More stories

  • in

    Forest defoliator outbreaks alter nutrient cycling in northern waters

    1.Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130164 (2013).Article 
    CAS 

    Google Scholar 
    2.Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).CAS 
    Article 

    Google Scholar 
    3.Tanentzap, A. J. et al. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, e1601765 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).Article 

    Google Scholar 
    5.Williamson, C. E., Morris, D. P., Pace, M. L. & Olson, O. G. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol. Oceanogr. 44, 795–803 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Tanentzap, A. J. et al. Cooling lakes while the world warms: effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnol. Oceanogr. 53, 404–410 (2008).CAS 
    Article 

    Google Scholar 
    8.Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P. & Ackerman, J. D. The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environ. Toxicol. Chem. 29, 2519–2528 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Hessen, D. O. Inorganic nitrogen deposition and its impacts on N:P-ratios and lake productivity. Water 5, 327–341 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Bergström, A. K., Blomqvist, P. & Jansson, M. Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol. Oceanogr. 50, 987–994 (2005).ADS 
    Article 

    Google Scholar 
    11.Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).ADS 
    Article 

    Google Scholar 
    12.Mikkelson, K. M. et al. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 115, 1–21 (2013).CAS 
    Article 

    Google Scholar 
    13.Huber, C. Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National park. J. Environ. Qual. 34, 1772–1779 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tokuchi, N., Ohte, N., Hobara, S., Kim, S.-J. & Masanori, K. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan. Hydrol. Process. 18, 2727–2736 (2004).ADS 
    Article 

    Google Scholar 
    15.Clow, D. W., Rhoades, C., Briggs, J., Caldwell, M. & Lewis, W. M. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA. Appl. Geochem. 26, S174–S178 (2011).CAS 
    Article 

    Google Scholar 
    16.Mikkelson, K. M., Dickenson, E. R., Maxwell, R. M., McCray, J. E. & Sharp, J. O. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Change 3, 218–222 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Rhoades, C. C. et al. Biogeochemistry of beetle-killed forests: explaining a weak nitrate response. Proc. Natl. Acad. Sci. 110, 1756–1760 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Hollinger, D. Y. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 70, 291–297 (1986).ADS 
    PubMed 
    Article 

    Google Scholar 
    19.Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).Article 

    Google Scholar 
    20.le Mellec, A., Gerold, G. & Michalzik, B. Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant Soil 342, 393–403 (2011).CAS 
    Article 

    Google Scholar 
    21.Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Carlisle, A., Brown, A. H. F. & White, E. J. Litter fall, leaf production and the effects of defoliation by tortrix viridana in a sessile Oak (Quercus Petraea) woodland. J. Ecol. 54, 65–85 (1966).Article 

    Google Scholar 
    23.Volney, W. J. A. & Fleming, R. A. Climate change and impacts of boreal forest insects. Agric. Ecosyst. Environ. 82, 283–294 (2000).Article 

    Google Scholar 
    24.le Mellec, A., Habermann, M. & Michalzik, B. Canopy herbivory altering C to N ratios and soil input patterns of different organic matter fractions in a Scots pine forest. Plant Soil 325, 255–262 (2009).Article 
    CAS 

    Google Scholar 
    25.Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. BioScience 52, 335–341 (2002).Article 

    Google Scholar 
    26.Lovett, G. M. & Ruesink, A. E. Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104, 133–138 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    27.Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in Oak mesocosms. Ecology 85, 3335–3347 (2004).Article 

    Google Scholar 
    28.Eimers, M. C., Watmough, S. A., Paterson, A. M., Dillon, P. J. & Yao, H. Long-term declines in phosphorus export from forested catchments in south-central Ontario. Can. J. Fish. Aquat. Sci. 66, 1682–1692 (2009).CAS 
    Article 

    Google Scholar 
    29.Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).ADS 
    Article 

    Google Scholar 
    30.Kuiters, A. T. & Sarink, H. M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480 (1986).CAS 
    Article 

    Google Scholar 
    31.Madritch, M. D., Donaldson, J. R. & Lindroth, R. L. Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biol. Biochem. 39, 1192–1201 (2007).CAS 
    Article 

    Google Scholar 
    32.Hall, R. J., Skakun, R. S. & Aresenault, E. Remotely Sensed Data in the Mapping of Insect Defoliation. in Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches 85–111 (2007).33.Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).Article 

    Google Scholar 
    34.Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Webb, J. R., Cosby, B. J., Deviney, F. A., Eshleman, K. N. & Galloway, J. N. Change in acid-base status of an appalachian mountain catchment following forest defoliation by the gypsy moth. Water Air. Soil Pollut. 85, 535–540 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Eshleman, K. N. et al. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resour. Res. 34, 2005–2116 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Reynolds, B. C., Hunter, M. D. & Crossley, D. A. Jr. Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina. Selbyana 21, 74–78 (2000).
    Google Scholar 
    38.Lewis, G. P. & Likens, G. E. Changes in stream chemistry associated with insect defoliation in a Pennsylvania hemlock-hardwoods forest. Forest Ecol. Manag. 238, 199–211 (2007).Article 

    Google Scholar 
    39.Wilkinson, G. M., Walter, J., Fleck, R. & Pace, M. L. Beyond the trends: the need to understand multiannual dynamics in aquatic ecosystems. Limnol. Oceanogr. Lett. 5, 281–286 (2020).Article 

    Google Scholar 
    40.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 
    Article 

    Google Scholar 
    41.Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).PubMed 
    Article 

    Google Scholar 
    42.Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Vuorenmaa, J. et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 625, 1129–1145 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.ICP Waters contributors. Dataset: trends in annual surface water chemistry for acid-sensitive regions in Europe and North America (1990 to 2012). ICP-Waters Programme Centre (2020).45.Christenson, L. M., Lovett, G. M., Mitchell, M. J. & Groffman, P. M. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131, 444–452 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    46.Bormann, F. H. & Likens, G. E. Pattern and process in a forested ecosystem: disturbance, development and the steady state based on the Hubbard Brook ecosystem study. (Springer Science & Business Media, 2012).47.I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 160361 (2016).Article 
    CAS 

    Google Scholar 
    48.Hillstrom, M., Meehan, T. D., Kelly, K. & Lindroth, R. L. Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO 2 and O 3. Plant Soil 336, 75–85 (2010).CAS 
    Article 

    Google Scholar 
    49.Tranvik, L., Olofsson, H. & Bertilsson, S. Photochemical effects on bacterial degradation of dissolved organic matter in lake water. in Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology 193–200 (Atlantic Canada Society for Microbial Ecology Halifax, Canada, 1999).50.Bowden, R. D. et al. Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75 (2014).Article 

    Google Scholar 
    51.Lovett, G. M., Hart, J. E., Christenson, L. M. & Jones, C. G. Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage. Oecologia 117, 513–516 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    52.Lovett, G. M., Arthur, M. A., Weathers, K. C. & Griffin, J. M. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 13, 1188–1200 (2010).CAS 
    Article 

    Google Scholar 
    53.Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 12, 635–643 (2006).ADS 
    Article 

    Google Scholar 
    54.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    55.Giardina, C. P., Ryan, M. G., Hubbard, R. M. & Binkley, D. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci. Soc. Am. J. 65, 1272–1279 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).ADS 
    Article 

    Google Scholar 
    57.Huber, C., Baumgarten, M., Göttlein, A. & Rotter, V. Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest National Park. Water Air Soil Pollut. Focus 4, 391–414 (2004).CAS 
    Article 

    Google Scholar 
    58.Griffin, J. M., Turner, M. G. & Simard, M. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Ecol. Manag 261, 1077–1089 (2011).Article 

    Google Scholar 
    59.Turner, J. & Long, J. N. Accumulation of organic matter in a series of Douglas-fir stands. Can. J. Res. 5, 681–690 (1975).Article 

    Google Scholar 
    60.Turner, J. Nutrient cycling in Douglas-fir with respect to age and nutrient status. Ann. Bot. 42, 159–170 (1981).Article 

    Google Scholar 
    61.Gosz, J. R., Likens, G. E. & Bormann, F. H. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53, 770–784 (1972).Article 

    Google Scholar 
    62.Bridges, J. R. Nitrogen-fixing bacteria associated with bark beetles. Microb. Ecol. 7, 131–137 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Morehouse, K., Johns, T., Kaye, J. & Kaye, M. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Foresr Ecol. Manag. 255, 2698–2708 (2008).Article 

    Google Scholar 
    64.Guseva, S. et al. Multimodel simulation of vertical gas transfer in a temperate lake. Hydrol. Earth Syst. Sci. 24, 697–715 (2020).ADS 
    Article 

    Google Scholar 
    65.Watkins, E. M., Schindler, D. W., Turner, M. A. & Findlay, D. Effects of solar ultraviolet radiation on epilithic metabolism, and nutrient and community composition in a clear-water boreal lake. Can. J. Fish. Aquat. Sci. 58, 12 (2001).Article 

    Google Scholar 
    66.Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).PubMed 
    Article 

    Google Scholar 
    67.Currie, D. J. & Kalff, J. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29, 298–310 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Rochelle-Newall, E. et al. Impacts of elevated atmospheric CO 2 concentration on terrestrial-aquatic carbon transfer and a downstream aquatic microbial community. Aquat. Sci. 80, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    69.Larsen, S., Andersen, T. & Hessen, D. O. Climate change predicted to cause severe increase of organic carbon in lakes. Glob. Change Biol. 17, 1186–1192 (2011).ADS 
    Article 

    Google Scholar 
    70.Kritzberg, E. S. et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375–390 (2020).PubMed 
    Article 

    Google Scholar 
    71.Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, 1–33 (2014).Article 

    Google Scholar 
    72.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).PubMed 
    Article 

    Google Scholar 
    73.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).ADS 
    Article 

    Google Scholar 
    74.Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. Rep. 4, 35–50 (2018).
    Google Scholar 
    75.Karlsson, J. et al. Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol. Oceanogr. 57, 1042–1048 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 8, 1991–2007 (2015).ADS 
    Article 

    Google Scholar 
    77.Ministry of Natural Resources and Forestry (MNRF). Provincial Digital Elevation Model – Version 3.0. (2013).78.Wang, L. & Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 20, 193–213 (2006).CAS 
    Article 

    Google Scholar 
    79.Candau, J.-N., Fleming, R. A. & Hopkin, A. Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Can. J. Res. 28, 1733–1741 (1998).Article 

