America (1990 to 2012). ICP-Waters Programme Centre (2020).45.Christenson, L. M., Lovett, G. M., Mitchell, M. J. & Groffman, P. M. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131, 444–452 (2002).ADS 
 PubMed 
 Article 
 Google Scholar 
 46.Bormann, F. H. & Likens, G. E. Pattern and process in a forested ecosystem: disturbance, development and the steady state based on the Hubbard Brook ecosystem study. (Springer Science & Business Media, 2012).47.I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 160361 (2016).Article 
 CAS 
 Google Scholar 
 48.Hillstrom, M., Meehan, T. D., Kelly, K. & Lindroth, R. L. Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO 2 and O 3. Plant Soil 336, 75–85 (2010).CAS 
 Article 
 Google Scholar 
 49.Tranvik, L., Olofsson, H. & Bertilsson, S. Photochemical effects on bacterial degradation of dissolved organic matter in lake water. in Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology 193–200 (Atlantic Canada Society for Microbial Ecology Halifax, Canada, 1999).50.Bowden, R. D. et al. Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75 (2014).Article 
 Google Scholar 
 51.Lovett, G. M., Hart, J. E., Christenson, L. M. & Jones, C. G. Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage. Oecologia 117, 513–516 (1998).ADS 
 PubMed 
 Article 
 Google Scholar 
 52.Lovett, G. M., Arthur, M. A., Weathers, K. C. & Griffin, J. M. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 13, 1188–1200 (2010).CAS 
 Article 
 Google Scholar 
 53.Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 12, 635–643 (2006).ADS 
 Article 
 Google Scholar 
 54.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
 Article 
 Google Scholar 
 55.Giardina, C. P., Ryan, M. G., Hubbard, R. M. & Binkley, D. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci. Soc. Am. J. 65, 1272–1279 (2001).ADS 
 CAS 
 Article 
 Google Scholar 
 56.Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).ADS 
 Article 
 Google Scholar 
 57.Huber, C., Baumgarten, M., Göttlein, A. & Rotter, V. Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest National Park. Water Air Soil Pollut. Focus 4, 391–414 (2004).CAS 
 Article 
 Google Scholar 
 58.Griffin, J. M., Turner, M. G. & Simard, M. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Ecol. Manag 261, 1077–1089 (2011).Article 
 Google Scholar 
 59.Turner, J. & Long, J. N. Accumulation of organic matter in a series of Douglas-fir stands. Can. J. Res. 5, 681–690 (1975).Article 
 Google Scholar 
 60.Turner, J. Nutrient cycling in Douglas-fir with respect to age and nutrient status. Ann. Bot. 42, 159–170 (1981).Article 
 Google Scholar 
 61.Gosz, J. R., Likens, G. E. & Bormann, F. H. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53, 770–784 (1972).Article 
 Google Scholar 
 62.Bridges, J. R. Nitrogen-fixing bacteria associated with bark beetles. Microb. Ecol. 7, 131–137 (1981).CAS 
 PubMed 
 Article 
 Google Scholar 
 63.Morehouse, K., Johns, T., Kaye, J. & Kaye, M. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Foresr Ecol. Manag. 255, 2698–2708 (2008).Article 
 Google Scholar 
 64.Guseva, S. et al. Multimodel simulation of vertical gas transfer in a temperate lake. Hydrol. Earth Syst. Sci. 24, 697–715 (2020).ADS 
 Article 
 Google Scholar 
 65.Watkins, E. M., Schindler, D. W., Turner, M. A. & Findlay, D. Effects of solar ultraviolet radiation on epilithic metabolism, and nutrient and community composition in a clear-water boreal lake. Can. J. Fish. Aquat. Sci. 58, 12 (2001).Article 
 Google Scholar 
 66.Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).PubMed 
 Article 
 Google Scholar 
 67.Currie, D. J. & Kalff, J. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29, 298–310 (1984).ADS 
 CAS 
 Article 
 Google Scholar 
 68.Rochelle-Newall, E. et al. Impacts of elevated atmospheric CO 2 concentration on terrestrial-aquatic carbon transfer and a downstream aquatic microbial community. Aquat. Sci. 80, 1–14 (2018).CAS 
 Article 
 Google Scholar 
 69.Larsen, S., Andersen, T. & Hessen, D. O. Climate change predicted to cause severe increase of organic carbon in lakes. Glob. Change Biol. 17, 1186–1192 (2011).ADS 
 Article 
 Google Scholar 
 70.Kritzberg, E. S. et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375–390 (2020).PubMed 
 Article 
 Google Scholar 
 71.Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, 1–33 (2014).Article 
 Google Scholar 
 72.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).PubMed 
 Article 
 Google Scholar 
 73.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).ADS 
 Article 
 Google Scholar 
 74.Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. Rep. 4, 35–50 (2018).
 Google Scholar 
 75.Karlsson, J. et al. Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol. Oceanogr. 57, 1042–1048 (2012).ADS 
 CAS 
 Article 
 Google Scholar 
 76.Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 8, 1991–2007 (2015).ADS 
 Article 
 Google Scholar 
 77.Ministry of Natural Resources and Forestry (MNRF). Provincial Digital Elevation Model – Version 3.0. (2013).78.Wang, L. & Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 20, 193–213 (2006).CAS 
 Article 
 Google Scholar 
 79.Candau, J.-N., Fleming, R. A. & Hopkin, A. Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Can. J. Res. 28, 1733–1741 (1998).Article 
 Google Scholar 
 80.Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).Article 
 Google Scholar 
 81.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).82.Ontario Ministry of Natural Resources and Forestry – Provincial Mapping Unit. Ontario Integrated Hydrology Data. (2011).83.Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. https://peerj.com/preprints/913v1 (2015) https://doi.org/10.7287/peerj.preprints.913v1.84.Robinson, N. P. et al. A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sens. 9, 863 (2017).ADS 
 Article 
 Google Scholar 
 85.Eklundh, L., Jönsson, P. & Kuusk, A. Investigating modelled and observed Terra/MODIS 500-m reflectance data for viewing and illumination effects. Adv. Space Res. 39, 119–124 (2007).ADS 
 Article 
 Google Scholar 
 86.Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).ADS 
 Article 
 Google Scholar 
 87.Olsson, P.-O., Heliasz, M., Jin, H. & Eklundh, L. Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks. Biogeosciences (2017) https://doi.org/10.5194/bg-14-1703-2017.88.Jönsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845 (2004).ADS 
 Article 
 Google Scholar 
 89.GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. (Open Source Geospatial Foundation, 2020).90.Etten, R. J. H. & J. van. raster: Geographic analysis and modeling with raster data. (2012).91.Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S. & Briggs, J. M. Relationships between leaf area index and landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 70, 52–68 (1999).ADS 
 Article 
 Google Scholar 
 92.Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. (2016).93.Ministry of Natural Resources and Forestry. Dataset: Ontario Land Cover Compilation v.2.0. Ont. GeoHub (2020).94.Ontario Ministry of Environment. Handbook of Analytical Methods for Environmental Samples – Volumes 1 and 2. (1983).95.Dillon, P. J. & Molot, L. A. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron, and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res. Biogeosci. 110, (2005).96.Skjelkvåle, B. & others. ICP Waters Programme Manual 2010 (ICP Waters Report 105/2010). (2010).97.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020).98.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020). More
 