Approaching mercury distribution in burial environment using PLS-R modelling
1.Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. In Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 181–194 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809665-9.09985-7.Chapter
Google Scholar
2.Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29, 543–566 (1998).Article
Google Scholar
3.Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J. & George, G. N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114, 8499–8541 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
4.WHO. Exposure to Mercury: a Major Public Health Concern. (2007).5.Berlin, M., Zalups, R. K. & Fowler, B. A. Chapter 46—Mercury. In Handbook on the Toxicology of Metals (Fourth Edition) (eds Nordberg, G. F. et al.) 1013–1075 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-444-59453-2.00046-9.Chapter
Google Scholar
6.Clarkson, T. W. The Toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Abass, K. et al. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 114, 1–11 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Liu, G., Cai, Y., O’Driscoll, N., Feng, X. & Jiang, G. Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 1–12 (Wiley, 2011). https://doi.org/10.1002/9781118146644.ch1.Chapter
Google Scholar
9.García, F., Ortega, A., Domingo, J. L. & Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J. Environ. Sci. Health Part A 36, 1767–1786 (2001).Article
Google Scholar
10.Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006).CAS
PubMed
Article
Google Scholar
11.Holmes, P., James, K. A. F. & Levy, L. S. Is low-level environmental mercury exposure of concern to human health?. Sci. Total Environ. 408, 171–182 (2009).ADS
CAS
PubMed
Article
Google Scholar
12.Pasetto, R., Martin-Olmedo, P., Martuzzi, M. & Iavarone, I. Exploring available options in characterising the health impact of industrially contaminated sites. Ann. Ist Super Sanita 52, 476–482 (2016).PubMed
Google Scholar
13.Álvarez-Fernández, N., Martínez Cortizas, A. & López-Costas, O. Atmospheric mercury pollution deciphered through archaeological bones. J. Archaeol. Sci. 119, 105159 (2020).Article
CAS
Google Scholar
14.Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—A review. Sci. Total Environ. 709, 134800 (2020).ADS
CAS
PubMed
Article
Google Scholar
15.Leblanc, M., Morales, J. A., Borrego, J. & Elbaz-Poulichet, F. 4,500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 95, 655–662 (2000).CAS
Google Scholar
16.Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. PNAS 106, 8830–8834 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
17.Hunt Ortiz, M. A., Consuegra, S., Díaz del Río, P., Hurtado Pérez, V. & Montero Ruiz, I. Neolithic and Chalcolithic –VI to III millennia BC– use of cinnabar (HgS) in the Iberian Peninsula: analytical identification and lead isotope data for an early mineral exploitation of the Almadén (Ciudad Real, Spain) mining district. (2011).18.Martı́nez-Cortizas, A., Pontevedra-Pombal, X., Garcı́a-Rodeja, E., Nóvoa-Muñoz, J. C. & Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284, 939–942 (1999).19.Martínez Cortizas, A., Peiteado Varela, E., Bindler, R., Biester, H. & Cheburkin, A. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochimica et Cosmochimica Acta 82, 68–78 (2012).20.López-Costas, O. et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci. Total Environ. 710, 136319 (2020).ADS
PubMed
Article
CAS
Google Scholar
21.Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).CAS
Article
Google Scholar
22.Yamada, M. et al. Accumulation of mercury in excavated bones of two natives in Japan. Sci. Total Environ. 162, 253–256 (1995).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
23.Emslie, S. D. et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci. Rep. 5, 14679 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
24.Alexandrovskaya, E. & Alexandrovskiy, A. Radiocarbon data and anthropochemistry of ancient Moscow. Geochronometria 24, 87–95 (2005).
Google Scholar
25.Ávila, A., Mansilla, J., Bosch, P. & Pijoan, C. Cinnabar in mesoamerica: poisoning or mortuary ritual?. J. Archaeol. Sci. 49, 48–56 (2014).Article
CAS
Google Scholar
26.Bocca, B. et al. Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure. Environ. Sci. Pollut. Res. 25, 8404–8414 (2018).CAS
Article
Google Scholar
27.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Ufer, K. & Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elements Med. Biol. 67, 126797 (2021).28.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Jimenez-Lopez, J. C. & Romano-Pacheco, A. Ageing and preservation of HgS-enriched ancient human remains deposited in confinement. J. Archaeol. Sci.: Rep. 18, 562–567 (2018).29.Cervini-Silva, J. et al. Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains. Geomicrobiol. J. 30, 566–577 (2013).CAS
Article
Google Scholar
30.Emslie, S. D. et al. Mercury in archaeological human bone: biogenic or diagenetic?. J. Archaeol. Sci. 108, 104969 (2019).CAS
Article
Google Scholar
31.Kepa, M. et al. Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report). Anthropol. Anz. 69, 367–377 (2012).PubMed
Article
Google Scholar
32.Ochoa-Lugo, M. et al. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. J. Archaeol. Sci.: Rep. 15, 213–218 (2017).
Google Scholar
33.Panova, T. D., Dmitriev, AYu., Borzakov, S. B. & Hramco, C. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR. Phys. Part. Nuclei Lett. 15, 127–134 (2018).ADS
CAS
Article
Google Scholar
34.Rasmussen, K. L. et al. Investigations of the relics and altar materials relating to the apostles St James and St Philip at the Basilica dei Santi XII Apostoli in Rome. Herit. Sci. 9, 14 (2021).CAS
Article
Google Scholar
35.Rasmussen, K. L. et al. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: An investigation of social stratification in two medieval and post-medieval societies. Heritage Sci. 8, 65 (2020).CAS
Article
Google Scholar
36.Rasmussen, K. L. et al. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am. J. Phys. Anthropol. 162, 90–102 (2017).Article
Google Scholar
37.Rasmussen, K. L., Skytte, L., Jensen, A. J. & Boldsen, J. L. Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci.: Rep. 3, 358–370 (2015).
Google Scholar
38.Rasmussen, K. L. et al. Was he murdered or was he not?—Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55, 1187–1195 (2013).CAS
Article
Google Scholar
39.Rasmussen, K. L. et al. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 1, 10 (2013).Article
CAS
Google Scholar
40.Torino, M. et al. Convento di San Francesco a Folloni: The function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).Article
CAS
Google Scholar
41.Walser, J. W., Kristjánsdóttir, S., Gowland, R. & Desnica, N. Volcanoes, medicine, and monasticism: Investigating mercury exposure in medieval Iceland. Int. J. Osteoarchaeol. 29, 48–61 (2019).Article
Google Scholar
42.Rasmussen, K. L. et al. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 35, 2295–2306 (2008).Article
Google Scholar
43.Armesto, A. G. et al. Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span. J. Soil Sci. 8(1), 57–73 (2018).
Google Scholar
44.do Valle, C. M., Santana, G. P., Augusti, R., Egreja Filho, F. B. & Windmöller, C. C. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792 (2005).45.Fiorentino, J. C., Enzweiler, J. & Angélica, R. S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221, 63–75 (2011).ADS
CAS
Article
Google Scholar
46.Roulet, M. et al. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil1The present investigation is part of an ongoing study, the CARUSO project (IDRC-UFPa-UQAM), initiated to determine the sources, fate, and health effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24 (1998).47.Qin, F. et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Expl. 138, 33–49 (2014).CAS
Article
Google Scholar
48.Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).ADS
CAS
Article
Google Scholar
49.Janaway, R. C., Percival, S. L. & Wilson, A. S. Decomposition of Human Remains. In Microbiology and Aging: Clinical Manifestations (ed. Percival, S. L.) 313–334 (Humana Press, London, 2009). https://doi.org/10.1007/978-1-59745-327-1_14.Chapter
Google Scholar
50.Obrist, D., Johnson, D. W. & Lindberg, S. E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6, 765–777 (2009).ADS
CAS
Article
Google Scholar
51.Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56, 667–680 (1991).ADS
CAS
Article
Google Scholar
52.Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).ADS
CAS
Article
Google Scholar
53.Babuśka-Roczniak, M. et al. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 28, 39–44 (2021).
Google Scholar
54.Domingo, J. L., García, F., Nadal, M. & Schuhmacher, M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ. Res. 154, 269–274 (2017).CAS
PubMed
Article
Google Scholar
55.López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51 (2016).56.Taboada, T., Martínez Cortizas, A., García, C. & García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 356, 192–206 (2006).57.Windmöller, C. C., Durão, W. A., de Oliveira, A. & do Valle, C. M. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicol. Environ. Saf. 112, 201–211 (2015).58.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra) II. Cuadernos de estudios gallegos 22, 5–23 (1967).59.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra). Cuadernos de estudios gallegos 16, 141–158 (1961).60.Kaal, J., López-Costas, O. & Martínez Cortizas, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10 (2016).61.López Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. (Universidad de Granada, 2012).62.López-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário/Quaternary Studies 55–67 (2015) https://doi.org/10.30893/eq.v0i12.111.63.López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).PubMed
Article
Google Scholar
64.García López, Z., López Costas, O. & Martínez Cortizas, A. Análisis de sedimentos asociados a restos humanos de la Necrópolis de A Lanzada y Adro Vello (Pontevedra). (2019).65.Rodríguez Martínez, R. M. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).66.Brickley, M. & McKinley, J. I. Determination of sex from archaeological skeletal material and assessment of parturition. in Guidelines to the Standards for Recording Human Remains. 23–25 (BABAO, Dept. of Archaeology, University of Southampton. Institute of Field Archaeologist, University of Reading, 2004).67.López Costas, O. et al. Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada. En: Rodríguez Martínez, R.M., 2017. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).68.Cheburkin, A. K. & Shotyk, W. Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer. X-Ray Spectrom. 28, 379–383 (1999).ADS
CAS
Article
Google Scholar
69.Cheburkin, A. K. & Shotyk, W. High-sensitivity XRF analyzer (OLIVIA) using a multi-crystal pyrographite assembly to reduce the continuous background. X-Ray Spectrom. 28, 145–148 (1999).ADS
CAS
Article
Google Scholar
70.Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109–130 (2001).CAS
Article
Google Scholar
71.Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Comput. Stat. Data Anal. 56, 2688–2704 (2012).MathSciNet
MATH
Article
Google Scholar
72.Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Mathe. Geol. 35, 279–300 (2003).MathSciNet
MATH
Article
Google Scholar
73.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).74.Filzmoser, P., Hron, K. & Templ, M. Applied Compositional Data Analysis. With Worked Examples (Springer, 2018).MATH
Book
Google Scholar
75.Garrett, R. G. rgr: Applied Geochemistry EDA. (2018).76.Bertrand, F. & Maumy-Bertrand, M. Partial Least Squares Regression for Generalized Linear Models. (2019).77.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH
Book
Google Scholar
79.Punta A Lanzada, O Grove (Galicia, Spain) 42°25′44.61″N 8°52′29.31″W elev 16 m eye alt 585m. Google Earth. Jully 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE.80.A Lanzada site (Galicia, Spain) 42°25′44.64″N 8°52″29.42″W elev 16m eye alt 549m. Google Earth. Jully 18, 2020. October 12, 2021. https://bit.ly/3BBqxKy. More