Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram
1.Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 4, 177–187 (2013).
Google Scholar
2.Jamshidi-Kia, F., Lorigooini, Z. & Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol. 7(1), 1–7 (2018).Article
Google Scholar
3.Yuan, H., Ma, Q., Ye, L. & Piao, G. The traditional medicine and modern medicine from natural products. Molecules 21, 559–577 (2016).Article
CAS
Google Scholar
4.Ali, H., Khan, E. & Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 1–14 (2019).5.Jedrejek, D. et al. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem. Toxicol. 126, 233–247 (2019).CAS
PubMed
Article
Google Scholar
6.British Hebal Medicine Association, Available from: http://www.bhma.info.7.Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants 3rd edn. (CRC Press, 2001).
Google Scholar
8.Petrova, S., Yurukova, L. & Velcheva, I. Taraxacum officinale as a biomonitor of metals and toxic elements (Plovdiv, Bulgaria). Bul. J. Agric. Sci. 19, 241–247 (2013).
Google Scholar
9.Kano, N. et al. Study on the behavior and removal of cadmium and zinc using Taraxacum officinale and gazania under the application of biodegradable chelating agents. Appl. Sci. 11, 1557–1574 (2021).CAS
Article
Google Scholar
10.Hammammi, H. et al. Weeds ability to phytoremediate cadmium-contaminated soil. Intern. J. Phyt. 18(1), 48–53 (2016).Article
CAS
Google Scholar
11.Spychalski, G. Determinations of growing herbs in Polish agriculture. Herba polonica 59(4), 6–18 (2013).Article
Google Scholar
12.Różański, L. Vademecum of pesticides 97/98. Agra-Enviro Lab. (1998).13.Rajeswara, R. B. R. et al. Cultivation Technology for Economically Important Medicinal Plants in Advances in Medicinal Plants, ed. Reddy K.J, Bahadur B., Bhadraiah B., Rao M. L. N., Universities Press (2015).14.Agro-techniques of selected medicinal plants, National Medicinal Plants Board, India, (2008).15.Almeida, F., Rodrigues, M. L. & Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 10, 1–5 (2019).Article
Google Scholar
16.Bruni, R., Bellardi, M. G. & Parrella, G. Change in chemical composition of sweet basil (Ocimum basilicum L.) essential oil caused by alfalfa mosaic virus. J. Phytopat. 164, 202–206 (2016).CAS
Article
Google Scholar
17.Damalas, C. A. & Koutroubas, S. D. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 4, 1–10 (2016).PubMed Central
Article
Google Scholar
18.Lazo, C. R., Miller, G. W. Thiram, Encyclopedia of Toxicology (Third Edition), Wexler P, US National Library of Medicine, MD, USA, pp. 558–559 (Bethesda 2014).19.Dias, M. C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Botany 2012, 1–4 (2012).Article
CAS
Google Scholar
20.Gupta, B., Rani, M. & Kumar, R. Degradation of thiram in water, soil and plants: A study by high-performance liquid chromatography. Biomed. Chromat. 26, 69–75 (2012).Article
CAS
Google Scholar
21.Sá da Silva, V. A. et al. Electrochemical evaluation of pollutants in the environment: Interaction between the metal Ions Zn(II) and Cu(II) with the fungicide thiram in billings dam. Electroanalysis 32, 1–9 (2020).Article
CAS
Google Scholar
22.Filipe, O. M. S., Costa, C. A. E., Vidal, M. M. & Santos, E. B. H. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils. Chemosphere 90, 432–440 (2013).ADS
CAS
PubMed
Article
Google Scholar
23.Adamczyk-Szabela, D., Romanowska-Duda, Z., Lisowska, K. & Wolf, W. M. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water Air Soil Pollut. 228, 334 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
24.Oliva, J. et al. Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem. 229, 172–177 (2017).CAS
PubMed
Article
Google Scholar
25.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Associated effects of cadmium and copper alter the heavy metals uptake by Melissa Offcinalis. Molecules 24, 2458 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
26.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci. Rep. 10, 1675–1686 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
27.PN-ISO 10390:1997. Agricultural Chemical Analysis of the Soil. Determination of pH. 1997. Available from accessed 20 April 2019; http://sklep.pkn.pl/pn-iso-10390-1997p.html.28.ASTM D2974-00, 2000. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. Method D 2974–00; American Society for Testing and Materials: West Conshohocken, PA, USA.29.Schumacher, B. A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments (United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory, 2002).
Google Scholar
30.PN-R-04024:1997 Chemical and agricultural analysis of soil – Determination of available phosphorus, potassium, magnesium and manganese in organic soils, accessed 25 April 2017; http://sklep.pkn.pl/pn-r-04024–1997p.html.31.Sherif, A. M., Elhussein, A. A. & Osman, A. G. Biodegradation of fungicide thiram (TMTD) in soil under laboratory conditions. Am. J. Biotech. Mol. Sci. 1(2), 57–68 (2011).Article
Google Scholar
32.Adamczyk-Szabela, D., Markiewicz, J. & Wolf, W. M. Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana offcinalis L. Water Air Soil Pollut. 226, 106–114 (2015).33.Dybczyński, R. et al. Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nuc. Chem. 259, 409–413 (2004).Article
Google Scholar
34.Piotrowski, K., Romanowska-Duda, Z. B. & Grzesik, M. How Biojodis and cyanobacteria alleviate the negative influence of predicted environmental constraints on growth and physiological activity of corn plants. Pol. J. Environ. Stud. 25, 741–751 (2016).CAS
Article
Google Scholar
35.Kalaji, M. H. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 122, 121–127 (2016).Article
CAS
Google Scholar
36.Mantzos, N. et al. QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. Int. J. Eviron. Anal. Chem. 93(15), 1566–1584 (2013).CAS
Article
Google Scholar
37.Goodson, D. Z. Mathematical Methods for Physical and Analytical Chemistry (Wiley, 2011).MATH
Book
Google Scholar
38.Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model Anal. 2, 21–33 (2011).
