More stories

  • in

    Urohidrosis as an overlooked cooling mechanism in long-legged birds

    1.Amat, J. A. & Masero, J. A. How Kentish plovers, Charadrius alexandrinus, cope with heat stress during incubation. Behav. Ecol. Sociobiol. 56, 26–33 (2004).Article 

    Google Scholar 
    2.du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Chang. Biol. 18, 3063–3070 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Cunningham, S. J., Martin, R. O. & Hockey, P. A. R. Can behaviour buffer the impacts of climate change on an arid-zone bird?. Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    4.Smit, B. et al. Behavioural responses to heat in desert birds: implications for predicting vulnerability to climate warming. Clim. Chang. Responses 3, 1–14 (2016).Article 

    Google Scholar 
    5.McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).6.Cunningham, S. J., Gardner, J. L. & Martin, R. O. Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 1, 1–8. https://doi.org/10.1002/fee.2324 (2021).Article 

    Google Scholar 
    7.Wolf, B. O., Wooden, K. M. & Walsberg, G. E. The use of thermal refugia by two small desert birds. Condor 98(2), 424–428 (1996).Article 

    Google Scholar 
    8.Cook, T. R. et al. Parenting in a warming world: Thermoregulatory responses to heat stress in an endangered seabird. Conserv. Physiol. 8, 1–13 (2020).Article 

    Google Scholar 
    9.Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    10.Nilsson, J. Å. & Nord, A. Testing the heat dissipation limit theory in a breeding passerine. Proc. R. Soc. B Biol. Sci. 285, 1 (2018).
    Google Scholar 
    11.Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).Article 

    Google Scholar 
    12.Tapper, S., Nocera, J. J. & Burness, G. Heat dissipation capacity influences reproductive performance in an aerial insectivore. J. Exp. Biol. 223, 1 (2020).
    Google Scholar 
    13.Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).Article 

    Google Scholar 
    14.Edwards, E. K., Mitchell, N. J. & Ridley, A. R. The impact of high temperatures on foraging behaviour and body condition in the Western Australian Magpie Cracticus tibicen dorsalis. Ostrich 86, 137–144 (2015).Article 

    Google Scholar 
    15.Thompson, M. L., Cunningham, S. J. & McKechnie, A. E. Interspecific variation in avian thermoregulatory patterns and heat dissipation behaviours in a subtropical desert. Physiol. Behav. 188, 311–323 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Kemp, R. et al. Sublethal fitness costs of chronic exposure to hot weather vary between sexes in a threatened desert lark. Emu 120, 216–229 (2020).Article 

    Google Scholar 
    17.Funghi, C., McCowan, L. S. C., Schuett, W. & Griffith, S. C. High air temperatures induce temporal, spatial and social changes in the foraging behaviour of wild zebra finches. Anim. Behav. 149, 33–43 (2019).Article 

    Google Scholar 
    18.Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns?. J. Avian Biol. 51, 1–11 (2020).Article 

    Google Scholar 
    19.Moyer-Horner, L., Mathewson, P. D., Jones, G. M., Kearney, M. R. & Porter, W. P. Modeling behavioral thermoregulation in a climate change sentinel. Ecol. Evol. 5, 5810–5822 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bladon, A. J. et al. Behavioural thermoregulation and climatic range restriction in the globally threatened ethiopian bush-crow Zavattariornis stresemanni. Ibis 161(3), 546–558. https://doi.org/10.1111/ibi.12660 (2019).Article 

    Google Scholar 
    22.Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl. Acad. Sci. USA 116, 14065–14070 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl. Acad. Sci. USA 114, 2283–2288 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dawson, W. R. Evaporative losses of water by birds. Comp. Biochem. Physiol. Part A Physiol. 71, 495–509 (1982).Article 
    CAS 

    Google Scholar 
    26.Wolf, B. O. & Walsberg, G. E. Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird. J. Exp. Biol. 199, 451–457 (1996).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Calder, W. A. & Smichdt-Nielsen, K. Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci. USA 55(4), 750–756. https://doi.org/10.1073/pnas.55.4.750 (1966).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    28.Bartholomew, G. A. The role of behavior in the temperature regulation of the masked booby. Condor 68, 523–535. https://doi.org/10.2307/1366261 (1966).Article 

    Google Scholar 
    29.Bryant, D. M. Heat stress in tropical birds: behavioural thermoregulation during flight. Ibis (Lond. 1859). 125, 313–323 (1983).30.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science (80-. ). 325, 468–470 (2009).31.Van De Ven, T. M. F. N., Martin, R. O., Vink, T. J. F., McKechnie, A. E. & Cunningham, S. J. Regulation of heat exchange across the hornbill beak: Functional similarities with toucans?. PLoS ONE 11, 1–14 (2016).
    Google Scholar 
    32.Van Vuuren, A. K., Kemp, L. V. & McKechnie, A. E. The beak and unfeathered skin as heat radiators in the southern ground-hornbill. J. Avian Biol. 51, 1–7 (2020).
    Google Scholar 
    33.Winkler, D.W., Billerman, S.M. & Lovette, I.J. Storks (Ciconiidae), version 1.0. In Birds of the World (S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg, Editors). Cornell Lab of Ornithology (2020) https://doi.org/10.2173/bow.ciconi2.0134.Kahl, P. M. Thermoregulation in the wood stork, with special reference to the role of the legs. Physiol Zool. 36(2), 141–151 (1963).Article 

    Google Scholar 
    35.Steen, I. & Steen, J. B. The Importance of the Legs in the Thermoregulation of Birds. Acta Physiol. Scand. 63, 285–291 (1965).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Hainsworth, F. R. Saliva spreading, activity and body temperature regulation in the rat. Am J Physiol. 212, 1288–1292 (1967).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Gentry, R. L. Thermoregulatory behavior of eared seals. Behaviour 46(2), 73–93. https://doi.org/10.1163/156853973×00175 (1973).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Sturbaum, B. A. & Riedesel, M. L. Dissipation of stored body heat by the ornate box turtle, Terrapene ornata. Comp. Biochem. Physiol. Part A Physiol. 58, 93–97 (1977).Article 

    Google Scholar 
    39.Marder, J., Porat, I., Raber, P. & Adler, J. Acid-base balance and body temperature regulation of heat stressed Psammomys obesus (Gerbillinae): The effect of bicarbonate loss via saliva spreading. Physiol Zool. 56(3), 389–396. https://doi.org/10.1086/physzool.56.3.30152603 (1983).Article 

    Google Scholar 
    40.Hatch, D. E. Energy conserving and heat dissipating mechanisms of the turkey vulture. Auk 87(1), 111–124. https://doi.org/10.2307/4083662 (1970).Article 

    Google Scholar 
    41.Cooper, J. & Siegfried, W. R. Behavioural responses of young cape gannets Sula capensis to high ambient temperatures. Mar. Behav. Physiol. 3, 211–220 (1976).Article 

    Google Scholar 
    42.Thomas, B. T. Maguari Stork Nesting: Juvenile Growth and Behavior. Auk 101, 812–823 (1984).Article 

    Google Scholar 
    43.Hancock, J.A., Kushlan, J.A. & Kahl, M.P. Storks, Ibises and Spoonbills of the World (Academic Press, 1992).44.Townsend, H., Huyvaert, K. P., Hodum, P. J. & Anderson, D. J. Nesting distributions of Galapagos boobies (Aves: Sulidae): an apparent case of amensalism. Oecologia 132, 419–427. https://doi.org/10.1007/s00442-002-0992-7 (2002).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Finkelstein, M., Kuspa, Z., Snyder, N.F. & Schmitt, N.J. California condor (Gymnogyps californianus), version 2.0. In The Birds of North America (P. G. Rodewald, Editor). Cornell Lab of Ornithology (2015). https://doi.org/10.2173/bna.61046.Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    47.Nudds, R. L. & Oswald, S. A. An interspecific test of Allen’s rule: Evolutionary implications for endothermic species. Evolution (N. Y). 61, 2839–2848 (2007).48.Symonds, M. R. E. & Tattersall, G. J. Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am. Nat. 176, 188–197 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    50.Wilman, H. et al. EltonTraits 1 . 0 : Species-level foraging attributes of the world ’ s birds and mammals. Ecology 95, 2027 (2014).51.Brooke, M. D. L. Ecological factors influencing the occurrence of ‘flash marks’ in wading birds. Funct. Ecol. 12, 339–346 (1998).Article 

