More stories

  • in

    Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).ADS 
    Article 

    Google Scholar 
    4.McWilliam, M., Chase, T. J. & Hoogenboom, M. O. Neighbor diversity regulates the productivity of coral assemblages. Curr. Biol. 28, 3634–3639 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Gardner, T. A. Long-term region-wide declines in caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27—year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1208909109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Madin, J. S. et al. Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Mar. Ecol. Prog. Ser. 604, 263–268 (2018).ADS 
    Article 

    Google Scholar 
    11.Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef: Demographic change in Australia’s corals. Proc. R. Soc. B Biol. Sci. 287, 20201432 (2020).Article 

    Google Scholar 
    12.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 1–10 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    13.Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).ADS 
    Article 

    Google Scholar 
    14.Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 
    Article 

    Google Scholar 
    15.Hall, T. E. et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecol. Appl. 31, 1–11 (2021).Article 

    Google Scholar 
    16.Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).ADS 
    Article 

    Google Scholar 
    18.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    19.Pratchett, M. et al. Spatial, temporal and taxonomic variation in coral growth—Implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 53, 215–295 (2015).
    Google Scholar 
    20.Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: Porites growth anomalies on the great barrier reef. PLoS ONE 9, e88720 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Linares, C., Pratchett, M. S. & Coker, D. J. Recolonisation of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 438, 97–104 (2011).ADS 
    Article 

    Google Scholar 
    22.Victor, S., Golbuu, Y., Yukihira, H. & Van Woesik, R. Acropora size-frequency distributions reflect spatially variable conditions on coral reefs of Palau. Bull. Mar. Sci. 85, 149–157 (2009).
    Google Scholar 
    23.Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).ADS 
    Article 

    Google Scholar 
    24.Pratchett, M. S., McWilliam, M. J. & Riegl, B. Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs 39, 783–793 (2020).Article 

    Google Scholar 
    25.Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    26.Van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    27.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article 

    Google Scholar 
    28.Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).Article 

    Google Scholar 
    29.Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Team, R. C. R: A Language and Environment for Statistical Computing. (2020).35.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    36.Evans, R. D. et al. Early recovery dynamics of turbid coral reefs after recurring bleaching events. J. Environ. Manag. 268, 110666 (2020).Article 

    Google Scholar 
    37.Carlot, J. et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob. Chang. Biol. 27, 2623–2632 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    39.Baird, A., Emslie, M. & Lewis, A. Extended periods of coral recruitment on the Great Barrier Reef. In Proc. 12th Int. Coral Reef Symp. (2012).40.Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: The massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Edmunds, P. J. Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 202, 113–124 (2000).ADS 
    Article 

    Google Scholar 
    42.Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7 (2019).Article 

    Google Scholar 
    46.Abràmoff, M. D., Hospitals, I., Magalhães, P. J. & Abràmoff, M. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar  More

  • in

    Humpback whale song recordings suggest common feeding ground occupation by multiple populations

    1.Clapham, P. J. Humpback whale: Megaptera novaeangliae. In Encyclopedia of Marine Mammals 489–492 (Elsevier, 2018).Chapter 

    Google Scholar 
    2.Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    3.Geijer, C. K. A., Notarbartolo di Sciara, G. & Panigada, S. Mysticete migration revisited: Are Mediterranean fin whales an anomaly?. Mamm. Rev. 46, 284–296 (2016).Article 

    Google Scholar 
    4.Baker, C. S. & Herman, L. M. Aggressive behavior between humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Can. J. Zool. 62, 1922–1937 (1984).Article 

    Google Scholar 
    5.Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).PubMed 
    Article 

    Google Scholar 
    6.Palsbøll, P. J., Clapham, P. J., Mattila, D. K. & Vasquez, O. Composition and dynamics of humpback whale competitive groups in the West Indies. Behaviour 122, 182–194 (1992).Article 

    Google Scholar 
    7.Payne, R. S. & Mcvay, S. Songs of Humpback Whales. Science 173, 585–597 (1971).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Kroodsma, D. E. & Byers, B. E. The function (s) of bird song. Am. Zool. 31, 318–328 (1991).Article 

    Google Scholar 
    9.Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the Ocean Basin Scale. Curr. Biol. 21, 687–691 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495 (2007).Article 

    Google Scholar 
    11.Smith, J. N., Goldizen, A. W., Dunlop, R. A. & Noad, M. J. Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Anim. Behav. 76, 467–477 (2008).Article 

    Google Scholar 
    12.Ross-Marsh, E., Elwen, S., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics 30, 163–179 (2020).Article 

    Google Scholar 
    13.Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Vu, E. T. et al. Humpback whale song occurs extensively on feeding grounds in the western North Atlantic Ocean. Aquat. Biol. 14, 175–183 (2012).Article 

    Google Scholar 
    15.McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).Article 

    Google Scholar 
    16.Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).Article 

    Google Scholar 
    17.Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. B 271, 1051–1057 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.International Whaling Commission. Report on the workshop on the comprehensive assessment of Southern Hemisphere humpback whales. J. Cetac. Res. Manag. 3, 1–50 (2011).
    Google Scholar 
    19.International Whaling Commission. Annex H: Report of the Sub-Committee on Other Southern Hemisphere Whale Stocks. (2016).20.Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    21.Gabriele, C. & Frankel, A. The occurrence and significance of humpback whale songs in Glacier Bay, Southeastern Alaska. Arctic Res. USA 16, 42–47 (2002).
    Google Scholar 
    22.Payne, R. & Guinee, L. Humpback whales (Megaptera novaeangliae) songs as an indicator of stocks. In Communication and Behavior of Whales (ed. Payne, R.) 333–358 (Westview Press, 1983).
    Google Scholar 
    23.Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Z. Tierpsychol. 68, 89–114 (1985).Article 

    Google Scholar 
    24.Winn, H. et al. Song of the humpback whale—population comparisons. Behav. Ecol. Sociobiol. 8, 41–46 (1981).Article 

    Google Scholar 
    25.Winn, H. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    26.Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mamm. Sci. 29, E312–E332 (2013).Article 

    Google Scholar 
    27.Kowarski, K., Moors-Murphy, H., Maxner, E. & Cerchio, S. Western North Atlantic humpback whale fall and spring acoustic repertoire: Insight into onset and cessation of singing behavior. J. Acoust. Soc. Am. 145, 2305–2316 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    28.Magnúsdóttir, E. E. & Lim, R. Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter. PLoS ONE 14, e0210057 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Magnúsdóttir, E. E. et al. Humpback whale (Megaptera novaeangliae) song unit and phrase repertoire progression on a subarctic feeding ground. J. Acoust. Soc. Am. 138, 3362–3374 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    30.Mattila, D. K., Guinee, L. N. & Mayo, C. A. Humpback whale songs on a North Atlantic feeding ground. J. Mammal. 68, 880–883 (1987).Article 

    Google Scholar 
    31.Teschke, K., Pehlke, H., Deininger, M., Jerosch, K. & Brey, T. Scientific Background Document in Support of the Development of a CCAMLR MPA in the Weddell Sea (Antarctica)–Version 2016. (2016).32.Gridley, T., Silva, M., Wilkinson, C., Seakamela, S. & Elwen, S. H. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa. J. Acoust. Soc. Am. 143, 298–304 (2018).Article 
    ADS 

    Google Scholar 
    33.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res.-Oceans 113, C02S03 (2008).Article 
    ADS 

    Google Scholar 
    34.Tynan, C. T. & Thiele, D. Report on Antarctic ice edge definition by the ad hoc working group on ice data collection in the Antarctic. Paper: SC/55/19, submitted to the Scientific Committee of the International Whaling Commission (2003).35.Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).Article 

    Google Scholar 
    36.Kohonen, T. Median strings. Pattern Recogn. Lett. 3, 309–313 (1985).Article 
    ADS 

    Google Scholar 
    37.Schall, E. et al. Multi-year presence of humpback whales in the Atlantic sector of the Southern Ocean but not during El Niño. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    38.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    39.Darling, J. D., Acebes, J. M. V., Frey, O., Urbán, R. J. & Yamaguchi, M. Convergence and divergence of songs suggests ongoing, but annually variable, mixing of humpback whale populations throughout the North Pacific. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    40.Schall, E. et al. Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean. R. Soc. Open Sci. 7, 201347 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    41.Van Opzeeland, I., Van Parijs, S., Kindermann, L., Burkhardt, E. & Boebel, O. Calling in the cold: Pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters. PLoS ONE 8, 1–7 (2013).
    Google Scholar 
    42.Craig, A. S., Herman, L. M., Gabriele, C. M. & Pack, A. A. Migratory timing of humpback whales (Megaptera novaeangliae) in the central north Pacific varies with age, sex and reproductive status. Behaviour 140, 981–1001 (2003).Article 

    Google Scholar 
    43.Dawbin, W. Temporal segregation of humpback whales during migration in southern hemisphere waters. Mem. Qld. Mus. 42, 105–138 (1997).
    Google Scholar 
    44.Magnúsdóttir, E., Rasmussen, M., Lammers, M. & Svavarsson, J. Humpback whale songs during winter in subarctic waters. Polar Biol. 37, 427–433 (2014).Article 

    Google Scholar 
    45.Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. Part 1 91, 101–114 (2014).Article 

    Google Scholar 
    46.Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Research (Part II, Topical Studies in Oceanography) 51, 2311–2325 (2004).Article 
    ADS 

    Google Scholar 
    47.Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    48.McDonald, M. A., Mesnick, S. L. & Hildebrand, J. A. Biogeographic characterisation of blue whale song worldwide: Using song to identify populations. J. Cetac. Res. Manage. 8, 55–65 (2006).
    Google Scholar 
    49.Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).Article 

    Google Scholar 
    50.Oleson, E. M., Širović, A., Bayless, A. R. & Hildebr, J. A. Synchronous seasonal change in fin whale song in the North Pacific. PLoS ONE 9, e115678 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    52.Stafford, K. M. et al. Spitsbergen’s endangered bowhead whales sing through the polar night. Endanger. Species Res. 18, 95–103 (2012).Article 

