More stories

  • in

    Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice

    Seasonal changes in weather, food availability and mice body conditionThe weather was hot and dry during summer (temperature: 24.42 ± 0.36 °C; total rainfall: 0.60 mm) and temperatures were lower and rainfall was higher during the winter months (temperature: 13.47 ± 0.45 °C; total rainfall: 39.60 mm; LM: N = 138, F = 368.4, P  More

  • in

    Urohidrosis as an overlooked cooling mechanism in long-legged birds

    1.Amat, J. A. & Masero, J. A. How Kentish plovers, Charadrius alexandrinus, cope with heat stress during incubation. Behav. Ecol. Sociobiol. 56, 26–33 (2004).Article 

    Google Scholar 
    2.du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Chang. Biol. 18, 3063–3070 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Cunningham, S. J., Martin, R. O. & Hockey, P. A. R. Can behaviour buffer the impacts of climate change on an arid-zone bird?. Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    4.Smit, B. et al. Behavioural responses to heat in desert birds: implications for predicting vulnerability to climate warming. Clim. Chang. Responses 3, 1–14 (2016).Article 

    Google Scholar 
    5.McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).6.Cunningham, S. J., Gardner, J. L. & Martin, R. O. Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 1, 1–8. https://doi.org/10.1002/fee.2324 (2021).Article 

    Google Scholar 
    7.Wolf, B. O., Wooden, K. M. & Walsberg, G. E. The use of thermal refugia by two small desert birds. Condor 98(2), 424–428 (1996).Article 

    Google Scholar 
    8.Cook, T. R. et al. Parenting in a warming world: Thermoregulatory responses to heat stress in an endangered seabird. Conserv. Physiol. 8, 1–13 (2020).Article 

    Google Scholar 
    9.Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    10.Nilsson, J. Å. & Nord, A. Testing the heat dissipation limit theory in a breeding passerine. Proc. R. Soc. B Biol. Sci. 285, 1 (2018).
    Google Scholar 
    11.Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).Article 

    Google Scholar 
    12.Tapper, S., Nocera, J. J. & Burness, G. Heat dissipation capacity influences reproductive performance in an aerial insectivore. J. Exp. Biol. 223, 1 (2020).
    Google Scholar 
    13.Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).Article 

    Google Scholar 
    14.Edwards, E. K., Mitchell, N. J. & Ridley, A. R. The impact of high temperatures on foraging behaviour and body condition in the Western Australian Magpie Cracticus tibicen dorsalis. Ostrich 86, 137–144 (2015).Article 

    Google Scholar 
    15.Thompson, M. L., Cunningham, S. J. & McKechnie, A. E. Interspecific variation in avian thermoregulatory patterns and heat dissipation behaviours in a subtropical desert. Physiol. Behav. 188, 311–323 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Kemp, R. et al. Sublethal fitness costs of chronic exposure to hot weather vary between sexes in a threatened desert lark. Emu 120, 216–229 (2020).Article 

    Google Scholar 
    17.Funghi, C., McCowan, L. S. C., Schuett, W. & Griffith, S. C. High air temperatures induce temporal, spatial and social changes in the foraging behaviour of wild zebra finches. Anim. Behav. 149, 33–43 (2019).Article 

    Google Scholar 
    18.Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns?. J. Avian Biol. 51, 1–11 (2020).Article 

    Google Scholar 
    19.Moyer-Horner, L., Mathewson, P. D., Jones, G. M., Kearney, M. R. & Porter, W. P. Modeling behavioral thermoregulation in a climate change sentinel. Ecol. Evol. 5, 5810–5822 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bladon, A. J. et al. Behavioural thermoregulation and climatic range restriction in the globally threatened ethiopian bush-crow Zavattariornis stresemanni. Ibis 161(3), 546–558. https://doi.org/10.1111/ibi.12660 (2019).Article 

    Google Scholar 
    22.Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl. Acad. Sci. USA 116, 14065–14070 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl. Acad. Sci. USA 114, 2283–2288 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dawson, W. R. Evaporative losses of water by birds. Comp. Biochem. Physiol. Part A Physiol. 71, 495–509 (1982).Article 
    CAS 

    Google Scholar 
    26.Wolf, B. O. & Walsberg, G. E. Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird. J. Exp. Biol. 199, 451–457 (1996).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Calder, W. A. & Smichdt-Nielsen, K. Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci. USA 55(4), 750–756. https://doi.org/10.1073/pnas.55.4.750 (1966).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    28.Bartholomew, G. A. The role of behavior in the temperature regulation of the masked booby. Condor 68, 523–535. https://doi.org/10.2307/1366261 (1966).Article 

    Google Scholar 
    29.Bryant, D. M. Heat stress in tropical birds: behavioural thermoregulation during flight. Ibis (Lond. 1859). 125, 313–323 (1983).30.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science (80-. ). 325, 468–470 (2009).31.Van De Ven, T. M. F. N., Martin, R. O., Vink, T. J. F., McKechnie, A. E. & Cunningham, S. J. Regulation of heat exchange across the hornbill beak: Functional similarities with toucans?. PLoS ONE 11, 1–14 (2016).
    Google Scholar 
    32.Van Vuuren, A. K., Kemp, L. V. & McKechnie, A. E. The beak and unfeathered skin as heat radiators in the southern ground-hornbill. J. Avian Biol. 51, 1–7 (2020).
    Google Scholar 
    33.Winkler, D.W., Billerman, S.M. & Lovette, I.J. Storks (Ciconiidae), version 1.0. In Birds of the World (S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg, Editors). Cornell Lab of Ornithology (2020) https://doi.org/10.2173/bow.ciconi2.0134.Kahl, P. M. Thermoregulation in the wood stork, with special reference to the role of the legs. Physiol Zool. 36(2), 141–151 (1963).Article 

    Google Scholar 
    35.Steen, I. & Steen, J. B. The Importance of the Legs in the Thermoregulation of Birds. Acta Physiol. Scand. 63, 285–291 (1965).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Hainsworth, F. R. Saliva spreading, activity and body temperature regulation in the rat. Am J Physiol. 212, 1288–1292 (1967).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Gentry, R. L. Thermoregulatory behavior of eared seals. Behaviour 46(2), 73–93. https://doi.org/10.1163/156853973×00175 (1973).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Sturbaum, B. A. & Riedesel, M. L. Dissipation of stored body heat by the ornate box turtle, Terrapene ornata. Comp. Biochem. Physiol. Part A Physiol. 58, 93–97 (1977).Article 

    Google Scholar 
    39.Marder, J., Porat, I., Raber, P. & Adler, J. Acid-base balance and body temperature regulation of heat stressed Psammomys obesus (Gerbillinae): The effect of bicarbonate loss via saliva spreading. Physiol Zool. 56(3), 389–396. https://doi.org/10.1086/physzool.56.3.30152603 (1983).Article 

    Google Scholar 
    40.Hatch, D. E. Energy conserving and heat dissipating mechanisms of the turkey vulture. Auk 87(1), 111–124. https://doi.org/10.2307/4083662 (1970).Article 

    Google Scholar 
    41.Cooper, J. & Siegfried, W. R. Behavioural responses of young cape gannets Sula capensis to high ambient temperatures. Mar. Behav. Physiol. 3, 211–220 (1976).Article 

    Google Scholar 
    42.Thomas, B. T. Maguari Stork Nesting: Juvenile Growth and Behavior. Auk 101, 812–823 (1984).Article 

    Google Scholar 
    43.Hancock, J.A., Kushlan, J.A. & Kahl, M.P. Storks, Ibises and Spoonbills of the World (Academic Press, 1992).44.Townsend, H., Huyvaert, K. P., Hodum, P. J. & Anderson, D. J. Nesting distributions of Galapagos boobies (Aves: Sulidae): an apparent case of amensalism. Oecologia 132, 419–427. https://doi.org/10.1007/s00442-002-0992-7 (2002).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Finkelstein, M., Kuspa, Z., Snyder, N.F. & Schmitt, N.J. California condor (Gymnogyps californianus), version 2.0. In The Birds of North America (P. G. Rodewald, Editor). Cornell Lab of Ornithology (2015). https://doi.org/10.2173/bna.61046.Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    47.Nudds, R. L. & Oswald, S. A. An interspecific test of Allen’s rule: Evolutionary implications for endothermic species. Evolution (N. Y). 61, 2839–2848 (2007).48.Symonds, M. R. E. & Tattersall, G. J. Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am. Nat. 176, 188–197 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    50.Wilman, H. et al. EltonTraits 1 . 0 : Species-level foraging attributes of the world ’ s birds and mammals. Ecology 95, 2027 (2014).51.Brooke, M. D. L. Ecological factors influencing the occurrence of ‘flash marks’ in wading birds. Funct. Ecol. 12, 339–346 (1998).Article 

