Resilience of spider communities affected by a range of silvicultural treatments in a temperate deciduous forest stand
1.Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 259, 698–709. https://doi.org/10.1016/j.foreco.2009.09.023 (2010).Article
Google Scholar
2.Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 8. https://doi.org/10.1038/ncomms2328 (2013).CAS
Article
Google Scholar
3.Van Meerbeek, K., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132. https://doi.org/10.1111/1365-2745.13651 (2021).Article
Google Scholar
4.FAO and UNEP. The State of the World’s Forests (SOFO). (FAO and UNEP, 2020).5.Forest Europe. State of Europe’s Forests 2015. Ministerial Conference on the Protection of Forests in Europe. www.foresteurope.org. (Forest Europe, 2015).6.Matthews, J. D. Silvicultural Systems (Oxford University Press, 1991).
Google Scholar
7.Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Sci. Rep. 6, 10. https://doi.org/10.1038/srep23954 (2016).CAS
Article
Google Scholar
8.Gustafsson, L., Kouki, J. & Sverdrup-Thygeson, A. Tree retention as a conservation measure in clear-cut forests of northern Europe: A review of ecological consequences. Scand. J. For. Res. 25, 295–308. https://doi.org/10.1080/02827581.2010.497495 (2010).Article
Google Scholar
9.Raymond, P., Bédard, S., Roy, V., Larouche, C. & Tremblay, S. The irregular shelterwood system: Review, classification, and potential application to forests affected by partial disturbances. J. For. 107, 405–413 (2009).
Google Scholar
10.Csépányi, P. & Csór, A. Economic assessment of European beech and Turkey oak stands with close-to-nature forest management. Acta Silvat. Lignar. Hung. 13, 9–24 (2017).Article
Google Scholar
11.Ebeling, A. et al. Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods. PLoS ONE 9, 8. https://doi.org/10.1371/journal.pone.0106529 (2014).CAS
Article
Google Scholar
12.Chen, B. R. & Wise, D. H. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80, 761–772. https://doi.org/10.1890/0012-9658(1999)080[0761:Bulopa]2.0.Co;2 (1999).Article
Google Scholar
13.Zuev, A. et al. Different groups of ground-dwelling spiders share similar trophic niches in temperate forests. Ecol. Entomol. 45, 1346–1356. https://doi.org/10.1111/een.12918 (2020).Article
Google Scholar
14.Moulder, B. C. & Reichle, D. E. Significance of Spider Predation in the Energy Dynamics of Forest-Floor Arthropod Communities. Ecol. Monogr. 42, 473–498. https://doi.org/10.2307/1942168 (1972).Article
Google Scholar
15.Lawrence, K. L. & Wise, D. H. Unexpected indirect effect of spiders on the rate of litter disappearance in a deciduous forest. Pedobiologia 48, 149–157. https://doi.org/10.1016/j.pedobi.2003.11.001 (2004).Article
Google Scholar
16.Oxbrough, A. & Ziesche, T. Spiders in Forest Ecoystems. In Integrative approaches as an opportunity for the conservation of forest biodiversity (eds Kraus, D. & Krumm, F.) 186–193 (European Forest Institute, 2013).
Google Scholar
17.Clarke, R. D. & Grant, P. R. An experimental study of the role of spiders as predators in a forest litter community. Part 1. Ecology 49, 1152–1154. https://doi.org/10.2307/1934499 (1968).Article
Google Scholar
18.Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 391, 9–18. https://doi.org/10.1016/j.foreco.2017.01.033 (2017).Article
Google Scholar
19.Gallé, R., Szabó, A., Császár, P. & Torma, A. Spider assemblage structure and functional diversity patterns of natural forest steppes and exotic forest plantations. For. Ecol. Manag. 411, 234–239. https://doi.org/10.1016/j.foreco.2018.01.040 (2018).Article
Google Scholar
20.Buddle, C. M., Langor, D. W., Pohl, G. R. & Spence, J. R. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Cons. 128, 346–357. https://doi.org/10.1016/j.biocon.2005.10.002 (2006).Article
Google Scholar
21.Oxbrough, A. G., Gittings, T., O’Halloran, J., Giller, P. S. & Smith, G. F. Structural indicators of spider communities across the forest plantation cycle. For. Ecol. Manag. 212, 171–183. https://doi.org/10.1016/j.foreco.2005.03.040 (2005).Article
Google Scholar
22.Ingle, K. et al. Winter-active spider fauna is affected by plantation forest type. Env. Entomol. 49, 601–606. https://doi.org/10.1093/ee/nvaa025 (2020).Article
Google Scholar
23.Munevar, A., Rubio, G. D. & Zurita, G. A. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: The role of prey availability and abiotic conditions. For. Ecol. Manag. 424, 536–544. https://doi.org/10.1016/j.foreco.2018.03.025 (2018).Article
Google Scholar
24.Matveinen-Huju, K. & Koivula, M. Effects of alternative harvesting methods on boreal forest spider assemblages. Can. J. For. Res. 38, 782–794. https://doi.org/10.1139/x07-169 (2008).Article
Google Scholar
25.Buddle, C. M. & Shorthouse, D. P. Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests. Can. Entomol. 140, 437–452 (2008).Article
Google Scholar
26.Kovács, B., Tinya, F., Németh, C. & Ódor, P. Unfolding the effects of different forestry treatments on microclimate in oak forests: results of a 4-yr experiment. Ecol. Appl. 30, e02043. https://doi.org/10.1002/eap.2043 (2020).Article
PubMed
PubMed Central
Google Scholar
27.Kovács, B. et al. The Short-Term Effects of Experimental Forestry Treatments on Site Conditions in an Oak-Hornbeam Forest. Forests 9, 406 (2018).Article
Google Scholar
28.Pommerening, A. & Murphy, S. T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77, 27–44. https://doi.org/10.1093/forestry/77.1.27 (2004).Article
Google Scholar
29.Tinya, F. et al. Initial understory response to experimental silvicultural treatments in a temperate oak-dominated forest. Eur. J. For. Res. 138, 65–77. https://doi.org/10.1007/s10342-018-1154-8 (2018).Article
Google Scholar
30.Tinya, F. et al. Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. For. Ecol. Manag. 459, 117810. https://doi.org/10.1016/j.foreco.2019.117810 (2020).Article
Google Scholar
31.Boros, G., Kovács, B. & Ódor, P. Green tree retention enhances negative short-term effects of clear-cutting on enchytraeid assemblages in a temperate forest. Appl. Soil Ecol. 136, 106–115. https://doi.org/10.1016/j.apsoil.2018.12.018 (2019).Article
Google Scholar
32.Elek, Z. et al. Taxon-specific responses to different forestry treatments in a temperate forest. Sci. Rep. 8, 16990. https://doi.org/10.1038/s41598-018-35159-z (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
33.Connell, J. H. Intermediate-disturbance hypothesis. Science 204, 1345–1345 (1979).CAS
Article
Google Scholar
34.Chen, K. C. & Tso, I. M. Spider diversity on Orchid Island, Taiwan: A comparison between habitats receiving different degrees of human disturbance. Zool. Stud. 43, 598–611 (2004).
Google Scholar
35.Szinetar, C. & Samu, F. Intensive grazing opens spider assemblage to invasion by disturbance-tolerant species. J. Arachnol. 40, 59–70 (2012).Article
Google Scholar
36.Pinzon, J., Spence, J. R. & Langor, D. W. Responses of ground-dwelling spiders (Araneae) to variable retention harvesting practices in the boreal forest. For. Ecol. Manag. 266, 42–53. https://doi.org/10.1016/j.foreco.2011.10.045 (2012).Article
Google Scholar
37.Pinzon, J., Spence, J. R. & Langor, D. W. Effects of prescribed burning and harvesting on ground-dwelling spiders in the Canadian boreal mixedwood forest. Biodivers. Conserv. 22, 1513–1536. https://doi.org/10.1007/s10531-013-0489-1 (2013).Article
Google Scholar
38.Samu, F. et al. Differential ecological responses of two generalist arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the effects of wildfire. Commun. Ecol. 11, 129–139. https://doi.org/10.1556/ComEc.11.2010.2.1 (2010).Article
Google Scholar
39.Morel, L. et al. Spontaneous recovery of functional diversity and rarity of ground-living spiders shed light on the conservation importance of recent woodlands. Biodivers. Conserv. 28, 687–709. https://doi.org/10.1007/s10531-018-01687-3 (2019).Article
Google Scholar
40.Seedre, M., Felton, A. & Lindbladh, M. What is the impact of continuous cover forestry compared to clearcut forestry on stand-level biodiversity in boreal and temperate forests? A systematic review protocol. Env. Evid. 7, 28. https://doi.org/10.1186/s13750-018-0138-y (2018).Article
Google Scholar
41.Garcia-Tejero, S., Spence, J. R., O’Halloran, J., Bourassa, S. & Oxbrough, A. Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests. PLoS ONE 13, 16. https://doi.org/10.1371/journal.pone.0206931 (2018).CAS
Article
Google Scholar
42.Andrési, D., Bali, L., Tuba, K. & Szinetár, C. Comparative study of ground beetle and ground-dwelling spider assemblages of artificial gap openings. Commun. Ecol. 19, 133–140. https://doi.org/10.1556/168.2018.19.2.5 (2018).Article
Google Scholar
43.Arganaraz, C. I. et al. Ground-dwelling spiders and understory vascular plants on Fuegian austral forests: Community responses to variable retention management and their association to natural ecosystems. For. Ecol. Manag. 474, 12. https://doi.org/10.1016/j.foreco.2020.118375 (2020).Article
Google Scholar
44.Dorow, W. H. O., Blick, T., Pauls, S. U. & Schneider, A. Waldbindung ausgewählter Tiergruppen Deutschlands (BfN-Skripten 544, 2019).