    Google Scholar 
    53.Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013).Article 
    ADS 

    Google Scholar 
    54.Brenowitz, E. A., Margoliash, D. & Nordeen, K. W. An introduction to birdsong and the avian song system. J. Neurobiol. 33, 495–500 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Tobias, J., Gamarra-Toledo, V., García-Olaechea, D., Pulgarin, P. & Seddon, N. Year-round resource defence and the evolution of male and female song in suboscine birds: Social armaments are mutual ornaments. J. Evol. Biol. 24, 2118–2138 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Vu, E. T., Clark, C., Catelani, K., Kellar, N. M. & Calambokidis, J. Seasonal blubber testosterone concentrations of male humpback whales (Megaptera novaeangliae). Mar. Mam. Sci. 31, 1258–1264 (2015).Article 

    Google Scholar 
    57.Yamada, K. & Soma, M. Diet and birdsong: Short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    58.Casagrande, S., Pinxten, R., Zaid, E. & Eens, M. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder. PeerJ 4, e2512 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Weinrich, M. Humpback whale competitive groups observed on a high-latitude feeding ground. Mar. Mamm. Sci. 11, 251–254 (1995).Article 

    Google Scholar 
    60.Chittleborough, R. The breeding cycle of the female humpback whale, Megaptera nodosa (Bonnaterre). Mar. Freshw. Res. 9, 1–18 (1958).Article 

    Google Scholar 
    61.Chittleborough, R. Studies on the ovaries of the humback whale, Megaptera nodosa (bonnaterre), on the western Australian coast. Mar. Freshw. Res. 5, 35–63 (1954).Article 

    Google Scholar 
    62.Cerchio, S., Jacobsen, J. K. & Norris, T. F. Temporal and geographical variation in songs of humpback whales, Megaptera novaeangliae: Synchronous change in Hawaiian and Mexican breeding assemblages. Anim. Behav. 62, 313–329 (2001).Article 

    Google Scholar 
    63.Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    64.Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B 285, 20182088 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Stevick, P. T. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetac. Res. Manag. 6, 109–113 (2004).
    Google Scholar 
    66.Engel, M. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253–1262 (2008).CAS 
    Article 

    Google Scholar 
    67.Amaral, A. R. et al. Population genetic structure among feeding aggregations of humpback whales in the Southern Ocean. Mar. Biol. 163, 1–13 (2016).Article 

    Google Scholar 
    68.Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. R. Soc. Open Sci. 5, 172305 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    69.Darling, J. D. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in the western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566 (2005).Article 

    Google Scholar 
    70.Razafindrakoto, Y., Cerchio, S., Collins, T., Rosenbaum, H. & Ngouessono, S. Similarity of humpback whale song from Madagascar and Gabon indicates significant contact between South Atlantic and southwest Indian Ocean populations. PLoS ONE 8, e79422 (2009).
    Google Scholar 
    71.Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetac. Res. Manag. 3, 113–118 (2011).
    Google Scholar 
    72.Rosenbaum, H. C., Maxwell, S. M., Kershaw, F. & Mate, B. Long-range movement of humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean. Conserv. Biol. 28, 604–615 (2014).PubMed 
    Article 

    Google Scholar 
    73.Filun, D. et al. Frozen verses: Antarctic minke whales (Balaenoptera bonaerensis) call predominantly during austral winter. R. Soc. Open Sci. 7, 192112 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    74.Rettig, S. et al. In International Confence and Exhibition on Underwater Acoustics. (eds Papadakis, J. & Bjorno, L.) 1669–1674.75.Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    76.Klinck, H. et al. Long-range underwater vocalizations of the crabeater seal (Lobodon carcinophaga). J. Acoust. Soc. Am. 128, 474–479 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    77.Risch, D. et al. Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaerensis). Biol. Lett. 10, 20140175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Schall, E. & Van Opzeeland, I. Calls produced by Ecotype C killer whales (Orcinus orca) off the Eckstrom iceshelf, Antarctica. Aquat. Mamm. 43, 117–126 (2017).Article 

    Google Scholar 
    79.Van Opzeeland, I. et al. Acoustic ecology of Antarctic pinnipeds. Mar. Ecol. Prog. Ser. 414, 267–291 (2010).Article 
    ADS 

    Google Scholar 
    80.Dunlop, R. A., Cato, D. H. & Noad, M. J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mamm. Sci. 24, 613–629 (2008).Article 

    Google Scholar 
    81.Stimpert, A. K., Au, W. W., Parks, S. E., Hurst, T. & Wiley, D. N. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. J. Acoust. Soc. Am. 129, 476–482 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    82.Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996).
    Google Scholar 
    83.Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).Article 
    ADS 

    Google Scholar 
    84.Greene, C. A. Daily Antarctic Sea Ice Concentration (2020).85.Schall, E., Roca, I. & Van Opzeeland, I. Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean. J. Acoust. Soc. Am. 149, 4649–4658 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    86.Dalla Rosa, L., Secchi, E., Maia, Y. G., Zerbini, A. & Heide-Jørgensen, M. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).Article 

    Google Scholar 
    87.Zann, R. & Cash, E. Developmental stress impairs song complexity but not learning accuracy in non-domesticated zebra finches (Taeniopygia guttata). Behav. Ecol. Sociobiol. 62, 391–400 (2008).Article 

    Google Scholar 
    88.Woodgate, J. L., Mariette, M. M., Bennett, A. T., Griffith, S. C. & Buchanan, K. L. Male song structure predicts reproductive success in a wild zebra finch population. Anim. Behav. 83, 773–781 (2012).Article 

    Google Scholar 
    89.Boogert, N. J., Giraldeau, L.-A. & Lefebvre, L. Song complexity correlates with learning ability in zebra finch males. Anim. Behav. 76, 1735–1741 (2008).Article 

    Google Scholar 
    90.Templeton, C. N., Laland, K. N. & Boogert, N. J. Does song complexity correlate with problem-solving performance in flocks of zebra finches?. Anim. Behav. 92, 63–71 (2014).Article 

    Google Scholar 
    91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.92.Suzuki, R., Terada, Y. & Shimodaira, H. pvclust: Hierarchical Clustering with P-values via Multiscale Bootstrap Resampling. R Package Version 2.2–0 (2019).93.Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: Tests using humpback whale song. Behaviour 149, 1413–1441 (2012).Article 

    Google Scholar 
    94.Van der Loo, M. P. The stringdist package for approximate string matching. R J. 6, 111–122 (2014).Article 

    Google Scholar 
    95.Pawlowicz, R. M_Map: A Mapping Package for MATLAB v. Version 1.4m. www.eoas.ubc.ca/~rich/map.html (2020). More

  • in

    Multiyear trend in reproduction underpins interannual variation in gametogenic development of an Antarctic urchin

    1.Takemura, A., Rahman, M. S. & Park, Y. J. External and internal controls of lunar-related reproductive rhythms in fishes. J. Fish Biol. 76, 7–26 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Brockington, S. & Clarke, A. The relative influence of temperature and food on the metabolism of a marine invertebrate. J. Exp. Mar. Bio. Ecol. 258, 87–99 (2001).CAS 
    Article 

    Google Scholar 
    3.Kelly, M. S. Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. J. Exp. Mar. Bio. Ecol. 266, 67–80 (2001).Article 

    Google Scholar 
    4.Muthiga, N. A. The reproductive biology of a new species of sea cucumber, Holothuria (Mertensiothuria) arenacava in a Kenyan marine protected area: The possible role of light and temperature on gametogenesis and spawning. Mar. Biol. 149, 585–593 (2006).Article 

    Google Scholar 
    5.Emilio, L. et al. Is the Orton’s rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues. Hydrobiologia 815, 187–205 (2018).Article 

    Google Scholar 
    6.St.Gelais, A. T., Chaves-Fonnegra, A., Moulding, A. L., Kosmynin, V. N. & Gilliam, D. S. Siderastrea siderea spawning and oocyte resorption at high latitude. Invertebr. Reprod. Dev. 60, 212–222 (2016).Article 

    Google Scholar 
    7.Zhadan, P. M., Vaschenko, M. A. & Ryazanov, S. D. Assessing the effect of environmental factors on the spawning activity of the sea urchin Strongylocentrotus intermedius through video recording observations. Mar. Ecol. Prog. Ser. 588, 101–119 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    8.Grange, L. J., Tyler, P. A., Peck, L. S. & Cornelius, N. Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Mar. Ecol. Prog. Ser. 278, 141–155 (2004).Article 
    ADS 

    Google Scholar 
    9.Balogh, R., Wolfe, K. & Byrne, M. Gonad development and spawning of the vulnerable commercial sea cucumber, Stichopus herrmanni, in the southern Great Barrier Reef. J. Mar. Biol. Assoc. United Kingdom 99, 487–495 (2019).Article 

    Google Scholar 
    10.Stenseth, N. C. et al. Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc. R. Soc. B Biol. Sci. 270, 2087–2096 (2003).Article 

    Google Scholar 
    11.Wood, S. et al. El Nino and coral larval dispersal across the eastern Pacific marine barrier. Nat. Commun. 7, 1 (2016).
    Google Scholar 
    12.Turner, J. The El Niño-Southern Oscillation and Antarctica. Int. J. Climatol. 24, 1–31 (2004).Article 

    Google Scholar 
    13.La, H. S. et al. Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica.. Sci. Rep. 9, 1–7 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    14.Xuebin, Z. & Mcphaden, M. J. Eastern equatorial Pacific forcing of ENSO sea surface temperature anomalies. J. Clim. 21, 6070–6079 (2008).Article 
    ADS 

    Google Scholar 
    15.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    16.Ryan, J. P. et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys. Res. Lett. 44, 5571–5579 (2017).Article 
    ADS 

    Google Scholar 
    17.Conde, A. & Prado, M. Changes in phytoplankton vertical distribution during an El Niño event. Ecol. Indic. 90, 201–205 (2018).Article 