    Google Scholar 
    52.Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: An r package for modelling meso- and microclimate. Methods Ecol Evol. 10(2), 280–290. https://doi.org/10.1111/2041-210X.13093 (2019).Article 

    Google Scholar 
    53.Hadfield, A. J. Package ‘ MCMCglmm ’. https://cran.r-project.org/web/packages/MCMCglmm/ (2019)54.Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. 2012. The global diversity of birds in space and time. Nature. 491(7424): 444–448 (2012). https://doi.org/10.1038/nature1163155.Revell, M.L.J. Package ‘ phytools ’ https://cran.r-project.org/web/packages/phytools/ (2020)56.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).58.Crawley, M.J. The R Book (John Wiley & Sons, 2013).59.Barton, K. Package MuMin: Multi-model Inference https://cran.r-project.org/web/packages/MuMIn/index.html (2020).60.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).63.Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).Article 

    Google Scholar 
    64.van Dyk, M., Noakes, M. J. & McKechnie, A. E. Interactions between humidity and evaporative heat dissipation in a passerine bird. J. Comp. Physiol. B. 189, 299–308. https://doi.org/10.1007/s00360-019-01210-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Webster, M.D., Campbell, G.S. & King, J.R. Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage. Physiol. Zool. 58(1): 58–70 (1985). http://www.jstor.org/stable/30161220.66.Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103, 97–103 (2003).Article 

    Google Scholar 
    67.Piersma, T. & van Gils, J.A. The Flexible Phenotype: A Body-Centered Integration of Ecology, Physiology, and Behavior (Oxford University Press, 2011).68.Fitzpatrick, M. J., Mathewson, P. D. & Porter, W. P. Validation of a mechanistic model for non-invasive study of ecological energetics in an endangered wading bird with counter-current heat exchange in its legs. PLoS ONE 10, 1–34 (2015).Article 
    CAS 

    Google Scholar 
    69.Lustick, S., Battersby, B. & Kelty, M. Effects of insolation on juvenile herring gull energetics and behavior. Ecologia. 60(4), 673–678. https://doi.org/10.2307/1936603 (1979).Article 

    Google Scholar 
    70.Ward, J. M., Blount, J. D., Ruxton, G. D. & Houston, D. C. The adaptive significance of dark plumage for birds in desert environments. Ardea 90, 311–323 (2002).
    Google Scholar 
    71.Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, (2020).72.Mitchell, D. et al. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 87, 956–973 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Walsberg, G. E., Campbell, G. S. & King, J. R. Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol. B 126, 211–222 (1978).Article 

    Google Scholar 
    74.McFarland, D. J. & Baher, E. Factors affecting feather posture in the barbary dove. Anim. Behav. 16, 171–177 (1968).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Hohtola, E., Rintamäki, H. & Hissa, R. Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. J Comp Physiol. 136, 77–81. https://doi.org/10.1007/BF00688626 (1980).Article 

    Google Scholar 
    76.Kahl, P. M. Spread-wing postures and their possible functions in the Ciconiidae. Auk 88(4), 715–722. https://doi.org/10.2307/4083833 (1971).Article 

    Google Scholar 
    77.Dawson, T. J., Robertshaw, D. & Taylor, C. R. Sweating in the kangaroo: A cooling mechanism during exercise, but not in the heat. Am J Physiol. 227(2), 494–498. https://doi.org/10.1152/ajplegacy.1974.227.2.494 (1974).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Hoffman, T. C. M., Walsberg, G. E. & DeNardo, D. F. Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation. J. Exp. Biol. 210, 741–749 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Graves, G. R. Urohidrosis and tarsal color in Cathartes vultures (Aves: Cathartidae). Proc. Biol. Soc. Washingt. 132, 56–64 (2019).Article 

    Google Scholar 
    80.Torres, R. & Velando, A. Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii.. Anim. Behav. 69, 59–65 (2005).Article 

    Google Scholar 
    81.López-Rull, I., Lifshitz, N., Macías Garcia, C., Graves, J. A. & Torres, R. Females of a polymorphic seabird dislike foreign-looking males. Anim. Behav. 113, 31–38 (2016).82.Gutiérrez, J. S. & Soriano-Redondo, A. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behav. Ecol. 31, 1429–1435 (2021).Article 

    Google Scholar 
    83.Jarić, I. et al. iEcology: Harnessing large online resources to generate ecological insights. Trends Ecol. Evol. 35, 630–639 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Vrettos, M., Reynolds, C. & Amar, A. Malar stripe size and prominence in peregrine falcons vary positively with solar radiation: support for the solar glare hypothesis. Biol. Lett. 17, 20210116. https://doi.org/10.1098/rsbl.2021.0116 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards

    1.Ashman, T.-L. et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    2.Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515 (2008).Article 

    Google Scholar 
    3.Rollin, O. & Garibaldi, L. A. Impacts of honeybee density on crop yield: A meta-analysis. J. Appl. Ecol. 56, 1152–1163. https://doi.org/10.1111/1365-2664.13355 (2019).Article 

    Google Scholar 
    4.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999. https://doi.org/10.1038/s41467-020-17751-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 88, 271–281 (2007).Article 

    Google Scholar 
    6.Igic, B. & Kohn, J. R. The distribution of plant mating systems: Study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).Article 

    Google Scholar 
    7.Abrol, D. P. Pollination Biology: Biodiversity and Conservation and Agricultural Production. Applied Pollination: Present Scenario 55–83 (Springer, 2012).
    Google Scholar 
    8.Frankel, R. & Galun, E. Pollination Mechanisms, Reproduction and Plant Breeding Vol. 2 (Springer Verlag, 1977).Book 

    Google Scholar 
    9.Schneider, D., Goldway, M., Rotman, N., Adato, I. & Stern, R. A. Cross-pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 122, 380–384 (2009).Article 

    Google Scholar 
    10.Fattahi, R., Mohammadzedeh, M. & Khadivi-Khub, A. Influence of different pollen sources on nut and kernel characteristics of hazelnut. Sci. Hortic. 173, 15–19 (2014).Article 

    Google Scholar 
    11.Żurawicz, E., Studnicki, M., Kubik, J. & Pruski, K. A careful choice of compatible pollinizers significantly improves the size of fruits in red raspberry (Rubus idaeus L.). Sci. Hortic. 235, 253–257 (2018).Article 

    Google Scholar 
    12.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Willcox, B. K., Aizen, M. A., Cunningham, S. A., Mayfield, M. M. & Rader, R. Deconstructing pollinator community effectiveness. Curr. Opin. Insect. Sci. 21, 98–104. https://doi.org/10.1016/j.cois.2017.05.012 (2017).Article 
    PubMed 

    Google Scholar 
    14.Richards, T. E. et al. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 9, 228 (2020).CAS 
    Article 

    Google Scholar 
    15.van Nocker, S. & Gardiner, S. E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 1, 14022. https://doi.org/10.1038/hortres.2014.22 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    17.Brittain, C., Kremen, C., Garber, A. & Klein, A.-M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 9, e90082. https://doi.org/10.1371/journal.pone.0090082 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 281, 20132440 (2014).Article 

    Google Scholar 
    19.Crane, J. et al. in The Avocado: Botany, Production and Uses (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 200–233 (CABI, 2013).20.Duarte, P. F., Chaves, M. A., Borges, C. D. & Mendonça, C. R. B. Avocado: Characteristics, health benefits and uses. Ciênc. Rural 46, 747–754. https://doi.org/10.1590/0103-8478cr20141516 (2016).CAS 
    Article 

    Google Scholar 
    21.Dreher, M. L. & Davenport, A. J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 53, 738–750. https://doi.org/10.1080/10408398.2011.556759 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E. & Aguilar, C. N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 80, 51–60. https://doi.org/10.1016/j.tifs.2018.07.027 (2018).CAS 
    Article 

    Google Scholar 
    23.Lerman-Garber, I., Ichazo-Cerro, S., Zamora-González, J., Cardoso-Saldaña, G. & Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 17, 311–315. https://doi.org/10.2337/diacare.17.4.311 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.López, L. R. et al. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 27, 519–523 (1996).
    Google Scholar 
    25.Kris-Etherton, P. M. et al. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70, 1009–1015 (1999).CAS 
    Article 

    Google Scholar 
    26.Trueman, S. J., Richards, S., McConchie, C. A. & Turnbull, C. G. N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 40, 859–866 (2000).Article 

