More stories

  • in

    Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L.

    1.Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B 285, 20182047 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Moritz, C. & Agudo, R. The future of species under climate change: Resilience or decline?. Science 341, 504–508 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Parmesan, C. & Hanley, M. E. Plants and climate change: Complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Soltis, P. S. & Soltis, D. E. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051–7057 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Barker, M. S., Husband, B. C. & Chris Pires, J. Spreading winge and flying high: The evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103, 1139–1145 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Van De Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Madlung, A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity (Edinb) 110, 99–104 (2013).CAS 
    Article 

    Google Scholar 
    8.Soltis, D. E., Visger, C. J., Marchant, B. D. & Soltis, P. S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 103, 1146–1166 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Ramsey, J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096–7101 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Oswald, B. P. & Nuismer, S. L. Neopolyploidy and diversification in Heuchera grossulariifolia. Evolution 65, 1667–1679 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Kolář, F., Čertner, M., Suda, J., Schönswetter, P. & Husband, B. C. Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2017.09.011 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Fowler, N. L. & Levin, D. A. Critical factors in the establishment of allopolyploids. Am. J. Bot. 103, 1236–1251 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Husband, B. C., Baldwin, S. J. & Suda, J. The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes (eds Leitch, I. et al.) 255–276 (Springer, 2013).Chapter 

    Google Scholar 
    14.Te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45 (2012).Article 

    Google Scholar 
    15.Watanabe, K. The cytogeography of the genus Eupatorium (Compositae)—A review. Plant Species Biol. 1, 99–116 (1986).CAS 
    Article 

    Google Scholar 
    16.Novak, S. J., Soltis, D. E. & Soltis, P. S. Ownbey’s Tragopogons: 40 years later. Am. J. Bot. 78, 1586–1600 (1991).Article 

    Google Scholar 
    17.Van Dijk, P. & Bakx-Schotman, T. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol. Ecol. 6, 345–352 (1997).Article 

    Google Scholar 
    18.Martin, S. L. & Husband, B. C. Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 97, 913–922 (2009).Article 

    Google Scholar 
    19.Suda, J., Kron, P., Husband, B. C. & Trávníček, P. Flow cytometry and ploidy: Applications in plant systematics, ecology and evolutionary biology. in Flow Cytometry with Plant Cells 103–130 (Wiley, 2007). https://doi.org/10.1002/9783527610921.ch5.20.Ramsey, J. & Ramsey, T. S. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 1–76 (2014).Article 

    Google Scholar 
    21.Goldblatt, P. Polyploidy in angiosperms: Monocotyledons. In Polyploidy. Basic Life Sciences Vol. 13 (ed. Lewis, W. H.) 219–239 (Springer, 1980).
    Google Scholar 
    22.Levy, A. A. & Feldman, M. The impact of polyploidy on grass genome evolution. Plant Physiol. 130, 1587–1593 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Kellogg, A. Flowering Plants Monocots Poaceae Vol. 13 (Springer, 2015).
    Google Scholar 
    24.Estep, M. C. et al. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc. Natl. Acad. Sci. 111, 15149–15154 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Minaya, M. et al. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: Range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 44, 1980–1993 (2017).Article 

    Google Scholar 
    26.Torrecilla, P. & Catalán, P. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst. Bot. 27, 241–251 (2002).
    Google Scholar 
    27.Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot. 101, 421–433 (2008).28.Meusel, H., Jäger, E. & Weinert, E. Vergleichende Chorologie der Zentral-europäischen Flora (G. Fischer, 1965).
    Google Scholar 
    29.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Jakubowska-Gabara, J. Regional climate and geology affecting habitat availability for a relict plant in a plain landscape: The case of Festuca amethystina L. in Poland. Plant Ecol. Divers. 8, 331–341 (2015).Article 

    Google Scholar 
    30.Kiedrzyński, M., Zielińska, K. M., Rewicz, A. & Kiedrzyńska, E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 122, 1359–1370 (2017).Article 

    Google Scholar 
    31.Petrova, A. & Kozuharov, S. Citotaxonomicno proucvane na balgarski vidove ot roda Festuca L. in IV Nacionalna Konferencija Po Botanika 1 (ed. Trudova) 16–23 (1987).32.Stählin, A. Morphologische und zytologische Untersuchungen an Gramineen. Wiss. Arch. Landwirtschaft., Abt. A, Pflanzenbau 1, 330–398 (1929).33.Wittmann, H. & Strobl, W. Beitrag zur Kenntnis von Festuca amethystina L. im Bundesland Salzburg. Florist. Mitt. Salzburg 9, 3–8 (1984).34.La Sorte, F. A. & Jetz, W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. B Biol. Sci. 277, 3401–3410 (2010).Article 

    Google Scholar 
    35.Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).ADS 
    Article 

    Google Scholar 
    36.Šmarda, P., Müller, J., Vraná, J. & Kočí, K. Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae). Biologia 60, 1–6 (2005).
    Google Scholar 
    37.Rewicz, A. et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ 2018, e5576 (2018).Article 

    Google Scholar 
    38.Roleček, J., Dřevojan, P. & Šmarda, P. First record of Festuca amethystina L. from the Transylvanian Basin (Romania). Contrib. Bot. 54, 91–97 (2019).Article 

    Google Scholar 
    39.Phillips, S. J. & Dudík, M. Modeling of species distribution with Maxent: New extensions and a comprehensive evaluation. Ecograpy 31, 161–175 (2008).Article 

    Google Scholar 
    40.Segraves, K. A., Thompson, J. N., Soltis, P. S. & Soltis, D. E. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Mol. Ecol. 8, 253–262 (1999).Article 

    Google Scholar 
    41.Levin, D. A. Minority cytotype exclusion in local plant populations. TAXON vol. 24. https://eurekamag.com/pdf/000/000139096.pdf (1975).42.Pils, G. Systematics, distribution, and karyology of the Festuca violacea Group (Poaceae) in the Eastern Alps. Plant Syst. Evol. 136, 73–124 (1980).Article 

    Google Scholar 
    43.Stebbins, G. L. Chromosomal Evolution in Higher Plants (Addison-Wesley, 1971).
    Google Scholar 
    44.Stutz, H. C. & Sanderson, S. C. Evolutionary studies in Atriplex: Chromosome races of A. confertifolia (shadscale). Am. J. Bot. 70, 1536–1547 (1983).Article 

