Identification of ecological networks and nodes in Fujian province based on green and blue corridors
1.Garcia-Garcia, M. J., Christien, L., García-Escalona, E. & González-García, C. Sensitivity of green spaces to the process of urban planning: Three case studies of Madrid (Spain). Cities 100, 102655. https://doi.org/10.1016/j.cities.2020.102655 (2020).Article
Google Scholar
2.Kondo, M. C., Fluehr, J. M., McKeon, T. & Branas, C. C. Urban green space and its impact on human health. Environ. Res. Public Health 15(3), 445. https://doi.org/10.3390/ijerph15030445 (2018).Article
Google Scholar
3.Nesbitt, L. et al. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban For. Urban Green. 25, 103–111. https://doi.org/10.1016/j.ufug.2017.05.005 (2017).Article
Google Scholar
4.Hasan, S. S., Zhen, L., Miah, G., Ahamed, T. & Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 34, 100527. https://doi.org/10.1016/j.envdev.2020.100527 (2020).Article
Google Scholar
5.Kolodziejczyk, B. et al. Frontiers 2018/19: Emerging issues of environmental concern. United Nations Environment Programme, Nairobi, 24–37 (2019).6.Steffen, W., Crutzen, P. J. & McNeill, J. R. The anthropocene: Are humans now overwhelming the great forces of nature. Hum. Environ. 36(8), 614–621. https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 (2007).CAS
Article
Google Scholar
7.CC & SC. Views on Accelerating the Ecological Civilization Construction (2015).8.Ministry of Housing and Urban-Rural Development (MHURD). City Green Space Planning Standards, GB/T51346-2019 (2019).9.Raei, E. et al. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J. Hydrol. 579, 124091. https://doi.org/10.1016/j.jhydrol.2019.124091 (2019).CAS
Article
Google Scholar
10.Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81(3), 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001 (2007).Article
Google Scholar
11.Xiao, F., Shu, J. & Zhang, L. Research on applying minimal cumulative resistance model in urban land ecological suitability assessment: As an example of Xiamen City. Acta Ecol. Sin. 30(2), 421–428 (2010).
Google Scholar
12.Zhao, S., Ma, Y., Wang, J. & You, X. Landscape pattern analysis and ecological network planning of Tianjin City. Urban For. Urban Green. 46, 126479. https://doi.org/10.1016/j.ufug.2019.126479 (2019).Article
Google Scholar
13.Davies, C. & Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 69, 93–101. https://doi.org/10.1016/j.landusepol.2017.08.018 (2017).Article
Google Scholar
14.Central Committee & State Council (CC & SC). Views on establishment and monitoring of Territorial Space Planning system (2019).15.Zhou, Q. et al. China’s Green space system planning: Development, experiences, and characteristics. Urban For. Urban Green. 60, 127017. https://doi.org/10.1016/j.ufug.2021.127017 (2021).Article
Google Scholar
16.Zhou, X., Zhang, S. & Zhu, D. Impact of urban water networks on microclimate and PM25 distribution in downtown areas: A case study of wuhan. Build. Environ. 203, 108073. https://doi.org/10.1016/j.buildenv.2021.108073 (2021).Article
Google Scholar
17.Ministry of Natural Resources (MNR). Guidelines for Formulation of Provincial Territorial Space Planning (Trial) (2020).18.Rushdi, A. M. A. & Hassan, A. K. Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecol. Model. 304, 1–10. https://doi.org/10.1016/j.ecolmodel.2015.02.014 (2015).Article
Google Scholar
19.Wang, T., Li, H. & Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Ind. 130, 108101. https://doi.org/10.1016/j.ecolind.2021.108101 (2021).Article
Google Scholar
20.Wu, H. et al. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Ind. 129, 107955. https://doi.org/10.1016/j.ecolind.2021.107955 (2021).Article
Google Scholar
21.Janauer, G. A. Ecohydrology: Fusing concepts and scales. Ecol. Eng. 16(1), 9–16. https://doi.org/10.1016/S0925-8574(00)00072-0 (2000).Article
Google Scholar
22.Rinaldo, A., Gatto, M. & Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 112, 27–58. https://doi.org/10.1016/j.advwatres.2017.10.005 (2018).ADS
Article
PubMed
PubMed Central
Google Scholar
23.Fletcher, T. D. et al. SUDS, LID, BMPs, WSUD and more: The evolution and application of terminology surrounding urban drainage. Urban Water J. 12(7), 525–542. https://doi.org/10.1080/1573062X.2014.916314 (2015).Article
Google Scholar
24.Nieuwenhuis, E., Cuppen, E., Langeveld, J. & Bruijn, H. Towards the integrated management of urban water systems: Conceptualizing integration and its uncertainties. J. Clean. Prod. 280(2), 124977. https://doi.org/10.1016/j.jclepro.2020.124977 (2021).Article
Google Scholar
25.Knaapen, J. P., Scheffer, M. & Harms, B. Estimating habitat isolation in landscape planning. Landscape Urban Plann. 23(1), 1–16. https://doi.org/10.1016/0169-2046(92)90060-D (1992).Article
Google Scholar
26.Yu, K. Security patterns and surface model in landscape ecological planning. Landscape Urban Plann. 36(1), 1–17. https://doi.org/10.1016/S0169-2046(96)00331-3 (1996).Article
Google Scholar
27.Yu, K. Landscape ecological security pattern of biological protection. Acta Ecologica Sinica 1, 3–5 (1999).