    Google Scholar 
    18.Santidrián Tomillo, P. et al. The impacts of extreme El Niño events on sea turtle nesting populations. Clim. Change https://doi.org/10.1007/s10584-020-02658-w (2020).Article 

    Google Scholar 
    19.Wilson, S. K. et al. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef. Ecol. Evol. 8, 1918–1928 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Welhouse, L., Lazzara, M., Keller, L., Tripoli, G. & Hitchman, M. Composite analysis of the effects of ENSO events on Antarctica. J. Clim. 29, 1797–1808 (2016).Article 
    ADS 

    Google Scholar 
    21.Testa, J. W. et al. Temporal variability in Antarctic marine ecosystems: periodic fluctuations in the phocid seals. Can. J. Fish. Aquat. Sci. 48, 631–639 (1991).Article 

    Google Scholar 
    22.Román-González, A. et al. Analysis of ontogenetic growth trends in two marine Antarctic bivalves Yoldia eightsi and Laternula elliptica: Implications for sclerochronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 300–306 (2017).Article 

    Google Scholar 
    23.Brown, M. et al. Long-term effect of photoperiod, temperature and feeding regimes on the respiration rates of Antarctic Krill (Euphausia superba). Open J. Mar. Sci. 3, 40–51 (2013).Article 

    Google Scholar 
    24.Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fish. 14, 343–363 (2013).Article 

    Google Scholar 
    25.Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).PubMed 
    Article 

    Google Scholar 
    26.Peck, L. S. Antarctic Marine Biodiversity: Adaptations, Environments and Responses to Change. Oceanogr. Mar. Biol. An Annu. Rev. 56, 105–236 (2018).Article 

    Google Scholar 
    27.Peck, L. S. A Cold Limit to Adaptation in the Sea. Trends Ecol. Evol. 31, 13–26 (2016).PubMed 
    Article 

    Google Scholar 
    28.Brockington, S., Peck, L. S. & Tyler, P. A. Gametogenesis and gonad mass cycles in the common circumpolar Antarctic echinoid Sterechinus neumayeri. Mar. Ecol. Prog. Ser. 330, 139–147 (2007).Article 
    ADS 

    Google Scholar 
    29.Grange, L. J., Tyler, P. A. & Peck, L. S. Multi-year observations on the gametogenic ecology of the Antarctic seastar Odontaster validus. Mar. Biol. 153, 15–23 (2007).Article 

    Google Scholar 
    30.Brockington, S. The seasonal ecology and physiology of Sterechinus neumayeri (Echinodermata; Echinoidea) at Adelaide Island, Antarctica. PhD thesis The Open University. (2001).31.Bosch, I., Beauchamp, K. A., Steele, M. E. & Pearse, J. S. Development, metamorphosis, and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus Neumayeri. Biol. Bull. 173, 126–135 (1987).PubMed 
    Article 

    Google Scholar 
    32.Stanwell-Smith, D. & Peck, L. S. Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol. Bull. 194, 44–52 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).Article 

    Google Scholar 
    34.Kwok, R. & Comiso, J. C. Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett. 29, 2–5 (2002).
    Google Scholar 
    35.Santamaría-Del-ángel, E. et al. Interannual climate variability in the west antarctic peninsula under austral summer conditions. Remote Sens. 13, 1 (2021).Article 

    Google Scholar 
    36.Montgomery, D. & Peck, E. Introduction to linear regression analysis. (Wiley, 1992).37.Halberg, F., Shankaraiah, K. & Giese, A. The chronobiology of marine invertebrates: methods of analysis. in Reproduction of marine invertebrates, Vol IX. General aspects: seeking unity in diversity 331–384 (The Boxwood Press, 1987).38.Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the antarctic peninsula pelagic marine ecosystem. Antarct. Sci. 21, 135–148 (2009).Article 
    ADS 

    Google Scholar 
    39.White, W. B., Chen, S. C., Allan, R. J. & Stone, R. C. Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño-Southern Oscillation wave. J. Geophys. Res. C Ocean. 107, 29–31 (2002).
    Google Scholar 
    40.Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 1–8 (2014).CAS 

    Google Scholar 
    41.Cavanagh, R. D. et al. A synergistic approach for evaluating climate model output for ecological applications. Front. Mar. Sci. 4, 1 (2017).Article 

    Google Scholar 
    42.Vergani, D. F., Labraga, J. C., Stanganelli, Z. B. & Dunn, M. The effects of El Niño-La Niña on reproductive parameters of elephant seals feeding in the Bellingshausen Sea. J. Biogeogr. 35, 248–256 (2008).Article 

    Google Scholar 
    43.Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Chang. Biol. 19, 3749–3761 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    44.Schneider, D. P., Okumura, Y. & Deser, C. Observed Antarctic interannual climate variability and tropical linkages. J. Clim. 25, 4048–4066 (2012).Article 
    ADS 

    Google Scholar 
    45.Yuan, X. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci. 16, 415–425 (2004).Article 
    ADS 

    Google Scholar 
    46.Loeb, V. J. & Santora, J. A. Population dynamics of Salpa thompsoni near the Antarctic Peninsula: Growth rates and interannual variations in reproductive activity (1993–2009). Prog. Oceanogr. 96, 93–107 (2012).Article 
    ADS 

    Google Scholar 
    47.Moran, A. L., McAlister, J. S. & Whitehill, E. A. G. Eggs as energy: Revisiting the scaling of egg size and energetic content among echinoderms. Biol. Bull. 224, 184–191 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Gómez-Robles, E. & Saucedo, P. E. Evaluation of quality indices of the gonad and somatic tissues involved in reproduction of the pearl oyster Pinctada mazatlanica with histochemistry and digital image analysis. J. Shellfish Res. 28, 329–335 (2009).Article 

    Google Scholar 
    49.Gómez-Valdez, M., Ocampo, L., Carvalho-Saucedo, L. & Gutiérrez-González, J. Reproductive activity and seasonal variability in the biochemical composition of a pen shell, Atrina maura.. Mar. Ecol. Prog. Ser. 663, 99–113 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    50.Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep. Res. Part I Oceanogr. Res. Pap. 101, 54–70 (2015).Article 
    ADS 

    Google Scholar 
    51.Rozema, P. D. et al. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol. Oceanogr. 62, 235–252 (2017).Article 
    ADS 

    Google Scholar 
    52.Starr, M., Himmelman, J. H. & Therriault, J. Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science 247, 1071–1074 (1990).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    53.Harrington, L. H., Walker, C. W. & Lesser, M. P. Stereological analysis of nutritive phagocytes and gametogenic cells during the annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis.. Invertebr. Biol. 126, 202–209 (2007).Article 

    Google Scholar 
    54.Magniez, P. Reproductive cycle of the brooding echinoid Abatus cordatus (Echinodermata) in Kerguelen (Antarctic Ocean): changes in the organ indices, biochemical composition and caloric content of the gonads. Mar. Biol. 74, 55–64 (1983).CAS 
    Article 

    Google Scholar 
    55.Pérez, A. F., Morriconi, E., Boy, C. & Calvo, J. Seasonal changes in energy allocation to somatic and reproductive body components of the common cold temperature sea urchin Loxechinus albus in a Sub-Antarctic environment. Polar Biol. 31, 443–449 (2008).Article 

    Google Scholar 
    56.Hernandez, E., Vázquez, O. A., Torruco, A. & Rahman, M. S. Reproductive cycle and gonadal development of the Atlantic sea urchin Arbacia punctulata in the Gulf of Mexico: changes in nutritive phagocytes in relation to gametogenesis. Mar. Biol. Res. 16, 177–194 (2020).Article 

    Google Scholar 
    57.Bronstein, O., Kroh, A. & Loya, Y. Reproduction of the long-spined sea urchin Diadema setosum in the Gulf of Aqaba – Implications for the use of gonad-indexes. Sci. Rep. 6, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    58.Alturkistani, H. A., Tashkandi, F. M. & Mohammedsaleh, Z. M. Histological Stains: A Literature Review and Case Study. Glob. J. Health Sci. 8, 72–79 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 1–26 (2017).Article 
    ADS 

    Google Scholar 
    61.Lau, S. C. Y., Grange, L. J., Peck, L. S. & Reed, A. J. The reproductive ecology of the Antarctic bivalve Aequiyoldia eightsii (Protobranchia: Sareptidae) follows neither Antarctic nor taxonomic patterns. Polar Biol. 41, 1693–1706 (2018).Article 

    Google Scholar 
    62.Reed, A. J., Morris, J. P., Linse, K. & Thatje, S. Reproductive morphology of the deep-sea protobranch bivalves Yoldiella ecaudata, Yoldiella sabrina, and Yoldiella valettei (Yoldiidae) from the Southern Ocean. Polar Biol. 37, 1383–1392 (2014).Article 

    Google Scholar 
    63.Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    64.Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035–1047 (2013).Article 
    ADS 

    Google Scholar 
    65.Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A. & Thomas, D. N. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica.. Deep Res. Part II Top. Stud. Oceanogr. 55, 198–206 (2008).
    Google Scholar 
    66.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data. in Analyzing Ecological Data (ed. M. Gail, K. Krickeberg, J. Samet, A. Tsiatis, W. W.) 23–47 (Springer-Verlag New York, 2007).67.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. A practical information-theoretical approach. Model Selection and Multimodel Inference (Springer, 2002). https://doi.org/10.1007/978-0-387-22456-5_768.Fisher, R., Wilson, S. K., Sin, T. M., Lee, A. C. & Langlois, T. J. A simple function for full-subsets multiple regression in ecology with R. Ecol. Evol. 8, 6104–6113 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    70.De Leij, R., Peck, L. S. & Grange, L. J. R code and csv. files. https://doi.org/10.5061/dryad.6q573n5z1 (2021).71.Grange, L. J., Peck, L. S. & Tyler, P. A. Reproductive ecology of the circumpolar Antarctic nemertean Parborlasia corrugatus: No evidence for inter-annual variation. J. Exp. Mar. Bio. Ecol. 404, 98–107 (2011).Article 

