More stories

  • in

    Eat me, or don’t eat me?

    1.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Science 281, 237–240 (1998).CAS 
    Article 

    Google Scholar 
    2.Lewis, K. M., Van Duken, G. L. & Arrigo, K. R. Science https://doi.org/10.1126/science.aay8380 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).CAS 
    Article 

    Google Scholar 
    4.Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Science 329, 342–345 (2010).CAS 
    Article 

    Google Scholar 
    5.Shemi, A. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00971-3 (2021).Article 

    Google Scholar 
    6.Teng, Z.-J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00981-1 (2021).Article 

    Google Scholar 
    7.Sieburth, J. M. Science 132, 676–677 (1960).CAS 
    Article 

    Google Scholar 
    8.Strom, S., Wolfe, G., Holmes, J., Stecher, H., Shimeneck, C. & Sarah, L. Limnol. Oceanogr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    9.Wolfe, G. V., Steinke, M. & Kirst, G. O. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    10.Curson, A. R. J. et al. Nat. Microbiol. 2, 17009 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web

    1.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).Article 

    Google Scholar 
    2.Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Fey, P. et al. Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties. Mar. Biol. 167, 92. https://doi.org/10.1007/s00227-020-03703-z (2020).CAS 
    Article 

    Google Scholar 
    4.Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).Article 

    Google Scholar 
    5.Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00024 (2018).Article 

    Google Scholar 
    6.Halpern, B. S. et al. A Global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Wyatt, A. S. J., Waite, A. M. & Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 1029–1044 (2012).ADS 
    Article 

    Google Scholar 
    10.Letourneur, Y. et al. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32, 1091–1102. https://doi.org/10.1007/s00338-013-1073-6 (2013).ADS 
    Article 

    Google Scholar 
    11.Zhu, Y., Newman, S. P., Reid, W. D. K. & Polunin, N. V. C. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160. https://doi.org/10.1007/s00227-019-3599-9 (2019).Article 

    Google Scholar 
    12.McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    13.Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. https://doi.org/10.1126/sciadv.abf3792 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Mann, K. H. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnol. Oceanogr. 33, 910–930 (1988).ADS 
    CAS 

    Google Scholar 
    15.Antonio, B., Maria Teresa, A.-O. & Manuel, V. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).Article 

    Google Scholar 
    16.Gazeau, F., Smith, S. V., Gentili, B., Frankignoulle, M. & Gattuso, J.-P. The European coastal zone: characterization and first assessment of ecosystem metabolism. Est. Coast. Shelf Sci. 60, 673–694. https://doi.org/10.1016/j.ecss.2004.03.007 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    18.Hamner, W. M., Colin, P. L. & Hamner, P. P. Export-import dynamics of zooplankton on a coral reef in Palau. Mar. Ecol. Prog. Ser. 334, 83–92 (2007).ADS 
    Article 

    Google Scholar 
    19.Carassou, L., Kulbicki, M., Nicola, T. J. R. & Polunin, N. V. C. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21, 1–12 (2008).Article 

    Google Scholar 
    20.Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. & Parmentier, E. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56, 10–17. https://doi.org/10.1007/s10228-008-0053-2 (2009).Article 

    Google Scholar 
    21.Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).ADS 
    Article 

    Google Scholar 
    22.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Fresh. Wat. Res. 50, 839–866 (1999).
    Google Scholar 
    23.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar. Biol. 161, 1385–1393. https://doi.org/10.1007/s00227-014-2426-6 (2014).Article 

    Google Scholar 
    26.Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).Article 

    Google Scholar 
    27.Cabioch, G. et al. Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. Mar. Geol. 254, 18–34. https://doi.org/10.1016/j.margeo.2008.04.014 (2008).ADS 
    Article 

    Google Scholar 
    28.Galzin, R., Duron, S. D. & Meyer, J. Y. Biodiversité terrestre et marine des îles Marquises, Polynésie française. (Société française d’Ichtyologie, 2016).29.SO CORAIL. Site d’observation CORAIL, https://sextant.ifremer.fr/record/le51de1b-7979-4487-b5d5-329394d166da (2018).30.Martinez, E., M., R. & Maamaatuaiahutapu, K. in Biodiversité terrestre et marine des îles Marquises, Polynésie française (eds Galzin R., Duron S.-D., & Meyer J.-Y) 123–136 (Société Française d’Ichtyologie, 2016).31.Houk, P. & Musburger, C. Trophic interactions and ecological stability across coral reefs in the Marshall Islands. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).ADS 
    Article 

    Google Scholar 
    32.Raapoto, H., Martinez, E., Petrenko, A., Doglioli, A. M. & Maes, C. Modeling the Wake of the Marquesas Archipelago. J. Geophys. Res. Oceans 123, 1213–1228. https://doi.org/10.1002/2017jc013285 (2018).ADS 
    Article 

    Google Scholar 
    33.Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 8 (2001).
    Google Scholar 
    34.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    35.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).Article 
    PubMed 

    Google Scholar 
    36.Pinnegar, J. & Polunin, N. V. C. Differential fractionation of d13C and d15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).Article 

    Google Scholar 
    37.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    38.Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946. https://doi.org/10.4319/lo.2013.58.6.1931 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–710 (2002).Article 

    Google Scholar 
    41.Meziane, T. et al. Inter-specific and geographical variations in the fatty acid composition of mangrove leaves: implications for using fatty acids as a taxonomic tool and tracers of organic matter. Mar. Biol. 150, 1103–1113. https://doi.org/10.1007/s00227-006-0424-z (2007).CAS 
    Article 

    Google Scholar 
    42.Parrish, C. C. et al. in Marine Chemistry (ed P. J. Wangersky) 193–223 (Springer Berlin Heidelberg, 2000).43.Alfaro, A. C., Thomas, F., Sergent, L. & Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Est. Coast. Shelf Sci. 70, 271–286. https://doi.org/10.1016/j.ecss.2006.06.017 (2006).ADS 
    Article 

    Google Scholar 
    44.Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1 (1997).CAS 
    Article 

    Google Scholar 
    45.Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. in Advances in Marine Biology Vol. 46 225–340 (Academic Press, 2003).46.Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. https://doi.org/10.1016/0022-0981(89)90029-4 (1989).CAS 
    Article 

    Google Scholar 
    47.Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. & Bavor, H. J. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 1133–1143. https://doi.org/10.1016/0016-7037(80)90067-8 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Lee, R. F., Hirota, J. & Barnett, A. M. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res. A 18, 1147. https://doi.org/10.1016/0011-7471(71)90023-4 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Wakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L. & Hernes, P. J. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep Sea Res. Part II 44, 2131–2162. https://doi.org/10.1016/S0967-0645(97)00035-0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochem. 29, 1547–1559. https://doi.org/10.1016/S0146-6380(98)00177-6 (1998).CAS 
    Article 

    Google Scholar 
    51.Meziane, T., Agata, D. F. & Lee, S. Y. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Mar. Ecol. Prog. Ser. 312, 15–27 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    Article 

    Google Scholar 
    53.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2018).55.du Percie, S. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 

    Google Scholar 
    56.Page, H. M. et al. Stable isotopes reveal trophic relationships and diet of consumers in temperate kelp forest and coral reef ecosystems. Oceanography 26, 180–189 (2013).Article 

    Google Scholar 
    57.Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109. https://doi.org/10.1038/s41598-018-22463-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bellwood, D. R. & Choat, J. H. A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environ. Biol. Fish. 28, 189–214 (1990).Article 

    Google Scholar 
    59.Choat, J. H., Clements, K. D. & Robbins, W. D. The trophic status of herbivorous fishes on coral reefs. I: Dietary analyses. Mar. Biol. 140, 613–623 (2002).CAS 
    Article 

    Google Scholar 
    60.Dromard, C. R. et al. Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. J. Exp. Mar. Biol. Ecol. 440, 116–125. https://doi.org/10.1016/j.jembe.2012.12.011 (2013).Article 

    Google Scholar 
    61.Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738. https://doi.org/10.4319/lo.1986.31.4.0717 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327. https://doi.org/10.1007/s00338-020-01964-0 (2020).Article 

    Google Scholar 
    63.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Lin. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2016).Article 

    Google Scholar 
    64.Bradley, C. J., Longenecker, K., Pyle, R. L. & Popp, B. N. Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar. Ecol. Prog. Ser. 558, 65–79 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    65.Raimbault, P., Garcia, N. & Cerutti, F. Distribution of inorganic and organic nutrients in the South Pacific Ocean-evidence for long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences 5, 281. https://doi.org/10.5194/bg-5-281-2008 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Savoye, N. et al. Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar. Ecol. Prog. Ser. 255, 27–41 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    67.Montoya, J. P. & McCarthy, J. J. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res. 17, 439–464. https://doi.org/10.1093/plankt/17.3.439 (1995).CAS 
    Article 

    Google Scholar 
    68.Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250. https://doi.org/10.1111/ele.12226 (2014).Article 
    PubMed 

    Google Scholar 
    69.Letourneur, Y., Briand, M. J. & Graham, N. A. J. Coral reef degradation alters the isotopic niche of reef fishes. Mar. Biol. 164, 224. https://doi.org/10.1007/s00227-017-3272-0 (2017).CAS 
    Article 

    Google Scholar 
    70.Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).Article 

    Google Scholar 
    71.Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 25, 1210–1221. https://doi.org/10.1111/ddi.12931 (2019).Article 

    Google Scholar 
    72.Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162. https://doi.org/10.1111/j.1461-0248.2010.01565.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).ADS 
    Article 

    Google Scholar 
    74.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Jackson, J. B. C. What is natural in the coastal oceans?. Proc. Natl. Acad. Sci. USA 98, 5411–5418 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e1526. https://doi.org/10.1016/j.cub.2019.03.044 (2019).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Optimal virtual water flows for improved food security in water-scarce countries

