More stories

  • in

    The effect of periodic disturbances and carrying capacity on the significance of selection and drift in complex bacterial communities

    Predicting community responses to ecosystem changes is essential for improving ecosystem management. From an industrial perspective, we are dependent on stable microbial communities that perform well. Moreover, we live in a time where humans create disturbances at various levels in natural ecosystems. It is therefore important to comprehend the consequences of our activity. To predict the community response to external forces, we need to understand how different ecosystems affect the community assembly processes.We aimed to fill the knowledge gap on how carrying capacity and periodical disturbances affect the community assembly. It has previously been shown that the carrying capacity affects the community composition [46]. However, its effect on the assembly processes has remained unclear. Ecosystems with a lower carrying capacity support lower community size. Because the outcome of drift is density-dependent [6], communities with a low carrying capacity should have more populations vulnerable to drifting to extinction. However, our five-times difference in carrying capacity between cultivation regimes did not result in apparent differences in community assembly. The only exception was for the disturbed communities in Period 2, where the low carrying capacity regime (UDL) indicated a stronger influence of selection than the high (UDH; Fig. 4b). This observation was surprising as we hypothesised that drift might be more pronounced in systems with lower carrying capacity. In conclusion, the minor effects of carrying capacity observed for the replicate similarity rate for the undisturbed communities suggest that the effect of carrying capacity should be investigated further, including larger differences in carrying capacity.The effect of the disturbance regime on the microbial community assembly was more evident. The disturbance we investigated was a substantial dilution of the microcosm’s inoculum. The dilution has two significant effects: the community size is reduced, and the concentration of resources increases strongly for the remaining individuals. These two changes are relevant in natural and human-created ecosystems, where resource supply vary due to natural processes (e.g. patchiness and floods) and human activity (e.g. eutrophication and saprobiation).Investigating the temporal community composition through ordinations can reveal overall successional trajectories [47]. We found that whereas the PCoA ordinations indicated an overall deterministic trajectory for the undisturbed communities, the replicate similarity rate indicated that drift dominated the community assembly. This was evident for the microcosms starting with undisturbed culture conditions (UD Δµ  > 0; Fig. 5). However, the results were less evident for the communities going from disturbed to undisturbed conditions (DU) as the replicate similarity rate was around zero. Nonetheless, there was an apparent decrease in the replicate similarity rate when going from disturbed (Δµ 1.1 × 10−2) to undisturbed conditions (Δµ 5 × 10–4).The strength and unique feature of our experiment is the crossed design of the disturbance regimes. This crossing considerably increases the robustness of the conclusions drawn from the data. First, during the first period, all microcosms were inoculated with the same community, but in the second period, the twelve communities had assembled individually for 28 days. We could therefore investigate the effects of our experimental variables on drift and selection with different starting conditions. The temporal trends in the data were found to be independent of the starting condition, substantially increasing the strength of our conclusion.Second, subjecting the communities to the opposite disturbance regime in Period 2 supports that we had stable attractors in our systems. An attractor is a point or a trajectory in the state space of a dynamical system. If the attractor is locally stable, the system will tend to evolve toward it from a wide range of starting conditions and stay close to it even if slightly disturbed [48]. We observed locally stable attractors based on the disturbance regime and thus one stationary phase for each disturbance regime. Some ecological systems show dramatic regime shifts between alternative stationary states in response to changes in an external driver [49]. Such systems typically exhibit hysteresis in the sense that they will not return directly to the original state by an opposite change in the driver. We found that community composition was reversible and dependent on the disturbance regime, as highlighted by the Bray–Curtis ordinations (Fig. 4). This reversibility indicates that the community changes we observed were not catastrophic bifurcations or regime shifts and that it is unlikely that the systems contain multiple stationary states within the same disturbance regime. We think this gives strong support for assuming that drift is the main driver for divergence in the community composition and that selection towards alternative attractors probably plays a minor role. Thus, we can conclude that shifting from a disturbed to an undisturbed ecosystem increased the contribution of drift. Our observations corroborate other investigations of bioreactors [15, 50] and simulations [51] that report that stochasticity is fundamental for the assembly of communities. However, the finding that drift was important for structuring the undisturbed microcosms was unexpected.In dispersal-limited communities where resources are supplied continuously, such as in the undisturbed communities examined here, the selective process competition has been hypothesised to be high [7]. However, our experimental environment offered little variation in the resources provided, as the medium provided was the same throughout the experiment. This may have led to populations becoming “ecologically equivalent”, meaning that their fitness difference was too small to result in competitive exclusion on the time scale of our experiment [5, 52]. Under these assumptions, community assembly is similar to the neutral model in which the growth rates of the community members are comparable [53].During disturbances, we found that selection dominated community assembly. Our results support Zhou et al. hypothesis stating that determinism should increase due to biomass loss in dispersal-limited communities [24]. However, they oppose their other hypothesis stating that nutrient inputs should increase stochasticity [24], making low abundant populations vulnerable to local extinction [6, 7]. During the disturbances, the Sørensen similarity between replicates was stable or increasing, indicating that the periodical disturbance did not result in the extinction of low abundant populations. Instead, it appears that the dilution removed competition for some time, resulting in a phase where all populations got “a piece of the cake”. Several studies have observed increased stochasticity as a result of increased resource availability [7, 11, 24, 26]. However, we found that disturbances resulting in periods with exponential growth due to density-independent loss of individuals and high resource input suppressed the effect of stochastic processes. This exponential growth period without competition would enable more populations to stay above the detection limits of the 16S-rDNA-sequencing method.More OTUs were enriched under the disturbed regime than under the undisturbed. During the disturbance, the microcosms were diluted ~2 day−1, whereas the dilution factor was 1 day−1 during the undisturbed regime. We cannot assume steady-state in the disturbed microcosms, but it was interesting to see a substantial increase in the abundance of OTUs classified as Gammaproteobacteria. Gammaproteobacteria include many opportunists [54] that appeared to exploit the resource surplus following the disturbance. This opportunistic lifestyle fits within the r- and K-strategist framework [55].Organisms with high maximum growth rates but low competitive abilities are classified as r-strategists. These r-strategists are superior in environments where the biomass is below the carrying capacity. On the other hand, K-strategists are successful in competitive environments due to their high substrate affinity and resource specialisation [56]. Based on the taxonomic responses, it appears as disturbances in the form of dilutions selected for r-strategists, whereas the undisturbed regime selected for K-strategists. The r-strategists selected for during the disturbance periods included genera such as Vibrio and Colwellia [57], and the genus Vibrio includes many pathogenic strains [58]. Thus, our findings may have implications for land-based aquaculture systems where conditions favouring r-strategists is linked to high mortality and reduced viability of fish [56].The DeSeq2 results pose some new questions regarding the link between phylogeny and niche fitness. Generally, ecologists assume that closely related taxa have similar niches, as they have a common evolutionary history and, thus, similar physiology [59, 60]. For example, here, OTUs belonging to Gammaproteobacteria co-occurred when the environment was disturbed. However, for other classes such as Alphaproteobacteria and Flavobacteria, the OTUs responded differently to the disturbance regimes, despite belonging to the same class. This lack of phylogenetically coherent response indicates that the paradigm of correlation between phylogeny and niche requires further studies.This study was performed on complex marine microbial communities cultivated under controlled experimental conditions. We found that undisturbed environments enhanced the contribution of drift on community assembly and that disturbances increased the effect of selection. These observations might be different in more diverse ecosystems such as soils or the human gut. In such ecosystems, the microbes are more closely associated with, for example, soil particles or attached to the gut lining. It has been shown that the biofilm-associated and planktonic microbial communities have different community compositions [61]. Consequently, the community assembly processes may be affected differently by environmental fluctuations. Our experimental variables should therefore be tested in other ecosystem settings to verify our conclusions.To our knowledge, this study is the first to experimentally estimate the effect of periodical disturbances and carrying capacity on community assembly in dispersal-limited ecosystems. We observed that carrying capacity had little effect on community assembly and that undisturbed communities were structured more by drift than disturbed systems dominated by selection. Using an experimental crossover design for the disturbance regime, we showed that these observations were independent of the initial community composition. Our experiment illustrates that cultivating complex natural microbial communities under lab conditions allowed us to test ecologically relevant system variables and draw robust conclusions. More