    Google Scholar  More

  • in

    Food resources affect territoriality of invasive wild pig sounders with implications for control

    1.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species: A selection from the global invasive species database. In Encyclopedia of Biological Invasions 12 (The Invasive Species Specialist Group (ISSG), Species Survival Commission (SSC), World Conservation Union (IUCN), 2000). https://doi.org/10.1525/9780520948433-159.2.North American Invasive Species Network. The ten most important invasive species or invasive species assemblages in North America in 2015. https://www.bugwoodcloud.org/mura/naisn/assets/File/NAISNPRJan2015.pdf (2015).3.Keuling, O. et al. Eurasian wild boar Sus scrofa (Linnaeus, 1758). in Ecology, Conservation and Management of Wild Pigs and Peccaries (eds. Melleti, M. & Meijaard, E.) 202–233 (Cambridge University Press, 2017).4.Strickland, B. K., Smith, M. D. & Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds VerCauteren, K. C. et al.) 143–174 (RC Press, London, 2020).
    Google Scholar 
    5.Pimental, D. Environmental and economic costs of vertebrate species invasions into the United States. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium (eds. Witmer, G. W., Pitt, W. C. & Fagerstone, K. A.) 2–8 (USDA National Wildlife Research Center, Fort Collins, CO, USA, 2007).6.Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds VerCauteren, K. C. et al.) 175–198 (CRC Press, London, 2020).
    Google Scholar 
    7.Maher, C. R. & Lott, D. F. Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav. 49, 1581–1597 (1995).Article 

    Google Scholar 
    8.Bastille-Rousseau, G. et al. Multi-level movement response of invasive wild pigs (Sus scrofa) to removal. Pest Manag. Sci. 77, 85–95 (2021).CAS 
    Article 

    Google Scholar 
    9.Boitani, L., Mattei, L., Nonis, D. & Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75, 600–612 (1994).Article 

    Google Scholar 
    10.Ilse, L. M. & Hellgren, E. C. Resource partitioning in sympatric populations of collared peccaries and feral hogs in southern Texas. J. Mammal. 76, 784–799 (1995).Article 

    Google Scholar 
    11.Gabor, T. M., Hellgren, E. C., Bussche, R. A. V. D. & Silvy, N. J. Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. J. Zool. 247, 311–322 (1999).Article 

    Google Scholar 
    12.Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolley, D. B. & Ditchkoff, S. S. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manag. 73, 497–502 (2009).Article 

    Google Scholar 
    13.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & VerCauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    14.Gray, S. M., Roloff, G. J., Montgomery, R. A., Beasley, J. C. & Pepin, K. M. Wild pig spatial ecology and behavior. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds VerCauteren, K. C. et al.) 33–56 (CRC Press, London, 2020).
    Google Scholar 
    15.Emlen, J. T. Defended area? A critique of the territory concept and of conventional thinking. Ibis 99, 352 (1957).
    Google Scholar 
    16.Kamath, A. & Wesner, A. B. Animal territoriality, property and access: A collaborative exchange between animal behaviour and the social sciences. Anim. Behav. 164, 233–239 (2020).Article 

    Google Scholar 
    17.ESRI. ArcGIS Pro. Environmental Systems Research Institute (2021).18.Mayer, J. J. Wild hog. In Ecology and Management of a Forested Landscape: Fifty Years on the Savannah River Site (eds Kilgo, J. C. & Blake, J. I.) 374–379 (Island Press, Washington, 2005).
    Google Scholar 
    19.Mayer, J. J., Edwards, T. B., Garabedian, J. E. & Kilgo, J. C. Sanitary waste landfill effects on an invasive wild pig population. J. Wildl. Manag. 85, 868–879 (2021).Article 

    Google Scholar 
    20.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, Cambridge, 2014).
    Google Scholar 
    21.Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    22.Byrne, M. E., Guthrie, J. D., Hardin, J., Collier, B. A. & Chamberlain, M. J. Evaluating wild Turkey movement ecology: An example using first-passage time analysis. Wildl. Soc. Bull. 38, 407–413 (2014).Article 

    Google Scholar 
    23.Clontz, L. M., Pepin, K. M., VerCauteren, K. C. & Beasley, J. C. Behavioral state resource selection in invasive wild pigs in the Southeastern United States. Sci. Rep. 11, 6924 (2021).CAS 
    Article 
    ADS 

    Google Scholar 
    24.White, G. C. & Garrott, R. A. Analysis of Wildlife Radio-Tracking Data (Academic Press, Cambridge, 1990).
    Google Scholar 
    25.Potts, J. R., Harris, Stephen & Giuggioli, L. Quantifying behavioral changes in territorial animals caused by sudden population declines. Am. Nat. 182, E73–E82 (2013).Article 

    Google Scholar 
    26.Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).Article 

    Google Scholar 
    27.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2021).28.Schielzeth, H. & Forstmeier, W. Conclusions beyond support: Overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).Article 

    Google Scholar 
    29.Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).Article 

    Google Scholar 
    30.Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    Article 

    Google Scholar 
    31.Long, J. A., Nelson, T. A., Webb, S. L. & Gee, K. L. A critical examination of indices of dynamic interaction for wildlife telemetry studies. J. Anim. Ecol. 83, 1216–1233 (2014).Article 

    Google Scholar 
    32.Benhamou, S., Valeix, M., Chamaillé-Jammes, S., Macdonald, D. W. & Loveridge, A. J. Movement-based analysis of interactions in African lions. Anim. Behav. 90, 171–180 (2014).Article 

    Google Scholar 
    33.Brotherton, P. N. M., Pemberton, J. M., Komers, P. E. & Malarky, G. Genetic and behavioural evidence of monogamy in a mammal, Kirk’s dik–dik (Madoqua kirkii). Proc. R. Soc. Lond. B Biol. Sci. 264, 675–681 (1997).CAS 
    Article 
    ADS 

    Google Scholar 
    34.Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352 (1943).Article 

    Google Scholar 
    35.Cooper, N. W., Sherry, T. W. & Marra, P. P. Modeling three-dimensional space use and overlap in birds. Auk 131, 681–693 (2014).Article 

    Google Scholar 
    36.Millspaugh, J. J., Gitzen, R. A., Kernohan, B. J., Larson, M. A. & Clay, C. L. Comparability of three analytical techniques to assess joint space use. Wildl. Soc. Bull. 32, 148–157 (2004).Article 

    Google Scholar 
    37.Pepin, K. M. et al. Contact heterogeneities in feral swine: Implications for disease management and future research. Ecosphere 7, e01230 (2016).Article 

    Google Scholar 
    38.Yang, A. et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 90, 820–833 (2021).Article 

    Google Scholar 
    39.Carpenter, F. L. Food abundance and territoriality: To defend or not to defend?. Am. Zool. 27, 387–399 (1987).Article 

    Google Scholar 
    40.Both, C. & Visser, M. E. Density dependence, territoriality, and divisibility of resources: From optimality models to population processes. Am. Nat. 161, 326–336 (2003).Article 

    Google Scholar 
    41.Doncaster, C. P. & Macdonald, D. W. Optimum group size for defending heterogenous distributions of resources: A model applied to red foxes, Vulpes vulpes, Oxford city. J. Theor. Biol. 159, 189–198 (1992).Article 
    ADS 

    Google Scholar 
    42.Krause, J. & Ruxton, G. D. Living in Groups (University Press, Oxford, 2002).
    Google Scholar 
    43.Garabedian, J. E., Moorman, C. E., Peterson, M. N. & Kilgo, J. C. Effects of group size and group density on trade-offs in resource selection by a group-territorial central-place foraging woodpecker. Ibis 162, 477–491 (2020).Article 