    Crop production, water productivity, and virtual waterA method to calculate the water needed for crops is the water footprint (WF). The WF has a color-based classification: green water (precipitation), blue water (ground and surface water), and grey water (water to dilute polluted water to accepted water quality standards). A manual on how to calculate WFs has been published12. Calculations of WFs integrate green and blue crop water use (evapotranspiration by crops) over the growing period of specific crops and express results per unit of yield (m3 kg−1). The difference between crop-water use and effective rainfall is applied as a proxy for blue WFs when no data on actual irrigation water supply are available. WFs of specific crops vary greatly among countries, and even within countries45. This means that water can be saved when crops are smartly traded. This may also be possible within a country if crops are grown where water productivity is the highest.Calculation of the water footprintWater footprints (WFs) are calculated as green and blue water footprints (WFgreen, WFblue, respectively) adopting the method from the WF manual12. This study assumes that the difference between crop water requirement and evapotranspiration of green water (ETGreen) in crops is equal to the evapotranspiration of blue water (ETblue); therefore, crop water requirements are met with irrigation water. The crop water requirements are estimated with the Food and Agriculture Organization’s CROPWAT model46. The selected methods for calculating the reference evapotranspiration (ET0) and effective precipitation (Peff) are the FAO Penman–Monteith method47,48 and the USDA’s SCS method48, respectively. Calculations were performed at the provincial scale for each crop. Equations (1) through (4) are applied to calculate WFgreen and WFblue for the crops included in this study:Actual crop evapotranspiration from reference evapotranspiration:$$ ET_{c} = sum_{t} {ET_{0} times K_{c} } $$
    (1)
    Reference evapotranspiration:$$ ET_{0} = frac{{0.408Delta left( {R_{n} – G} right) + gamma frac{900}{{T + 273}}U_{2} left( {e_{a} – e_{d} } right)}}{{Delta + gamma left( {1 + 0.34U_{2} } right)}} $$
    (2)
    $$ WF_{green} = 10 times frac{{min left[ {ET_{c} ,P_{eff} } right]}}{Y} $$
    (3)
    $$ WF_{blue} = 10 times frac{{max left[ {0,ET_{c} – P_{eff} } right]}}{Y} $$
    (4)
    where ETc denotes the actual crop evapotranspiration (mm) during the growth period (t), ET0 represents the reference evapotranspiration (mm day−1), and Kc denotes the crop coefficient based on crop type and development stages (initial, middle, and late stages). In Eq. (2) ea (kPa), ed (kPa), Δ (kPa °C−1), G (MJ m−2 day−1), T (°C), Rn (MJ m−2 day−1), U2 (m s−1), and γ (kPa °C−1) denote the saturation vapor pressure, the actual vapor pressure, the slope of the saturation-vapor pressure curve, the soil heat flux, the average air temperature, the net radiation on the crop surface, the wind speed measured at a height of 2 m above ground level, and the psychrometric constant, respectively. Equations (3) and (4) calculate the green and blue water footprints (m3 ton−1), in which Peff (mm), Y (ton ha−1), and 10, are represent effective precipitation, the crop yield, and a conversion factor from mm to m3 ha−1, respectively. WFgreen and WFblue occur in irrigated cultivation; however, there is only WFgreen in rainfed cultivation.Optimization of crop productionAll the steps of the methods used in this work were coded in MATLAB for use by decision-makers, planners, and interested organizations.Balancing the agricultural systemAn internal trade network was created to organize and remedy the weaknesses of the trade network. The lack of a comprehensive trade network has caused the crops to be exported regardless of the country’s demands, which eventually leads to the import of the same crops. The production and demand amounts of each crop in each province and their WFgreen and WFblue are determined with the following equations applied to N = 51 crops in J = 31 provinces:$$ {CP}_{(i,j)} = {ICP}_{(i,j)} + {RCP}_{(i,j)} $$
    (5)
    $$ {ICP}_{(i,j)} = left( {{BCY}_{(i,j)} times {ICA}_{(i,j)} } right) $$
    (6)
    $$ {RCP}_{(i,j)} = left( {{GCY}_{(i,j)} times {RCA}_{(i,j)} } right) $$
    (7)
    $$ {CD}_{(i,j)} = left( {{PCD}_{i} times {POP}_{J} } right) $$
    (8)
    $$ {TWF}_{blue(i,j)} = {ICP}_{(i,j)} times {WF}_{blue(i,j)} $$
    (9)
    $$ {TWF}_{green(i,j)} = {ICP}_{(i,j)} times {WF}_{green(i,j)} $$
    (10)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) CP(i,j) (ton), ICP(i,j) (ton), RCP(i,j) (ton), BCY(i,j) (ton.ha−1), GCY(i,j) (ton.ha−1), ICA(i,j) (ha), RCA(i,j) (ha), CD(i,j) (ton), PCDi (ton.person−1), POPj (person), TWFblue(i,j) (m3), and TWFgreen(i,j) (m3) denote the production of crop i in province j, crop production of irrigated land, crop production in rainfed cultivation, irrigated crop yield, rainfed crop yield, irrigated acreage, rainfed areas acreage, demand for crop i in province j, per capita diet, population of province j, the blue WF of crop i in province j corresponding to irrigated cultivation, and the green WFs of crop i in province j corresponding to irrigated cultivation, respectively.TWFblue(i,j) equals zero in rainfed cultivation, and TWFgreen(i,j) is calculated with Eq. (10) based on RCP(i,j). The deficit or surplus over the demand of the provinces were determined by comparing CP(i,j) and CD(i,j) for each crop in each province. Equation (11) implies that CS(i,j) is the amount of crop i supplied in province j (ton), which involves the export and import of crops:$$ {CS}_{(i,j)} = {CP}_{(i,j)} – {CD}_{(i,j)} $$
    (11)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J) .The internal trade network is formed once the deficit and surplus for each crop in the provinces is determined, and crops are traded based on the shortest distance between the provinces. The developed trade network would improve the country’s agricultural system and reduce transportation costs between the provinces. Each province adds to or subtracts Ti,j (ton) from its crop amounts, where imports imply an addition and exports a subtraction of crop amounts. The internal exports and imports of WFs and the net water footprints trade (NWFT) in each province are calculated as follows:$$ {WFT}_{(x,r,i)} = T_{(x,r,i)} times left( {{WF}_{green} + {WF}_{blue} } right)_{(x,i)} $$
    (12)
    $$EW{F}_{(x)}={sum }_{r,i}WF{T}_{(x,r,i)}$$
    (13)
    $$ IWF_{(r)} = sumlimits_{x,i} {WFT_{(x,r,i)} } $$
    (14)
    $$ {NWFT}_{(j)} = IWF_{(j)} – EWF_{(j)} $$
    (15)
    where (i=1, 2,ldots , N;j, x=1, 2, ldots, J, r=x-1), WFT(x,r,i) (m3), T(x,r,i) (ton), (WFgreen + WFblue)(x,i) (m3 ton−1), EWF(x) (m3), IWF(r) (m3), and NWFT(j) (m3) denote the WFs traded for crop i from exporting province x to importing province r, the amount of crop i exported from province x to province r, the blue and green WFs related to crop i in exporting province x, the WFs exported from province x by the trade of crops, the WFs imported into province r by the trade of crops, and the net water footprints trade in province j, respectively.The positive and negative values ​​of NWFT(j) represent the import and export of WFs to province j, respectively. The calculation of the internal trade between provinces with Eq. (11) permits determining the deficits and surpluses for each crop in the provinces nationally. At this juncture the provinces may resort to international trade to cope with deficits and surpluses. However, from this work’s premise of improving food security and self-sufficiency the cropping patterns of surplus crops in the provinces are modified as described in the next section.Modifying exports to optimize the cropping patternThe multi-objective optimization approach to increase food security and self-sufficiency redirects the resources to be used to cultivate export crops to the cultivation of crops that are in deficit (i.e., whose production is less than demand). This modification of cropping patterns in the provinces is based on their traditional cropping patterns. For this purpose, the internal trade network is linked to the optimization method to manage cropping patterns of the regions based on the output of the trade network, and on the goals of achieving food security and preventing water crisis. These two goals are pertinent in many countries where water scarcity is a limiting factor to achieve food security49. Therefore, concerning available agricultural water it is imperative to pay attention to the type of water (green or blue) used. Specifically, WFblue can be used in several areas of consumption; however, WFgreen is not controllable in the same manner. The usage of WFgreen by crops depends on the growing season, and the maximum use can be achieved by choosing the optimal crops. Therefore, this work treats WFgreen and WFblue as indicators of water crisis and food security, which were chosen as objective functions. In other words, controlling and managing WFs prevent its waste (thus reducing the water deficit and crisis). Selecting optimal crops based on WFs will increase production and food security. The water crisis and food security serve as the benchmark for comparison between the reference situation (without optimization) and the results of this new method. The reference situation refers to the initial state of food security and water crisis, which occurs before optimizing the cropping patterns.The food-security objective function is expressed as follows:$$F{S}_{i}=frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}}$$
    (16)
    The water-crisis objective function is written as follows:$${WC}_{j}=frac{sum_{i=1}^{N}{TWF}_{blue(i,j)}}{{RWR}_{j}}$$
    (17)
    where (i=1, 2,ldots, N=51;j=1, 2, ldots, J=31,) FSi, CP(i,j) (ton), CD(i,j) (ton), WCj, TWFblue(i,j) (m3), and RWRj (m3) denote the food security for crop i, production of crop i in province j, the demand of crop i in province j, the water crisis in province j, the blue WFs of crop i in province j, and the renewable water resources in province j, respectively.Maximizing the FS index and minimizing the WC index represent the ideal situation. The maximizing function was converted to a minimization function for the purpose of multiobjective optimization. The final form of the objective functions i given by the following equations:$$Min({Z}_{1})=frac{1}{N}{sum }_{i=1}^{N}(1-F{S}_{i})begin{array}{cc},& where,, F{S}_{i}end{array}=Minleft(frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}},1right)$$
    (18)
    $$Min({Z}_{2})=frac{1}{J}{sum }_{j=1}^{J}W{C}_{j}$$
    (19)
    where (i=1, 2,ldots , N=51;j=1, 2, ldots, J=31.) The objective function Z1 is calculated based on the food security index expressed as an average for all crops, and the objective function Z2 is calculated as the average of the water crisis indexes in the 31 provinces. Both objective functions are affected by cropping patterns and cultivation areas. The water and land used must be calculated prior to modifying the cropping patterns. The amounts of surplus crops in the provinces and their equivalent water and land are calculated using the following equations:$$ {SCP}_{(i,j)} = Max({CP}_{(i,j)} – {CD}_{(i,j)} + T_{(i,j)} ,0) $$
    (20)
    $$ {BCY}_{(i,j)} times (X_{1(i,j)} times ICA_{(i,j)} ) + {GCY}_{(i,j)} times (X_{2(i,j)} times RCA_{(i,j)} ) = {SCP}_{(i,j)} $$
    (21)
    where (i=1, 2,ldots, N;j=1, 2, ldots, J,) SCP(i,j), (X_{1(i,j)}), (X_{2(i,j)}) denote the surplus crop i in province j (ton) determined based on demand and trade in the province, and the percentage of crop i in province j that must be removed from irrigated and rainfed cultivation, respectively. The amount of water and land available for new cultivation are calculated as follows:$$ ICA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{1(i,j)} times ICA_{(i,j)} } $$
    (22)
    $$ RCA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{2(i,j)} times RCA_{(i,j)} } $$
    (23)
    $$ TWF_{blue,j}^{free} = sumlimits_{i = 1}^{51} {{WF}_{blue(i,j)} times BCY_{(i,j)} } times ICA_{j}^{free} $$
    (24)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) ICAjfree and RCAjfree denote the total available area of ​​irrigated and rainfed cultivation (ha) in province j, respectively, and TWFblue,jfree represents the total amount of blue WFs available in province j (m3). It is noteworthy that the water and land available in irrigated cultivation can be altered. On the other hand, only the available land is controllable under rainfed cultivation.The objective functions of the proposed method [Eqs. (18) and (19)] were subjected to a set of constraints introduced next.