Google Scholar
39.Bordens, K. S. & Abbott, B. B. Research Design and Methods: A Process Approach 8th edn, 432–450 (McGraw-Hill, 2011).
Google Scholar
40.Galal, T. M. & Shehata, H. S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Ind. 48, 244–251 (2015).CAS
Article
Google Scholar
41.Liu, K. et al. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxi. Environ. Saf. 113, 207–213 (2015).ADS
CAS
Article
Google Scholar
42.Shi, G. R. & Cai, Q. S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biolog. Plantarum 53(2), 391–394 (2009).CAS
Article
Google Scholar
43.Testiati, E. et al. Trace metal and metalloid contamination levels in soils and two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard Mat. 248–249, 131–141 (2013).Article
CAS
Google Scholar
44.Xiao, R. et al. Fractionation, transfer and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronsequence of reclamation in estuary of China. Sci. Total Environ. 517, 66–75 (2015).ADS
CAS
PubMed
Article
Google Scholar
45.Wang, S., Zhao, Y., Guo, J. & Zhou, L. Effects of Cd, Cu and Zn on Ricinus communis L. Growth in single element or co-contaminated soils: Pot experiments. Ecolog. Eng. 90, 347–351 (2016).Article
Google Scholar
46.IUSS Working Group WRB World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. (FAO)47.Regulation of the Minister of Environment 01.08.2016. Journal of Laws of Poland, Item 139548.Antsotegi-Uskola, M., Markina-Iñarrairaegui, A. & Ugalde, U. New insights into copper homeostasis in filamentous fungi. Int. Microbiol. 23, 65–73 (2020).CAS
PubMed
Article
Google Scholar
49.Kabata-Pendias, A. & Pendias, H. Biogeochemistry of Trace Elements (PWN, 1999).
Google Scholar
50.Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. Heavy metal stress and some mechanisms of plant defense response. The Sci. World J. 1–18 (2015).51.Maznah, Z., Halimah, M. & Ismaill, B. S. Evaluation of the persistence and leaching behaviour of thiram fungicide in soil, water and oil palm leaves. Bull. Environ. Contam. Toxicol. 100, 677–682 (2018).CAS
PubMed
Article
Google Scholar
52.Thomas, K. The environmental fate and behaviour of antifouling paint booster biocides: A review. Biofouling 17, 73–86 (2001).CAS
Article
Google Scholar
53.EPA. United States Environmental Protection Agency (EPA, 2004).
Google Scholar
54.Gomes de Melo, B. A., Motta, F. L. & Santana, M. H. A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 62, 967–974 (2016).Article
CAS
Google Scholar
55.Gupta, B., Rani, M., Kumar, R. & Dureja, P. Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J. Environ. Sci. Health, Part B 47, 823–831 (2012).CAS
Article
Google Scholar
56.Adamczyk, D. The effect of thiuram on the uptake of lead and copper by Melissa officinalis. Environ. Eng. Sci. 23, 610–614 (2006).CAS
Article
Google Scholar
57.Adamczyk, D. & Jankiewicz, B. The effect of thiuram on the uptake of copper, zinc and manganese by Valeriana officinalis L. Pol. J. Environ. Stud. 17(5), 823–826 (2008).CAS
Google Scholar
58.Singh, N., Gupta, V. K., Kumar, A. & Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 5(70), 1–9 (2017).
Google Scholar
59.Skiba, E., Adamczyk-Szabela, D. & Wolf, W. M. Metal-based nanoparticles’ interactions with plants. In Plant Responses to Nanomaterials Recent Interventions, and Physiological and Biochemical Responses (eds Singh, V. P. et al.) 145–169 (Springer, 2021).Chapter
Google Scholar
60.Glebov, E. M., Grivin, V. P., Plyusnin, V. F. & Udaltsov, A. V. Manganese(II) complexes with diethylamine in aqueous solutions. J. Struct. Chem. 47, 476–483 (2006).CAS
Article
Google Scholar
61.Liaoa, Y., Zhanga, S. & Dryfe, R. Electroless copper plating using dimethylamine borane as reductant. Particuology 10, 487–491 (2012).Article
CAS
Google Scholar
62.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 26, 1–23 (2020).
Google Scholar
63.Yruela, I. Transition metals in plant photosynthesis. Metallomics 5, 1090–1109 (2013).CAS
PubMed
Article
Google Scholar
64.Yüzbaşıoğlu, E. & Dalyan, E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol. Biochem. 135, 322–330 (2019).PubMed
Article
CAS
Google Scholar
65.Beauchamp, R. O. et al. A critical review of the literature on carbon disulfide toxicity. CRC Crit. Rev. Toxicol. 11, 169–278 (1983).CAS
Article
Google Scholar
66.Norton, R., Mikkelsen, R. & Jensen, T. Sulfur for plant nutrition. Better Crops 97, 10–12 (2013).
Google Scholar
67.Abdallah, M. et al. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 61, 2635–2646 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar More