Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders
1.Ley, R. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
2.Robinson, C. J., Bohannan, B. J. M. & Young, V. B. From structure to function: The ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 74, 453–476 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Pryor, G. & Bjorndal, K. Symbiotic fermentation, digesta passage, and gastrointestinal morphology in bullfrog tadpoles (Rana catesbeiana). Physiol. Biochem. Zool. 78, 201–215 (2005).PubMed
Article
PubMed Central
Google Scholar
5.Claus, S. P., Guillou, H. & Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants?. NPJ Biofilms Microbiomes 2, 16003 (2016).PubMed
PubMed Central
Article
Google Scholar
6.Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation?. Trends Ecol. Evol. 31, 689–699 (2016).PubMed
Article
PubMed Central
Google Scholar
8.Bourguignon, T. et al. Rampant host switching shaped the termite gut microbiome. Curr. Biol. 28, 649-654.e2 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Amato, K. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 1 (2018).
Google Scholar
10.Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).PubMed
Article
PubMed Central
Google Scholar
11.Bolnick, D. I. et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 17, 979–987 (2014).PubMed
PubMed Central
Article
Google Scholar
12.Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).Article
Google Scholar
13.Michel, A. et al. The gut of the finch: Uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome 6, 1–14 (2018).Article
Google Scholar
14.Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Kohl, K., Amaya, J., Passement, C., Dearing, M. D. & Mccue, M. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Vences, M. et al. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci. Nat. 103, 25 (2016).Article
CAS
Google Scholar
18.Li, G. et al. Host-microbiota interaction helps to explain the bottom-up effects of climate change on a small rodent species. ISME J. 14, 1795–1808 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
19.Rawls, J., Mahowald, M., Ley, R. & Gordon, J. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
21.Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).PubMed
PubMed Central
Article
Google Scholar
22.Adlerberth, I. & Wold, A. E. Establishment of the gut microbiota in Western infants. Acta Paediatr. Int. J. Paediatr. 98, 229–238 (2009).CAS
Article
Google Scholar
23.Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
24.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
25.Lips, K. R. et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc. Natl. Acad. Sci. USA. 103, 3165 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
26.Bishop, P. et al. The amphibian extinction crisis -what will it take to put the action into the amphibian conservation action plan?. Surv. Perspect. Integr. Environ. Soc. 5, 97–111 (2012).
Google Scholar
27.Kats, L. & Ferrer, R. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).Article
Google Scholar
28.Chanson, J., Hoffman, M., Cox, N. & Stuart, S. The State of the World’s Amphibians. In Threatened Amphibians of the World 33–44 (Lynx Edicions, Barcelona, Spain, 2015)29.Rollins-Smith, L. A. & Woodhams, D. C. Amphibian immunity: Staying in tune with the environment. In Ecoimmunology ( eds Demas, G. & Nelson, R.) 92–143 (Oxford University press, Oxford, UK, 2011).30.Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
31.Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).PubMed
PubMed Central
Google Scholar
32.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
33.Whiles, M. R. et al. The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front. Ecol. Environ. 4, 27–34 (2006).Article
Google Scholar
34.Hocking, D. & Babbitt, K. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).
Google Scholar
35.Burton, T. M. & Likens, G. E. Energy flow and nutrient cycling in salamander populations in the Hubbard Brook experimental forest, New Hampshire. Ecology 56, 1068–1080 (1975).CAS
Article
Google Scholar
36.Reagan, D. P. & Waide, R. B. The Food Web of a Tropical Rain Forest (University of Chicago Press, 1996).
Google Scholar
37.Stebbins, R. C. & Cohen, N. W. A Natural History of Amphibians (Princeton University Press, 1997).