  • in

    Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc

    1.Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    2.Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).Article 

    Google Scholar 
    3.Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, N. E. & Martínez, I. Case study of the implications of climate change for lichen diversity and distributions. Biodivers. Conserv. 26, 1121–1141 (2017).Article 

    Google Scholar 
    4.Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Ohdo, T. & Takahashi, K. Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants 12, plaa014 (2020).6.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article 

    Google Scholar 
    7.Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).Article 

    Google Scholar 
    9.Grytnes, J. A. Ecological interpretations of the mid-domain effect. Ecol. Lett. 6, 883–888 (2003).Article 

    Google Scholar 
    10.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: what have we learned so far?. Am. Nat. 163, E1–E23 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    12.Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).Article 

    Google Scholar 
    13.Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).Article 

    Google Scholar 
    14.Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).Article 

    Google Scholar 
    15.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    16.Jacquemyn, H., Honnay, O. & Pailler, T. Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on Réunion Island: implications for conservation. Biol. Cons. 136, 388–397 (2007).Article 

    Google Scholar 
    17.Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19, 729–739 (2015).Article 

    Google Scholar 
    19.Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. d. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11, e0157442 (2016).20.Zhou, G. et al. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Glob. Change Biol. 25, 1119–1132 (2019).ADS 
    Article 

    Google Scholar 
    21.Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).ADS 
    Article 

    Google Scholar 
    22.Chander, H. & Sapna, D. Sanjna. Species diversity of lichens in Balh Valley of Himachal Pradesh, North Western Himalaya. J. Biol. Chem. Chronicles 5, 32–40 (2019).23.Negi, H. R. On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya. J. Biosci. 25, 367–378 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Pinokiyo, A., Singh, K. P. & Singh, J. S. Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40, 47–62 (2008).Article 

    Google Scholar 
    25.Kumar, J. et al. Elevational controls of lichen communities in Zanskar valley, Ladakh, a Trans Himalayan cold desert. Trop. Plant Res. 1, 48–54 (2014).
    Google Scholar 
    26.Rashmi, S. & Rajkumar, H. Diversity of Lichens along Elevational Gradients in Forest Ranges of Chamarajanagar District, Karnataka State. Int. J. Sci. Res. Biol. Sci. 6, 1 (2019).27.Shukla, V., Upreti, D. K. & Bajpai, R. Lichens to Biomonitor the Environment. (Springer, 2014).28.Man-Rong, H. & Wei, G. Altitudinal gradients of lichen species richness in Tibet, China. PDR 34, 2–8 (2012).
    Google Scholar 
    29.Wolf, J. H. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 928–960 (1993).30.Pirintsos, S., Diamantopoulos, J. & Stamou, G. Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio 116, 33–40 (1995).
    Google Scholar 
    31.Grytnes, J. A., Heegaard, E. & Ihlen, P. G. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29, 241–246 (2006).ADS 
    Article 

    Google Scholar 
    32.Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).Article 

    Google Scholar 
    33.Bässler, C. et al. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689–698 (2016).Article 

    Google Scholar 
    34.Rai, H., Khare, R., Upreti, D. K. & Nayaka, S. Terricolous Lichens in India 1–16 (Springer, 2014).35.Awasthi, D. D. Key to the Microlichens of India, Nepal and Sri Lanka. (J. Cramer, 1991).36.Sipman, H. J. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).
    Google Scholar 
    37.Awasthi, D. D. A Compendium of the Macrolichens from India, Nepal and Sri Lank. (Bishen Singh Mahendra Pal Sin, 2007).38.Singh, K. P. & Sinha, G. P. Indian Lichens: An Annotated Checklis. (Botanical Survey of Ind, 2010).39.Sinha, G., Nayaka, S. & Joseph, S. Additions to the checklist of Indian lichens after 2010. Cryptogam Biodivers. Assess. Spec. 197, 206 (2018).
    Google Scholar 
    40.Hsieh, T., Ma, K. & Chao, A. A Quick Introduction to iNEXT via Examples. http://chao.stat.nthu.edu.tw/wordpress (2016).41.Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R. & O’Hara, R.B. et al. Vegan: Community Ecology Package. R package version 2.5-7. http://CRAN.R-project.org/package=vegan (2015).42.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).Article 

    Google Scholar 
    43.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    44.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    45.Rathore, L., Attri, S. & Jaswal, A. State level climate change trends in India. India Meteorol. Dept. 25, 02 (2013).
    Google Scholar 
    46.Goni, R., Raina, A. K., Magotra, R. & Sharma, N. Lichen flora of Jammu and Kashmir State, India: An updated checklist. Trop. Plant Res. 2, 64–71 (2015).
    Google Scholar 
    47.Sinha, G. & Ram, T. Lichen diversity in Sikkim. In Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. 13–28. (Department of Information and Public Relations, Government of Sikkim, 2011).48.Mishra, G. K. & Upreti, D. K. Diversity and distribution of macro-lichen in Kumaun Himalaya, Uttarakhand. Int. J. Adv. Res. 4, 912–925 (2016).
    Google Scholar 
    49.Rai, H., Upreti, D. & Gupta, R. K. Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers. Conserv. 21, 97–113 (2012).Article 

    Google Scholar 
    50.Thell, A. et al. A review of the lichen family Parmeliaceae–history, phylogeny and current taxonomy. Nord. J. Bot. 30, 641–664 (2012).Article 

    Google Scholar 
    51.Cannon, P. F. & Kirk, P. M. Fungal Families of the World. (Cabi, 2007).52.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. The elevation gradient of lichen species richness in Nepal. Lichenologist 42, 83–96 (2010).53.Rai, H., Khare, R., Baniya, C. B., Upreti, D. K. & Gupta, R. K. Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers. Conserv. 24, 1155–1174 (2015).Article 

    Google Scholar 
    54.Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159, 294–304 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722 (2017).Article 

    Google Scholar 
    56.Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31, 389–400 (2004).Article 

    Google Scholar 
    57.Grau, O., Grytnes, J. A. & Birks, H. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr. 34, 1907–1915 (2007).Article 

    Google Scholar 
    58.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. eLS (2010).59.Gauslaa, Y. et al. Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 181, 683–692 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Nautiyal, M., Nautiyal, B. & Prakash, V. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24, 125–134 (2004).Article 