    Google Scholar 
    80.Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).Article 

    Google Scholar 
    81.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).82.Ontario Ministry of Natural Resources and Forestry – Provincial Mapping Unit. Ontario Integrated Hydrology Data. (2011).83.Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. https://peerj.com/preprints/913v1 (2015) https://doi.org/10.7287/peerj.preprints.913v1.84.Robinson, N. P. et al. A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sens. 9, 863 (2017).ADS 
    Article 

    Google Scholar 
    85.Eklundh, L., Jönsson, P. & Kuusk, A. Investigating modelled and observed Terra/MODIS 500-m reflectance data for viewing and illumination effects. Adv. Space Res. 39, 119–124 (2007).ADS 
    Article 

    Google Scholar 
    86.Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).ADS 
    Article 

    Google Scholar 
    87.Olsson, P.-O., Heliasz, M., Jin, H. & Eklundh, L. Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks. Biogeosciences (2017) https://doi.org/10.5194/bg-14-1703-2017.88.Jönsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845 (2004).ADS 
    Article 

    Google Scholar 
    89.GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. (Open Source Geospatial Foundation, 2020).90.Etten, R. J. H. & J. van. raster: Geographic analysis and modeling with raster data. (2012).91.Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S. & Briggs, J. M. Relationships between leaf area index and landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 70, 52–68 (1999).ADS 
    Article 

    Google Scholar 
    92.Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. (2016).93.Ministry of Natural Resources and Forestry. Dataset: Ontario Land Cover Compilation v.2.0. Ont. GeoHub (2020).94.Ontario Ministry of Environment. Handbook of Analytical Methods for Environmental Samples – Volumes 1 and 2. (1983).95.Dillon, P. J. & Molot, L. A. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron, and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res. Biogeosci. 110, (2005).96.Skjelkvåle, B. & others. ICP Waters Programme Manual 2010 (ICP Waters Report 105/2010). (2010).97.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020).98.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020). More

  • in

    Feedback between bottom-up and top-down control of stream biofilm mediated through eutrophication effects on grazer growth

    Experimental set-upThe experiment was performed in the MOBICOS mesocosm facility, a container-based laboratory platform34 located by the river Holtemme in Wernigerode, central Germany (51° 49′ 00.7″ N, 10° 43′ 29.26″ E). See Weitere et al.35 for detailed water quality data at this station. Each experimental unit consisted of a rectangular flume (62 cm long, 14 cm high and 8 cm wide) constantly supplied with water from the river Holtemme, with a flow rate of 1000 L h−1 per flume. The water was filtered by a self-cleaning filter with a mesh size of 50 µm in order to remove larger particles without removing most unicellular organisms. The water level in each flume was 7.5 cm. At the bottom of each flume was a tray containing 30 white ceramic tiles (2.3 × 2.3 cm), disposed in three rows of ten tiles each, and a smaller tray containing nine additional tiles, disposed in three rows of three tiles each. The tiles served as substrates for periphyton growth. Vertical nets were placed at both ends of each flume to prevent grazers from leaving the experimental facility.The study consisted of a fully factorial experiment, in which two levels of phosphorus supply (high, P+, versus low, P−) were crossed with two levels of light intensity above the flumes (high, L+, versus low, L−) and with grazer presence (G+) and absence (G−), for a total of eight treatments: P+L+G+, P+L+G−, P+L−G+, P+L−G−, P−L+G+, P−L+G−, P−L−G+, and P−L−G−. In the P− treatments, the water flowing in the flumes was kept at ambient P concentration, which was below detection limit ( More

  • in

    Bottlenose dolphins (Tursiops truncatus) aggressive behavior towards other cetacean species in the western Mediterranean

    1.Norris, K. S. & Dohl, T. P. The Structure and Functions of Cetacean Schools (1979).2.Frantzis, A. & Herzing, D. L. Mixed-species associations of striped dolphins (Stenella coeruleoalba), short-beaked common dolphins (Delphinus delphis), and Risso’s dolphins (Grampus griseus) in the Gulf of Corinth (Greece, Mediterranean Sea).” Aquatic Mammals 28.2 (2002): 188–197.3.Crossman, C., Barrett-Lennard, L. & Taylor, E. Population structure and intergeneric hybridization in harbour porpoises Phocoena phocoena in British Columbia, Canada. Endang. Species. Res. 26, 1–12 (2014).Article 

    Google Scholar 
    4.Espada, R., Olaya-Ponzone, L., Haasova, L., Martín, E. & García-Gómez, J. C. Hybridization in the wild between Tursiops truncatus (Montagu 1821) and Delphinus delphis (Linnaeus 1758). PLoS ONE 14, e0215020 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Herzing, D. L., Moewe, K. & Brunnick, B. J. Interspecies interactions between Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus, on Great Bahama Bank Bahamas. Aquat. Mamm. 29, 335–341 (2003).Article 

    Google Scholar 
    6.Herzing, D. L. Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat. Mamm. 22, 61–80 (1996).
    Google Scholar 
    7.Herzing, D. L. & Johnson, C. M. Interspecific interactions between Atlantic spotted dolphins (Stenella frontalis) and bottlenose dolphins (Tursiops truncatus) in the Bahamas 1985–1995. Aquat. Mamm. 23, 85–99 (1997).
    Google Scholar 
    8.Orr, J. R. & Harwood, L. A. Possible aggressive behavior between a narwhal (Monodon monoceros) and a beluga (Delphinapterus leucas). Mar. Mamm. Sci. 14, 182–185 (1998).Article 

    Google Scholar 
    9.Puig-Lozano, R. et al. Retrospective study of traumatic intra-interspecific interactions in stranded cetaceans, Canary Islands. Front. Vet. Sci. 7, 107 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Shane, S. Relationship between pilot whales and Risso’s dolphins at Santa Catalina Island, California, USA. Mar. Ecol. Prog. Ser. 123, 5–11 (1995).ADS 
    Article 

    Google Scholar 
    11.Haelters, J. & Everaarts, E. Two cases of physical interaction between white-beaked dolphins (Lagenorhynchus albirostris) and juvenile harbour porpoises (Phocoena phocoena) in the southern North Sea. Aquat. Mamm. 37, 198 (2011).Article 

    Google Scholar 
    12.Jepson, P. D. & Baker, J. R. Bottlenosed dolphins (Tursiops truncatus) as a possible cause of acute traumatic injuries in porpoises (Phocoena phocoena). Vet. Rec. 143, 614–615 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Patterson, I. A. P., Reid, R. J., Wilson, B., Grellier, K. & Ross, H. M. Evidence for infanticide in bottlenose dolphins: An explanation for violent interactions with harbour porpoises?. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1167–1170 (1998).CAS 
    Article 

    Google Scholar 
    14.Ross, H. M. & Wilson, B. Violent interactions between bottlenose dolphins and harbour porpoises. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263, 283–286 (1996).ADS 
    Article 

    Google Scholar 
    15.Wilson, B., Reid, R. J., Grellier, K., Thompson, P. M. & Hammond, P. S. Considering the temporal when managing the spatial: A population range expansion impacts protected areas-based management for bottlenose dolphins. Anim. Conserv. 7, 331–338 (2004).Article 

    Google Scholar 
    16.Alonso, J. M., López, A., González, A. F. & Santos, M. B. Evidence of violent interactions between bottlenose dolphin (Tursiops truncatus) and other cetacean species in NW Spain. In Proceedings of the 14th Annual Conference of The European Cetacean Society (2000).17.López, A. & Rodriguez, A. Agresion de arroas (Tursiops truncatus) a toniña (Phocoena phocoena). Eubalaena 6, 23–27 (1995).
    Google Scholar 
    18.Methion, S. & Díaz López, B. Spatial segregation and interspecific killing of common dolphins (Delphinus delphis) by bottlenose dolphins (Tursiops truncatus). Acta Ethol. 24, 95–106 (2021).Article 

    Google Scholar 
    19.Parsons, K. M., Durban, J. W. & Claridge, D. E. Male-male aggression renders bottlenose dolphin (Tursiops truncatus) unconscious. Aquat. Mamm. 29, 360–362 (2003).Article 

    Google Scholar 
    20.Robinson, K. P. Agonistic intraspecific behavior in free-ranging bottlenose dolphins: Calf-directed aggression and infanticidal tendencies by adult males. Mar. Mamm. Sci. 30, 381–388 (2014).Article 

    Google Scholar 
    21.Scott, E. M., Mann, J., Watson-Capps, J. J., Sargeant, B. L., & Connor, R. C. Aggression in bottlenose
    dolphins: evidence for sexual coercion, male-male competition, and female tolerance through analysis of tooth-rake
    marks and behaviour. Behaviour 21–44 (2005).22.Díaz López, B., López, A., Methion, S. & Covelo, P. Infanticide attacks and associated epimeletic behaviour in free-ranging common bottlenose dolphins (Tursiops truncatus). J. Mar. Biol. Assoc. 98, 1159–1167 (2018).Article 

    Google Scholar 
    23.Cotter, M. P., Maldini, D. & Jefferson, T. A. “Porpicide” in California: Killing of harbor porpoises (Phocoena phocoena) by coastal bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 28, E1–E15 (2012).Article 

    Google Scholar 
    24.Forney, K. A. Environmental models of cetacean abundance: Reducing uncertainty in population trends. Conserv. Biol. 14, 1271–1286 (2000).Article 

    Google Scholar 
    25.Gowans, S., Würsig, B. & Karczmarski, L. The social structure and strategies of delphinids: predictions based on an ecological framework. In Advances in Marine Biology Vol. 53, 195–294 (Elsevier, 2007).26.Miller, E. H. Territorial behavior. In Encyclopedia of marine mammals 1156–1166 (Academic Press, 2009).27.Díaz López, B. Bottlenose dolphins and aquaculture: Interaction and site fidelity on the north-eastern coast of Sardinia (Italy). Mar. Biol. 159, 2161–2172 (2012).Article 

    Google Scholar 
    28.Bearzi, G., Piwetz, S. & Reeves, R. R. Odontocete adaptations to human impact and vice versa. In Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B.) 211–235 (Springer International Publishing, 2019) https://doi.org/10.1007/978-3-030-16663-2_10.Chapter 

    Google Scholar 
    29.Bonizzoni, S. et al. Fish farming and its appeal to common bottlenose dolphins: Modelling habitat use in a Mediterranean embayment: Fish farming appeal to bottlenose dolphins. Aquatic Conserv. Mar. Freshw. Ecosyst. 24, 696–711 (2014).Article 

