More stories

  • in

    Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram

    1.Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 4, 177–187 (2013).
    Google Scholar 
    2.Jamshidi-Kia, F., Lorigooini, Z. & Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol. 7(1), 1–7 (2018).Article 

    Google Scholar 
    3.Yuan, H., Ma, Q., Ye, L. & Piao, G. The traditional medicine and modern medicine from natural products. Molecules 21, 559–577 (2016).Article 
    CAS 

    Google Scholar 
    4.Ali, H., Khan, E. & Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 1–14 (2019).5.Jedrejek, D. et al. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem. Toxicol. 126, 233–247 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.British Hebal Medicine Association, Available from: http://www.bhma.info.7.Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants 3rd edn. (CRC Press, 2001).
    Google Scholar 
    8.Petrova, S., Yurukova, L. & Velcheva, I. Taraxacum officinale as a biomonitor of metals and toxic elements (Plovdiv, Bulgaria). Bul. J. Agric. Sci. 19, 241–247 (2013).
    Google Scholar 
    9.Kano, N. et al. Study on the behavior and removal of cadmium and zinc using Taraxacum officinale and gazania under the application of biodegradable chelating agents. Appl. Sci. 11, 1557–1574 (2021).CAS 
    Article 

    Google Scholar 
    10.Hammammi, H. et al. Weeds ability to phytoremediate cadmium-contaminated soil. Intern. J. Phyt. 18(1), 48–53 (2016).Article 
    CAS 

    Google Scholar 
    11.Spychalski, G. Determinations of growing herbs in Polish agriculture. Herba polonica 59(4), 6–18 (2013).Article 

    Google Scholar 
    12.Różański, L. Vademecum of pesticides 97/98. Agra-Enviro Lab. (1998).13.Rajeswara, R. B. R. et al. Cultivation Technology for Economically Important Medicinal Plants in Advances in Medicinal Plants, ed. Reddy K.J, Bahadur B., Bhadraiah B., Rao M. L. N., Universities Press (2015).14.Agro-techniques of selected medicinal plants, National Medicinal Plants Board, India, (2008).15.Almeida, F., Rodrigues, M. L. & Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 10, 1–5 (2019).Article 

    Google Scholar 
    16.Bruni, R., Bellardi, M. G. & Parrella, G. Change in chemical composition of sweet basil (Ocimum basilicum L.) essential oil caused by alfalfa mosaic virus. J. Phytopat. 164, 202–206 (2016).CAS 
    Article 

    Google Scholar 
    17.Damalas, C. A. & Koutroubas, S. D. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 4, 1–10 (2016).PubMed Central 
    Article 

    Google Scholar 
    18.Lazo, C. R., Miller, G. W. Thiram, Encyclopedia of Toxicology (Third Edition), Wexler P, US National Library of Medicine, MD, USA, pp. 558–559 (Bethesda 2014).19.Dias, M. C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Botany 2012, 1–4 (2012).Article 
    CAS 

    Google Scholar 
    20.Gupta, B., Rani, M. & Kumar, R. Degradation of thiram in water, soil and plants: A study by high-performance liquid chromatography. Biomed. Chromat. 26, 69–75 (2012).Article 
    CAS 

    Google Scholar 
    21.Sá da Silva, V. A. et al. Electrochemical evaluation of pollutants in the environment: Interaction between the metal Ions Zn(II) and Cu(II) with the fungicide thiram in billings dam. Electroanalysis 32, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    22.Filipe, O. M. S., Costa, C. A. E., Vidal, M. M. & Santos, E. B. H. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils. Chemosphere 90, 432–440 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Adamczyk-Szabela, D., Romanowska-Duda, Z., Lisowska, K. & Wolf, W. M. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water Air Soil Pollut. 228, 334 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Oliva, J. et al. Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem. 229, 172–177 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Associated effects of cadmium and copper alter the heavy metals uptake by Melissa Offcinalis. Molecules 24, 2458 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    26.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci. Rep. 10, 1675–1686 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.PN-ISO 10390:1997. Agricultural Chemical Analysis of the Soil. Determination of pH. 1997. Available from accessed 20 April 2019; http://sklep.pkn.pl/pn-iso-10390-1997p.html.28.ASTM D2974-00, 2000. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. Method D 2974–00; American Society for Testing and Materials: West Conshohocken, PA, USA.29.Schumacher, B. A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments (United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory, 2002).
    Google Scholar 
    30.PN-R-04024:1997 Chemical and agricultural analysis of soil – Determination of available phosphorus, potassium, magnesium and manganese in organic soils, accessed 25 April 2017; http://sklep.pkn.pl/pn-r-04024–1997p.html.31.Sherif, A. M., Elhussein, A. A. & Osman, A. G. Biodegradation of fungicide thiram (TMTD) in soil under laboratory conditions. Am. J. Biotech. Mol. Sci. 1(2), 57–68 (2011).Article 

    Google Scholar 
    32.Adamczyk-Szabela, D., Markiewicz, J. & Wolf, W. M. Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana offcinalis L. Water Air Soil Pollut. 226, 106–114 (2015).33.Dybczyński, R. et al. Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nuc. Chem. 259, 409–413 (2004).Article 

    Google Scholar 
    34.Piotrowski, K., Romanowska-Duda, Z. B. & Grzesik, M. How Biojodis and cyanobacteria alleviate the negative influence of predicted environmental constraints on growth and physiological activity of corn plants. Pol. J. Environ. Stud. 25, 741–751 (2016).CAS 
    Article 

    Google Scholar 
    35.Kalaji, M. H. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 122, 121–127 (2016).Article 
    CAS 

    Google Scholar 
    36.Mantzos, N. et al. QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. Int. J. Eviron. Anal. Chem. 93(15), 1566–1584 (2013).CAS 
    Article 

    Google Scholar 
    37.Goodson, D. Z. Mathematical Methods for Physical and Analytical Chemistry (Wiley, 2011).MATH 
    Book 

    Google Scholar 
    38.Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model Anal. 2, 21–33 (2011).
    Google Scholar 
    39.Bordens, K. S. & Abbott, B. B. Research Design and Methods: A Process Approach 8th edn, 432–450 (McGraw-Hill, 2011).
    Google Scholar 
    40.Galal, T. M. & Shehata, H. S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Ind. 48, 244–251 (2015).CAS 
    Article 

    Google Scholar 
    41.Liu, K. et al. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxi. Environ. Saf. 113, 207–213 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Shi, G. R. & Cai, Q. S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biolog. Plantarum 53(2), 391–394 (2009).CAS 
    Article 

    Google Scholar 
    43.Testiati, E. et al. Trace metal and metalloid contamination levels in soils and two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard Mat. 248–249, 131–141 (2013).Article 
    CAS 

    Google Scholar 
    44.Xiao, R. et al. Fractionation, transfer and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronsequence of reclamation in estuary of China. Sci. Total Environ. 517, 66–75 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Wang, S., Zhao, Y., Guo, J. & Zhou, L. Effects of Cd, Cu and Zn on Ricinus communis L. Growth in single element or co-contaminated soils: Pot experiments. Ecolog. Eng. 90, 347–351 (2016).Article 

    Google Scholar 
    46.IUSS Working Group WRB World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. (FAO)47.Regulation of the Minister of Environment 01.08.2016. Journal of Laws of Poland, Item 139548.Antsotegi-Uskola, M., Markina-Iñarrairaegui, A. & Ugalde, U. New insights into copper homeostasis in filamentous fungi. Int. Microbiol. 23, 65–73 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Kabata-Pendias, A. & Pendias, H. Biogeochemistry of Trace Elements (PWN, 1999).
    Google Scholar 
    50.Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. Heavy metal stress and some mechanisms of plant defense response. The Sci. World J. 1–18 (2015).51.Maznah, Z., Halimah, M. & Ismaill, B. S. Evaluation of the persistence and leaching behaviour of thiram fungicide in soil, water and oil palm leaves. Bull. Environ. Contam. Toxicol. 100, 677–682 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Thomas, K. The environmental fate and behaviour of antifouling paint booster biocides: A review. Biofouling 17, 73–86 (2001).CAS 
    Article 

    Google Scholar 
    53.EPA. United States Environmental Protection Agency (EPA, 2004).
    Google Scholar 
    54.Gomes de Melo, B. A., Motta, F. L. & Santana, M. H. A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 62, 967–974 (2016).Article 
    CAS 

    Google Scholar 
    55.Gupta, B., Rani, M., Kumar, R. & Dureja, P. Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J. Environ. Sci. Health, Part B 47, 823–831 (2012).CAS 
    Article 