Google Scholar
28.Zhang, Z., Meerow, S., Newell, J. P. & Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 38, 305–317. https://doi.org/10.1016/j.ufug.2018.10.014 (2019).Article
Google Scholar
29.Fu, Y., Shi, X., He, J., Yuan, Y. & Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Ind. 112, 106030. https://doi.org/10.1016/j.ecolind.2019.106030 (2020).Article
Google Scholar
30.Kong, F., Yin, H., Nakagoshi, N. & Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 95, 16–27. https://doi.org/10.1016/j.landurbplan.2009.11.001 (2010).Article
Google Scholar
31.Kong, F. & Yin, H. Construction of Jinan urban green space ecological network. Acta Ecol. Sin. 4, 1711–1719 (2008).
Google Scholar
32.Linehan, J., Gross, M. & Finn, J. Greenway planning: Developing a landscape ecological network approach. Landsc. Urban Plan. 33(1–3), 179–193. https://doi.org/10.1016/0169-2046(94)02017-A (1995).Article
Google Scholar
33.Yang, H., Chen, W. & Chen, X. Regional ecological network planning for biodiversity conservation: A case study of China’s Poyang lake eco-economic region. Pol. J. Environ. Stud. 26(4), 1825–1833. https://doi.org/10.15244/pjoes/68877 (2017).Article
Google Scholar
34.Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).Article
Google Scholar
35.Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24(3), 660–668. https://doi.org/10.1111/j.1523-1739.2010.01450.x (2010).Article
PubMed
Google Scholar
36.Saura, S. & Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 24(1), 135–139. https://doi.org/10.1016/j.envsoft.2008.05.005 (2009).Article
Google Scholar
37.Saura, S., Vogt, P., Velázquez, J., Hernando, A. & Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 262(2), 150–160. https://doi.org/10.1016/j.foreco.2011.03.017 (2011).Article
Google Scholar
38.Bueno, J. A., Tsihrintzis, V. A. & Alvarez, L. South Florida greenways: a conceptual framework for the ecological reconnectivity of the region. Landsc. Urban Plan. 33(1–3), 247–266. https://doi.org/10.1016/0169-2046(94)02021-7 (1995).Article
Google Scholar
39.Cook, E. A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 58(2–4), 269–280. https://doi.org/10.1016/S0169-2046(01)00226-2 (2002).Article
Google Scholar
40.Dalton, R., Garlick, J., Minshull, R. & Robinson, A. Networks in Geography (Phillip, 1973).
Google Scholar
41.Forman, R. T. T. & Godron, M. Landscape Ecology (Wiley, 1986).
Google Scholar
42.Haggett, P. & Chorley, R. J. Network Analysis in Geography (Edward Arnold, 1972).
Google Scholar
43.Yu, K. The identification method of landscape ecological strategic points and the surface model of theoretical geography. J. Geog. Sci. S1, 3–5 (1998).
Google Scholar
44.Yu, Q. et al. Optimization of ecological node layout and stability analysis of ecological network in desert oasis: A typical case study of ecological fragile zone located at Deng Kou County (Inner Mongolia). Ecol. Indic. 84, 304–318. https://doi.org/10.1016/j.ecolind.2017.09.002 (2018).Article
Google Scholar
45.Zhang, Y. & Yu, B. Evaluation of urban ecological network space and its structure optimization. Acta Ecol. Sin. 36(21), 6969–6984 (2016).