    Google Scholar 
    45.Husband, B. C. & Schemske, D. W. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am. J. Bot. 85, 1688–1694 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Hardy, O. J., Vanderhoeven, S., De Loose, M. & Meerts, P. Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytol. 146, 281–290 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Gauthier, P., Lumaret, R. & Bédécarrats, A. Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (DC) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity (Edinb) 80, 683–693 (1998).CAS 
    Article 

    Google Scholar 
    48.Schönswetter, P. et al. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J. Plant Res. 120, 721–725 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Petit, C., Bretagnolle, F. & Felber, F. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol. Evol. 14, 306–311 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Chumová, Z., Krejčíková, J., Mandáková, T., Suda, J. & Trávníček, P. Evolutionary and taxonomic implications of variation in nuclear genome size: Lesson from the grass genus Anthoxanthum (Poaceae). PLoS One 10, e0133748 (2015).Article 
    CAS 

    Google Scholar 
    51.Marchant, D. B., Soltis, D. E. & Soltis, P. S. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 212, 708–718 (2016).Article 
    CAS 

    Google Scholar 
    52.Arrigo, N. et al. Is hybridization driving the evolution of climatic niche in Alyssum montanum. Am. J. Bot. 103, 1348–1357 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Laport, R. G., Minckley, R. L. & Ramsey, J. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. Am. J. Bot. 103, 1358–1374 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Mosquin, T. Evidence for autopolyploidy in Epilobium angustifolium (Onagraceae). Evolution (N. Y.) 21, 713–719 (1967).
    Google Scholar 
    55.Szafer, W. The mountain element in the flora of Polish Plain. Rozpr. Wydz. Mat. PAU Ser. 3 Dział B 69, 83–196 (1930).
    Google Scholar 
    56.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Rewicz, A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 31, 815–827 (2017).Article 

    Google Scholar 
    57.Babić, V. P. et al. Temperature and other microclimate conditions in the oak forests on Fruška Gora (Serbia). Therm. Sci. 19, S415–S425 (2015).Article 

    Google Scholar 
    58.Jakubowska-Gabara, J. Decline of Potentillo albae-Quercetum Libb. 1933 phytocoenoses in Poland. Vegetatio 124, 45–59 (1996).Article 

    Google Scholar 
    59.Roleček, J. Formalized classification of thermophilous oak forests in the Czech Republic: What brings the Cocktail method?. Preslia 79, 1–21 (2007).
    Google Scholar 
    60.Indreica, A. Festuca amethystina in the sessile oak forests from upper basin of Olt River. Contrib. Bot. 42, 11–18 (2007).
    Google Scholar 
    61.Jakubowska-Gabara, J. Festuca amethystina L. In The Polish Red Book of Plants. Pteridophytes and Vascular Plants (eds Kaźmierczakowa, R. et al.) 616–618 (Institute of Nature Conservation PAS, 2014).
    Google Scholar 
    62.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    63.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    64.Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (2017).65.Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.Book 
    MATH 

    Google Scholar 
    66.Wilke, C. O. Ridgeline Plots in ‘ggplot2’. https://wilkelab.org/ggridges/index.html (2021).67.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    68.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography (Cop.) 40, 887–893 (2017).Article 

    Google Scholar 
    69.Warren, D. L. & Seifert, S. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Soc. Am. 21, 335–342 (2011).
    Google Scholar 
    70.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    71.Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography (Cop.) 33, 607–611 (2010).
    Google Scholar 
    72.Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.) 28, 385–393 (2005).Article 

    Google Scholar  More

  • in

    Contribution of conspecific negative density dependence to species diversity is increasing towards low environmental limitation in Japanese forests

    1.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    2.Wright, J. S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    3.Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    4.Connell, J. On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. Dyn. Popul. 298, 312 (1971).
    Google Scholar 
    5.Terborgh, J. W. Toward a trophic theory of species diversity. PNAS 112, 11415–11422 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Chisholm, R. A. & Muller-Landau, H. C. A theoretical model linking interspecific variation in density dependence to species abundances. Theor. Ecol. 4, 241–253 (2011).Article 

    Google Scholar 
    9.Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Chisholm, R. A. & Fung, T. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar4685 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Hülsmann, L. & Hartig, F. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar2435 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Detto, M., Visser, M. D., Wright, S. J. & Pacala, S. W. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 22, 1923–1939 (2019).PubMed 
    Article 

    Google Scholar 
    13.LaManna, J. A. et al. Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar3824 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.LaManna, J. A. et al. Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar5245 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    15.LaManna, J. A., Mangan, S. A. & Myers, J. A. Conspecific negative density dependence and why its study should not be abandoned. Ecosphere 12, e03322 (2021).Article 

    Google Scholar 
    16.Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 

    Google Scholar 
    18.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    19.Ricklefs, R. E. & He, F. Region effects influence local tree species diversity. PNAS 113, 674–679 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).Article 

    Google Scholar 
    22.Grosso, S. D. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).PubMed 
    Article 

    Google Scholar 
    23.Chase, J. M. Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science 27, (2010).24.O’Brien, E. M. Climatic gradients in woody plant species richness: Towards an explanation based on an analysis of Southern Africa’s woody flora. J. Biogeography 20, 181–198 (1993).Article 

    Google Scholar 
    25.McCain, C. M. & Grytnes, J.-A. Elevational Gradients in Species Richness. In eLS (American Cancer Society, 2010).26.Barry, R. G. Mountain Weather and Climate (Cambridge University Press, 2008).Book 

    Google Scholar 
    27.LaManna, J. A., Walton, M. L., Turner, B. L. & Myers, J. A. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol. Lett. 19, 657–667 (2016).PubMed 
    Article 

    Google Scholar 
    28.Zhu, K., Woodall, C. W., Monteiro, J. V. D. & Clark, J. S. Prevalence and strength of density-dependent tree recruitment. Ecology 96, 2319–2327 (2015).PubMed 
    Article 

    Google Scholar 
    29.Yao, J. et al. Abiotic niche partitioning and negative density dependence across multiple life stages in a temperate forest in northeastern China. J. Ecol. 108, 1299–1310 (2020).Article 

    Google Scholar 
    30.Leigh, E. G. et al. Why do some tropical forests have so many species of trees?. Biotropica 36, 447–473 (2004).
    Google Scholar 
    31.Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).PubMed 
    Article 