    Google Scholar  More

  • in

    Evaluation of fish feeder manufactured from local raw materials

    Automatic feeder productivityTable 1 and Figs. 4, 5 and 6 show the automatic feeder productivity as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that the automatic feeder productivity increases with increasing feed pellets size, air flow rate and rotational speed of screw. It indicates that when the feed pellets size increased from 1 to 3 mm, the automatic feeder productivity significantly increased from 11.16 to 13.87 (by 19.54%) kg min−1. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the automatic feeder productivity significantly increased from 11.02 to 14.03 (by 21.45%) kg min−1, while the automatic feeder productivity significantly increased from 3.33 to 21.46 (by 84.48%) kg min−1 when the rotational speed of screw increased from 180 to 900 rpm.Table 1 Automatic feeder productivity at different feed pellets sizes, air flow rates and rotational speeds of screw.Full size tableFigure 4Automatic feeder productivity at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 5Automatic feeder productivity at different feed pellet sizes and air flow rates.Full size imageFigure 6Automatic feeder productivity at different rotational speeds of screw and flow rates.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to increase the automatic feeder productivity from 3.04 to 3.79, 6.23 to 8.92, 11.86 to 14.10, 15.27 to 18.94 and 19.42 to 23.62 kg min−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the automatic feeder productivity increased from 3.04 to 19.42, 3.16 to 21.36 and 3.79 to 23.62 kg min−1 at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 4.From statistical analysis, there were no significant different between feed pellets sizes 1 and 2 on the automatic feeder productivity, meanwhile, there were significant differences between feed pellets size 3 and sizes 1 and 2 on the productivity. Regarding the effect of air flow rate, there were significant differences between air flow rates on the automatic feeder productivity, the same trend was happened with the effect of rotational speed of screw on productivity. The analysis showed also that the interaction between both ABC was non-significant. On the other hand, the interaction between the effect of both AB, AC and BC on the data was significant as shown in Table 1.Regarding the effect of feed pellet size and air flow rate on the automatic feeder productivity, the results indicate that the automatic feeder productivity increases with increasing the feed pellets size and flow rate. It increased from 9.53 to 12.37, 11.23 to 13.82 and 12.73 to 15.43 kg min−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the automatic feeder productivity increased from 9.53 to 12.73, 11.16 to 13.92 and 12.37 to 15.43 kg min−1 at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 5.The results also indicate that the automatic feeder productivity increased from 2.26 to 4.54, 6.39 to 8.90, 11.76 to 14.56, 15.25 to 18.68 and 19.44 to 23.45 kg min−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the automatic feeder productivity increased from 2.26 to 19.44, 3.19 to 21.50 and 4.54 to 23.45 kg min−1 at 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 6.Multiple regression analysis was carried out to obtain a relationship between the automatic feeder productivity as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:-$$ Pr_{actual} = – 8.457 + 1.354PS + 0.301FR + 0.025RS{text{ R}}^{{2}} = 0.98{ ,} $$
    (13)
    where PS is the feed pellets size, mm; FR is the air flow rate, m3 min−1; RS is the rotational speed of screw, rpm.This equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw.Automatic feeder efficiencyTable 2, Figs. 7, 8 and 9 show the automatic feeder efficiency as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that, when the feed pellets size increased from 1 to 3 mm, the automatic feeder efficiency significantly increased from 65.30 to 82.14 (by 20.50%) %. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the automatic feeder efficiency significantly increased from 62.58 to 85.07 (by 26.44%) %, while the automatic feeder efficiency significantly increased from 61.58 to 78.69 (by 21.74%) % when the rotational speed of screw increased from 180 to 900 rpm.Table 2 Automatic feeder efficiency at different feed pellets sizes, air flow rates and rotational speeds of screw.Full size tableFigure 7Automatic feeder efficiency at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 8Automatic feeder efficiency at different feed pellet sizes and air flow rates.Full size imageFigure 9Automatic feeder efficiency at different rotational speeds of screw and air flow rates.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to increase the automatic feeder efficiency from 55.79 to 69.41, 57.10 to 81.78, 72.48 to 86.13, 69.96 to 86.81 and 71.19 to 86.58% at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the automatic feeder efficiency increased from 55.79 to 71.19, 57.98 to 78.29 and 69.41 to 86.58% at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 7.The statistical analysis showed that the differences between the obtained data of automatic feeder efficiency due to the effect of feed pellets size (A) and air flow rate (B) were significant. Regarding the effect of rotational speed of screw, there were significant differences between rotational speeds of screw 1, 2 and 3, meanwhile, there were no significant differences between rotational speeds of screw 3, 4 and 5. The analysis showed also that the interaction between both ABC was non-significant. On the other hand, the interaction between the effect of both AB, AC and BC on the data was significant as shown in Table 2.Regarding the effect of feed pellet size and air flow rate on the automatic feeder productivity, the results indicate that the automatic feeder efficiency increases with increasing the feed pellets size and flow rate. It increased from 53.91 to 70.69, 65.23 to 81.19 and 76.78 to 94.54% for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the automatic feeder efficiency increased from 53.91 to 76.78, 63.14 to 83.89 and 70.69 to 94.54% at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 8.The results also indicate that the automatic feeder efficiency increased from 41.37 to 83.28, 58.53 to 81.54, 71.85 to 84.96, 69.88 to 85.59 and 71.27 to 85.98% at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the automatic feeder efficiency increased from 41.37 to 71.27, 58.53 to 80.82 and 83.28 to 85.98% at 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 9.Increasing the parameters seams to increase the productivity but regarding the efficiency, results show that the efficiency increases with increasing this parameter at (540 rpm) started to be constant and 720–900 rpm decreased in all treatments under study (Figs. 7, 9). It is concluded that efficiency with the parameters increased, became constant and decreased.Multiple regression analysis was carried out to obtain a relationship between the automatic feeder efficiency as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:-$$ eta = 9.566 + 8.417PS + 2.249FR + 0.025RS{text{ R}}^{{2}} = 0.89{ ,} $$
    (14)
    where this equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw.Specific energy consumptionTable 3, Figs. 10, 11 and 12 show the specific energy consumption of automatic feeder as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that the specific energy consumption of automatic feeder decreases with increasing feed pellets size, air flow rate and rotational speed of screw. It indicates that when the feed pellets size increased from 1 to 3 mm, the specific energy consumption of automatic feeder significantly decreased from 8.93 to 6.74 (by 24.52%) W h kg−1. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the specific energy consumption of automatic feeder significantly decreased from 10.83 to 5.42 (by 49.95%) W h kg−1, while the specific energy consumption significantly decreased from 9.08 to 6.55 (by 27.86%) W h kg−1 when the rotational speed of screw increased from 180 to 900 rpm.Table 3 Specific energy consumption at different feed pellets sizes, air flow rates and rotational speeds of screw.Full size tableFigure 10Specific energy consumption at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 11Specific energy consumption at different feed pellet sizes and air flow rates.Full size imageFigure 12Specific energy consumption at different rotational speeds of screw and air flow rates.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to decrease the specific energy consumption from 9.87 to 7.94, 9.18 to 7.63, 9.14 to 7.30, 8.65 to 6.63 and 7.79 to 4.20 W h kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the specific energy consumption decreased from 9.87 to 7.79, 9.42 to 7.65 and 7.94 to 4.20 W h kg−1 at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 10.From statistical analysis, there were no significant differences between feed pellets sizes 1 and 2 on the specific energy consumption, meanwhile, there were significant differences between feed pellets size 3 and 1 and 2 on the specific energy consumption. Regarding the effect of air flow rate, there were significant differences between air flow rates and specific energy consumption. Regarding the effect of rotational speed of screw, there were significant differences between rotational speeds of screw 1, 2, 4 and 5 on the specific energy consumption, meanwhile, there were no significant differences between rotational speeds of screw 2 and 3 on the specific energy consumption. The analysis showed also that the interaction between both ABC was non-significant. On the other hand, the interaction between the effect of both AB, AC and BC on the data was significant as shown in Table 3.Regarding the effect of feed pellet size and air flow rate on the specific energy consumption, the results indicate that the specific energy consumption decreases with increasing the feed pellets size and flow rate. It decreased from 12.05 to 9.07, 8.81 to 6.56 and 5.92 to 4.59 W h kg−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the specific energy consumption decreased 12.05 to 5.92, 11.37 to 5.75 and 9.07 to 4.59 W h kg−1 at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 11.The results also indicate that the specific energy consumption decreased from 12.31 to 6.18, 11.43 to 5.63, 11.21 to 5.63, 10.38 to 5.21 and 8.81 to 4.46 W h kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the specific energy consumption decreased from 12.31 to 8.81, 8.75 to 6.37 and 6.18 to 4.46 W h kg−1 at 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown Fig. 12.
    Multiple regression analysis was carried out to obtain a relationship between the specific energy consumption of automatic feeder as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:-$$ SEC = 20.045 – 1.095PS – 0.541FR – 0.003RS{text{ R}}^{{2}} = 0.92 , {.} $$
    (15)
    This equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw.Total costs of automatic feederTable 4, Figs. 13, 14 and 15 show the total cost of automatic feeder as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that the total cost of automatic feeder decreases with increasing feed pellets size, flow rate and rotational speed of screw. It indicates that when the feed pellets size increased from 1 to 3 mm, the total cost of automatic feeder significantly decreased from 0.15 to 0.11 (by 26.27%) EGP kg−1. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the total cost of automatic feeder significantly decreased from 0.16 to 0.09 (by 43.75%) EGP kg−1, while the total cost of automatic feeder significantly decreased from 0.16 to 0.10 (by 37.50%) EGP kg−1 when the rotational speed of screw increased from 180 to 900 rpm.Table 4 Total cost of automatic feeder at different feed pellets sizes, air flow rate and rotational speeds of screw.Full size tableFigure 13Total cost of automatic feeder at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 14Total cost of automatic feeder at different feed pellet sizes and air flow rates.Full size imageFigure 15Total cost of automatic feeder at different rotational speeds of screw and air flow rate.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to decrease the total cost of automatic feeder from 0.18 to 0.14, 0.16 to 0.12, 0.15 to 0.11, 0.13 to 0.09 and 0.12 to 0.08 EGP kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the total cost of automatic feeder decreased from 0.18 to 0.12, 0.17 to 0.10 and 0.14 to 0.08 EGP kg−1 at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 13.From statistical analysis, there were no significant differences between feed pellets sizes 1 and 2 on the total cost of automatic feeder, meanwhile, there were significant differences between feed pellets size 3 and 1 and 2 on the total cost of automatic feeder. Regarding the effect of air flow rate, there were significant differences between air flow rates and specific energy consumption. Regarding the effect of rotational speed of screw, there were no significant differences between rotational speeds of screw 1 and 2, also 3 and 4 on the total cost of automatic feeder, meanwhile, there were significant differences between rotational speeds of screw 2 and 3 on the total cost of automatic feeder.Regarding the effect of feed pellet size and flow rate on the total cost of automatic feeder, the results indicate that the total cost of automatic feeder decreases with increasing the feed pellets size and air flow rate. It decreased from 0.18 to 0.13, 0.16 to 0.11 and 0.10 to 0.08 EGP kg−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the total cost of automatic feeder decreased from 0.18 to 0.10, 0.16 to 0.10 and 0.13 to 0.08 EGP kg−1 at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 14.The results also indicate that the total cost of automatic feeder decreased from 0.22 to 0.11, 0.18 to 0.10, 0.16 to 0.10, 0.13 to 0.09 and 0.12 to 0.07 EGP kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the total cost of automatic feeder decreased from 0.22 to 0.12, 0.16 to 0.11 and 0.11 to 0.07 EGP kg−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 15.
    Multiple regression analysis was carried out to obtain a relationship between the total costs of automatic feeder as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:$$ TC = 0.315 – 0.020PS – 0.006FR – 8.8 times 10^{ – 5} RS{text{ R}}^{{2}} = 0.87{,} $$
    (16)
    where: TC is the total cost of automatic feeder, EGP kg−1.This equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw. More

  • in

    DNA metabarcoding reveals the dietary composition in the endangered black-faced spoonbill