Google Scholar
46.Hong, W. et al. Sensitivity evaluation and land-use control of urban ecological corridors: A case study of Shenzhen, China. Land Use Policy 62, 316–325. https://doi.org/10.1016/j.landusepol.2017.01.010 (2017).Article
Google Scholar
47.Monaco, R., Negrini, G., Salizzoni, E., Soares, A. J. & Voghera, A. Inside-outside park planning: A mathematical approach to assess and support the design of ecological connectivity between Protected Areas and the surrounding landscape. Ecol. Eng. 149, 105748. https://doi.org/10.1016/j.ecoleng.2020.105748 (2020).Article
Google Scholar
48.Morandi, D. T. et al. Delimitation of ecological corridors between conservation units in the Brazilian Cerrado using a GIS and AHP approach. Ecol. Ind. 115, 106440. https://doi.org/10.1016/j.ecolind.2020.106440 (2020).Article
Google Scholar
49.Santos, J. S. et al. Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecol. Ind. 88, 414–424. https://doi.org/10.1016/j.ecolind.2018.01.011 (2018).Article
Google Scholar
50.Dai, L., Liu, Y., Luo, X. I. & the MCR and, ,. DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141868 (2020).Article
PubMed
PubMed Central
Google Scholar
51.Ferreira, C. S. S. et al. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment. J. Hydrol. 525, 249–263. https://doi.org/10.1016/j.jhydrol.2015.03.039 (2015).ADS
Article
Google Scholar
52.Kalantari, Z. et al. Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Sci. Total Environ. 661, 393–406. https://doi.org/10.1016/j.scitotenv.2019.01.009 (2019).ADS
CAS
Article
PubMed
Google Scholar
53.Kalantari, Z., Ferreira, C. S. S., Walsh, R. P. D., Ferreira, A. J. D. & Destouni, G. Urbanization development under climate change: Hydrological responses in a peri-urban Mediterranean catchment. Land Degrad. Dev. 28, 2207–2221. https://doi.org/10.1002/ldr.2747 (2017).Article
Google Scholar
54.Grillakis, M. G. et al. Initial soil moisture effects on flash flood generation: A comparison between basins of contrasting hydro-climatic conditions. J. Hydrol. 541(A), 206–217. https://doi.org/10.1016/j.jhydrol.2016.03.007 (2016).ADS
Article
Google Scholar
55.Zhang, K., Fong, T. & Chui, M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Sci. Total Environ. 621, 915–929. https://doi.org/10.1016/j.scitotenv.2017.11.281 (2018).ADS
CAS
Article
PubMed
Google Scholar
56.Liu, Z., Lin, Y., De Meulder, B. & Wang, S. Heterogeneous landscapes of urban greenways in Shenzhen: Traffic impact, corridor width and land use. Urban For. Urban Green. 126, 785. https://doi.org/10.1016/j.ufug.2020.126785 (2020).Article
Google Scholar
57.Wakefield, S. Great expectations: Waterfront redevelopment and the Hamilton Harbour Waterfront Trail. Cities 24(4), 298–310. https://doi.org/10.1016/j.cities.2006.11.001 (2007).Article
Google Scholar
58.Rimaze, D., Machumu, A., Mremi, R. & Eustace, A. Diversity and abundance of wild mammals between different accommodation facilities in the Kwakuchinja Wildlife Corridor, Tanzania. Sci. Afr. 9, e00480. https://doi.org/10.1016/j.sciaf.2020.e00480 (2020).Article
Google Scholar
59.Franco, D., Mannino, I. & Zanetto, G. The impact of agroforestry networks on scenic beauty estimation: The role of a landscape ecological network on a socio-cultural process. Landsc. Urban Plan. 62(3), 119–138. https://doi.org/10.1016/S0169-2046(02)00127-5 (2003).Article
Google Scholar
60.Wu, X. et al. Increasing green infrastructure-based ecological resilience in urban systems: A perspective from locating ecological and disturbance sources in a resource-based city. Sustain. Cities Soc. 61, 102354. https://doi.org/10.1016/j.scs.2020.102354 (2020).Article
Google Scholar
61.Yang, C., Zeng, W. & Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 61, 102271. https://doi.org/10.1016/j.scs.2020.102271 (2020).Article
Google Scholar
62.Yang, J., Zeng, C. & Cheng, Y. Spatial influence of ecological networks on land use intensity. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137151 (2020).Article
PubMed
PubMed Central
Google Scholar
63.Théau, J., Bernier, A. & Fournier, R. A. An evaluation framework based on sustainability-related indicators for the comparison of conceptual approaches for ecological networks. Ecol. Indic. 52, 444–457. https://doi.org/10.1016/j.ecolind.2014.12.029 (2015).Article
Google Scholar
64.Neri, M., Jameli, D., Bernard, E. & Melo, F. P. L. Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspect. Ecol. Conserv. 17(3), 131–135. https://doi.org/10.1016/j.pecon.2019.08.004 (2019).Article
Google Scholar
65.Zeng, Y. & Zhong, L. Identifying conflicts tendency between nature-based tourism development and ecological protection in China. Ecol. Indic. 109, 105791. https://doi.org/10.1016/j.ecolind.2019.105791 (2020).Article
Google Scholar
66.Cunha, N. S. & Magalhães, M. R. Methodology for mapping the national ecological network to mainland Portugal: A planning tool towards a green infrastructure. Ecol. Ind. 104, 802–818. https://doi.org/10.1016/j.ecolind.2019.04.050 (2019).Article
Google Scholar
67.Dong, J., Peng, J., Liu, Y., Qiu, S. & Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 199, 103815. https://doi.org/10.1016/j.landurbplan.2020.103815 (2020).Article
Google Scholar
68.Gasanov, G. et al. Data on the productivity of plant cover of the main types of soils of the North-Western precaspian in connection with the dynamics of ecological factors. Data Brief 24, 103713. https://doi.org/10.1016/j.dib.2019.103713 (2019).Article
PubMed
PubMed Central
Google Scholar
69.Montis, A. D. et al. Resilient ecological networks: A comparative approach. Land Use Policy 89, 104207. https://doi.org/10.1016/j.landusepol.2019.104207 (2019).Article
Google Scholar
70.Du, H. et al. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 106, 105501. https://doi.org/10.1016/j.ecolind.2019.105501 (2020).Article
Google Scholar
71.Guo, X. et al. The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. J. Clean. Prod. 254, 120075. https://doi.org/10.1016/j.jclepro.2020.120075 (2020).Article
Google Scholar
72.Li, J., Wang, Y., Ni, Z., Chen, S. & Xia, B. An integrated strategy to improve the microclimate regulation of green-blue-grey infrastructures in specific urban forms. J. Clean. Prod. 271, 122555. https://doi.org/10.1016/j.jclepro.2020.122555 (2020).Article
Google Scholar
73.Afriyanie, D. et al. Re-framing urban green spaces planning for flood protection through socio-ecological resilience in Bandung City, Indonesia. Cities 101, 102710. https://doi.org/10.1016/j.cities.2020.102710 (2020).Article
Google Scholar
74.Ioan-Cristian, I. et al. Integrating urban blue and green areas based on historical evidence. Urban For. Urban Green. 34, 217–225. https://doi.org/10.1016/j.ufug.2018.07.001 (2019).Article
Google Scholar
75.Jaung, W. L., Carrasco, R., Ahmad, S., Tan, P. Y. & Richards, D. R. Temperature and air pollution reductions by urban green spaces are highly valued in a tropical city-state. Urban For. Urban Green. https://doi.org/10.1016/j.ufug.2020.126827 (2020).Article
Google Scholar
76.La Sorte, F. A., Aronson, M. F. J., Lepczyk, C. A. & Horton, K. G. Area is the primary correlate of annual and seasonal patterns of avian species richness in urban green spaces. Landsc. Urban Plan. 203, 103892. https://doi.org/10.1016/j.landurbplan.2020.103892 (2020).Article
Google Scholar
77.Moradpour, M. & Hosseini, V. An investigation into the effects of green space on air quality of an urban area using CFD modeling. Urban Clim. 34, 100686. https://doi.org/10.1016/j.uclim.2020.100686 (2020).Article
Google Scholar
78.Nouri, H., Borujeni, S. C. & Hoekstra, A. Y. The blue water footprint of urban green spaces: An example for Adelaide, Australia. Landsc. Urban Plan. 190, 103613. https://doi.org/10.1016/j.landurbplan.2019.103613 (2019).Article
Google Scholar
79.Sikuzani, Y. U. et al. Tree diversity and structure on green space of urban and peri-urban zones: The case of Lubumbashi City in the Democratic Republic of Congo. Urban For. Urban Green. 41, 67–74. https://doi.org/10.1016/j.ufug.2019.03.008 (2019).Article
Google Scholar More