    Google Scholar 
    32.Altman, J. et al. Linking spatiotemporal disturbance history with tree regeneration and diversity in an old-growth forest in northern Japan. PPEES 21, 1–13 (2016).
    Google Scholar 
    33.Kubota, Y., Hirao, T., Fujii, S., Shiono, T. & Kusumoto, B. Beta diversity of woody plants in the Japanese archipelago: The roles of geohistorical and ecological processes. J. Biogeogr. 41, 1267–1276 (2014).Article 

    Google Scholar 
    34.Mori, A. S. Local and biogeographic determinants and stochasticity of tree population demography. J. Ecol. 107, 1276–1287 (2019).Article 

    Google Scholar 
    35.Oohata, S. Distribution of tree species along the temperature gradient in the Japan archipelago (ii).: Life form and species distribution. Jap. J. Ecol. 40, 71–84 (1990).ADS 

    Google Scholar 
    36.Kira, T. A Climatological Interpretation of Japanese Vegetation Zones 21–30 (Springer, 1977).
    Google Scholar 
    37.Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).Article 

    Google Scholar 
    38.Suzuki, S. N., Ishihara, M. I. & Hidaka, A. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan. Glob. Chan. Biol. 21, 3436–3444 (2015).ADS 
    Article 

    Google Scholar 
    39.Hara, M. Analysis of seedling banks of a climax beech forest: Ecological importance of seedling sprouts. Vegetatio 71, 67–74 (1987).
    Google Scholar 
    40.Homma, K. Effects of snow pressure on growth form and life history of tree species in Japanese beech forest. J. Veg. Sci. 8, 781–788 (1997).Article 

    Google Scholar 
    41.Gansert, D. Treelines of the Japanese Alps—altitudinal distribution and species composition under contrasting winter climates. Flora 199, 143–156 (2004).Article 

    Google Scholar 
    42.Hukusima, T. et al. New phytosociological classification of beech forests in Japan. Jpn. J. Ecol. 45, 79–98 (1995).
    Google Scholar 
    43.Matsui, T. et al. Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. J. Veg. Sci. 15, 605–614 (2004).Article 

    Google Scholar 
    44.Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Ishihara, M. I. et al. Forest stand structure, composition, and dynamics in 34 sites over Japan. Ecol. Res. 26, 1007–1008 (2011).Article 

    Google Scholar 
    46.Law, R. et al. Ecological information from spatial patterns of plants: Insights from point process theory. J. Ecol. 97, 616–628 (2009).Article 

    Google Scholar 
    47.Wright, S. J. et al. Reproductive size thresholds in tropical trees: Variation among individuals, species and forests. J. Trop. Ecol. 21, 307–315 (2005).Article 

    Google Scholar 
    48.Zhu, Y., Comita, L. S., Hubbell, S. P. & Ma, K. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J. Ecol. 103, 957–966 (2015).Article 

    Google Scholar 
    49.Ripley, B. D. Spatial point pattern analysis in ecology. In Develoments in Numerical Ecology (eds Legendre, P. & Legendre, L.) 407–429 (Springer, 1987).Chapter 

    Google Scholar 
    50.Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology (CRC Press, 2013).Book 

    Google Scholar 
    51.Loosmore, N. B. & Ford, E. D. Statistical inference using the G or K point pattern spatial statistics. Ecology 87, 1925–1931 (2006).PubMed 
    Article 

    Google Scholar 
    52.R Core Team. R: A Language and Environment for Statistical Computing (2020).53.Baddeley, A. & Turner, R. spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 12, 1–42 (2005).Article 

    Google Scholar 
    54.Wills, C., Condit, R., Foster, R. B. & Hubbell, S. P. Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. PNAS 94, 1252–1257 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).Article 

    Google Scholar 
    56.Fibich, P., Vítová, A. & Lepš, J. Interaction between habitat limitation and dispersal limitation is modulated by species life history and external conditions: A stochastic matrix model approach. Comm. Ecol. 19, 9–20 (2018).Article 

    Google Scholar 
    57.Miyawaki, A. A vegetation ecological view of the Japanese archipelago. Bull. Inst. Environ. Sci. Technol. Yokohama Natl. Univ. 11, 85–101 (1984).
    Google Scholar 
    58.Mori, A. S. et al. Community assembly processes shape an altitudinal gradient of forest biodiversity. Glo. Ecol. Biogeogr. 22, 878–888 (2013).Article 

    Google Scholar 
    59.Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).
    Google Scholar 
    60.Brown, C., Law, R., Illian, J. B. & Burslem, D. F. R. P. Linking ecological processes with spatial and non-spatial patterns in plant communities. J. Ecol. 99, 1402–1414 (2011).Article 

    Google Scholar 
    61.Bastias, C. C. et al. Species richness influences the spatial distribution of trees in European forests. Oikos 129, 380–390 (2020).Article 

    Google Scholar 
    62.Hülsmann, L., Chisholm, R. A. & Hartig, F. Is variation in conspecific negative density dependence driving tree diversity patterns at large scales?. Trends Ecol. Evol. 36, 151–163 (2021).PubMed 
    Article 

    Google Scholar 
    63.Damgaard, C. & Weiner, J. It’s about time: A critique of macroecological inferences concerning plant competition. Trends Ecol. Evol. 32, 86–87 (2017).PubMed 
    Article 

    Google Scholar 
    64.Murata, I. et al. Effects of sika deer (Cervus nippon) and dwarf bamboo (Sasamorpha borealis) on seedling emergence and survival in cool-temperate mixed forests in the Kyushu Mountains. J. For. Res. 14, 296–301 (2009).Article 

    Google Scholar 
    65.Ackerly, D. D. et al. The geography of climate change: Implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).Article 

    Google Scholar  More

  • in

    Presence and biodistribution of perfluorooctanoic acid (PFOA) in Paracentrotus lividus highlight its potential application for environmental biomonitoring