    Google Scholar 
    56.Adamczyk, D. The effect of thiuram on the uptake of lead and copper by Melissa officinalis. Environ. Eng. Sci. 23, 610–614 (2006).CAS 
    Article 

    Google Scholar 
    57.Adamczyk, D. & Jankiewicz, B. The effect of thiuram on the uptake of copper, zinc and manganese by Valeriana officinalis L. Pol. J. Environ. Stud. 17(5), 823–826 (2008).CAS 

    Google Scholar 
    58.Singh, N., Gupta, V. K., Kumar, A. & Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 5(70), 1–9 (2017).
    Google Scholar 
    59.Skiba, E., Adamczyk-Szabela, D. & Wolf, W. M. Metal-based nanoparticles’ interactions with plants. In Plant Responses to Nanomaterials Recent Interventions, and Physiological and Biochemical Responses (eds Singh, V. P. et al.) 145–169 (Springer, 2021).Chapter 

    Google Scholar 
    60.Glebov, E. M., Grivin, V. P., Plyusnin, V. F. & Udaltsov, A. V. Manganese(II) complexes with diethylamine in aqueous solutions. J. Struct. Chem. 47, 476–483 (2006).CAS 
    Article 

    Google Scholar 
    61.Liaoa, Y., Zhanga, S. & Dryfe, R. Electroless copper plating using dimethylamine borane as reductant. Particuology 10, 487–491 (2012).Article 
    CAS 

    Google Scholar 
    62.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 26, 1–23 (2020).
    Google Scholar 
    63.Yruela, I. Transition metals in plant photosynthesis. Metallomics 5, 1090–1109 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Yüzbaşıoğlu, E. & Dalyan, E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol. Biochem. 135, 322–330 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Beauchamp, R. O. et al. A critical review of the literature on carbon disulfide toxicity. CRC Crit. Rev. Toxicol. 11, 169–278 (1983).CAS 
    Article 

    Google Scholar 
    66.Norton, R., Mikkelsen, R. & Jensen, T. Sulfur for plant nutrition. Better Crops 97, 10–12 (2013).
    Google Scholar 
    67.Abdallah, M. et al. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 61, 2635–2646 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India

    Study areaThe important river Damodar (563 km) originates from Khamarpat hill under Palamau district of Jharkhand state (India). It flows toward east direction and ultimately it joins with river Bhagirathi-Hooghly in West Bengal. Upper and middle parts of the river basin have rich diversity of minerals and standard quality coal reserve of Gondwana formations. Abundant supply of fresh river water with high mineral and energy resources attracts many large, medium and small-scale industries since historical time. River Damodar is the principal supplier of water resource to drinking, industrial and domestic purpose in its catchment area. Therefore, such favourable environment attracts huge population along with industrial integration in this area. The present study area is bounded by 23° 28′ 28.7″ N to 23° 40′ 52.5″ N and 86° 49′ 26.8″ E to 87° 18′ 42.4″ E and 65.37 km river stretch has been selected for the study. In this section high, agglomeration of industries and allied human works intensively developed along the riverside. Many iron and steel plants, thermal power plant, sponge iron factory, chemical industries, coal mining fields and urban centres have been developed through the evolution of time. As a result, huge untreated waste (solid/ liquid), hot water, coal dust and urban effluents are being regularly discharged to the riverbed through various connecting channels which are locally called nallas (Fig. 1)10,11.Figure 1source QGIS 3.16 software (https://qgis.org/en/site/forusers/download.html).Location map of the study stretch of a tropical river Damodar (India). The diagram is prepared by openFull size imageSample collection and data analysisWater samples were collected from eleven discharged points of industrial effluents on main riverbed. First, samples were taken on December 2019 (pre-lockdown/ normal period), again second, samples were collected in June, 2020 (during lockdown) to assess the changes on river water quality due to temporarily closing of industries. Third, samples were obtained in November, 2020 (after unlock phase) to get clear idea about effects of industries on the river water quality. Samples were obtained from 0.5 m below the surface water level within 5 m influencing radius zone. Pre cleaned polyethylene bottles (500 ml) were used for the collection of five subsamples from each sampling site and mixed up to get a bulk contain (1 l). All samples were carried properly for further analysis in laboratory. Sample containers were labelled as S1, S2, S3… to S11 for properly identification (Fig. 1). Total 20 parameters were analysed from each sample of each period. Important parameters such as pH, electrical conductivity (EC), total dissolved solids (TDS), turbidity, magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulphate (SO42–), nitrates (NO3−), Biological Oxygen Demand (BOD), Dissolved Oxygen (DO), zinc (Zn2+), cadmium (Cd2+), lead (Pb2+), nickel (Ni2+), chromium (Cr), iron (Fe2+), chlorophyll a (Chla), total phosphorus (TP), and Secchi disk depth (Sd) have been considered. Consequently, pH and EC were measured at the sampling sites using Thermo probe, Hanna HI9811-5 potable meters respectively. DO was determined through Winkler’s method at the sampling spot immediately28. EC denoted by microsiemens per centimetre. TDS was determined following the procedure given by Hem (1991). Turbidity was denoted by Nephelometric Turbidity Unit (NTU’s). All cation, anions, BOD and DO were expressed in mg/l while all heavy metals, TP and Chla denoted as microgram/l. All other physico-chemical parameters and heavy metals were analysed by standard procedure which was prescribed by American Public Health Association (APHA)29. Chla and total phosphorus were estimated following APHA29 standard procedures. Secchi disk (Sd) with 8 in. diameter and attached cord in disk centre was used for depth measurement and expressed in meters at the maximum limit of depth where disk was seen from the above into the water.Modified water quality index (MWQI)MWQI of the 33-sample water was conducted for 11 sample sites by important water quality parameters namely pH, TDS, EC, turbidity, Mg2+, Ca2+, Cl-, SO42–, NO3–, BOD and DO. We considered 11 variables per sample in the index. The calculation of MWQI was conducted following the method of Vasistha and Ganguly30.At first, pre defined weightage was assigned for each selected parameter. The weightage of each parameter was obtained from previous literatures. After that, relative weight of each parameter was derived by the formula.$$ RW = AW/sumlimits_{i = 1}^{n} {AW} $$
    (1)
    where RW is relative weight of each parameter, AW is assigned weight obtained from past literature (AW of pH = 1, TDS = 1.79, EC = 1.78, turbidity = 1.09, Ca2+  = 0.8, Mg2+  = 0.72, Cl– = 1.28, SO42– = 1.60, NO3– = 2.32, BOD = 1.72, DO = 2.85) and n is total number of parameters considered for analysis.Second, quality assessment (Qi) of each parameter was obtained following the formula.$$ Q_{i} = (C_{i} times S_{i} ) times 100 $$
    (2)
    where Ci is concentration of particular parameter in sample water, Si is standard permissible limit of each parameter as suggested by BIS31 and WHO31 (Table 1).Table 1 Descriptive statistics of twenty variables of physio chemical, heavy metals and biological parameters in three period.Full size tableQi for pH and DO was obtained through some modification of Eq. (1.2) because optimum concentration of these two parameters are little different from others. The optimum value of pH and DO is considered as 7.0 and 14.6 mg/l (100% saturation at 23 °C), respectively32. Thus, Qi for these two parameters were performed using the formula.$$ Q_{i} = (frac{{C_{i} – V_{i} }}{{S_{i} – V_{i} }}) times 100 $$
    (3)
    where Vi denotes optimum values of pH and DO.Third, in this step sub index (SIi) was calculated for each considered parameter by multiplication of relative weight (RW) with quality assessment (Qi) value of each parameter using formula below.$$ SI_{i} = RW times Q_{i} $$
    (4)
    At last, MWQI was obtained for each sample site by summation of SIi of each parameter as below:$$ MWQI = sumlimits_{i = 1}^{n} {SI_{i} } $$
    (5)
    Water quality (based on MWQI values) has been categorised into 5 classes such as excellent (≤ 50), good (50–100), poor (100–200), very poor (200–300) and unfit for drinking (≥ 300) as suggested by BIS31 (IS:10500).Heavy metal index (HMI)Analysis of heavy metal index was done using 6 parameters as Cd2+, Zn2+, Cr, Pb2+, Ni2+, and Fe2+. Calculation was conducted through this formula33.$$ Wi = K/Si $$
    (6)
    where Wi suggests weightage of ith parameter, K means constant value (1), Si means standard value of ith parameter as per BIS31, and WHO32. In the next step, sub index calculation (Qi) was done through this formula.$$ Qi = sumlimits_{i = 1}^{n} {frac{Mi}{{Si}}} times 100 $$
    (7)
    where Mi is the value of heavy metal concentration in sample water, Si is maximum limit of permissible of ith parameter in µg/l according to BIS31 and WHO32 (Table 1). At last, HPI was calculated using this formula which is given below.$$ HPI = frac{{sumlimits_{i = 1}^{n} {WiQi} }}{{sumlimits_{i = 1}^{n} {Wi} }} $$
    (8)
    where n indicates total number of parameters used for calculation of HPI. HPI can be classified into five categories such as excellent (0–25), good (26–50), poor (51–75), very poor (75–100) and unfit for drinking ( > 100).Potential ecological risk (RI)To assess the environmental response of heavy metal contamination, a new index was applied from sedimentological perspective and it was proposed by Hakanson33. In this method, effects of heavy metals on environment and possibilities to ecological risk can be determined by a single contamination coefficient, toxic response coefficient of heavy metals and comprehensive contamination of metals for any aquatic or soil environment using this formula34.$$ C_{f}^{i} = C_{s}^{i} /C_{n}^{i} ,;c = sumlimits_{i = 1}^{n} {C_{f}^{i} } $$
    (9)
    $$ E_{r}^{i} = T_{r}^{i} times C_{f}^{i} ,;RI = sumlimits_{i = 1}^{m} {E_{r}^{i} } $$
    (10)
    where Csi specifies heavy metal contamination value, Cni indicates reference value of heavy metals, C stands for degree of contamination by toxic heavy metals, Eri represents ecological risk factor of any single substance, Tri indicates ‘Toxic- response’ of any particular metal and RI denotes potential ecological risk index of all measured toxic metals. In this study, reference value of heavy metals was taken from standard preindustrial values of heavy metals as Cd = 1.0, Pb = 70, Cr = 90 and Zn = 175. Toxic response of heavy metals was used as follows: Cd = 30, Pb = 5, Cr = 2 and Zn = 1 (Hakanson33). Values of RI can be classified into four categories such as Practically uncontaminated ( 600).Trophic State Index (TSI)Trophic status of river was identified by Trophic State Index (TSI) considering three parameters such as Secchi disk depth (Sd), Chlorophyll-a (Chla), Total phosphorus (TP). Trophic State Index (TSI) was calculated by Carlson method35.$$ TS(Sd) = 60.0 – 14.41 times Ln(Sd) $$
    (11)
    $$ TS(TP) = 14.42 times Ln(TP) + 4.15 $$
    (12)
    $$ TS(Chla) = 30.6 + 9.81 times Ln(Chla) $$
    (13)
    $$ {text{TSI }}left( {text{Trophic State Index}} right) = left[ {TS(Sd) + TS(TP) + TS(Chla)} right]/3 $$
    (14)
    Values of TSI were classified into seven categories such as low oligotrophic ( 80).Statistical and spatial analysisA meta analysis such as descriptive statistics, Pearson correlation coefficient, analysis of variance (ANOVA test), principal component analysis (PCA) of all physico-chemical parameters, biological and heavy metals were applied to quantify the significant changes in three phases using least significant difference (LSD) at 0.05 level. All statistical analysis has been performed using SPSS 20 and MS-excel software while R programming language v. R 4.1.1 is used only for diagrammatic presentation. Inverse Distance Weightage (IDW) technique was performed on QGIS v.3.16 software for revealing spatial variation of water quality in three periods on the basis of different indexing method. More

  • in

    The effect of periodic disturbances and carrying capacity on the significance of selection and drift in complex bacterial communities

    Predicting community responses to ecosystem changes is essential for improving ecosystem management. From an industrial perspective, we are dependent on stable microbial communities that perform well. Moreover, we live in a time where humans create disturbances at various levels in natural ecosystems. It is therefore important to comprehend the consequences of our activity. To predict the community response to external forces, we need to understand how different ecosystems affect the community assembly processes.We aimed to fill the knowledge gap on how carrying capacity and periodical disturbances affect the community assembly. It has previously been shown that the carrying capacity affects the community composition [46]. However, its effect on the assembly processes has remained unclear. Ecosystems with a lower carrying capacity support lower community size. Because the outcome of drift is density-dependent [6], communities with a low carrying capacity should have more populations vulnerable to drifting to extinction. However, our five-times difference in carrying capacity between cultivation regimes did not result in apparent differences in community assembly. The only exception was for the disturbed communities in Period 2, where the low carrying capacity regime (UDL) indicated a stronger influence of selection than the high (UDH; Fig. 4b). This observation was surprising as we hypothesised that drift might be more pronounced in systems with lower carrying capacity. In conclusion, the minor effects of carrying capacity observed for the replicate similarity rate for the undisturbed communities suggest that the effect of carrying capacity should be investigated further, including larger differences in carrying capacity.The effect of the disturbance regime on the microbial community assembly was more evident. The disturbance we investigated was a substantial dilution of the microcosm’s inoculum. The dilution has two significant effects: the community size is reduced, and the concentration of resources increases strongly for the remaining individuals. These two changes are relevant in natural and human-created ecosystems, where resource supply vary due to natural processes (e.g. patchiness and floods) and human activity (e.g. eutrophication and saprobiation).Investigating the temporal community composition through ordinations can reveal overall successional trajectories [47]. We found that whereas the PCoA ordinations indicated an overall deterministic trajectory for the undisturbed communities, the replicate similarity rate indicated that drift dominated the community assembly. This was evident for the microcosms starting with undisturbed culture conditions (UD Δµ  > 0; Fig. 5). However, the results were less evident for the communities going from disturbed to undisturbed conditions (DU) as the replicate similarity rate was around zero. Nonetheless, there was an apparent decrease in the replicate similarity rate when going from disturbed (Δµ 1.1 × 10−2) to undisturbed conditions (Δµ 5 × 10–4).The strength and unique feature of our experiment is the crossed design of the disturbance regimes. This crossing considerably increases the robustness of the conclusions drawn from the data. First, during the first period, all microcosms were inoculated with the same community, but in the second period, the twelve communities had assembled individually for 28 days. We could therefore investigate the effects of our experimental variables on drift and selection with different starting conditions. The temporal trends in the data were found to be independent of the starting condition, substantially increasing the strength of our conclusion.Second, subjecting the communities to the opposite disturbance regime in Period 2 supports that we had stable attractors in our systems. An attractor is a point or a trajectory in the state space of a dynamical system. If the attractor is locally stable, the system will tend to evolve toward it from a wide range of starting conditions and stay close to it even if slightly disturbed [48]. We observed locally stable attractors based on the disturbance regime and thus one stationary phase for each disturbance regime. Some ecological systems show dramatic regime shifts between alternative stationary states in response to changes in an external driver [49]. Such systems typically exhibit hysteresis in the sense that they will not return directly to the original state by an opposite change in the driver. We found that community composition was reversible and dependent on the disturbance regime, as highlighted by the Bray–Curtis ordinations (Fig. 4). This reversibility indicates that the community changes we observed were not catastrophic bifurcations or regime shifts and that it is unlikely that the systems contain multiple stationary states within the same disturbance regime. We think this gives strong support for assuming that drift is the main driver for divergence in the community composition and that selection towards alternative attractors probably plays a minor role. Thus, we can conclude that shifting from a disturbed to an undisturbed ecosystem increased the contribution of drift. Our observations corroborate other investigations of bioreactors [15, 50] and simulations [51] that report that stochasticity is fundamental for the assembly of communities. However, the finding that drift was important for structuring the undisturbed microcosms was unexpected.In dispersal-limited communities where resources are supplied continuously, such as in the undisturbed communities examined here, the selective process competition has been hypothesised to be high [7]. However, our experimental environment offered little variation in the resources provided, as the medium provided was the same throughout the experiment. This may have led to populations becoming “ecologically equivalent”, meaning that their fitness difference was too small to result in competitive exclusion on the time scale of our experiment [5, 52]. Under these assumptions, community assembly is similar to the neutral model in which the growth rates of the community members are comparable [53].During disturbances, we found that selection dominated community assembly. Our results support Zhou et al. hypothesis stating that determinism should increase due to biomass loss in dispersal-limited communities [24]. However, they oppose their other hypothesis stating that nutrient inputs should increase stochasticity [24], making low abundant populations vulnerable to local extinction [6, 7]. During the disturbances, the Sørensen similarity between replicates was stable or increasing, indicating that the periodical disturbance did not result in the extinction of low abundant populations. Instead, it appears that the dilution removed competition for some time, resulting in a phase where all populations got “a piece of the cake”. Several studies have observed increased stochasticity as a result of increased resource availability [7, 11, 24, 26]. However, we found that disturbances resulting in periods with exponential growth due to density-independent loss of individuals and high resource input suppressed the effect of stochastic processes. This exponential growth period without competition would enable more populations to stay above the detection limits of the 16S-rDNA-sequencing method.More OTUs were enriched under the disturbed regime than under the undisturbed. During the disturbance, the microcosms were diluted ~2 day−1, whereas the dilution factor was 1 day−1 during the undisturbed regime. We cannot assume steady-state in the disturbed microcosms, but it was interesting to see a substantial increase in the abundance of OTUs classified as Gammaproteobacteria. Gammaproteobacteria include many opportunists [54] that appeared to exploit the resource surplus following the disturbance. This opportunistic lifestyle fits within the r- and K-strategist framework [55].Organisms with high maximum growth rates but low competitive abilities are classified as r-strategists. These r-strategists are superior in environments where the biomass is below the carrying capacity. On the other hand, K-strategists are successful in competitive environments due to their high substrate affinity and resource specialisation [56]. Based on the taxonomic responses, it appears as disturbances in the form of dilutions selected for r-strategists, whereas the undisturbed regime selected for K-strategists. The r-strategists selected for during the disturbance periods included genera such as Vibrio and Colwellia [57], and the genus Vibrio includes many pathogenic strains [58]. Thus, our findings may have implications for land-based aquaculture systems where conditions favouring r-strategists is linked to high mortality and reduced viability of fish [56].The DeSeq2 results pose some new questions regarding the link between phylogeny and niche fitness. Generally, ecologists assume that closely related taxa have similar niches, as they have a common evolutionary history and, thus, similar physiology [59, 60]. For example, here, OTUs belonging to Gammaproteobacteria co-occurred when the environment was disturbed. However, for other classes such as Alphaproteobacteria and Flavobacteria, the OTUs responded differently to the disturbance regimes, despite belonging to the same class. This lack of phylogenetically coherent response indicates that the paradigm of correlation between phylogeny and niche requires further studies.This study was performed on complex marine microbial communities cultivated under controlled experimental conditions. We found that undisturbed environments enhanced the contribution of drift on community assembly and that disturbances increased the effect of selection. These observations might be different in more diverse ecosystems such as soils or the human gut. In such ecosystems, the microbes are more closely associated with, for example, soil particles or attached to the gut lining. It has been shown that the biofilm-associated and planktonic microbial communities have different community compositions [61]. Consequently, the community assembly processes may be affected differently by environmental fluctuations. Our experimental variables should therefore be tested in other ecosystem settings to verify our conclusions.To our knowledge, this study is the first to experimentally estimate the effect of periodical disturbances and carrying capacity on community assembly in dispersal-limited ecosystems. We observed that carrying capacity had little effect on community assembly and that undisturbed communities were structured more by drift than disturbed systems dominated by selection. Using an experimental crossover design for the disturbance regime, we showed that these observations were independent of the initial community composition. Our experiment illustrates that cultivating complex natural microbial communities under lab conditions allowed us to test ecologically relevant system variables and draw robust conclusions. More