    Google Scholar 
    27.Stout, A. B. A Study in Cross-Pollination of Avocados in Southern California (New York Botanical Garden, 1923).
    Google Scholar 
    28.Blanke, M. M. & Lovatt, C. J. Anatomy and transpiration of the avocado inflorescence. Ann. Bot. 71, 543–547. https://doi.org/10.1006/anbo.1993.1070 (1993).Article 

    Google Scholar 
    29.Salazar-García, S., Garner, L. C. & Lovatt, C. J. in The Avocado: Botany, Production and Uses. Reproductive Biology (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 118–167 (CABI, 2013).30.Garner, L. C. & Lovatt, C. J. The relationship between flower and fruit abscission and alternate bearing of ‘Hass’ avocado. J. Am. Soc. Hortic. Sci. 133, 3–10. https://doi.org/10.21273/jashs.133.1.3 (2008).Article 

    Google Scholar 
    31.Vithanage, V. The role of the European honeybee (Apis mellifera L.) in avocado pollination. J. Hortic. Sci. 65, 81–86. https://doi.org/10.1080/00221589.1990.11516033 (1990).Article 

    Google Scholar 
    32.Perez-Balam, J. et al. The contribution of honey bees, flies and wasps to avocado (Persea americana) pollination in southern Mexico. J. Pollinat. Ecol. 8, 42–47 (2012).Article 

    Google Scholar 
    33.Ying, Z., Davenport, T. L. R., Zhang, T., Schnell, R. J. & Tondo, C. L. Selection of highly informative microsatellite markers to identify pollen donors in “Hass” avocado orchards. Plant Mol. Biol. Rep. 27, 374–380 (2009).CAS 
    Article 

    Google Scholar 
    34.Alcaraz, M. & Hormaza, J. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Ann. Appl. Biol. 158, 354–361 (2011).Article 

    Google Scholar 
    35.Borrone, J. W. et al. Outcrossing in Florida avocados as measured using microsatellite markers. J. Am. Soc. Hortic. Sci. 133, 255–261 (2008).Article 

    Google Scholar 
    36.Schnell, R. J. et al. Outcrossing between ‘Bacon’ pollinizers and adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44, 1522. https://doi.org/10.21273/hortsci.44.6.1522 (2009).Article 

    Google Scholar 
    37.Degani, C., Goldring, A., Adato, I., El-Batsri, R. & Gazit, S. Pollen parent effect on outcrossing rate, yield, and fruit characteristics of `Fuerte’ avocado. HortScience 25, 471. https://doi.org/10.21273/hortsci.25.4.471 (1990).Article 

    Google Scholar 
    38.Sedgley, M. & Annells, C. M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’. Sci. Hortic. 14, 27–33. https://doi.org/10.1016/0304-4238(81)90075-3 (1981).Article 

    Google Scholar 
    39.Degani, C., El-Batsri, R. & Gazit, S. Outcrossing rate, yield, and selective fruit abscission in “Ettinger” and “Ardith” avocado plots. J. Am. Soc. Hortic. Sci. 122, 813–817 (1997).Article 

    Google Scholar 
    40.Ying, Z. et al. Re-evaluation of the roles of honeybees and wind on pollination in avocado. J. Hortic. Sci. Biotechnol. 84, 255–260. https://doi.org/10.1080/14620316.2009.11512513 (2009).Article 

    Google Scholar 
    41.Sapir, G. et al. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 219, 107–117. https://doi.org/10.1016/j.scienta.2017.03.010 (2017).Article 

    Google Scholar 
    42.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76, 17–23. https://doi.org/10.1080/14620316.2001.11511320 (2001).Article 

    Google Scholar 
    43.Kämper, W., Trueman, S. J., Ogbourne, S. M. & Wallace, H. M. Pollination services in macadamia depend on across-orchard transport of cross pollen. J. Appl. Ecol. (under review).44.Robbertse, P. J., Coetzer, L. A., Johannsmeier, M. F., Köhne, J. S. & Morudu, T. M. Hass Yield and Fruit Size as Influenced by Pollination and Pollen Donor—A Joint Progress Report 63–67 (South African Avocado Growers’ Association Yearbook, 1996).
    Google Scholar 
    45.Araújo, E., Costa, M., Chaud-Netto, J. & Fowler, H. G. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Braz. J. Biol. 64, 563–568 (2004).Article 

    Google Scholar 
    46.Jalali-Khanabadi, B.-A., Mozaffari-Khosravi, H. & Parsaeyan, N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Altern. Complement. Med. 16, 1279–1283 (2010).Article 

    Google Scholar 
    47.Kaiser, C. & Wolstenholme, B. N. Aspects of delayed harvest of ‘Hass’ avocado (Persea americana Mill.) fruit in a cool subtropical climate. I. Fruit lipid and fatty acid accumulation. J. Hortic. Sci. 69, 437–445. https://doi.org/10.1080/14620316.1994.11516473 (1994).CAS 
    Article 

    Google Scholar 
    48.Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Environ. Resour. 25, 53–88. https://doi.org/10.1146/annurev.energy.25.1.53 (2000).Article 

    Google Scholar 
    49.Bangerth, F. Calcium-related physiological disorders of plants. Annu. Rev. Phytopathol. 17, 97–122. https://doi.org/10.1146/annurev.py.17.090179.000525 (1979).CAS 
    Article 

    Google Scholar 
    50.Witney, G. W., Hofman, P. J. & Wolstenholme, B. N. Effect of cultivar, tree vigour and fruit position on calcium accumulation in avocado fruits. Sci. Hortic. 44, 269–278. https://doi.org/10.1016/0304-4238(90)90127-Z (1990).CAS 
    Article 

    Google Scholar 
    51.Matoh, T. & Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111, 179–190 (1998).CAS 
    Article 

    Google Scholar 
    52.Hopkirk, G., White, A., Beever, D. J. & Forbes, S. K. Influence of postharvest temperatures and the rate of fruit ripening on internal postharvest rots and disorders of New Zealand ‘Hass’ avocado fruit. N. Z. J. Crop Hortic. Sci. 22, 305–311. https://doi.org/10.1080/01140671.1994.9513839 (1994).Article 

    Google Scholar 
    53.Meir, S. et al. Prolonged storage of `Hass’ avocado fruit using modified atmosphere packaging. Postharvest Biol. Technol. 12, 51–60. https://doi.org/10.1016/S0925-5214(97)00038-0 (1997).CAS 
    Article 

    Google Scholar 
    54.Flitsanov, U., Mizrach, A., Liberzon, A., Akerman, M. & Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 20, 279–286 (2000).Article 

    Google Scholar 
    55.Hofman, P. J., Bower, J. & Woolf, A. in The Avocado: Botany, Production and Uses. Harvesting, Packing, Postharvest Technology, Transport and Processing (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 489–540 (CABI, 2013).56.McGeehan, S. L. & Naylor, D. V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 19, 493–505. https://doi.org/10.1080/00103628809367953 (1988).CAS 
    Article 

    Google Scholar 
    57.Rayment, G. E. & Higginson, F. R. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata, 1992).
    Google Scholar 
    58.Munter, R. C. & Grande, R. A. in Developments in Atomic Plasma Spectrochemical Analysis. Plant Tissue and Soil Extract Analysis by ICP-Atomic Emission Spectrometry (ed. Byrnes, R. M.) 653–672 (Heyden, 1981).59.Martinie, G. D. & Schilt, A. A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 48, 70–74. https://doi.org/10.1021/ac60365a032 (1976).CAS 
    Article 

    Google Scholar 
    60.Bai, S. H. et al. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 56, 792–798. https://doi.org/10.1007/s13197-018-3539-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Ivanova, N. V., Fazekas, A. J. & Hebert, P. D. N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 26, 186–198 (2008).CAS 
    Article 

    Google Scholar 
    62.Kämper, W., Cooke, J., Trueman, S. J. & Ogbourne, S. M. Detection of single nucleotide polymorphisms (SNPs) in avocado cultivars, Persea americana (Lauraceae). Appl. Plant Sci. (submitted).63.Jordon-Thaden, I. E. et al. A basic ddRADseq two-enzyme protocol performs well with herbarium and silica-dried tissues across four genera. Appl. Plant Sci. 8, e11344–e11344. https://doi.org/10.1002/aps3.11344 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Sharon, D. et al. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95, 911–921 (1997).CAS 
    Article 

    Google Scholar 
    65.Borrone, J. W., Schnell, R. J., Violi, H. A. & Ploetz, R. C. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol. Ecol. Resour. 7, 439–444 (2007).CAS 
    Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    67.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    Comparing the gut microbiome along the gastrointestinal tract of three sympatric species of wild rodents