    Samples collectionThree sampling campaigns were carried out at the two sample sites (A and B) on the coast of north-western Sicily (Fig. 1a) chosen for this study. The main features of the sites and sampling details are summarized in Table S1 (Supplementary Information). A total of 90 specimens of sea urchins Paracentrotus lividus (45 specimen per each site), 30 l of seawater (15 per site), 40 samples (20 per site) of sea grass Posidonia oceanica (less than 5 cm leaf fragments, according to the institutional and national ethical guidelines) were collected and analyzed together with 30 l of brackish water from site B (15 l from each creek).Figure 1Map of the sampling site. (a) Geographic area, (b) bathymetric chart and (c) relative distance between sample sites; (d, e) close ups of sampling sites. (Images obtained by courtesy of Google Earth Pro and map.openseamap.org).Full size imageThe samplings activity was authorized by the Capitaneria di Porto of Palermo with protocol number: 0029430. In the absence of data about PFOA contamination in the most recent report about chemical contamination in the coastal region subjected to this study31, the choice of sample sites was based on supposedly different status of pollution based on the site position or proximity to human activities (e.g. restaurants, pipeline, sewages, etc.).Site A (see Fig. 1d), was chosen assuming a lower state of pollution based on its position in proximity to Capo Zafferano, at the northern extremity of S. Elia’s bay, with an average depth of 11 m and rocky seabed (see Fig. 1b and Supplementary Information: Table S1). Conversely, Site B (see Fig. 1e was chosen in the same coastal area (only 4.7 km away from Site A) assuming a higher state of pollution due to its position located on the southern side of Solanto promontory, nearby a pipeline and the mouths of two small creeks from inland, with a shallow (3 m) sandy seabed and where a bathing prohibition order is in place32 (see Fig. 1b, c and Supplementary Information: Table S1).The biodistribution of PFOA in the various matrices was evaluated by analyzing sea urchin’s coelomocytes (CC) (90 samples) and coelomic fluid (CF) (90 samples), as well as gonads (G) (63 samples from 32 sea urchins collected in site A and 31 sea urchins collected in site B), or mixed organs (MIX) (27 samples from 13 sea urchins collected in site A and 14 sea urchins collected in site B) consisting of a homogenized mixture of urchin’s inner matrices when gonads were not developed enough for sampling. Due to their mutually exclusive nature the latter two datasets (G and MIX) were merged and labelled as “Gonads or Mixed organs” (GoM) for statistical analysis and graphical representations that needed a uniform dataset of 45 items per site. Further details on the collection of matrices and their labelling are described in the Supplementary Information.The size of the sea urchins (horizontal diameter without spines) ranged between 30 and 51 mm indicating specimen that have lived in their respective site approximately from 3 to 5 years25.PFOA extraction and analysisMaterials, equipment and software are described in the Supplementary Information.PFOA extraction procedures were adapted33 to the type of matrix to be analyzed. Recovery percentages (R %) were checked per each batch of analyses by spiking blank samples with different amounts of PFOA analytical standard before the extraction procedure33.Spiked samples underwent the same extraction procedure of unspiked samples and the percentage of recovery R was calculated according to Eq. 1, where Cspike is the known concentration of spiked PFOA, Dspiked is the instrumental (LC–MS) analytical response of the spiked sample (i.e. the “detected” concentration), Dunspiked is the analytical response of the unspiked sample. R was then used in Eq. 2 to calculate the actual values, [PFOA], of PFOA concentrations in unspiked analyzed samples.$$ {text{R}} = 100 times left( {{text{D}}_{{{text{spiked}}}} – {text{D}}_{{{text{unspiked}}}} } right)/{text{C}}_{{{text{spike}}}} $$
    (1)
    $$ left[ {{text{PFOA}}} right] = 100 times {text{D}}_{{{text{unspiked}}}} /{text{R}} $$
    (2)
    With the exception of [PFOA]seawater and [PFOA]creek, which are expressed as nanograms per liter (ppt), all other PFOA concentrations are expressed in nanograms per gram of matrix (ppb).The PFOA standard was used for calibration before each batch of analyses and a linear response (R2  > 0.99) was recorded in the concentration range from 0.1 to 1000 ppb. The RSDs on three replicates were below 10%. LOD (0.1 ppb) and LOQ (1.0 ppb) were quantified by IUPAC method. LC–MS analyses were performed in the negative ion-monitoring mode (see Supplementary Information).For the analysis of P. lividus specimens, an estimate of the total PFOA concentration, [PFOA]TOT in ng/g, in each sea urchin has been calculated considering the sampled weight (W) in grams of each matrix (Eq. 3):$$ left[ {{text{PFOA}}} right]_{{{text{TOT}}}} = left( {{text{W}}_{{{text{CF}}}} left[ {{text{PFOA}}} right]_{{{text{CF}}}} + {text{W}}_{{{text{CC}}}} left[ {{text{PFOA}}} right]_{{{text{CC}}}} + {text{W}}_{{{text{GoM}}}} left[ {{text{PFOA}}} right]_{{{text{GoM}}}} } right)/left( {{text{W}}_{{{text{CF}}}} + {text{W}}_{{{text{CC}}}} + {text{W}}_{{{text{GoM}}}} } right) $$
    (3)
    Water analysisDuring each one of the 3 sampling campaigns, 2 samples of seawater (5 l from Site A and 5 l from site B) and 2 samples of brackish water (5 l from each creek mouths in site B) were collected for a total of 6 seawater samples and 6 brackish water samples.Samples were checked for the presence of PFOA by solid phase extraction (SPE) (see Supplementary Information) followed by LC–MS analysis34.The percentage of recovery, calculated according to Eq. 1, was R = 120%. [PFOA]seawater and [PFOA]creek concentrations (ng/L) were determined from analytical data according to Eq. 2.
    Posidonia oceanica analysisA total of 40 samples of leaves were collected from different individuals of P. oceanica (20 samples from site A and 20 samples from site B). Each sample was cut in tiny pieces and homogenized using an agate mortar and pestle, weighed (0.5 g) and transferred to a glass tube for extraction (see Supplementary Information).The percentage of recovery, calculated according to Eq. 1, was R = 70%. [PFOA]P. oceanica concentrations (ng/g) were determined from analytical data according to Eq. 2.Coelomocytes and coelomic fluid analysisThe coelomic fluid, containing also the coelomocyte population, was taken from all the ninety collected specimens (45 per site) by inserting an ultrathin and sharp needle (32G 0.26 mm × 12 mm) of a 1 mL syringe through the peristomal membrane35. All samples were centrifuged at 4 °C and 1500 rpm for 5 min in a 5804R refrigerated centrifuge (Eppendorf, Germany) thus separating the supernatant coelomic fluid (CF) from the coelomocytes (CC). CF and CC were then weighed and placed in different glass tubes for subsequent PFOA extractions (see Supplementary Information).The percentage of recovery, calculated according to Eq. 1, was R = 28% for CF and R = 68% for CC. [PFOA]CF and [PFOA]CC concentrations (ng/g) were determined from analytical data according to Eq. 2.Gonads analysisThe extraction of PFOA from 63 samples of gonads (32 from Site A and 31 from Site B) was performed with LC–MS grade methanol following the same procedure used for extraction from CF and CC (5 mL for samples greater than 0.5 g samples; 2.5 mL for samples between 0.1 g and 0.5 g). In case of undetected PFOA (considered as zero-values in graphics and statistical data treatment), analyses were repeated for confirmation on concentrated sample extracts.Twenty spiked samples were prepared from the most abundant samples of gonads (10 spiked samples per site), by adding 25 µL of an aqueous 1 mg/L stock solution of PFOA to 0.25 g of gonads samples. The percentage of PFOA recovery from gonads, calculated according to Eq. 1, was R = 73%. [PFOA]G concentrations (ng/g) were determined from analytical data according to Eq. 2.Mixed organs analysisIn 27 specimens of sea urchins (13 from Site A and 14 from Site B), the developmental status was not sufficient to collect at least 0.1 g of gonad sample. For these individuals, organs remaining after CF and CC collection, mainly intestine and undeveloped gonads, were mixed together and extracted similarly to the other matrices.Spiked samples were prepared by adding 25 µL of an aqueous 1 mg/L stock solution of PFOA to 0.25 g of mixed organs (MIX) samples. The percentage of PFOA recovery from MIX, calculated according to Eq. 1, was R = 20%. [PFOA]MIX concentrations (ng/g) were determined from analytical data according to Eq. 2.Statistical analyses and graphical data representationThe distribution of PFOA concentrations in all the sampled matrices from collected sea urchins is graphically represented by box and jitter plot (Fig. 2) where the 25–75 percentiles are drawn using a box; minimum and maximum are shown at the end of the thin lines (whiskers), while the median is marked as a horizontal line in the boxfitting. Statistical tests and linear fittings were used to evaluate data significance and correlations (see Supplementary Information).Figure 2Box and jitter plot showing the concentrations of PFOA found in the Coelomic Fluid (CF) Coelomocytes (CC) and Gonads or Mixed organs (GoM), as well as the total PFOA concentration (TOT), in 45 specimens of P. lividus collected from Site A (left side) and in 45 specimens of P. lividus collected from Site B (right side).Full size imageA permutational multivariate analysis of variance PERMANOVA36 was performed to evaluate the differences in the PFOA concentrations between the two groups of sea urchins collected from site A and site B. The experimental design comprised of one factor (Site) two levels (fixed and orthogonal) and four variables corresponding to the concentrations of PFOA in each type of sample analysed (coelomocytes, coelomic fluid, gonad or mixed organs) including the estimated total PFOA concentration. Each term in the analysis was tested by 999 random permutations.Finally, Principal Component Analysis (PCA) (see Supplementary Information: PCA tables and graphs) was performed on a dataset, containing five variables. Specifically sea urchin’s size and PFOA concentrations in each type of sample (CF, CC, and GoM) as well as in the entire sea urchin (TOT), to verify the multivariate nature of data in a relatively small number of dimensions, thus limiting the loss of information. More

  • in

    Electric field detection as floral cue in hoverfly pollination

    1.Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Raguso, R. A. Flowers as sensory billboards: Progress towards an integrated understanding of floral advertisement. Curr. Opin. Plant Biol. 7, 434–440 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Goulson, D., Stout, J. C. & Hawson, S. A. Can flower constancy in nectaring butterflies be explained by Darwin’s interference hypothesis?. Oecologia 112, 225–231 (1997).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Goulson, D. & Wright, N. P. Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behav. Ecol. 9, 213–219 (1998).Article 

    Google Scholar 
    5.Von Arx, M., Goyret, J., Davidowitz, G. & Raguso, R. A. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths. Proc. Natl. Acad. Sci. 109, 9471–9476 (2012).ADS 
    Article 

    Google Scholar 
    6.Leonard, A. S., Dornhaus, A. & Papaj, D. R. Forget-me-not: Complex floral displays, inter-signal interactions, and pollinator cognition. Curr. Zool. 57, 215–224 (2011).Article 

    Google Scholar 
    7.Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B. & Eisikowitch, D. The role of electrostatic forces in pollination. Plant Syst. Evol. 222, 133–142. https://doi.org/10.1007/bf00984099 (2000).Article 

    Google Scholar 
    8.Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination—Part 2: Simulations of pollen capture. Atmos. Environ. 41, 1596–1603 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Erickson, E. Surface electric potentials on worker honeybees leaving and entering the hive. J. Apic. Res. 14, 141–147 (1975).Article 

    Google Scholar 
    10.Edwards, D. Electrostatic charges on insects due to contact with different substrates. Can. J. Zool. 40, 579–584 (1962).Article 

    Google Scholar 
    11.Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B. & Eisikowitch, D. Pollen and Pollination 133–142 (Springer, 2000).Book 

    Google Scholar 
    12.Eskov, E. & Sapozhnikov, A. Mechanism of generation and perception of electric fields by honey bees. Biofizika 21, 1097–1102 (1976).CAS 

    Google Scholar 
    13.Clarke, D., Whitney, H., Sutton, G. & Robert, D. Detection and learning of floral electric fields by bumblebees. Science 340, 66–69 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen. Atmos. Environ. 41, 1587–1595 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Gan-Mor, S., Schwartz, Y., Bechar, A., Eisikowitch, D. & Manor, G. Relevance of electrostatic forces in natural and artificial pollination. Can. Agric. Eng. 37, 189–194 (1995).
    Google Scholar 
    16.Colin, M., Richard, D. & Chauzy, S. Measurement of electric charges carried by bees: Evidence of biological variations. J. Bioelectr. 10, 17–32 (1991).Article 

    Google Scholar 
    17.Pinillos, V. & Cuevas, J. Artificial pollination in tree crop production. Horticult. Rev. 2, 2 (2008).
    Google Scholar 
    18.Corbet, S. A., Beament, J. & Eisikowitch, D. Are electrostatic forces involved in pollen transfer?. Plant Cell Environ. 5, 125–129 (1982).Article 