  • in

    Inter-species interactions alter antibiotic efficacy in bacterial communities

    1.Filkins LM, O’Toole GA. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. 2015;11:e1005258.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Paterson IK, Hoyle A, Ochoa G, Baker-Austin C, Taylor NGH. Optimising antibiotic usage to treat bacterial infections. Sci Rep. 2016;6:37853.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48:5–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Brook I. Inoculum effect. Rev Infect Dis. 1989;11:361–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Karslake J, Maltas J, Brumm P, Wood KB. Population density modulates drug inhibition and gives rise to potential bistability of treatment outcomes for bacterial infections. PLOS Comput Biol. 2016;12:e1005098.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother. 2009;63:745–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa. Microbiology. 2020;166:1171–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47:317–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334:982–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015;34:877–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20:981–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Thieme L, Hartung A, Tramm K, Klinger-Strobel M, Jandt KD, Makarewicz O, et al. MBEC versus MBIC: the lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology. Biol Proced Online. 2019;21:18.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    15.Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest. 2003;123:1495–502.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Radlinski L, Conlon B. Antibiotic efficacy in the complex infection environment. Curr Opin MicrobioL 2018;42:19–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Vos MGJ, de, Zagorski M, McNally A, Bollenbach T. Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. PNAS. 2017;114:10666–71.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Aranda-Díaz A, Obadia B, Dodge R, Thomsen T, Hallberg ZF, Güvener ZT, et al. Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. eLife. 2020;9:e51493.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vega NM, Gore J. Collective antibiotic resistance: mechanisms and implications. Curr Opin Microbiol. 2014;21:28–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW, Guttman DS, et al. Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes. 2017;3:25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Orazi G, O’Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8:e00873–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Sorg RA, Lin L, Doorn GS, van, Sorg M, Olson J, Nizet V, et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLOS Biol. 2016;14:e2000631.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, et al. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc R Soc B. 2009;276:3759–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Flynn JM, Cameron LC, Wiggen TD, Dunitz JM, Harcombe WR, Hunter RC. Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis. mSphere. 2020;5:e00343–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Gurney J, Brown SP, Kaltz O, Hochberg ME. Steering phages to combat bacterial pathogens. Trends Microbiol. 2020;28:85–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Waters VJ, Kidd TJ, Canton R, Ekkelenkamp MB, Johansen HK, LiPuma JJ, et al. Reconciling antimicrobial susceptibility testing and clinical response in antimicrobial treatment of chronic cystic fibrosis lung infections. Clin Infect Dis. 2019;69:1812–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Somayaji R, Parkins MD, Shah A, Martiniano SL, Tunney MM, Kahle JS, et al. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review. J Cyst Fibros. 2019;18:236–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Raghuvanshi R, Vasco K, Vázquez-Baeza Y, Jiang L, Morton JT, Li D, et al. High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. mSystems. 2020;5:e00292–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Cystic Fibrosis Trust. UK cystic fibrosis registry annual data report 2019. 2020. [online] Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/2019%20Registry%20Annual%20Data%20report_Sep%202020.pdf [Accessed 5 June 2021].31.Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr. 2001;138:699–704.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sánchez MB. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol. 2015;6:658.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Salsgiver EL, Fink AK, Knapp EA, LiPuma JJ, Olivier KN, Marshall BC, et al. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis. Chest. 2016;149:390–400.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Cystic Fibrosis Trust. Antibiotic treatment for cystic fibrosis. 2009. [online] Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-11/Anitbiotic%20Treatment.pdf [Accessed 7 June 2021].35.Denton M, Todd NJ, Littlewood JM. Role of anti-pseudomonal antibiotics in the emergence of Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 1996;15:402–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Esposito A, Pompilio A, Bettua C, Crocetta V, Giacobazzi E, Fiscarelli E, et al. Evolution of Stenotrophomonas maltophilia in cystic fibrosis lung over chronic infection: a genomic and phenotypic population study. Front Microbiol. 2017;8:1590.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Pompilio A, Crocetta V, De Nicola S, Verginelli F, Fiscarelli E, Di Bonaventura G. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front Microbiol. 2015;6:951.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Dalbøge CS, Hansen CR, Pressler T, Høiby N, Johansen HK. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. J Cyst Fibros. 2011;10:318–25.PubMed 
    Article 

    Google Scholar 
    39.Okazaki A, Avison MB. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother. 2008;52:1525–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Yurtsev EA, Chao HX, Datta MS, Artemova T, Gore J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol Syst Biol. 2013;9:683.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Bottery MJ, Wood AJ, Brockhurst MA. Selective conditions for a multidrug resistance plasmid depend on the sociality of antibiotic resistance. Antimicrob Agents Chemother. 2016;60:2524–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007;189:8079–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Artemova T, Gerardin Y, Dudley C, Vega NM, Gore J. Isolated cell behavior drives the evolution of antibiotic resistance. Mol Syst Biol. 2015;11:822.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Harrison E, Wood AJ, Dytham C, Pitchford JW, Truman J, Spiers A, et al. Bacteriophages limit the existence conditions for conjugative plasmids. mBio. 2015;6:e00586–15.PubMed 
    PubMed Central 