    Google Scholar 
    30.Díaz López, B. Bottlenose dolphin (Tursiops truncatus) predation on a marine fin fish farm: Some underwater observations. Aquat. Mamm. 32, 305–310 (2006).Article 

    Google Scholar 
    31.Díaz López, B., Marini, L. & Polo, F. The impact of a fish farm on a bottlenose dolphin population in the Mediterranean Sea. Thalassas 21, 65–70 (2005).
    Google Scholar 
    32.Piroddi, C., Bearzi, G. & Christensen, V. Marine open cage aquaculture in the eastern Mediterranean Sea: A new trophic resource for bottlenose dolphins. Mar. Ecol. Prog. Ser. 440, 255–266 (2011).ADS 
    Article 

    Google Scholar 
    33.Díaz López, B. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins’ behavior. Curr. Zool. 55, 243–248 (2009).Article 

    Google Scholar 
    34.Castellote, M., Brotons, J. M., Chicote, C., Gazo, M. & Cerdà, M. Long-term acoustic monitoring of bottlenose dolphins, Tursiops truncatus, in marine protected areas in the Spanish Mediterranean Sea. Ocean Coast. Manag. 113, 54–66 (2015).Article 

    Google Scholar 
    35.Aznar, F. et al. Long-term changes (1990–2012) in the diet of striped dolphins Stenella coeruleoalba from the western Mediterranean. Mar. Ecol. Prog. Ser. 568, 231–247 (2017).ADS 
    Article 

    Google Scholar 
    36.Calzada, N., Aguilar, A., Grau, E. & Lockyer, C. Patterns of growth and physical maturity in the western Mediterranean striped dolphin, Stenella coeruleoalba (Cetacea: Odontoceti). Can. J. Zool. 75, 632–637 (1997).Article 

    Google Scholar 
    37.Meissner, A. M., MacLeod, C. D., Richard, P., Ridoux, V. & Pierce, G. Feeding ecology of striped dolphins, Stenella coeruleoalba, in the north-western Mediterranean Sea based on stable isotope analyses. J. Mar. Biol. Assoc. 92, 1677–1687 (2012).CAS 
    Article 

    Google Scholar 
    38.Chen, I., Watson, A. & Chou, L.-S. Insights from life history traits of Risso’s dolphins (Grampus griseus) in Taiwanese waters: Shorter body length characterizes northwest Pacific population. Mar. Mamm. Sci. 27, E43–E64 (2011).Article 

    Google Scholar 
    39.Barnett, J. et al. Postmortem evidence of interactions of bottlenose dolphins (Tursiops truncatus) with other dolphin species in south-west England. Vet. Rec. 165, 441–444 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Townsend, F. I. & Staggs, L. Atlas of Skin Diseases of Small Cetaceans (Todd Speakman, 2020).
    Google Scholar 
    41.Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: Predation to co-existence. Mamm. Rev. 21, 151–180 (1991).Article 

    Google Scholar 
    42.Weller, D. W. et al. Observations of an interaction between sperm whales and short-finned pilot whales in the Gulf of Mexico. Mar. Mamm. Sci. 12, 588–594 (1996).ADS 
    Article 

    Google Scholar 
    43.Baird, R. W. An interaction between Pacific white-sided dolphins and a neonatal harbor porpoise. Mammalia 62, 129–133 (1998).
    Google Scholar 
    44.Wedekin, L. L., Daura-Jorge, F. G. & Simoes-Lopes, P. C. An aggressive interaction between bottlenose dolphins (Tursiops truncatus) and estuarine dolphins (Sotalia guianensis) in southern Brazil. Aquat. Mamm. 30, 391–397 (2004).Article 

    Google Scholar 
    45.Campbell-Malone, R. et al. Gross and histologic evidence of sharp and blunt trauma in north Atlantic right whales (Eubalaena glacialis) killed by vessels. J. Zoo Wildl. Med. 39, 37–55 (2008).PubMed 
    Article 

    Google Scholar 
    46.Moore, M. et al. Criteria and case definitions for serious injury and death of pinnipeds and cetaceans caused by anthropogenic trauma. Dis. Aquat. Org. 103, 229–264 (2013).CAS 
    Article 

    Google Scholar 
    47.Read, A. & Murray, K. Gross Evidence of Human-Induced Mortality in Small Cetaceans (2000).48.Gozalbes, P. et al. Cetáceos y tortugas marinas en la Comunitat Valenciana. 20 años de seguimiento (2010).49.Gómez de Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. 88, 1185–1192 (2008).Article 

    Google Scholar 
    50.Cañadas, A., Sagarminaga, R., De Stephanis, R., Urquiola, E. & Hammond, P. S. Habitat preference modelling as a conservation tool: Proposals for marine protected areas for cetaceans in southern Spanish waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 495–521 (2005).Article 

    Google Scholar 
    51.Gannier, A. Diel variations of the striped dolphin distribution off the French Riviera (Northwestern Mediterranean Sea). Aquat. Mamm. 25, 123–134 (1999).
    Google Scholar 
    52.Blanco, C., Aznar, J. & Raga, J. A. Cephalopods in the diet of the striped dolphin Stenella coeruleoalba from the western Mediterranean during an epizootic in 1990. J. Zool. 237, 151–158 (1995).Article 

    Google Scholar 
    53.Archer II, F. I. Striped dolphin: Stenella coeruleoalba. In Encyclopedia of Marine Mammals 1127–1129 (Academic Press, 2009).54.Fraija-Fernández, N. et al. Long term boat-based surveys in the Central Spanish Mediterranean (2003–2013): Cetacean diversity and distribution. In Proceeding of the 29th Conference of the European Cetacean Society (2015).55.Blanco, C., Salomón, O. & Raga, J. A. Diet of the bottlenose dolphin (Tursiops truncatus) in the western Mediterranean Sea. J. Mar. Biol. Assoc. 81, 1053–1058 (2001).Article 

    Google Scholar 
    56.Praca, E. & Gannier, A. Ecological niches of three teuthophageous odontocetes in the northwestern Mediterranean Sea. Ocean Sci. 4, 49–59 (2008).ADS 
    Article 

    Google Scholar 
    57.Bearzi, G., Fortuna, C. M. & Reeves, R. R. Ecology and conservation of common bottlenose dolphins Tursiops truncatus in the Mediterranean Sea. Mamm. Rev. 39, 92–123 (2009).Article 

    Google Scholar 
    58.Epperly, S. P. et al. Beach strandings as an indicator of at-sea mortality of sea turtles. Bull. Mar. Sci. 59(2), 289–297 (1996).
    Google Scholar 
    59.Peltier, H. et al. The significance of stranding data as indicators of cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecol. Ind. 18, 278–290 (2012).Article 

    Google Scholar 
    60.Martínez-Cedeira, J. A. et al. How many strand? Offshore marking and coastal recapture of cetacean carcasses. In Abstract Book—25th Conference of the European Cetacean Society 332 (2011).61.Gulland, F. M., Dierauf, L. A. & Whitman, K. L. CRC Handbook of Marine Mammal medicine (CRC Press, 2018).
    Google Scholar 
    62.Isidoro-Ayza, M. et al. Brucella ceti infection in dolphins from the Western Mediterranean sea. BMC Vet. Res. 10, 206 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Rubio-Guerri, C. et al. Unusual striped dolphin mass mortality episode related to cetacean morbillivirus in the Spanish Mediterranean sea. BMC Vet. Res. 9, 106 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kuiken, T. & Hartmann, M. G. Proceedings of the First ECS Workshop on Cetacean Pathology: Dissection Techniques and Tissue Sampling. Vol. 17 (1991).65.Geraci, J. R. & Lounsbury, V. J. Marine Mammals Ashore: A Field guide for Strandings (National Aquarium in Baltimore, 2005).
    Google Scholar 
    66.Pugliares, K. R. et al. Marine Mammal Necropsy: An Introductory Guide for Stranding Responders and Field Biologists (Woods Hole Oceanographic Institution, 2007) https://doi.org/10.1575/1912/1823.Book 

    Google Scholar 
    67.Long, D. J. & Jones, R. E. White shark predation and scavenging on cetaceans in the eastern North Pacific Ocean. In Great White Sharks: The Biology of Carcharodon carcharias 293–307 (1996).68.Rubio-Guerri, C. et al. Simultaneous diagnosis of Cetacean morbillivirus infection in dolphins stranded in the Spanish Mediterranean sea in 2011 using a novel Universal Probe Library (UPL) RT-PCR assay. Vet. Microbiol. 165, 109–114 (2013).PubMed 
    Article 

    Google Scholar 
    69.Van Devanter, D. R. et al. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol. 34, 1666–1671 (1996).CAS 
    Article 

    Google Scholar 
    70.Alton, G. G., Jones, L. M., Angus, R. D. & Verger, J. M. Techniques for the Brucellosis Laboratory (Institut National de la Recherche Agronomique (INRA), 1988).
    Google Scholar  More

  • in

    Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach

    1.Schäferna, K. Amphipoda balcanica, spolu s poznámkami o jiných sladkovodních Amphipodech. Mem. Soc. R. Sci. Boheme Prague 12, 1–111 (1922).
    Google Scholar 
    2.Martynov, A. B. Zur Kenntnis der Amphipoden der Krim. Zool. Jahrb. 60, 573–606 (1931).
    Google Scholar 
    3.Karaman, S. L. Beitrag zur Kenntni s der Susswasseramphiopden. Bull. Soc. Scien Skoplje IX, 93–107 (1931).
    Google Scholar 
    4.Schellenberg, A. Schlussel und Diagnosen der dem Susswasser-Gammarus nahestehenden Einheiten ausschlisslich der Arten des Baikalsees und Australiens. Zool. Anz. 117, 267–280 (1937).
    Google Scholar 
    5.Barnard, J. L. & Karaman, S. G. Classificatory revisions in gammaridean amphipoda (Crustacea), Part 2. Proc. Biol. Soc. Wash. 95, 167–187 (1982).
    Google Scholar 
    6.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (CrustaceaAmphipoda): Part I: Gammarus pulex-group and related species. Bijdr Dierkd 47, 1–97 (1977).Article 

    Google Scholar 
    7.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea Amphipoda): Part II: Gammarus roeseli-group and related species. Bijdr Dierkd 47, 165–196 (1977).Article 

