More stories

  • in

    Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish

    1.Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).PubMed 
    Article 

    Google Scholar 
    2.Grandjean, P. & Landrigan, P. J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13, 330–338 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Boix, J., Cauli, O. & Felipo, V. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats mechanisms involved. Neuroscience 167, 994–1003 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Boucher, O., Muckle, G. & Bastien, C. H. Prenatal exposure to polychlorinated biphenyls: a neuropsychologic analysis. Environ. Health Perspect. 117, 7–16 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Ennaceur, S., Gandoura, N. & Driss, M. R. Distribution of polychlorinated biphenyls and organochlorine pesticides in human breast milk from various locations in Tunisia: Levels of contamination, influencing factors, and infant risk assessment. Environ. Res. 108, 86–93 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Lancz, K. et al. Duration of breastfeeding and serum PCB 153 concentrations in children. Environ. Res. 136, 35–39 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Herbstman, J. B. et al. Determinants of prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in an urban population. Environ. Health Perspect. 115, 1794–1800 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Lancz, K. et al. Ratio of cord to maternal serum PCB concentrations in relation to their congener-specific physicochemical properties. Int J. Hyg. Env. Health 218, 91–98 (2015).CAS 
    Article 

    Google Scholar 
    9.Bergonzi, R. et al. Distribution of persistent organochlorine pollutants in maternal and foetal tissues: data from an Italian polluted urban area. Chemosphere 76, 747–754 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Patel, J. F., Hartman, T. J., Sjodin, A., Northstone, K. & Taylor, E. V. Prenatal exposure to polychlorinated biphenyls and fetal growth in British girls. Environ. Int. 116, 116–121 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Rice, D. & Barone, S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 108, 511–533 (2000).PubMed 
    PubMed Central 

    Google Scholar 
    12.Trnovec, T. et al. Serum PCB concentrations and cochlear function in 12-year-old children. Environ. Sci. Technol. 44, 2884–2889 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Jusko, T. A. et al. Prenatal and postnatal serum PCB concentrations and cochlear function in children at 45 months of age. Environ. Health Perspect. 122, 1246–1252 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Ribas-Fitó, N., Sala, M., Kogevinas, M. & Sunyer, J. Polychlorinated biphenyls (PCBs) and neurological development in children: A systematic review. J. Epidemiol. Community Health 55, 537–546 (2001).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Walkowiak, J. et al. Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood. Lancet 358, 1602–1607 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Chen, Y.-C. J., Guo, Y.-L., Hsu, C.-C. & Rogan, W. J. Cognitive development of Yu-Cheng (‘Oil Disease’) children prenatally exposed to heat-degraded PCBs. JAMA 268, 3213 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Berger, D. F. et al. Hyperactivity and impulsiveness in rats fed diets supplemented with either Aroclor 1248 or PCB-contaminated St. Lawrence river fish. Behav. Brain Res. 126, 1–11 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Johansen, E. B. et al. Behavioral changes following PCB 153 exposure in the spontaneously hypertensive rat—an animal model of attention-deficit/hyperactivity disorder. Behav. Brain Funct. 10, 1–19 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Crofton, K. M., Ding, D.-L., Padich, R., Taylor, M. & Henderson, D. Hearing loss following exposure during development to polychlorinated biphenyls: a cochlear site of action. Hear. Res. 144, 196–204 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Goldey, E. S., Kehn, L. S., Lau, C., Rehnberg, G. L. & Crofton, K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol. Appl. Pharmacol. 135, 77–88 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lilienthal, H., Korkalainen, M., Andersson, P. L. & Viluksela, M. Developmental exposure to purity-controlled polychlorinated biphenyl congeners (PCB74 and PCB95) in rats: Effects on brainstem auditory evoked potentials and catalepsy. Toxicology 327, 22–31 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Lilienthal, H., Heikkinen, P., Andersson, P. L., van der Ven, L. T. M. & Viluksela, M. Auditory effects of developmental exposure to purity-controlled polychlorinated biphenyls (PCB52 and PCB180) in rats. Toxicol. Sci. 122, 100–111 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Poon, E., Bandara, S. B., Allen, J. B., Sadowski, R. N. & Schantz, S. L. Developmental PCB exposure increases susceptibility to audiogenic seizures in adulthood. Neurotoxicology 46, 117–124 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A. V. Zebrafish models for translational neuroscience research: From tank to bedside. Trends Neurosci. 37, 264–278 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Fonnum, F. & Mariussen, E. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J. Neurochem. 111, 1327–1347 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dervola, K. S. N., Johansen, E. B., Walaas, S. I. & Fonnum, F. Gender-dependent and genotype-sensitive monoaminergic changes induced by polychlorinated biphenyl 153 in the rat brain. Neurotoxicology 50, 38–45 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Campagna, R. et al. Cerebellum Proteomics addressing the cognitive deficit of rats perinatally exposed to the food-relevant polychlorinated biphenyl 138. Toxicol. Sci. 123, 170–179 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Enayah, S. H., Vanle, B. C., Fuortes, L. J., Doorn, J. A. & Ludewig, G. PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 394, 93–101 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Langeveld, W. T., Meijer, M. & Westerink, R. H. S. Differential effects of 20 non-dioxin-like PCBs on basal and depolarization-evoked intracellular calcium levels in PC12 cells. Toxicol. Sci. 126, 487–496 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Keil, K. P., Sethi, S. & Lein, P. J. Sex-dependent effects of 2,2′,3,5′,6-pentachlorobiphenyl on dendritic arborization of primary mouse neurons. Toxicol. Sci. 168, 95–109 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Pruitt, D. L., Meserve, L. A. & Bingman, V. P. Reduced growth of intra- and infra-pyramidal mossy fibers is produced by continuous exposure to polychlorinated biphenyl. Toxicology 138, 11–17 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Yang, D. et al. Developmental exposure to polychlorinated biphenyls interferes with experience-dependent dendritic plasticity and ryanodine receptor expression in weanling rats. Environ. Health Perspect. 117, 426–435 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lein, P. J. et al. Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls. Environ. Health Perspect. 115, 556–563 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Tropepe, V. & Sive, H. L. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes. Brain Behav. 2, 268–281 (2003).CAS 

    Google Scholar 
    35.Maximino, C. & Herculano, A. M. A review of monoaminergic neuropsychopharmacology in zebrafish. Zebrafish 7, 359–378 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Wolman, M. A. A. et al. A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron 85, 1200–1211 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Meserve Id, J. H. et al. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet. 17, e1008943 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Voesenek, C. J., Muijres, F. T. & Van Leeuwen, J. L. Biomechanics of swimming in developing larval fish. J. Exp. Biol. 221, jeb149583 (2018).40.Roberts, A. Early functional organization of spinal neurons in developing lower vertebrates. Brain Res. Bull. 53, 585–593 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Liu, Y. C. & Hale, M. E. Local spinal cord circuits and bilateral mauthner cell activity function together to drive alternative startle behaviors. Curr. Biol. 27, 697–704 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Burgess, H. A. & Granato, M. Sensorimotor gating in larval zebrafish. J. Neurosci. 27, 4984–4994 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Troconis, E. L. et al. Intensity-dependent timing and precision of startle response latency in larval zebrafish. J. Physiol. 595, 265–282 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Smith, N. L. & Kimelman, D. Establishing the body plan: The first 24 h of zebrafish development. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications, https://doi.org/10.1016/B978-0-12-812431-4.00007-5 (Elsevier, 2019).45.Meyers, J. R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Tabor, K. M. et al. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J. Neurophysiol. 112, 834–844 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Jain, R. A. et al. A forward genetic screen in zebrafish identifies the G-protein-coupled receptor CaSR as a modulator of sensorimotor decision making. Curr. Biol. 28, 1357–1369.e5 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Mariussen, E. & Fonnum, F. The effect of polychlorinated biphenyls on the high affinity uptake of the neurotransmitters, dopamine, serotonin, glutamate and GABA, into rat brain synaptosomes. Toxicology 159, 11–21 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Wigestrand, M. B., Stenberg, M., Walaas, S. I., Fonnum, F. & Andersson, P. L. Non-dioxin-like PCBs inhibit [3H]WIN-35,428 binding to the dopamine transporter: a structure–activity relationship study. Neurotoxicology 39, 18–24 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Oikonomou, G. et al. The serotonergic raphe promote sleep in zebrafish and mice. Neuron 103, 686–701.e8 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fosque, B. F. et al. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Klocke, C. & Lein, P. J. Evidence implicating non-dioxin-like congeners as the key mediators of polychlorinated biphenyl (PCB) developmental neurotoxicity. Int. J. Mol. Sci. 21, 1013 (2020).53.Puel JL, Pujol R, Ladrech S, Eybalin M. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid electrophysiological and neurotoxic effects in the guinea-pig cochlea. Neuroscience. Nat. Rev. Neurosci. 45, 63–72. https://doi.org/10.1016/0306-4522(91)90103-u (1991).CAS 
    Article 

    Google Scholar 
    54.Sebe JY, et al. Ca2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. J Neurosci. 37, 6162–6175. https://doi.org/10.1523/JNEUROSCI.3644-16.2017 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Coleman, M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889–898 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Lacoste, A. M. B. et al. A convergent and essential interneuron pathway for mauthner-cell-mediated escapes. Curr. Biol. 25, 1526–1534 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Kang, K. S., Wilson, M. R., Hayashi, T., Chang, C. C. & Trosko, J. E. Inhibition of gap junctional intercellular communication in normal human breast epithelial cells after treatment with pesticides, PCBs, and PBBs, alone or in mixtures. Environ. Health Perspect. 104, 192–200 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bager, Y., Lindebro, M. C., Martel, P., Chaumontet, C. & Wärngård, L. Altered function, localization and phosphorylation of gap junctions in rat liver epithelial, IAR 20, cells after treatment with PCBs or TCDD. Environ. Toxicol. Pharmacol. 3, 257–266 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Machala, M. et al. Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: Inhibitory potencies and screening for potential mode(s) of action. Toxicol. Sci. 76, 187–195 (2003).Article 
    CAS 