    Google Scholar 
    61.McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31 (2004).Article 

    Google Scholar 
    62.Baniya, C. B. Species Richness Patterns in Space and Time in the Himalayan Area. https://hdl.handle.net/1956/3861 (2010).63.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Folia Geobot. 47, 135–151 (2012).Article 

    Google Scholar 
    64.da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24, 1277–1290 (2018).Article 

    Google Scholar 
    65.Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10, e0127692 (2015).66.Nanda, S. A., Reshi, Z. A., Ul-haq, M., Lone, A. & Mir, S. A. Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop. Ecol. 59, 211–224 (2018).
    Google Scholar 
    67.Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020). More

  • in

    Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera

    1.Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob Biogeochem Cycl. 2002;16:1–21.Article 
    CAS 

    Google Scholar 
    2.Lampitt RS, Salter I, John D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycl. 2009;23:GB1010.Article 
    CAS 

    Google Scholar 
    3.Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, et al. Evidence for complete denitrification in a benthic foraminifer. Nature. 2006;443:93–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Piña-Ochoa E, Hogslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, et al. Widespread occurrence of nitrate storage and denitrification among foraminifera and gromiida. Proc Natl Acad Sci USA. 2010;107:1148–53.PubMed 
    Article 

    Google Scholar 
    5.Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, et al. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol. 2019;21:125–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Delaca TE, Karl DM, Lipps JH. Direct use of dissolved organic-carbon by agglutinated benthic foraminifera. Nature. 1981;289:287–9.CAS 
    Article 

    Google Scholar 
    7.Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, de Deckere E, et al. Ecological significance of benthic foraminifera: C-13 labelling experiments. Mar Ecol Prog Ser. 2000;202:289–95.Article 

    Google Scholar 
    8.LeKieffre C, Jauffrais T, Geslin E, Jesus B, Bernhard JM, Giovani ME, et al. Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep. 2018;8:1–12.CAS 
    Article 

    Google Scholar 
    9.Tsuchiya M, Chikaraishi Y, Nomaki H, Sasaki Y, Tame A, Uematsu K, et al. Compound-specific isotope analysis of benthic foraminifer amino acids suggests microhabitat variability in rocky-shore environments. Ecol Evol. 2018;8:8380–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Glock N, Roy AS, Romero D, Wein T, Weissenbach J, Revsbech NP, et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA. 2019;116:2860–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Woehle C, Roy AS, Glock N, Wein T, Weissenbach J, Rosenstiel P, et al. A novel eukaryotic denitrification pathway in foraminifera. Curr Biol. 2018;28:1–8.Article 
    CAS 

    Google Scholar 
    12.Gooday A. Meiofaunal foraminiferans from the bathyal porcupine seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res Part A Oceanogr Res Pap. 1986;33:1345–73.Article 

    Google Scholar 
    13.Pascal P-Y, Dupuy C, Richard P, Mallet C, Telet EAC, Niquilb N. Seasonal variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal mudflat. Limnol Oceanogr. 2009;54:1048–59.CAS 
    Article 

    Google Scholar 
    14.Jauffrais T, LeKieffre C, Schweizer M, Jesus B, Metzger E, Geslin E. Response of a kleptoplastidic foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. FEMS Microbiol Ecol. 2019;95:fiz046.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Grzymski J, Schofield OM, Falkowski PG, Bernhard JM. The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr. 2002;47:1569–80.CAS 
    Article 

    Google Scholar 
    16.Pillet L, de Vargas C, Pawlowski J. Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera. Protist. 2011;162:394–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Cesbron F, Geslin E, Le Kieffre C, Jauffrais T, Nardelli MP, Langlet D, et al. Sequestered chloroplasts in the benthic foraminifer Haynesina germanica: cellular organization, oxygen fluxes and potential ecological implications. J Foraminifer Res. 2017;47:268–78.Article 

    Google Scholar 
    18.Jauffrais T, Jesus B, Metzger E, Mouget JL, Jorissen F, Geslin E. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences. 2016;13:2715–26.Article 

    Google Scholar 
    19.Lopez E. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol. 1979;53:201–11.CAS 
    Article 

    Google Scholar 
    20.Clark KB, Jensen KR, Stirts HM. Survey for functional kleptoplasty among West Atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). Veliger. 1990;33:339–45.
    Google Scholar 
    21.Rumpho ME, Dastoor F, Manhart J, Lee J. The kleptoplast. In: Wise RR, Hoober JK, editors. The structure and function of plastids. 23. New York: Advances in Photosynthesis and Respiration; 2006. p. 451–73.Chapter 

    Google Scholar 
    22.Jesus B, Ventura P, Calado G. Behaviour and a functional xanthophyll cycle enhance photo-regulation mechanisms in the solar-powered sea slug Elysia timida (Risso, 1818). J Exp Mar Biol Ecol. 2010;395:98–105.CAS 
    Article 

    Google Scholar 
    23.Hansen PJ, Fenchel T. The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res. 2006;2:169–77.Article 

    Google Scholar 
    24.Hansen PJ, Ojamäe K, Berge T, Trampe EC, Nielsen LT, Lips I, et al. Photoregulation in a kleptochloroplastidic dinoflagellate Dinophysis acuta. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    25.Decelle J, Colin S, Foster RA. Photosymbiosis in Marine Planktonic Protists. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine Protists. Tokyo: Springer; 2015. p. 465–500.Chapter 

    Google Scholar 
    26.Stoecker DK, Johnson MD, deVargas C, Not F. Acquired phototrophy in aquatic protists. Aquat Micro Ecol. 2009;57:279–310.Article 

    Google Scholar 
    27.Rumpho ME, Summer EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000;123:29–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Park MG, Park JS, Kim M, Yih W. Plastids dynamics during survival of Dinophysis caudate without its ciliate prey. J Phycol. 2008;44:1154–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Alexander SP, Banner FT. The functional relationship between skeleton and cytoplasm in Haynesina germanica (Ehrenberg). J Foraminifer Res. 1984;14:159–70.Article 

    Google Scholar 
    30.Bernhard JM, Alve E. Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammens fjord (Norway): Response to anoxia. Mar Micropaleontol. 1996;28:5–17.Article 

    Google Scholar 
    31.Bernhard JM, Bowser SS. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci Rev. 1999;46:149–65.CAS 
    Article 

    Google Scholar 
    32.Bernhard JM, Buck KR, Farmer MA, Bowser SS. The Santa Barbara Basin is a symbiosis oasis. Nature. 2000;403:77–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Correia MJ, Lee JJ. Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis. 2000;29:343–55.
    Google Scholar 
    34.Lee JJ, Lanners E, Ter Kuile B. The retention of chloroplasts by the foraminifera Elphidium crispum. Symbiosis. 1988;5:45–60.CAS 

    Google Scholar 
    35.Cedhagen T. Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionellina labradorica. Ophelia. 1991;33:17–30.Article 

    Google Scholar 
    36.Correia MJ, Lee JJ. Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis. 2002;32:15–26.
    Google Scholar 
    37.Correia MJ, Lee JJ. How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis. 2002;32:27–37.
    Google Scholar 
    38.Goldstein ST, Bernhard JM, Richardson EA. Chloroplast sequestration in the foraminifer Haynesina germanica: application of high pressure freezing and freeze substitution. Microsc Microanal. 2004;10:1458–9.Article 

    Google Scholar 
    39.Jauffrais T, LeKieffre C, Koho KA, Tsuchiya M, Schweizer M, Bernhard JM, et al. Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats. Mar Micropaleontol. 2018;138:46–62.Article 

    Google Scholar 
    40.Tsuchiya M, Toyofuku T, Uematsu K, Brüchert V, Collen J, Yamamoto H, et al. Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of Virgulinella fragilis (Foraminifera). J Euk Microbiol. 2015;62:454–69.PubMed 
    Article 

    Google Scholar 
    41.Tsuchiya M, Miyawaki S, Oguri K, Toyofuku T, Tame A, Uematsu K, et al. Acquisition, Maintenance, and Ecological Roles of Kleptoplasts in Planoglabratella opercularis (Foraminifera, Rhizaria). Front Mar Sci. 2020;7:585.Article 

    Google Scholar 
    42.Jauffrais T, Jesus B, Méléder V, Geslin E. Functional xanthophyll cycle and pigment content of a kleptoplastic benthic foraminifer: Haynesina germanica. PLOS ONE. 2017;12:e0172678.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Austin HA, Austin WE, Paterson DM. Extracellular cracking and content removal of the benthic diatom Pleurosigma angulatum (Quekett) by the benthic foraminifera Haynesina germanica (Ehrenberg). Mar Micropaleontol. 2005;57:68–73.Article 

    Google Scholar 
    44.Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ, Kennedy RA, et al. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol. 2000;124:331–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nagai S, Nitshitani G, Tomaru Y, Sakiyama S, Kamiyama T. Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol. 2008;44:909–22.PubMed 
    Article 

    Google Scholar 
    46.Shi LX, Theg SM. The chloroplast protein import system: From algae to trees. Biochim Biophys Acta. 2013;1833:314–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.de Vries J, Habicht J, Woehle C, Huang C, Christa G, Waegele H, et al. Is ftsH the key to plastid longevity in sacoglossan slugs? Genome Biol Evol. 2013;5:2540–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cruz S, Cartaxana P, Newcomer R, Dionísio G, Calado R, Serôdio J, et al. Photoprotection in sequestered plastids of sea slugs and respective algal sources. Sci Rep. 2015;5:1–8.
    Google Scholar 
    49.Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. The photon menace: kleptoplast protection in the photosynthetic sea slug Elysia timida. J Exp Biol. 2019;222:jeb202580.PubMed 
    Article 

    Google Scholar 
    50.Petrou K, Ralph P, Nielsen D. A novel mechanism for host-mediated photoprotection in endosymbiotic foraminifera. ISME J. 2017;11:453–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Darling KF, Schweizer M, Knudsen KL, Evans KM, Bird C, Roberts A, et al. The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2016;129:1–23.Article 

    Google Scholar 
    52.Kühl M, Polerecky L. Functional and structural imaging of aquatic phototrophic microbial communities and symbioses. Aquat Microb Ecol. 2008;53:99–118.53.Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. Proc Third ERTS Symp. 1973;1:309–17.
    Google Scholar 
    54.Barillé L, Mouget JL, Méléder V, Rosa P, Jesus B. Spectral response of benthic diatoms with different sediment backgrounds. Remote Sens Environ. 2011;115:1034–42.Article 

    Google Scholar 
    55.Kazemipour F, Launeau P, Méléder V. Microphytobenthos biomass mapping using the optical model of diatom biofilms: application to hyperspectral images of Bourgneuf Bay. Remote Sens Environ. 2012;127:1–13.Article 

    Google Scholar 
    56.Meleder V, Barille L, Launeau P, Carrere V, Rince Y. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures. Remote Sens Environ. 2003;88:386–400.Article 

    Google Scholar 
    57.Serôdio J, Pereira S, Furtado J, Silva R, Coelho H, Calado R. In vivo quantification of kleptoplastic chlorophyll a content in the “solar-powered” sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry. Photochem Photobiol Sci. 2010;9:68–77.PubMed 
    Article 

    Google Scholar 
    58.Jesus B, Mouget J-L, Perkins RG. Detection of diatom xanthophyll cycle using spectral reflectance. J Phycol. 2008;44:1349–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Jesus B, Rosa P, Mouget JL, Méléder V, Launeau P, Barillé L. Spectral-radiometric analysis of taxonomically mixed microphytobenthic biofilms. Remote Sens Environ. 2014;140:196–205.Article 

    Google Scholar 
    60.Louchard EM, Reid RP, Stephens CF, Davis CO, Leathers RA, Downes TV, et al. Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt Express. 2002;10:1573–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Perkins RG, Williamson CJ, Brodie J, Barillé L, Launeau P, Lavaud J, et al. Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging. Sci Rep. 2016;6:1–14.Article 
    CAS 

    Google Scholar 
    62.Trampe E, Kolbowski J, Schreiber U, Kühl M. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar Biol. 2011;158:1667–75.CAS 
    Article 

    Google Scholar 
    63.Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD. Coral photobiology studied with a new imaging pulse imaging pulse amplitude modulated fluorometer. J Phycol. 2005;41:335–42.Article 

    Google Scholar 
    64.Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine phytoplancton. J Mar Res. 1980;38:687–701.
    Google Scholar 
    65.Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S. Photosynthetic performance of surface associated algae below sea ice as measured with a pulse amplitude modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Progr Ser S. 2001;223:1–14.Article 

    Google Scholar 
    66.Harrison WG, Platt T. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol. 1986;5:153–64.Article 

    Google Scholar 
    67.Elzhov TV, Mullen KM, Spiess A-N, Bolker B minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. 2016 R package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm.68.LeKieffre C, Spangenberg JE, Mabilleau G, Escrig S, Meibom A, Geslin E. Surviving anoxia in marine sediments: the metabolic response of ubiquitous benthic foraminifera (Ammonia tepida). PLOS ONE. 2017;12:e0177604.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Bernhard JM. Distinguishing live from dead foraminifera: Methods review and proper applications. Micropaleontol. 2000;46:38–46.
    Google Scholar 
    70.Nomaki H, Bernhard JM, Ishida A, Tsuchiya M, Uematsu K, Tame A, et al. Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments: results of nitrate and sulfate labeling experiments. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    71.Eaton JW, Moss B. Estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11:584–95.Article 

    Google Scholar 
    72.Schneider CA, Rasband WS, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–5.CAS 
    Article 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2017, Vienna, Austria. URL https://www.R-project.org/.74.Schneider LK, Anestis K, Mansour J, Anschütz AA, Gypens N, Hansen PJ, et al. A dataset on trophic modes of aquatic protists. Biodivers Data J. 2020;8:e56648.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Banner FT, Culver SJ. Quaternary Haynesina n. gen. and paleogene Protelphidium Haynes; their morphology, affinities and distribution. J Foraminifer Res. 1978;8:177–207.Article 

    Google Scholar 
    76.Hansen HJ, Lykke-Andersen AL. Wall structure and classification of fossil and recent elphidiid and nonionid Foraminifera. Foss Strat. 1976;10:1–37.
    Google Scholar 
    77.Hottinger L, Reiss Z, Langer M. Spiral canals of some Elphidiidae. Micropaleontol. 2001;47:5–34.
    Google Scholar 
    78.Lee J. On a piece of chalk – Update. J Euk Microbiol. 1993;40:395–410.CAS 
    Article 

    Google Scholar 
    79.Passarelli C, Meziane T, Thiney N, Boeuf D, Jesus B, et al. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers. Estuar Coast Shelf Sci. 2015;153:29–37.CAS 
    Article 

    Google Scholar 
    80.Jauffrais T, Drouet S, Turpin V, Méléder V, Jesus B, Cognie B, et al. Growth and biochemical composition of a microphytobenthic diatom (Entomoneis paludosa) exposed to shorebird (Calidris alpina) droppings. J Exp Mar Biol Ecol. 2015;469:83–92.CAS 
    Article 

    Google Scholar 
    81.Jauffrais T, Jesus B, Méléder V, Turpin V, Russo ADAPG, Raimbault P, et al. Physiological and photophysiological responses of the benthic diatom Entomoneis paludosa (Bacillariophyceae) to dissolved inorganic and organic nitrogen in culture. Mar Biol. 2016;163:1–14.CAS 
    Article 

    Google Scholar 
    82.Meleder V, Laviale M, Jesus B, Mouget JL, Lavaud J, Kazemipour F, et al. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms. J Photochem Photobio B-Biol. 2013;129:115–24.CAS 
    Article 

    Google Scholar 
    83.Knight R, Mantoura RFC. Chlorophyll and carotenoid pigments in foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Mar Ecol Prog Ser. 1985;23:241–9.CAS 
    Article 

    Google Scholar 
    84.Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82:222–37.CAS 
    Article 

    Google Scholar 
    85.Olaizola M, Yamamoto HY. Short term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol. 1994;30:606–12.CAS 
    Article 

    Google Scholar 
    86.Lavaud J, Rousseau B, Etienne A-L. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol. 2004;40:130–7.Article 

    Google Scholar 
    87.Ventura P, Calado G, Jesus B. Photosynthetic efficiency and kleptoplast pigment diversity in the sea slug Thuridilla hopei (Vérany, 1853). J Exp Mar Biol Ecol. 2013;441:105–9.CAS 
    Article 

    Google Scholar 
    88.Martin R, Walther P, Tomaschko KH. Variable retention of kleptoplast membranes in cells of sacoglossan sea slugs: plastids with extended, shortened and non-retained durations. Zoomorphology. 2015;134:523–9.Article 

    Google Scholar 
    89.Bird C, Schweizer M, Roberts A, Austin WEN, Knudsen KL, Evans KM, et al. The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2020;155:101726.Article 

    Google Scholar  More

  • in

    Evaporation-induced hydrodynamics promote conjugation-mediated plasmid transfer in microbial populations

    Conjugative plasmids confer important traits to microbial communities, with both deleterious and beneficial effects on human health, the environment, and biotechnology [1,2,3]. The spread of virulence and resistance to antimicrobial agents [1, 2] and the facilitation of specific pollutant biotransformations exemplify the importance of conjugative plasmids [3, 4]. Understanding the mechanisms governing the transfer and spread of conjugative plasmids is therefore critically important. Although substantial research efforts have been made toward understanding the molecular mechanisms and biological determinants of plasmid conjugation [5], the underlying driving forces from physical and ecological aspects remain unclear.Many microbial communities exist in environments that are periodically or continuously exposed to unsaturated water conditions. For example, the communities residing in the vadose zone of soils are periodically exposed to saturated conditions after rainfall events and irrigation, and thereafter to unsaturated conditions upon soil draining. The microbial communities inhabiting the outer surfaces of various hosts such as skin, teeth, leaves, or roots also experience frequent hydration dynamics. The air-water interfaces of such soil particles or host surfaces are subject to water evaporation when the ambient relative humidity (RH) is More

  • in

    Effects of natural nest temperatures on sex reversal and sex ratios in an Australian alpine skink

    Climate dataThermal profiles showed considerable diel variation at each field location (Fig. 3). Soil temperatures on the ground surface fluctuated the most, reaching maximum temperature (Mt Ginini, 45.5 °C; Piccadilly Circus first season, 46.5 °C; Piccadilly Circus second season, 46.0 °C; Cooma, 42.1 °C; Dartmouth, 47.5 °C) during the day (1330–1730 h) and dropping to low level (Mt Ginini, 4.0 °C; Piccadilly Circus first season, 8.5 °C; Piccadilly Circus second season, 6.5 °C; Cooma, 7 °C; Dartmouth 12.5 °C) at night (2330–0400 h) (ANOVA, F4, 6521 = 279.4, P  More

  • in

    Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes

    1.Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).
    Google Scholar 
    2.Churchill, E. R., Dytham, C. & Thom, M. D. F. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci. Rep. 9, 2167. https://doi.org/10.1038/s41598-019-38843-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Price, P. W. Strategies for egg production. Evolution 28(1), 76–84 (1974).PubMed 
    Article 

    Google Scholar 
    4.Roff, D. A. The Evolution of Life Histories. Theory and analysis (Chapman and Hall, 1992).
    Google Scholar 
    5.Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108(962), 499–506 (1974).Article 

    Google Scholar 
    6.Durrant, K. et al. Comparative morphological trade-offs between pre- and post-copulatory sexual selection in Giant hissing cockroaches (Tribe: Gromphadorhini). Sci. Rep. 6, 36755. https://doi.org/10.1038/srep36755 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Timi, J. T., Lanfranchi, A. L. & Poulin, R. Is there a trade-off between fecundity and egg volume in the parasitic copepod Lernanthropus cynoscicola?. Parasitol. Res. 95, 1–4 (2005).PubMed 
    Article 

    Google Scholar 
    8.Cavaleiro, F. I. & Santos, M. J. Egg number–egg size: An important trade-off in parasite life history strategies. Int. J. Parasitol. 44, 173–182 (2014).PubMed 
    Article 

    Google Scholar 
    9.Poulin, R. Clutch size and egg size in free-living and parasitic copepods: A comparative analysis. Evolution 49(2), 325–336 (1995).PubMed 
    Article 

    Google Scholar 
    10.Caley, M. J., Schwarzkoff, L. & Shine, R. Does total reproductive effort evolve independently of offspring size?. Evolution 55(6), 1245–1248 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.McGinty, N. et al. Anthropogenic climate change impacts on copepod trait biogeography. Glob. Change Biol. 27, 1431–1442 (2021).ADS 
    Article 

    Google Scholar 
    12.Ianora, A., Miralto, A. & Halsband-Lenk, C. Reproduction, hatching success, and early naupliar survival in Centropages typicus. Prog. Oceanogr. 72, 195–213 (2007).ADS 
    Article 

    Google Scholar 
    13.Uye, S. & Sano, K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118, 121–128 (1995).ADS 
    Article 

    Google Scholar 
    14.Guisande, C., Sanchez, J., Maneiro, I. & Miranda, A. Trade-off between offspring number and offspring size in the marine copepod Euterpina acutifrons at different food concentrations. Mar. Ecol. Prog. Ser. 143, 37–44 (1996).ADS 
    Article 