    Google Scholar 
    45.Hall JPJ, Wood AJ, Harrison E, Brockhurst MA. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. PNAS. 2016;113:8260–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother. 2004;48:3670–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc R Soc B. 2018;285:20172687.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Zhanel GG, Simor AE, Vercaigne L, Mandell L. Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis. 1998;9:215–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Gould VC, Okazaki A, Avison MB. β-Lactam resistance and β-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J Antimicrob Chemother. 2006;57:199–203.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.European Cystic Fibrosis Society Patient Registry. ECFS patient registry annual data report 2018. 2020. [online] Available at: https://www.ecfs.eu/sites/default/files/general-content-files/working-groups/ecfs-patient-registry/ECFSPR_Report_2018_v1.4.pdf [Accessed 7 June 2021].51.Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 2017;15:e2003981.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Harrison FY. Microbial ecology of the cystic fibrosis lung. Microbiology. 2007;153:917–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Keel RA, Sutherland CA, Crandon JL, Nicolau DP. Stability of doripenem, imipenem and meropenem at elevated room temperatures. Int J Antimicrob Agents. 2011;37:184–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Okazaki A, Avison MB. Aph(3′)-IIc, an Aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2007;51:359–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Li X-Z, Zhang L, McKay GA, Poole K. Role of the acetyltransferase AAC(6′)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J Antimicrob Chemother. 2003;51:803–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Frost I, Smith WPJ, Mitri S, Millan AS, Davit Y, Osborne JM, et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 2018;12:1582–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Yin C, Yang W, Meng J, Lv Y, Wang J, Huang B. Co-infection of Pseudomonas aeruginosa and Stenotrophomonas maltophilia in hospitalised pneumonia patients has a synergic and significant impact on clinical outcomes. Eur J Clin Microbiol Infect Dis. 2017;36:2231–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I, et al. Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med. 2011;183:635–40.PubMed 
    Article 

    Google Scholar 
    59.Goss CH, Mayer-Hamblett N, Aitken ML, Rubenfeld GD, Ramsey BW. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax. 2004;59:955–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Mojica MF, Ouellette CP, Leber A, Becknell MB, Ardura MI, Perez F, et al. Successful treatment of bloodstream infection due to metallo-β-lactamase-producing Stenotrophomonas maltophilia in a renal transplant patient. Antimicrob Agents Chemother. 2016;60:5130–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.McCutcheon JG, Dennis JJ. The potential of phage therapy against the emerging opportunistic pathogen Stenotrophomonas maltophilia. Viruses. 2021;13:1057.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol. 2021;19:331–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Davies EV, James CE, Brockhurst MA, Winstanley C. Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model. BMC Microbiol. 2017;17:3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Bara JJ, Matson Z, Remold SK. Life in the cystic fibrosis upper respiratory tract influences competitive ability of the opportunistic pathogen Pseudomonas aeruginosa. R Soc Open Sci. 2018;5:180623.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Bartell JA, Sommer LM, Haagensen JAJ, Loch A, Espinosa R, Molin S, et al. Evolutionary highways to persistent bacterial infection. Nat Commun. 2019;10:629.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLOS Comput Biol. 2018;14:e1006179.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, et al. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun. 2017;8:14371.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, et al. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J. 2012;6:471–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. PNAS. 2015;112:4110–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. 2012;64:e3857.
    Google Scholar 
    72.Harrison F, Diggle SP. An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms. Microbiology. 2016;162:1755–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Harrington NE, Sweeney E, Harrison F. Building a better biofilm – formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm. 2020;2:100024.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL, Waters EM, et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nat Commun. 2018;9:2635.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Castellani S, Di Gioia S, di Toma L, Conese M. Human cellular models for the investigation of lung inflammation and mucus production in cystic fibrosis. Anal Cell Pathol. 2018;2018:3839803.Article 
    CAS 

    Google Scholar 
    76.Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun. 2018;9:1599.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Choi K-H, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and Its applications to single-cell Sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    81.Onoue Y, Mori M. Amino acid requirements for the growth and enterotoxin production by Staphylococcus aureus in chemically defined media. Int J Food Microbiol. 1997;36:77–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34:2422–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Kuznetsov A, Bollin CJ. NCBI Genome Workbench: desktop software for comparative genomics, visualization, and GenBank data submission. Methods Mol Biol. 2021;2231:261–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae)

    1.Andersson, M. Sexual Selection (Princeton University Press, 1996).
    Google Scholar 
    2.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    3.Olsson, M., Shine, R., Wapstra, E., Ujvari, B. & Madsen, T. Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution 56, 1538–1542 (2002).Article 

    Google Scholar 
    4.McPherson, F. J. & Chenoweth, P. J. Mammalian sexual dimorphism. Anim. Reprod. Sci. 131, 109–122 (2012).Article 
    CAS 

    Google Scholar 
    5.Shine, R. The evolution of large body size in females: A critique of Darwin’s “fecundity advantage” model. Am. Nat. 131, 124–131 (1988).Article 

    Google Scholar 
    6.Fairbairn, D. J. et al. (eds) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).
    Google Scholar 
    7.Slatkin, M. Ecological causes of sexual dimorphism. Evolution 38, 622–630 (1984).Article 

    Google Scholar 
    8.Shine, R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64, 419–461 (1989).Article 
    CAS 

    Google Scholar 
    9.Herrel, A., Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).Article 

    Google Scholar 
    10.Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    11.Hierlihy, C. A., Garcia-Collazo, R., Chavez Tapia, C. B. & Mallory, F. F. Sexual dimorphism in the lizard Sceloporus siniferus: Support for the intraspecific niche divergence and sexual selection hypotheses. Salamandra 49, 1–6 (2013).
    Google Scholar 
    12.Vitt, L. J. & Cooper, W. E. Jr. The evolution of sexual dimorphism in the skink Eumeces laticeps: An example of sexual selection. Can. J. Zool. 63, 995–1002 (1985).Article 

    Google Scholar 
    13.Shine, R. Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. Am. Nat. 138, 103–122 (1991).Article 

    Google Scholar 
    14.Fitzgerald, M. & Shine, R. Mate-guarding in free-ranging Carpet Pythons (Morelia spilota). Aust. Zool. 39, 434–439 (2018).Article 

    Google Scholar 
    15.Cundall, D. & Greene, H. W. Feeding in snakes. In Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 293–333 (Academic Press, 2000).Chapter 

    Google Scholar 
    16.Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 
    Article 

    Google Scholar 
    17.Shine, R., Bonnet, X., Elphick, M. J. & Barrott, E. G. A novel foraging mode in snakes: Browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24 (2004).Article 

    Google Scholar 
    18.Lynch, T. P. The Behavioural Ecology of the Olive Sea Snake, Aipysurus laevis. PhD thesis, James Cook University (2000).19.Borczyk, B., Paśko, Ł, Kusznierz, J. & Bury, S. Sexual dimorphism and skull size and shape in the highly specialized snake species, Aipysurus eydouxii (Elapidae: Hydrophiinae). PeerJ 9, e11311 (2021).Article 

    Google Scholar 
    20.Queral-Regil, A. & King, R. B. Evidence for phenotypic plasticity in snake body size and relative head dimensions in response to amount and size of prey. Copeia 1998, 423–429 (1998).Article 

    Google Scholar 
    21.Bonnet, X., Shine, R., Naulleau, G. & Thiburce, C. Plastic vipers: influence of food intake on the size and shape of Gaboon vipers (Bitis gabonica). J. Zool. 255, 341–351 (2001).Article 

    Google Scholar 
    22.Sanders, K. L., Lee, M. S., Leys, R., Foster, R. & Keogh, J. S. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): Evidence from seven genes for rapid evolutionary radiations. J. Evol. Biol. 21, 682–695 (2008).Article 
    CAS 

    Google Scholar 
    23.Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19, 1932–1936 (2009).Article 
    CAS 

    Google Scholar 
    24.McCarthy, C. J. Adaptations of sea snakes that eat fish eggs; with a note on the throat musculature of Aipysurus eydouxi (Gray, 1849). J. Nat. Hist. 21, 1119–1128 (1987).Article 

    Google Scholar 
    25.Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).Article 

    Google Scholar 
    26.Segall, M., Cornette, R., Fabre, A. C., Godoy-Diana, R. & Herrel, A. Does aquatic foraging impact head shape evolution in snakes? Proc. R. Soc. B 283, 20161645 (2016).Article 

    Google Scholar 
    27.Avolio, C., Shine, R. & Pile, A. J. The adaptive significance of sexually dimorphic scale rugosity in sea snakes. Am. Nat. 167, 728–738 (2006).Article 

    Google Scholar 
    28.Sherratt, E., Rasmussen, A. R. & Sanders, K. L. Trophic specialization drives morphological evolution in sea snakes. R. Soc. Open Sci. 5, 172141 (2018).ADS 
    Article 

    Google Scholar 
    29.Frédérich, B. & Parmentier, E. (eds) Biology of Damselfishes (CRC Press, 2016).
    Google Scholar 
    30.Heatwole, H. Sea Snakes 2nd edn. (Krieger Publishing Company, 1999).
    Google Scholar 
    31.Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).Article 