    Google Scholar 
    60.Nyffeler, J. et al. A structure–activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Arch. Toxicol. 92, 1225–1247 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Kang, K.-S., Park, J.-E., Ryu, D.-Y. & Lee, Y.-S. Effects and neuro-toxic mechanisms of 2,2’,4,4’,5,5’-hexachlorobiphenyl and endosulfan in neuronal stem cells. J. Vet. Med. Sci. 63, 1183–1190 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Aluru, N., Krick, K. S., Mcdonald, A. M. & Karchner, S. I. Developmental exposure to PCB153 (2,2′,4,4′,5,5′-hexachlorobiphenyl) alters circadian rhythms and the expression of clock and metabolic genes. Toxicol. Sci. 173, 41–52 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.GEO Accession viewer. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2450663 (2017).64.Serrano-Velez, J. L. et al. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front. Neural Circuits 8, 66 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Tanaka, Y. et al. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. Chemosphere 193, 1207–1215 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Rungta, R. L. et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 161, 610–621 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Cesetti, T., Ciccolini, F. & Li, Y. GABA not only a neurotransmitter: osmotic regulation by GABA AR signaling. Front Cell Neurosci. 6, 3 (2012).68.Fernandes, E. C. A. et al. Potentiation of the human GABAA receptor as a novel mode of action of lower-chlorinated non-dioxin-like PCBs. Environ. Sci. Technol. 44, 2864–2869 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Magnusson, O., Mohringe, B., Thorell, G. & Lake-Bakaar, D. M. Effects of the dopamine D2 selective receptor antagonist remoxipride on dopamine turnover in the rat brain after acute and repeated administration. Pharmacol. Toxicol. 60, 368–373 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Seegal, R. F., Bush, B. & Shain, W. Lightly chlorinated ortho-substituted PCB congeners decrease dopamine in nonhuman primate brain and in tissue culture. Toxicol. Appl. Pharmacol. 106, 136–144 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Toro, C. et al. Dopamine modulates the activity of sensory hair cells. J. Neurosci. 35, 16494–16503 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Gafni, J., Wong, P. W. & Pessah, I. N. Non-coplanar 2,2’,3,5’,6-pentachlorobiphenyl (PCB 95) amplifies ionotropic glutamate receptor signaling in embryonic cerebellar granule neurons by a mechanism involving ryanodine receptors. Toxicol. Sci. 77, 72–82 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Ta, T. A., Feng, W., Molinski, T. F. & Pessah, I. N. Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors. Mol. Pharmacol. 69, 532–538 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Brunelli, L. et al. Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls. J. Proteomics. 75, 2417–2430 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958–969 (2018).Article 

    Google Scholar 
    76.Lai, Z. et al. Residual distribution and risk assessment of polychlorinated biphenyls in surface sediments of the Pearl River Delta, South China. Bull. Environ. Contam. Toxicol. 95, 37–44 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Gräns, J. et al. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor. Aquat. Toxicol. 159, 198–207 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    78.Hudspeth, A. The cellular basis of hearing: the biophysics of hair cells. Science 230, 745–752 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Nakayama, H. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Pujol-Martí, J. & López-Schier, H. Developmental and architectural principles of the lateral-line neural map. Front. Neural Circuits 7, 47 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Panlilio, J. M., Jones, I. T., Salanga, M. C., Aluru, N. & Hahn, M. E. Developmental exposure to domoic acid disrupts startle response behavior and circuitry in zebrafish. Toxicol. Sci. 182, 310–326 (2021).PubMed 
    Article 

    Google Scholar 
    82.Park, H.-C., Shin, J., Roberts, R. K. & Appel, B. An olig2 reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. Dev. Dyn. 236, 3402–3407 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Shin, J., Park, H.-C., Topczewska, J. M., Mawdsley, D. J. & Appel, B. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci. 25, 7–14 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Takada, N., Kucenas, S. & Appel, B. Sox10 is necessary for oligodendrocyte survival following axon wrapping. Glia 58, 996–1006 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    85.Almeida, R. G., Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138, 4443–4450 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Kimmel, C. B. Patterning the brain of the zebrafish embryo. Annu. Rev. Neurosci. 16, 707–732 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Ranasinghe, P. et al. Embryonic exposure to 2,2′,3,5′,6-pentachlorobiphenyl (PCB-95) causes developmental malformations in zebrafish. Environ. Toxicol. Chem. 39, 162–170 (2019).Article 
    CAS 

    Google Scholar 
    88.Jönsson, M. E., Kubota, A., Timme-Laragy, A. R., Woodin, B. & Stegeman, J. J. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol. Appl. Pharmacol. 265, 166–174 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Panlilio, J. M., Aluru, N. & Hahn, M. E. Developmental neurotoxicity of the harmful algal bloom toxin domoic acid: Cellular and molecular mechanisms underlying altered behavior in the zebrafish model. Environ. Health Perspect. 128, 117002 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Inoue, D. & Wittbrodt, J. One for all-a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 6, 1–7 (2011).Article 
    CAS 

    Google Scholar 
    91.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    Article 

    Google Scholar 
    92.Edwards KA, Hoppa MB, Bosco G. The Photoconvertible Fluorescent Probe, CaMPARI, Labels Active Neurons in Freely-Moving Intact Adult Fruit Flies. Front Neural Circuits. 14, 22 https://doi.org/10.3389/fncir.2020.00022. (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Zhao, Y. et al. Rare earth elements lanthanum and praseodymium adversely affect neural and cardiovascular development in zebrafish (Danio rerio). Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c06632 (2020).94.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar  More

  • in

    Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494 years

    1.Vaganov, E. A. et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400(6740), 149–151. https://doi.org/10.1038/22087 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Impacts of a Warming Arctic—Arctic Climate Impact Assessment (ACIA). 144 (Cambridge University Press, 2004).3.Apps, M. J., Shvidenko, A. Z. & Vaganov, E. A. Boreal forests and the environment: A mitigation and adaptation strategies for global change. BFE. 11(1), 1–4 (2006).
    Google Scholar 
    4.Fedotov, A. P. et al. A reconstruction of the thawing of the permafrost during the last 170 years on the Taimyr Peninsula (East Siberia, Russia). Glob. Planet. Change 98–99, 139–152 (2002).
    Google Scholar 
    5.Kharuk, V. I., Dvinskaya, M. L. & Ranson, J. Fire return intervals within the northern boundary of the larch forest in Central Siberia. Int. J. Wildland Fire 22(2), 207–211. https://doi.org/10.1071/WF11181 (2011).Article 

    Google Scholar 
    6.Knorre, A. A., Kirdyanov, A. V., Prokushkin, A. S., Krusic, P. J. & Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 652, 314–319 (2019).ADS 
    Article 

    Google Scholar 
    7.Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6(2), eaax330. https://doi.org/10.1126/sciadv.aax3308 (2020).Article 

    Google Scholar 
    8.Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the permafrost zone of Siberia. Environ. Res. Lett. 15, 034061. https://doi.org/10.1088/1748-9326/ab7469 (2020).ADS 
    Article 

    Google Scholar 
    9.Fritts, H. C. Tree-Rings and Climate 567 (Academic Press, 1976).
    Google Scholar 
    10.Schweingruber, F. H. Tree Rings and Environment Dendroecology (Paul Haupt Publ, 1996).
    Google Scholar 
    11.Hughes, M. K., Vaganov, E. A., Shiyatov, S. G., Touchan, R. & Funkhouser, G. Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene 9(5), 603–608 (1999).Article 

    Google Scholar 
    12.Briffa, K. R. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quat. Sci. Rev. 19, 87–105 (2000).ADS 
    Article 

    Google Scholar 
    13.Naurzbaev, M., Vaganov, E. A., Sidorova, O. V. & Schweingruber, F. H. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12(6), 727–736 (2002).ADS 
    Article 

    Google Scholar 
    14.Grudd, H. Torneträsk tree-ring width and density AD 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 31, 843–857 (2008).Article 

    Google Scholar 
    15.Sidorova, O. V., Siegwolf, R., Saurer, M., Naurzbaev, M. M. & Vaganov, E. A. Isotopic composition (δ13C, δ18O) in Siberian tree-ring chronology. Geophys. Res. Biogeosci. 113, G02019. https://doi.org/10.1029/2007JG000473 (2008).CAS 
    Article 

    Google Scholar 
    16.Sidorova, O. V. et al. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Change Biol. 16, 1003–1018. https://doi.org/10.1111/j.1365-2486.2009.02008.x (2010).ADS 
    Article 

    Google Scholar 
    17.Sidorova, O. V. et al. Is the 20th century warming unprecedented in the Siberian north?. Quat. Sci. Rev. 73, 93–102. https://doi.org/10.1016/j.quascirev.2013.05.015 (2013).ADS 
    Article 

    Google Scholar 
    18.Kirdyanov, A. V., Treydte, K. S., Nikolaev, A., Helle, G. & Schleser, G. H. Climate signals in tree-ring width, density an δ13C from larches in Eastern Siberia (Russia). Chem. Geol. 252, 31–41. https://doi.org/10.1016/j.chemgeo.2008.01.023 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Hilasvuori, E., Berninger, F., Sonninen, E., Tuomenvirta, H. & Jungner, H. Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J. Quat. Sci. 24(5), 469–480 (2009).Article 

    Google Scholar 
    20.Loader, N. J., Young, G. H. F., Grudd, H. & McCarroll, D. Stable carbon isotopes from Torneträsk, norther Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 62, 97–113 (2013).ADS 
    Article 

    Google Scholar 
    21.Churakova (Sidorova), O. V. et al. Recent atmospheric drying in Siberia is not unprecedented over the last 1500 years. Sci. Rep. 10, 15024 (2020).CAS 
    Article 

    Google Scholar 
    22.Young, G. H. F. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim. Dyn. 39, 495–507. https://doi.org/10.1007/s00382-011-1246-3 (2012).Article 

    Google Scholar 
    23.Saurer, M., Schweingruber, F., Vaganov, E. A., Shiyatov, S. G. & Siegwolf, R. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys. Res. Lett. https://doi.org/10.1029/2001GL013739 (2002).Article 

    Google Scholar 
    24.Saurer, M. et al. Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J. Geophys. Res. 117, D05118. https://doi.org/10.1029/2011JD016861 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Butzin, M. et al. Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmos. Chem. Phys. 14, 5853–5869 (2014).ADS 
    Article 

    Google Scholar 
    27.Gagen, M. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9(8), 630–635 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Thompson, D. W. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).ADS 
    Article 

    Google Scholar 
    29.Wang, J. et al. Impacts of the Siberian High and Arctic Oscillation on the East Asia winter monsoon: Driving down welling in the western Bering Sea Aquatic Ecosystem. Health Manag. 15(1), 20–30. https://doi.org/10.1080/14634988.2012.648860 (2012).Article 