    Google Scholar 
    15.Liang, D. & Uye, S. Seasonal reproductive biology of the egg-carrying calanoid copepod Pseudocalanus marinus in a eutrophic inlet of the Inland Sea of Japan. Mar. Biol. 128, 409–414 (1997).Article 

    Google Scholar 
    16.Hämäläinen, A. et al. Fitness consequences of peak reproductive effort in a resource pulse system. Sci. Rep. 7, 9335 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Souissi, S. & Souissi, A. Promotion of the development of sentinel species in the water column: Example using body size and fecundity of the egg-bearing calanoid copepod Eurytemora affinis. Water 13, 1442. https://doi.org/10.3390/w13111442 (2021).Article 

    Google Scholar 
    18.Madhupratap, M., Nehring, S. & Lenz, J. Resting eggs of zooplankton (Copepoda and Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Mar. Biol. 125, 77–87 (1996).Article 

    Google Scholar 
    19.Katajisto, T., Viitasalo, M. & Koski, M. Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar. Ecol. Prog. Ser. 163, 133–143 (1998).ADS 
    Article 

    Google Scholar 
    20.Walsh, M. R. The link between environmental variation and evolutionary shifts in dormancy in zooplankton. Integr. Comp. Biol. 53(4), 713–722 (2013).PubMed 
    Article 

    Google Scholar 
    21.Glippa, O., Denis, L., Lesourd, S. & Souissi, S. Seasonal fluctuations of the copepod resting egg bank in the middle Seine estuary, France: Impact on the nauplii recruitment. Estuar. Coast. Shelf Sci. 142, 60–67 (2014).ADS 
    Article 

    Google Scholar 
    22.Jamieson, C. D. & Santer, B. Maternal aging in the univoltine freshwater copepod Cyclops kolensis: variation in egg sizes, egg development times, and naupliar development times. Hydrobiologia 510, 75–81 (2003).Article 

    Google Scholar 
    23.Kiørboe, T. & Sabatini, M. Reproduction and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16(10), 1353–1366 (1994).Article 

    Google Scholar 
    24.Hirst, A. G. & Kiørboe, T. Mortality of marine planktonic copepods: global rates and patterns. Mar. Ecol. Prog. Ser. 230, 195–209 (2002).ADS 
    Article 

    Google Scholar 
    25.Andersen, M. C. & Nielson, T. G. Hatching rate of the egg carrying estuarine copepod Eurytemora affinis. Mar. Ecol. Prog. Ser. 160, 283–289 (1997).ADS 
    Article 

    Google Scholar 
    26.Winkler, G., Dodson, J. J. & Lee, C. E. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Mol. Ecol. 17, 415–430 (2008).PubMed 
    Article 

    Google Scholar 
    27.Devreker, D. et al. Tidal and annual variability of the population structure of Eurytemora affinis in the middle part of the Seine Estuary during 2005. Estuar. Coast. Shelf Sci. 89, 245–255 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Ban, S. Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J. Plankton Res. 16, 721–735 (1994).Article 

    Google Scholar 
    29.Devreker, D., Souissi, S., Winkler, G., Forget-Leray, J. & Leboulenger, F. Effects of salinity and temperature on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J. Exp. Mar. Biol. Ecol. 368, 113–123 (2009).Article 

    Google Scholar 
    30.Dur, G. et al. An individual based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecol. Model. 220, 1073–1089 (2009).Article 

    Google Scholar 
    31.Michalec, F.-G. et al. Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J. Plankton Res. 32(6), 805–813 (2010).Article 

    Google Scholar 
    32.Michalec, F.-G., Holzner, M., Menu, D., Hwang, J.-S. & Souissi, S. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants. Aquat. Toxicol. 138–139, 129–138 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    33.Souissi, A., Souissi, S. & Hwang, J.-S. Evaluation of the copepod Eurytemora affinis life history response to temperature and salinity increases. Zool. Stud. 55, e4. https://doi.org/10.6620/ZS.2016.55-04 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Souissi, A., Souissi, S. & Hansen, B. W. Physiological improvement in the copepod Eurytemora affinis through thermal and multigenerational selection. Aquac. Res. 47, 2227–2242 (2016).Article 

    Google Scholar 
    36.Souissi, A., Souissi, S., Devreker, D. & Hwang, J.-S. Occurence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France). Mar. Biol. 157, 851–861 (2010).Article 

    Google Scholar 
    37.Heinle, D. R. & Flemer, D. A. Carbon requirements of a population of the estuarine copepod Eurytemora affinis. Mar. Biol. 31, 235–247 (1975).Article 

    Google Scholar 
    38.Hirche, H.-J. Egg production of Eurytemora affinis—effect of K-strategy. Estuar. Coast. Shelf Sci. 35, 395–407 (1992).ADS 
    Article 

    Google Scholar 
    39.Crawford, P. & Daborn, G. R. Seasonal variations in body size and fecundity in a copepod of turbid estuaries. Estuaries 9(2), 133–141 (1986).Article 

    Google Scholar 
    40.IPCC Climate change The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 2007 (Cambridge University Press, 2007).
    Google Scholar 
    41.Guisande, C. & Gliwicz, Z. M. Egg size and clutch size in 2 Daphnia species grown at different food levels. J. Plankton Res. 14, 997–1007 (1992).Article 

    Google Scholar 
    42.Carrière, Y. & Roff, D. A. The evolution of offspring size and number: a test of the Smith-Fretwell model in three species of crickets. Oecologia 102, 389–396 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    43.Beyrend-Dur, D., Souissi, S., Devreker, D., Winklerd, G. & Hwang, J.-S. Life cycle traits of two transatlantic populations of Eurytemora affinis (Copepoda: Calanoida): Salinity effects. J. Plankton Res. 31(7), 713–728 (2009).Article 

    Google Scholar 
    44.Dur, G. & Souissi, S. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France). Est. Coast Shelf Sci. 200, 311–323 (2018).ADS 
    Article 

    Google Scholar 
    45.Mouny, P. & Dauvin, J. C. Environmental control of mesozooplankton communities in the Seine estuary (English Channel). Oceanol. Acta 25, 13–22 (2002).Article 

    Google Scholar 
    46.Mouny, P., Dauvin, J. C., Bessineton, C., Elkaim, B. & Simon, S. Biological components from the Seine estuary: first results. Hydrobiologia 373(374), 333–347 (1998).Article 

    Google Scholar 
    47.Dur, G., Jimenez-Melero, R., Beyrend-Dur, D., Hwang, J.-S. & Souissi, S. Individual-based model of the phenology of egg-bearing copepods application to Eurytemora affinis from the Seine estuary, France. Ecol. Model. 269, 21–36 (2013).Article 

    Google Scholar 
    48.Cailleaud, K. et al. Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonylphenols. Aquat. Tox. 112, 228–231 (2011).Article 
    CAS 

    Google Scholar 
    49.Mahjoub, M.-S., Souissi, S., Michalec, F.-G., Schmitt, F. G. & Hwang, J.-S. Swimming kinematics of Eurytemora affinis (Copepoda, Calanoida) reproductive stages and differential vulnerability to predation of larval Dicentrarchus labrax (Teleostei, Perciformes). J. Plankton Res. 33(7), 1095–1103 (2011).Article 

    Google Scholar 
    50.Lee, C. E. Rapid and repeated invasion of freshwater by the copepod Eurytemora affinis. Evolution 53(5), 1423–1434 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Inter-species interactions alter antibiotic efficacy in bacterial communities

    1.Filkins LM, O’Toole GA. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. 2015;11:e1005258.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Paterson IK, Hoyle A, Ochoa G, Baker-Austin C, Taylor NGH. Optimising antibiotic usage to treat bacterial infections. Sci Rep. 2016;6:37853.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48:5–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Brook I. Inoculum effect. Rev Infect Dis. 1989;11:361–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Karslake J, Maltas J, Brumm P, Wood KB. Population density modulates drug inhibition and gives rise to potential bistability of treatment outcomes for bacterial infections. PLOS Comput Biol. 2016;12:e1005098.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother. 2009;63:745–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa. Microbiology. 2020;166:1171–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47:317–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334:982–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015;34:877–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20:981–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Thieme L, Hartung A, Tramm K, Klinger-Strobel M, Jandt KD, Makarewicz O, et al. MBEC versus MBIC: the lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology. Biol Proced Online. 2019;21:18.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    15.Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest. 2003;123:1495–502.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Radlinski L, Conlon B. Antibiotic efficacy in the complex infection environment. Curr Opin MicrobioL 2018;42:19–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Vos MGJ, de, Zagorski M, McNally A, Bollenbach T. Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. PNAS. 2017;114:10666–71.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Aranda-Díaz A, Obadia B, Dodge R, Thomsen T, Hallberg ZF, Güvener ZT, et al. Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. eLife. 2020;9:e51493.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vega NM, Gore J. Collective antibiotic resistance: mechanisms and implications. Curr Opin Microbiol. 2014;21:28–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW, Guttman DS, et al. Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes. 2017;3:25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Orazi G, O’Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8:e00873–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Sorg RA, Lin L, Doorn GS, van, Sorg M, Olson J, Nizet V, et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLOS Biol. 2016;14:e2000631.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, et al. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc R Soc B. 2009;276:3759–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Flynn JM, Cameron LC, Wiggen TD, Dunitz JM, Harcombe WR, Hunter RC. Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis. mSphere. 2020;5:e00343–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Gurney J, Brown SP, Kaltz O, Hochberg ME. Steering phages to combat bacterial pathogens. Trends Microbiol. 2020;28:85–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Waters VJ, Kidd TJ, Canton R, Ekkelenkamp MB, Johansen HK, LiPuma JJ, et al. Reconciling antimicrobial susceptibility testing and clinical response in antimicrobial treatment of chronic cystic fibrosis lung infections. Clin Infect Dis. 2019;69:1812–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Somayaji R, Parkins MD, Shah A, Martiniano SL, Tunney MM, Kahle JS, et al. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review. J Cyst Fibros. 2019;18:236–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Raghuvanshi R, Vasco K, Vázquez-Baeza Y, Jiang L, Morton JT, Li D, et al. High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. mSystems. 2020;5:e00292–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Cystic Fibrosis Trust. UK cystic fibrosis registry annual data report 2019. 2020. [online] Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/2019%20Registry%20Annual%20Data%20report_Sep%202020.pdf [Accessed 5 June 2021].31.Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr. 2001;138:699–704.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sánchez MB. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol. 2015;6:658.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Salsgiver EL, Fink AK, Knapp EA, LiPuma JJ, Olivier KN, Marshall BC, et al. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis. Chest. 2016;149:390–400.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Cystic Fibrosis Trust. Antibiotic treatment for cystic fibrosis. 2009. [online] Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-11/Anitbiotic%20Treatment.pdf [Accessed 7 June 2021].35.Denton M, Todd NJ, Littlewood JM. Role of anti-pseudomonal antibiotics in the emergence of Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 1996;15:402–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Esposito A, Pompilio A, Bettua C, Crocetta V, Giacobazzi E, Fiscarelli E, et al. Evolution of Stenotrophomonas maltophilia in cystic fibrosis lung over chronic infection: a genomic and phenotypic population study. Front Microbiol. 2017;8:1590.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Pompilio A, Crocetta V, De Nicola S, Verginelli F, Fiscarelli E, Di Bonaventura G. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front Microbiol. 2015;6:951.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Dalbøge CS, Hansen CR, Pressler T, Høiby N, Johansen HK. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. J Cyst Fibros. 2011;10:318–25.PubMed 
    Article 

    Google Scholar 
    39.Okazaki A, Avison MB. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother. 2008;52:1525–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Yurtsev EA, Chao HX, Datta MS, Artemova T, Gore J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol Syst Biol. 2013;9:683.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Bottery MJ, Wood AJ, Brockhurst MA. Selective conditions for a multidrug resistance plasmid depend on the sociality of antibiotic resistance. Antimicrob Agents Chemother. 2016;60:2524–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007;189:8079–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Artemova T, Gerardin Y, Dudley C, Vega NM, Gore J. Isolated cell behavior drives the evolution of antibiotic resistance. Mol Syst Biol. 2015;11:822.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Harrison E, Wood AJ, Dytham C, Pitchford JW, Truman J, Spiers A, et al. Bacteriophages limit the existence conditions for conjugative plasmids. mBio. 2015;6:e00586–15.PubMed 
    PubMed Central 

    Google Scholar 
    45.Hall JPJ, Wood AJ, Harrison E, Brockhurst MA. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. PNAS. 2016;113:8260–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother. 2004;48:3670–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc R Soc B. 2018;285:20172687.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Zhanel GG, Simor AE, Vercaigne L, Mandell L. Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis. 1998;9:215–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Gould VC, Okazaki A, Avison MB. β-Lactam resistance and β-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J Antimicrob Chemother. 2006;57:199–203.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.European Cystic Fibrosis Society Patient Registry. ECFS patient registry annual data report 2018. 2020. [online] Available at: https://www.ecfs.eu/sites/default/files/general-content-files/working-groups/ecfs-patient-registry/ECFSPR_Report_2018_v1.4.pdf [Accessed 7 June 2021].51.Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 2017;15:e2003981.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Harrison FY. Microbial ecology of the cystic fibrosis lung. Microbiology. 2007;153:917–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Keel RA, Sutherland CA, Crandon JL, Nicolau DP. Stability of doripenem, imipenem and meropenem at elevated room temperatures. Int J Antimicrob Agents. 2011;37:184–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Okazaki A, Avison MB. Aph(3′)-IIc, an Aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2007;51:359–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Li X-Z, Zhang L, McKay GA, Poole K. Role of the acetyltransferase AAC(6′)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J Antimicrob Chemother. 2003;51:803–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Frost I, Smith WPJ, Mitri S, Millan AS, Davit Y, Osborne JM, et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 2018;12:1582–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Yin C, Yang W, Meng J, Lv Y, Wang J, Huang B. Co-infection of Pseudomonas aeruginosa and Stenotrophomonas maltophilia in hospitalised pneumonia patients has a synergic and significant impact on clinical outcomes. Eur J Clin Microbiol Infect Dis. 2017;36:2231–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I, et al. Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med. 2011;183:635–40.PubMed 
    Article 