    Google Scholar 
    32.Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): The effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).Article 

    Google Scholar 
    33.Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).Article 

    Google Scholar  More

  • in

    Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice

    Seasonal changes in weather, food availability and mice body conditionThe weather was hot and dry during summer (temperature: 24.42 ± 0.36 °C; total rainfall: 0.60 mm) and temperatures were lower and rainfall was higher during the winter months (temperature: 13.47 ± 0.45 °C; total rainfall: 39.60 mm; LM: N = 138, F = 368.4, P  More

  • in

    Urohidrosis as an overlooked cooling mechanism in long-legged birds

    1.Amat, J. A. & Masero, J. A. How Kentish plovers, Charadrius alexandrinus, cope with heat stress during incubation. Behav. Ecol. Sociobiol. 56, 26–33 (2004).Article 

    Google Scholar 
    2.du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Chang. Biol. 18, 3063–3070 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Cunningham, S. J., Martin, R. O. & Hockey, P. A. R. Can behaviour buffer the impacts of climate change on an arid-zone bird?. Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    4.Smit, B. et al. Behavioural responses to heat in desert birds: implications for predicting vulnerability to climate warming. Clim. Chang. Responses 3, 1–14 (2016).Article 

    Google Scholar 
    5.McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).6.Cunningham, S. J., Gardner, J. L. & Martin, R. O. Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 1, 1–8. https://doi.org/10.1002/fee.2324 (2021).Article 

    Google Scholar 
    7.Wolf, B. O., Wooden, K. M. & Walsberg, G. E. The use of thermal refugia by two small desert birds. Condor 98(2), 424–428 (1996).Article 

    Google Scholar 
    8.Cook, T. R. et al. Parenting in a warming world: Thermoregulatory responses to heat stress in an endangered seabird. Conserv. Physiol. 8, 1–13 (2020).Article 

    Google Scholar 
    9.Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    10.Nilsson, J. Å. & Nord, A. Testing the heat dissipation limit theory in a breeding passerine. Proc. R. Soc. B Biol. Sci. 285, 1 (2018).
    Google Scholar 
    11.Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).Article 

    Google Scholar 
    12.Tapper, S., Nocera, J. J. & Burness, G. Heat dissipation capacity influences reproductive performance in an aerial insectivore. J. Exp. Biol. 223, 1 (2020).
    Google Scholar 
    13.Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).Article 

    Google Scholar 
    14.Edwards, E. K., Mitchell, N. J. & Ridley, A. R. The impact of high temperatures on foraging behaviour and body condition in the Western Australian Magpie Cracticus tibicen dorsalis. Ostrich 86, 137–144 (2015).Article 

    Google Scholar 
    15.Thompson, M. L., Cunningham, S. J. & McKechnie, A. E. Interspecific variation in avian thermoregulatory patterns and heat dissipation behaviours in a subtropical desert. Physiol. Behav. 188, 311–323 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Kemp, R. et al. Sublethal fitness costs of chronic exposure to hot weather vary between sexes in a threatened desert lark. Emu 120, 216–229 (2020).Article 

    Google Scholar 
    17.Funghi, C., McCowan, L. S. C., Schuett, W. & Griffith, S. C. High air temperatures induce temporal, spatial and social changes in the foraging behaviour of wild zebra finches. Anim. Behav. 149, 33–43 (2019).Article 

    Google Scholar 
    18.Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns?. J. Avian Biol. 51, 1–11 (2020).Article 

    Google Scholar 
    19.Moyer-Horner, L., Mathewson, P. D., Jones, G. M., Kearney, M. R. & Porter, W. P. Modeling behavioral thermoregulation in a climate change sentinel. Ecol. Evol. 5, 5810–5822 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bladon, A. J. et al. Behavioural thermoregulation and climatic range restriction in the globally threatened ethiopian bush-crow Zavattariornis stresemanni. Ibis 161(3), 546–558. https://doi.org/10.1111/ibi.12660 (2019).Article 

    Google Scholar 
    22.Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl. Acad. Sci. USA 116, 14065–14070 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl. Acad. Sci. USA 114, 2283–2288 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dawson, W. R. Evaporative losses of water by birds. Comp. Biochem. Physiol. Part A Physiol. 71, 495–509 (1982).Article 
    CAS 

    Google Scholar 
    26.Wolf, B. O. & Walsberg, G. E. Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird. J. Exp. Biol. 199, 451–457 (1996).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Calder, W. A. & Smichdt-Nielsen, K. Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci. USA 55(4), 750–756. https://doi.org/10.1073/pnas.55.4.750 (1966).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    28.Bartholomew, G. A. The role of behavior in the temperature regulation of the masked booby. Condor 68, 523–535. https://doi.org/10.2307/1366261 (1966).Article 

    Google Scholar 
    29.Bryant, D. M. Heat stress in tropical birds: behavioural thermoregulation during flight. Ibis (Lond. 1859). 125, 313–323 (1983).30.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science (80-. ). 325, 468–470 (2009).31.Van De Ven, T. M. F. N., Martin, R. O., Vink, T. J. F., McKechnie, A. E. & Cunningham, S. J. Regulation of heat exchange across the hornbill beak: Functional similarities with toucans?. PLoS ONE 11, 1–14 (2016).
    Google Scholar 
    32.Van Vuuren, A. K., Kemp, L. V. & McKechnie, A. E. The beak and unfeathered skin as heat radiators in the southern ground-hornbill. J. Avian Biol. 51, 1–7 (2020).
    Google Scholar 
    33.Winkler, D.W., Billerman, S.M. & Lovette, I.J. Storks (Ciconiidae), version 1.0. In Birds of the World (S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg, Editors). Cornell Lab of Ornithology (2020) https://doi.org/10.2173/bow.ciconi2.0134.Kahl, P. M. Thermoregulation in the wood stork, with special reference to the role of the legs. Physiol Zool. 36(2), 141–151 (1963).Article 

    Google Scholar 
    35.Steen, I. & Steen, J. B. The Importance of the Legs in the Thermoregulation of Birds. Acta Physiol. Scand. 63, 285–291 (1965).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Hainsworth, F. R. Saliva spreading, activity and body temperature regulation in the rat. Am J Physiol. 212, 1288–1292 (1967).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Gentry, R. L. Thermoregulatory behavior of eared seals. Behaviour 46(2), 73–93. https://doi.org/10.1163/156853973×00175 (1973).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Sturbaum, B. A. & Riedesel, M. L. Dissipation of stored body heat by the ornate box turtle, Terrapene ornata. Comp. Biochem. Physiol. Part A Physiol. 58, 93–97 (1977).Article 

    Google Scholar 
    39.Marder, J., Porat, I., Raber, P. & Adler, J. Acid-base balance and body temperature regulation of heat stressed Psammomys obesus (Gerbillinae): The effect of bicarbonate loss via saliva spreading. Physiol Zool. 56(3), 389–396. https://doi.org/10.1086/physzool.56.3.30152603 (1983).Article 

    Google Scholar 
    40.Hatch, D. E. Energy conserving and heat dissipating mechanisms of the turkey vulture. Auk 87(1), 111–124. https://doi.org/10.2307/4083662 (1970).Article 

    Google Scholar 
    41.Cooper, J. & Siegfried, W. R. Behavioural responses of young cape gannets Sula capensis to high ambient temperatures. Mar. Behav. Physiol. 3, 211–220 (1976).Article 

    Google Scholar 
    42.Thomas, B. T. Maguari Stork Nesting: Juvenile Growth and Behavior. Auk 101, 812–823 (1984).Article 

    Google Scholar 
    43.Hancock, J.A., Kushlan, J.A. & Kahl, M.P. Storks, Ibises and Spoonbills of the World (Academic Press, 1992).44.Townsend, H., Huyvaert, K. P., Hodum, P. J. & Anderson, D. J. Nesting distributions of Galapagos boobies (Aves: Sulidae): an apparent case of amensalism. Oecologia 132, 419–427. https://doi.org/10.1007/s00442-002-0992-7 (2002).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Finkelstein, M., Kuspa, Z., Snyder, N.F. & Schmitt, N.J. California condor (Gymnogyps californianus), version 2.0. In The Birds of North America (P. G. Rodewald, Editor). Cornell Lab of Ornithology (2015). https://doi.org/10.2173/bna.61046.Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    47.Nudds, R. L. & Oswald, S. A. An interspecific test of Allen’s rule: Evolutionary implications for endothermic species. Evolution (N. Y). 61, 2839–2848 (2007).48.Symonds, M. R. E. & Tattersall, G. J. Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am. Nat. 176, 188–197 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    50.Wilman, H. et al. EltonTraits 1 . 0 : Species-level foraging attributes of the world ’ s birds and mammals. Ecology 95, 2027 (2014).51.Brooke, M. D. L. Ecological factors influencing the occurrence of ‘flash marks’ in wading birds. Funct. Ecol. 12, 339–346 (1998).Article 