    Google Scholar 
    30.Buermann, W. et al. Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El-Nino-Southern Oscillation and the Arctic Oscillation. J. Geophys. Res. 108(D13), 4396. https://doi.org/10.1029/2002JD002630 (2003).Article 

    Google Scholar 
    31.Baltzer, H. et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022526 (2005).Article 

    Google Scholar 
    32.Zhang, J. et al. Analysis of the positive Arctic Oscillation index event and its influence in the winter and spring of 2019/2020. Front. Earth Sci. https://doi.org/10.3389/feart.2020.580601 (2021).Article 

    Google Scholar 
    33.Zielinski, G. A. Use of paleo-records in determining variability within the volcanism- climate system. Quat. Sci. Rev. 19, 417–438 (2000).ADS 
    Article 

    Google Scholar 
    34.Panuyshkina, I. P. & Arbatskaya, M. K. Dendrochronological approach to study flammability of forests in Evenkia (Siberia). Sib. Ecol. J. 2, 167–173 (1999).
    Google Scholar 
    35.Valendik, E. N., Kisilyakhov, E. K., Rizova, V. A., Ponamarev, E. I. & Danilova, I. V. Large fires in taiga landscape of Central Siberia. Geogr. Nat. Resour. 14(1), 52–59 (2014).
    Google Scholar 
    36.Naulier, M. et al. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Clim. Past. 11, 1153–1164. https://doi.org/10.5194/cp-11-1153-2015 (2015).Article 

    Google Scholar 
    37.Churakova (Sidorova), O. V. et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. https://doi.org/10.5194/cp-2018-70.y (2019).Article 

    Google Scholar 
    38.Furyaev, V. V., Vaganov, E. A., Tchebakova, N. M. & Valendik, E. N. Effects of fire and climate on successions and structural changes in the Siberian boreal forest. Eurasian J. For. Res. 2, 1–15 (2001).
    Google Scholar 
    39.Keller, K. M. et al. 20th-century changes in carbon isotopes and water-use efficiency: Tree-ring based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 14, 2641–2673 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    40.D’Arrigo, R. D., Cook, E. R., Mann, M. E. & Jacoby, G. C. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650. Geophys. Res. Lett. 30(11), 1549. https://doi.org/10.1029/2003GL017250 (2003).ADS 
    Article 

    Google Scholar 
    41.Kress, A. et al. Swiss tree rings reveal warm and wet summers during medieval times. Geophys. Res. Lett. 41, 1732–1737. https://doi.org/10.1002/2013GL059081 (2014).ADS 
    Article 

    Google Scholar 
    42.Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196. https://doi.org/10.1038/s41561-021-00698-0 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Kodera, K. & Kuroda, Y. Regional and hemispheric circulation patterns in the northern hemisphere winter, or the NAO and AO. Geophys. Res. Lett. 30(18), 2003. https://doi.org/10.1029/2003GL017290 (1934).Article 

    Google Scholar 
    44.Abaimov, A. P., Bondarev, A. I., Ziryanova, O. A. & Shitova, S. A. Forest Krasnoyarsk Polar (Nauka, 1997).
    Google Scholar 
    45.Ary-Mas Natural Conditions, Flora and Vegetation. (eds. Norin, B.N.) (Nauka, Leningrad, 1978).46.Ogi, M., Yamazaki, K. & Tachibana, Y. The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res. 109, D20114 (2004).ADS 
    Article 

    Google Scholar 
    47.Gagen, M. H., McCarroll, D., Loader, N. J., Robertson, I. & Jalkanen, R. Exorcising the ‘segment length curse’ summer temperature reconstruction since AD 1640 using non de-trend stable carbon isotope ratios from line trees in northern Finland. Holocene 17, 433–444 (2007).ADS 
    Article 

    Google Scholar 
    48.Boettger, T. et al. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: An inter-laboratory comparison. Anal. Chem. 15, 4603–4612 (2007).Article 

    Google Scholar 
    49.Weigt, R. B. et al. Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectrom. 29(29), 2233–2244. https://doi.org/10.1002/rcm.7388 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B51, 170–193 (1999).ADS 
    Article 

    Google Scholar  More

  • in

    Novel attempt at discrimination of a bullet-shaped siphonophore (Family Diphyidae) using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF MS)

    1.Pugh, P. The vertical distribution of the siphonophores collected during the SOND cruise, 1965. J. Mar. Biol. Assoc. U.K. 54, 25–90 (1974).Article 

    Google Scholar 
    2.Grossmann, M. M., Collins, A. G. & Lindsay, D. J. Description of the eudoxid stages of Lensia havock and Lensia leloupi (Cnidaria: Siphonophora: Calycophorae), with a review of all known Lensia eudoxid bracts. Syst. Biodivers. 12, 163–180 (2014).Article 

    Google Scholar 
    3.Dunn, C. W. & Wagner, G. P. The evolution of colony-level development in the Siphonophora (Cnidaria: Hydrozoa). Dev. Genes. Evol. 216, 743–754 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Clark, A. E., Kaleta, E. J., Arora, A. & Wolk, D. M. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26, 547–603 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Dvorak, V. et al. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit. Vectors 7, 1–7 (2014).Article 

    Google Scholar 
    7.Rossel, S. & Arbizu, P. M. Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Sci. Rep. 9, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    8.Feltens, R., Görner, R., Kalkhof, S., Gröger-Arndt, H. & von Bergen, M. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol. Biol. 10, 1–15 (2010).Article 
    CAS 

    Google Scholar 
    9.Mazzeo, M. F. et al. Fish authentication by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 56, 11071–11076 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kaufmann, C., Schaffner, F., Ziegler, D., Pflueger, V. & Mathis, A. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139, 248–258 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Laakmann, S. et al. Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol. Ecol. Resour. 13, 862–876 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Lassen, S., Wiebring, A., Helmholz, H., Ruhnau, C. & Prange, A. Isolation of a Nav channel blocking polypeptide from Cyanea capillata medusae–a neurotoxin contained in fishing tentacle isorhizas. Toxicon 59, 610–616 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Lazcano-Pérez, F., Arellano, R. O., Garay, E., Arreguín-Espinosa, R. & Sánchez-Rodríguez, J. Electrophysiological activity of a neurotoxic fraction from the venom of box jellyfish Carybdea marsupialis. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 191, 177–182 (2017).
    Google Scholar 
    14.Helmholz, H., Naatz, S., Lassen, S. & Prange, A. Isolation of a cytotoxic glycoprotein from the Scyphozoa Cyanea lamarckii by lectin-affinity chromatography and characterization of molecule interactions by surface plasmon resonance. J. Chromatogr. B 871, 60–66 (2008).CAS 
    Article 

    Google Scholar 
    15.Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    17.Park, N. & Lee, W. Four new records of family Diphyidae (Hydrozoa: Siphonophorae) in Korean waters. J. Spec. Res. 9, 131–146 (2020).
    Google Scholar 
    18.Karger, A., Bettin, B., Gethmann, J. M. & Klaus, C. Whole animal matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of ticks–are spectra of Ixodes ricinus nymphs influenced by environmental, spatial, and temporal factors?. PLoS ONE 14, e0210590 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Tayri-Wilk, T. et al. Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    20.Rossel, S. & Martínez Arbizu, P. Effects of sample fixation on specimen identification in biodiversity assemblies based on proteomic data (MALDI-TOF). Fron. Mar. Sci. 5, 1–13 (2018).Article 

    Google Scholar 
    21.Zheng, L., He, J., Lin, Y., Cao, W. & Zhang, W. 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Oceanol. Sin. 33, 55–76 (2014).Article 
    CAS 

    Google Scholar 
    22.Yeom, J., Park, N., Jeong, R. & Lee, W. Integrative description of cryptic Tigriopus species from Korea using MALDI-TOF MS and DNA barcoding. Front. Mar. Sci. 8, 495 (2021).Article 

    Google Scholar 
    23.Peter, S. Molecular characterization and phylogenetic analysis of Diphyes dispar (Siphonophora: Diphyidae) from the Laccadive Sea, off the south-west coast of Arabian Sea, Indian Ocean. Int. J. Fish Aquat. Stud. 4, 30–35 (2016).
    Google Scholar 
    24.Dunn, C. W., Pugh, P. R. & Haddock, S. H. Molecular phylogenetics of the Siphonophora (Cnidaria), with implications for the evolution of functional specialization. Syst. Biol. 54, 916–935 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Munro, C. et al. Improved phylogenetic resolution within Siphonophora (Cnidaria) with implications for trait evolution. Mol. Phylogenet. Evol. 127, 823–833 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Totton, A. K. Siphonophora of the Indian Ocean together with systematic and biological notes on related specimens from other oceans. Disc Rep 27, 1–162 (1954).
    Google Scholar 
    27.Totton, A. K., Bargmann, H. E. & British Museum (Natural History). A synopsis of the Siphonophora. (British Museum (Natural History), 1965).28.Mapstone, G. M. Siphonophora (Cnidaria, Hydrozoa) of Canadian Pacific waters. (NRC Research Press, 2009).29.Nishiyama, E. Y., Araujo, E. M. & Oliveira, O. M. Species of Lensia (Cnidaria: Hydrozoa: Siphonophorae) from southeastern Brazilian waters. Zoologia (Curitiba) 33, 2337 (2016).Article 

    Google Scholar 
    30.MALDIquantForeign: Import/Export routines for MALDIquant (2015).31.Gibb, S. & Strimmer, K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28, 2270–2271 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Palarea-Albaladejo, J., Mclean, K., Wright, F. & Smith, D. G. MALDIrppa: quality control and robust analysis for mass spectrometry data. Bioinformatics 34, 522–523 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gibb, S. & Strimmer, K. Species Identification using MALDIquant manual. http://www.strimmerlab.org/software/maldiquant/. (2015).34.Ahdesmäki, M. & Strimmer, K. Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. Ann. Appl. Stat. 4, 503–519 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    35.vegan: Community Ecology Package. R package version 2.5-2. 2018 (2018).36.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Schuchert, P. DNA barcoding of some Pandeidae species (Cnidaria, Hydrozoa, Anthoathecata). Rev. Suisse Zool. 125, 101–127 (2018).
    Google Scholar 
    38.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Collins, A. G. Towards understanding the phylogenetic history of Hydrozoa: hypothesis testing with 18S gene sequence data. Scientia Marina (2000).40.Strychar, K. B., Hamilton, L. C., Kenchington, E. L. & Scott, D. B. Cold-water Corals and Ecosystems 679–690 (Springer, Berlin, 2005).Book 