    (i)

    Modification of the cropping patterns

    The available land in each province is allocated to crops that feature a deficit in the country and are part of the traditional cropping patterns of the provinces. The set of cultivable crops is determined using the following equation:$$ P = left{ {pleft| {p in i,sum_{j = 1}^{31} {SCP_{(p,j)} < 0} } right.} right} $$ (25) where p denotes the set of crops with deficit conditions in the country and SCP(i,j) was defined above. Letting traditional irrigated and rainfed cropping patterns be denoted by Aj and Bj in province j, respectively, the set of irrigated and rainfed crops cultivable in province j was calculated as follows:$$ IC_{j} = P cap A_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (26) $$ RC_{j} = P cap B_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (27) where (j=1, 2, ldots, J), ICj and RCj denote the irrigated and rainfed crops cultivable in province j, respectively. (ii) Constraint on cultivation area A fraction of ICAjfree can be used in irrigated lands:$$ 0 le M times sumlimits_{i = 1}^{51} {{(X}_{1(i,j)} times ICA_{(i,j)} ) le ICA_{j}^{free} } begin{array}{*{20}c} , & {0 le M le 1} & {} \ end{array} $$ (28) where (j=1, 2, ldots, J), and M denotes the fraction of blue water available. (iii) Constraint on water use The amount of water used to modify the cropping pattern in the provinces is limited:$$ sumlimits_{i = 1}^{51} {TWF_{blue(i,j)}^{m} le RWR_{j} - sumlimits_{i = 1}^{51} {TWF_{blue(i,j)} + } } TWF_{blue,j}^{free} $$ (29) where (left(j=1,2,3,ldots,Jright),) TWFmblue(i,j) denotes the blue WFs used to modify the cultivation in province j, and TWFblue(i,j) represents the initial blue WFs consumed in province j to cultivate crops before changing the cropping pattern.Ideal solution and pareto optimalityThis work applied the multi-objective optimization Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The NSGA is based on the Genetic Evolutionary Algorithm and the Selection, Crossover, and Mutation operations50. The NSGA was introduced by Deb et al.51,Srinivas and Deb52, then improved to the NSGA-II51. The NSGA-II has been widely studied in water resources management53,54,55.The NSGA-II produces a Pareto front of solutions, in which, each point represents a management scenario. The decision-maker selects a scenario based on the objective functions and situational analysis. Multi-criteria decision-making methods (MCDM) can be applied to select an efficient point on the Pareto front curve56,57. This work implements the technique for order preference by similarity to ideal solution (TOPSIS) as the MCDM employed for that purpose. A description of the TOPSIS method is presented in the appendix.The NSGA-II parameters were determined based on a trial-and-error process. Multiple runs of the algorithm were used to adjust the parameters to reduce uncertainty. For this purpose, the population size and maximum iteration were set equal to 400 and 500, respectively, and the crossover and mutation rates were set equal to 0.8 and 0.1, respectively. The flowchart of the proposed approach is displayed in Fig. 1.Figure 1Flowchart of the methodology.Full size image More

  • in

    Functional composition of ant assemblages in habitat islands is driven by habitat factors and landscape composition

    1.Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15. https://doi.org/10.1016/j.biocon.2018.07.022 (2018).Article 

    Google Scholar 
    2.Feranec, J. et al. (eds) European Landscape Dynamics: CORINE Land Cover Data (CRC Press, 2016).
    Google Scholar 
    3.Deák, B. et al. Fragmented dry grasslands preserve unique components of species and phylogenetic diversity in agricultural landscapes. Biodivers. Conserv. https://doi.org/10.1007/s10531-020-02066-7 (2020).Article 

    Google Scholar 
    4.Fekete, R. et al. Roadside verges and cemeteries: Comparative analysis of anthropogenic orchid habitats in the Eastern Mediterranean. Ecol. Evol. 9, 6655–6664. https://doi.org/10.1002/ece3.5245 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Batáry, P. et al. Biologia Futura: Landscape perspectives on farmland biodiversity conservation. Biol. Fut. 71, 9–18. https://doi.org/10.1007/s42977-020-00015-7 (2020).Article 

    Google Scholar 
    6.Deák, B. et al. Landscape and habitat filters jointly drive richness and abundance of grassland specialist plants in terrestrial habitat islands. Landsc. Ecol. 33, 1117–1132. https://doi.org/10.1007/s10980-018-0660-x (2018).Article 

    Google Scholar 
    7.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574(7780), 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11(5), 251–259. https://doi.org/10.1890/120126 (2013).Article 

    Google Scholar 
    10.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: Eight hypotheses. Biol. Rev. 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).Article 
    PubMed 

    Google Scholar 
    11.Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29(1), 25–46. https://doi.org/10.1146/annurev.en.29.010184.000325 (1984).Article 

    Google Scholar 
    12.Deák, B. et al. Habitat islands outside nature reserves: Threatened biodiversity hotspots of grassland specialist plant and arthropod species. Biol. Conserv. 241, 108254. https://doi.org/10.1016/j.biocon.2019.108254 (2020).Article 

    Google Scholar 
    13.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31(1), 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).Article 

    Google Scholar 
    14.Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x (1991).Article 

    Google Scholar 
    15.Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends. Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).Article 
    PubMed 

    Google Scholar 
    16.Gazol, A. et al. Landscape and small-scale determinants of grassland species diversity: Direct and indirect influences. Ecography 35, 944–951. https://doi.org/10.1111/j.1600-0587.2012.07627.x (2012).Article 

    Google Scholar 
    17.Deák, B. et al. Linking environmental heterogeneity and plant diversity: The ecological role of small natural features in homogeneous landscapes. Sci. Total Env. 763, 144199. https://doi.org/10.1016/j.scitotenv.2020.144199 (2021).CAS 
    Article 

    Google Scholar 
    18.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052 (2015).Article 

    Google Scholar 
    19.Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: Area, age, and edge effects. Ecol. Appl. 10(4), 1230–1248. https://doi.org/10.1890/1051-0761(2000)010[1230:AIUHFI]2.0.CO;2 (2000).Article 

    Google Scholar 
    20.Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20(5), 591–599. https://doi.org/10.1111/ddi.12187 (2014).Article 

    Google Scholar 
    21.Marques, L. Collapse of terrestrial biodiversity. In Capitalism and Environmental Collapse 247–273 (Springer, 2020).Chapter 

    Google Scholar 
    22.Biró, M., Bölöni, J. & Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32(3), 660–671. https://doi.org/10.1111/cobi.13038 (2018).Article 
    PubMed 

    Google Scholar 
    23.Dembicz, I. et al. Steppe islands in a sea of fields: Where island biogeography meets the reality of a severely transformed landscape. J. Veg. Sci. https://doi.org/10.1111/jvs.12930 (2020).Article 

    Google Scholar 
    24.Deák, B. et al. Cultural monuments and nature conservation: A review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers. Conserv. 25(12), 2473–2490. https://doi.org/10.1007/s10531-016-1081-2 (2016).Article 

    Google Scholar 
    25.Dembicz, I. et al. Isolation and patch size drive specialist plant species density within steppe islands: A case study of kurgans in southern Ukraine. Biodivers. Conserv. 25(12), 2289–2307. https://doi.org/10.1007/s10531-016-1077-y (2016).Article 

    Google Scholar 
    26.Tóth, C. A. et al. Iron age burial mounds as refugia for steppe specialist plants and invertebrates: Case study from the Zsolca mounds (NE Hungary). Hacquetia 18(2), 195–206. https://doi.org/10.2478/hacq-2019-0009 (2019).Article 

    Google Scholar 
    27.Lisetskii, F. N., Goleusov, P. V., Moysiyenko, I. I. & Sudnik-Wójcikowska, B. Microzonal distribution of soils and plants along the catenas of mound structures. Contemp. Probl. Ecol. 7(3), 282–293. https://doi.org/10.1134/S1995425514030111 (2014).Article 

    Google Scholar 
    28.Deák, B. et al. The effects of micro-habitats and grazing intensity on the vegetation of burial mounds in the Kazakh steppes. Plant Ecol. Divers. 10(5–6), 509–520. https://doi.org/10.1080/17550874.2018.1430871 (2017).Article 

    Google Scholar 
    29.Marcolin, F., Lakatos, T., Gallé, R. & Batáry, P. Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Glob. Ecol. Conserv. 28, e01687. https://doi.org/10.1016/j.gecco.2021.e01687 (2021).Article 

    Google Scholar 
    30.Crist, T. O. Biodiversity, species interactions, and functional roles of ants (Hymenoptera: Formicidae) in fragmented landscapes: A review. Myrmecol. News. 12, 3–13 (2009).
    Google Scholar 
    31.Sobrinho, T. G., Schoereder, J. H., Sperber, C. F. & Madureira, M. S. Does fragmentation alter species composition in ant communities (Hymenoptera: Formicidae)?. Sociobiology 42, 329–342 (2003).
    Google Scholar 
    32.Underwood, E. C. & Fisher, B. L. The role of ants in conservation monitoring: If, when, and how. Biol. Conserv. 132(2), 166–182. https://doi.org/10.1016/j.biocon.2006.03.022 (2006).Article 

    Google Scholar 
    33.Hölldobler, B. & Wilson, E. O. The Ants 732 (Belknap of Harvard University Press, 1990).Book 

    Google Scholar 
    34.Konečná, et al. Anthills as habitat islands in a sea of temperate pasture. Biodivers. Conserv. 30, 1–19. https://doi.org/10.1007/s10531-021-02134-6 (2021).Article 

    Google Scholar 
    35.Philpott, S. M., Perfecto, I., Armbrecht, I. & Parr, C. L. Ant diversity and function in disturbed and changing habitats. In Ant Ecology (eds Lach, L. et al.) 37–156 (Oxford University Press, 2010).
    Google Scholar 
    36.Stadler, B. & Dixon, T. Mutualism Ants and Their Insect Partners (Cambridge University Press, 2008).Book 

    Google Scholar 
    37.Frouz, J. & Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 11(11), 191–199 (2008).
    Google Scholar 
    38.Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7(9), 1221–1244. https://doi.org/10.1023/A:1008891901953 (1998).Article 

    Google Scholar 
    39.Azcárate, F. M., Alameda-Martín, A., Escudero, A. & Sánchez, A. M. Ant communities resist even in small and isolated gypsum habitat remnants in a Mediterranean agroecosystem. Front. Ecol. Evol. 9, 33. https://doi.org/10.3389/fevo.2021.619215 (2021).Article 

    Google Scholar 
    40.Bátori, Z. et al. Karst dolines provide diverse microhabitats for different functional groups in multiple phyla. Sci. Rep. 9(1), 1–13. https://doi.org/10.1038/s41598-019-43603-x (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Hoffmann, B. D. & Andersen, A. N. Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral. Ecol. 28(4), 444–464. https://doi.org/10.1046/j.1442-9993.2003.01301.x (2003).Article 

    Google Scholar 
    42.Csősz, S. et al. The myrmecofauna (Hymenoptera: Formicidae) of Hungary: Survey of ant species with an annotated synonymic inventory. Insects 12(1), 78. https://doi.org/10.3390/insects12010078 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Dröse, W., Podgaiski, L. R., Dias, C. F. & Mendonca, M. D. S. Jr. Local and regional drivers of ant communities in forest-grassland ecotones in South Brazil: A taxonomic and phylogenetic approach. PLoS ONE 14(4), e0215310. https://doi.org/10.1371/journal.pone.0215310 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Bátori, Z. et al. Managing climate change microrefugia for vascular plants in forested karst landscapes. For. Ecol. Manag. 496, 119446. https://doi.org/10.1016/j.foreco.2021.119446 (2021).Article 

    Google Scholar 
    45.Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970. https://doi.org/10.1038/srep40970 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.King, J. R., Warren, R. J., Maynard, D. S. & Bradford, M. A. Ants: Ecology and impacts in Dead Wood. In Saproxylic Insects. Zoological Monographs Vol. 1 (ed. Ulyshen, M.) (Springer, 2018).
    Google Scholar 
    47.Tölgyesi, C. et al. Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography 43, 848–859. https://doi.org/10.1111/ecog.04906 (2020).Article 

    Google Scholar 
    48.Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecol. Manag. 384, 287–302. https://doi.org/10.1016/j.foreco.2016.10.057 (2017).Article 

    Google Scholar 
    49.Pacheco, R., Vasconcelos, H. L., Groc, S., Camacho, G. P. & Frizzo, T. L. The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodivers. Conserv. 22, 983–997. https://doi.org/10.1007/s10531-013-0463-y (2013).Article 

    Google Scholar 
    50.Pihlgren, A., Lenoir, L. & Dahms, H. Ant and plant species richness in relation to grazing, fertilisation and topography. J. Nat. Conserv. 18(2), 118–125. https://doi.org/10.1016/j.jnc.2009.06.002 (2010).Article 

    Google Scholar 
    51.Bátori, Z. et al. Karstic microrefugia host functionally specific ant assemblages. Front. Ecol. Evol. 8, 482. https://doi.org/10.3389/fevo.2020.613738 (2020).Article 

    Google Scholar 
    52.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    53.Seifert, B. The Ants of Central and North Europe 408( – lutra Verlags – und Vertriebsgesellschaft, 2018).54.Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The Ants of Poland with Reference to the Myrmecofauna of Europe 496 (Natura optima dux Foundation, 2012).55.EOTR (Uniform National Mapping System of Hungary) 1:10,000 Scale Topographic Maps. FÖMI (Institute of Geodesy, Cartography and Remote Sensing).56.Ministry of Agriculture. Ökoszisztéma Alaptérkép és Adatmodell Kialakítása. (Ecosystem Basemap and Datamodel Design). https://doi.org/10.34811/osz.alapterkep (2019).57.Lanan, M. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). Myrmecol. News 20, 53 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    58.QGIS Development Team. QGIS Geographic Information System, Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).59.Faraway, J. J. Linear Models with R 2nd edn. (Chapman and Hall/CRC, London, 2014).MATH 

    Google Scholar 
    60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-3. (R Foundation for Statistical Computing, 2016).61.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305. https://doi.org/10.1890/08-2244.1 (2010).Article 
    PubMed 

    Google Scholar 
    62.Galipaud, M., Gillingham, M. A. & Dechaume-Moncharmont, F. X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evol. 8(12), 1668–1678. https://doi.org/10.1111/2041-210X.12835 (2017).Article 

    Google Scholar 
    63.Hegyi, G. & Garamszegi, L. Z. Using information theory as a substitute for stepwise regression in ecology and behavior. Behav. Ecol. Sociobiol. 65(1), 69–76. https://doi.org/10.1007/s00265-010-1036-7 (2011).Article 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/. More

  • in

    Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways

    1.Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, Sogin ML, et al. Prevalence of Streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol. 2012;194:4709–17.CAS 
    Article 

    Google Scholar 
    2.Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One. 2012;7:e45001.CAS 
    Article 

    Google Scholar 
    3.Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA. 2012;109:13769–74.CAS 
    Article 

    Google Scholar 
    4.Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, et al. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2011;5:20–9.Article 

    Google Scholar 
    5.Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA. 2007;104:20529–33.CAS 
    Article 

    Google Scholar 
    6.Brown PS, Pope CE, Marsh RL, Qin X, McNamara S, Gibson R, et al. Directly sampling the lung of a young child with cystic fibrosis reveals diverse microbiota. Ann Am Thorac Soc. 2014;11:1049–55.Article 

    Google Scholar 
    7.Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe. 2015;18:307–19.CAS 
    Article 

    Google Scholar 
    8.Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci USA. 2008;105:15070–5.CAS 
    Article 

    Google Scholar 
    9.van der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW, et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 2011;5:780–91.Article 

    Google Scholar 
    10.Zhao J, Carmody LA, Kalikin LM, Li J, Petrosino JF, Schloss PD, et al. Impact of enhanced Staphylococcus DNA extraction on microbial community measures in cystic fibrosis sputum. PLoS One. 2012;7:e33127.CAS 
    Article 

    Google Scholar 
    11.Carmody LA, Zhao J, Schloss PD, Petrosino JF, Murray S, Young VB, et al. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc. 2013;10:179–87.Article 

    Google Scholar 
    12.Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One. 2010;5:e11044.Article 

    Google Scholar 
    13.Stressmann FA, Rogers GB, van der Gast CJ, Marsh P, Vermeer LS, Carroll MP, et al. Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. Thorax. 2012;67:867–73.Article 

    Google Scholar 
    14.Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA. 2012;109:5809–14.CAS 
    Article 

    Google Scholar 
    15.Rogers GB, Bruce KD, Hoffman LR. How can the cystic fibrosis respiratory microbiome influence our clinical decision-making? Curr Opin Pulm Med. 2017;23:536–43.Article 

    Google Scholar 
    16.Widder S, Knapp S. Microbial metabolites in cystic fibrosis: a target for future therapy? Am J Respir Cell Mol Biol. 2019;61:132–3.17.Mahboubi MA, Carmody LA, Foster BK, Kalikin LM, VanDevanter DR, LiPuma JJ. Culture-based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens. J Clin Microbiol. 2016;54:613–9.CAS 
    Article 

    Google Scholar 
    18.Carmody LA, Caverly LJ, Foster BK, Rogers MAM, Kalikin LM, Simon RH, et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis. PLoS One. 2018;13:e0194060.Article 

    Google Scholar 
    19.Zhao J, Li J, Schloss PD, Kalikin LM, Raymond TA, Petrosino JF, et al. Effect of sample storage conditions on cultureindependent bacterial community measures in cystic fibrosis sputum specimens. J Clin Microbiol 2011;49:3717–8.20.Hnizdo E, Yu L, Freyder L, Attfield M, Lefante J & Glindmeyer HW. The precision of longitudinal lung function measurements: Monitoring and interpretation. Occup Environ Med 2005;62:695–701.21.Konstan MW, Wagener JS, VanDevanter DR. Characterizing aggressiveness and predicting future progression of CF lung disease. J Cyst Fibros. 2009;8:S15–19.Article 

    Google Scholar 
    22.Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16s rRNA-based studies. PLoS One. 2011;6:e27310.CAS 
    Article 

    Google Scholar 
    23.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    Article 

    Google Scholar 
    24.Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–145.CAS 
    Article 

    Google Scholar 
    25.Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun 2017;8:15393.26.Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.CAS 
    Article 

    Google Scholar 
    27.Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One. 2012;7:e30126.CAS 
    Article 

    Google Scholar 
    28.Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–60.CAS 
    Article 