    Google Scholar 
    52.Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: An r package for modelling meso- and microclimate. Methods Ecol Evol. 10(2), 280–290. https://doi.org/10.1111/2041-210X.13093 (2019).Article 

    Google Scholar 
    53.Hadfield, A. J. Package ‘ MCMCglmm ’. https://cran.r-project.org/web/packages/MCMCglmm/ (2019)54.Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. 2012. The global diversity of birds in space and time. Nature. 491(7424): 444–448 (2012). https://doi.org/10.1038/nature1163155.Revell, M.L.J. Package ‘ phytools ’ https://cran.r-project.org/web/packages/phytools/ (2020)56.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).58.Crawley, M.J. The R Book (John Wiley & Sons, 2013).59.Barton, K. Package MuMin: Multi-model Inference https://cran.r-project.org/web/packages/MuMIn/index.html (2020).60.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).63.Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).Article 

    Google Scholar 
    64.van Dyk, M., Noakes, M. J. & McKechnie, A. E. Interactions between humidity and evaporative heat dissipation in a passerine bird. J. Comp. Physiol. B. 189, 299–308. https://doi.org/10.1007/s00360-019-01210-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Webster, M.D., Campbell, G.S. & King, J.R. Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage. Physiol. Zool. 58(1): 58–70 (1985). http://www.jstor.org/stable/30161220.66.Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103, 97–103 (2003).Article 

    Google Scholar 
    67.Piersma, T. & van Gils, J.A. The Flexible Phenotype: A Body-Centered Integration of Ecology, Physiology, and Behavior (Oxford University Press, 2011).68.Fitzpatrick, M. J., Mathewson, P. D. & Porter, W. P. Validation of a mechanistic model for non-invasive study of ecological energetics in an endangered wading bird with counter-current heat exchange in its legs. PLoS ONE 10, 1–34 (2015).Article 
    CAS 

    Google Scholar 
    69.Lustick, S., Battersby, B. & Kelty, M. Effects of insolation on juvenile herring gull energetics and behavior. Ecologia. 60(4), 673–678. https://doi.org/10.2307/1936603 (1979).Article 

    Google Scholar 
    70.Ward, J. M., Blount, J. D., Ruxton, G. D. & Houston, D. C. The adaptive significance of dark plumage for birds in desert environments. Ardea 90, 311–323 (2002).
    Google Scholar 
    71.Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, (2020).72.Mitchell, D. et al. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 87, 956–973 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Walsberg, G. E., Campbell, G. S. & King, J. R. Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol. B 126, 211–222 (1978).Article 

    Google Scholar 
    74.McFarland, D. J. & Baher, E. Factors affecting feather posture in the barbary dove. Anim. Behav. 16, 171–177 (1968).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Hohtola, E., Rintamäki, H. & Hissa, R. Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. J Comp Physiol. 136, 77–81. https://doi.org/10.1007/BF00688626 (1980).Article 

    Google Scholar 
    76.Kahl, P. M. Spread-wing postures and their possible functions in the Ciconiidae. Auk 88(4), 715–722. https://doi.org/10.2307/4083833 (1971).Article 

    Google Scholar 
    77.Dawson, T. J., Robertshaw, D. & Taylor, C. R. Sweating in the kangaroo: A cooling mechanism during exercise, but not in the heat. Am J Physiol. 227(2), 494–498. https://doi.org/10.1152/ajplegacy.1974.227.2.494 (1974).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Hoffman, T. C. M., Walsberg, G. E. & DeNardo, D. F. Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation. J. Exp. Biol. 210, 741–749 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Graves, G. R. Urohidrosis and tarsal color in Cathartes vultures (Aves: Cathartidae). Proc. Biol. Soc. Washingt. 132, 56–64 (2019).Article 

    Google Scholar 
    80.Torres, R. & Velando, A. Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii.. Anim. Behav. 69, 59–65 (2005).Article 

    Google Scholar 
    81.López-Rull, I., Lifshitz, N., Macías Garcia, C., Graves, J. A. & Torres, R. Females of a polymorphic seabird dislike foreign-looking males. Anim. Behav. 113, 31–38 (2016).82.Gutiérrez, J. S. & Soriano-Redondo, A. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behav. Ecol. 31, 1429–1435 (2021).Article 

    Google Scholar 
    83.Jarić, I. et al. iEcology: Harnessing large online resources to generate ecological insights. Trends Ecol. Evol. 35, 630–639 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Vrettos, M., Reynolds, C. & Amar, A. Malar stripe size and prominence in peregrine falcons vary positively with solar radiation: support for the solar glare hypothesis. Biol. Lett. 17, 20210116. https://doi.org/10.1098/rsbl.2021.0116 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards

    1.Ashman, T.-L. et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    2.Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515 (2008).Article 

    Google Scholar 
    3.Rollin, O. & Garibaldi, L. A. Impacts of honeybee density on crop yield: A meta-analysis. J. Appl. Ecol. 56, 1152–1163. https://doi.org/10.1111/1365-2664.13355 (2019).Article 

    Google Scholar 
    4.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999. https://doi.org/10.1038/s41467-020-17751-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 88, 271–281 (2007).Article 

    Google Scholar 
    6.Igic, B. & Kohn, J. R. The distribution of plant mating systems: Study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).Article 

    Google Scholar 
    7.Abrol, D. P. Pollination Biology: Biodiversity and Conservation and Agricultural Production. Applied Pollination: Present Scenario 55–83 (Springer, 2012).
    Google Scholar 
    8.Frankel, R. & Galun, E. Pollination Mechanisms, Reproduction and Plant Breeding Vol. 2 (Springer Verlag, 1977).Book 

    Google Scholar 
    9.Schneider, D., Goldway, M., Rotman, N., Adato, I. & Stern, R. A. Cross-pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 122, 380–384 (2009).Article 

    Google Scholar 
    10.Fattahi, R., Mohammadzedeh, M. & Khadivi-Khub, A. Influence of different pollen sources on nut and kernel characteristics of hazelnut. Sci. Hortic. 173, 15–19 (2014).Article 

    Google Scholar 
    11.Żurawicz, E., Studnicki, M., Kubik, J. & Pruski, K. A careful choice of compatible pollinizers significantly improves the size of fruits in red raspberry (Rubus idaeus L.). Sci. Hortic. 235, 253–257 (2018).Article 

    Google Scholar 
    12.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Willcox, B. K., Aizen, M. A., Cunningham, S. A., Mayfield, M. M. & Rader, R. Deconstructing pollinator community effectiveness. Curr. Opin. Insect. Sci. 21, 98–104. https://doi.org/10.1016/j.cois.2017.05.012 (2017).Article 
    PubMed 

    Google Scholar 
    14.Richards, T. E. et al. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 9, 228 (2020).CAS 
    Article 

    Google Scholar 
    15.van Nocker, S. & Gardiner, S. E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 1, 14022. https://doi.org/10.1038/hortres.2014.22 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    17.Brittain, C., Kremen, C., Garber, A. & Klein, A.-M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 9, e90082. https://doi.org/10.1371/journal.pone.0090082 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 281, 20132440 (2014).Article 

    Google Scholar 
    19.Crane, J. et al. in The Avocado: Botany, Production and Uses (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 200–233 (CABI, 2013).20.Duarte, P. F., Chaves, M. A., Borges, C. D. & Mendonça, C. R. B. Avocado: Characteristics, health benefits and uses. Ciênc. Rural 46, 747–754. https://doi.org/10.1590/0103-8478cr20141516 (2016).CAS 
    Article 

    Google Scholar 
    21.Dreher, M. L. & Davenport, A. J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 53, 738–750. https://doi.org/10.1080/10408398.2011.556759 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E. & Aguilar, C. N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 80, 51–60. https://doi.org/10.1016/j.tifs.2018.07.027 (2018).CAS 
    Article 

    Google Scholar 
    23.Lerman-Garber, I., Ichazo-Cerro, S., Zamora-González, J., Cardoso-Saldaña, G. & Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 17, 311–315. https://doi.org/10.2337/diacare.17.4.311 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.López, L. R. et al. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 27, 519–523 (1996).
    Google Scholar 
    25.Kris-Etherton, P. M. et al. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70, 1009–1015 (1999).CAS 
    Article 

    Google Scholar 
    26.Trueman, S. J., Richards, S., McConchie, C. A. & Turnbull, C. G. N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 40, 859–866 (2000).Article 

    Google Scholar 
    27.Stout, A. B. A Study in Cross-Pollination of Avocados in Southern California (New York Botanical Garden, 1923).
    Google Scholar 
    28.Blanke, M. M. & Lovatt, C. J. Anatomy and transpiration of the avocado inflorescence. Ann. Bot. 71, 543–547. https://doi.org/10.1006/anbo.1993.1070 (1993).Article 

    Google Scholar 
    29.Salazar-García, S., Garner, L. C. & Lovatt, C. J. in The Avocado: Botany, Production and Uses. Reproductive Biology (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 118–167 (CABI, 2013).30.Garner, L. C. & Lovatt, C. J. The relationship between flower and fruit abscission and alternate bearing of ‘Hass’ avocado. J. Am. Soc. Hortic. Sci. 133, 3–10. https://doi.org/10.21273/jashs.133.1.3 (2008).Article 

    Google Scholar 
    31.Vithanage, V. The role of the European honeybee (Apis mellifera L.) in avocado pollination. J. Hortic. Sci. 65, 81–86. https://doi.org/10.1080/00221589.1990.11516033 (1990).Article 

    Google Scholar 
    32.Perez-Balam, J. et al. The contribution of honey bees, flies and wasps to avocado (Persea americana) pollination in southern Mexico. J. Pollinat. Ecol. 8, 42–47 (2012).Article 

    Google Scholar 
    33.Ying, Z., Davenport, T. L. R., Zhang, T., Schnell, R. J. & Tondo, C. L. Selection of highly informative microsatellite markers to identify pollen donors in “Hass” avocado orchards. Plant Mol. Biol. Rep. 27, 374–380 (2009).CAS 
    Article 

    Google Scholar 
    34.Alcaraz, M. & Hormaza, J. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Ann. Appl. Biol. 158, 354–361 (2011).Article 

    Google Scholar 
    35.Borrone, J. W. et al. Outcrossing in Florida avocados as measured using microsatellite markers. J. Am. Soc. Hortic. Sci. 133, 255–261 (2008).Article 

    Google Scholar 
    36.Schnell, R. J. et al. Outcrossing between ‘Bacon’ pollinizers and adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44, 1522. https://doi.org/10.21273/hortsci.44.6.1522 (2009).Article 

    Google Scholar 
    37.Degani, C., Goldring, A., Adato, I., El-Batsri, R. & Gazit, S. Pollen parent effect on outcrossing rate, yield, and fruit characteristics of `Fuerte’ avocado. HortScience 25, 471. https://doi.org/10.21273/hortsci.25.4.471 (1990).Article 

    Google Scholar 
    38.Sedgley, M. & Annells, C. M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’. Sci. Hortic. 14, 27–33. https://doi.org/10.1016/0304-4238(81)90075-3 (1981).Article 

    Google Scholar 
    39.Degani, C., El-Batsri, R. & Gazit, S. Outcrossing rate, yield, and selective fruit abscission in “Ettinger” and “Ardith” avocado plots. J. Am. Soc. Hortic. Sci. 122, 813–817 (1997).Article 

    Google Scholar 
    40.Ying, Z. et al. Re-evaluation of the roles of honeybees and wind on pollination in avocado. J. Hortic. Sci. Biotechnol. 84, 255–260. https://doi.org/10.1080/14620316.2009.11512513 (2009).Article 

    Google Scholar 
    41.Sapir, G. et al. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 219, 107–117. https://doi.org/10.1016/j.scienta.2017.03.010 (2017).Article 

    Google Scholar 
    42.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76, 17–23. https://doi.org/10.1080/14620316.2001.11511320 (2001).Article 

    Google Scholar 
    43.Kämper, W., Trueman, S. J., Ogbourne, S. M. & Wallace, H. M. Pollination services in macadamia depend on across-orchard transport of cross pollen. J. Appl. Ecol. (under review).44.Robbertse, P. J., Coetzer, L. A., Johannsmeier, M. F., Köhne, J. S. & Morudu, T. M. Hass Yield and Fruit Size as Influenced by Pollination and Pollen Donor—A Joint Progress Report 63–67 (South African Avocado Growers’ Association Yearbook, 1996).
    Google Scholar 
    45.Araújo, E., Costa, M., Chaud-Netto, J. & Fowler, H. G. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Braz. J. Biol. 64, 563–568 (2004).Article 

    Google Scholar 
    46.Jalali-Khanabadi, B.-A., Mozaffari-Khosravi, H. & Parsaeyan, N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Altern. Complement. Med. 16, 1279–1283 (2010).Article 

    Google Scholar 
    47.Kaiser, C. & Wolstenholme, B. N. Aspects of delayed harvest of ‘Hass’ avocado (Persea americana Mill.) fruit in a cool subtropical climate. I. Fruit lipid and fatty acid accumulation. J. Hortic. Sci. 69, 437–445. https://doi.org/10.1080/14620316.1994.11516473 (1994).CAS 
    Article 

    Google Scholar 
    48.Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Environ. Resour. 25, 53–88. https://doi.org/10.1146/annurev.energy.25.1.53 (2000).Article 

    Google Scholar 
    49.Bangerth, F. Calcium-related physiological disorders of plants. Annu. Rev. Phytopathol. 17, 97–122. https://doi.org/10.1146/annurev.py.17.090179.000525 (1979).CAS 
    Article 

    Google Scholar 
    50.Witney, G. W., Hofman, P. J. & Wolstenholme, B. N. Effect of cultivar, tree vigour and fruit position on calcium accumulation in avocado fruits. Sci. Hortic. 44, 269–278. https://doi.org/10.1016/0304-4238(90)90127-Z (1990).CAS 
    Article 

    Google Scholar 
    51.Matoh, T. & Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111, 179–190 (1998).CAS 
    Article 

    Google Scholar 
    52.Hopkirk, G., White, A., Beever, D. J. & Forbes, S. K. Influence of postharvest temperatures and the rate of fruit ripening on internal postharvest rots and disorders of New Zealand ‘Hass’ avocado fruit. N. Z. J. Crop Hortic. Sci. 22, 305–311. https://doi.org/10.1080/01140671.1994.9513839 (1994).Article 

    Google Scholar 
    53.Meir, S. et al. Prolonged storage of `Hass’ avocado fruit using modified atmosphere packaging. Postharvest Biol. Technol. 12, 51–60. https://doi.org/10.1016/S0925-5214(97)00038-0 (1997).CAS 
    Article 

    Google Scholar 
    54.Flitsanov, U., Mizrach, A., Liberzon, A., Akerman, M. & Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 20, 279–286 (2000).Article 

    Google Scholar 
    55.Hofman, P. J., Bower, J. & Woolf, A. in The Avocado: Botany, Production and Uses. Harvesting, Packing, Postharvest Technology, Transport and Processing (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 489–540 (CABI, 2013).56.McGeehan, S. L. & Naylor, D. V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 19, 493–505. https://doi.org/10.1080/00103628809367953 (1988).CAS 
    Article 

    Google Scholar 
    57.Rayment, G. E. & Higginson, F. R. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata, 1992).
    Google Scholar 
    58.Munter, R. C. & Grande, R. A. in Developments in Atomic Plasma Spectrochemical Analysis. Plant Tissue and Soil Extract Analysis by ICP-Atomic Emission Spectrometry (ed. Byrnes, R. M.) 653–672 (Heyden, 1981).59.Martinie, G. D. & Schilt, A. A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 48, 70–74. https://doi.org/10.1021/ac60365a032 (1976).CAS 
    Article 

    Google Scholar 
    60.Bai, S. H. et al. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 56, 792–798. https://doi.org/10.1007/s13197-018-3539-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Ivanova, N. V., Fazekas, A. J. & Hebert, P. D. N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 26, 186–198 (2008).CAS 
    Article 

    Google Scholar 
    62.Kämper, W., Cooke, J., Trueman, S. J. & Ogbourne, S. M. Detection of single nucleotide polymorphisms (SNPs) in avocado cultivars, Persea americana (Lauraceae). Appl. Plant Sci. (submitted).63.Jordon-Thaden, I. E. et al. A basic ddRADseq two-enzyme protocol performs well with herbarium and silica-dried tissues across four genera. Appl. Plant Sci. 8, e11344–e11344. https://doi.org/10.1002/aps3.11344 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Sharon, D. et al. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95, 911–921 (1997).CAS 
    Article 

    Google Scholar 
    65.Borrone, J. W., Schnell, R. J., Violi, H. A. & Ploetz, R. C. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol. Ecol. Resour. 7, 439–444 (2007).CAS 
    Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    67.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    Rapid transmission of respiratory infections within but not between mountain gorilla groups

    1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science https://doi.org/10.1126/science.aax3100 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. https://doi.org/10.1016/S0001-706X(00)00179-0 (2001).Article 
    PubMed 

    Google Scholar 
    3.Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. https://doi.org/10.1111/brv.12009 (2013).Article 
    PubMed 

    Google Scholar 
    4.Magouras, I. et al. Emerging zoonotic diseases: Should we rethink the animal–human interface?. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.582743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.American Veterinary Medical Association. One Health: A New Professional Imperative. One Health Initiative Task Force: Final Report. (2008).6.VandeWoude, S. et al. Parallel pandemics illustrate the need for One Health solutions. EcoEvoRxiv (2021).7.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).Article 

    Google Scholar 
    8.Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-020518-115628 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature https://doi.org/10.1038/nature09442 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Keele, B. F. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science (80-). 313, 523–526 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Calvignac-Spencer, S., Leendertz, S. A. J., Gillespie, T. R. & Leendertz, F. H. Wild great apes as sentinels and sources of infectious disease. Clin. Microbiol. Infect. https://doi.org/10.1111/j.1469-0691.2012.03816.x (2012).Article 
    PubMed 

    Google Scholar 
    12.Ryan, S. J. & Walsh, P. D. Consequences of non-intervention for infectious disease in African great apes. PLoS One 6, e29030 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Walsh, P. D. et al. Catastrophic ape decline in western equatorial Africa. Nature 422, 611–614 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Thompson, M. E. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. https://doi.org/10.1098/rsos.180840 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Williams, J. M. et al. Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am. J. Primatol. https://doi.org/10.1002/ajp.20573 (2008).Article 
    PubMed 

    Google Scholar 
    17.Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. https://doi.org/10.1080/22221751.2018.1563456 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Scully, E. J. et al. Lethal respiratory disease associated with human rhinovirus C in wild Chimpanzees, Uganda, 2013. Emerg. Infect. Dis. https://doi.org/10.3201/eid2402.170778 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00228.x (2009).Article 

    Google Scholar 
    20.Capps, B. & Lederman, Z. One health, vaccines and ebola: The opportunities for shared benefits. J. Agric. Environ. Ethics 28, 1011–1032 (2015).Article 

    Google Scholar 
    21.Leendertz, S. A. J. et al. Ebola in great apes—current knowledge, possibilities for vaccination, and implications for conservation and human health. Mamm. Rev. https://doi.org/10.1111/mam.12082 (2017).Article 

    Google Scholar 
    22.Bull, C. M., Godfrey, S. S. & Gordon, D. M. Social networks and the spread of Salmonella in a sleepy lizard population. Mol. Ecol. 21, 4386–4392 (2012).CAS 
    Article 

    Google Scholar 
    23.Vanderwaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12137 (2014).Article 
    PubMed 

    Google Scholar 
    24.Silk, M. J. et al. Using social network measures in wildlife disease ecology, epidemiology, and management. Bioscience 67, 245–257 (2017).Article 

    Google Scholar 
    25.Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 370, 1–12 (2015).Article 

    Google Scholar 
    26.Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, 676949 (2011).Article 

    Google Scholar 
    27.Rushmore, J. et al. Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. J. Anim. Ecol. 82, 976–986 (2013).Article 

    Google Scholar 
    28.Sandel, A. A. et al. Social network predicts exposure to respiratory infection in a wild chimpanzee group. EcoHealth https://doi.org/10.1007/s10393-020-01507-7 (2021).Article 
    PubMed Central 

    Google Scholar 
    29.Rushmore, J. et al. Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0349 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Sah, P., Leu, S. T., Cross, P. C., Hudson, P. J. & Bansal, S. Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc. Natl. Acad. Sci. 114, 4165–4170 (2017).CAS 
    Article 

    Google Scholar 
    31.Robbins, M. M. et al. Extreme conservation leads to recovery of the virunga mountain gorillas. PLoS One https://doi.org/10.1371/journal.pone.0019788 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Granjon, A. C. et al. Estimating abundance and growth rates in a wild mountain gorilla population. Anim. Conserv. https://doi.org/10.1111/acv.12559 (2020).Article 

    Google Scholar 
    33.Weber, A., Kalema-Zikusoka, G. & Stevens, N. J. Lack of rule-adherence during mountain gorilla tourism encounters in Bwindi Impenetrable National Park, Uganda, places gorillas at risk from human disease. Front. Public Health. https://doi.org/10.3389/fpubh.2020.00001 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Woodford, M. H., Butynski, T. M. & Karesh, W. B. Habituating the great apes: The disease risks. Oryx 36, 153–160 (2002).Article 

    Google Scholar 
    35.Spelman, L. H. et al. Respiratory disease in mountain gorillas (gorilla beringei beringei) in rwanda, 1990–2010: Outbreaks, clinical course, and medical management. J. Zoo Wildl. Med. https://doi.org/10.1638/2013-0014R.1 (2013).Article 
    PubMed 

    Google Scholar 
    36.Nutter, F. B., Whittier, C., Cranfield, M. R. & Lowenstine, L. J. Examining causes of death for mountain gorillas (Gorilla beringei beringei and G.b. undecided) from 1968–2004: An aid to conservation programs. In Proceedings of the Wildlife Disease Association International Conference. June 26-July 1, 2005, Cairns, Australia 200–201 (2005).37.Palacios, G. et al. Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg. Infect. Dis. https://doi.org/10.3201/eid1704.100883 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Mazet, J. A. K. et al. Human respiratory syncytial virus detected in Mountain Gorilla respiratory outbreaks. EcoHealth https://doi.org/10.1007/s10393-020-01506-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Szentiks, C. A., Köndgen, S., Silinski, S., Speck, S. & Leendertz, F. H. Lethal pneumonia in a captive juvenile chimpanzee (Pan troglodytes) due to human-transmitted human respiratory syncytial virus (HRSV) and infection with Streptococcus pneumoniae. J. Med. Primatol. https://doi.org/10.1111/j.1600-0684.2009.00346.x (2009).Article 
    PubMed 

    Google Scholar 
    40.Grützmacher, K. S. et al. Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak. EcoHealth https://doi.org/10.1007/s10393-016-1144-6 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Gryseels, S. et al. Risk of human-to-wildlife transmission of SARS-CoV-2. Mamm. Rev. https://doi.org/10.1111/mam.12225 (2021).Article 

    Google Scholar 
    42.Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S. & Higham, J. P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. https://doi.org/10.1038/s42003-020-01370-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010146117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Caillaud, D. et al. Violent encounters between social units hinder the growth of a high-density mountain gorilla population. Sci. Adv. https://doi.org/10.1126/SCIADV.ABA0724 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Caillaud, D. et al. Gorilla susceptibility to Ebola virus: The cost of sociality. Curr. Biol. 16, 489–491 (2006).Article 

    Google Scholar 
    46.Reagan, K. J., McGeady, M. L. & Crowell, R. L. Persistence of human rhinovirus infectivity under diverse environmental conditions. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.41.3.618-620.1981 (1981).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Danon, L. et al. Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011, 1–28 (2011).Article 

    Google Scholar 
    48.Salazar, M. F. M., Waldner, C., Stookey, J. & Bollinger, T. K. Infectious disease and grouping patterns in mule deer. PLoS One https://doi.org/10.1371/journal.pone.0150830 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. https://doi.org/10.1016/j.cub.2013.09.011 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.VanderWaal, K. L., Enns, E. A., Picasso, C., Packer, C. & Craft, M. E. Evaluating empirical contact networks as potential transmission pathways for infectious diseases. J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0166 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Lambert, L. & Culley, F. J. Innate immunity to respiratory infection in early life. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01570 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Jackson, G. G. et al. Susceptibility and immunity to common upper respiratory viral infections—the common cold. Ann. Intern. Med. https://doi.org/10.7326/0003-4819-53-4-719 (1960).Article 
    PubMed 

    Google Scholar 
    53.Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2014.04.002 (2014).Article 
    PubMed 

    Google Scholar 
    54.Casimir, M. J. An analysis of gorilla nesting sites of the Mt. Kahuzi Region (Zaire). Folia Primatol. 32, 290–308 (1979).Article 

    Google Scholar 
    55.van Hamme, G., Svensson, M. S., Morcatty, T. Q., Nekaris, K.A.-I. & Nijman, V. Keep your distance: Using social media to evaluate the risk of disease transmission in gorilla ecotourism. People Nat. https://doi.org/10.1002/pan3.10187 (2021).Article 

    Google Scholar 
    56.Leendertz, F. H. & Kalema-Zikusoka, G. Vaccinate in biodiversity hotspots to protect people and wildlife from each other. Nature https://doi.org/10.1038/d41586-021-00690-z (2021).Article 
    PubMed 

    Google Scholar 
    57.Porter, A. et al. Behavioral responses around conspecific corpses in adult eastern gorillas (Gorilla beringei spp.). PeerJ https://doi.org/10.7717/peerj.6655 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Albers, P. C. H. & De Vries, H. Elo-rating as a tool in the sequential estimation of dominance strengths. Anim. Behav. https://doi.org/10.1006/anbe.2000.1571 (2001).Article 

    Google Scholar 
    59.Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.07.016 (2011).Article 

    Google Scholar 
    60.Neumann, C. & Lars, K. EloRating: Animal dominance hierarchies by Elo rating. R Package Version 0.43. https://rdrr.io/cran/EloRating/ (2014).61.Wright, E. et al. Male body size, dominance rank and strategic use of aggression in a group-living mammal. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.03.011 (2019).Article 

    Google Scholar 
    62.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695(5), 1–9 (2006).
    Google Scholar 
    63.Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4′. R Package Version 0.2-6. https://CRAN.R-project.org/package=gamm4 (2020).64.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    65.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    66.VanderWaal, K. L. k-test. GitHub Repository. https://github.com/kvanderwaal/k-test (2017).67.Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2006.03.017 (2006).Article 

    Google Scholar  More

  • in

    Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea

    1.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science (80-.) 318, 1737–1742 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Roberts, M., Hanley, N., Williams, S. & Cresswell, W. Terrestrial degradation impacts on coral reef health: Evidence from the Caribbean. Ocean Coast. Manag. 149, 52–68 (2017).Article 

    Google Scholar 
    3.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ries, J. B. Skeletal mineralogy in a high-CO2 world. J. Exp. Mar. Biol. Ecol. 403, 54–64 (2011).CAS 
    Article 

    Google Scholar 
    5.Erez, J., Reynaud, S., Silverman, J., Schneider, K. & Allemand, D. Coral calcification under ocean acidification and global change. In Coral Reefs: An Ecosystem in Transition (2011). https://doi.org/10.1007/978-94-007-0114-4_10.6.Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Natl. Acad. Sci. 110, 15342–15347 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Cooper, T. F., De’ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529–538 (2008).ADS 
    Article 

    Google Scholar 
    8.Cooper, T. F., O’Leary, R. A. & Lough, J. M. Growth of Western Australian corals in the Anthropocene. Science (80-.) 335, 593–596 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Teixidó, N. et al. Ocean acidification causes variable trait-shifts in a coral species. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15372 (2020).Article 
    PubMed 

    Google Scholar 
    10.Pandolfi, J. M. Incorporating uncertainty in predicting the future response of coral reefs to climate change. Annu. Rev. Ecol. Evol. Syst. 46, 281–303 (2015).Article 

    Google Scholar 
    11.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 
    Article 

    Google Scholar 
    12.Jokiel, P. L. et al. Ocean acidification and calcifying reef organisms: A mesocosm investigation. Coral Reefs 27, 473–483 (2008).ADS 
    Article 

    Google Scholar 
    13.Fantazzini, P. et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Wittmann, A. C. & Pörtner, H.-O. Sensitivities of extant animal taxa to ocean acidification. Nat. Clim. Chang. 3, 995–1001 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Chang. 1, 165–169 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Riebesell, U. Acid test for marine biodiversity. Nature 454, 46–47 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Johnson, V. R., Russell, B. D., Fabricius, K. E., Brownlee, C. & Hall-Spencer, J. M. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob. Chang. Biol. https://doi.org/10.1111/j.1365-2486.2012.02716.x (2012).Article 
    PubMed 

    Google Scholar 
    19.Prada, F. et al. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 7, 1–10 (2017).ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar 
    20.Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Chang. 3, 683–687 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Crook, E. D., Cohen, A. L., Rebolledo-Vieyra, M., Hernandez, L. & Paytan, A. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc. Natl. Acad. Sci. 110, 11044–11049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Teixidó, N. et al. Functional biodiversity loss along natural CO2 gradients. Nat. Commun. 9, 5149 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Strahl, J. et al. Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 184, 179–186 (2015).CAS 
    Article 

    Google Scholar 
    24.Fabricius, K. E., De’ath, G., Noonan, S. & Uthicke, S. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc. R. Soc. B Biol. Sci. 281, 20132479 (2014).CAS 
    Article 

    Google Scholar 
    25.Fabricius, K. E., Noonan, S. H. C., Abrego, D., Harrington, L. & De’ath, G. Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proc. R. Soc. B Biol. Sci. 284, 20171536 (2017).Article 
    CAS 

    Google Scholar 
    26.Siahainenia, L., Tuhumury, S. F., Uneputty, P. A. & Tuhumury, N. C. Survival and growth of transplanted coral reef in lagoon ecosystem of Ihamahu, Central Maluku, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 339, 012003 (2019).Article 

    Google Scholar 
    27.Horwitz, R., Hoogenboom, M. O. & Fine, M. Spatial competition dynamics between reef corals under ocean acidification. Sci. Rep. 7, 40288 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Noonan, S. H. C., Fabricius, K. E. & Humphrey, C. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE 8, e63985 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Caroselli, E. et al. Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114, 255–264 (2011).PubMed 
    Article 

    Google Scholar 
    30.Reggi, M. et al. Biomineralization in Mediterranean corals: The role of the intraskeletal organic matrix. Cryst. Growth Des. 14, 4310–4320 (2014).CAS 
    Article 

    Google Scholar 
    31.Goffredo, S. et al. The skeletal organic matrix from Mediterranean coral Balanophyllia Europaea influences calcium carbonate precipitation. PLoS ONE 6, e22338 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Goffredo, S. et al. Biomineralization control related to population density under ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Borgia, G. C., Brown, R. J. S. & Fantazzini, P. Uniform-penalty inversion of multiexponential decay data. J. Magn. Reson. 132, 65–77 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Bortolotti, F., Brown, R. & Fantazzini, P. UpenWin: A Software for Inversion of Multiexponential Decay Data (Windows System Alma Mater Studiorum—Università di Bologna, 2012).
    Google Scholar 
    35.Fantazzini, P. et al. A time-domain nuclear magnetic resonance study of Mediterranean scleractinian corals reveals skeletal-porosity sensitivity to environmental changes. Environ. Sci. Technol. 47, 12679–12686 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Coronado, I., Fine, M., Bosellini, F. R. & Stolarski, J. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nat. Commun. 10, 2896 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Pokroy, B., Fitch, A. & Zolotoyabko, E. The microstructure of biogenic calcite: A view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368 (2006).CAS 
    Article 

    Google Scholar 
    38.Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to software and statistical methods. In Plymouth (2008).39.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). ISBN 3-900051-07-0. http://www.R-project.org.40.Toby, B. H. & Von Dreele, R. B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).CAS 
    Article 

    Google Scholar 
    41.Jiang, H. G., Rühle, M. & Lavernia, E. J. On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J. Mater. Res. 14, 549–559 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Guo, W. et al. Ocean acidification has impacted coral growth on the Great Barrier Reef. Geophys. Res. Lett. 47, 1–9 (2020).
    Google Scholar 
    44.Tambutté, E. et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Commun. 6, 7368 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Martinez, A. et al. Species-specific calcification response of Caribbean corals after 2-year transplantation to a low aragonite saturation submarine spring. Proc. Biol. Sci. 286, 20190572 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9, 477–483 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    48.McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Movilla, J. et al. Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33, 675–686 (2014).ADS 
    Article 

    Google Scholar 
    50.Kurihara, H., Takahashi, A., Reyes-Bermudez, A. & Hidaka, M. Intraspecific variation in the response of the scleractinian coral Acropora digitifera to ocean acidification. Mar. Biol. 165, 38 (2018).Article 

    Google Scholar 
    51.Barnes, D. J. & Devereux, M. J. Variations in skeletal architecture associated with density banding in the hard coral Porites. J. Exp. Mar. Biol. Ecol. 121, 37–54 (1988).Article 

    Google Scholar 
    52.Bucher, D. J., Harriott, V. J. & Roberts, L. G. Skeletal micro-density, porosity and bulk density of acroporid corals. J. Exp. Mar. Biol. Ecol. 228, 117–136 (1998).Article 

    Google Scholar 
    53.Mass, T. et al. Amorphous calcium carbonate particles form coral skeletons. Proc. Natl. Acad. Sci. 114, E7670–E7678 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Vidal-Dupiol, J. et al. Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: New insights from transcriptome analysis. PLoS ONE 8, e58652 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Suggett, D. J. et al. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32, 327–337 (2013).ADS 
    Article 

    Google Scholar 
    56.Vogel, N., Meyer, F., Wild, C. & Uthicke, S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar. Ecol. Prog. Ser. 521, 49–61 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Tanaka, Y. et al. Nutrient availability affects the response of juvenile corals and the endosymbionts to ocean acidification. Limnol. Oceanogr. 59, 1468–1476 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Towle, E. K., Enochs, I. C. & Langdon, C. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS ONE 10, e0123394 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Stolarski, J., Przeniosło, R., Mazur, M. & Brunelli, M. High-resolution synchrotron radiation studies on natural and thermally annealed scleractinian coral biominerals. J. Appl. Crystallogr. 40, 2–9 (2007).CAS 
    Article 