    Google Scholar 
    41.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Guindon, S. & Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    48.Yamaoka, K., Nakagawa, T. & Uno, T. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 6, 165–175 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    50.Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Young, N. D. & Healy, J. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinform. 4, 6 (2003).Article 

    Google Scholar 
    52.Swofford, D. L. & Sullivan, J. Phylogeny inference based on parsimony and other methods using PAUP*. Phylogenet. Handb. Pract. Approach DNA and Protein Phylogeny 7, 160–206 (2003).
    Google Scholar 
    53.Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Long-term trends in the body condition of parents and offspring of Tengmalm’s owls under fluctuating food conditions and climate change

    1.Brommer, J. E., Pietiäinen, H. & Kolunen, H. Reproduction and survival in a variable environment: Ural owls (Strix uralensis) and the three-year vole cycle. Auk 119, 544–550. https://doi.org/10.1642/0004-8038(2002)119[0544:rasiav]2.0.co;2 (2002).Article 

    Google Scholar 
    2.Begon, M., Townsend, C. R. & Harper, J. L. Ecology, Individuals, Populations and Communities 4th edn. (Blackwell, 2006).
    Google Scholar 
    3.Chang, A. M. & Wiebe, K. L. Body condition in snowy owls wintering on the prairies is greater in females and older individuals and may contribute to sex-biased mortality. Auk 133, 738–746. https://doi.org/10.1642/auk-16-60.1 (2016).Article 

    Google Scholar 
    4.McLean, N., van der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401. https://doi.org/10.1371/journal.pone.0192401 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.McLean, N. M., van der Jeugd, H. P., van Turnhout, C. A. M., Lefcheck, J. S. & van de Pol, M. Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos 129, 714–730. https://doi.org/10.1111/oik.06802 (2020).Article 

    Google Scholar 
    6.Aubry, L. M. et al. Climate change, phenology, and habitat degradation: Drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 19, 149–160. https://doi.org/10.1111/gcb.12013 (2013).ADS 
    Article 

    Google Scholar 
    7.Gardner, J. L., Amano, T., Sutherland, W. J., Clayton, M. & Peters, A. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology 97, 786–795. https://doi.org/10.1890/15-0642.1 (2016).Article 
    PubMed 

    Google Scholar 
    8.Newton, I. Population Limitation in Birds (Academic Press, 1998).
    Google Scholar 
    9.Dunn, P. O. & Møller, A. P. Effects of Climate Change on Birds 2nd edn. (Oxford University Press, 2019).Book 

    Google Scholar 
    10.Crossin, G. T. et al. A carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in Macaroni penguins. Am. Nat. 176, 357–366. https://doi.org/10.1086/655223 (2010).Article 
    PubMed 

    Google Scholar 
    11.Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS ONE 10(7), e0132312. https://doi.org/10.1371/journal.pone.0132312 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Selonen, V., Wistbacka, R. & Korpimäki, E. Food abundance and weather modify reproduction of two arboreal squirrel species. J. Mammal. 97, 1376–1384. https://doi.org/10.1093/jmammal/gyw096 (2016).Article 

    Google Scholar 
    13.Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.x (2011).Article 
    PubMed 

    Google Scholar 
    14.O’Connor, C. M., Norris, D. R., Crossin, G. T. & Cooke, S. J. Biological carryover effects: Linking common concepts and mechanisms in ecology and evolution. Ecosphere 5, 1–11. https://doi.org/10.1890/es13-00388.1 (2014).Article 

    Google Scholar 
    15.Montreuil-Spencer, C., Schoenemann, K., Lendvai, A. Z. & Bonier, F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav. Ecol. 30, 1642–1652. https://doi.org/10.1093/beheco/arz129 (2019).Article 

    Google Scholar 
    16.Korpimäki, E. Body mass of breeding Tengmalm’s owls Aegolius funereus: Seasonal, between-year, site and age-related variation. Ornis Scand. 21, 169–178. https://doi.org/10.2307/3676776 (1990).Article 

    Google Scholar 
    17.Dijkstra, C., Daan, S., Meijer, T., Cave, A. J. & Foppen, R. P. B. Daily and seasonal-variations in body-mass of the kestrel in relation to food availability and reproduction. Ardea 76, 127–140 (1988).
    Google Scholar 
    18.Pietiäinen, H. & Kolunen, H. Female body condition and breeding of the Ural owl Strix uralensis. Funct. Ecol. 7, 726–735. https://doi.org/10.2307/2390195 (1993).Article 

    Google Scholar 
    19.Wijnandts, H. Ecological energetics of the long-eared owl (Asio otus). Ardea 72, 1–92 (1984).
    Google Scholar 
    20.Korpimäki, E. & Hakkarainen, H. Fluctuating food supply affects the cluch size of Tengmalm’s owl independent of laying date. Oecologia 85, 543–552 (1991).ADS 
    Article 

    Google Scholar 
    21.Korpimäki, E. & Wiehn, J. Clutch size of kestrels: Seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos 83, 259–272. https://doi.org/10.2307/3546837 (1998).Article 

    Google Scholar 
    22.Pietiäinen, H. Seasonal and individual variation in the production of offspring in the Ural owl Strix uralensis. J. Anim. Ecol. 58, 905–920. https://doi.org/10.2307/5132 (1989).Article 

    Google Scholar 
    23.Wellicome, T. I. Effects of food on reproduction in burrowing owls (Athene cunicularia) during three stages of the breeding season (Ph.D. dissertation). (University of Alberta, 2000).24.Ilmonen, P. et al. Parental effort and blood parasitism in Tengmalm’s owl: Effects of natural and experimental variation in food abundance. Oikos 86, 79–86. https://doi.org/10.2307/3546571 (1999).Article 

    Google Scholar 
    25.Santangeli, A., Hakkarainen, H., Laaksonen, T. & Korpimäki, E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim. Behav. 83, 1115–1123. https://doi.org/10.1016/j.anbehav.2012.02.002 (2012).Article 

    Google Scholar 
    26.Griebel, R. L. & Savidge, J. A. Factors related to body condition of nestling burrowing owls in Buffalo Gap National Grassland, South Dakota. Wilson Bull. 115, 477–480. https://doi.org/10.1676/02-094 (2003).Article 

    Google Scholar 
    27.Valkama, J., Korpimäki, E., Holm, A. & Hakkarainen, H. Hatching asynchrony and brood reduction in Tengmalm’s owl Aegolius funereus: The role of temporal and spatial variation in food abundance. Oecologia 133, 334–341. https://doi.org/10.1007/s00442-002-1033-2 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    28.König, C. & Weick, F. Owls of the World 2nd edn. (Yale University Press, 2008).
    Google Scholar 
    29.Mikkola, H. Owls of Europe (Poyser, 1983).
    Google Scholar 
    30.Korpimäki, E. On the Ecology and Biology of Tengmalm’s Owl (Aegolius funereus) in Southern Ostrobothnia and Soumenselkä, Western Finland Vol. 13, 1–84 (University of Oulu, 1981).
    Google Scholar 
    31.Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: Long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
    Google Scholar 
    32.Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).Book 

    Google Scholar 
    33.Kouba, M., Bartoš, L., Šindelář, J. & Šťastný, K. Alloparental care and adoption in Tengmalm’s owl (Aegolius funereus). J. Ornithol. 158, 185–191. https://doi.org/10.1007/s10336-016-1381-z (2017).Article 

    Google Scholar 
    34.Eldegard, K. & Sonerud, G. A. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm’s owl. Behav. Ecol. Sociobiol. 64, 815–826 (2010).Article 

    Google Scholar 
    35.Eldegard, K. & Sonerud, G. A. Sex roles during post-fledging care in birds: Female Tengmalm’s owls contribute little to food provisioning. J. Ornithol. 153, 385–398. https://doi.org/10.1007/s10336-011-0753-7 (2012).Article 

    Google Scholar 
    36.Kouba, M., Bartoš, L. & Šťastný, K. Differential movement patterns of juvenile Tengmalm’s owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE 8(7), e67034. https://doi.org/10.1371/journal.pone.0067034 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Korpimäki, E. Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J. Anim. Ecol. 61, 103–111 (1992).Article 

    Google Scholar 
    38.Kouba, M., Bartoš, L., Korpimäki, E. & Zárybnická, M. Factors affecting the duration of nestling period and fledging order in Tengmalm’s owl (Aegolius funereus): Effect of wing length and hatching sequence. PLoS ONE 10(3), e0121641. https://doi.org/10.1371/journal.pone.0121641 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Björklund, H., Saurola, P. & Valkama, J. Petolintuvuosi 2019 oli kohtalainen (Summary: Breeding and population trends of common raptors and owls in Finland in 2019). Yearb. Linnut Mag. 2019, 44–59 (2020).
    Google Scholar 
    40.Kouba, M., Bartoš, L., Bartošová, J., Hongisto, K. & Korpimäki, E. Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm’s owls in the boreal forest. Sci. Rep. 10, 20429. https://doi.org/10.1038/s41598-41020-77531-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Ferrero, J. J., Grande, J. M. & Negro, J. J. Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus). J. Raptor Res. 37, 1–7 (2003).
    Google Scholar 
    42.Sergio, F. From individual behaviour to population pattern: Weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117. https://doi.org/10.1006/anbe.2003.2303 (2003).Article 

    Google Scholar 
    43.Korpimäki, E. Effects of age on breeding performance of Tengmalm’s owl Aegolius funereus in western Finland. Ornis Scand. 19, 21–26 (1988).Article 

    Google Scholar 
    44.Laaksonen, T., Korpimäki, E. & Hakkarainen, H. Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm’s owls. J. Anim. Ecol. 71, 23–31. https://doi.org/10.1046/j.0021-8790.2001.00570.x (2002).Article 

    Google Scholar 
    45.Korpimäki, E. Highlights from a long-term study of Tengmalm’s owls: Cyclic fluctuations in vole abundance govern mating systems, population dynamics and demography. Brit. Birds 113, 316–333 (2020).
    Google Scholar 
    46.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article 

    Google Scholar 
    47.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B-Biol. Sci. 272, 193–202 (2005).Article 

    Google Scholar 
    48.Huitu, O., Norrdahl, K. & Korpimäki, E. Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia 135, 209–220. https://doi.org/10.1007/s00442-002-1171-6 (2003).ADS 
    Article 
    PubMed 

    Google Scholar 
    49.Schreiber-Gregory, D. N. & Jackson, H. M. Multicollinearity: What is it, why should we care, and how can it be controlled. In Proc. SAS R Global Forum 2017, Conference Paper 1404 (2017).50.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, 2007).Book 

    Google Scholar 
    51.Tao, J., Littel, R., Patetta, M., Truxillo, C. & Wolfinger, R. Mixed Model Analyses Using the SAS System Course Notes (SAS Institute Inc., 2002).
    Google Scholar 
    52.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretical Approach (Springer, 1998).Book 

    Google Scholar 
    53.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    54.Vaida, F. & Blanchard, S. Conditional Akaike information for mixed-effects models. Biometrika 92, 351–370. https://doi.org/10.1093/biomet/92.2.351 (2005).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    55.Ward, E. J. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 211, 1–10. https://doi.org/10.1016/j.ecolmodel.2007.10.030 (2008).CAS 
    Article 

    Google Scholar 
    56.Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).MathSciNet 
    Article 

    Google Scholar 
    57.Christensen, W. Agreeing to disagree: Using SAS to make reasoned decisions when information criteria select different models. In SAS Conference Proceedings: Western Users of SAS Software 2018. September 5–7, 2018, Sacramento, California, Paper 099–2018 (2018).58.Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. https://doi.org/10.1080/10635150490522304 (2004).Article 
    PubMed 

    Google Scholar 
    59.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    60.Buckland, S. T., Burnham, K. P. & Augustin, N. H. Model selection: An integral part of inference. Biometrics 53, 603–618. https://doi.org/10.2307/2533961 (1997).Article 
    MATH 

    Google Scholar 
    61.Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196. https://doi.org/10.3758/bf03206482 (2004).Article 
    PubMed 

    Google Scholar 
    62.Lack, D. The Natural Regulation of Animal Numbers (Oxford University Press, 1954).
    Google Scholar 
    63.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710. https://doi.org/10.1111/gcb.12099 (2013).ADS 
    Article 

    Google Scholar 
    64.Wiehn, J. & Korpimäki, E. Food limitation on brood size: Experimental evidence in the Eurasian kestrel. Ecology 78, 2043–2050. https://doi.org/10.2307/2265943 (1997).Article 

    Google Scholar 
    65.Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).Article 

    Google Scholar 
    66.Norris, K. J. Female choice and the quality of parental care in the great tit Parus major. Behav. Ecol. Sociobiol. 27, 275–281 (1990).Article 

    Google Scholar 
    67.Naef-Daenzer, B., Widmer, F. & Nuber, M. Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J. Anim. Ecol. 70, 730–738. https://doi.org/10.1046/j.0021-8790.2001.00533.x (2001).Article 

    Google Scholar 
    68.Grüebler, M. U. & Naef-Daenzer, B. Postfledging parental effort in barn swallows: Evidence for a trade-off in the allocation of time between broods. Anim. Behav. 75, 1877–1884. https://doi.org/10.1016/j.anbehav.2007.12.002 (2008).Article 

    Google Scholar 
    69.Jones, T. M., Ward, M. P., Benson, T. J. & Brawn, J. D. Variation in nestling body condition and wing development predict cause-specific mortality in fledgling dickcissels. J. Avian Biol. 48, 439–447. https://doi.org/10.1111/jav.01143 (2017).Article 

    Google Scholar 
    70.Magrath, R. D. Nestling weight and juvenile survival in the blackbird, Turdus merula. J. Anim. Ecol. 60, 335–351. https://doi.org/10.2307/5464 (1991).Article 

    Google Scholar 
    71.Naef-Daenzer, B. & Grüebler, M. U. Post-fledging survival of altricial birds: Ecological determinants and adaptation. J. Field Ornithol. 87, 227–250. https://doi.org/10.1111/jofo.12157 (2016).Article 

    Google Scholar 
    72.Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138. https://doi.org/10.1007/s00442-013-2605-z (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Hylton, R. A., Frederick, P. C., de la Fuente, T. E. & Spalding, M. G. Effects of nestling health on postfledging survival of wood storks. Condor 108, 97–106. https://doi.org/10.1650/0010-5422(2006)108[0097:Eonhop]2.0.Co;2 (2006).Article 

    Google Scholar 
    74.Imlay, T. L., Mann, H. A. R. & Leonard, M. L. No effect of insect abundance on nestling survival or mass for three aerial insectivores. Avian Conserv. Ecol. https://doi.org/10.5751/ace-01092-120219 (2017).Article 

    Google Scholar 
    75.Nooker, J. K., Dunn, P. O. & Whittingham, L. A. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122, 1225–1238. https://doi.org/10.1642/0004-8038(2005)122[1225:eofawa]2.0.co;2 (2005).Article 

    Google Scholar 
    76.Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Experimental food supplementation affects the physical development, behaviour and survival of little owl Athene noctua nestlings. Ibis 156, 755–767. https://doi.org/10.1111/ibi.12171 (2014).Article 

    Google Scholar 
    77.Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Post-fledging survival of little owls Athene noctua in relation to nestling food supply. Ibis 159, 532–540. https://doi.org/10.1111/ibi.12477 (2017).Article 

    Google Scholar 
    78.McDonald, P. G., Olsen, P. D. & Cockburn, A. Sex allocation and nestling survival in a dimorphic raptor: Does size matter? Behav. Ecol. 16, 922–930. https://doi.org/10.1093/beheco/ari071 (2005).Article 

    Google Scholar 
    79.Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619. https://doi.org/10.1086/710708 (2020).Article 
    PubMed 

    Google Scholar 
    80.Overskaug, K., Bolstad, J. P., Sunde, P. & Øien, I. J. Fledgling behavior and survival in northern tawny owls. Condor 101, 169–174 (1999).Article 

    Google Scholar 
    81.Todd, L. D., Poulin, R. G., Wellicome, T. I. & Brigham, R. M. Post-fledging survival of burrowing owls in Saskatchewan. J. Wildl. Manage. 67, 512–519. https://doi.org/10.2307/3802709 (2003).Article 

    Google Scholar 
    82.Cox, W. A., Thompson, F. R., Cox, A. S. & Faaborg, J. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J. Wildl. Manage. 78, 183–193. https://doi.org/10.1002/jwmg.670 (2014).Article 

    Google Scholar 
    83.Korpimäki, E. Timing of breeding of Tengmalm’s owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis 129, 58–68 (1987).Article 

    Google Scholar 
    84.Pigeault, R., Cozzarolo, C. S., Glaizot, O. & Christe, P. Effect of age, haemosporidian infection and body condition on pair composition and reproductive success in great tits Parus major. Ibis 162, 613–626. https://doi.org/10.1111/ibi.12774 (2020).Article 

    Google Scholar 
    85.Hakkarainen, H. & Korpimäki, E. The effect of female body-size on clutch volume of Tengmalm’s owls Aegolius funereus in varying food conditions. Ornis Fenn. 70, 189–195 (1993).
    Google Scholar 
    86.Hanauska-Brown, L. A., Dufty, A. M. & Roloff, G. J. Blood chemistry, cytology, and body condition in adult northern goshawks (Accipiter gentilis). J. Raptor Res. 37, 299–306 (2003).
    Google Scholar 
    87.Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76, 2240–2246. https://doi.org/10.2307/1941698 (1995).Article 

    Google Scholar 
    88.Grilli, M. G., Pari, M. & Ibanez, A. Poor body conditions during the breeding period in a seabird population with low breeding success. Mar. Biol. https://doi.org/10.1007/s00227-018-3401-4 (2018).Article 

    Google Scholar 
    89.Toland, B. Hunting success of some Missouri raptors. Wilson Bull. 98, 116–125 (1986).
    Google Scholar 
    90.Masoero, G., Morosinotto, C., Laaksonen, T. & Korpimäki, E. Food hoarding of an avian predator: Sex- and age-related differences under fluctuating food conditions. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-00018-02571-x (2018).Article 

    Google Scholar 
    91.Masoero, G., Laaksonen, T., Morosinotto, C. & Korpimäki, E. Age and sex differences in numerical responses, dietary shifts, and total responses of a generalist predator to population dynamics of main prey. Oecologia 192, 699–711. https://doi.org/10.1007/s00442-020-04607-x (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Norrdahl, K. & Korpimäki, E. Changes in population structure and reproduction during a 3-year population cycle of voles. Oikos 96, 331–345. https://doi.org/10.1034/j.1600-0706.2002.970319.x (2002).Article 

    Google Scholar 
    93.Merritt, J. F., Lima, M. & Bozinovic, F. Seasonal regulation in fluctuating small mammal populations: Feedback structure and climate. Oikos 94, 505–514. https://doi.org/10.1034/j.1600-0706.2001.940312.x (2001).Article 

    Google Scholar 
    94.Solonen, T. Overwinter population change of small mammals in southern Finland. Ann. Zool. Fenn. 43, 295–302 (2006).
    Google Scholar 
    95.Haapakoski, M. & Ylönen, H. Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol. Res. 28, 307–315. https://doi.org/10.1007/s11284-012-1020-y (2013).Article 

    Google Scholar 
    96.Berlioz, J. & Bergman, G. (eds) Proc., XII International Ornithological Congress, Helsinki 5–12 Vol. 158, 586–591 (Tilgmannin Kirjapaino, 1960).
    Google Scholar 
    97.Fraixedas, S., Linden, A. & Lehikoinen, A. Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn. 92, 187–203 (2015).
    Google Scholar 
    98.Virkkala, R. Long-term decline of southern boreal forest birds: Consequence of habitat alteration or climate change? Biodivers. Conserv. 25, 151–167. https://doi.org/10.1007/s10531-015-1043-0 (2016).Article 

    Google Scholar 
    99.Björklund, H., Valkama, J., Tomppo, E. & Laaksonen, T. Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS ONE 10(9), e0137877. https://doi.org/10.1371/journal.pone.0137877 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Koskimäki, J. et al. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 56, 341–348. https://doi.org/10.1007/s10144-013-0411-4 (2014).Article 