Google Scholar
38.Flecker, A. S., Feifarek, B. P. & Taylor, B. W. Ecosystem engineering by a tropical tadpole: Density-dependent effects on habitat structure and larval growth rates. Copeia 1999, 495–500 (1999).Article
Google Scholar
39.Beard, K., Vogt, K. & Kulmatiski, A. Top-down effects of a terrestrial frog on nutrient dynamics. Oecologia 133, 583–593 (2002).ADS
PubMed
Article
PubMed Central
Google Scholar
40.Davic, R. & Welsh, H. On the ecological role of salamanders. Annu. Rev. Ecol. Syst. 12, 405–434 (2004).Article
Google Scholar
41.Reinhardt, T., Steinfartz, S., Paetzold, A. & Weitere, M. Linking the evolution of habitat choice to ecosystem functioning: Direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173, 281–291 (2013).ADS
PubMed
Article
PubMed Central
Google Scholar
42.Buckley, D. & Alcobendas, M. Salamandra salamandra (Linnaeus, 1758). (2002).43.Fryxell, J. & Lundberg, P. Diet choice and predator—prey dynamics. Evol. Ecol. 8, 407–421 (1994).Article
Google Scholar
44.Deagle, B. E. et al. Studying seabird diet through genetic analysis of faeces: A case study on macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2, e831 (2007).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
45.Botzler, R. G., Wetzler, T. F. & Cowan, A. B. Yersinia enterocolitica and yersinia-like organisms isolated from frogs and snails. Bull. Wildl. Dis. Assoc. 4, 110–115 (1968).CAS
Article
Google Scholar
46.Cooper, J. E., Needham, J. R. & Griffin, J. A bacterial disease of the Darwin’s frog (Rhinoderma darwini). Lab. Anim. 12, 91–93 (1978).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Hird, D. et al. Enterobacteriacae and Aeromonas hydrophila in Minnesota frogs and tadpoles (Rana papiens). Appl. Environ. Microbiol. 46, 1423–1425 (1984).ADS
Article
Google Scholar
48.Olson, M., Gard, S., Brown, M., Hampton, R. & Morck, D. Flavobacterium indologenes infection in leopard frogs. J. Am. Vet. Med. Assoc. 201, 1766–1770 (1992).CAS
PubMed
PubMed Central
Google Scholar
49.Pearson, M. D. Motile Aeromonas septicaemia of farmed Rana spp. (1998).50.Green, S. et al. Identification and management of an outbreak of Flavobacterium meningosepticum infection in a colony of South African clawed frogs (Xenopus laevis). J. Am. Vet. Med. Assoc. 214(1833–8), 1792–1793 (1999).
Google Scholar
51.Bernardet, J.-F. et al. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst. Appl. Microbiol. 28, 640–660 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
52.Pasteris, S., Guidoli, M., Otero, M., Bühler, M. & Nader-Macías, M. In vitro inhibition of Citrobacter freundii, a red-leg syndrome associated pathogen in raniculture, by indigenous Lactococcus lactis CRL 1584. Vet. Microbiol. 151, 336–344 (2011).PubMed
Article
PubMed Central
Google Scholar
53.Kirk, K. et al. Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int. J. Syst. Evol. Microbiol. 63, 4777–4783 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Suzina, N. E. et al. Cytophysiological characteristics of the vegetative and dormant cells of Stenotrophomonas sp. strain FM3, a bacterium isolated from the skin of a Xenopus laevis frog. Microbiology 87, 339–349 (2018).CAS
Article
Google Scholar
55.Hallinger, M., Taubert, A. & Hermosilla, C. Endoparasites infecting exotic captive amphibian pet and zoo animals (Anura, Caudata) in Germany. Parasitol. Res. 119, 3659–3673 (2020).PubMed
PubMed Central
Article
Google Scholar
56.Deagle, B. E., Chiaradia, A., McInnes, J. & Jarman, S. N. Pyrosequencing faecal DNA to determine diet of little penguins: Is what goes in what comes out?. Conserv. Genet. 11, 2039–2048 (2010).Article
Google Scholar
57.Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W. & Jarman, S. N. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count?. Mol. Ecol. Resour. 13, 620–633 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).Article
Google Scholar
59.Deagle, B., Kirkwood, R. & Jarman, S. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Deagle, B. & Tollit, D. Quantitative analysis of prey DNA in pinniped faeces: Potential to estimate diet composition?. Conserv. Genet. 8, 743–747 (2007).CAS
Article
Google Scholar
63.Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406 (2020).Article
Google Scholar
64.Deagle, B. et al. Molecular scatology as a tool to study diet: Analysis of prey DNA in scats from captive Steller sea lions. Mol. Ecol. 14, 1831–1842 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Parsons, K., Piertney, S., Middlemas, S., Hammond, P. & Armstrong, J. DNA-based identification of salmonid prey species in seal faeces. J. Zool. 266, 275–281 (2005).Article
Google Scholar
66.Meekan, M., Jarman, S., McLean, C. & Schultz, M. DNA evidence of whale sharks (Rhincodon typus) feeding on red crab (Gecarcoidea natalis) larvae at Christmas Island, Australia. Mar. Freshw. Res. 60, 607–609 (2009).CAS
Article
Google Scholar
67.Guillerault, N., Bouletreau, S., Iribar, A., Valentini, A. & Santoul, F. Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet. J. Fish Biol. 90, 2214–2219 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Brown, D. S., Jarman, S. N. & Symondson, W. O. C. Pyrosequencing of prey DNA in reptile faeces: Analysis of earthworm consumption by slow worms. Mol. Ecol. Resour. 12, 259–266 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Ferenti, S., Cicort-Lucaciu, A. S., Dobre, F., Paina, C. & Covaci, R. The food of four Salamandra salamandra populations from Defileul Jiului National Park (Gorj County). Olten. Stud. Si Comun. Stiintele Nat. 2008, 153–160 (2008).
Google Scholar
70.Ferenti, S., David, A. & Nagy, D. Feeding-behaviour responses to anthropogenic factors on Salamandra salamandra (Amphibia, Caudata). Biharean Biol. 4, 139–143 (2010).
Google Scholar
71.Lezău, O. et al. The feeding of two Salamandra salamandra (Linnaeus, 1758) populations from Jiului Gorge National Park (Romania), South West. J. Hortic. Biol. Environ. 1, 143–152 (2010).
Google Scholar
72.Balogová, M., Maxinová, E., Orendáš, P. & Uhrin, M. Trophic spectrum of adult Salamandra salamandra in the Carpathians with the first note on food intake by the species during winter. Herpetol. Notes 8, 371–377 (2015).
Google Scholar
73.Sebastiano, S., Antonio, R., Fabrizio, O., Dario, O. & Roberta, M. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecologica 43, 42–50 (2012).ADS
Article
Google Scholar
74.Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 5, 1–7 (2018).Article
Google Scholar
75.Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders?. PLoS ONE 13, e0205672 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
76.Measey, G. Diet of feral Xenopus laevis (Daudin) in South Wales, UK. J. Zool. 246, 287–298 (1998).Article
Google Scholar
77.Le, D. T. T., Rowley, J. J., Tran, D. T. A. & Hoang, H. D. The diet of a forest-dependent frog species, Odorrana morafkai (Anura: Ranidae), in relation to habitat disturbance. Amphib. Reptil. 41, 29–41 (2020).Article
Google Scholar
78.Pamintuan, P. E. & Starr, C. K. Diet of the giant toad, Bufo marinus (Amphibia: Salientia), in a coastal habitat of the Philippines. Trop. AgricTrinidad 93, 323–327 (2016).
Google Scholar
79.Plummer, M. & Farrar, D. Sexual dietary differences in a population of Trionyx muticus. J. Herpetol. 15, 175–179 (1981).Article
Google Scholar
80.Shetty, S. & Shine, R. Activity patterns of yellow-lipped sea Kraits (Laticauda colubrina) on a Fijian island. Copeia 2002, 77–85 (2002).Article
Google Scholar
81.Vincent, S., Herrel, A. & Irschick, D. Sexual dimorphism in head shape and diet in the Cottonmouth Snake (Agkistrodon piscivorus). J. Zool. 264, 53–59 (2004).Article
Google Scholar
82.Manenti, R., Conti, A. & Pennati, R. Fire salamander (Salamandra salamandra) males’ activity during breeding season: Effects of microhabitat features and body size. Acta Herpetol. 12, 29–36 (2017).