    Google Scholar 
    52.Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: An r package for modelling meso- and microclimate. Methods Ecol Evol. 10(2), 280–290. https://doi.org/10.1111/2041-210X.13093 (2019).Article 

    Google Scholar 
    53.Hadfield, A. J. Package ‘ MCMCglmm ’. https://cran.r-project.org/web/packages/MCMCglmm/ (2019)54.Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. 2012. The global diversity of birds in space and time. Nature. 491(7424): 444–448 (2012). https://doi.org/10.1038/nature1163155.Revell, M.L.J. Package ‘ phytools ’ https://cran.r-project.org/web/packages/phytools/ (2020)56.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).58.Crawley, M.J. The R Book (John Wiley & Sons, 2013).59.Barton, K. Package MuMin: Multi-model Inference https://cran.r-project.org/web/packages/MuMIn/index.html (2020).60.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).63.Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).Article 

    Google Scholar 
    64.van Dyk, M., Noakes, M. J. & McKechnie, A. E. Interactions between humidity and evaporative heat dissipation in a passerine bird. J. Comp. Physiol. B. 189, 299–308. https://doi.org/10.1007/s00360-019-01210-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Webster, M.D., Campbell, G.S. & King, J.R. Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage. Physiol. Zool. 58(1): 58–70 (1985). http://www.jstor.org/stable/30161220.66.Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103, 97–103 (2003).Article 

    Google Scholar 
    67.Piersma, T. & van Gils, J.A. The Flexible Phenotype: A Body-Centered Integration of Ecology, Physiology, and Behavior (Oxford University Press, 2011).68.Fitzpatrick, M. J., Mathewson, P. D. & Porter, W. P. Validation of a mechanistic model for non-invasive study of ecological energetics in an endangered wading bird with counter-current heat exchange in its legs. PLoS ONE 10, 1–34 (2015).Article 
    CAS 

    Google Scholar 
    69.Lustick, S., Battersby, B. & Kelty, M. Effects of insolation on juvenile herring gull energetics and behavior. Ecologia. 60(4), 673–678. https://doi.org/10.2307/1936603 (1979).Article 

    Google Scholar 
    70.Ward, J. M., Blount, J. D., Ruxton, G. D. & Houston, D. C. The adaptive significance of dark plumage for birds in desert environments. Ardea 90, 311–323 (2002).
    Google Scholar 
    71.Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, (2020).72.Mitchell, D. et al. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 87, 956–973 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Walsberg, G. E., Campbell, G. S. & King, J. R. Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol. B 126, 211–222 (1978).Article 

    Google Scholar 
    74.McFarland, D. J. & Baher, E. Factors affecting feather posture in the barbary dove. Anim. Behav. 16, 171–177 (1968).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Hohtola, E., Rintamäki, H. & Hissa, R. Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. J Comp Physiol. 136, 77–81. https://doi.org/10.1007/BF00688626 (1980).Article 

    Google Scholar 
    76.Kahl, P. M. Spread-wing postures and their possible functions in the Ciconiidae. Auk 88(4), 715–722. https://doi.org/10.2307/4083833 (1971).Article 

    Google Scholar 
    77.Dawson, T. J., Robertshaw, D. & Taylor, C. R. Sweating in the kangaroo: A cooling mechanism during exercise, but not in the heat. Am J Physiol. 227(2), 494–498. https://doi.org/10.1152/ajplegacy.1974.227.2.494 (1974).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Hoffman, T. C. M., Walsberg, G. E. & DeNardo, D. F. Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation. J. Exp. Biol. 210, 741–749 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Graves, G. R. Urohidrosis and tarsal color in Cathartes vultures (Aves: Cathartidae). Proc. Biol. Soc. Washingt. 132, 56–64 (2019).Article 

    Google Scholar 
    80.Torres, R. & Velando, A. Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii.. Anim. Behav. 69, 59–65 (2005).Article 

    Google Scholar 
    81.López-Rull, I., Lifshitz, N., Macías Garcia, C., Graves, J. A. & Torres, R. Females of a polymorphic seabird dislike foreign-looking males. Anim. Behav. 113, 31–38 (2016).82.Gutiérrez, J. S. & Soriano-Redondo, A. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behav. Ecol. 31, 1429–1435 (2021).Article 

    Google Scholar 
    83.Jarić, I. et al. iEcology: Harnessing large online resources to generate ecological insights. Trends Ecol. Evol. 35, 630–639 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Vrettos, M., Reynolds, C. & Amar, A. Malar stripe size and prominence in peregrine falcons vary positively with solar radiation: support for the solar glare hypothesis. Biol. Lett. 17, 20210116. https://doi.org/10.1098/rsbl.2021.0116 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards

    1.Ashman, T.-L. et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    2.Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515 (2008).Article 

    Google Scholar 
    3.Rollin, O. & Garibaldi, L. A. Impacts of honeybee density on crop yield: A meta-analysis. J. Appl. Ecol. 56, 1152–1163. https://doi.org/10.1111/1365-2664.13355 (2019).Article 

    Google Scholar 
    4.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999. https://doi.org/10.1038/s41467-020-17751-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 88, 271–281 (2007).Article 

    Google Scholar 
    6.Igic, B. & Kohn, J. R. The distribution of plant mating systems: Study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).Article 

    Google Scholar 
    7.Abrol, D. P. Pollination Biology: Biodiversity and Conservation and Agricultural Production. Applied Pollination: Present Scenario 55–83 (Springer, 2012).
    Google Scholar 
    8.Frankel, R. & Galun, E. Pollination Mechanisms, Reproduction and Plant Breeding Vol. 2 (Springer Verlag, 1977).Book 

    Google Scholar 
    9.Schneider, D., Goldway, M., Rotman, N., Adato, I. & Stern, R. A. Cross-pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 122, 380–384 (2009).Article 

    Google Scholar 
    10.Fattahi, R., Mohammadzedeh, M. & Khadivi-Khub, A. Influence of different pollen sources on nut and kernel characteristics of hazelnut. Sci. Hortic. 173, 15–19 (2014).Article 

    Google Scholar 
    11.Żurawicz, E., Studnicki, M., Kubik, J. & Pruski, K. A careful choice of compatible pollinizers significantly improves the size of fruits in red raspberry (Rubus idaeus L.). Sci. Hortic. 235, 253–257 (2018).Article 

    Google Scholar 
    12.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Willcox, B. K., Aizen, M. A., Cunningham, S. A., Mayfield, M. M. & Rader, R. Deconstructing pollinator community effectiveness. Curr. Opin. Insect. Sci. 21, 98–104. https://doi.org/10.1016/j.cois.2017.05.012 (2017).Article 
    PubMed 

    Google Scholar 
    14.Richards, T. E. et al. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 9, 228 (2020).CAS 
    Article 

    Google Scholar 
    15.van Nocker, S. & Gardiner, S. E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 1, 14022. https://doi.org/10.1038/hortres.2014.22 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    17.Brittain, C., Kremen, C., Garber, A. & Klein, A.-M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 9, e90082. https://doi.org/10.1371/journal.pone.0090082 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 281, 20132440 (2014).Article 

    Google Scholar 
    19.Crane, J. et al. in The Avocado: Botany, Production and Uses (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 200–233 (CABI, 2013).20.Duarte, P. F., Chaves, M. A., Borges, C. D. & Mendonça, C. R. B. Avocado: Characteristics, health benefits and uses. Ciênc. Rural 46, 747–754. https://doi.org/10.1590/0103-8478cr20141516 (2016).CAS 
    Article 

    Google Scholar 
    21.Dreher, M. L. & Davenport, A. J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 53, 738–750. https://doi.org/10.1080/10408398.2011.556759 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E. & Aguilar, C. N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 80, 51–60. https://doi.org/10.1016/j.tifs.2018.07.027 (2018).CAS 
    Article 

    Google Scholar 
    23.Lerman-Garber, I., Ichazo-Cerro, S., Zamora-González, J., Cardoso-Saldaña, G. & Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 17, 311–315. https://doi.org/10.2337/diacare.17.4.311 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.López, L. R. et al. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 27, 519–523 (1996).
    Google Scholar 
    25.Kris-Etherton, P. M. et al. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70, 1009–1015 (1999).CAS 
    Article 

    Google Scholar 
    26.Trueman, S. J., Richards, S., McConchie, C. A. & Turnbull, C. G. N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 40, 859–866 (2000).Article 