    Host and gut content samplingA total of 94 individuals (42 A. speciosus, 9 A. argenteus, and 43 M. rufocanus) were captured from four sites within the Kamikawa Chubu national forest in the central area on the island of Hokkaido, Japan (Supplementary Table S1), and a total of 280 gut content (from the small intestine, cecum, and colon) and fecal matter (from the rectum) samples were collected for microbiome analysis (Supplementary Table S2). Based on 16S rRNA amplicon sequencing using Illumina Miseq, a total of 12,286,171 paired-end reads were obtained after quality filtering and chimeric sequence removal. There was an average of 43,879 reads per sample, although it varied among species and gut region (Supplementary Table S3).Within host species/among gut region gut microbiota alpha diversityAlpha diversity of the gut microbiota in the small intestine was significantly lower than the rectum, colon, and cecum in all three host species based on Shannon diversity, Faith’s PD, evenness, and number of ASVs as expected (GLME: all p  0.05; Fig. 1, Supplementary Fig. S2, Supplementary Tables S4–S7). Males had significantly higher alpha diversity within all gut regions of A. speciosus while female A. argenteus had significantly higher alpha diversity as compared to males (GLME, all p  0.05; Supplementary Tables S4–S7) while age had no effect in any gut region of any rodent species (GLME: all p  > 0.05; Supplementary Tables S4–S7).Figure 1Alpha diversity within each gut region of each species based on (a) Shannon diversity and (b) Faith’s PD. Dashed lines separate host species.Full size imageAmong host species alpha diversityMyodes rufocanus had significantly higher alpha diversity in all four gut regions as compared to both A. speciosus and A. argenteus based on all four diversity measurements (GLME: all p  More

  • in

    Effect of Geobacillus toebii GT-02 addition on composition transformations and microbial community during thermophilic fermentation of bean dregs

    Isolation and characterization of bean dreg-degrading strainsA 1362-bp amplification fragment of 16S rDNA was obtained by PCR (GenBank accession number MW406939). This sequence was compared with others in the GenBank database, aligning the 16S rDNA sequences with several Geobacillus sp. strains and constructed a phylogenetic tree (Fig. 2a). The phylogenetic tree clearly showed that strain GT-02 belongs to the G.toebii branch and was similar to G.toebii R-32652, G.toebii NBRC 107807, and G.toebii SK-1 with 99.78%, 99.63% and 99.05% similarities, respectively. According to the study described previously, G.toebii was a gram-positive, aerobic rod and motile bacterial26. G.toebii could produce acid from inositol and gas from nitrate. G.toebii could hydrolysis casein and utilize n-alkanes as carbon source27.Figure 2(a) Phylogenetic tree based on 16S rDNA gene sequences from related species of the genus Geobacillus constructed using the neighbour-joining method with 1000 bootstrap replicates. Branch length is indicated at each node. (b) The growth curve of strain GT-02 with temperature. (c) The growth curve of strain GT-02 with pH.Full size imageThe growth characteristics of strain GT-02, such as temperature and pH values, were investigated. The bacterial strain could grow within a range of 40–75 °C and pH 6.50–9.50, and the optimum temperature and pH were 65 °C and 7.50, respectively (Fig. 2b,c). Compared to other G.toebii strains, the maximum growth temperature and pH of strains R-32652 and SK-1 were 70 °C and 9.0026,28, respectively. These results showed that strain GT-02 was more resistant to high temperature and alkalinity. Fermentation temperature above 70 °C could effectively inactivate harmful microorganisms in organic solid waste12. Therefore, the fermentation temperature was set at 70 °C in this study.Changes in the composition of bean dregs during fermentationChanges in GI, TOC and TN of bean dregs during fermentationThe GI is traditionally used to evaluate the phytotoxicity and maturity of organic fertilizer12. As shown in Fig. 3a, both groups of experiments reached the standard of maturity (GI ≥ 85.00%). Therefore, the fermentation was terminated in five days. In the initial stage of fermentation, the GI of CK dropped to 51.85% on day 2, and the GI of T1 dropped to 41.98% on day 1. Phytotoxicity, which is usually caused by various heavy metals and low-molecular-weight substances, such as NH3 and organic acids, can reduce seed germination and inhibit root development29. During fermentation, bean dregs might produce NH3, organic acids and other substances, which could trigger a decrease in the GI. The GI of T1 showed a clear decrease, which was likely due to the production of toxic organic acids and might also explain the decrease in pH observed in T1 (Fig. 3d). Due to the degradation of organic acids, the GI of T1 increased to 95.06% on the third day and continued to increase to more than 100.00%, whereas in CK, the GI only reached 86.42% at the end of the fermentation. These results revealed that the maturity of T1 on day 3 was markedly higher than that of CK on day 5 and thus suggest that G.toebii can significantly enhance the fermentation efficiency by accelerating the maturation process and thus reducing the thermophilic fermentation period from 5 to 3 days.Figure 3Profiles of GI (a), TOC (b), TN (c), pH (d) and EC (e) during the fermentation process of CK and T1. The data represent the means ± standard deviations from three measurements.Full size imageTOC is usually used as an energy source by microorganisms30. The TOC loss in both CK and T1 increased during fermentation (Fig. 3b). The reduction of TOC was mainly caused by the production of carbon dioxide from bacterial respiration. The rate of TOC loss in T1 was higher than that in CK. At the end of the fermentation, the TOC loss of T1 was 11.78% higher than that in CK. Because of the addition of G.toebii, bacterial metabolism in T1 was more active, and organic degradation was faster.The TN loss in both CK and T1 also showed an upward trend (Fig. 3c). The loss of TN was mainly caused by the volatilization of ammonia nitrogen31. The rate of TN loss in T1 increased more than that of CK group. After fermentation (day 5), the TN loss in T1 was 6.83% higher than that of CK. The mineralization in T1 was more active and thus ammonia nitrogen was more, which was easy to cause volatilization. However, the bean dregs in CK were mature on the 5th day, while those in T1 were on the 3rd day. At this time, the TN loss of mature bean dregs in T1 was 5.66% lower than that in CK, which indicated that the bean dregs lost less nitrogen source when they reached the standard of maturity after the addition of G.toebii.Changes in pH and EC of bean dregs during fermentationThe variation in pH observed during fermentation is due to the interaction between inorganic nitrogen and organic acids produced by the decomposition of organic matter32. As shown in Fig. 3d, the pH of CK gradually increased to 8.72 at the end of the fermentation. The ammonification process and the release of free NH3 during organic matter (OM) degradation lead to increases in pH33. The pH of T1 decreased to 5.73 on day 1, which was due to the formation of more organic acids than CK, and then increased to 8.76 on day 2, which was due to acid consumption and ammonia formation. Figure 2c showed that GT-02 could hardly grow when the pH was lower than 6.00, but the heterogeneity of solid fermentation provided a possible living environment for the growth of GT-02. Subsequently, the pH of T1 slowly decreased to 8.10 due to ammonia volatilization or ammonia conversion. These study findings showed that the pH value of the fermentation process was significantly affected by the addition of GT-02. G.toebii can produce abundant high-temperature enzymes, such as amylase, protease, cellulase, xylanase, and mannanase17, which explains why the ammonification process was faster in T1 than in CK and thus the higher pH was found in T1.The EC, which is a measure of the total ion concentration, describes changes in the levels of organic and inorganic ions such as SO42−, Na+, NH4+, K+, Cl−, and NO3− during the fermentation process34. As shown in Fig. 3e, the EC of the two groups increased significantly during fermentation process (P  More

  • in

    Decrease in volume and density of foraminiferal shells with progressing ocean acidification

    1.Collins, M. et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).2.Kawahata, H. et al. Perspective of the response by marine calcifiers to global warming and ocean acidification –Behavior of corals and foraminifers in the high CO2 world in “hot house”. Prog. Earth Planet Sci. 6, 5 (2019).Article 

    Google Scholar 
    3.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    4.Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Schiebel, R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles 16, 1065 (2002).ADS 
    Article 
    CAS 

    Google Scholar 
    6.Keul, N., Langer, G., de Nooijer, L. J. & Bijma, J. Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences 10, 6185–6198 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic Foraminifera: Living sands in a changing ocean. Biol. Bull. 226, 169–186 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Prazeres, M., Uthicke, S. & Pandolfi, J. M. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc. R. Soc. B 282, 20142782 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Iwasaki, S. et al. Sensitivity of planktic foraminiferal test bulk density to ocean acidification. Sci. Rep. 9, 9803 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Hohenegger, J., Kinoshita, S., Briguglio, A., Eder, W. & Wöger, J. Lunar cycles and rainy seasons drive growth and reproduction in nummulitid foraminifera, important producers of carbonate buildups. Sci. Rep. 9, 8286 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Kinoshita, S. et al. Temperature effects on the shell growth of a larger benthic foraminifer (Sorites orbiculus): Results from culture experiments and micro X-ray computed tomography. Mar. Micropaleontol. 163, 101960 (2021).ADS 
    Article 

    Google Scholar 
    12.Fujita, K. & Fujimura, H. Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flat. J. Foraminifer. Res. 38, 117–126 (2008).Article 

    Google Scholar 
    13.Raja, R., Saraswati, P. K., Rogers, K. & Iwao, K. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera. Mar. Micropaleontol. 58, 31–44 (2005).ADS 
    Article 

    Google Scholar 
    14.Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology. 12858. https://doi.org/10.1111/sed.12858 (2021).
    15.Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Fujita, K., Nishi, H. & Saito, T. Population dynamics of Marginopora kudakajimaensis Gudmundsson (Foraminifera: Soritidae) in the Ryukyu Islands, the tropical northwest Pacific. Mar. Micropaleontol. 38, 267–284 (2000).ADS 
    Article 

    Google Scholar 
    17.Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K. & Irie, T. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Mar. Micropaleontol. 73, 190–195 (2009).ADS 
    Article 

    Google Scholar 
    18.Barker, S. & Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2. Science 297, 833–836 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Osborne, E. B. et al. Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin. Paleoceanography 31, 1083–1102 (2016).ADS 
    Article 

    Google Scholar 
    20.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Schmidt, C., Kucera, M. & Uthicke, S. Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33, 805–818 (2014).ADS 
    Article 

    Google Scholar 
    22.Sinutok, S., Hill, R., Kühl, M., Doblin, M. & Ralph, P. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).CAS 
    Article 

    Google Scholar 
    23.ter Kuile, B., Erez, J. & Padan, R. Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera. Mar. Biol. 103, 241–251 (1989).Article 

    Google Scholar 
    24.Nijweide, P. J., Kawilarang-de Haas, E. W. & Wassenaar, A. M. Alkaline phosphatase and calcification, correlated or not?. Metab. Bone Dis. Relat. Res. 3, 61–66 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Guo, M. K. & Messer, H. H. A comparison of Ca2+-, Mg2+-ATPase and alkaline phosphatase activities of rat incisor pulp. Calc. Tissue Res. 26, 33–38 (1978).CAS 
    Article 

    Google Scholar 
    26.Vogel, N. & Uthicke, S. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J. Exp. Mar. Biol. Ecol. 424–425, 15–24 (2012).Article 
    CAS 

    Google Scholar 
    27.Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Book 

    Google Scholar 
    28.Bassinot, F. C., Mélières, F., Gehlen, M., Levi, C. & Labeyrie, L. Crystallinity of foraminifera shells: A proxy to reconstruct past botto m water CO3= changes?. Geochem. Geophys. Geosyst. 5, Q08D10 (2004).Article 

    Google Scholar 
    29.Broecker, W. & Clark, E. Shell weights from the South Atlantic. Geochem. Geophys. Geosyst. 5, Q03003 (2004).ADS 
    Article 

    Google Scholar 
    30.Beer, C. J., Schiebel, R. & Wilson, P. A. Testing planktic foraminiferal shell weight as a surface water [CO32−] proxy using plankton net samples. Geology 38, 103–106 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Naik, S. S., Naidu, P. D., Govil, P. & Godad, S. Relationship between weights of planktonic foraminifer shell and surface water CO3= concentration during the Holocene and Last Glacial Period. Mar. Geol. 275, 278–282 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Gonzalez-Mora, B., Sierro, F. J. & Flores, J. A. Controls of shell calcification in planktonic foraminifers. Quat. Sci. Rev. 27, 956–961 (2008).ADS 
    Article 

    Google Scholar 
    34.Marr, J. P. et al. Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean. Paleoceanography 26, PA2209 (2011).ADS 
    Article 

    Google Scholar 
    35.de Villiers, S. A 425 ka record of foraminiferal shell weight variability in the western Equatorial Pacific. Paleoceanography 18, 1080 (2003).ADS 

    Google Scholar 
    36.de Villiers, S. Occupation of an ecological niche as the fundamental control on the shell-weight of calcifying planktonic foraminifera. Mar. Biol. 144, 45–50 (2004).Article 

    Google Scholar 
    37.Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).ADS 
    Article 

    Google Scholar 
    38.Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kucera, M. Calcification intensity in planktic foraminifera reflects ambient conditions irrespective of environmental stress. Biogeosciences 10, 6639–6655 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Doo, S. S. et al. Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae. Ecol. Evol. 10, 8465–8475 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Hikami, M. et al. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys. Res. Lett. 38, L19601 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    41.Sanyal, A. et al. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography 11, 513–517 (1996).ADS 
    Article 

    Google Scholar 
    42.Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Foster, G. L. & Rae, J. W. B. Reconstructing ocean pH with boron isotopes in foraminifera. Annu. Rev. Earth Planet. Sci. 44, 207–237 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    45.Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Nat. Acad. Sci. 110, 15342–15347 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Nat. Acad. Sci. 118, 2015265118 (2021).Article 
    CAS 

    Google Scholar 
    47.Langer, M. R., Silk, M. T. & Lipps, J. H. Global ocean carbonate and carbon dioxide production: the role of reef foraminifera. J. Foraminifer. Res 27, 271–277 (1997).Article 

    Google Scholar 
    48.Pierrot, D., Lewis E. D. & Wallace, D.W. MS EXCEL Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2006). https://doi.org/10.3334/cdiac/otg.co2sys_xls_cdiac105a.49.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    50.Bartlett, M. S. Properties of sufficiency and statistical test. Proc. R. Soc. A 160, 268–282 (1937).ADS 
    MATH 

    Google Scholar  More

  • in

    Reliably quantifying the evolving worldwide dynamic state of the COVID-19 outbreak from death records, clinical parametrization, and demographic data

    Infection-age structured dynamicsFor the description of the dynamics, we follow the customary infection-age structured approach (for details see for instance Refs.4,10,11,12). Explicitly, we consider the infection-age structured dynamics of the number of individuals ({u}_{I}left(t,tau right)) at time (t) who were infected at time (t-tau) given by$$begin{array}{c}frac{partial }{partial t}{u}_{I}left(t,tau right)+frac{partial }{partial tau }{u}_{I}left(t,tau right)=0end{array}$$
    (7)
    with boundary condition$$begin{array}{c}{u}_{I}left(t,0right)=jleft(tright).end{array}$$
    (8)
    Here, (tau) is the time elapsed after infection, referred to as infection age, and (jleft(tright)={int }_{0}^{infty }{k}_{I}(t,tau ){u}_{I}left(t,tau right)dtau) is the incidence, with ({k}_{I}(t,tau )) being the rate of secondary transmissions per single primary case.The solution is obtained through the method of characteristics32 as$$begin{array}{c}{u}_{I}left(t,tau right)=jleft(t-tau right)end{array}$$
    (9)
    for (tge tau) and ({u}_{I}left(t,tau right)=0) for (t1 for countries and for US locations.The daily death counts (Delta {n}_{W}left(tright)={n}_{W}left(tright)-{n}_{W}left(t-1right)) are considered to contain reporting artifacts if they are negative or if they are unrealistically large. This last condition is defined explicitly as larger than 4 times its previous 14-day average value plus 10 deaths, (Delta {n}_{W}left(tright) >10+4times frac{1}{14}left({n}_{W}left(tright)-{n}_{W}left(t-14right)right)), from a non-sparse reporting schedule with at least 2 consecutive non-zero values before and after the time (t), (Delta {n}_{W}left(tright)ne frac{1}{5}left({n}_{W}left(t+2right)-{n}_{W}left(t-3right)right)).Reporting artifacts identified at time (t) are considered to be the result of previous miscounting. The excess or lack of deaths are imputed proportionally to previous death counts. Explicitly, death counts are updated as$$begin{array}{c}{n}_{W}left(t-1-iright)leftarrow {n}_{W}left(t-1-iright)frac{{n}_{W}{left(t-1right)}_{estimated}}{{n}_{W}left(t-1right)}end{array}$$
    (32)
    with ({n}_{W}{left(t-1right)}_{estimated}={n}_{W}left(tright)-frac{1}{7}left({n}_{W}left(t-1right)-{n}_{W}left(t-8right)right)) for all (ige 0). In this way, (Delta {n}_{W}left(tright)) is assigned its previous seven-day average value.The expected daily deaths, (Delta {n}_{D}(t)), are obtained through a density estimation multiscale functional, ({f}_{de}), as (Delta {n}_{D}(t)={f}_{de}left(Delta {n}_{W}left(tright)right)), which leads to the estimation of the expected cumulative deaths at time (t) as ({n}_{D}left(tright)={n}_{W}left({t}_{0}right)+{sum }_{s={t}_{0}+1}^{t}Delta {n}_{D}(s)). Specifically,$$begin{array}{c}{f}_{de}left(Delta {n}_{W}left(tright)right)=left(1-{r}_{1}right)d{d}_{0}+{r}_{1}left(left(1-{r}_{2}right)d{d}_{1}+{r}_{2}d{d}_{2}right)end{array}$$
    (33)
    with$$begin{array}{c}{r}_{1} = {e}^{-0.3d{d}_{1}},end{array}$$
    (34)
    $$begin{array}{c}{r}_{2} = {e}^{-3d{d}_{2}},end{array}$$
    (35)
    $$begin{array}{c}d{d}_{0}={ma}_{14}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (36)
    $$begin{array}{c}d{d}_{1}={rg}_{12}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (37)
    $$begin{array}{c}d{d}_{2}={rg}_{48}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (38)
    where ({ma}_{14}left(cdot right)) is a centered moving average with window size of 14 days and ({rg}_{sigma }left(cdot right)) is a centered rolling average through a Gaussian window with standard deviation (sigma). The specific value of the window size has been chosen to mitigate weekly reporting effects. The values of the standard deviations of the Gaussian windows have been selected to achieve a smooth representation of the expected death estimation for each country as shown in the bottom panels of Supplementary Fig. S1.Reporting delaysWe consider an average delay of two days between reporting a death and its occurrence. This value is obtained by comparing the daily death counts reported for Spain1 and their actual values33 from February 15 to March 31, 2020. The values of the root-mean-squared deviation between reported and actual deaths shifted by 0, 1, 2, 3, and 4 days are 77.9, 58.4, 38.5, 58.7, and 88.6 deaths respectively.Infection fatality rate ((IFR))The infection fatality rate is computed assuming homogeneous attack rate as$$begin{array}{c}IFR=frac{1}{{sum }_{a}{g}_{a}}{sum }_{a}{IFR}_{a}{g}_{a} ,end{array}$$
    (39)
    where ({mathrm{IFR}}_{a}) is the previously estimated (IFR) for the age group (a)5 and ({g}_{a}) is the population in the age group (a) as reported by the United Nations for countries18 and the US Census for states19.Clinical parametersWe obtained the values of the average ({tau }_{G}) and standard deviation ({sigma }_{G}) of the generation time from Ref.13, of the averages of the incubation ({tau }_{I}) and symptom onset-to-death ({tau }_{OD}) times from Refs.5,14, and of the average number of days (Delta {t}_{TP}) of positive testing by an infected individual from Refs.15,17. The average time at which an individual tested positive after infection ({tau }_{TP}) was computed as ({tau }_{TP}={tau }_{I}-2+Delta {t}_{TP}/2), where we have assumed that on average an individual started to test positive 2 days before symptom onset. The average seroconversion time after infection ({tau }_{SP}) was estimated as ({tau }_{I}) plus the 7 days of 50% seroconversion after symptom onset reported in Ref.16.Dynamical constraints implementation with discrete timeWe implemented the dynamical constraints to compute the infectious and infected population as outlined in the main text and as detailed in the previous section of this document, using days as time units. Time delays were rounded to days to assign daily values.The first derivative of the cumulative number of deaths is computed as$$begin{array}{c}frac{d{n}_{D}left(tright)}{dt}=Delta {n}_{D}left(tright),end{array}$$
    (40)
    with (Delta {n}_{D}left(tright)={n}_{D}left(tright)-{n}_{D}(t-1)).The growth rate was computed explicitly from the discrete time series as the centered 7-day difference$$begin{array}{c}{k}_{G}left(tright)=frac{1}{7}left({mathrm{ln}}left(Delta {n}_{D}left(t+4right)+Delta {n}_{D}left(t+3right)right)-{mathrm{ln}}left(Delta {n}_{D}left(t-3right)+Delta {n}_{D}left(t-4right)right)right).end{array}$$
    (41)
    The 7-day value was chosen to mitigate reporting artifacts.Confidence and credibility intervalsConfidence intervals associated with death counts were computed using bootstrapping with 10,000 realizations34. These confidence intervals were combined with the credibility intervals of the (IFR) in infectious and infected populations assuming independence and additivity on a logarithmic scale.Fold accuracyThe fold accuracy, ({F}_{A}), is explicitly computed as$$begin{array}{c}{mathrm{log}}{F}_{A}=frac{1}{N}{sum }_{i=1}^{N}left|{mathrm{log}}{x}_{i}^{obs}-{mathrm{log}}{x}_{i}^{est}right|,end{array}$$
    (42)
    where (left|cdot right|) is the absolute value function, ({x}_{i}^{obs}) is the ({i}^{th}) observation, ({x}_{i}^{est}) is its corresponding estimation, and (N) is the total number of observations.Inference and extrapolationBecause of the delay between infections and deaths, inference for the values of the growth rate and infectious populations ends on December 30, 2020 and for the values of the infected populations ends on December 26, 2020. Extrapolation to the current time (January 21, 2021) is carried out assuming the last growth rate computed.Reproduction numberThe quantities ({R}_{t}) and ({k}_{G}left(tright)) are related to each other through the Euler–Lotka equation, ({R}_{t}^{-1}={int }_{0}^{infty }{f}_{GT}left(tau right){e}^{-{k}_{G}left(tright)tau }dtau ,) which considers (jleft(t-tau right)simeq {e}^{-{k}_{G}left(tright)tau }jleft(tright)) in the renewal equation (jleft(tright)={int }_{0}^{infty }{k}_{I}left(t,tau right)jleft(t-tau right)dtau). Generation times can generally be described through a gamma distribution ({f}_{GT}left(tau right)=frac{{beta }^{alpha }}{Gamma left(alpha right)}{tau }^{alpha -1}{e}^{-beta tau }) with (alpha ={tau }_{G}^{2}/{sigma }_{G}^{2}) and (beta ={tau }_{G}/{sigma }_{G}^{2}), which leads to ({R}_{t}={left(1+{k}_{G}(t)/beta right)}^{alpha }) for ({k}_{G}(t) >-beta) and ({R}_{t}=0) for ({k}_{G}left(tright)le -beta). In the case of the exponentially distributed limit ((alpha simeq 1)) or small values of ({k}_{G}(t)/beta), it simplifies to ({R}_{t}=1+{k}_{G}left(tright){tau }_{G}) for ({k}_{G}left(tright) >-1/{tau }_{G}) and ({R}_{t}=0) for ({k}_{G}left(tright)le -1/{tau }_{G}). Global prevalence data were obtained from multiple data sources35,36,37,38,39,40,41,42, as described in Supplementary Table S1. More

  • in

    Isotope data from amino acids indicate Darwin’s ground sloth was not an herbivore

    1.Voss, R. S. & Emmons, L. H. Mammalian diversity in Neotropical lowland rainforests: A preliminary assessment. Bull. Am. Museum Nat. Hist. 230, 1–115 (1996).
    Google Scholar 
    2.Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. U. S. A. 113, 856–861 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Croft, D. A., Engelman, R. K., Dolgushina, T. & Wesley, G. Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds. Proc. R. Soc. B 285, 20172012 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Fariña, R. A. Trophic relationships among Lujanian mammals. Evol. Theory 11, 125–134 (1996).
    Google Scholar 
    5.Fariña, R. A. & Blanco, R. E. Megatherium the Stabber. Proc. R. Soc. B Biol. Sci. 263, 1725–1729 (2006).ADS 

    Google Scholar 
    6.Tejada-Lara, J. V. et al. Body mass predicts isotope enrichment in herbivorous mammals. Proc. R. Soc. B Biol. Sci. 285, 20181020 (2018).Article 
    CAS 

    Google Scholar 
    7.de Muizon, C. & McDonald, H. G. An aquatic sloth from the Pliocene of Peru. Nature 375, 224–227 (1995).ADS 
    Article 

    Google Scholar 
    8.Croft, D. A. The middle Miocene (Laventan) Quebrada Honda Fauna, southern Bolivia and a description of its notoungulates. Palaeontology 50, 277–303 (2007).Article 

    Google Scholar 
    9.Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440 (2011).Article 

    Google Scholar 
    10.Lee-Thorp, J. J., Sealy, J. J. C. & van der Merwe, N. J. N. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 32, 1459–1470 (1989).
    Google Scholar 
    11.Clementz, M. T., Fox-Dobbs, K., Wheatley, P. V., Koch, P. L. & Doak, D. F. Revisiting old bones: Coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geol. J. 44, 605–620 (2009).CAS 
    Article 

    Google Scholar 
    12.Tejada, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.2007440117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153–162 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, 1–26 (2016).Article 

    Google Scholar 
    15.McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).Article 

    Google Scholar 
    16.Chikaraishi, Y., Ogawa, N. O., Doi, H. & Ohkouchi, N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: A case study of terrestrial insects (bees, wasps, and hornets ). Ecol. Res. 26, 835–844 (2011).Article 

    Google Scholar 
    17.Popp, B. N. et al. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound- specific nitrogen isotope analysis of proteinaceous amino acids. In Stable Isotopes as Indicators of Ecological Change (eds Dawson, T. E. & Siegwolf, R. T. W.) 173–190 (Elsevier Inc., 2007).
    Google Scholar 
    18.Naito, Y. I., Honch, N. V., Chikaraishi, Y., Ohkouchi, N. & Yoneda, M. Quantitative evaluation of marine protein contribution in ancient diets based on nitrogen isotope ratios of individual amino acids in bone collagen: An investigation at the Kitakogane Jomon Site. Am. J. Phys. Anthropol. 143, 31–40 (2010).PubMed 
    Article 

    Google Scholar 
    19.O’Connell, T. C. ‘Trophic’ and ‘source’ amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Chikaraishi, Y., Ogawa, N. O. & Ohkouchi, N. Further evaluation of the trophic level estimation based on nitrogen isotopic composition of amino acids. In Earth, Life, and Isotopes (eds Ohkouchi, N. et al.) 37–51 (Kyoto Universy Press, 2010).
    Google Scholar 
    21.Steffan, S. A. et al. Trophic hierarchies illuminated via amino acid isotopic analysis. PLoS ONE 8, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    22.Chikaraishi, Y., Kashiyama, Y., Ogawa, N. O., Kitazato, H. & Ohkouchi, N. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: Implications for aquatic food web studies. Mar. Ecol. Prog. Ser. 342, 85–90 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Naito, Y. I. et al. Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen. J. Hum. Evol. 93, 82–90 (2016).PubMed 
    Article 

    Google Scholar 
    24.Nielsen, J. M., Popp, B. N. & Winder, M. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. Oecologia https://doi.org/10.1007/s00442-015-3305-7 (2015).Article 
    PubMed 

    Google Scholar 
    25.Décima, M., Landry, M. R. & Popp, B. N. Environmental perturbation effects on baseline δ15N values and zooplankton trophic flexibility in the southern California current ecosystem. Limnol. Oceanogr. 58, 624–634 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.23273 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Kendall, I. P. et al. Compound-specific δ15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry 161, 130–138 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Ramirez, M. D., Besser, A. C., Newsome, S. D. & McMahon, K. W. Meta-analysis of primary producer amino acid δ15N values and their influence on trophic position estimation. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13678 (2021).Article 

    Google Scholar 
    29.Hebert, C. E., Popp, B. N., Fernie, K. J., Rattner, B. A. & Wallsgrove, N. Amino acid specific stable nitrogen isotope values in avian tissues: Insights from captive American kestrels and wild herring gulls. Environ. Sci. Technol. 50, 12928–12937 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. 7, 740–750 (2009).CAS 
    Article 

    Google Scholar 
    31.Steffan, S. A. et al. Microbes are trophic analogs of animals. Proc. Natl. Acad. Sci. 112, 15119–15124 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Kendall, I. P., Lee, M. R. F. & Evershed, R. P. The effect of trophic level on individual amino acid δ15N values in a terrestrial ruminant food web. Sci. Technol. Archaeol. Res. 3, 135–145 (2017).
    Google Scholar 
    33.Matthews, C. J. D., Ruiz-Cooley, R. I., Pomerleau, C. & Ferguson, S. H. Amino acid δ15N underestimation of cetacean trophic positions highlights limited understanding of isotopic fractionation in higher marine consumers. Ecol. Evol. 10, 3450–3462 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Styring, A. K., Sealy, J. C. & Evershed, R. P. Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochim. Cosmochim. Acta 74, 241–251 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Lorrain, A. et al. Nitrogen and carbon isotope values of individual amino acids: A tool to study foraging ecology of penguins in the Southern Ocean. Mar. Ecol. Prog. Ser. 391, 293–306 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Lorrain, A. et al. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep. Res. Part II Top. Stud. Oceanogr. 113, 188–198 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Hartman, G. Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology?. Funct. Ecol. 25, 122–131 (2011).Article 

    Google Scholar 
    38.Hartman, G. & Danin, A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 162, 837–852 (2010).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hansen, R. M. Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4, 302–319 (1978).Article 

    Google Scholar 
    40.McDonald, H. G. & Morgan, G. S. Ground Sloths of New Mexico. Foss. Rec. 3 New. Mex. Museum Nat. Hist. Sci. Bull. 53, 652–663 (2011).
    Google Scholar 
    41.Poinar, H. N. Molecular coproscopy: Dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Clack, A. A., MacPhee, R. D. E. & Poinar, H. N. Mylodon darwinii DNA sequences from ancient fecal hair shafts. Ann. Anat. 194, 26–30 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Höss, M., Dilling, A., Currant, A. & Pääbo, S. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl. Acad. Sci. U. S. A. 93, 181–185 (1996).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Moore, D. M. Post-glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon. Bot. J. Linn. Soc. 77, 177–202 (1978).Article 

    Google Scholar 
    45.Bargo, M. S., Toledo, N. & Vizcaino, S. F. Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J. Morphol. 267, 248–263 (2006).PubMed 
    Article 

    Google Scholar 
    46.Rasmussen, M. et al. Response to comment by Goldberg et al. on ‘DNA from Pre-Clovis human coprolites in Oregon, North America’. Science 325, 148 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Janis, C. M. Correlations between craniodental anatomy and feeding in ungulates: Reciprocal illumination between living and fossil taxa. In Functional Morphology in Vertebrate Paleontology (ed. Thomason, J.) 76–98 (Cambridge U Press, 1995).
    Google Scholar 
    48.Clauss, M., Nunn, C., Fritz, J. & Hummel, J. Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 154, 376–382 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Vizcaino, S. F., Bargo, M. S. & Cassini, G. H. Dental occlusal surface area in relation to body mass, food habits and other biologic features in fossil xenarthrans. Ameghiniana 43, 11–26 (2006).
    Google Scholar 
    50.McNab, B. K. Energetics, population biology, and distribution of xenarthrans, living and extinct. In The Ecology of Arboreal Folivores 219–232 (Smithsonian Press, 1985).51.Davis, L. B. & Birkbak, R. C. On the transfer of energy in layers of fur. Biophys. J. 14, 249–268 (1974).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Clauss, M. et al. The maximum attainable body size of herbivorous mammals: Morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136, 14–27 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Fariña, R. A., Czerwonogora, A. & Di Giacomo, M. Splendid oddness: Revisiting the curious trophic relationships of South American Pleistocene mammals and their abundance. An. Acad. Bras. Cienc. 86, 311–331 (2014).PubMed 
    Article 

    Google Scholar 
    54.Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. 2, 640–649 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, I. S. Mammoth steppe: A high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).ADS 
    Article 

    Google Scholar 
    56.Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61 (2009).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.)