    Google Scholar 
    29.Price KE, Hampton TH, Gifford AH, Dolben EL, Hogan DA, Morrison HG, et al. Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 2013;1:27.30.Carmody LA, Zhao J, Kalikin LM, LeBar W, Simon RH, Venkataraman A, et al. The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation. Microbiome 2015;3:12.31.de Dios Caballero J, Vida R, Cobo M, Maiz L, Suarez L, Galeano J, et al. Individual patterns of complexity in cystic fibrosis lung microbiota, including predator bacteria, over a 1-year period. mBio 2017;8::e00959–17.32.Whelan, FJ, Heirali AA, Rossi L, Rabin HR, Parkins MD, & Surette MG. Longitudinal sampling of the lung microbiota in individuals with cystic fibrosis. PLoS One 2017:12:e0172811.33.Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 2016;1.34.Douglas, GM, Maffei, VJ, Zaneveld, JR, Yurgel, SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020;38:685–8.35.Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 2018;46:D633–D639.36.Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv 2018;4:eaau1908.37.Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, et al. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes. 2016;2:4.Article 

    Google Scholar 
    38.Pradeu T, Vivier E. The discontinuity theory of immunity. Sci Immunol. 2016;1:AAG0479.39.Flynn JM, Niccum D, Dunitz JM, Hunter RC. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 2016;12:e1005846.Article 

    Google Scholar 
    40.Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    Article 

    Google Scholar 
    41.Rose MC & Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006;86:245–78.42.Tailford LE, Crost EH, Kavanaugh D. & Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet 2015;6:81.43.Wheeler KM, Carcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux S, et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019;4:2146–54.44.Twomey KB, O’Connell OJ, McCarthy Y, Dow JM, O’Toole GA, Plant BJ, et al. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J 2012;6:939–50.45.Zemanick ET, Wagner BD, Robertson CE, Ahrens RC, Chmiel JF, Clancy JP, et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 2017;50:1700832.46.Lu J, Carmody LA, Opron K, Simon RH, Kalikin LM, Caverly LJ, et al. Parallel analysis of cystic fibrosis sputum and saliva’reveals overlapping communities and an opportunity for sample decontamination. mSystems 2020;5.47.Jones KL, Hegab AH, Hillman BC, Simpson KL, Jinkins PA, Grisham MB, et al. Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr Pulmonol 2000;30:79–85.48.Quinn RA, Lim YW, Maughan H, Conrad D, Rohwer F, Whiteson KL. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. mBio. 2014;5:e00956–00913.Article 

    Google Scholar 
    49.Mirkovic B, Murray MA, Lavelle GM, Molloy K, Azim AA, Gunaratnam C, et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. Am J Respir Crit Care Med. 2015;192:1314–24.CAS 
    Article 

    Google Scholar 
    50.Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) t cell metabolism. Immunity. 2018;48:992–1005.e1008.CAS 
    Article 

    Google Scholar 
    51.Flynn JM, Phan C, Hunter RC. Genome-wide survey of Pseudomonas aeruginosa PA14 reveals a role for the glyoxylate pathway and extracellular proteases in the utilization of mucin. Infect Immun. 2017;85:e00182–17.52.Jorth P, Ehsan Z, Rezayat A, Caldwell E, Pope C, Brewington JJ, et al. Direct lung sampling indicates that established pathogens dominate early infections in children with cystic fibrosis. Cell Rep. 2019;27:1190–204.e1193.CAS 
    Article 

    Google Scholar 
    53.Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol. 2019;37:783–92.CAS 
    Article 

    Google Scholar 
    54.Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio. 2015;6:e00767.CAS 
    Article 

    Google Scholar 
    55.Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020;8:45. More

  • in

    Sociability strongly affects the behavioural responses of wild guanacos to drones

    1.Jones, G. P., Pearlstine, L. G. & Percival, H. F. An assessment of small unmanned aerial vehicles for wildlife research. Wildl. Soc. Bull. 34, 750–758 (2006).Article 

    Google Scholar 
    2.Jones, G. P. The feasibility of using small unmanned aerial vehicles for wildlife research. Masters Thesis. (University of Florida, 2003).3.Watts, A. C. et al. Unmanned aircraft systems (UASs) for ecological research and natural-resource monitoring (Florida). Ecol. Restor. 26, 13–14 (2008).Article 

    Google Scholar 
    4.Chabot, D. Systematic Evaluation of a Stock Unmanned Aerial Vehicle (UAV) System for Small-Scale Wildlife Survey Applications. Masters Thesis. (McGill University, 2009).5.Koski, W. R. et al. Evaluation of an unmanned airborne system for monitoring marine mammals. Aquat. Mamm. 35, 347–357 (2009).MathSciNet 
    Article 

    Google Scholar 
    6.Soriano, P., Caballero, F. & Ollero, A. RF-based particle filter localization for wildlife tracking by using an UAV. Int. Symp. Robot. 40, 239–244 (2009).
    Google Scholar 
    7.Sukkarieh, S. UAV based search for a radio tagged animal using particle filters at Stuttgart. In Australasian Conference on Robotics and Automation (ACRA) (2009).8.Abd-Elrahman, A., Pearlstine, L. & Percival, F. Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surv. L. Inf. Sci. 65, 37–45 (2005).
    Google Scholar 
    9.Singh, K. K., Frazier, A. E. & Frazier, A. E. A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 00, 1–21 (2018).
    Google Scholar 
    10.Rebolo-Ifran, N., Grilli, M. G. & Lambertucci, S. Drones as a threat to wildlife: YouTube complements science in providing evidence about their effect. Environ. Conserv. https://doi.org/10.1017/S0376892919000080 (2019).Article 

    Google Scholar 
    11.Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. E. E. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).Article 

    Google Scholar 
    12.Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pomeroy, P., O’Connor, L. & Davies, P. Assessing use of and reaction to unmanned aerial systems in gray and harbor seals during breeding and molt in the UK. J. Unmanned Veh. Syst. 3, 102–113 (2015).Article 

    Google Scholar 
    14.Giles, A. B. et al. Responses of bottlenose dolphins (Tursiops spp.) to small drones. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3440 (2020).Article 

    Google Scholar 
    15.Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, 1–14 (2017).Article 
    CAS 

    Google Scholar 
    16.Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 9, 2142 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Irigoin-Lovera, C., Luna, D. M., Acosta, D. A. & Zavalaga, C. B. Response of colonial Peruvian guano birds to flying UAVs: Effects and feasibility for implementing new population monitoring methods. PeerJ 7, e8129 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 2016, e1831 (2016).Article 
    CAS 

    Google Scholar 
    19.Barnas, A. F., Felege, C. J., Rockwell, R. F. & Ellis-Felege, S. N. A pilot(less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus). Polar Biol. 41, 1055–1062 (2018).Article 

    Google Scholar 
    20.Jarrett, D., Calladine, J., Cotton, A., Wilson, M. W. & Humphreys, E. Behavioural responses of non-breeding waterbirds to drone approach are associated with flock size and habitat. Bird Study 67, 190–196 (2020).Article 

    Google Scholar 
    21.Bevan, E. et al. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS One 13, e0194460 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Stankowich, T. Ungulate flight responses to human disturbance: A review and meta-analysis. Biol. Conserv. 141, 2159–2173 (2008).Article 

    Google Scholar 
    23.Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269–286 (2012).Article 

    Google Scholar 
    24.Wisdom, M. J., Ager, A. A., Preisler, H. K., Cimon, N. J. & Johnson, B. K. Effects of off-road recreation on mule deer and elk. In Transactions of the 69th North American Wildlife and Natural Resources Conference 531–550 (2004).25.Penny, S. G., White, R. L., Scott, D. M., MacTavish, L. & Pernetta, A. P. Using drones and sirens to elicit avoidance behaviour in white rhinoceros as an anti-poaching tactic. Proc. R. Soc. B Biol. Sci. 286, 20191135 (2019).Article 

    Google Scholar 
    26.Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    27.Dill, L. M. & Frid, A. Behaviourally mediated biases in transect surveys: A predation risk sensitivity approach. Can. J. Zool. 98, 697–704 (2020).Article 

    Google Scholar 
    28.Pulliam, R. H. On the advantage of flocking. J. Theor. Biol. 38, 419–422 (1973).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Taraborelli, P., Gregorio, P., Moreno, P., Novaro, A. & Carmanchahi, P. Cooperative vigilance: The guanaco’ s (Lama guanicoe) key antipredator mechanism. Behav. Process. 91, 82–89 (2012).Article 

    Google Scholar 
    30.Delm, M. M. Vigilance for predators: Detection and dilution effects. Behav. Ecol. Sociobiol. 26, 337–342 (1990).Article 

    Google Scholar 
    31.Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).Article 

    Google Scholar 
    32.Brunton, E., Bolin, J., Leon, J. & Burnett, S. Fright or flight? Behavioural responses of kangaroos to drone-based monitoring. Drones 3, 1–11 (2019).Article 

    Google Scholar 
    33.Lent, P. C. Mother-infant relationships in ungulates. Behav. Ungulates Relat. Manag. I, 14–55 (1974).
    Google Scholar 
    34.Franklin, W. Contrasting socioecologies of South America´s wild camelids: The vicuña and the guanaco. Adv. Study Mamm. Behav. 7, 573–629 (1983).
    Google Scholar 
    35.Ortega, I. M. & Franklin, W. L. Social organization, distribution and movements of a migratory guanaco population in the Chilean Patagonia. Rev. Chil. Hist. Nat. 68, 489–500 (1995).
    Google Scholar 
    36.Schroeder, N. M., Panebianco, A., Musso, R. G. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: A gregarious ungulate as a study model. R. Soc. Open Sci. 7, 191482 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Lima, S. L. Back to the basics of anti-predatory vigilance: the group size effect. Anim. Behav. 49, 11–20 (1995).Article 

    Google Scholar 
    38.Marino, A. & Baldi, R. Vigilance patterns of territorial guanacos (Lama guanicoe): The role of reproductive interests and predation risk. Ethology 114, 413–423 (2008).Article 

    Google Scholar 
    39.Taraborelli, P. et al. Different factors that modify anti-predator behaviour in guanacos (Lama guanicoe). Acta Theriol. (Warsz) 59, 529–539 (2014).Article 

    Google Scholar 
    40.Donadio, E. & Buskirk, S. W. Flight behavior in guanacos and vicuñas in areas with and without poaching in western Argentina. Biol. Conserv. 127, 139–145 (2006).Article 

    Google Scholar 
    41.Marino, A. & Johnson, A. Behavioural response of free-ranging guanacos (Lama guanicoe) to land-use change: Habituation to motorised vehicles in a recently created reserve. Wildl. Res. 39, 503–511 (2012).Article 