    Google Scholar 
    8.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda): Part III: Gammarus balcanicus-group and related species. Bijdr Dierkd 57, 207–260 (1987).Article 

    Google Scholar 
    9.Jażdżewski, K. Remarks on Gammarus lacustris G.O. Sars, 1863, with description of Gammarus varsoviensis n. sp. Bijdr Dierkd 45, 71–86 (1975).Article 

    Google Scholar 
    10.Jażdżewski, K. & Konopacka, A. Gammarus leopoliensis nov. sp. (Crustacea, Amphipoda) from Eastern Carpathians. Bull. Zoölogisch Museum 11, 185–196 (1989).
    Google Scholar 
    11.Karaman, G. S. New species of the family Gammaridae from Ohrid Lake basin, Gammarus sketi, n. sp., with emphasis on the subterranean members of genus Gammarus Fabr. (Contribution to the knowledge of the Amphipoda 191). Glasnik Odjeljenja prirodnih nauka, Crnogorska akademija nauka i umjetnosti 7, 53–71 (1989).
    Google Scholar 
    12.Iannilli, V. & Ruffo, S. Apennine and Sardinian species of Gammarus, with the description of Gammarus elvirae n. sp. (Crustacea Amphipoda, Gammaridae). Boll. Acc. Gioenia Sci. Nat 35, 519–532 (2002).
    Google Scholar 
    13.Alther, R., Fišer, C. & Altermatt, F. Description of a widely distributed but overlooked amphipod species in the European Alps. Zool. J. Linn Soc.-Lond. https://doi.org/10.1111/zoj.12477 (2016).Article 

    Google Scholar 
    14.Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc.-Lond. 20, 1–14. https://doi.org/10.1093/zoolinnean/zlw025 (2017).Article 

    Google Scholar 
    15.Hupalo, K., Mamos, T., Wrzesinska, W. & Grabowski, M. First endemic freshwater Gammarus from Crete and its evolutionary history-an integrative taxonomy approach. PeerJ 6, e4457. https://doi.org/10.7717/peerj.4457 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. Nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).Article 

    Google Scholar 
    17.Hou, Z., Sket, B. & Li, S. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics https://doi.org/10.1111/cla.12055 (2014).Article 

    Google Scholar 
    18.Hou, Z. & Sket, B. A review of Gammaridae (Crustacea: Amphipoda): The family extent, its evolutionary history, and taxonomic redefinition of genera. Zool. J. Linn. Soc.-Lond. 176, 323–348. https://doi.org/10.1111/zoj.12318 (2016).Article 

    Google Scholar 
    19.Sket, B. & Hou, Z. Family Gammaridae (Crustacea: Amphipoda), mainly its Echinogammarus clade in SW Europe. Further elucidation of its phylogeny and taxonomy. ABS 61 (2018).20.Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).Article 
    PubMed 

    Google Scholar 
    21.Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, 1922 (Crustacea: Amphipoda). J. Zoolog. Syst. Evol. Res. 52, 237–248. https://doi.org/10.1111/jzs.12062 (2014).Article 

    Google Scholar 
    22.Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Copilaş-Ciocianu, D., Zimţa, A.-A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372. https://doi.org/10.1111/zsc.12285 (2018).Article 

    Google Scholar 
    24.Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432. https://doi.org/10.1111/jbi.12853 (2017).Article 

    Google Scholar 
    25.Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536. https://doi.org/10.1038/s41598-020-73739-0 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Meier, R. & Wheeler, Q. D. in The New Taxonomy (ed Q. D. Wheeler) 256 (CRC Press, 2008).27.Coleman, C. O. Taxonomy in times of the taxonomic impediment: Examples from the community of experts on amphipod crustaceans. J. Crustacean Biol. 35, 729–740. https://doi.org/10.1163/1937240x-00002381 (2015).Article 

    Google Scholar 
    28.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    29.Kondracki, J. Karpaty. (WSiP, 1989).30.Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. https://doi.org/10.1111/bij.12918 (2016).Article 

    Google Scholar 
    31.Balint, M. et al. Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas 189–205 (Springer, 2011).Book 

    Google Scholar 
    32.Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front Zool. https://doi.org/10.1186/1742-9994-9-22 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 60, 373–389. https://doi.org/10.1002/tax.602008 (2011).Article 

    Google Scholar 
    34.Hájková, P. et al. Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. The Holocene 25, 702–715. https://doi.org/10.1177/0959683614566251 (2015).ADS 
    Article 

    Google Scholar 
    35.Malicky, H. Chorological patterns and biome types of European Trichoptera and other freshwater insects. Arch. Hydrobiol. 96, 223–244 (1983).
    Google Scholar 
    36.Malicky, H. Arealdynamik und Biomgrundtypen am Beispiel der Köcherfliegen (Trichoptera). Entom Basi 22, 235–259 (2000).
    Google Scholar 
    37.Keresztes, L., Kolcsár, L.-P., Török, E. & Dénes, A.-L. in The Carpathians as speciation centres and barriers: From case studies to general patterns (eds L Keresztes & B. Markó) 168 (Cluj University Press, 2011).38.Bozáová, J., Čiamporová Zat’ovičová, Z., Čiampor, F., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ 8, e10039. https://doi.org/10.7717/peerj.10039 (2020).Article 

    Google Scholar 
    39.Copilas-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027 (2017).Article 
    PubMed 

    Google Scholar 
    40.Grabowski, M. & Mamos, T. Contact Zones, Range Boundaries, and Vertical Distribution of Three Epigean Gammarids (Amphipoda) in the Sudeten and Carpathian Mountains (Poland). Crustaceana 84, 153–168. https://doi.org/10.1163/001121611×554328 (2011).Article 

    Google Scholar 
    41.Jażdżewski, K. Morfologia, taksonomia i występowanie w Polsce kiełży z rodzajów Gammarus Fabr. i Chaetogammarus Mart. (Crustacea, Amphipoda). 185 (Acta Universitatis Lodziensis, 1975).42.Jażdżewski, K. & Konopacka, A. Notes on the Gammaridean Amphipoda of the Dniester River Basin and Eastern Carpathians. Crustaceana. Supplement, 72–89 (1988).43.Zieliński, D. Life History of Gammarus balcanicus Schäferna, 1922 from the Bieszczady Mountains (Eastern Carpathians, Poland). Crustaceana 68(1), 61–72 (1995).Article 

    Google Scholar 
    44.Zieliński, D. Life Cycle and Altitude Range of Gammarus leopoliensis Jażdżewski & Konopacka, 1989 (Amphipoda) in South-Eastern Poland. Crustaceana 71 (1998).45.Konopacka A., Jażdżewski K., Jędryczkowski W. In Monografie Bieszczadzkie, vol. VII (ed. Pawłowski, J.) (2000).46.Straškraba, M. Předběžná zpráva o rozšíření rodu Gammarus v ČSR. Věstník Československé Společnosti Zoologické 17, 212–227 (1953).
    Google Scholar 
    47.Straškraba, M. Beitrag zur Kenntnis der Amphipodenfauna Karpatenrusslands (USSR). Věstník Československé Společnosti Zoologické 21, 256–272 (1957).
    Google Scholar 
    48.Micherdziński, W. Kiełże rodzaju Gammarus Fabricius (Amphipoda) w wodach Polski. Acta Zoologica Cracoviensia 4, 527–637 (1959).
    Google Scholar 
    49.Straškraba, M. Amphipoden der Tschechoslovakei nach den Sammlungen von. Prof. Hrabě. I. Věstník Československé Společnosti Zoologické 26, 117–145 (1962).50.Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).Article 
    PubMed 

    Google Scholar 
    51.Tzedakis, P. C., Emerson, B. C. & Hewitt, G. M. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 28, 696–704. https://doi.org/10.1016/j.tree.2013.09.001 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Harl, J., Duda, M., Kruckenhauser, L., Sattmann, H. & Haring, E. In Search of Glacial Refuges of the Land Snail Orcula dolium (Pulmonata, Orculidae): An Integrative Approach Using DNA Sequence and Fossil Data. PLoS ONE 9, e96012. https://doi.org/10.1371/journal.pone.0096012 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Juřičková, L., Horáčková, J. & Ložek, V. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quaternary Res. 82, 222–228. https://doi.org/10.1016/j.yqres.2014.01.015 (2014).ADS 
    Article 

    Google Scholar 
    54.Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6 (2008).Article 

    Google Scholar 
    55.Zasadni, J. & Kłapyta, P. The tatra mountains during the last glacial maximum. J. Maps 10, 440–456. https://doi.org/10.1080/17445647.2014.885854 (2014).Article 

    Google Scholar 
    56.Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: The role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshwater Biol. 65, 1028–1046. https://doi.org/10.1111/fwb.13487 (2020).CAS 
    Article 

    Google Scholar 
    57.Ratnasingham, S. & Hebert, P. Bold: The barcode of life data system. Mol. Ecol. Not. 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).CAS 
    Article 

    Google Scholar 
    58.Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. STOTEN 678, 499–524. https://doi.org/10.1016/j.scitotenv.2019.04.247 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507. https://doi.org/10.1038/srep22507 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004 (2007).Article 
    PubMed 

    Google Scholar 
    61.Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391. https://doi.org/10.1038/s41598-017-02938-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536. https://doi.org/10.2307/2413694 (1997).Article 

    Google Scholar 
    63.Nosil, P. Speciation with gene flow could be common. Mol. Ecol. 17, 2103–2106. https://doi.org/10.1111/j.1365-294X.2008.03715.x (2008).Article 
    PubMed 

    Google Scholar 
    64.Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499. https://doi.org/10.1016/j.tig.2015.07.002 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. .Biol 215, 403–410. https://doi.org/10.1006/jmbi.1990.9999 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Xia, X. DAMBE5: A comprehensive software package for data analysis. Mol. Biol. Evol. 30, 1720–1728. https://doi.org/10.1093/molbev/mst064 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. https://doi.org/10.1007/bf01731581 (1980).Article 
    PubMed 

    Google Scholar 
    72.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evol. Int. J. Org. Evol. 39, 783–791 (1985).Article 

    Google Scholar 
    73.Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. Plos Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42. https://doi.org/10.1186/s12862-017-0890-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609. https://doi.org/10.1080/10635150600852011 (2006).Article 
    PubMed 