    Google Scholar 
    19.Inouye, D. W., Larson, B. M., Ssymank, A. & Kevan, P. G. Flies and flowers III: Ecology of foraging and pollination. J. Pollin. Ecol. 16, 115–133 (2015).Article 

    Google Scholar 
    20.Kanstrup, J. & Olesen, J. M. Plant-flower visitor interactions in a neotropical rain forest canopy: Community structure and generalisation level. The Scand. Assoc. Pollin. Ecol. honours knut Fægri 2, 33–42 (2000).
    Google Scholar 
    21.Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).Article 

    Google Scholar 
    22.Sakurai, A. & Takahashi, K. Flowering phenology and reproduction of the Solidago virgaurea L. complex along an elevational gradient on M t N orikura, central Japan. Plant Sp. Biol. 32, 270–278 (2017).Article 

    Google Scholar 
    23.Forup, M. L., Henson, K. S., Craze, P. G. & Memmott, J. The restoration of ecological interactions: Plant–pollinator networks on ancient and restored heathlands. J. Appl. Ecol. 45, 742–752 (2008).Article 

    Google Scholar 
    24.Solomon, M. & Kendall, D. Pollination by the syrphid fly, Eristalis tenax. (1970).25.Kendall, D., Wilson, D., Guttridge, C. & Anderson, H. Testing Eristalis as a pollinator of covered crops. Long Ashton Res. Stn. Rep. 1971, 120–121 (1971).
    Google Scholar 
    26.Ohsawa, R. & Namai, H. The effect of insect pollinators on pollination and seed setting in Brassica campestris cv. Nozawana and Brassica juncea cv Kikarashina. Jpn. J. Breed. 37, 453–463 (1987).ADS 
    Article 

    Google Scholar 
    27.Jauker, F. & Wolters, V. Hover flies are efficient pollinators of oilseed rape. Oecologia 156, 819–823 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    28.Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 46, 1080–1087 (2009).Article 

    Google Scholar 
    29.Kalmijn, A. J. The electric sense of sharks and rays. J. Exp. Biol. 55, 371–383 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Clarke, D., Morley, E. & Robert, D. The bee, the flower, and the electric field: Electric ecology and aerial electroreception. J. Comp. Physiol. A. 203, 737–748 (2017).Article 

    Google Scholar 
    31.Greggers, U. et al. Reception and learning of electric fields in bees. Proc. R. Soc. B Biol. Sci. 280, 20130528 (2013).Article 

    Google Scholar 
    32.Casas, J. & Dangles, O. Physical ecology of fluid flow sensing in arthropods. Annu. Rev. Entomol. 55, 505–520 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Tautz, J. & Rostás, M. Honeybee buzz attenuates plant damage by caterpillars. Curr. Biol. 18, R1125–R1126 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Bathellier, B., Steinmann, T., Barth, F. G. & Casas, J. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency. J. R. Soc. Interface 9, 1131–1143 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Newland, P. L. et al. Static electric field detection and behavioural avoidance in cockroaches. J. Exp. Biol. 211, 3682–3690 (2008).PubMed 
    Article 

    Google Scholar 
    36.Sutton, G. P., Clarke, D., Morley, E. L. & Robert, D. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. 113, 7261–7265 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Wędzony, M. & Filek, M. Changes of electric potential in pistils of Petunia hybrida Hort. and Brassica napus L. during pollination. Acta Physiol. Plantarum 20, 291–297 (1998).Article 

    Google Scholar 
    38.Stout, J. C. & Goulson, D. The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Anim. Behav. 62, 183–189 (2001).Article 

    Google Scholar 
    39.Weiss, M. R. Floral color change: A widespread functional convergence. Am. J. Bot. 82, 167–185 (1995).Article 

    Google Scholar 
    40.Waser, N. M. & Price, M. V. Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii. Nature 302, 422 (1983).ADS 
    Article 

    Google Scholar 
    41.Shimozawa, T., Murakami, J. & Kumagai, T. Sensors and Sensing in Biology and Engineering 145–157 (Springer, 2003).Book 

    Google Scholar 
    42.Khan, S. & Hanif, H. Diversity and fauna of hoverflies (Syrphidae) in Chakwal, Pakistan. Int. J of Zool. Stud. 1, 22–23 (2016).
    Google Scholar 
    43.Khan, S. A. & Hanif, H. First record and redescription of Cheilosia albipila syrphid flies from Punjab, Pakistan. Int. J. Zool. Res. 1, 2 (2016).
    Google Scholar 
    44.Shehzad, A. et al. Faunistic study of hover flies (Diptera: Syrphidae) of Pakistan. Orient. Insects 51, 197–220 (2017).Article 

    Google Scholar 
    45.Nicholas, S., Thyselius, M., Holden, M. & Nordström, K. Rearing and long-term maintenance of eristalis tenax hoverflies for research studies. JoVE https://doi.org/10.3791/57711 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Gilbert, F. S. Foraging ecology of hoverflies: Morphology of the mouthparts in relation to feeding on nectar and pollen in some urban species. Ecol. Entomol. 2, 2 (1981).
    Google Scholar 
    47.Nicholas, S., Thyselius, M., Holden, M. & Nordström, K. Rearing and long-term maintenance of Eristalis tenax hoverflies for research studies. J. Vis. Exp. JoVE 2, 2 (2018).
    Google Scholar 
    48.Hogg, B. N., Bugg, R. L. & Daane, K. M. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol. Control 56, 76–84 (2011).Article 

    Google Scholar 
    49.McGonigle, D. F., Jackson, C. W. & Davidson, J. L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrostat. 54, 167–177 (2002).Article 

    Google Scholar 
    50.Koh, K., Montgomery, C., Clarke, D., Morley, E. & Robert, D. in Journal of Physics: Conference Series. 012001 (IOP Publishing).51.Rycroft, M., Israelsson, S. & Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Solar Terr. Phys. 62, 1563–1576 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Whitney, H. M., Dyer, A., Chittka, L., Rands, S. A. & Glover, B. J. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften 95, 845–850 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Stanković, B. & Davies, E. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett. 390, 275–279 (1996).PubMed 
    Article 

    Google Scholar  More

  • in

    The macronuclear genome of the Antarctic psychrophilic marine ciliate Euplotes focardii reveals new insights on molecular cold adaptation

    1.Pucciarelli, S. et al. Molecular cold-adaptation of protein function and gene regulation: the case for comparative genomic analyses in marine ciliated protozoa. Mar Genomics 2, 57–66. https://doi.org/10.1016/j.margen.2009.03.008 (2009).Article 
    PubMed 

    Google Scholar 
    2.Pucciarelli, S., Marziale, F., Di Giuseppe, G., Barchetta, S. & Miceli, C. Ribosomal cold-adaptation: characterization of the genes encoding the acidic ribosomal P0 and P2 proteins from the Antarctic ciliate Euplotes focardii. Gene 360, 103–110. https://doi.org/10.1016/j.gene.2005.06.007 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Pucciarelli, S. & Miceli, C. Characterization of the cold-adapted alpha-tubulin from the psychrophilic ciliate Euplotes focardii. Extremophiles 6, 385–389. https://doi.org/10.1007/s00792-002-0268-5 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Yang, G. et al. Characterization and comparative analysis of psychrophilic and mesophilic alpha-amylases from Euplotes species: a contribution to the understanding of enzyme thermal adaptation. Biochem Biophys Res Commun 438, 715–720. https://doi.org/10.1016/j.bbrc.2013.07.113 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Prescott, D. M. The DNA of ciliated protozoa. Microbiol Rev 58, 233–267 (1994).CAS 
    Article 

    Google Scholar 
    6.Mollenbeck, M. & Klobutcher, L. A. De novo telomere addition to spacer sequences prior to their developmental degradation in Euplotes crassus. Nucleic Acids Res 30, 523–531 (2002).Article 

    Google Scholar 
    7.Swart, E. C. et al. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol 11, e1001473. https://doi.org/10.1371/journal.pbio.1001473 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Heyse, G., Jonsson, F., Chang, W. J. & Lipps, H. J. RNA-dependent control of gene amplification. Proc Natl Acad Sci U S A 107, 22134–22139. https://doi.org/10.1073/pnas.1009284107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Nowacki, M., Haye, J. E., Fang, W., Vijayan, V. & Landweber, L. F. RNA-mediated epigenetic regulation of DNA copy number. Proc Natl Acad Sci U S A 107, 22140–22144. https://doi.org/10.1073/pnas.1012236107 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Dayeh, V. R. et al. Comparing a ciliate and a fish cell line for their sensitivity to several classes of toxicants by the novel application of multiwell filter plates to Tetrahymena. Res Microbiol 156, 93–103. https://doi.org/10.1016/j.resmic.2004.08.005 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Detrich, H. W., 3rd, Parker, S. K., Williams, R. C., Jr., Nogales, E. & Downing, K. H. Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes. J Biol Chem 275, 37038–37047. https://doi.org/10.1074/jbc.M005699200 (2000).12.Manka, S. W. & Moores, C. A. Microtubule structure by cryo-EM: snapshots of dynamic instability. Essays Biochem 62, 737–751. https://doi.org/10.1042/EBC20180031 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Inclan, Y. F. & Nogales, E. Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin. J Cell Sci 114, 413–422 (2001).CAS 
    Article 

    Google Scholar 
    14.Chiappori, F. et al. Structural thermal adaptation of beta-tubulins from the Antarctic psychrophilic protozoan Euplotes focardii. Proteins 80, 1154–1166. https://doi.org/10.1002/prot.24016 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Marziale, F. et al. Different roles of two gamma-tubulin isotypes in the cytoskeleton of the Antarctic ciliate Euplotes focardii: remodelling of interaction surfaces may enhance microtubule nucleation at low temperature. FEBS J 275, 5367–5382. https://doi.org/10.1111/j.1742-4658.2008.06666.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Pucciarelli, S., Miceli, C. & Melki, R. Heterologous expression and folding analysis of a beta-tubulin isotype from the Antarctic ciliate Euplotes focardii. Eur J Biochem 269, 6271–6277 (2002).CAS 
    Article 

    Google Scholar 
    17.Gromer, S., Urig, S. & Becker, K. The thioredoxin system–from science to clinic. Med Res Rev 24, 40–89. https://doi.org/10.1002/med.10051 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ J 5, 9–19. https://doi.org/10.1097/WOX.0b013e3182439613 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Alin, P., Danielson, U. H. & Mannervik, B. 4-Hydroxyalk-2-enals are substrates for glutathione transferase. FEBS Lett 179, 267–270 (1985).CAS 
    Article 

    Google Scholar 
    20.Juganson, K. et al. Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events. Environ Pollut 225, 481–489. https://doi.org/10.1016/j.envpol.2017.03.013 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Clark, M. S., Fraser, K. P. & Peck, L. S. Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones 13, 39–49. https://doi.org/10.1007/s12192-008-0014-8 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Tomanek, L. The heat-shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula). Integr Comp Biol 42, 797–807. https://doi.org/10.1093/icb/42.4.797 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Morimoto, R. I., Kline, M. P., Bimston, D. N. & Cotto, J. J. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32, 17–29 (1997).CAS 
    PubMed 

    Google Scholar 
    24.Gonzalez-Aravena, M. et al. HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in response to heat stress. Biol Res 51, 8. https://doi.org/10.1186/s40659-018-0156-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Hofmann, G. E., Buckley, B. A., Airaksinen, S., Keen, J. E. & Somero, G. N. Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203, 2331–2339 (2000).CAS 
    Article 

    Google Scholar 
    26.La Terza, A., Papa, G., Miceli, C. & Luporini, P. Divergence between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Mol Ecol 10, 1061–1067. https://doi.org/10.1046/j.1365-294x.2001.01242.x (2001).27.Klobutcher, L. A. & Farabaugh, P. J. Shifty ciliates: frequent programmed translational frameshifting in euplotids. Cell 111, 763–766 (2002).CAS 
    Article 

    Google Scholar 
    28.Lobanov, A. V. et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat Struct Mol Biol 24, 61–68. https://doi.org/10.1038/nsmb.3330 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Coordinators, N. R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 45, D12–D17. https://doi.org/10.1093/nar/gkw1071 (2017).CAS 
    Article 