    Google Scholar 
    27.Stout, A. B. A Study in Cross-Pollination of Avocados in Southern California (New York Botanical Garden, 1923).
    Google Scholar 
    28.Blanke, M. M. & Lovatt, C. J. Anatomy and transpiration of the avocado inflorescence. Ann. Bot. 71, 543–547. https://doi.org/10.1006/anbo.1993.1070 (1993).Article 

    Google Scholar 
    29.Salazar-García, S., Garner, L. C. & Lovatt, C. J. in The Avocado: Botany, Production and Uses. Reproductive Biology (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 118–167 (CABI, 2013).30.Garner, L. C. & Lovatt, C. J. The relationship between flower and fruit abscission and alternate bearing of ‘Hass’ avocado. J. Am. Soc. Hortic. Sci. 133, 3–10. https://doi.org/10.21273/jashs.133.1.3 (2008).Article 

    Google Scholar 
    31.Vithanage, V. The role of the European honeybee (Apis mellifera L.) in avocado pollination. J. Hortic. Sci. 65, 81–86. https://doi.org/10.1080/00221589.1990.11516033 (1990).Article 

    Google Scholar 
    32.Perez-Balam, J. et al. The contribution of honey bees, flies and wasps to avocado (Persea americana) pollination in southern Mexico. J. Pollinat. Ecol. 8, 42–47 (2012).Article 

    Google Scholar 
    33.Ying, Z., Davenport, T. L. R., Zhang, T., Schnell, R. J. & Tondo, C. L. Selection of highly informative microsatellite markers to identify pollen donors in “Hass” avocado orchards. Plant Mol. Biol. Rep. 27, 374–380 (2009).CAS 
    Article 

    Google Scholar 
    34.Alcaraz, M. & Hormaza, J. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Ann. Appl. Biol. 158, 354–361 (2011).Article 

    Google Scholar 
    35.Borrone, J. W. et al. Outcrossing in Florida avocados as measured using microsatellite markers. J. Am. Soc. Hortic. Sci. 133, 255–261 (2008).Article 

    Google Scholar 
    36.Schnell, R. J. et al. Outcrossing between ‘Bacon’ pollinizers and adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44, 1522. https://doi.org/10.21273/hortsci.44.6.1522 (2009).Article 

    Google Scholar 
    37.Degani, C., Goldring, A., Adato, I., El-Batsri, R. & Gazit, S. Pollen parent effect on outcrossing rate, yield, and fruit characteristics of `Fuerte’ avocado. HortScience 25, 471. https://doi.org/10.21273/hortsci.25.4.471 (1990).Article 

    Google Scholar 
    38.Sedgley, M. & Annells, C. M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’. Sci. Hortic. 14, 27–33. https://doi.org/10.1016/0304-4238(81)90075-3 (1981).Article 

    Google Scholar 
    39.Degani, C., El-Batsri, R. & Gazit, S. Outcrossing rate, yield, and selective fruit abscission in “Ettinger” and “Ardith” avocado plots. J. Am. Soc. Hortic. Sci. 122, 813–817 (1997).Article 

    Google Scholar 
    40.Ying, Z. et al. Re-evaluation of the roles of honeybees and wind on pollination in avocado. J. Hortic. Sci. Biotechnol. 84, 255–260. https://doi.org/10.1080/14620316.2009.11512513 (2009).Article 

    Google Scholar 
    41.Sapir, G. et al. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 219, 107–117. https://doi.org/10.1016/j.scienta.2017.03.010 (2017).Article 

    Google Scholar 
    42.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76, 17–23. https://doi.org/10.1080/14620316.2001.11511320 (2001).Article 

    Google Scholar 
    43.Kämper, W., Trueman, S. J., Ogbourne, S. M. & Wallace, H. M. Pollination services in macadamia depend on across-orchard transport of cross pollen. J. Appl. Ecol. (under review).44.Robbertse, P. J., Coetzer, L. A., Johannsmeier, M. F., Köhne, J. S. & Morudu, T. M. Hass Yield and Fruit Size as Influenced by Pollination and Pollen Donor—A Joint Progress Report 63–67 (South African Avocado Growers’ Association Yearbook, 1996).
    Google Scholar 
    45.Araújo, E., Costa, M., Chaud-Netto, J. & Fowler, H. G. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Braz. J. Biol. 64, 563–568 (2004).Article 

    Google Scholar 
    46.Jalali-Khanabadi, B.-A., Mozaffari-Khosravi, H. & Parsaeyan, N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Altern. Complement. Med. 16, 1279–1283 (2010).Article 

    Google Scholar 
    47.Kaiser, C. & Wolstenholme, B. N. Aspects of delayed harvest of ‘Hass’ avocado (Persea americana Mill.) fruit in a cool subtropical climate. I. Fruit lipid and fatty acid accumulation. J. Hortic. Sci. 69, 437–445. https://doi.org/10.1080/14620316.1994.11516473 (1994).CAS 
    Article 

    Google Scholar 
    48.Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Environ. Resour. 25, 53–88. https://doi.org/10.1146/annurev.energy.25.1.53 (2000).Article 

    Google Scholar 
    49.Bangerth, F. Calcium-related physiological disorders of plants. Annu. Rev. Phytopathol. 17, 97–122. https://doi.org/10.1146/annurev.py.17.090179.000525 (1979).CAS 
    Article 

    Google Scholar 
    50.Witney, G. W., Hofman, P. J. & Wolstenholme, B. N. Effect of cultivar, tree vigour and fruit position on calcium accumulation in avocado fruits. Sci. Hortic. 44, 269–278. https://doi.org/10.1016/0304-4238(90)90127-Z (1990).CAS 
    Article 

    Google Scholar 
    51.Matoh, T. & Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111, 179–190 (1998).CAS 
    Article 

    Google Scholar 
    52.Hopkirk, G., White, A., Beever, D. J. & Forbes, S. K. Influence of postharvest temperatures and the rate of fruit ripening on internal postharvest rots and disorders of New Zealand ‘Hass’ avocado fruit. N. Z. J. Crop Hortic. Sci. 22, 305–311. https://doi.org/10.1080/01140671.1994.9513839 (1994).Article 

    Google Scholar 
    53.Meir, S. et al. Prolonged storage of `Hass’ avocado fruit using modified atmosphere packaging. Postharvest Biol. Technol. 12, 51–60. https://doi.org/10.1016/S0925-5214(97)00038-0 (1997).CAS 
    Article 

    Google Scholar 
    54.Flitsanov, U., Mizrach, A., Liberzon, A., Akerman, M. & Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 20, 279–286 (2000).Article 

    Google Scholar 
    55.Hofman, P. J., Bower, J. & Woolf, A. in The Avocado: Botany, Production and Uses. Harvesting, Packing, Postharvest Technology, Transport and Processing (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 489–540 (CABI, 2013).56.McGeehan, S. L. & Naylor, D. V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 19, 493–505. https://doi.org/10.1080/00103628809367953 (1988).CAS 
    Article 

    Google Scholar 
    57.Rayment, G. E. & Higginson, F. R. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata, 1992).
    Google Scholar 
    58.Munter, R. C. & Grande, R. A. in Developments in Atomic Plasma Spectrochemical Analysis. Plant Tissue and Soil Extract Analysis by ICP-Atomic Emission Spectrometry (ed. Byrnes, R. M.) 653–672 (Heyden, 1981).59.Martinie, G. D. & Schilt, A. A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 48, 70–74. https://doi.org/10.1021/ac60365a032 (1976).CAS 
    Article 

    Google Scholar 
    60.Bai, S. H. et al. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 56, 792–798. https://doi.org/10.1007/s13197-018-3539-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Ivanova, N. V., Fazekas, A. J. & Hebert, P. D. N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 26, 186–198 (2008).CAS 
    Article 

    Google Scholar 
    62.Kämper, W., Cooke, J., Trueman, S. J. & Ogbourne, S. M. Detection of single nucleotide polymorphisms (SNPs) in avocado cultivars, Persea americana (Lauraceae). Appl. Plant Sci. (submitted).63.Jordon-Thaden, I. E. et al. A basic ddRADseq two-enzyme protocol performs well with herbarium and silica-dried tissues across four genera. Appl. Plant Sci. 8, e11344–e11344. https://doi.org/10.1002/aps3.11344 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Sharon, D. et al. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95, 911–921 (1997).CAS 
    Article 

    Google Scholar 
    65.Borrone, J. W., Schnell, R. J., Violi, H. A. & Ploetz, R. C. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol. Ecol. Resour. 7, 439–444 (2007).CAS 
    Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    67.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More