    Google Scholar 
    79.Ezard, T., Fujisawa, T. & Barraclough, T. G. SPLITS: SPecies’ LImits by Threshold Statistics. R package version 1.0–18/r45 Available from: http://R-Forge.R-project.org/projects/splits/ (2009).80.Team, R. C. R: A language and environment for statistical computing, https://www.R-project.org/ (2020).81.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74, 447–467. https://doi.org/10.1007/s00285-016-1034-0 (2017).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    84.Jones, G., Aydin, Z. & Oxelman, B. DISSECT: An assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31, 991–998. https://doi.org/10.1093/bioinformatics/btu770 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    85.Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543. https://doi.org/10.1371/journal.pone.0089543 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707. https://doi.org/10.1111/2041-210X.12199 (2014).Article 

    Google Scholar 
    87.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Heled, J. & Drummond, A. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).Article 

    Google Scholar 
    89.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    90.Flot, J. F., Couloux, A. & Tillier, S. Haplowebs as a graphical tool for delimiting species: A revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol. Biol. 10, 1. https://doi.org/10.1186/1471-2148-10-372 (2010).Article 

    Google Scholar 
    91.Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989. https://doi.org/10.1086/319501 (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Spöri, Y. & Flot, J.-F. HaplowebMaker and CoMa: Two web tools to delimit species using haplowebs and conspecificity matrices. Methods Ecol. Evol. 11, 1434–1438. https://doi.org/10.1111/2041-210X.13454 (2020).Article 

    Google Scholar  More

  • in

    The proximity of a highway increases CO2 respiration in forest soil and decreases the stability of soil organic matter

    1.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science (80-). 304, 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Janzen, H. H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 104, 399–417 (2004).CAS 
    Article 

    Google Scholar 
    3.Leinweber, P., Jandl, G., Baum, C., Eckhardt, K. U. & Kandeler, E. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol. Biochem. 40, 1496–1505 (2008).CAS 
    Article 

    Google Scholar 
    4.Kosugi, Y. et al. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric. For. Meteorol. 147, 35–47 (2007).ADS 
    Article 

    Google Scholar 
    5.Epron, D. Separating autotrophic and heterotrophic components of soil respiration: Lessons learned from trenching and related root-exclusion experiments. Soil Carbon Dyn. Integr. Methodol. https://doi.org/10.1017/CBO9780511711794.009 (2010).Article 

    Google Scholar 
    6.Musselman, R. C. & Fox, D. G. A review of the role of temperate forests in the global CO2 balance. J. Air Waste Manag. Assoc. 41, 798–807 (1991).CAS 
    Article 

    Google Scholar 
    7.Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 363, 815–830 (2008).CAS 
    Article 

    Google Scholar 
    8.Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 220, 242–258 (2005).Article 

    Google Scholar 
    9.Kaiser, K., Guggenberger, G. & Zech, W. Sorption of DOM and DOM fractions to forest soils. Geoderma 74, 281–303 (1996).ADS 
    Article 

    Google Scholar 
    10.Hassink, J. A model of the physical protection of organic matter in soils the capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191, 77–87 (1997).CAS 
    Article 

    Google Scholar 
    11.Saidy, A. R. et al. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173–174, 104–110 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Mueller, K. E. et al. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111, 601–614 (2012).CAS 
    Article 

    Google Scholar 
    13.Mulder, J., De Wit, H. A., Boonen, H. W. J. & Bakken, L. R. Increased levels of aluminium in forest soils: Effects on the stores of soil organic carbon. Water Air. Soil Pollut. 130, 989–994 (2001).ADS 
    Article 

    Google Scholar 
    14.Gruba, P. & Socha, J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. For. Ecol. Manag. 447, 105–114 (2019).Article 

    Google Scholar 
    15.Chrzan, A. Zawartość wybranych metali ciężkich w glebie i faunie glebowej. Proc. ECOpole. 7, 23–26 (2013).
    Google Scholar 
    16.Ampoorter, E., Van Nevel, L., De Vos, B., Hermy, M. & Verheyen, K. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For. Ecol. Manag. 260, 1664–1676 (2010).Article 

    Google Scholar 
    17.Meriano, M., Eyles, N. & Howard, K. W. F. Hydrogeological impacts of road salt from Canada’s busiest highway on a Lake Ontario watershed (Frenchman’s Bay) and lagoon, City of Pickering. J. Contam. Hydrol. 107, 66–81 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Barbier, L., Suaire, R., Durickovic, I., Laurent, J. & Simonnot, M. O. Is a road stormwater retention pond able to intercept deicing salt?. Water Air. Soil Pollut. 229, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    19.Willmert, H. M., Osso, J. D., Twiss, M. R. & Langen, T. A. Winter road management effects on roadside soil and vegetation along a mountain pass in the Adirondack Park, New York, USA. J. Environ. Manag. 225, 215–223 (2018).CAS 
    Article 

    Google Scholar 
    20.General Directorate for National Roads and Motorways. Detailed technical specifications. Winter maintenance of the road network administered by the General Directorate for National Roads and Motorways, Lublin Branch in the years: 2012÷2016 (in Polish). (2012).21.Durickovic, I. NaCl material for winter maintenance and its environmental effect. Salt Earth https://doi.org/10.5772/intechopen.86907 (2020).Article 

    Google Scholar 
    22.General Directorate for National Roads and Motorways. We’ll recap the winter of 2019/2020 and explain what road maintenance is all about (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/37500/Podsumujemy-zime-20192020-i-wyjasnimy-o-co-chodzi-w-utrzymaniu-drog. Accessed on October 20, 2021.23.General Directorate for National Roads and Motorways. Ready for all weather. The 2020/2021 winter season has begun (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/40259/Gotowi-na-kazda-pogode-Zaczal-sie-sezon-zimowy-20202021. Accessed on October 20, 2021.24.General Directorate for National Roads and Motorways. Average annual daily traffic (AADT) at measuring points in 2015 on state roads (in Polish). (2015). https://www.archiwum.gddkia.gov.pl/pl/2551/GPR-2015. Accessed on October 20, 2021.25.QGIS Association. QGIS Geographic Information System. (2021). http://www.qgis.org Accessed on October 20, 2021.26.Woś, A. The Climate of Poland (in Polish) (Polish Scientific Publishers PWN, 1999).
    Google Scholar 
    27.Polish State Forests. Nature and forest conditions of Suchedniów Forest Inspectorate (in Polish). A report. (2011). https://suchedniow.radom.lasy.gov.pl/documents/11058/18775352/warunki+przyrodniczo-lesne.pdf Accessed on October 20, 2021.28.Hopkins, D. W. Carbon mineralization. In Soil Sampling and Methods of Analysis (eds. Carter, M. R. & Gregorich, E. G.) (CRC Press, 2008).29.Buurman, P., van Lagen, B. & Velthorst, E. J. Manual for Soil and Water Analysis (Backhuys Publishers, 1996).
    Google Scholar 
    30.R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Accessed on October 20, 2021..31.Navrátil, T. et al. Soil mercury distribution in adjacent coniferous and deciduous stands highly impacted by acid rain in the Ore Mountains, Czech Republic. Appl. Geochem. 75, 63–75 (2016).Article 
    CAS 

    Google Scholar 
    32.Gruba, P., Pietrzykowski, M. & Pasichnyk, D. Tree species affects the concentration of total mercury (Hg) in forest soils: Evidence from a forest soil inventory in Poland. Sci. Total Environ. 647, 141–148 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Obrist, D. et al. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45, 3974–3981 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Kupka, D., Kania, M., Pietrzykowski, M., Łukasik, A. & Gruba, P. Multiple factors influence the accumulation of heavy metals (Cu, Pb, Ni, Zn) in forest soils in the vicinity of roadways. Water Air Soil Pollut. 232, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    35.Borchers, J. G. & Perry, A. D. The influence of soil texture and aggregation on carbon and nitrogen dynamics in southwest Oregon forests and clearcuts. Can. J. For. Res. 22, 298–305 (1992).CAS 
    Article 

    Google Scholar 
    36.Chantigny, M. H., Angers, D. A., Kaiser, K. & Kalbitz, K. Extraction and characterization of dissolved organic matter. In Soil Sampling and Methods of Analysis (eds. Carter, M. & Gregorich, E. G.) (CRC Press, 2008).37.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Grigalaviciene, I., Rutkoviene, V. & Marozas, V. The accumulation of heavy metals Pb, Cu and Cd at roadside forest soil. Polish J. Environ. Stud. 14, 109–115 (2005).CAS 

    Google Scholar 
    39.Bäckström, M., Bäckman, L., Folkeson, L., Karlsson, S. & Lind, B. Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res. 38, 720–732 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A. & Ganei, S. A. Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environ. Monit. Assess. 190, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    41.Doelman, P. & Haanstra, L. Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 79, 317–327 (1984).CAS 
    Article 

    Google Scholar 
    42.Hattori, H. Influence of heavy metals on soil mcrobial activities. Soil Sci. Plant Nutr. 38, 93–100 (1992).CAS 
    Article 

    Google Scholar 
    43.Gülser, F. & Erdoǧan, E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess. 145, 127–133 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Lofgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).ADS 
    Article 

    Google Scholar 
    45.Mason, C. F., Norton, S. A., Fernandez, I. J. & Katz, L. E. Deconstruction of the chemical effects of road salt on stream water chemistry. J. Environ. Qual. 28, 82–91 (1999).CAS 
    Article 

    Google Scholar 
    46.Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).CAS 
    Article 

    Google Scholar 
    47.Rhodes, A. L. & Guswa, A. J. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA. Sci. Total Environ. 545–546, 525–545 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Cunningham, M. A., Snyder, E., Yonkin, D., Ross, M. & Elsen, T. Accumulation of deicing salts in soils in an urban environment. Urban Ecosyst. 11, 17–31 (2008).Article 

    Google Scholar 
    49.Berggren, D., Mulder, J. & Westerhof, R. Prolonged leaching of mineral forest soils with dilute HCl solutions: The solubility of Al and soil organic matter. Eur. J. Soil Sci. 49, 305–316 (1998).CAS 
    Article 

    Google Scholar 
    50.Prenzel, J. & Schulte-Bisping, H. Some chemical parameter relations in a population of German forest soils. Geoderma 64, 309–326 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Reuss, J. O., Walthall, P. M., Roswall, E. C. & Hopper, R. W. E. Aluminum solubility, calcium-aluminum exchange, and pH in acid forest soils. Soil Sci. Soc. Am. J. 54, 374–380 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Hobbie, S. E. et al. Tree species effects on soil organic matter dynamics: The role of soil cation composition. Ecosystems 10, 999–1018 (2007).CAS 
    Article 

    Google Scholar 
    53.Scheel, T., Jansen, B., Van Wijk, A. J., Verstraten, J. M. & Kalbitz, K. Stabilization of dissolved organic matter by aluminium: A toxic effect or stabilization through precipitation?. Eur. J. Soil Sci. 59, 1122–1132 (2008).CAS 
    Article 

    Google Scholar 
    54.Lützow, M. V. et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 57, 426–445 (2006).Article 
    CAS 

    Google Scholar 
    55.Gruba, P. & Socha, J. Effect of parent material on soil acidity and carbon content in soils under silver fir (Abies alba Mill.) stands in Poland. CATENA 140, 90–95 (2016).CAS 
    Article 

    Google Scholar 
    56.Gruba, P. & Mulder, J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ. 511, 655–662 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).Article 

    Google Scholar  More

  • in

    Terrestrial connectivity, upstream aquatic history and seasonality shape bacterial community assembly within a large boreal aquatic network

    1.McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett. 2007;10:995–1015.PubMed 

    Google Scholar 
    2.Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance distributions. Nature. 2003;422:714–6.CAS 
    PubMed 

    Google Scholar 
    3.Nakadai R, Okazaki Y, Matsuoka S. Describing macroecological patterns in microbes: Approaches for comparative analyses of operational taxonomic unit read number distribution with a case study of global oceanic bacteria. Environ DNA. 2020;2:535–43.
    Google Scholar 
    4.Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.PubMed 

    Google Scholar 
    5.Zhou J, Ning D. Stochastic community assembly: Does it matter in microbial ecology? Micro Mol Biol Rev. 2017;81:1–32.
    Google Scholar 
    6.Fukami T. Assembly history interacts with ecosystem size to influence species diversity. Ecology. 2004;85:3234–42.
    Google Scholar 
    7.Shade A, Gilbert JA. Temporal patterns of rarity provide a more complete view of microbial diversity. Trends Microbiol. 2015;23:335–40.CAS 
    PubMed 

    Google Scholar 
    8.Comte J, Berga M, Severin I, Logue JB, Lindström ES. Contribution of different bacterial dispersal sources to lakes: Population and community effects in different seasons. Environ Microbiol. 2017;19:2391–404.CAS 
    PubMed 

    Google Scholar 
    9.Fukami T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
    Google Scholar 
    10.Niño-García JP, Ruiz-González C, del Giorgio PA. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J. 2016;10:1755–66.PubMed 
    PubMed Central 

    Google Scholar 
    11.Ruiz-González C, Niño-García JP, Berggren M, del Giorgio PA. Contrasting dynamics and environmental controls of dispersed bacteria along a hydrologic gradient. Adv Ocean Limnol. 2017;8:222–34.
    Google Scholar 
    12.Ruiz-González C, Niño-García JP, del Giorgio PA. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett. 2015;18:1198–206.PubMed 

    Google Scholar 
    13.Crump BC, Amaral-Zettler LA, Kling GW. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 2012;6:1629–39.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc R Soc B. 2013;280:20131760.PubMed 
    PubMed Central 

    Google Scholar 
    15.Wisnoski NI, Muscarella ME, Larsen ML, Peralta AL, Lennon JT. Metabolic insight into bacterial community assembly across ecosystem boundaries. Ecology. 2020;101:e02968.PubMed 

    Google Scholar 
    16.Nelson CE, Sadro S, Melack JM. Contrasting the influences of stream inputs and landscape position on bacterioplankton community structure and dissolved organic matter composition in high-elevation lake chains. Limnol Oceanogr. 2009;54:1292–305.CAS 
    Article 

    Google Scholar 
    17.de Melo ML, Bertilsson S, Amaral JHF, Barbosa PM, Forsberg BR, Sarmento H. Flood pulse regulation of bacterioplankton community composition in an Amazonian floodplain lake. Freshw Biol. 2019;64:108–20.
    Google Scholar 
    18.Caillon F, Besemer K, Peduzzi P, Schelker J. Soil microbial inoculation during flood events shapes headwater stream microbial communities and diversity. Microb Ecol. 2021;82:591–601.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Vass M, Langenheder S. The legacy of the past: effects of historical processes on microbial metacommunities. Aquat Micro Ecol. 2017;79:13–19.
    Google Scholar 
    20.Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.PubMed 
    PubMed Central 

    Google Scholar 
    21.Niño-García JP, Ruiz-González C, del Giorgio PA. Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton. Ecol Lett. 2016;19:1506–15.PubMed 

    Google Scholar 
    22.Mansour I, Heppell CM, Ryo M, Rillig MC. Application of the microbial community coalescence concept to riverine networks. Biol Rev. 2018;93:1832–45.PubMed 

    Google Scholar 
    23.Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, et al. Global patterns in the biogeography of bacterial taxa. Environ Microbiol. 2011;13:135–44.PubMed 
    PubMed Central 

    Google Scholar 
    24.Shade A, Gregory Caporaso J, Handelsman J, Knight R, Fierer N. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J. 2013;7:1493–506.PubMed 
    PubMed Central 

    Google Scholar 
    25.Logue JB, Lindström ES. Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints. ISME J. 2010;4:729–38.CAS 
    PubMed 

    Google Scholar 
    26.Adams HE, Crump BC, Kling GW. Metacommunity dynamics of bacteria in an arctic lake: The impact of species sorting and mass effects on bacterial production and biogeography. Front Microbiol. 2014;5:82.PubMed 
    PubMed Central 

    Google Scholar 
    27.Langenheder S, Wang J, Karjalainen SM, Laamanen TM, Tolonen KT, Vilmi A, et al. Bacterial metacommunity organization in a highly connected aquatic system. FEMS Microbiol Ecol. 2017;93:1–9.
    Google Scholar 
    28.Winter C, Hein T, Kavka G, Mach RL, Farnleitner AH. Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach. Appl Environ Microbiol. 2007;73:421–31.CAS 
    PubMed 

    Google Scholar 
    29.Savio D, Sinclair L, Ijaz UZ, Parajka J, Reischer GH, Stadler P, et al. Bacterial diversity along a 2600 km river continuum. Environ Microbiol. 2015;17:4994–5007.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Hauptmann AL, Markussen TN, Stibal M, Olsen NS, Elberling B, Bælum J, et al. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front Microbiol. 2016;7:1–16.
    Google Scholar 
    31.Doherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, et al. Bacterial biogeography across the Amazon river-ocean continuum. Front Microbiol. 2017;8:882.PubMed 
    PubMed Central 

    Google Scholar 
    32.Gweon HS, Bowes MJ, Moorhouse HL, Oliver AE, Bailey MJ, Acreman MC, et al. Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environ Microbiol. 2021;23:484–98.CAS 
    PubMed 

    Google Scholar 
    33.Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, et al. Fluvial network organization imprints on microbial co-occurrence networks. Proc Natl Acad Sci. 2014;111:12799–804.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, et al. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 2015;9:516–26.CAS 
    PubMed 

    Google Scholar 
    35.Hassell N, Tinker KA, Moore T, Ottesen EA. Temporal and spatial dynamics in microbial community composition within a temperate stream network. Environ Microbiol. 2018;20:3560–72.PubMed 

    Google Scholar 
    36.Wisnoski NI, Lennon JT. Microbial community assembly in a multi-layer dendritic metacommunity. Oecologia. 2021;195:13–24.PubMed 

    Google Scholar 
    37.Cole JJ. Aquatic microbiology for ecosystem scientists: New and recycled paradigms in ecological microbiology. Ecosystems. 1999;2:215–25.
    Google Scholar 
    38.Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci. 2010;107:5881–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Bowsher AW, Kearns PJ, Shade A. 16S rRNA/rRNA gene ratios and cell activity staining reveal consistent patterns of microbial activity in plant-associated soil. mSystems. 2019;4:e00003–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Székely AJ, Berga M, Langenheder S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 2013;7:61–71.PubMed 

    Google Scholar 
    41.Aanderud ZT, Vert JC, Lennon JT, Magnusson TW, Breakwell DP, Harker AR. Bacterial dormancy is more prevalent in freshwater than hypersaline lakes. Front Microbiol. 2016;7:853.PubMed 
    PubMed Central 

    Google Scholar 
    42.Denef VJ, Fujimoto M, Berry MA, Schmidt ML. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria. Front Microbiol. 2016;7:1–13.
    Google Scholar 
    43.Muscarella ME, Jones SE, Lennon JT. Species sorting along a subsidy gradient alters bacterial community stability. Ecology. 2016;97:2034–43.PubMed 

    Google Scholar 
    44.Peter H, Jeppesen E, De Meester L, Sommaruga R. Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet. ISME J. 2018;12:544–55.
    Google Scholar 
    45.Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2013;17:10–12.
    Google Scholar 
    47.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.PubMed 
    PubMed Central 

    Google Scholar 
    48.Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.
    Google Scholar 
    49.Murali A, Bhargava A, Wright ES. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:1–14.
    Google Scholar 
    50.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.CAS 
    PubMed 

    Google Scholar 
    51.Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:1–10.
    Google Scholar 
    52.Paulson JN, Colin Stine O, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr. 1957;27:325–49.
    Google Scholar 
    54.Legendre P, Legendre L Numerical ecology, 2nd ed. 1998. Elsevier, Amsterdam.55.Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019;35:526–8.CAS 
    PubMed 

    Google Scholar 
    56.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019.57.Tabak J Differential Geometry. Geometry: The language of Space and Form. 2004. Facts on File, Inc, New York, p 150.58.Brown BL. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol Lett. 2003;6:316–25.
    Google Scholar 
    59.Osterholz H, Singer G, Wemheuer B, Daniel R, Simon M, Niggemann J, et al. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. ISME J. 2016;10:1717–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Sørensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analysis of the vegetation on Danish commons. Biol Skr K Dan Vidensk Selsk. 1948;5:1–34.
    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing. 2020. Vienna.62.RStudio Team. RStudio: Integrated development for R. 2020. RStudio, Inc., Boston, MA.63.Anderson MJ, Walsh DCI. Anderson and Walsh (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions- What null hypothesis are you.pdf. Ecol Monogr. 2013;83:557–74.
    Google Scholar 
    64.Wilhelm L, Besemer K, Fasching C, Urich T, Singer GA, Quince C, et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ Microbiol. 2014;16:2514–24.CAS 
    PubMed 