Google Scholar
83.Keen, W. H. Feeding and activity patterns in the salamander Desmognathus ochrophaeus (Amphibia, Urodela, Plethodontidae). J. Herpetol. 13, 461–467 (1979).Article
Google Scholar
84.Forester, D. C. Parental care in the salamander Desmognathus ochrophaeus: Female activity pattern and trophic behavior. J. Herpetol. 15, 29–34 (1981).Article
Google Scholar
85.Harris, W. E. Spermatophore deposition behaviour in an explosive breeder, the Small mouthed salamander, Ambystom texanum. Herpetologica 64, 149–155 (2008).Article
Google Scholar
86.Anderson, T. & Mathis, A. Diets of two sympatric neotropical salamanders, bolitoglossa mexicana and B. rufescens, with notes on reproduction for B. rufescens. J. Herpetol. 33, 601 (1999).Article
Google Scholar
87.Shu, Y. et al. Comparison of intestinal microbes in female and male Chinese concave-eared frogs (Odorrana tormota) and effect of nematode infection on gut bacterial communities. MicrobiologyOpen 8, e00749 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
88.Zhou, J. et al. A comparison of nonlethal sampling methods for amphibian gut microbiome analyses. Mol. Ecol. Resour. 20, 844–855 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
89.Huang, C. & Liao, W. Seasonal variation in gut microbiota related to diet in Fejervarya limnocharis. Animals 11, 1393 (2021).PubMed
PubMed Central
Article
Google Scholar
90.Chang, C.-W., Huang, B.-H., Lin, S.-M., Huang, C.-L. & Liao, P.-C. Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol. 16, 33 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
91.Kohl, K. D., Cary, T. L., Karasov, W. H. & Dearing, M. D. Restructuring of the amphibian gut microbiota through metamorphosis. Environ. Microbiol. Rep. 5, 899–903 (2013).PubMed
Article
PubMed Central
Google Scholar
92.Colombo, B. M., Scalvenzi, T., Benlamara, S. & Pollet, N. Microbiota and mucosal immunity in amphibians. Front. Immunol. 6, 111–111 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
93.Novoslavskij, A. et al. Major foodborne pathogens in fish and fish products: a review. Ann. Microbiol. 66, 1–15 (2015).Article
Google Scholar
94.Standish, I. et al. Yersinia ruckeri isolated from common mudpuppy necturus maculosus. J. Aquat. Anim. Health 31, 71–74 (2019).PubMed
Article
PubMed Central
Google Scholar
95.Hird, D. W. et al. Enterobacteriaceae and Aeromonas hydrophila in Minnesota frogs and tadpoles (Rana pipiens). Appl. Environ. Microbiol. 46, 1423–1425 (1983).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
96.Heiman, M. L. & Greenway, F. L. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5, 317–320 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
97.Amato, K. & Righini, N. The howler monkey as a model for exploring host-gut microbiota interactions in primates.https://doi.org/10.1007/978-1-4939-1957-4_9 (2015).98.Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
99.Tiede, J., Scherber, C., Mutschler, J., McMahon, K. D. & Gratton, C. Gut microbiomes of mobile predators vary with landscape context and species identity. Ecol. Evol. 7, 8545–8557 (2017).PubMed
PubMed Central
Article
Google Scholar
100.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).Article
Google Scholar
101.Vences, M. et al. Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene. Conserv. Genet. Resour. 8, 323–327 (2016).Article
Google Scholar
102.Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
103.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).PubMed
PubMed Central
Google Scholar
105.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
106.Aguirre, A. A. et al. The One Health Approach to toxoplasmosis: Epidemiology, control, and prevention strategies. EcoHealth 16, 378–390 (2019).PubMed
PubMed Central
Article
Google Scholar
107.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
108.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
109.Vavrek, M. J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 16 (2011).
Google Scholar
110.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
111.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
112.Jaccard, P. The distribution of the flora of the Alpine zone. New Phytol. 11, 37–50 (1912).Article
Google Scholar
113.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5. 2019 (2020).114.Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article
Google Scholar More