Google Scholar
45.Szmatona-Túri, T., Magos, G., Vona-Túri, D., Gál, B. & Weiperth, A. Review of habitats occupied by Urocoras longispinus: A little-known spider species, and responses to grassland management. Biologia 73, 523–529. https://doi.org/10.2478/s11756-018-0061-2 (2018).Article
Google Scholar
46.Haraguchi, T. F., Uchida, M., Shibata, Y. & Tayasu, I. Contributions of detrital subsidies to aboveground spiders during secondary succession, revealed by radiocarbon and stable isotope signatures. Oecologia 171, 935–944. https://doi.org/10.1007/s00442-012-2446-1 (2013).ADS
Article
PubMed
Google Scholar
47.Carvalho, J. C. et al. Taxonomic divergence and functional convergence in Iberian spider forest communities: Insights from beta diversity partitioning. J. Biogeogr. 47, 288–300. https://doi.org/10.1111/jbi.13722 (2020).Article
Google Scholar
48.Samu, F., Horváth, A., Neidert, D., Botos, E. & Szita, É. Metacommunities of spiders in grassland habitat fragments of an agricultural landscape. Basic Appl. Ecol. 31, 92–103. https://doi.org/10.1016/j.baae.2018.07.009 (2018).Article
Google Scholar
49.Frost, C. M., Didham, R. K., Rand, T. A., Peralta, G. & Tylianakis, J. M. Community-level net spillover of natural enemies from managed to natural forest. Ecology 96, 193–202. https://doi.org/10.1890/14-0696.1 (2015).Article
PubMed
Google Scholar
50.Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment: “pseudoreplication” in time?. Ecology 67, 929–940. https://doi.org/10.2307/1939815 (1986).Article
Google Scholar
51.Lemmon, P. E. A new instrument for measuring forest overstory density. J. For. 55, 667–668 (1957).
Google Scholar
52.Jimenez-Valverde, A. & Lobo, J. M. Establishing reliable spider (Araneae, Araneidae and Thomisidae) assemblage sampling protocols: estimation of species richness, seasonal coverage and contribution of juvenile data to species richness and composition. Acta Oecol. 30, 21–32 (2006).ADS
Article
Google Scholar
53.SAS Institute. JMP Statistics and Graphics Guide, Release 6. (SAS Institute Inc., 2005).54.Smilauer, P. & Leps, J. Multivariate Analysis of Ecological Data Using CANOCO 5 2nd edn. (Cambridge University Press, 2014).Book
Google Scholar
55.ter Braak, C. J. F. & Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0) (Microcomputer Power, 2012).
Google Scholar
56.McCune, B. & Mefford, M. PC-ORD. Multivariate Analysis ofEcological Data. Version 6. (MjM software design, 2011).57.Van den Brink, P. J. & Braak, C. J. F. T. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148. https://doi.org/10.1002/etc.5620180207 (1999).Article
Google Scholar
58.Weiher, E. & Boylen, C. W. Patterns and prediction of α and β diversity of aquatic plants in Adirondack (New York) lakes. Can. J. Bot. 72, 1797–1804. https://doi.org/10.1139/b94-221 (1994).Article
Google Scholar
59.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x (2003).Article
Google Scholar
60.Podani, J. & Schmera, D. A new conceptual and methodological framework for exploring and explaining pattern in presence—absence data. Oikos 120, 1625–1638. https://doi.org/10.1111/j.1600-0706.2011.19451.x (2011).Article
Google Scholar More