    Google Scholar 
    65.Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Carrara F, Rinaldo A, Giometto A, Altermatt F. Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes. Am Nat. 2013;183:13–25.PubMed 

    Google Scholar 
    67.Lindström ES, Forslund M, Algesten G, Bergström A-K. External control of bacterial community structure in lakes. Limnol Oceanogr. 2006;51:339–42.
    Google Scholar 
    68.Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member. MBio. 2019;10:e02189–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Luo X, Xiang X, Yang Y, Huang G, Fu K, Che R, et al. Seasonal effects of river flow on microbial community coalescence and diversity in a riverine network. FEMS Microbiol Ecol. 2020;96:1–13.
    Google Scholar 
    70.Paruch L, Paruch AM, Eiken HG, Skogen M, Sørheim R. Seasonal dynamics of lotic bacterial communities assessed by 16S rRNA gene amplicon deep sequencing. Sci Rep. 2020;10:16399.PubMed 
    PubMed Central 

    Google Scholar 
    71.Ruiz-González C, Niño-García JP, Kembel SW, del Giorgio PA. Identifying the core seed bank of a complex boreal bacterial metacommunity. ISME J. 2017;11:2012–21.PubMed 
    PubMed Central 

    Google Scholar 
    72.Stadler M, Ejarque E, Kainz MJ. In-lake transformations of dissolved organic matter composition in a subalpine lake do not change its biodegradability. Limnol Oceanogr. 2020;65:1554–72.CAS 

    Google Scholar 
    73.Hutchins RHS, Aukes P, Schiff SL, Dittmar T, Prairie YT, del Giorgio PA. The optical, chemical, and molecular dissolved organic matter succession along a boreal soil-stream-river continuum. J Geophys Res Biogeosciences. 2017;122:2892–908.CAS 

    Google Scholar 
    74.Besemer K, Singer G, Limberger R, Chlup A-K, Hochedlinger G, Hödl I, et al. Biophysical controls on community succession in stream biofilms. Appl Environ Microbiol. 2007;73:4966–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Battin TJ, Kaplan LA, Denis Newbold J, Hansen CME. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature. 2003;426:439–42.CAS 
    PubMed 

    Google Scholar 
    76.McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Publ Gr. 2011;10:39–50.
    Google Scholar 
    77.Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, et al. Unraveling assembly of stream biofilm communities. ISME J. 2012;6:1459–68.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.CAS 
    PubMed 

    Google Scholar 
    79.Stadler M CarBBAS/Paper_Stadler-delGiorgio_ISMEJ_2021. 2021. Zenodo.80.Stadler M, Ruiz-González C, Vick-Majors TJ, del Giorgio PA Microbial 16S rRNA gene (DNA) and transcripts (cDNA) along a boreal soil-freshwater-estuary continuum. 2021. Zenodo. More

  • in

    Nutritional status and prey energy density govern reproductive success in a small cetacean