    1.Beauchamp, G. Long-distance migrating species of birds travel in larger groups. Biol. Lett. 7, 692–694 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Watts, H. E., Cornelius, J. M., Fudickar, A. M., Pérez, J. & Ramenofsky, M. Understanding variation in migratory movements: A mechanistic approach. Gen. Comp. Endocrinol. 256, 112–122 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Amezaga, J. M., Santamaría, L. & Green, A. J. Biotic wetland connectivity—Supporting a new approach for wetland policy. Acta Oecol. 23, 213–222 (2002).ADS 
    Article 

    Google Scholar 
    4.O’Connell, M. Threats to waterbirds and wetlands: Implications for conservation, inventory and research. Wildfowl 51, 1–16 (2000).
    Google Scholar 
    5.Darrah, S. E. et al. Improvements to the wetland extent trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Ind. 99, 294–298 (2019).Article 

    Google Scholar 
    6.BirdLife International. Waterbirds are Showing Widespread Declines, Particularly in Asia. http://www.birdlife.org (2017).7.Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27 (2018).Article 

    Google Scholar 
    8.He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Mander, L., Marie-Orleach, L. & Elliott, M. The value of wader foraging behaviour study to assess the success of restored intertidal areas. Estuar. Coast. Shelf Sci. 131, 1–5 (2013).ADS 
    Article 

    Google Scholar 
    10.Choi, C., Gan, X., Hua, N., Wang, Y. & Ma, Z. The habitat use and home range analysis of Dunlin (Calidris alpina) in Chongming Dongtan, China and their conservation implications. Wetlands 34, 255–266 (2014).Article 

    Google Scholar 
    11.Xia, S. et al. Identifying priority sites and gaps for the conservation of migratory waterbirds in China’s coastal wetlands. Biol. Cons. 210, 72–82 (2017).Article 

    Google Scholar 
    12.Ramsar Sites Information Service. Mai Po Marshes and Inner Deep Bay. https://rsis.ramsar.org/ris/750 (2021).13.Environment Bureau. Hong Kong Biodiversity Strategy Action Plan 2016–2021 (The Government of the Hong Kong Special Administrative Region, 2016).
    Google Scholar 
    14.Sung, Y. H., Tse, I. W. L. & Yu, Y. T. Population trends of the Black-faced Spoonbill Platalea minor: Analysis of data from international synchronised censuses. Bird Conserv. Int. 28, 157–167. https://doi.org/10.1017/s0959270917000016 (2017).Article 

    Google Scholar 
    15.Wei, P. et al. Impact of habitat management on waterbirds in a degraded coastal wetland. Mar. Pollut. Bull. 124, 645–652 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Cheung, S. C. The politics of wetlandscape: Fishery heritage and natural conservation in Hong Kong. Int. J. Herit. Stud. 17, 36–45 (2011).Article 

    Google Scholar 
    17.AFCD. Agriculture, Fisheries and Conservation Department (AFCD). Marine Fish Culture, Pond Fish Culture and Oyster Culture. https://www.afcd.gov.hk/english/fisheries/fish_aqu/fish_aqu_mpo/fish_aqu_mpo.html.18.Yu, Y. T., Li, C. H., Tse, I. W. L. & Fong, H. N. F. International Black-Faced Spoonbill Census 2019 (The Hong Kong Bird Watching Society, 2019).
    Google Scholar 
    19.Pickett, E. J. et al. Cryptic and cumulative impacts on the wintering habitat of the endangered black-faced spoonbill (Platalea minor) risk its long-term viability. Environ. Conserv. 45, 147–154. https://doi.org/10.1017/s0376892917000340 (2018).Article 

    Google Scholar 
    20.The Hong Kong Bird Watching Society. Black-Faced Spoonbill Population Hits Record High. Number in HK Continues to Decline. Protection of Deep Bay in Urgent Need. https://cms.hkbws.org.hk/cms/ (2020).21.Swennen, C. & Yu, Y. T. Food and feeding behavior of the black-faced spoonbill. Waterbirds 28, 19–27. https://doi.org/10.1675/1524-4695(2005)028[0019:Fafbot]2.0.Co;2 (2005).Article 

    Google Scholar 
    22.Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8, 1265–1275 (2017).Article 

    Google Scholar 
    25.McInnes, J. C. et al. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol. Evol. 8, 192–202 (2017).Article 

    Google Scholar 
    26.Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.De Sousa, L., Silva, S. M. & Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystem. Environ. DNA 1, 199–214 (2019).Article 

    Google Scholar 
    28.Ueng, Y. T., Perng, J. J., Wang, J. P., Weng, J. H. & Hou, P. C. Diet of the black-faced spoonbill wintering at Chiku Wetland in Southwestern Taiwan. Waterbirds 29, 185–191 (2006).Article 

    Google Scholar 
    29.Veen, J., Overdijk, O. & Veen, T. The diet of an endemic subspecies of the Eurasian Spoonbill Platalea leucorodia balsaci, breeding at the Banc d’Arguin, Mauritania. Ardea 100, 123–130 (2012).Article 

    Google Scholar 
    30.Lee, S. Y. The Mangrove Ecosystem of Deep Bay and the Mai Po Marshes, Hong Kong (Hong Kong University Press, 1999).
    Google Scholar 
    31.Wong, L. C., Corlett, R. T., Young, L. & Lee, J. S. Comparative feeding ecology of Little Egrets on intertidal mudflats in Hong Kong, South China. Waterbirds 23, 214–225 (2000).
    Google Scholar 
    32.Yang, K. Y., Lee, S. Y. & Williams, G. A. Selective feeding by the mudskipper (Boleophthalmus pectinirostris) on the microalgal assemblage of a tropical mudflat. Mar. Biol. 143, 245–256 (2003).Article 

    Google Scholar 
    33.Froese, R., Pauly, D. & eds. FishBase. World Wide Web Electronic Publication. https://www.fishbase.org, version 12/2019 (2019).34.Aguilera, E., Ramo, C. & de le Court, C. Food and feeding sites of the Eurasian spoonbill (Platalea leucorodia) in southwestern Spain. Colon. Waterbirds 19, 159–166 (1996).Article 

    Google Scholar 
    35.Yu, Y. T. & Swennen, C. K. Habitat use of the black-faced spoonbill. Waterbirds 27, 129–135 (2004).Article 

    Google Scholar 
    36.World Wide Fund Hong Kong. Mai Po Nature Reserve Habitat Management, Monitoring and Research Plan 2013–2018 (World Wide Fund Hong Kong, 2013).
    Google Scholar 
    37.Sazima, I. Waterbirds catch and release a poisonous fish at a mudflat in southeastern Australia. Ornithol. Res. 27, 126–128 (2019).Article 

    Google Scholar 
    38.Marchetti, K. & Price, T. Differences in the foraging of juvenile and adult birds: The importance of developmental constraints. Biol. Rev. 64, 51–70 (1989).Article 

    Google Scholar 
    39.Jiguet, F. Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Bird Study 49, 105–109 (2002).Article 

    Google Scholar 
    40.Birks, J. D. S. & Dunstone, N. Sex-related differences in the diet of the mink Mustela vison. Ecography 8, 245–252 (1985).Article 

    Google Scholar 
    41.Mata, V. A. et al. Female dietary bias towards large migratory moths in the European free-tailed bat (Tadarida teniotis). Biol. Lett. 12, 20150988 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Carreiro, A. R. et al. Metabarcoding, stables isotopes, and tracking: Unraveling the trophic ecology of a winter-breeding storm petrel (Hydrobates castro) with a multimethod approach. Mar. Biol. 167, 14 (2020).CAS 
    Article 

    Google Scholar 
    43.Rose, L. M. Sex differences in diet and foraging behavior in white-faced capuchins (Cebus capucinus). Int. J. Primatol. 15, 95–114 (1994).Article 

    Google Scholar 
    44.Beeston, R., Baines, D. & Richardson, M. Seasonal and between-sex differences in the diet of Black Grouse Tetrao tetrix. Bird Study 52, 276–281 (2005).Article 

    Google Scholar 
    45.Durell, S. L. V. D., Goss-Custard, J. D. & Caldow, R. W. G. Sex-related differences in diet and feeding method in the oystercatcher Haematopus ostralegus. J. Anim. Ecol. 62, 205–215 (1993).Article 

    Google Scholar 
    46.Faegre, S. K., Nietmann, L., Hannon, P., Ha, J. C. & Ha, R. R. Age-related differences in diet and foraging behavior of the critically endangered Mariana Crow (Corvus kubaryi), with notes on the predation of Coenobita hermit crabs. J. Ornithol. 161, 149–158 (2020).Article 

    Google Scholar 
    47.Dunn, E. K. Effect of age on the fishing ability of sandwich terns Sterna sandvicensis. Ibis 114, 360–366 (1972).Article 

    Google Scholar 
    48.Watson, M. J. & Hatch, J. J. Differences in foraging performance between juvenile and adult roseate terns at a pre-migratory staging area. Waterbirds 22, 463–465 (1999).Article 

    Google Scholar 
    49.AEC Limited. Ecological Monitoring and Adaptive Management Advice Services for Lok Ma Chau and West Rail Wetlands. Lok Ma Chau Habitat Creation and Management Plan (AEC Limited, 2019).
    Google Scholar 
    50.The Hong Kong Bird Watching Society. Hong Kong Fishpond Conservation Scheme Project. https://cms.hkbws.org.hk/cms/ (2020).51.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Edgar, R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    54.Andrews, S., Krueger, F. & Segonds-Pichon, A. FastQC a Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).55.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics (Oxford, England) 31, 3476–3482. https://doi.org/10.1093/bioinformatics/btv401 (2015).CAS 
    Article 

    Google Scholar 
    57.Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv https://doi.org/10.1101/081257 (2016).Article 

    Google Scholar 
    58.Edgar, R. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv https://doi.org/10.1101/074161 (2016).Article 