    Google Scholar 
    101.Suzuki, N. & Parker, K. L. Proactive conservation of high-value habitat for woodland caribou and grizzly bears in the boreal zone of British Columbia, Canada. Biol. Conserv. 230, 91–103. https://doi.org/10.1016/j.biocon.2018.12.013 (2019).Article 

    Google Scholar 
    102.Venier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).Article 

    Google Scholar 
    103.Thomas, J. W. et al. A Conservation Strategy for the Northern Spotted Owl (US Government Printing Office 791-171/20026, 1990).
    Google Scholar 
    104.Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).Article 

    Google Scholar  More

  • in

    Functional diversity outperforms taxonomic diversity in revealing short-term trampling effects

    1.Dengler, J. et al. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182(1), 1–14 (2014).Article 

    Google Scholar 
    2.Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Torok, P. et al. Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodivers. Conserv. 25(12), 2187–2195 (2016).Article 

    Google Scholar 
    4.Kuss, F. R. & Graefe, A. R. Effects of recreation trampling on natural area vegetation. J. Leis. Res. 17, 165–183 (1985).Article 

    Google Scholar 
    5.Buckley, R. C. & Pannell, J. Environmental impacts of tourism and recreation in national parks and conservation reserves. J. Tourism Stud. 1, 24–32 (1990).
    Google Scholar 
    6.Yorks, T. et al. Toleration of traffic by vegetation: Life form conclusions and summary extracts from a comprehensive data base. Environ. Manage. 21, 12–131 (1997).Article 

    Google Scholar 
    7.Gouvenain, R. C. Indirect impacts of soil trampling on tree growth and plant succession in the north cascade mountains of Washington (1996).8.Xu, L., Yu, F. H. & Drunen, E. V. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree. Ann. Bot. 109, 1001–1008 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Bayfield, N. G. Use and deterioration of some Scottish hill paths. J. Appl. Ecol. 10, 639–648 (1973).Article 

    Google Scholar 
    10.Liddle, M. J. A selective review of the ecological effects of human trampling on natural ecosystems. Biol. Cons. 7, 17–36 (1975).Article 

    Google Scholar 
    11.Frissell, S. S. Judging recreational impacts on wilderness campsites. J. Forest. 76, 481–483 (1978).
    Google Scholar 
    12.Wagar, J. A. How to predict which vegetated areas will stand up best under ‘active’ recreation. Am. Recreat. J. 1, 20–21 (1961).
    Google Scholar 
    13.Cole, D. N. & Bayfield, N. G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Cons. 63(3), 209–215 (1993).Article 

    Google Scholar 
    14.Prescott, O. & Stewart, G. Assessing the impacts of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2, e360 (2014).Article 

    Google Scholar 
    15.Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).Article 

    Google Scholar 
    17.Petchey, O. L. & Gaston, K. J. Functional diversity, species richness and composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    18.Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48(5), 1079–1087 (2011).Article 

    Google Scholar 
    19.Mouillot, D. et al. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    20.Carmona, C. P. et al. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31(5), 382–394 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18, 359–367 (2015).Article 

    Google Scholar 
    22.Pickering, C. M. & Barros, A. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking. J. Environ. Manage. 164, 129–136 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Baraloto, C., Herault, B. & Paine, C. E. T. Contrasting taxonomic and functional responses of a tropic tree community to selective logging. J. Appl. Ecol. 49, 861–870 (2012).Article 

    Google Scholar 
    24.Magnago, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).Article 

    Google Scholar 
    25.Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).Article 

    Google Scholar 
    26.Roovers, P. et al. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).Article 

    Google Scholar 
    27.Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18(3), 359–367 (2015).Article 

    Google Scholar 
    28.Zamora, R. Functional equivalence in plant-animal interactions: Ecological and evolutionary consequences. Oikos 88(2), 442–447 (2000).Article 

    Google Scholar 
    29.Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005).Article 

    Google Scholar 
    30.Mouchet, M. A. et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).Article 

    Google Scholar 
    31.Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U.S.A. 104, 20684–20689 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Suding, K. N. & Goldstein, L. J. Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytol. 180, 559–562 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.De Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    34.Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    35.Tian, K., Guo, H. J. & Yang, Y. M. Ecological structures and functions of plateau wetlands in China (Chinese Science Press, 2009).
    Google Scholar 
    36.Garnier, E. et al. standardized protocol for the determination of specific leaf size and leaf dry matter content. Funct. Ecol. 15, 688–695 (2001).Article 

    Google Scholar 
    37.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    38.Mason, N. W. H. et al. An index of functional diversity. J. Veg. Sci. 14, 571–578 (2003).Article 

    Google Scholar 
    39.Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    40.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    41.Cianciaruso, M. V. et al. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Lepš, J. et al. Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography 34, 856–863 (2011).Article 

    Google Scholar 
    43.Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: What proportion of the species need to be measured?. Appl. Veg. Sci. 10, 91–96 (2007).Article 

    Google Scholar 
    45.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    46.Oksanen, J., Blanchet, F. G., Friendly, M. et al. Vegan: Community Ecology Package. R package version 2.5–7 (2020).47.Laliberté, E., Legendre, P., Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014). More

  • in

    Refocusing multiple stressor research around the targets and scales of ecological impacts

    1.Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Threats Classification Scheme (Version 3.2) (International Union for Conservation of Nature and Natural Resources, 2020); https://www.iucnredlist.org/resources/threat-classification-scheme3.Living Planet Report 2018: Aiming Higher (World Wildlife Fund, 2018).4.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).Article 

    Google Scholar 
    6.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B Biol. Sci. 287, 20200421 (2020).Article 

    Google Scholar 
    8.Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Burgess, B. J., Purves, D., Mace, G. & Murrell, D. J. Ecological theory predicts ecosystem stressor interactions in freshwater ecosystems, but highlights the strengths and weaknesses of the additive null model. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.243972 (2020).11.Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Ashauer, R. & Jager, T. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Environ. Sci. Process Impacts 20, 48–57 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Caswell, H. in Ecotoxicology. A Hierarchical Treatment (eds Newman, M. C. & Jagoe, C. H) 255–292 (CRC Press, 1996).18.Judd, A., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 

    Google Scholar 
    19.Schafer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).Article 

    Google Scholar 
    20.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
    Google Scholar 
    21.Beyer, J. et al. Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar. Environ. Res. 96, 81–91 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592 (2016).Article 

    Google Scholar 
    23.Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0802 (2017).24.De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).Article 

    Google Scholar 
    25.Goussen, B., Price, O. R., Rendal, C. & Ashauer, R. Integrated presentation of ecological risk from multiple stressors. Sci. Rep. 6, 36004 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Liess, M., Foit, K., Knillmann, S., Schafer, R. B. & Liess, H. D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Van den Brink, P. J. et al. Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems: results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop. Sci. Total Environ. 684, 722–726 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Kooijman, S. A. L. M. Dynamic Energy Budgets in Biological Systems: Applications to Ecotoxicology (Cambridge Univ. Press, 1993).29.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    30.Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).PubMed 
    Article 

    Google Scholar 
    31.Bolker, B., Holyoak, M., Krivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).Article 

    Google Scholar 
    32.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    33.Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A. & Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds G. A. Polis & K. O. Winemiller) 371–395 (Chapman & Hall, 1996).34.Thompson, P. L., MacLennan, M. M. & Vinebrooke, R. D. Species interactions cause non‐additive effects of multiple environmental stressors on communities. Ecosphere 9, e02518 (2018).Article 

    Google Scholar 
    35.Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. Trans. R. Soc. B Biol. Sci. 365, 49–60 (2010).Article 

    Google Scholar 
    36.Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).Article 

    Google Scholar 
    40.Ohlmann, M. et al. Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ohlmann, M. et al. Mapping the imprint of biotic interactions on β‐diversity. Ecol. Lett. 21, 1660–1669 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Brun, P. et al. The productivity–biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2018).PubMed 
    Article 

    Google Scholar 
    44.Bracewell, S. et al. Qualifying the effects of single and multiple stressors on the food web structure of Dutch drainage ditches using a literature review and conceptual models. Sci. Total Environ. 684, 727–740 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Kohler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341, 759–765 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Kooijman, S. A. L. M. Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ. Press, 2000).47.Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).48.Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.01.005 (2021).49.Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).Article 

    Google Scholar 
    50.Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Crespi, E. J., Williams, T. D., Jessop, T. S. & Delehanty, B. Life history and the ecology of stress: how do glucocorticoid hormones influence life‐history variation in animals? Funct. Ecol. 27, 93–106 (2013).Article 

    Google Scholar 
    53.Matthiopoulos, J., Moss, R. & Lambin, X. The kin-facilitation hypothesis for red grouse population cycles: territory sharing between relatives. Ecol. Modell. 127, 53–63 (2000).Article 

    Google Scholar 
    54.Moss, R., Watson, A. & Parr, R. Experimental prevention of a population cycle in red grouse. Ecology 77, 1512–1530 (1996).Article 

    Google Scholar 
    55.Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Schmitz, O. J. Press perturbations and the predictability ofecological interactions in a food web. Ecology 78, 55–69 (1997).
    Google Scholar 
    58.Ernest, S. K. M. et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).Article 

    Google Scholar 
    59.Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).Article 

    Google Scholar 
    61.Pawar, S., Dell, A. I., Savage, V. M. & Knies, J. L. Real versus artificial variation in the thermal sensitivity of biological traits. Am. Nat. 187, E41–E52 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Yee, E. & Murray, S. Effects of temperature on activity, food consumption rates, and gut passage times of seaweed-eating Tegula species (Trochidae) from California. Mar. Biol. 145, 895–903 (2004).Article 

    Google Scholar 
    64.Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, E429–E441 (2004).Article 

    Google Scholar 
    65.Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2013.2612 (2014).66.Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Philos. Trans. R. Soc. B Biol. Sci. 367, 2935–2944 (2012).Article 

    Google Scholar 
    69.Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).Article 

    Google Scholar 
    70.Sentis, A., Binzer, A. & Boukal, D. S. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Robinson, S. I., McLaughlin, Ó. B., Marteinsdóttir, B. & O’Gorman, E. J. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. J. Anim. Ecol. 87, 634–646 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.McKee, D. et al. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol. Oceanogr. 48, 707–722 (2003).Article 

    Google Scholar 
    73.McKee, D. et al. Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshw. Biol. 47, 1557–1570 (2002).Article 

    Google Scholar 
    74.Allen, A., Gillooly, J. & Brown, J. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).Article 