    Google Scholar 
    60.Maslen, E. N., Streltsov, V. A., Streltsova, N. R. & Ishizawa, N. Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr. Sect. B Struct. Sci. 51, 929–939 (1995).Article 

    Google Scholar 
    61.Wall, M. et al. Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Front. Mar. Sci. 6, 699 (2019).Article 

    Google Scholar 
    62.Wickham, H. ggplot2 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.Book 
    MATH 

    Google Scholar  More

  • in

    Wild meat consumption in tropical forests spares a significant carbon footprint from the livestock production sector

    1.Nasi, R., Taber, A. & van Vliet, N. Empty forests, empty stomachs? Wild meat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368. https://doi.org/10.1505/146554811798293872 (2011).Article 

    Google Scholar 
    2.van Vliet, N. “Bushmear crisis” and “Cultural imperialism” in wildlife management? Taking value orientations into account for a more sustainable and culturally acceptable wildmeat sector. Front. Ecol. Evol. 6, 112. https://doi.org/10.3389/fevo.2018.00112 (2018).ADS 
    Article 

    Google Scholar 
    3.Nunes, A. V., Peres, C. A., Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179. https://doi.org/10.1016/j.biocon.2019.05.010 (2019).Article 

    Google Scholar 
    4.Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    5.Brodie, J. F. Carbon costs and bushmeat benefits of hunting in tropical forests. Ecol. Econ. 152, 22–26. https://doi.org/10.1016/j.ecolecon.2018.05.028 (2018).Article 

    Google Scholar 
    6.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015. https://doi.org/10.1093/aob/mcl066 (2007).Article 
    PubMed 

    Google Scholar 
    7.Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science 310, 1029–1031. https://doi.org/10.1126/science.1117682 (2005).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Harrison, R. D. et al. Consequences of defaunation for a tropica tree community. Ecol. Lett. 16, 687–694. https://doi.org/10.1111/ele.12102 (2013).Article 
    PubMed 

    Google Scholar 
    9.Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105. https://doi.org/10.1126/sciadv.1501105 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    10.Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. Ecol. Soc. 20, 22 (2015).Article 

    Google Scholar 
    11.Goelden, C. D. et al. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. PNAS 108, 19653–19656. https://doi.org/10.1073/pnas.1112586108 (2011).ADS 
    Article 

    Google Scholar 
    12.Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Peres, C. A. Conservation in sustainable-use tropical forest reserves. Conserv. Biol. 25(1124–1129), 2011. https://doi.org/10.1111/j.1523-1739.2011.01770.x (2011).Article 

    Google Scholar 
    14.Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185. https://doi.org/10.1111/j.1523-1739.2007.00759.x (2007).Article 
    PubMed 

    Google Scholar 
    15.Constantino, P. A. L. et al. Indigenous collaborative research for wildlife management in Amazonia: The case of the Kaxinawá, Acre, Brazil. Biol. Conserv. 141, 2718–2729. https://doi.org/10.1016/j.biocon.2008.08.008 (2008).Article 

    Google Scholar 
    16.Weinbaum, K. Z., Brashares, J. S., Golden, C. D. & Getz, W. M. Searching for sustainability: Are assessments of wildlife harvests behind the times?. Ecol. Lett. 16, 99–111. https://doi.org/10.1111/ele.12008 (2013).Article 
    PubMed 

    Google Scholar 
    17.Novaro, A. J., Redford, K. H. & Bodmer, R. E. Effect of hunting in source-sink systems in the Neotropics. Conserv. Biol. 14, 713–721. https://doi.org/10.1046/j.1523-1739.2000.98452.x (2000).Article 

    Google Scholar 
    18.Constantino, P. A. C., Benchimol, M. & Antunes, A. P. Designing indigenous lands in Amazonia: Securing indigenous rights and wildlife conservation through hunting management. Land Use Policy 77, 652–660. https://doi.org/10.1016/j.landusepol.2018.06.016 (2018).Article 

    Google Scholar 
    19.Kaimowitz, D. & Angelsen, A. Will livestock intensification help save Latin America’s tropical forests?. J. Sustain. For. 27, 6–24. https://doi.org/10.1080/10549810802225168 (2008).Article 

    Google Scholar 
    20.Curtis, P. G., Slat, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    21.De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004. https://doi.org/10.1088/1748-9326/10/12/124004 (2015).ADS 
    Article 

    Google Scholar 
    22.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS 
    Article 

    Google Scholar 
    23.Herrero, M. et al. Livestock and the environment—What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).Article 

    Google Scholar 
    24.Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561. https://doi.org/10.6084/m9.figshare.12248735 (2021).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Steinfeld, H. et al. Livestock’s Long Shadow (FAO, 2006).
    Google Scholar 
    26.United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) (2019).27.IPCC Climate Change 2014: Synthesis Report (eds. Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).28.Wolf, C., Ripple, W. J., Levi, T. & Peres, C. A. Eating plants and planting forests for the climate. Glob. Chang. Biol. 25, 3995–3995. https://doi.org/10.1111/gcb.14835 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    29.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    30.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821. https://doi.org/10.1126/sciadv.1600821 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Maxwell, S. L. et al. Degradation and forgone removals increase the carbon imáct of intact forest loss by 626%. Sci. Adv. 5, eaax2546. https://doi.org/10.1126/sciadv.aax2546 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. PNAS 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Angelsen, A. et al. Environmental income and rural livelihoods: A global-comparative analysis. World Dev. 64, 12–28. https://doi.org/10.1016/j.worlddev.2014.03.006 (2010).Article 

    Google Scholar 
    34.UNFCCC. Adoption of the Paris Agreement-Draft Decision-/CP.21 (United Nations Framework Convention on Climate Change, 2015).
    Google Scholar 
    35.Hinsley, A., Entwistle, A. & Pio, D. V. Does the long-term success of REDD+ also depend on biodiversity?. Oryx 49, 216–221. https://doi.org/10.1017/S0030605314000507 (2015).Article 

    Google Scholar 
    36.Krause, T. & Nielsen, M. R. Not seeing the forest for the trees: The oversight of defaunation in REDD+ and global forest governance. Forests 10, 344. https://doi.org/10.3390/f10040344 (2019).Article 

    Google Scholar 
    37.Nardoto, G. B. et al. Frozen chicken for wild fish: Nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650. https://doi.org/10.1002/ajhb.21192 (2011).Article 
    PubMed 

    Google Scholar 
    38.Farrel, D. The Role of Poultry in Human Nutrition. Poultry Development Review (FAO, 2013).
    Google Scholar 
    39.Poulsen, J. R., Clark, C. J. & Mavah, G. Wildlife management in a logging concession in Northern Congo: Can livelihoods be maintained through sustainable hunting? In Bushmeat and Livelihoods (eds Davies, G. & Brown, D.) 140–157 (Blackwell Publishing, 2007).
    Google Scholar 
    40.Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the Southwestern Amazon. Behv. Ecol. Sociobiol. 73, 26. https://doi.org/10.1007/s00265-018-2628-x (2019).Article 

    Google Scholar 
    41.WHO/FAO/UNU Protein and Amino Acid Requirements in Human Nutrition; Report of a joint WHO/FAO/UNU Expert Consultation, WHO Tech Rep Ser no. 935 (WHO, 2007).42.FAO. FAOSTAT Agri-Environmental Indicators, Emissions Intensities. http://www.fao.org/faostat/en/#data/EI (2019).43.Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment (Food and Agriculture Organization of the United Nations (FAO), 2013).
    Google Scholar 
    44.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992. https://doi.org/10.1126/science.aaq0216 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    45.ICAO. International Civil Aviation Organization. https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx (2016).46.Searchinger, T. D. et al. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253. https://doi.org/10.1038/s41586-018-0757-z (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Ministério do Meio Ambiente (MMA). Programa áreas protegidas da Amazônia ARPA-Fase II (2010).48.Arensberg, W. W. Critical Ecosystem Partnership Fund Mid-Term Review (Critical Ecosystem Partnership Fund, 2003).49.Sistema Integrado de Planejamento e Orçamento (SIOP). Cadastro de Ações. Apoio à conservação Ambiental e à Erradicação da Extrema Pobreza Bolsa Verde (Secretaria de Orçamento Federal, Ministério do Planejamento, Orçamento e Gestão, 2014).50.World Bank. State and Trends of Carbon Pricing (World Bank, 2020). https://doi.org/10.1596/978-1-4648-1586-7.51.NASA (National Aeronautics and Space Administration). NASA Administrator Statement on Moon to Mars Initiative, fy 2021 Budget. https://www.nasa.gov/press-release/nasa-administrator-statement-on-moon-to-mars-initiative-fy-2021-budget.52.Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505. https://doi.org/10.1046/j.1523-1739.2001.01089.x (2001).Article 

    Google Scholar 
    53.Griscom, B. W. et al. Natural climate solutions. PNAS 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    54.Reid, H., Faulkner, L. & Weiser, A. in IIED Climate Change Working Paper (eds. Fisher, S. & Reid, H.) 3–67 (2013).55.Munang, R., Andrews, J., Alverson, K. & Mebratu, D. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ.: Sci. Policy Sustain. Dev. 56, 18–24. https://doi.org/10.1080/00139157.2014.861676 (2013).Article 

    Google Scholar 
    56.Woroniecki, S. Enabling environments? Examining social co-benefits of ecosystem-based adaptation to climate change in Sri Lanka. Sustainability 11, 772. https://doi.org/10.3390/su11030772 (2019).Article 

    Google Scholar 
    57.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 375, 20190120. https://doi.org/10.1098/rstb.2019.0120 (2020).Article 

    Google Scholar 
    58.Wilkie, D. S., Wieland, M. & Poulsen, J. R. Unsustainable vs. sustainable hunting for food in Gabon: Modeling short- and long- term gains and losses. Front. Ecol. Evol. 7, 357. https://doi.org/10.3389/fevo.2019.00357 (2019).Article 

    Google Scholar 
    59.Booth, H. et al. Assessing the impact of regulations on the use and trade of wildlife: An operational framework, with a case study on manta rays. Glob. Ecol. Conserv. 22, e00953 (2020).Article 

    Google Scholar 
    60.Dickman, A. et al. Trophy hunting bans imperil biodiversity. Science 365(6456), 874. https://doi.org/10.1126/science.aaz0735 (2019).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    61.Marrocoli, S. et al. Using wildlife indicators to facilitate wildlife monitoring in hunter-self monitoring schemes. Ecol. Indic. 105, 254–263. https://doi.org/10.1016/j.ecolind.2019.05.050 (2019).Article 

    Google Scholar 
    62.van Vliet, N. et al. Frameworks regulating hunting for meat in tropical countries leave the sectos in the limbo. Front. Ecol. Evol. 7, 1–7. https://doi.org/10.3389/fevo.2019.00280 (2019).Article 

    Google Scholar 
    63.Ronchail, J. et al. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic oceans. Int. J. Climatol. 22, 1663–1686. https://doi.org/10.1002/joc.815 (2002).Article 

    Google Scholar 
    64.CSC. Climate Change Scenarios for the Congo Basin (Climate Service Centre Report No. 11, 2013).65.Akkermans, T., Thiery, W. & Lipzig, N. P. M. V. The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J. Clim. 27, 2714–2734. https://doi.org/10.1175/JCLI-D-D13-00361.1 (2014).ADS 
    Article 

    Google Scholar 
    66.Siebert, A. Hydroclimate extrems in Africa: Variability, observations and modeled projectios. Geography 8, 351–367. https://doi.org/10.1111/gec3.12136 (2014).Article 

    Google Scholar 
    67.Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012 (2012).ADS 
    Article 

    Google Scholar 
    68.Hansen, M. C. et al. High- resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    69.Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Philos. Trans. R. Soc. B 360, 373–384. https://doi.org/10.1098/rstb.2004.1590 (2005).Article 

    Google Scholar 
    70.Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. Soc. A 369, 137–160. https://doi.org/10.1098/rsta.2010.0238 (2011).ADS 
    Article 

    Google Scholar 
    71.Nkem, J., Idinoba, M., Brockhaus, M., Kalame, F. & Tas, A. Adaptation to Climate Change in Africa: Synergies with Biodiversity and Forest (CIFOR, 2008).
    Google Scholar 
    72.Ganzhorn, J. U., Lowry, P. P., Schatz, G. E. & Sommer, S. The biodiversity of Madagascar: One of the world’s hottest hotspots on its way out. Oryx 35, 346–348. https://doi.org/10.1046/j.1365-3008.2001.00201.x (2001).Article 

    Google Scholar 
    73.Kingdon, J. East African Mammals Vol. IIIA (Academic Press, 1977).
    Google Scholar 
    74.Dunning, J. B. CRC Handbook of Avian Body Masses 2nd edn. (CRC, 2008).
    Google Scholar 
    75.Rushton, J. et al. How important is bushmeat consumption in South America: Now and in the future?. Odi Wildl. Policy Brief. 11, 1–4 (2005).
    Google Scholar 
    76.Redford, K. H. & Robinson, J. G. The game of choice: Patterns of Indian and colonist hunting in the Neotropics. Am. Anthropol. 89, 650–667. https://doi.org/10.1525/aa.1987.89.3.02a00070 (1987).Article 

    Google Scholar 
    77.Ojasti, J. Wildlife Utilization in Latin America: Current Situation and Prospects for Sustainable Management (FAO, 1996).
    Google Scholar 
    78.Wilson, E. D., Fisher, K. H. & Garcia, P. A. Principles of Nutrition (Wiley, 1979).
    Google Scholar 
    79.Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation (2014).80.Soriano-Santos, J. in Handbook of Poultry Science and Technology (ed. Guerrero-Lagarreta, I.) 467–489 (2009).81.Eggleston, H. S. et al. (eds) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (IPCC, 2006).
    Google Scholar 
    82.Carbon Pricing Leadership Coalition (CPLC). Report of the High-Level Commission on Carbon Prices (World Bank Group, 2017).
    Google Scholar 
    83.Annual Report. Ending Poverty, Investing in Opportunity (World Bank Group, 2019).
    Google Scholar 
    84.Avitabile, M. V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).ADS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    A novel random forest approach to revealing interactions and controls on chlorophyll concentration and bacterial communities during coastal phytoplankton blooms

    1.Beardall, J. et al. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. https://doi.org/10.1111/j.1469-8137.2008.02660.x (2009).Article 
    PubMed 

    Google Scholar 
    2.Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. https://doi.org/10.4319/lo.2009.54.6_part_2.2283 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Williamson, C. E., Saros, J. E. & Schindler, D. W. Sentinels of change. Science (N. Y.) https://doi.org/10.1126/science.1169443 (2009).Article 

    Google Scholar 
    4.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science https://doi.org/10.1126/science.281.5374.237 (1998).Article 
    PubMed 

    Google Scholar 
    5.Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. https://doi.org/10.1038/ismej.2014.197 (2015).Article 
    PubMed 

    Google Scholar 
    6.Paerl, H. W. & Huisman, J. Blooms like it hot. Science (N. Y.) https://doi.org/10.1126/science.1155398 (2008).Article 

    Google Scholar 
    7.Wells, M. L. et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae https://doi.org/10.1016/j.hal.2015.07.009 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Smith, J. et al. A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California. Harmful Algae https://doi.org/10.1016/j.hal.2018.07.007 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. https://doi.org/10.1002/2016GL070023 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Ekstrom, J. A., Moore, S. K. & Klinger, T. Examining harmful algal blooms through a disaster risk management lens: A case study of the 2015 U.S. West Coast domoic acid event. Harmful Algae https://doi.org/10.1016/j.hal.2020.101740 (2020).Article 
    PubMed 

    Google Scholar 
    11.Kudela, R. M. & Chavez, F. P. The impact of coastal runoff on ocean color during an El Niño year in Central California. Deep Sea Res. Part II Topical Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2004.04.002 (2004).Article 

    Google Scholar 
    12.Kudela, R. M., Lane, J. Q. & Cochlan, W. P. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.019 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Fischer, A. M., Ryan, J. P., Levesque, C. & Welschmeyer, N. Characterizing estuarine plume discharge into the coastal ocean using fatty acid biomarkers and pigment analysis. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2014.04.006 (2014).Article 
    PubMed 

    Google Scholar 
    14.Ryan, J. P. et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys. Res. Lett. https://doi.org/10.1002/2017GL072637 (2017).Article 

    Google Scholar 
    15.Van Meter, K. J., Basu, N. B. & Van Cappellen, P. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochem. Cycles https://doi.org/10.1002/2016GB005498 (2017).Article 

    Google Scholar 
    16.Conley, D. J. et al. Ecology – Controlling eutrophication: Nitrogen and phosphorus. Science https://doi.org/10.1126/science.1167755 (2009).Article 
    PubMed 

    Google Scholar 
    17.Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science https://doi.org/10.1126/science.aan2409 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Howard, M. D. A. et al. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnol. Oceanogr. https://doi.org/10.4319/lo.2014.59.1.0285 (2014).Article 