    Google Scholar 
    42.Malo, J. E., Acebes, P. & Traba, J. Measuring ungulate tolerance to human with flight distance: A reliable visitor management tool?. Biodivers. Conserv. 20, 3477e3488 (2011).Article 

    Google Scholar 
    43.Marino, A. Indirect measures of reproductive effort in a resource-defense polygynous ungulate: Territorial defense by male guanacos. J. Ethol. 30, 83–91 (2012).Article 

    Google Scholar 
    44.Marino, A. & Ricardo, B. Vigilance patterns of territorial guanacos (Lama guanicoe): the role of reproductive interests and predation risk. Ethology 114, 413–423 (2008).Article 

    Google Scholar 
    45.Merino, M. L. & Cajal, C. J. Estructura social de la población de guanacos (Lama guanicoe Muller, 1776) en la costa norte de Península Mitre, Tierra del Fuego, Argentina. Stud. Neotrop. Fauna Environ. 28, 129–138 (1993).Article 

    Google Scholar 
    46.Marino, A. & Baldi, R. Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary Guanaco. PLoS ONE 9, e89060 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Fattorini, N. et al. Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: Environmental and endogenous drivers. Behav. Process. 167, 103909 (2019).Article 

    Google Scholar 
    48.Blank, D., Ruckstuhl, K. & Yang, W. Influence of population density on group sizes in goitered gazelle (Gazella subgutturosa Guld., 1780). Eur. J. Wildl. Res. 58, 981–989 (2012).Article 

    Google Scholar 
    49.Isvaran, K. Intraspecific variation in group size in the blackbuck antelope: The roles of habitat structure and forage at different spatial scales. Oecologia 154, 435–444 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Mahoney, S. P., Mawhinney, K., McCarthy, C., Anions, D. & Taylor, S. Caribou reactions to provocation by snowmachines in Newfoundland. Rangifer 21, 35 (2001).Article 

    Google Scholar 
    51.Ruiz Blanco, M. et al. Supervivencia y causas de mortalidad durante el primer año de vida de guanacos en el norte de patagonia. In XXVII Jornadas Argentinas de Mastozoología 151 (2014).52.Weimerskirch, H., Prudor, A. & Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biol. 41, 259–266 (2018).Article 

    Google Scholar 
    53.McIntosh, R. R., Holmberg, R. & Dann, P. Looking without landing-using Remote Piloted Aircraft to monitor fur seal populations without disturbance. Front. Mar. Sci. 5, (2018).54.Mesquita, G. P., Rodríguez-Teijeiro, J. D., Wich, S. A. & Mulero-Pázmány, M. Measuring disturbance at swift breeding colonies due to the visual aspects of a drone: a quasi-experiment study. Curr. Zool. https://doi.org/10.1093/cz/zoaa038 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Scobie, C. A. & Hugenholtz, C. H. Wildlife monitoring with unmanned aerial vehicles: Quantifying distance to auditory detection. Wildl. Soc. Bull. 40, 781–785 (2016).Article 

    Google Scholar 
    56.Rümmler, M. C., Esefeld, J., Hallabrin, M. T., Pfeifer, C. & Mustafa, O. Emperor penguin reactions to UAVs: First observations and comparisons with effects of human approach. Remote Sens. Appl. Soc. Environ. 23, 100545 (2021).
    Google Scholar 
    57.Zbyryt, A., Dylewski, Ł, Morelli, F., Sparks, T. H. & Tryjanowski, P. Behavioural responses of adult and young White Storks Ciconia ciconia in nests to an unmanned aerial vehicle. Acta Ornithol. 55, 243–251 (2020).
    Google Scholar 
    58.Christiansen, F., Rojano-Doñate, L., Madsen, P. T. & Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 3, 277 (2016).Article 

    Google Scholar 
    59.Arona, L., Dale, J., Heaslip, S. G., Hammill, M. O. & Johnston, D. W. Assessing the disturbance potential of small unoccupied aircraft systems (UAS) on gray seals (Halichoerus grypus) at breeding colonies in Nova Scotia, Canada. PeerJ https://doi.org/10.7717/peerj.4467 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Goebel, M. E. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).Article 

    Google Scholar 
    61.Cracknell, A. P. UAVs: Regulations and law enforcement. Int. J. Remote Sens. 38, 3054–3067 (2017).Article 

    Google Scholar 
    62.ANAC, A. N. de A. C. Reglamento de Vehículos Aéreos no Tripulados (VANT) y de Sistemas de Vehículos Aéreos no Tripulados (SVANT). (2019).63.Brisson-Curadeau, É. et al. Seabird species vary in behavioural response to drone census. Sci. Rep. 7, 17884 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Rümmler, M.-C., Mustafa, O., Maercker, J., Peter, H.-U. & Esefeld, J. Sensitivity of Adélie and Gentoo penguins to various flight activities of a micro UAV. Polar Biol. 41, 2481–2493 (2018).Article 

    Google Scholar 
    65.Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 7, 1–7 (2019).Article 

    Google Scholar 
    66.Young, J. K. & Franklin, W. L. Territorial Fidelity of male guanacos in the Patagonia of Southern Chile. J. Mammal. 85, 72–78 (2004).Article 

    Google Scholar 
    67.Martínez Carretero, E. La Provincia Fitogeográfica de la Payunia. Boletín la Soc. Argentina Botánica 39, 195–226 (2004).
    Google Scholar 
    68.Schroeder, N. M. et al. Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: Insights from using density surface and null models. PLoS One 9, e85960 (2014).
    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Bolgeri, M. J. Caracterización de movimientos migratorios en guanacos (Lama guanicoe) y patrones de depredación por pumas (Puma concolor) en la Payunia, Mendoza. Phd Thesis. (Universidad Nacional del Comahue, 2016).70.Bolgeri, M. J. & Novaro, A. J. Variación espacial en la depredación por puma (Puma concolor) sobre guanacos (Lama guanicoe) en la Payunia, Mendoza,Argentina. Mastozoología Neotrop. 22, 255–264 (2015).
    Google Scholar 
    71.Candia, R., Puig, S., Dalmasso, A., Videla, F. & Martínez Carretero, E. Diseño del Plan de Manejo para la reserva provincial La Payunia (Malargüe, Mendoza). Multequina 2, 5–87 (1993).
    Google Scholar 
    72.Carmanchahi, P. D. et al. Physiological response of wild guanacos to capture for live shearing. Wildl. Res. 38, 61–68 (2011).Article 

    Google Scholar 
    73.Martin, P. & Bateson, P. Measuring Behaviour. An Introductory Guide. (Cambridge University Press, 2007).74.Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    75.McCullagh, P. & Nelder, J. Generalized Linear Models. Second Edition. (Chapman & Hall, 1989).76.Fox, J. & Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87, 178–183 (1992).Article 

    Google Scholar 
    77.Zuur, A. F., Ieno, E. N. & Smith, G. M. Analysing Ecological Data. (Springer, 2007).78.Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models. Cambridge 651 (2007). https://doi.org/10.2277/052186706179.Korner-Nievergelt, F. et al. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan. (2015). https://doi.org/10.1007/s13398-014-0173-7.280.R Core Team. R Development Core Team. R A Lang. Environ. Stat. Comput. 55, 275–286 (2016).81.Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd edn. (2019).82.Gelman, A. et al. Data analysis using regression and multilevel/hierarchical models. R package version 1, 10–1 (2018).

    Google Scholar  More

  • in

    Sublethal effects of bifenazate on biological traits and enzymatic properties in the Panonychus citri (Acari: Tetranychidae)

    1.Zhang, Z. Y. et al. A shift pattern of bacterial communities across the life stages of the citrus red mite, Panonychus citri. Front. Microbiol. 11, 1620. https://doi.org/10.3389/fmicb.2020.01620 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Pan, D., Dou, W., Yuan, G. R., Zhou, Q. H. & Wang, J. J. Monitoring the resistance of the citrus red mite (Acari: Tetranychidae) to four acaricides in different citrus orchards in China. J. Econ. Entomol. 113, 918–923. https://doi.org/10.1093/jee/toz335 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Zhang, Y., Guo, L., Atlihan, R., Chi, H. & Chu, D. Demographic analysis of progeny fitness and timing of resurgence of Laodelphax striatellus after insecticides exposure. Entomol. Generalis 39, 221–230. https://doi.org/10.1127/entomologia/2019/0816 (2019).Article 

    Google Scholar 
    4.Quesada, C. R. & Sadof, C. S. Field evaluation of insecticides and application timing on natural enemies of selected armored and soft scales. Biol. Control 133, 81–90. https://doi.org/10.1016/j.biocontrol.2019.03.013 (2019).CAS 
    Article 

    Google Scholar 
    5.Ullah, F. et al. Fitness costs in chlorfenapyr-resistant populations of the chive maggot, Bradysia odoriphaga. Ecotoxicology 29, 407–416. https://doi.org/10.1007/s10646-020-02183-7 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Razik, M. A. R. A. M. A. Toxicity and side effects of some insecticides applied in cotton fields on Apis mellifera. Environ. Sci. Pollut. R. 26, 4987–4996. https://doi.org/10.1007/s11356-018-04061-6 (2019).CAS 
    Article 

    Google Scholar 
    7.Ochiai, N. et al. Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus. Exp. Appl. Acarol. 43, 181–197. https://doi.org/10.1007/s10493-007-9115-9 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Van Nieuwenhuyse, P. et al. On the mode of action of bifenazate: New evidence for a mitochondrial target site. Pestic. Biochem. Physiol. 104, 88–95. https://doi.org/10.1016/j.pestbp.2012.05.013 (2012).CAS 
    Article 

    Google Scholar 
    9.Wang, R. et al. Lethal and sublethal effects of a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Crop Prot. 83, 15–19. https://doi.org/10.1016/j.cropro.2016.01.015 (2016).CAS 
    Article 

    Google Scholar 
    10.Ullah, F., Gul, H., Desneux, N., Gao, X. & Song, D. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol. Generalis 39, 325–337 (2019).Article 

    Google Scholar 
    11.Dong, J., Wang, K., Li, Y. & Wang, S. Lethal and sublethal effects of cyantraniliprole on Helicoverpa assulta (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 136, 58–63. https://doi.org/10.1016/j.pestbp.2016.08.003 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Elzen, G. W. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J. Econ. Entomol. 94, 55–59. https://doi.org/10.1603/0022-0493-94.1.55 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Deng, D. et al. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology 28, 825–833. https://doi.org/10.1007/s10646-019-02080-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Guo, L. et al. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L.. Crop Prot. 48, 29–34. https://doi.org/10.1016/j.cropro.2013.02.009 (2013).CAS 
    Article 

    Google Scholar 
    16.Duke, S. O. et al. (eds) Pesticide Dose: Effects on the Environment and Target and Non-target Organisms 101–119 (American Chemical Society, 2017).
    Google Scholar 
    17.Guedes, N. M. P., Tolledo, J., Correa, A. S. & Guedes, R. N. C. Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J. Appl. Entomol. 134, 142–148. https://doi.org/10.1111/j.1439-0418.2009.01462.x (2010).CAS 
    Article 

    Google Scholar 
    18.Haddi, K., Oliveira, E. E., Faroni, L. R., Guedes, D. C. & Miranda, N. N. Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae). J. Econ. Entomol. 108, 2815–2822. https://doi.org/10.1093/jee/tov255 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Chen, X. D., Seo, M. & Stelinski, L. L. Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Prot. 98, 102–107. https://doi.org/10.1016/j.cropro.2017.03.017 (2017).CAS 
    Article 

    Google Scholar 
    20.Wang, L., Zhang, Y., Xie, W., Wu, Q. & Wang, S. Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem. Physiol. 132, 102–107. https://doi.org/10.1016/j.pestbp.2016.02.002 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Xiao, L. F. et al. Genome-wide identification, phylogenetic analysis, and expression profiles of ATP-binding cassette transporter genes in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Comp. Biochem. Physiol. D Genomics Proteomics 25, 1–8 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Dubovskiy, I. M. et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 1–5 (2008).CAS 
    Article 

    Google Scholar 
    23.Jia, B. T., Hong, S. S., Zhang, Y. C. & Cao, Y. W. Effect of sublethal concentrations of abamectin on protective and detoxifying enzymes in Diagegma semclausum. J. Environ. Entomol. 38, 990 (2016).
    Google Scholar 
    24.Yang, Q., Wang, S., Zhang, W., Yang, T. & Liu, Y. Toxicity of commonly used insecticides and their influences on protective enzyme activity of multicolored Asian lady beetle Harmonia axyridis (Pallas). Acta Phytophylacica Sin. 42, 258–263 (2015).CAS 

    Google Scholar 
    25.Zhou, C., Yang, H., Wang, Z., Long, G. Y. & Jin, D. C. Protective and detoxifying enzyme activity and abcg subfamily gene expression in Sogatella furcifera under insecticide stress. Front. Physiol. 9, 1890. https://doi.org/10.3389/fphys.2018.01890 (2018).Article 
    PubMed 

    Google Scholar 
    26.Cui, L., Yuan, H., Wang, Q., Wang, Q. & Rui, C. Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Sci. Rep. 8, 8915. https://doi.org/10.1038/s41598-018-27035-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Li, Y. Y. et al. Sublethal effects of bifenazate on life history and population parameters of Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 22, 148–158. https://doi.org/10.11158/saa.22.1.15 (2017).CAS 
    Article 

    Google Scholar 
    28.Wang, Y., Huang, X., Chang, B. H. & Zhang, Z. The survival, growth, and detoxifying enzyme activities of grasshoppers Oedaleus asiaticus (Orthoptera: Acrididae) exposed to toxic rutin. Appl. Entomol. Zool. 55, 385–393. https://doi.org/10.1007/s13355-020-00694-7 (2020).CAS 
    Article 

    Google Scholar 
    29.Rasheed, M. A. et al. Lethal and sublethal effects of chlorpyrifos on biological traits and feeding of the aphidophagous predator Harmonia axyridis. Insects. https://doi.org/10.3390/insects11080491 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Yamamoto, A., Yoneda, H., Hatano, R. & Asada, M. Genetic analysis of hexythiazox resistance in the citrus red mite, Panonychus citri (MCGREGOR). J. Pestic. Sci. 20, 513–519 (1995).CAS 
    Article 

    Google Scholar 
    31.Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Acad. Sin. 24(2), 225–240 (1985).MathSciNet 

    Google Scholar 
    32.Chi, H. et al. Age-Stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Generalis 40, 103 (2019).Article 

    Google Scholar 
    33.Hsin, C. Letter to the editor. J. Econ. Entomol. 108, 1465 (2015).Article 

    Google Scholar 
    34.Akköprü, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut Aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378 (2015).Article 

    Google Scholar 
    35.Mousavi, M., Ghosta, Y. & Maroofpour, N. Insecticidal activity and sublethal effects of Beauveria bassiana (Bals.-Criv.) Vuill. isolates and essential oils against Aphis gossypii Glover, 1877 (Hemiptera: Aphididae). Acta Agric. Slovenica. https://doi.org/10.14720/aas.2020.115.2.1306 (2020).Article 

    Google Scholar 
    36.Rahmani, S. & Bandani, A. R. Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Crop Prot. 54, 168–175. https://doi.org/10.1016/j.cropro.2013.08.002 (2013).CAS 
    Article 

    Google Scholar 
    37.Papachristos, D. P. & Milonas, P. G. Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol. Control 47, 77–81. https://doi.org/10.1016/j.biocontrol.2008.06.009 (2008).CAS 
    Article 

    Google Scholar 
    38.Ranjbar, F., Reitz, S., Jalali, M. A., Ziaaddini, M. & Izadi, H. Lethal and sublethal effects of two commercial insecticides on egg parasitoids (Hymenoptera: Scelionidae) of green stink bugs (Hem: Pentatomidae). J. Econ. Entomol. https://doi.org/10.1093/jee/toaa232 (2020).Article 

    Google Scholar 
    39.Zhao, Y. et al. Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae). Phytoparasitica 44, 115–124. https://doi.org/10.1007/s12600-016-0506-5 (2016).CAS 
    Article 

    Google Scholar 
    40.Sani, B., Hamid, G. & Elham, R. Sublethal effects of chlorfenapyr on the life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 23, 1342 (2018).
    Google Scholar 
    41.Leeuwen, T. V., Pottelberge, S. V. & Tirry, L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manage. Sci. 62, 425–433 (2010).Article 

    Google Scholar 
    42.Allen, R. G. & Balin, A. K. Oxidative influence on development and differentiation: An overview of a free radical theory of development. Free Radic. Biol. Med. 6, 631–661 (1989).CAS 
    Article 

    Google Scholar 
    43.Bolter, C. J. & Chefurka, W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch. Biochem. Biophys. 278, 65–72 (1990).CAS 
    Article 

    Google Scholar 
    44.Liu, Y., Wang, C., Qi, S., He, J. & Bai, Y. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.). Environ. Geochem. Health. https://doi.org/10.1007/s10653-020-00736-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Zhang, S. et al. Sublethal effects of triflumezopyrim on biological traits and detoxification enzyme activities in the small brown Planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Front. Physiol. 11, 261. https://doi.org/10.3389/fphys.2020.00261 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Ku, C. C., Chiang, F. M., Hsin, C. Y., Yao, Y. E. & Sun, C. N. Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic. Biochem. Physiol. 50, 191–197 (1994).CAS 
    Article 

    Google Scholar 
    47.Prapanthadara, L., Promtet, N., Koottathep, S., Somboon, P. & Ketterman, A. J. Isoenzymes of glutathione S-transferase from the mosquito Anopheles dirus species B: The purification, partial characterization and interaction with various insecticides. Insect Biochemi. Mol. Biol. 30, 395–403 (2000).CAS 
    Article 

    Google Scholar 
    48.Döker, İ, Kazak, C. & Ay, R. Resistance status and detoxification enzyme activity in ten populations of Panonychus citri (Acari: Tetranychidae) from Turkey. Crop Prot. https://doi.org/10.1016/j.cropro.2020.105488 (2021).Article 

    Google Scholar 
    49.Goel, A., Dani, V. & Dhawan, D. K. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem. Biol. Interact. 156, 131–140. https://doi.org/10.1016/j.cbi.2005.08.004 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Van Leeuwen, T., Van Pottelberge, S. & Tirry, L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manage. Sci. 62, 425–433. https://doi.org/10.1002/ps.1183 (2006).CAS 
    Article 

    Google Scholar  More

  • in

    The role of Medieval road operation on cultural landscape transformation

    1.Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quatern. Sci. Rev. 28, 3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028 (2009).ADS 
    Article 

    Google Scholar 
    2.Słowiński, M. et al. Drought as a stress driver of ecological changes in peatland – A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 461, 272–291. https://doi.org/10.1016/j.palaeo.2016.08.038 (2016).Article 

    Google Scholar 
    3.Dietze, E., Słowiński, M., Zawiska, I., Veh, G. & Brauer, A. Multiple drivers of Holocene lake level changes at a lowland lake in northeastern Germany. Boreas 45, 828–845. https://doi.org/10.1111/bor.12190 (2016).Article 

    Google Scholar 
    4.Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. Landscape hydrology. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847, doi:https://doi.org/10.1126/science.1260510 (2014).5.Dreibrodt, S., Lubos, C., Terhorst, B., Damm, B. & Bork, H. R. Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quatern. Int. 222, 80–95. https://doi.org/10.1016/j.quaint.2009.06.014 (2010).Article 

    Google Scholar 
    6.Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818. https://doi.org/10.1126/science.aac6759 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Syvitski, J. P. & Kettner, A. Sediment flux and the Anthropocene. Philos. Trans. A Math. Phys. Eng. Sci. 369, 957–975. https://doi.org/10.1098/rsta.2010.0329 (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    8.McConnell, J. R. et al. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1721818115 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Christian, D. Silk roads or steppe roads? The silk roads in world history. J. World Hist. 11, 1–26. https://doi.org/10.1353/jwh.2000.0004 (2000).Article 

    Google Scholar 
    10.Beck, C. W. The role of the scientist: the amber trade, the chemical analysis of amber, and the determination of Baltic provenience. J. Baltic Stud. 16, 191–199. https://doi.org/10.1080/01629778500000111 (1985).Article 

    Google Scholar 
    11.Gimbutas, M. East Baltic amber in the fourth and third millennia B.C. J. Baltic Stud. 16, 231–256, doi:https://doi.org/10.1080/01629778500000151 (1985).12.de Navarro, J. M. Prehistoric routes between Northern Europe and Italy defined by the amber trade. Geogr J 66, doi:https://doi.org/10.2307/1783003 (1925).13.Szilágyi, M. On the Road: The History and Archaeology of Medieval Communication Networks in East-Central Europe. (Archaeolingua Alapítvány, 2014).14.Schmid, B. V. et al. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc. Natl. Acad. Sci. USA 112, 3020–3025. https://doi.org/10.1073/pnas.1412887112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Rossignol, S., Kleingärtner, S., Newfield, T., Wehner, D. & Studies, P. I. o. M. Landscapes and societies in medieval Europe east of the Elbe: Interactions between environmental settings and cultural transformations. (Pontifical Institute of Mediaeval Studies, 2013).16.Drager, N. et al. Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). The Holocene 27, 450–464. https://doi.org/10.1177/0959683616660173 (2016).ADS 
    Article 

    Google Scholar 
    17.Theuerkauf, M., Drager, N., Kienel, U., Kuparinen, A. & Brauer, A. Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 25, 733–744. https://doi.org/10.1177/0959683614567881 (2015).ADS 
    Article 

    Google Scholar 
    18.Izdebski, A., Koloch, G., Słoczyński, T. & Tycner, M. On the use of palynological data in economic history: New methods and an application to agricultural output in Central Europe, 0–2000AD. Explor. Econ. Hist. 59, 17–39. https://doi.org/10.1016/j.eeh.2015.10.003 (2016).Article 

    Google Scholar 
    19.Brauer, A. et al. The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval. Quatern. Sci. Rev. 106, 47–66. https://doi.org/10.1016/j.quascirev.2014.07.006 (2014).ADS 
    Article 

    Google Scholar 
    20.Ott, F. et al. Site-specific sediment responses to climate change during the last 140 years in three varved lakes in Northern Poland. The Holocene 28, 464–477. https://doi.org/10.1177/0959683617729448 (2017).ADS 
    Article 

    Google Scholar 
    21.Śląski, K. Lądowe szlaki handlowe Pomorza w XI-XIII wieku. Zapiski Historyczne 34 (1969).22.Zakrzewski, I. Vol. 1 (Poznań, 1877).23.Ślaski, K. Zasięg lasów Pomorza w ostatnim tysiącleciu [in English: Range of forests Pomerania in the last millennium]. Przegląd Zachodni 5(6), 207–263 (1951).
    Google Scholar 
    24.Górska-Gołaska, K. in Słownik historyczno-geograficzny ziem polskich w średniowieczu Vol. part 3 (ed A. Gąsiorowski) 89 (1993–1999).25.Szulist, W. Ważniejsze szlaki handlowo-komunikacyjne północno-zachodniego Pomorza Gdańskiego w XVI-XVII w. Zapiski Historyczne 35, 105–106 (1970).
    Google Scholar 
    26.Wilska, M. in Historical atlas of Poland in the 2nd half of the 16th century: voivodeships of Cracow, Sandomierz, Lublin, Sieradz, Łęczyca, Rawa, Płock and Mazovia Vol. 3 (ed M. Słoń) 637 (Peter Lang, 2014).27.Pluskowski, A. The archaeology of the military orders: The material culture of holy war. Mediev. Archaeol. 62, 105–134. https://doi.org/10.1080/00766097.2018.1451590 (2018).Article 

    Google Scholar 
    28.Związek, T. in Wielkopolska w drugiej połowie XVI w. Vol. 2 (eds K. Chłapowski & M. Słoń) 273 (Wydawnictwo Instytutu Historii PAN, 2017).29.Wielopolski, A. Polsko-pomorskie spory graniczne w latach 1536–1555. Przegląd Zachodni 10, 85 (1954).
    Google Scholar 
    30.Kowalkowski, K. Z dziejów gminy Kaliska oraz wsi do niej należących. (Wydawnictwo Region, 2010).31.Słowiński, M. et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manage. 236, 755–768. https://doi.org/10.1016/j.jenvman.2019.02.002 (2019).Article 
    PubMed 

    Google Scholar 
    32.Błaszkiewicz, M. et al. Climatic and morphological controls on diachronous postglacial lake and river valley evolution in the area of Last Glaciation, northern Poland. Quatern. Sci. Rev. 109, 13–27. https://doi.org/10.1016/j.quascirev.2014.11.023 (2015).Article 

    Google Scholar 
    33.Woś, A. Climate of Poland (Wydawnictwo Naukowe PWN, (in Polish), Warszawa, 1999).34.Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1716912115 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Stivrins, N. et al. Palaeoenvironmental evidence for the impact of the crusades on the local and regional environment of medieval (13th–16th century) northern Latvia, eastern Baltic. The Holocene 26, 61–69. https://doi.org/10.1177/0959683615596821 (2015).ADS 
    Article 

    Google Scholar 
    36.Grzegorz, M. Osady Pomorza Gdańskiego w latach 1309–1454. (Państwowe Wydawn. Nauk., 1990).37.Biskup, M. Prusy Królewskie w drugiej połowie XVI wieku. (Państwowe Wydawnictwo Naukowe, 1961).38.Chmielewski, S. Gospodarka rolna i hodowlana w Polsce w XIV i XV w. Technika i rozmiary produkcji, . (Państwowe Wydawnictwo Naukowe, 1962).39.Brown, A. et al. The ecological impact of conquest and colonization on a medieval frontier landscape: combined Palynological and geochemical analysis of lake sediments from Radzyń Chełminski Northern Poland. Geoarchaeology 30, 511–527. https://doi.org/10.1002/gea.21525 (2015).Article 

    Google Scholar 
    40.Brown, A. & Pluskowski, A. Detecting the environmental impact of the Baltic Crusades on a late-medieval (13th–15th century) frontier landscape: palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966. https://doi.org/10.1016/j.jas.2011.04.010 (2011).Article 

    Google Scholar 
    41.Buntgen, U. et al. Filling the Eastern European gap in millennium-long temperature reconstructions. Proc. Natl. Acad. Sci. USA 110, 1773–1778. https://doi.org/10.1073/pnas.1211485110 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001. https://doi.org/10.1088/1748-9326/11/2/024001 (2016).Article 

    Google Scholar 
    43.Czaja, R. & Radzimiński, A. (eds.), The Teutonic Order in Prussia and Livonia: The political and ecclesiastical Structures 13th–16th century. 407 (TNT, Bohlau Verlag, 2015).44.Bartlett, R. The making of Europe: conquest, colonization and cultural change, 950–1350. (Allen Lane, 1993).45.Broda, J. History of forestry in Poland [in Polish]. 368 (Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, 2000).46.Schreg, R. in Processing, storage, distribution of food in medieval rural environment (eds J. Klápště & P. Sommer) 301–320 (2011).47.Kaczmarczyk, Z. & Sczaniecki, M. Kolonizacja na prawie niemieckim w Polsce a rozwój renty feudalnej’. Czasopismo Prawno-Historyczne 3, 59–83 (1951).
    Google Scholar 
    48.Czerwiński, S. et al. Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of paleoecological and historical data. Quaternary Science Reviews 259, doi:https://doi.org/10.1016/j.quascirev.2021.106902 (2021).49.Schreg, R. in Settlement change across Medieval Europe. Old paradigms and new vistas (eds N. Brady & C. Theune) 61–70 (Sidestone Press, 2019).50.Mikulski, K. Osadnictwo wiejskie województwa pomorskiego od połowy XVI do końca XVII wieku. (1994).51.Biskup, M. & Labuda, G. Dzieje zakonu krzyżackiego w Prusach: gospodarka, społeczeństwo, państwo, ideologia. (Wydawn. Morskie, 1986).52.Kizik, E. in Dżuma, ospa, cholera. W trzechsetną rocznicę wielkiej epidemii na ziemiach Rzeczypospolitej w latach 1708–1711 (ed E. Kizik) 275 (2012).53.Brönnimann, S. Climatic Changes Since 1700. Vol. 55 360 (Springer, 2015).54.Dygdała, J. Lustracja województw Prus Królewskich. Vol. 1–2 (Towarzystwo Naukowe w Toruniu, 2003).55.Dietze, E. et al. Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments. PLoS ONE 14, e0222011. https://doi.org/10.1371/journal.pone.0222011 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Lamentowicz, M. et al. Always on the tipping point – A search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quat. Sci. Rev. 225, doi:https://doi.org/10.1016/j.quascirev.2019.105954 (2019).57.Theuerkauf, M., Couwenberg, J., Kuparinen, A. & Liebscher, V. A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction. Veg. Hist. Archaeobotany 25, 541–553. https://doi.org/10.1007/s00334-016-0572-0 (2016).Article 

    Google Scholar 
    58.Hoszowski, S. “Lustracja województwa pomorskiego 1565” (Gdańskie Towarzystwo Naukowe, 1961).59.Hoszowski, S. Lustracja województw Prus Królewskich, 1624, z fragmentami lustracji 1615 roku, Lustracje dóbr królewskich XVI-XVIII wieku (Gdańskie Towarzystwo Naukowe, 1967).60.Metryka Koronna (Crown’s Metric), Central Archives of Historical Records, Warsaw, Poland, vol. XVIII, f. 23261.Ott, F. et al. Constraining the time span between the Early Holocene Hasseldalen and Askja-S Tephras through varve counting in the Lake Czechowskie sediment record Poland. J. Quat. Sci. 31, 103–113. https://doi.org/10.1002/jqs.2844 (2016).Article 

    Google Scholar 
    62.Roeser, P. et al. Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands. Boreas (in press).63.Wulf, S. et al. Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quatern. Sci. Rev. 132, 1–14. https://doi.org/10.1016/j.quascirev.2015.11.007 (2016).ADS 
    Article 

    Google Scholar 
    64.Sugita, S. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17, 229–241. https://doi.org/10.1177/0959683607075837 (2007).ADS 
    Article 

    Google Scholar 
    65.Giętkowski, T. Temporal change of forest area in Tuchola Pinewoods region between 1938 and 2000 (in Polish: Zmiany lesistości Borów Tucholskich w latach 1938 – 2000). Promotio Geographica Bydgostiensia IV, 1–12 (2009). More