    Google Scholar 
    59.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Machida, R. J., Leray, M., Ho, S. L. & Knowlton, N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data 4, 170027. https://doi.org/10.1038/sdata.2017.27 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Sato, K., Miya, M., Fukunaga, T., Sado, T. & Iwasaki, W. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 35, 1553–1555 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596. https://doi.org/10.1093/nar/gks1219 (2013).CAS 
    Article 

    Google Scholar 
    63.Kahlke, T. & Ralph, P. J. BASTA—Taxonomic classification of sequences and sequence bins using last common ancestor estimations. Methods Ecol. Evol. 10, 100–103. https://doi.org/10.1111/2041-210X.13095 (2019).Article 

    Google Scholar 
    64.Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406. https://doi.org/10.1111/mec.14734 (2019).Article 
    PubMed 

    Google Scholar 
    65.Lahti, L. & Shetty, S. Microbiome R Package Version 1.6.0. http://microbiome.github.io (2012).66.Oksanen, J. et al. vegan: Community Ecology Package Version 2.5–6. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).67.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Martinez-Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison Using Adonis. R Package Version 0.3. https://github.com/pmartinezarbizu/pairwiseAdonis (2019).69.Steinberger, A. J. Asteinberger9/seq_scripts: Release v1. https://github.com/asteinberger9/seq_scripts (2018).70.ArcGIS. ArcGIS Version 10.7. https://desktop.arcgis.com/en/arcmap/ (2020). More

  • in

    A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States

    The surveyed, rainfed commercial soybean fields were spread across the U.S. north-central region (Supplementary Fig. S1 online) with a latitudinal gradient evident for maturity group (MG). The number of fields (n) was distributed evenly across the three years (2014: n = 812, 2015: n = 960, 2016: n = 966). Among the 2738 fields, 833 (or 30.4%) were sprayed with foliar fungicides. Out of the 833 fields sprayed with foliar fungicides, 623 (74.8%) had also been sprayed with foliar insecticides.A t-test estimate of the yield difference between all fields sprayed with foliar fungicides and those which were not was 0.46 t/ha (95% confidence interval [CI] of 0.39 to 0.52 t/ha). When t-tests were applied to fields within TEDs (the 12 TEDs with the most fields), half of the 95% CIs included zero, indicative of possibly no yield increase due to foliar fungicides over unsprayed fields in those TEDs (Supplementary Fig. S2 online). A linear mixed model with random slopes and intercepts for the fungicide effect within TEDs returned an estimated yield gain of 0.33 t/ha due to foliar fungicide use. A simpler model without random slopes for foliar fungicide was a worse fit to the data. Together these basic tests were indicative of heterogenous effects concerning foliar fungicides and yield gain, implying other global (regional) and local (field specific) conditions may be involved as factors.A tuned random forest (RF) model fitted to the entire dataset (all 2738 observations) overpredicted soybean yield at low actual yields, and underpredicted at the high-yield end (Supplementary Fig. S3 online). However, as 99% of the residual values were less than or equal to |0.25 t/ha| which corresponded to less than 7% of the average yield, we proceeded with the interpretation of the fit RF model. The mean predicted soybean yield (global average) was 3.79 t/ha (minimum = 1.13 t/ha, maximum = 6.02 t/ha, standard deviation = 0.81 t/ha, root mean squared error between the observed and predicted yields = 0.1 t/ha).At the global model level, location (latitude; a surrogate for other unmeasured variables) and sowing date (day of year from Jan 01) were the two variables most associated with yield (Fig. 1), consistent with the central importance of early planting to soybean yield5,13. Soil-related properties (pH and organic matter content of the topsoil) were also associated with yield (Fig. 1). Management-related variables such as foliar fungicide, insecticide and herbicide applications were of intermediate importance, and other management variables (row spacing, seed treatments, starter fertilizer) were on the lower end of the importance spectrum in predicting soybean yield (Fig. 1). Insecticide and fungicide seed treatments were poorly associated with soybean yield increases as has been previously shown8,40. The relatively lower importance of row spacing is consistent with previous analyses of this variable from soybean grower data6. The dataset we analyzed did not contain enough observations to include artificial drainage as a variable, which has been shown to influence soybean yield, presumably by allowing earlier sowing14.Figure 1Importance of management-based variables in a random forest model predicting soybean yield. Feature importance was measured as the ratio of model error, after permuting the values of a feature, to the original model error. A predictor was unimportant if the ratio was 1. Points are the medians of the ratio over all the permutations (repeated 20 times). The bars represent the range between the 5% and 95% quantiles. Sowing date was the number of days from Jan 01. Growing degree days and the aridity index were annualized categorical constructs used within the definition of technology extrapolation domains (TEDs). Foliar fungicide or insecticide use, seed treatment use, starter fertilizer use, lime and manure applications were all binary variables for the use (or not) of the practice. Iron deficiency was likewise binary (symptoms were observed or not). Topsoil texture, plant available water holding capacity in the rooting zone, row spacing, and herbicide program were categorical variables with five, seven, five, and four levels, respectively.Full size imageThe strongest pairwise interactions included that between sowing date and latitude. Delayed sowing at higher latitudes decreased yield by about 1 t/ha relative to the highest yielding fields sown early in the more southerly locations (Supplementary Fig. S4 online). Further examination of the interactions showed that the yield difference between sprayed and unsprayed fields increased with later sowing, indicative of a greater fungicide benefit in later-planted fields (Fig. 2). This would seem to conflict with the results of a recent meta-analysis in which soybean yields responded better when foliar fungicides were applied to early-planted fields27, but in that study there was also the confounding effect of higher-than-average rainfall between sowing and the R3 growth stage. With respect to latitude, the global difference in yield between sprayed and unsprayed fields decreased as one moved further north (Fig. 2), suggesting that foliar fungicides were of more benefit when applied to the more southerly located fields, which do tend to experience more or prolonged conditions conducive to foliar diseases than the northern fields22,24.Figure 2Two-way partial dependence plots of the global effects of (i) foliar fungicide use and sowing date (left panel), and (ii) foliar fungicide use and latitude (right panel) on soybean yield. The black plotted curves are the yield differences between fields that were sprayed or not sprayed with foliar fungicides. Smoothed versions of the curves are shown in blue.Full size imageFocusing on model interpretation at the local level, we examined the Shapley φ values (see the “Methods” section for more information) associated with foliar fungicide applications for different subsets (s) and cohorts (c) of fields within the data (see Supplementary Table S1 online). The 1st subset (s1) was comprised of the 20 highest-yielding fields among those sprayed with foliar fungicides (s1c1) and the 20 highest-yielding fields among those which were not sprayed (s1c2) in each of the 12 technology extrapolation domains (TEDs) in the data matrix with adequate numbers of fields for comparisons (see also Supplementary Table S2 online; Supplementary Fig. S5 online maps the field locations within these 12 TEDs). A TED is a region (not necessarily spatially contiguous) with similar biophysical properties41. Predicted yields within these cohorts were mainly above the global average of 3.79 t/ha, except in TED 602303 (Fig. 3), which corresponded to fields in North Dakota (Supplementary Fig. S5). In most cases Shapley φ values for foliar fungicide use exhibited a positive contribution to the yield above the global average. If these cohorts of fields represented high-yielding environments within each TED, then foliar fungicide sprays contributed positively up to 0.3 t/ha in the yield increase above the global average in s1c1. However, among high-yielding fields in s1c2, the penalty for not spraying was less than 0.1 t/ha. This finding supports the contention that fungicide sprays are most worthwhile in high-yielding environments. Supplementary Fig. S6 online complements Fig. 3 by summarizing the Shapley φ values in another visual format. The overall mean predicted yield for the unsprayed (s1c2) fields was slightly higher (by 0.1 t/ha) than that for the sprayed (s1c1) fields (Supplementary Fig. S6 online). This difference may have been driven by the higher variability in yields among the two cohorts (particularly for TEDs 403603, 602303, 403703, and 303603), or underlying differences in other management factors. Also, the number of sprayed fields in each of these four TEDs was at the target sampling boundary of 20 fields per TED (Supplementary Table S2 online).Figure 3Shapley phi values attributed to foliar fungicide use for two cohorts of fields within the 12 technology extrapolation domains (TEDs) with the most fields. Within each TED, the cohorts are the 20 highest-yielding fields among those sprayed with foliar fungicides and the 20 highest-yielding fields among those which were unsprayed.Full size imageThe Shapley φ values for fungicide use were well-separated among the four cohorts of fields of s2 (Fig. 4, Supplementary Table S1 online). The fields within s2 were selected across the entire dataset and not by TED membership. The lowest-yielding fields (s2c2 & s2c4) were all below the global yield average, whereas the converse was true of the highest-yielding fields (s2c1 & s2c3). Among the lowest-yielding fields, foliar fungicides were mainly associated with a positive, but less than 0.2 t/ha, effect on yield (s2c2), and other factors were responsible for dropping a field’s yield to below the global average. Amongst the highest-yielding fields (s2c1), foliar fungicides were associated with between 0.15 and 0.35 t/ha of the yield above the global average. These Shapley φ values for the contribution of foliar fungicides are consistent with estimates of the yield response to foliar fungicides from a meta-analytic perspective27. Given that the individual yields in s2c1 & s2c3 were 1 to 2 t/ha above the global average, other location-driven factors such as early sowing (Fig. 1) were the larger drivers of yield in these cases. However, there was only a negligible or small ( More

  • in

    Palaeoclimate has a major effect on the diversity of endemic species in the hotspot of mountain biodiversity in Tajikistan

    1.Lohr, T. A Short Story About the Geological History of the Pamir (University of Mining and Technology Freiberg, 2001).
    Google Scholar 
    2.Safarov, N. National Strategy and Action Plan on Conservation and Sustainable Use of Biodiversity (Governmental Working Group of the Republic of Tajikistan, 2003).
    Google Scholar 
    3.Nowak, A., Nowak, S. & Nobis, M. Distribution patterns, ecological characteristic and conservation status of endemic plants of Tadzhikistan: A global hotspot of diversity. J. Nat. Conserv. 19, 296–305 (2011).Article 