    Google Scholar 
    75.Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature‐dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Clarke, A. & Fraser, K. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).Article 

    Google Scholar 
    77.Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).Article 

    Google Scholar 
    78.Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B Biol. Sci. 365, 2081–2091 (2010).Article 

    Google Scholar 
    79.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).Article 

    Google Scholar 
    81.Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Clements, W. H. & Rohr, J. R. Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).84.Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112 (2002).Article 

    Google Scholar 
    85.Jeschke, J. M. & Tollrian, R. Density-dependent effects of prey defences. Oecologia 123, 391–396 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Jorgensen, C., Ernande, B. & Fiksen, O. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol. Appl. 2, 356–370 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kuparinen, A., Kuikka, S. & Merila, J. Estimating fisheries-induced selection: traditional gear selectivity research meets fisheries-induced evolution. Evol. Appl. 2, 234–243 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    89.Day, T., Abrams, P. A. & Chase, J. M. The role of size-specific predation in the evolution and diversification of prey life histories. Evolution 56, 877–887 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Heino, M., Pauli, B. D. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).Article 

    Google Scholar 
    91.Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).Article 

    Google Scholar 
    92.Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).Article 
    CAS 

    Google Scholar 
    93.Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).Article 

    Google Scholar 
    96.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Duchet, C. et al. Pesticide‐mediated trophic cascade and an ecological trap for mosquitoes. Ecosphere 9, e02179 (2018).Article 

    Google Scholar 
    100.Halstead, N. T. et al. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecol. Lett. 17, 932–941 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Ferger, S. W. et al. Synergistic effects of climate and land use on avian beta‐diversity. Divers. Distrib. 23, 1246–1255 (2017).Article 

    Google Scholar 
    102.Maris, V. et al. Prediction in ecology: promises, obstacles and clarifications. Oikos 127, 171–183 (2018).Article 

    Google Scholar 
    103.Palmer, M. A. et al. Ecological science and sustainability for the 21st century. Front. Ecol. Environ. 3, 4–11 (2005).Article 

    Google Scholar 
    104.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).Article 

    Google Scholar 
    105.Grimm, V. & Berger, U. Structural realism, emergence, and predictions in next-generation ecological modelling: synthesis from a special issue. Ecol. Modell. 326, 177–187 (2016).Article 

    Google Scholar 
    106.Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Rosenblatt, A. E., Smith-Ramesh, L. M. & Schmitz, O. J. Interactive effects of multiple climate change variables on food web dynamics: Modeling the effects of changing temperature, CO2, and water availability on a tri-trophic food web. Food Webs https://doi.org/10.1016/j.fooweb.2016.10.002 (2017).108.Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0772-3 (2019).109.CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).Article 

    Google Scholar 
    113.Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Beckerman, A. P., Petchey, O. L. & Warren, P. H. Foraging biology predicts food web complexity. Proc. Natl Acad. Sci. USA 103, 13745–13749 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).Article 

    Google Scholar 
    116.Williams, R. J., Brose, U. & Martinez, N. D. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems (eds Rooney, N. et al.) 37–51 (Springer, 2007).117.Blanchard, J. L. et al. How does abundance scale with body size in coupled size‐structured food webs? J. Anim. Ecol. 78, 270–280 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Kerr, S. R. & Dickie, L. M. The Biomass Spectrum: A Predator–Prey Theory of Aquatic Production (Columbia Univ. Press, 2001).120.Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).PubMed 
    Article 

    Google Scholar 
    121.Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).Article 

    Google Scholar 
    122.McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).Article 

    Google Scholar 
    123.Delmas, E., Brose, U., Gravel, D., Stouffer, D. B. & Poisot, T. Simulations of biomass dynamics in community food webs. Methods Ecol. Evol. 8, 881–886 (2017).Article 

    Google Scholar 
    124.Scott, F., Blanchard, J. L. & Andersen, K. H. mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Tabi, A., Petchey, O. L. & Pennekamp, F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol. Lett. 22, 1061–1071 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    127.O’Brien, A. L., Dafforn, K. A., Chariton, A. A., Johnston, E. L. & Mayer-Pinto, M. After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: a systematic literature review and meta-analysis. Sci. Total Environ. 684, 753–764 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    128.Hampton, S. E. et al. Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology 94, 2663–2669 (2013).PubMed 
    Article 

    Google Scholar 
    129.Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).Article 

    Google Scholar 
    130.Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).
    Google Scholar 
    131.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Brennan, G. L., Colegrave, N. & Collins, S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc. Natl Acad. Sci. USA 114, 9930–9935 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.De Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002).Article 

    Google Scholar 
    136.Ellner, S. P., Seifu, Y. & Smith, R. H. Fitting population dynamic models to time‐series data by gradient matching. Ecology 83, 2256–2270 (2002).Article 

    Google Scholar 
    137.Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    138.Law, R., Plank, M. J., James, A. & Blanchard, J. L. Size‐spectra dynamics from stochastic predation and growth of individuals. Ecology 90, 802–811 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    139.Hampton, S. E., Scheuerell, M. D. & Schindler, D. E. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051 (2006).Article 

    Google Scholar 
    140.Ives, A. R. Predicting the response of populations to environmental change. Ecology 76, 926–941 (1995).Article 

    Google Scholar  More

  • in

    Author Correction: Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaMartin Jung, Matthew Lewis, Dmitry Schepaschenko, Myroslava Lesiv, Steffen Fritz, Michael Obersteiner & Piero ViscontiUN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UKAndy Arnell, Shaenandhoa García-Rangel, Jennifer Mark, Lera Miles, Corinna Ravilious, Oliver Tallowin, Arnout van Soesbergen, Valerie Kapos & Neil BurgessFood and Agriculture Organization of the United Nations (FAO), Rome, ItalyXavier de LamoDepartment of Zoology, University of Cambridge, Cambridge, UKMatthew LewisDepartment of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, USACory MerowRoyal Botanic Gardens, Kew, Richmond, UKIan Ondo, Samuel Pironon & Rafaël GovaertsBotanic Gardens Conservation International, Richmondy, UKMalin RiversSiberian Federal University, Krasnoyarsk, RussiaDmitry SchepaschenkoDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABradley L. Boyle, Brian J. Enquist, Brian Maitner & Erica A. NewmanDepartment of Geography, Florida State University, Tallahassee, FL, USAXiao FengDepartment of Biological Sciences, Macquarie University, North Ryde, New South Wales, AustraliaRachael GallagherSchool of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IsraelShai Meiri & Gali OferDepartment of Geography, King’s College London, London, UKMark MulliganMitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, IsraelUri RollCIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, PortugalJeffrey O. HansonDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanCenter for Biodiversity and Global Change, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanDepartment of Biology and Biotechnologies, Sapienza University of Rome, Rome, ItalyMoreno Di MarcoThe Nature Conservancy, Arlington, VA, USAJennifer McGowanColumbia University, New York, NY, USAJeffrey D. SachsSchool of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, Tasmania, AustraliaVanessa M. AdamsCSIRO Land and Water, Canberra, Australian Capital Territory, AustraliaSamuel C. AndrewDepartment of Biology, University of Kentucky, Lexington, KY, USAJoseph R. BurgerBetty and Gordon Moore Center for Science, Conservation International, Arlington, VA, USALee Hannah & Patrick R. RoehrdanzDepartamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetInstituto de Ecología y Biodiversidad (IEB), Santiago, ChilePablo A. MarquetCentro de Cambio Global UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetThe Santa Fe Institute, Santa Fe, NM, USAPablo A. MarquetInstituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, ChilePablo A. MarquetManaaki Whenua—Landcare Research, Lincoln, New ZealandJames K. McCarthyCenter for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, DenmarkNaia Morueta-HolmeDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USADaniel S. ParkCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningSection for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningCEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FranceCyrille ViolleNaturalis Biodiversity Center, Leiden, The NetherlandsJan J. WieringaWorld Resources Institute, London, UKGraham WynneRio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. StrassburgInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. StrassburgPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgEnvironmental Change Institute, Centre for the Environment, Oxford University, Oxford, UKMichael ObersteinerUN Sustainable Development Solutions Network, Paris, FranceGuido Schmidt-TraubCorrespondence to
    Martin Jung or Piero Visconti. More

  • in

    Effects of fertilizer under different dripline spacings on summer maize in northern China

    1.China. China statistical yearbook. (China Statistics Press, 2020).2.Shiferaw, B., Prasanna, B. M., Hellin, J. & Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3, 307–327 (2011).Article 

    Google Scholar 
    3.Chen, M. P., Sun, F. & Shindo, J. China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios. Resour. Conserv. Recycl. 111, 10–27 (2016).Article 

    Google Scholar 
    4.He, Y. X. et al. Tracking ammonia morning peak, sources and transport with 1 Hz measurements at a rural site in North China Plain. Atmos. Environ. 235, 117630 (2020).CAS 
    Article 

    Google Scholar 
    5.Zhang, Y. et al. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ. Pollut. 158, 490–501 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Ayars, J. E., Fulton, A. & Taylor, B. Subsurface drip irrigation in California—Here to stay?. Agric. Water Manag. 157, 39–47 (2015).Article 

    Google Scholar 
    7.Chauhdary, J. N., Bakhsh, A., Engel, B. A. & Ragab, R. Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach. Agric. Water Manag. 221, 449–461 (2019).Article 

    Google Scholar 
    8.Mali, S. S., Naik, S. K., Jha, B. K., Singh, A. K. & Bhatt, B. P. Planting geometry and growth stage linked fertigation patterns: Impact on yield, nutrient uptake and water productivity of Chilli pepper in hot and sub-humid climate. Sci. Hortic. (Amsterdam) 249, 289–298 (2019).Article 

    Google Scholar 
    9.Silber, A. et al. High fertigation frequency: the effects on uptake of nutrients, water and plant growth. Plant Soil 253, 467–477 (2003).CAS 
    Article 

    Google Scholar 
    10.Wu, D. L. et al. Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agric. Water Manag. 213, 200–211 (2019).Article 

    Google Scholar 
    11.Ning, D. et al. Deficit irrigation combined with reduced N-fertilizer rate can mitigate the high nitrous oxide emissions from Chinese drip-fertigated maize field. Glob. Ecol. Conserv. 20, e00803 (2019).Article 

    Google Scholar 
    12.Sandhu, O. S. et al. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agric. Water Manag. 219, 19–26 (2019).Article 