    1.Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    2.R4P Network. Trends and challenges in pesticide resistance detection. Trends Plant Sci. 21, 834–853 (2016).3.Heap, I. M. The international herbicide-resistant weed database. http://www.weedscience.org/Home.aspx (2021).4.Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    5.Gaines, T. A. et al. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295, 10307–10330 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Murphy, B. P. & Tranel, P. J. Target-site mutations conferring herbicide resistance. Plants 8, 382 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    7.Beckie, H. J. & Tardif, F. J. Herbicide cross resistance in weeds. Crop Prot. 35, 15–28 (2012).CAS 
    Article 

    Google Scholar 
    8.Han, H. et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J. 105, 79–92 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Kreiner, J. M. et al. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. Proc. Natl. Acad. Sci. 116, 21076–21084 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Milani, A. et al. Population structure and evolution of resistance to acetolactate synthase (ALS)-inhibitors in Amaranthus tuberculatus in Italy. Pest Manag. Sci. 77, 2971–2980 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Clements, D. R. et al. Adaptability of plants invading North American cropland. Agric. Ecosyst. Environ. 104, 379–398 (2004).Article 

    Google Scholar 
    12.Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia. J. Ecol. 103, 1069–1098 (2015).Article 

    Google Scholar 
    13.Cowbrough, M. J., Brown, R. B. & Tardif, F. J. Impact of common ragweed (Ambrosia artemisiifolia) aggregation on economic thresholds in soybean. Weed Sci. 51, 947–954 (2003).CAS 
    Article 

    Google Scholar 
    14.Swinton, S. M., Buhler, D. D., Forcella, F., Gunsolus, J. L. & King, R. P. Estimation of crop yield loss due to interference by multiple weed species. Weed Sci. 42, 103–109 (1994).Article 

    Google Scholar 
    15.Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds: Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55, 463–476 (1975).16.Chauvel, B., Dessaint, F., Cardinal-Legrand, C. & Bretagnolle, F. The historical spread of Ambrosia artemisiifolia L. France from herbarium records. J. Biogeogr. 33, 665–673 (2006).Article 

    Google Scholar 
    17.Sala, C. A., Bulos, M., Altieri, E. & Ramos, M. L. Genetics and breeding of herbicide tolerance in sunflower. Helia 35, 57–69 (2012).Article 

    Google Scholar 
    18.Yu, Q. & Powles, S. B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 70, 1340–1350 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Tranel, P. J., Wright, T. R. & Heap, I. M. ALS mutations from resistant weeds. http://www.weedscience.com (2021).20.Patzoldt, W. L., Tranel, P. J., Alexander, A. L. & Schmitzer, P. R. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49, 485–490 (2001).CAS 
    Article 

    Google Scholar 
    21.Rousonelos, S. L., Lee, R. M., Moreira, M. S., VanGessel, M. J. & Tranel, P. J. Characterization of a common ragweed (Ambrosia artemisiifolia) population resistant to ALS- and PPO-inhibiting herbicides. Weed Sci. 60, 335–344 (2012).CAS 
    Article 

    Google Scholar 
    22.Zheng, D., Patzoldt, W. L. & Tranel, P. J. Association of the W574L ALS substitution with resistance to cloransulam and imazamox in common ragweed (Ambrosia artemisiifolia). Weed Sci. 53, 424–430 (2005).CAS 
    Article 

    Google Scholar 
    23.Van Wely, A. C. et al. Glyphosate and acetolactate synthase inhibitor resistant common ragweed (Ambrosia artemisiifolia L.) in southwestern Ontario. Can. J. Plant Sci. 95, 335–338 (2015)24.Marsan-Pelletier, F., Vanasse, A., Simard, M.-J. & Cuerrier, M.-E. Survey of imazethapyr-resistant common ragweed (Ambrosia artemisiifolia L.) in Quebec. Phytoprotection 99, 36–44 (2019).25.Owen, M. D. & Zelaya, I. A. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61, 301–311 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 64, 319–325 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Barnes, E. R., Knezevic, S. Z., Sikkema, P. H., Lindquist, J. L. & Jhala, A. J. Control of glyphosate-resistant common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean [Glycine max (L.) Merr]. Front. Plant Sci. 8, 1455 (2017).28.Tranel, P. J. & Wright, T. R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned?. Weed Sci. 50, 700–712 (2002).CAS 
    Article 

    Google Scholar 
    29.Li, J., Li, M., Gao, X. & Fang, F. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag. Sci. 73, 2538–2543 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Duggleby, R. G., Pang, S. S., Yu, H. & Guddat, L. W. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. Eur. J. Biochem. 270, 2895–2904 (2003).31.Jung, S.-M. et al. Amino acid residues conferring herbicide resistance in tobacco acetohydroxyacid synthase. Biochem. J. 383, 53–61 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Owen, M. J., Walsh, M. J., Llewellyn, R. S. & Powles, S. B. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 58, 711–718 (2007).CAS 
    Article 

    Google Scholar 
    33.Owen, M. J., Martinez, N. J. & Powles, S. B. Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res. 54, 314–324 (2014).CAS 
    Article 

    Google Scholar 
    34.Délye, C. Nucleotide variability at the acetyl coenzyme A carboxylase gene and the signature of herbicide selection in the grass weed Alopecurus myosuroides (Huds.). Mol. Biol. Evol. 21, 884–892 (2004).35.Délye, C., Clément, J. A. J., Pernin, F., Chauvel, B. & Le Corre, V. High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic Appl. Ecol. 11, 504–512 (2010).Article 

    Google Scholar 
    36.Délye, C., Pernin, F. & Scarabel, L. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci. 180, 333–342 (2011).37.Sudheesh, M. An analysis of polygenic herbicide resistance evolution and its management based on a population genetics approach. Basic Appl. Ecol. 16, 104–111 (2015).Article 

    Google Scholar 
    38.Bullock, J. M. Assessing and controlling the spread and the effects of common ragweed in Europe. Report, Contractor: Natural environment research Council UK (2012).39.Yu, Q., Nelson, J. K., Zheng, M. Q., Jackson, J. & Powles, S. B. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag. Sci. 63, 918–927 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Simard, M.-J., Laforest, M., Soufiane, B., Benoit, D. L. & Tardif, F. Linuron resistant common ragweed (Ambrosia artemisiifolia) populations in Quebec carrot fields: presence and distribution of target-site and non-target site resistant biotypes. Can. J. Plant Sci. 98, 345–352 (2017).
    Google Scholar 
    41.Ganie, Z., Jugulam, M., Varanasi, V. & Jhala, A. J. Investigating mechanism of glyphosate resistance in a common ragweed (Ambrosia artemisiifolia L.) biotype from Nebraska. Can. J. Plant Sci. (2017). https://doi.org/10.1139/CJPS-2017-0036.42.Duhoux, A., Carrère, S., Duhoux, A. & Délye, C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Sci. 257, 22–36 (2017).43.Gardin, J. A. C., Gouzy, J., Carrère, S. & Délye, C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics 16, 590 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Torra, J. et al. Target-site and non-target-site resistance mechanisms confer multiple and cross- resistance to ALS and ACCase inhibiting herbicides in Lolium rigidum from Spain. Front. Plant Sci. 12, 625138 (2021).45.Manley, B. S., Hatzios, K. K. & Wilson, H. P. Absorption, translocation, and metabolism of chlorimuron and nicosulfuron in imidazolinone-resistant and susceptible smooth pigweed (Amaranthus hybridus). Weed Technol. 13, 759–764 (1999).CAS 
    Article 

    Google Scholar 
    46.Jeffers, G. M., O’Donovan, J. T. & Hall, L. M. Wild mustard (Brassica kaber) resistance to ethametsulfuron but not to other herbicides. Weed Technol. 10, 847–850 (1996).CAS 
    Article 

    Google Scholar 
    47.Veldhuis, L. J., Hall, L. M., O’Donovan, J. T., Dyer, W. & Hall, J. C. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48, 2986–2990 (2000).48.Scarabel, L., Pernin, F. & Délye, C. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci. 238, 158–169 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Nakka, S., Thompson, C. R., Peterson, D. E. & Jugulam, M. Target site-based and non-target site based resistance to ALS Inhibitors in Palmer Amaranth (Amaranthus palmeri). Weed Sci. 65, 681–689 (2017).Article 

    Google Scholar 
    50.Meyer, L. et al. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLOS ONE 12, e0176197 (2017).51.Van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).PubMed 
    Article 

    Google Scholar 
    52.Délye, C. et al. Harnessing the power of next-generation sequencing technologies to the purpose of high-throughput pesticide resistance diagnosis. Pest Manag. Sci. 76, 543–552 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Délye, C., Matéjicek, A. & Gasquez, J. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58, 474–478 (2002).PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Duggleby, R. G., McCourt, J. A. & Guddat, L. W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46, 309–324 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    56.Neff, M. M., Neff, J. D., Chory, J. & Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Délye, C. & Boucansaud, K. A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Res. 48, 97–101 (2008).Article 

    Google Scholar 
    58.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ddCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).CAS 
    PubMed 
    Article 

    Google Scholar  More