    Google Scholar 
    4.Nowak, A. et al. Red List of vascular plants of Tajikistan: The core area of the Mountains of Central Asia global biodiversity hotspot. Sci. Rep. 10, 6235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Bagheri, A., Maassoumi, A. A., Rahiminejad, M. R., Brassac, J. & Blattner, F. R. Molecular phylogeny and divergence times of Astragalus section Hymenostegis: An analysis of a rapidly diversifying species group in Fabaceae. Sci. Rep. 7, 14033 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Mittermeier, R. A. et al. Hotspots Revisited: Earth’s Biologically Richest and Most Threatened Terrestrial Ecoregions. (Conservation International, 2005).7.Abramowski, U. et al. Pleistocene glaciations of Central Asia: Results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quat. Sci. Rev. 25, 1080–1096 (2006).ADS 
    Article 

    Google Scholar 
    8.Cowling, R. M. & Lombard, A. T. Heterogeneity, speciation/extinction history and climate: Explaining regional plant diversity patterns in the Cape Floristic Region. Divers. Distrib. 8, 163–179 (2002).Article 

    Google Scholar 
    9.Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).Article 

    Google Scholar 
    10.López-Pujol, J., Zhang, F. M., Sun, H. Q., Ying, T. S. & Ge, S. Centres of plant endemism in China: Places for survival or for speciation?. J. Biogeogr. 38, 1267–1280 (2011).Article 

    Google Scholar 
    11.Chen, X.-Y. & He, F. Speciation and endemism under the model of island biogeography. Ecology 90, 39–45 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bruchmann, I. & Hobohm, C. Factors that create and increase endemism. In Endemism in Vascular Plants (ed. Hobohm, C.) 51–68 (Springer, 2014).Chapter 

    Google Scholar 
    13.Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. U. S. A. 97, 9115–9120 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).Article 

    Google Scholar 
    15.Mucina, L. & Wardell-Johnson, G. W. Landscape age and soil fertility, climatic stability, and fire regime predictability: Beyond the OCBIL framework. Plant Soil 341, 1–23 (2011).CAS 
    Article 

    Google Scholar 
    16.Tzedakis, P. C. Museums and cradles of Mediterranean biodiversity. J. Biogeogr. 36, 1033–1034 (2009).Article 

    Google Scholar 
    17.Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A. 104, 5925–5930 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Noroozi, J., Pauli, H., Grabherr, G. & Breckle, S. W. The subnival-nival vascular plant species of Iran: A unique high-mountain flora and its threat from climate warming. Biodivers. Conserv. 20, 1319–1338 (2011).Article 

    Google Scholar 
    19.Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. In Alpine Biodiversity in Europe (eds Nagy, L. et al.) 195–207 (Springer, 2003).Chapter 

    Google Scholar 
    20.Agakhanjanz, O. & Breckle, S. W. Origin and evolution of the mountain flora in middle asia and neighbouring mountain regions. In Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences Ecological Studies (Analysis and Synthesis) Vol. 113 (eds Chapin, F. S. & Körner, C.) 63–80 (Springer, 1995).
    Google Scholar 
    21.Noroozi, J., Akhani, H. & Willner, W. Phytosociological and ecological study of the high alpine vegetation of Tuchal mountains (Central Alborz, Iran). Phytocoenologia 40, 293–321 (2010).Article 

    Google Scholar 
    22.Goldblatt, P. & Manning, J. C. Plant Diversity of the Cape Region of Southern Africa. Ann. Mo. Bot. Gard. 89, 281–302 (2002).Article 

    Google Scholar 
    23.Bond, P. & Goldblatt, P. Plants of the Cape fora: a descriptive catalogue. J. S Afr. Bot. Suppl. 13, 1–455 (1984).
    Google Scholar 
    24.Panda, R. M., Behera, M. D., Roy, P. S. & Biradar, C. Energy determines broad pattern of plant distribution in Western Himalaya. Ecol. Evol. 7, 10850–10860 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Nowak, A., Nowak, S., Nobis, M. & Nobis, A. A report on the conservation status of segetal weeds in Tajikistan. Weed Res. 54, 635–648 (2014).Article 

    Google Scholar 
    26.Nobis, M., Gudkova, P. D., Nowak, A., Sawicki, J. & Nobis, A. A synopsis of the genus Stipa (Poaceae) in Middle Asia, including a key to species identyfication, an annoted checklist and phytogeographical analyses. Ann. Missouri Bot. Gard. 105, 1–63 (2020).Article 

    Google Scholar 
    27.Thompson, J. N. The Geographic Mosaic of coevolution (Chicago Univ Press, 2005).Book 

    Google Scholar 
    28.Thompson, J. N. Four central points about coevolution. Evol. Educ. Outreach 3, 7–13 (2010).Article 

    Google Scholar 
    29.Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Navarro-Fernández, C. M., Aroca, R. & Barea, J. M. Influence of arbuscular mycorrhizal fungi and water regime on the development of endemic Thymus species in dolomitic soils. Appl. Soil Ecol. 48, 31–37 (2011).Article 

    Google Scholar 
    31.Zubek, S., Nobis, M., Błaszkowski, J., Mleczko, P. & Nowak, A. Fungal root endophyte associations of plants endemic to the Pamir Alay Mountains of Central Asia. Symbiosis 54, 139–149 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Lambers, H., Chapin, F. S. III. & Pons, T. L. Plant Physiological Ecology (Springer, 2008).Book 

    Google Scholar 
    33.Lambers, H., Brundrett, M. C., Raven, J. A. & Hopper, S. D. Plant mineral nutrition in ancient landscapes: High plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334, 11–31 (2010).CAS 
    Article 

    Google Scholar 
    34.Hopper, S. D. OCBIL theory: Towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322, 49–86 (2009).CAS 
    Article 

    Google Scholar 
    35.Ellison, A. M. & Gotelli, N. J. Energetics and the evolution of carnivorous plants – Darwin’s ‘most wonderful plants in the world’. J. Exp. Bot. 60, 19–42 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Merckx, V., Bidartondo, M. I. & Hynson, N. A. Myco-heterotrophy: When fungi host plants. Ann. Bot. 104, 1255–1261 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Huang, B. H. et al. Differential genetic responses to the stress revealed the mutation-order adaptive divergence between two sympatric ginger species. BMC Genom. 19, 692 (2018).Article 
    CAS 

    Google Scholar 
    38.Turner, J. R. G., Gatehouse, C. M. & Core, C. A. Does solar energy control organic diversity? Butterflies moths and the British climate. Oikos 48, 195–205 (1987).Article 

    Google Scholar 
    39.Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).Article 

    Google Scholar 
    40.Makhmadaliev, B., Novikov, V., Kayumov, A., Karimov, U. & Perdomo, M. National Action Plan of the Republic of Tajikistan for Climate Change Mitigation. (Tajik Met Service, 2003).41.Nedzvedskiy, A. P. Geologicheskoe stroenye. In Atlas Tajikskoi SSR (eds Narzikulov, I. K. & Stanyukovich, K. W.) 14–15 (Akademia Nauk Tajikskoi SSR, 1968).
    Google Scholar 
    42.Latipova, W. A. Kolichestvo osadkov. In Atlas Tajikskoi SSR (eds Narzikulov, I. K. & Stanyukovich, K. W.) 68–69 (Akademia Nauk Tajikskoi SSR, 1968).
    Google Scholar 
    43.Narzikulov, I. K. & Stanyukovich, K. W. Atlas Tajikskoi SSR. (Akademia Nauk Tajikskoi SSR, 1968).44.Rivas-Martínez, S., Rivas-Sáenz, S. & Penas, Á. Worldwide bioclimatic classification system. Glob. Geobot. 1, 1–638 (2011).
    Google Scholar 
    45.Djamali, M., Brewer, S., Breckle, S. W. & Jackson, S. T. Climatic determinism in phytogeographic regionalization: A test from the Irano-Turanian region, SW and Central Asia. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 237–249 (2012).
    Google Scholar 
    46.Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. I, Paprotnikoobraznye – Zlaki. (Izdatelstvo Akademii Nauk SSSR, 1957).47.Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. II, Osokovye—Orkhidnye. (Izdatelstvo Akademii Nauk SSSR, 1963).48.Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. III, Opekhovye—Gvozdichnye. (Izdatelstvo Nauka, 1968).49.Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. IV, Rogolistnikovye—Rozotsvetnye. (Izdatelstvo Nauka, 1975).50.Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. V, Krestotsvetne—Bobovye. (Izdatelstvo Nauka, 1978).51.Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. VI, Bobovye (rod Astragal). (Izdatelstvo Nauka, 1981).52.Kochkareva, T. F. Flora Tadzhikskoi SSR. T. VIII. Kermekovye—Podorozhnikovye. (Izdatelstvo Nauka, 1986).53.Kinzikaeva, G. K. Flora Tadzhikskoi SSR. T. IX. Marenovye – Slozhnotsvetnye. (Izdatelstvo Nauka, 1988).54.Rasulova, M. R. Flora Tadzhikskoi SSR. T. X, Slozhnotsvetnye. (Izdatelstvo Nauka, 1991).55.Grubov, V. I. Schlussbetrachtung zum Florenwerk ‘Rastenija Central’noj Azii’ [Die Pflanzen Zentralasiens] und die Begründung der Eigenständigkeit der mongolischen Flora. Feddes Repert. 121, 7–13 (2010).Article 

    Google Scholar 
    56.Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org). (2008).57.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Zuur, A. F., Ieno, E. N. & Erik, H. W. G. Meesters A Beginner’s Guide to R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    59.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 027–046 (2013).Article 

    Google Scholar 
    60.Wood, S. N. Generalized Additive Models An Introduction with R (Chapman and Hall/CRC, 2017).MATH 
    Book 

    Google Scholar 
    61.Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees. R package version 4.1-13 (2018).62.De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).Article 

    Google Scholar  More