    Google Scholar 
    13.Li, H. et al. Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agric. Water Manag. 243, 106474 (2021).Article 

    Google Scholar 
    14.Lamm, F. R., Stone, L. R., Manges, H. L. & O’Brien, D. M. Optimum lateral spacing for subsurface drip-irrigated corn. Trans. ASAE 40, 1021–1027 (1997).Article 

    Google Scholar 
    15.Bozkurt, Y., Yazar, A., Gençel, B. & Sezen, M. S. Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey. Agric. Water Manag. 85, 113–120 (2006).Article 

    Google Scholar 
    16.Chen, R. et al. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crop. Res. 179, 52–62 (2015).Article 

    Google Scholar 
    17.Zhou, L. et al. Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil. Agric. Water Manag. 184, 114–123 (2017).Article 

    Google Scholar 
    18.Eissa, M. A. Efficiency of P fertigation for drip-irrigated potato grown on calcareous sandy soils. Potato Res. 62, 97–108 (2019).CAS 
    Article 

    Google Scholar 
    19.Irmak, S., Djaman, K. & Rudnick, D. R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 34, 271–286 (2016).Article 

    Google Scholar 
    20.Yao, Y. L. et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crop. Res. 218, 254–266 (2018).Article 

    Google Scholar 
    21.Ziadi, N., Cambouris, A. N., Nyiraneza, J. & Nolin, M. C. Across a landscape, soil texture controls the optimum rate of N fertilizer for maize production. Field Crop. Res. 148, 78–85 (2013).Article 

    Google Scholar 
    22.Fang, H. et al. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau. China. Soil Tillage Res. 199, 104546 (2020).Article 

    Google Scholar 
    23.Zheng, J. et al. Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China. Agric. Water Manag. 248, 106778 (2021).Article 

    Google Scholar 
    24.Qi, X. L. et al. Grain yield and apparent N recovery efficiency of dry direct-seeded rice under different N treatments aimed to reduce soil ammonia volatilization. Field Crop. Res. 134, 138–143 (2012).Article 

    Google Scholar 
    25.Han, K., Zhou, C. J. & Wang, L. Q. Reducing ammonia volatilization from maize fields with separation of nitrogen fertilizer and water in an alternating furrow irrigation system. J. Integr. Agric. 13, 1099–1112 (2014).CAS 
    Article 

    Google Scholar 
    26.Amin, A.E.-E.A.Z. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Sci. Total Environ. 726, 138489 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Li, H. T. et al. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agric. Ecosyst. Environ. 308, 107272 (2021).CAS 
    Article 

    Google Scholar 
    28.Sun, B. et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int. 144, 105989 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Tabli, N. et al. Plant growth promoting and inducible antifungal activities of irrigation well water-bacteria. Biol. Control 117, 78–86 (2018).Article 

    Google Scholar 
    30.Zhong, X. M. et al. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 306, 107183 (2021).CAS 
    Article 

    Google Scholar 
    31.Li, C., Sun, M. X., Xu, X. B. & Zhang, L. X. Characteristics and influencing factors of mulch film use for pollution control in China: Microcosmic evidence from smallholder farmers. Resour. Conserv. Recycl. 164, 105222 (2021).Article 

    Google Scholar 
    32.Li, M. N., Wang, Y. L., Adeli, A. & Yan, H. J. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crop. Res. 218, 115–125 (2018).Article 

    Google Scholar 
    33.Pinheiro, P. L. et al. Straw removal reduces the mulch physical barrier and ammonia volatilization after urea application in sugarcane. Atmos. Environ. 194, 179–187 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Zhu, H. et al. Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. CATENA 190, 104527 (2020).CAS 
    Article 

    Google Scholar 
    35.Oppong Danso, E. et al. Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 147, 34–42 (2015).Article 

    Google Scholar 
    36.Liu, R. H. et al. Chemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou Reservoir. Nutr. Cycl. Agroecosystems 98, 295–307 (2014).CAS 
    Article 

    Google Scholar 
    37.Sanz-Cobena, A. et al. Strategies for greenhouse gas emissions mitigation in mediterranean agriculture: A review. Agric. Ecosyst. Environ. 238, 5–24 (2017).CAS 
    Article 

    Google Scholar 
    38.Zhou, J. B., Xi, J. G., Chen, Z. J. & Li, S. X. Leaching and transformation of nitrogen fertilizers in soil after application of n with irrigation: A soil column method. Pedosphere 16, 245–252 (2006).CAS 
    Article 

    Google Scholar 
    39.Rosemary, F., Vitharana, U. W. A., Indraratne, S. P., Weerasooriya, R. & Mishra, U. Exploring the spatial variability of soil properties in an Alfisol soil catena. CATENA 150, 53–61 (2017).CAS 
    Article 

    Google Scholar 
    40.Liu, Y., Lv, J. S., Zhang, B. & Bi, J. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Sci. Total Environ. 450–451, 108–119 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Vasu, D. et al. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res. 169, 25–34 (2017).Article 

    Google Scholar 
    42.Jin, J. Y., Bai, Y. L. & Yang, L. P. High Efficiency Soil Nutrient Testing Technology and Equipment (China Agriculture Press, 2006) (in Chinese).
    Google Scholar 
    43.Tan, Y. et al. Improving wheat grain yield via promotion of water and nitrogen utilization in arid areas. Sci. Rep. 11, 13821 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Ren, Y. et al. Effect of sowing proportion on above- and below-ground competition in maize–soybean intercrops. Sci. Rep. 11, 15760 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Wang, Z. H., Liu, X. J., Ju, X. T., Zhang, F. S. & Malhi, S. S. Ammonia volatilization loss from surface-broadcast urea: comparison of vented- and closed-chamber methods and loss in winter wheat–summer maize rotation in North China plain. Commun. Soil Sci. Plant Anal. 35, 2917–2939 (2004).CAS 
    Article 

    Google Scholar 
    46.Zhou, L. P. et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field. J. Plant Nutr. Fertil. 22, 1449–1457 (2016) (in Chinese).
    Google Scholar 
    47.Huang, T. M. et al. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China. Soil Tillage Res. 191, 57–65 (2019).Article 

    Google Scholar 
    48.Wang, Z., Li, J. & Li, Y. Effects of drip system uniformity and nitrogen application rate on yield and nitrogen balance of spring maize in the North China Plain. Field. Crop. Res. 159, 10–20 (2014).Article 

    Google Scholar 
    49.Brar, H. S., Vashist, K. K. & Bedi, S. Phenology and yield of spring maize (Zea mays L.) under different drip irrigation regimes and planting methods. J. Agric. Sci. Technol. 18, 831–843 (2016).
    Google Scholar 
    50.Poch-Massegú, R., Jiménez-Martínez, J., Wallis, K. J., Ramírez de Cartagena, F. & Candela, L. Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agric. Water Manag. 134, 1–13 (2014).Article 

    Google Scholar 
    51.Yuan, Z. Q. et al. Film mulch with irrigation and rainfed cultivations improves maize production and water use efficiency in Ethiopia. Ann. Appl. Biol. 175, 215–227 (2019).Article 

    Google Scholar 
    52.Wang, J. L. Research on the use of water and fertilizer for drip irrigation multiple cropping silage maize (Shihezi University, 2016) (in Chinese).
    Google Scholar 
    53.Lamm, F. R. & Trooien, T. P. Subsurface drip irrigation for corn production: a review of 10 years of research in Kansas. Irrig. Sci. 22, 195–200 (2003).Article 

    Google Scholar 
    54.Yan, X. L., Jia, L. M. & Dai, T. F. Effects of water and nitrogen coupling under drip irrigation on tree growth and soil nitrogen content of Populus × euramericana cv. ‘Guariento’. Chin. J. Appl. Ecol. 29, 2195 (2018) (in Chinese).
    Google Scholar 
    55.Sun, W. T., Sun, Z. X., Wang, C. X., Gong, L. & Zhang, Y. L. Coupling effect of water and fertilizer on corn yield under drip fertigation. Sci. Agric. Sin. 39, 563–568 (2006) (in Chinese).
    Google Scholar 
    56.Banerjee, B., Pathak, H. & Aggarwal, P. Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization from an alluvial soil under a rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Biol. Fertil. Soils 36, 207–214 (2002).CAS 
    Article 

    Google Scholar 
    57.Yang, Q. L., Liu, P., Dong, S. T., Zhang, J. W. & Zhao, B. Effects of fertilizer type and rate on summer maize grain yield and ammonia volatilization loss in northern China. J. Soils Sediments 19, 2200–2211 (2019).CAS 
    Article 

    Google Scholar 
    58.Zhou, G. W. et al. Effects of saline water irrigation and N application rate on NH3 volatilization and N use efficiency in a drip-irrigated cotton field. Water Air Soil Pollut. 227, 103 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    59.Zheng, J., Kilasara, M. M., Mmari, W. N. & Funakawa, S. Ammonia volatilization following urea application at maize fields in the East African highlands with different soil properties. Biol. Fertil. Soils 54, 411–422 (2018).CAS 
    Article 

    Google Scholar 
    60.Li, Z. et al. Nitrogen use efficiency and ammonia oxidation of corn field with drip irrigation in Hetao irrigation district. J. Irrig. Drain. 37, 37–42,49 (2018) (in Chinese).61.Zheng, L. et al. Impact of fertilization on ammonia volatilization and N2O emissions in an open vegetable field. Chin. J. Appl. Ecol. 29, 4063–4070 (2018) (in Chinese).
    Google Scholar 
    62.Li, Y. Q., Liu, G., Hong, M., Wu, Y. & Chang, F. Effect of optimized nitrogen application on nitrous oxide emission and ammonia volatilization in Hetao irrigation area. Acta Sci. Circumst. 39, 578–584 (2019) (in Chinese).CAS 

    Google Scholar 
    63.Das, P. et al. Emissions of ammonia and nitric oxide from an agricultural site following application of different synthetic fertilizers and manures. Geosci. J. 12, 177–190 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Cai, G. X. et al. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr. Cycl. Agroecosyst. 63, 187–195 (2002).CAS 
    Article 

    Google Scholar 
    65.Wang, X. L. et al. Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin. Agric. Water Manag. 241, 106436 (2020).Article 

    Google Scholar 
    66.Li, G. et al. Effect of drip fertigation on summer maize in north China. Sci. Agric. Sin. 52, 1930–1941 (2019) (in Chinese).
    Google Scholar  More