    Google Scholar 
    59.Goss CH, Mayer-Hamblett N, Aitken ML, Rubenfeld GD, Ramsey BW. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax. 2004;59:955–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Mojica MF, Ouellette CP, Leber A, Becknell MB, Ardura MI, Perez F, et al. Successful treatment of bloodstream infection due to metallo-β-lactamase-producing Stenotrophomonas maltophilia in a renal transplant patient. Antimicrob Agents Chemother. 2016;60:5130–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.McCutcheon JG, Dennis JJ. The potential of phage therapy against the emerging opportunistic pathogen Stenotrophomonas maltophilia. Viruses. 2021;13:1057.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol. 2021;19:331–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Davies EV, James CE, Brockhurst MA, Winstanley C. Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model. BMC Microbiol. 2017;17:3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Bara JJ, Matson Z, Remold SK. Life in the cystic fibrosis upper respiratory tract influences competitive ability of the opportunistic pathogen Pseudomonas aeruginosa. R Soc Open Sci. 2018;5:180623.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Bartell JA, Sommer LM, Haagensen JAJ, Loch A, Espinosa R, Molin S, et al. Evolutionary highways to persistent bacterial infection. Nat Commun. 2019;10:629.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLOS Comput Biol. 2018;14:e1006179.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, et al. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun. 2017;8:14371.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, et al. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J. 2012;6:471–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. PNAS. 2015;112:4110–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. 2012;64:e3857.
    Google Scholar 
    72.Harrison F, Diggle SP. An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms. Microbiology. 2016;162:1755–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Harrington NE, Sweeney E, Harrison F. Building a better biofilm – formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm. 2020;2:100024.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL, Waters EM, et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nat Commun. 2018;9:2635.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Castellani S, Di Gioia S, di Toma L, Conese M. Human cellular models for the investigation of lung inflammation and mucus production in cystic fibrosis. Anal Cell Pathol. 2018;2018:3839803.Article 
    CAS 

    Google Scholar 
    76.Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun. 2018;9:1599.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Choi K-H, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and Its applications to single-cell Sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    81.Onoue Y, Mori M. Amino acid requirements for the growth and enterotoxin production by Staphylococcus aureus in chemically defined media. Int J Food Microbiol. 1997;36:77–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34:2422–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Kuznetsov A, Bollin CJ. NCBI Genome Workbench: desktop software for comparative genomics, visualization, and GenBank data submission. Methods Mol Biol. 2021;2231:261–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae)

    1.Andersson, M. Sexual Selection (Princeton University Press, 1996).
    Google Scholar 
    2.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    3.Olsson, M., Shine, R., Wapstra, E., Ujvari, B. & Madsen, T. Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution 56, 1538–1542 (2002).Article 

    Google Scholar 
    4.McPherson, F. J. & Chenoweth, P. J. Mammalian sexual dimorphism. Anim. Reprod. Sci. 131, 109–122 (2012).Article 
    CAS 

    Google Scholar 
    5.Shine, R. The evolution of large body size in females: A critique of Darwin’s “fecundity advantage” model. Am. Nat. 131, 124–131 (1988).Article 

    Google Scholar 
    6.Fairbairn, D. J. et al. (eds) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).
    Google Scholar 
    7.Slatkin, M. Ecological causes of sexual dimorphism. Evolution 38, 622–630 (1984).Article 

    Google Scholar 
    8.Shine, R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64, 419–461 (1989).Article 
    CAS 

    Google Scholar 
    9.Herrel, A., Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).Article 

    Google Scholar 
    10.Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    11.Hierlihy, C. A., Garcia-Collazo, R., Chavez Tapia, C. B. & Mallory, F. F. Sexual dimorphism in the lizard Sceloporus siniferus: Support for the intraspecific niche divergence and sexual selection hypotheses. Salamandra 49, 1–6 (2013).
    Google Scholar 
    12.Vitt, L. J. & Cooper, W. E. Jr. The evolution of sexual dimorphism in the skink Eumeces laticeps: An example of sexual selection. Can. J. Zool. 63, 995–1002 (1985).Article 

    Google Scholar 
    13.Shine, R. Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. Am. Nat. 138, 103–122 (1991).Article 

    Google Scholar 
    14.Fitzgerald, M. & Shine, R. Mate-guarding in free-ranging Carpet Pythons (Morelia spilota). Aust. Zool. 39, 434–439 (2018).Article 

    Google Scholar 
    15.Cundall, D. & Greene, H. W. Feeding in snakes. In Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 293–333 (Academic Press, 2000).Chapter 

    Google Scholar 
    16.Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 
    Article 

    Google Scholar 
    17.Shine, R., Bonnet, X., Elphick, M. J. & Barrott, E. G. A novel foraging mode in snakes: Browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24 (2004).Article 

    Google Scholar 
    18.Lynch, T. P. The Behavioural Ecology of the Olive Sea Snake, Aipysurus laevis. PhD thesis, James Cook University (2000).19.Borczyk, B., Paśko, Ł, Kusznierz, J. & Bury, S. Sexual dimorphism and skull size and shape in the highly specialized snake species, Aipysurus eydouxii (Elapidae: Hydrophiinae). PeerJ 9, e11311 (2021).Article 

    Google Scholar 
    20.Queral-Regil, A. & King, R. B. Evidence for phenotypic plasticity in snake body size and relative head dimensions in response to amount and size of prey. Copeia 1998, 423–429 (1998).Article 

    Google Scholar 
    21.Bonnet, X., Shine, R., Naulleau, G. & Thiburce, C. Plastic vipers: influence of food intake on the size and shape of Gaboon vipers (Bitis gabonica). J. Zool. 255, 341–351 (2001).Article 

    Google Scholar 
    22.Sanders, K. L., Lee, M. S., Leys, R., Foster, R. & Keogh, J. S. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): Evidence from seven genes for rapid evolutionary radiations. J. Evol. Biol. 21, 682–695 (2008).Article 
    CAS 

    Google Scholar 
    23.Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19, 1932–1936 (2009).Article 
    CAS 

    Google Scholar 
    24.McCarthy, C. J. Adaptations of sea snakes that eat fish eggs; with a note on the throat musculature of Aipysurus eydouxi (Gray, 1849). J. Nat. Hist. 21, 1119–1128 (1987).Article 

    Google Scholar 
    25.Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).Article 

    Google Scholar 
    26.Segall, M., Cornette, R., Fabre, A. C., Godoy-Diana, R. & Herrel, A. Does aquatic foraging impact head shape evolution in snakes? Proc. R. Soc. B 283, 20161645 (2016).Article 

    Google Scholar 
    27.Avolio, C., Shine, R. & Pile, A. J. The adaptive significance of sexually dimorphic scale rugosity in sea snakes. Am. Nat. 167, 728–738 (2006).Article 

    Google Scholar 
    28.Sherratt, E., Rasmussen, A. R. & Sanders, K. L. Trophic specialization drives morphological evolution in sea snakes. R. Soc. Open Sci. 5, 172141 (2018).ADS 
    Article 

    Google Scholar 
    29.Frédérich, B. & Parmentier, E. (eds) Biology of Damselfishes (CRC Press, 2016).
    Google Scholar 
    30.Heatwole, H. Sea Snakes 2nd edn. (Krieger Publishing Company, 1999).
    Google Scholar 
    31.Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).Article 

    Google Scholar 
    32.Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): The effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).Article 

    Google Scholar 
    33.Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).Article 

    Google Scholar  More