    Google Scholar 
    19.Harvey, E. L. et al. A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00059 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Sison-Mangus, M. P., Jiang, S., Tran, K. N. & Kudela, R. M. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. https://doi.org/10.1038/ismej.2013.138 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Skerratt, J. H., Bowman, J. P., Hallegraeff, G., James, S. & Nichols, P. D. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps244001 (2002).Article 

    Google Scholar 
    22.Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps010257 (1983).Article 

    Google Scholar 
    24.Platt, T. Concepts in biological oceanography: An interdisciplinary primer (P. A. Jumars). Limnol. Oceanogr. https://doi.org/10.4319/lo.1993.38.8.1842 (1993).Article 

    Google Scholar 
    25.Larsson, U. & Hagström, A. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. https://doi.org/10.1007/BF00398133 (1979).Article 

    Google Scholar 
    26.Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature https://doi.org/10.1038/17351 (1999).Article 

    Google Scholar 
    27.Ammerman, J. W. & Azam, F. Bacterial 5’-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science https://doi.org/10.1126/science.227.4692.1338 (1985).Article 
    PubMed 

    Google Scholar 
    28.Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).Article 
    PubMed 

    Google Scholar 
    29.Sison-Mangus, M. P., Jiang, S., Kudela, R. M. & Mehic, S. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01433 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.250 (2019).Article 

    Google Scholar 
    31.McGillicuddy, D. J. et al. GEOHAB modelling: Linking Observations to Predictions: A Workshop Report (Galway, Ireland, 2011).32.Song, W., Dolan, J. M., Cline, D. & Xiong, G. Learning-based algal bloom event recognition for oceanographic decision support system using remote sensing data. Remote Sens. https://doi.org/10.3390/rs71013564 (2015).Article 

    Google Scholar 
    33.Kwon, Y. S. et al. Developing data-driven models for quantifying Cochlodinium polykrikoides using the geostationary ocean color imager (GOCI). Int. J. Remote Sens. https://doi.org/10.1080/01431161.2017.1381354 (2018).Article 

    Google Scholar 
    34.Asnaghi, V. et al. A novel application of an adaptable modeling approach to the management of toxic microalgal bloom events in coastal areas. Harmful Algae https://doi.org/10.1016/j.hal.2017.02.003 (2017).Article 
    PubMed 

    Google Scholar 
    35.Valbi, E. et al. A model predicting the PSP toxic dinoflagellate Alexandrium minutum occurrence in the coastal waters of the NW Adriatic Sea. Sci. Rep. https://doi.org/10.1038/s41598-019-40664-w (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.El Hourany, R. et al. Phytoplankton diversity in the mediterranean sea from satellite data using self-organizing maps. J. Geophys. Res. Oceans 124, 5827–5843 (2019).Article 
    ADS 

    Google Scholar 
    37.Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    Article 

    Google Scholar 
    38.Ascioti, F. A., Beltrami, E., Carroll, T. O. & Wirick, C. Is there chaos in plankton dynamics?. J. Plankton Res. 15, 603–617 (1993).Article 

    Google Scholar 
    39.Basu, S., Kumbier, K., Brown, J. B. & Yu, B. Iterative random forests to discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1711236115 (2018).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    40.Breiman, L. Random forests. Mach. Learn. https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    41.Witten, I. H., Cunningham, S., Holmes, G., McQueen, R. J. & Smith, L. A. Practical machine learning and its potential application to problems in agriculture. In Proceedings of New Zealand Computer Conference (1993).42.Lee, J. & Sison-Mangus, M. A Bayesian semiparametric regression model for joint analysis of microbiome data. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00522 (2018).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    43.Hirsch, R. M., Moyer, D. L. & Archfield, S. A. Weighted regressions on time, discharge, and season (WRTDS), with an application to chesapeake bay river inputs. J. Am. Water Resour. Assoc. https://doi.org/10.1111/j.1752-1688.2010.00482.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shuler, K., Sison-Mangus, M. & Lee, J. Bayesian sparse multivariate regression with asymmetric nonlocal priors for microbiome data analysis. Bayesian Anal. https://doi.org/10.1214/19-ba1164 (2019).Article 
    MATH 

    Google Scholar 
    45.Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science https://doi.org/10.1126/science.1218344 (2012).Article 
    PubMed 

    Google Scholar 
    46.Klindworth, A. et al. Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar. Genom. https://doi.org/10.1016/j.margen.2014.08.007 (2014).Article 

    Google Scholar 
    47.Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L. & Post, A. F. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00646 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Delmont, T. O., Murat Eren, A., Vineis, J. H. & Post, A. F. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01090 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kempnich, M. W. & Sison-Mangus, M. P. Presence and abundance of bacteria with the Type VI secretion system in a coastal environment and in the global oceans. PLoS ONE 15, e0244217 (2020).CAS 
    Article 

    Google Scholar 
    50.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8, (2019).51.Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions – R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).CAS 
    Article 

    Google Scholar 
    52.van den Boogaart, K. G. & Tolosana-Delgado, R. ‘compositions’: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).Article 
    ADS 

    Google Scholar 
    53.Heisler, J. et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.006 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. https://doi.org/10.4319/lo.2006.51.1_part_2.0364 (2006).Article 

    Google Scholar 
    55.Hamasaki, K. Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Western Japan, as a reflection of changing environmental conditions. J. Plankton Res. https://doi.org/10.1093/plankt/23.3.271 (2001).Article 

    Google Scholar 
    56.Leong, S. C. Y., Murata, A., Nagashima, Y. & Taguchi, S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon https://doi.org/10.1016/j.toxicon.2004.01.015 (2004).Article 
    PubMed 

    Google Scholar 
    57.Howard, M. D. A., Cochlan, W. P., Ladizinsky, N. & Kudela, R. M. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments. Harmful Algae https://doi.org/10.1016/j.hal.2006.06.003 (2007).Article 

    Google Scholar 
    58.Lane, J. Q., Raimondi, P. T. & Kudela, R. M. Development of a logistic regression model for the prediction of toxigenic pseudo-nitzschia blooms in monterey bay, California. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps07999 (2009).Article 

    Google Scholar 
    59.Lecher, A. L. et al. Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey bay, CA. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b00909 (2015).Article 
    PubMed 

    Google Scholar 
    60.Bakun, A. Coastal Upwelling Indices, West Coast of North America, 1946–71. (1972).61.Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West coast. J. Geophys. Res. Oceans 123, 7332–7350 (2018).Article 
    ADS 

    Google Scholar 
    62.Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science https://doi.org/10.1126/science.aag1058 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Sawyer, A. H., Michael, H. A. & Schroth, A. W. From soil to sea: The role of groundwater in coastal critical zone processes. Wiley Interdiscip. Rev. Water https://doi.org/10.1002/wat2.1157 (2016).Article 

    Google Scholar 
    64.Garneau, M. È. et al. Examination of the seasonal dynamics of the toxic dinoflagellate Alexandrium catenella at Redondo Beach, California, by quantitative PCR. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.06174-11 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Schiff, K. C., Allen, M. J., Zeng, E. Y. & Bay, S. M. Southern California. Seas Millenn. Environ. Eval. https://doi.org/10.1097/00006205-197605000-00010 (2000).Article 

    Google Scholar 
    66.Nelson, N. G. et al. Revealing biotic and abiotic controls of harmful algal blooms in a shallow subtropical lake through statistical machine learning. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b05884 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00659 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Wagner-Döbler, I. & Biebl, H. Environmental biology of the marine roseobacter lineage. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev.micro.60.080805.142115 (2006).Article 
    PubMed 

    Google Scholar 
    69.Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. https://doi.org/10.1111/1574-6941.12122 (2013).Article 
    PubMed 

    Google Scholar 
    70.Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).Article 
    PubMed 

    Google Scholar 
    71.Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12017 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Tully, B. J., Sachdeva, R., Heidelberg, K. B. & Heidelberg, J. F. Comparative genomics of planktonic Flavobacteriaceae from the Gulf of Maine using metagenomic data. Microbiome https://doi.org/10.1186/2049-2618-2-34 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. https://doi.org/10.1016/S0168-6496(01)00206-9 (2002).Article 
    PubMed 

    Google Scholar 
    74.Pinhassi, J. et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.70.11.6753-6766.2004 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3326 (2014).Article 
    PubMed 

    Google Scholar 
    76.Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Buchan, A., González, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.71.10.5665-5677.2005 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Rajapitamahuni, S., Bachani, P., Sardar, R. K. & Mishra, S. Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. J. Appl. Phycol. https://doi.org/10.1007/s10811-018-1591-2 (2019).Article 

    Google Scholar  More

  • in

    Drowning carbon sinks?

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More