    Data collection and preparation—Dutch watersStudy specimensBetween 2006 and 2019, 1457 deceased harbour porpoises in The Netherlands were collected for post-mortem investigations and diet analysis, with the necropsies conducted following internationally standardized guidelines69. For this study focussing on female life history, we selected all females  > 115 cm, as smaller animals may be maternally dependent and can be considered young of the year23. Cases in DCC5, which represent carcass remains, and of which reproductive organs were not assessable or present due to scavenging or incompleteness of the carcasses were excluded. The reproductive organs of the female porpoises  > 115 cm (n = 328/1457) were macroscopically inspected to differentiate between immature and mature animals, with the presence of ovarian corporal scars used as indication of maturity70. Exact age was determined by assessing tooth growth layer groups (GLG) for a subsample of cases (n = 154), according to previously described methods71. Data can be found in STab. 13.Health and nutritional statusPorpoises collected for post-mortem investigation were necropsied with the primary aim to determine the animals’ causes of death and their health status, with the quantity and quality of data and results strongly depending on carcass freshness and completeness as well as other logistical and financial factors69. For this study, we established three proxies based on the findings and metrics taken and assessed at necropsy: a proxy for health status and two proxies for nutritional status. For the proxy for health status, we assessed the cause of death among the mature females (n = 199/328) and divided all cases in two categories. In the first category, we placed all mature females which most likely died as a direct result of incidental bycatch (diagnosed based on the presence of encircling imprints or external incisions, the recent ingestion of prey, and the exclusion of other causes of death, for more details see IJsseldijk et al.63), as a direct result of a predatory attack (diagnosed based on the presence of large, sharp-edged mutilations with associated ante-mortem bite lesions bilaterally on the tailstock, extremities or on the head, for more details see Leopold et al.58) or as a direct result of another acute cause, such as sharp forced trauma or dystocia (obstructed labour, full-term foetus) which did not present signs of significant disease or debilitation. All other animals were placed in the second category, with these mature females displaying evidence of general and significant debilitation, including infectious disease (such as significant parasitism, bacterial, viral or mycotic infections) and/or emaciation. Cases that could not be grouped, mostly as a result of decomposition, were excluded from analyses that included this as a parameter.The first proxy of nutritional status was based on the mean blubber thickness, measured during necropsies in a dorsoventral line on the left body flank just cranial to the dorsal fin, at three locations: dorsal, lateral, and ventral. Blubber thickness in small cetaceans has previously been shown to decrease during periods of fasting72,73 and this metric has been used as proxy of nutrition by others45,74,75,76. However, it should be noted that blubber thickness is not always a good reflection of individual health nor cause of death (e.g., animals dying of acute causes could also be debilitated62,63). There is uncertainty to what extent factors such as age, sex and season naturally influence blubber thickness, and this should be accounted for. Since we focus our analyses on mature females, no further correction for age and sex was done. However, to correct for season, we modelled the mean blubber thickness as a function of Julian date using a generalized additive model (GAM) to allow a smooth effect of the predictor variable (Julian date). This captures the sinus-shaped seasonal variation in blubber thickness which naturally occurs as a result of changing water- and air temperature25,72 (SFig. 5). The residuals of that model were thereby indicative of an adult females’ nutritional status independent of season, and hence they were used as the proxy for nutrition (referred to in the main text as: nutritional status using corBT, Model 1 in STab. 1).The second proxy of nutritional status used the categorical variable “nutritional condition” (NCC), which is assigned during necropsies as good, moderate, or poor. Animals in good NCC generally presented a convex outline on a cranial perspective, no signs of muscle atrophy (abundant skeletal musculature) and presented signs of visceral fat. Animals in moderate NCC generally did not have a fully round outline on a cranial perspective, showed possible signs of muscle atrophy and did not present visceral fat. Animals in poor NCC generally had a concave outline on cranial perspective, with visible aspects of vertebrae and/or scapula externally, an hollow appearance caudal to the skull and signs of muscle atrophy (based on IJsseldijk et al.69). Since this categorial differentiation is collinear with the first established proxy of nutritional status (SFig. 5), it was not used in the same modelling procedures. Therefore, models were run twice, first with corBT and secondly with NCC (for an overview see STab. 1).Pregnancy rate and foetus sizeThe pregnancy rate (PR) was calculated as the proportion of pregnant females in the total sample of mature females (following e.g.,70,77). Pregnancy rates were also calculated separately for the animals in the two different health status categories (see above). To avoid missing the presence of very small, early embryos, samples from the period of conception (June–August23) as well as samples from the period of calving (May–June23) were excluded in the PR calculations. All foetuses were measured during necropsy (of the dam) and a proportion of these were also weighed.Mean energetic density of dietsAs a measure of the quality of prey species constituting the diet of harbour porpoises necropsied in The Netherlands, we calculated the mean energy density of their diet (MEDD). Prey were identified from stomach contents, mostly from otoliths; for each individual prey that could be identified, the fresh mass was estimated (using78 and following29) The energy density (ED) is defined as the energy per kilogram of wet weight of prey8,79. ED values for all prey species encountered were taken from the literature (STab. 7). If for a given prey species no value for ED could be found, the ED of a comparable species (mostly same genus), or the mean value of its family, was used. For species for which multiple ED values were available, values were averaged. ED values reported in kcal were multiplied by 4.184 to convert to kJ (following e.g.80). To calculate the mean ED of the diet for a group of porpoises (MEDD, kJ·g−1, see Table 1) we used:$$MEDD=frac{1}{sum_{i=1}^{n}{M}_{i}}sum_{i=1}^{n}({M}_{i}*{ED}_{i})$$
    (1)
    where i is the prey species and M the reconstructed prey mass in grams (following8). The reconstructed prey mass per species is multiplied by the species-specific ED and the energy sum is divided by the total mass of all prey, resulting in the MEDD.Data analyses and statistical models—Dutch watersData were explored prior to analyses following Zuur et al.81,82. Data exploration and analyses were performed using R version 3.6.383, with packages ggplot2, grid, gridExtra, rsq, glmTMB, mgcv and ggpubr. Several statistical models were developed (for referencing in the text see overview in: STab. 1).Influences on foetus sizeTo identify which variables influence foetus size, we firstly identified the best measure for foetus size. A Generalized Linear Model (GLM) for foetus length and weight was fitted (Model 2), with weight only available for a subset of all foetuses (n = 34). This model indicated a close relationship between length and weight (R2 of 0.8 for foetus length as a function of mass, SFig. 5), and foetus length was therefore used as representative for foetus size in the subsequent analysis, to increase sample size. GLMs with a Gaussian distribution were used (Model 3). The model selection tested for covariates and their influence on foetus length, with the predictor variables: Julian date to account for foetus length which increases throughout gestation, total length of the mother, health status of the mother, nutritional status of the mother. Interactions between length of the mother and her nutritional status were included following data exploration. Only cases with complete observation of all parameters were included (n = 43). A backwards model selection approach was applied with the drop1 function from the R language used to assess which model terms could be excluded83. The best fitting model was selected using Akaike’s Information Criterion (AIC), which provides a relative measure of the goodness of fit of statistical models. Model validation was done to identify potential violations of model assumptions by inspection of normalized residuals and assessment of residual probability plots. Likelihood profile confidence intervals (95%) and odds ratios of the most optimal model were calculated. Models were run twice, first using the first proxy of nutritional status based on blubber thickness corrected for season (corBT) and secondly using the nutritional condition category (NCC), taken into account blubber thickness, visceral fat and muscle mass (for full descriptions, see above).Influences on pregnancyTo identify which variables influence pregnancy, we firstly coded all mature, pregnant females as 1 and all mature, non-pregnant females as 0. Next, GLMs with a binomial error distribution and logit link were used (Model 4) to test the influence of included covariates on the likelihood of pregnancy. Only cases with complete observations of all parameters were included (n = 65). The predictor variables included in the saturated model were age, year to assess temporal variance, month to assess seasonal variance, health status (proxy, categorical), and nutritional status. Interactions were added following data exploration: between health and nutritional status, between the health status and year and health status and month. Model selection, validation and interpretation was conducted following the protocol previously described above. Models were run twice, first using the first proxy of nutritional status based on for season corrected blubber thickness (corBT, numerical) and secondly using the nutritional condition category, taking into account blubber thickness, visceral fat and muscle mass (NCC, categorical) (for full descriptions, see above).Age at sexual maturityThe age at sexual maturity (ASM), or age at 50% maturity, was determined using binomial logistic regression models. Maturity, coded as 1 for mature females and 0 for immature females, was modelled as a function of age (in years) to assess ASM (n = 154, Model 5). The model was fitted using a binomial error distribution and logit link, as is appropriate for binary data and the ASM was estimated by calculating the negative of the slope over the intercept.Assessment of porpoise life history and environmental condition globallyThe life history response variables assessed were PR and ASM, which were obtained from 17 different studies. The earliest study was conducted between 1941 and 1943, but the majority of the studies were performed between 1980 and 2019 (including the present study). The environmental predictor variables used were quality of diet, expressed as mean energy density of diet (MEDD), cumulative human impact (CHI) with data on climate change, fishing, land-based pressures, and other human activities, and lastly chemical pollution expressed as polychlorinated biphenyls (PCBs). Fifteen diet studies were used, ranging from 1985 to 2019 (including this study). One comprehensive study was used to obtain the CHI information for the year 2008. A total of 21 studies reporting PCB levels in harbour porpoises, conducted in the period 1971–2019 (including the present study) were collated. Details below and in STab. 1.Life historyFor PR the following were tabulated: (1) the number of pregnant females out of the total number of mature females in each study, (2) the determined conception period and whether this was accounted for in the calculation of the PR, (3) the method to assess pregnancy, which was either based on the presence of a foetus or presence of a corpora lutea (CL), and (4) the source of the specimens: either directly from fisheries, strandings including trauma cases, or a combination thereof (STab. 3). For ASM we provide: (1) how ASM was assessed in each study, and (2) the standard error (SE) or confidence interval (CI), if reported (STab. 4).Energy density of preyA literature search was performed for diet studies from stomach contents of porpoises from or near the study areas where PR and ASM were determined. When multiple diet studies were available the study was selected that best corresponded to the time frame at which PR and ASM were calculated. For the diet studies which reported the reconstructed prey mass in grams we used formula (1) (STab. 8). When the prey mass was reported as a percentage of relative abundance in terms of estimated biomass of prey (%M), we multiplied %M by the ED of the prey species and divided the total %M (STab. 9), using:$$MEDD=frac{1}{sum_{i=1}^{n}{mathrm{%}M}_{i}}sum_{i=1}^{n}({mathrm{%}M}_{i}*{ED}_{i})$$
    (2)
    For the studies where the %M was presented in a bar chart, we measured the %M using digital callipers.Cumulative human impactAn ecosystem-specific, multiscale spatial model containing high resolution data on the intensity of human stressors and their impact on marine ecosystems was developed by Halpern et al.12,14 as part of their Ocean Health Index project. CHI values derived by this model are based on fourteen stressors related to human activities from four primary categories: (1) land-based drivers, including nutrient pollution runoff, organic chemical pollution runoff (pesticides), direct impact of humans (density of coastal human populations), and light; (2) five types of (commercial) fishing, including commercial demersal destructive, commercial demersal non-destructive high bycatch, commercial demersal non-destructive low bycatch, pelagic high bycatch, pelagic low bycatch, and artisanal; (3) climate change, including sea surface temperature, ocean acidification and sea level rise; and (4) shipping. Extensive descriptions of these drivers are published in the methods and supplementary material of Halpern et al.12,14, including information on the origin and validation of the data.For this study we used the global CHI dataset that is publicly available via the Knowledge Network for Biocomplexity14. Data on CHI was based on the year 2008. We extracted the CHI scores for each of our study areas at ~ 1 km2 resolution and calculated the min, max, mean and median values. To do so, we defined our study areas using the standard georeferenced marine regions as published under the Flanders Marine Institute84. In most cases we combined two or more regions from the database to get full coverage of the study area, but for the study areas where the marine regions did not provide full coverage, we used a manually created polygon. The list of regions is given in STab. 15. For areas with more than one life history study (Denmark and The Netherlands) we used the newest studies since these provided the better match to the time of the CHI score calculation (STab. 2).Chemical pollutionPolychlorinated biphenyls were not included in the list of organic polluters by Halpern et al.14. However, PCBs have been specifically associated with reproductive impairment in many marine mammal species16,17,18,30,50, therefore the correlation with life history parameters for this industrial organic pollutant was assessed separately. Data was retrieved from the International Whaling Commission’s (IWC) ‘POP Contaminants Trend Explorer’ tool, hosted on the portal of the Sea Mammal Research Unit (SMRU, University of St. Andrews, Scotland). This tool is established under the IWC Scientific Sub-Committee on Environmental Concerns (IWC SC/68A 2019) as part of the IWC Pollution 2020 Initiative and includes data from scientific publications from the 1970s–2000s34,43. The database was provided by the tool manager and included data restricted to adult males, to reduce the bias of biotransfer of chemicals, which occurs during gestation and lactation in females35. The tool reports PCB concentrations in blubber, which is the most commonly assessed tissue in marine mammals for studying the burden of the highly lipophilic and stable PCB compounds47. PCB concentrations that were measured in porpoises in the same areas from which life history parameters were verified with the literature and included. In addition, the literature was searched for PCB analyses of harbour porpoises published in the 2010s, as well as own institutional databases, and data added to align time frame, where possible, with time frame of conducted life history studies (STab. 2).The presentation of concentrations of pollutants was based on either wet weight (ww) or lipid weight (lw). To allow comparison, the datapoints need to be converted to one common unit, with lw most frequently reported. Studies reporting only ww or dry weight were not included. Studies reporting ww and percentage of lipids (%lipids) were converted to lw, using:$$lw=frac{ww}{%lipids}*100$$
    (3)
    The datapoints were converted to mg/kg lw for all studies and the mean ∑TotalPCB is reported per area.The variance of the sum of congeners reported ranged from ∑6PCBs up to ∑99PCBs, with several older studies reported Aroclor mixtures. Data per congener was however largely not available in literature. We therefore present two mean ∑PCB datapoints: firstly including all studies regardless of the sum of congeners or mixtures (referred to as PCB1), and secondly limited to studies reporting ∑17-99PCBs (referred to as PCB2).Statistical models for global assessmentFor the analyses we restricted to study areas with complete observations of the environmental conditions to compare models. A GLM fitted with a binomial distribution and logit link was used to determine the effect of environmental conditions on pregnancy rates (Model 6). The response variable was the number of pregnant females (Npreg) in the total number of females (Ntotal) (grouped binomial data, STab. 3). Since the differences between study areas can be large because of unknown effects, an individual normal random effect for area was added on the logit scale. Another GLM was conducted to determine the effect of the three environmental conditions on age at sexual maturity (Model 7) fitted with a Gaussian distribution and weighed by sample size (Ntotal) (STab. 4). This model was applied twice using two individual predictor functions: first, with the predictor variables MEDD, CHI and PCB1 and secondly with the predictor variables MEDD, CHI and PCB2. The latter restricted the analyses to a smaller number of study areas due to missing data, but it reduced some of the bias because of very small ( More

  • in

    For NGOs, article-processing charges sap conservation funds

    CORRESPONDENCE
    02 November 2021

    For NGOs, article-processing charges sap conservation funds

    Kevin A. Wood

     ORCID: http://orcid.org/0000-0001-9170-6129

    0
    ,

    Julia L. Newth

     ORCID: http://orcid.org/0000-0003-3744-1443

    1
    &

    Geoff M. Hilton

     ORCID: http://orcid.org/0000-0001-9062-3030

    2

    Kevin A. Wood

    Wildfowl & Wetlands Trust, Slimbridge, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Julia L. Newth

    Wildfowl & Wetlands Trust, Slimbridge, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Geoff M. Hilton

    Wildfowl & Wetlands Trust, Slimbridge, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    The shift from a ‘reader pays’ to an ‘author pays’ model of scientific publishing presents a financial threat to environmental non-governmental organizations (eNGOs). Many of these support, conduct and publish applied research on real-world solutions to the planet’s most pressing challenges. Funded mainly by donations, eNGOs must now choose between taking conservation action and publishing more research papers.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 599, 32 (2021)
    doi: https://doi.org/10.1038/d41586-021-02979-5

    Competing Interests
    All three authors are current employees of the Wildfowl & Wetlands Trust, an environmental non-governmental organization that is actively involved in undertaking and publishing research.

    Related Articles

    See more letters to the editor

    Subjects

    Environmental sciences

    Conservation biology

    Publishing

    Latest on:

    Environmental sciences

    Embrace open-source sensors for local climate studies
    Correspondence 02 NOV 21

    Scientists say Australian plan to cull up to 10,000 wild horses doesn’t go far enough
    News 01 NOV 21

    Machine learning enables global solar-panel detection
    News & Views 27 OCT 21

    Publishing

    Colour blindness: journals should enable image redisplay
    Correspondence 02 NOV 21

    Water bear fossil and grizzly bear selfie — October’s best science images
    News 02 NOV 21

    Cassyni aims to make online seminars more findable and citable
    Career News 28 OCT 21

    Jobs

    Researcher/Senior Researcher in cancer progression and metastasis

    St. Jude Children’s Research Hospital (St. Jude)
    Memphis, TN, United States

    Assistant or Associate Professor of Industrial and Physical Pharmacy

    Purdue University
    West Lafayette, United States

    Assistant/Associate Professor in Cancer Research

    The University of Texas at El Paso (UTEP)
    El Paso, TX, United States

    Research Coordinator II

    Baylor College of Medicine (BCM)
    Houston, TX, United States More