    Google Scholar 
    30.Pucciarelli, S. et al. Microbial consortium associated with the antarctic marine ciliate Euplotes focardii: an investigation from genomic sequences. Microb Ecol 70, 484–497. https://doi.org/10.1007/s00248-015-0568-9 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Klobutcher, L. A. et al. Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus. Nucleic Acids Res 26, 4230–4240. https://doi.org/10.1093/nar/26.18.4230 (1998).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Aeschlimann, S. H. et al. The draft assembly of the radically organized Stylonychia lemnae macronuclear genome. Genome Biol Evol 6, 1707–1723. https://doi.org/10.1093/gbe/evu139 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Swart, E. C. (personal communication).34.Cavalcanti, A. R., Stover, N. A., Orecchia, L., Doak, T. G. & Landweber, L. F. Coding properties of Oxytricha trifallax (Sterkiella histriomuscorum) macronuclear chromosomes: analysis of a pilot genome project. Chromosoma 113, 69–76. https://doi.org/10.1007/s00412-004-0295-3 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Lozupone, C. A., Knight, R. D. & Landweber, L. F. The molecular basis of nuclear genetic code change in ciliates. Curr Biol 11, 65–74. https://doi.org/10.1016/s0960-9822(01)00028-8 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Salas-Marco, J. et al. Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes. Mol Cell Biol 26, 438–447. https://doi.org/10.1128/MCB.26.2.438-447.2006 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Klobutcher, L. A. Sequencing of random Euplotes crassus macronuclear genes supports a high frequency of +1 translational frameshifting. Eukaryot Cell 4, 2098–2105. https://doi.org/10.1128/EC.4.12.2098-2105.2005 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Wang, R., Xiong, J., Wang, W., Miao, W. & Liang, A. High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Sci Rep 6, 21139. https://doi.org/10.1038/srep21139 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Turanov, A. A. et al. Genetic code supports targeted insertion of two amino acids by one codon. Science 323, 259–261. https://doi.org/10.1126/science.1164748 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Maehigashi, T., Dunkle, J. A., Miles, S. J. & Dunham, C. M. Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Proc Natl Acad Sci U S A 111, 12740–12745. https://doi.org/10.1073/pnas.1409436111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Miceli, C., Ballarini, P., Di Giuseppe, G., Valbonesi, A. & Luporini, P. Identification of the tubulin gene family and sequence determination of one beta-tubulin gene in a cold-poikilotherm protozoan, the antarctic ciliate Euplotes focardii. J Eukaryot Microbiol 41, 420–427. https://doi.org/10.1111/j.1550-7408.1994.tb06100.x (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Ricci, F. et al. The sub-chromosomic macronuclear pheromone genes of the ciliate Euplotes raikovi: comparative structural analysis and insights into the mechanism of expression. J Eukaryot Microbiol 66, 376–384. https://doi.org/10.1111/jeu.12677 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Wang, R., Liu, J., Di Giuseppe, G. & Liang, A. UAA and UAG may Encode Amino Acid in Cathepsin B Gene of Euplotes octocarinatus. J Eukaryot Microbiol 67, 144–149. https://doi.org/10.1111/jeu.12755 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F. & Baranov, P. V. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in condylostoma magnum. Mol Biol Evol 33, 2885–2889. https://doi.org/10.1093/molbev/msw166 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702. https://doi.org/10.1016/j.cell.2016.06.020 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Roy, B., Leszyk, J. D., Mangus, D. A. & Jacobson, A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci U S A 112, 3038–3043. https://doi.org/10.1073/pnas.1424127112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. & Weissman, J. S. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. Elife 2, e01179. https://doi.org/10.7554/eLife.01179 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Frechin, M., Duchene, A. M. & Becker, H. D. Translating organellar glutamine codons: a case by case scenario?. RNA Biol 6, 31–34. https://doi.org/10.4161/rna.6.1.7564 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Wilcox, M. & Nirenberg, M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A 61, 229–236. https://doi.org/10.1073/pnas.61.1.229 (1968).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Detrich, H. W. 3rd., Fitzgerald, T. J., Dinsmore, J. H. & Marchese-Ragona, S. P. Brain and egg tubulins from antarctic fishes are functionally and structurally distinct. J Biol Chem 267, 18766–18775 (1992).CAS 
    Article 

    Google Scholar 
    51.Detrich, H. W. 3rd., Johnson, K. A. & Marchese-Ragona, S. P. Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry 28, 10085–10093 (1989).CAS 
    Article 

    Google Scholar 
    52.Wloga, D. et al. Glutamylation on alpha-tubulin is not essential but affects the assembly and functions of a subset of microtubules in Tetrahymena thermophila. Eukaryot Cell 7, 1362–1372. https://doi.org/10.1128/EC.00084-08 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Eisen, J. A. et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4, e286. https://doi.org/10.1371/journal.pbio.0040286 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Aury, J. M. et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178. https://doi.org/10.1038/nature05230 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Pucciarelli, S. et al. Distinct functional roles of beta-tubulin isotypes in microtubule arrays of Tetrahymena thermophila, a model single-celled organism. PLoS ONE 7, e39694. https://doi.org/10.1371/journal.pone.0039694 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Pucciarelli, S. et al. Tubulin folding: the special case of a beta-tubulin isotype from the Antarctic psychrophilic ciliate Euplotes focardii. Polar Biol 36, 1833–1838. https://doi.org/10.1007/s00300-013-1390-9 (2013).Article 

    Google Scholar 
    57.Pucci, F. & Rooman, M. Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 42, 117–128. https://doi.org/10.1016/j.sbi.2016.12.007 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Aqvist, J., Isaksen, G. V. & Brandsdal, B. O. Computation of enzyme cold adaptation. Nat Rev Chem 1, 0051. https://doi.org/10.1038/s41570-017-0051 (2017).CAS 
    Article 

    Google Scholar 
    59.Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68, 253–278. https://doi.org/10.1146/annurev.physiol.68.040104.110001 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.McCord, J. M. & Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–6055 (1969).61.McCord, J. M. & Fridovich, I. Superoxide dismutase: the first twenty years (1968–1988). Free Radic Biol Med 5, 363–369 (1988).CAS 
    Article 

    Google Scholar 
    62.Miller, A. F. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586, 585–595. https://doi.org/10.1016/j.febslet.2011.10.048 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Benov, L. T. & Fridovich, I. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem 269, 25310–25314 (1994).CAS 
    Article 

    Google Scholar 
    64.Steinman, H. M. & Ely, B. Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme. J Bacteriol 172, 2901–2910. https://doi.org/10.1128/jb.172.6.2901-2910.1990 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Antonyuk, S. V., Strange, R. W., Marklund, S. L. & Hasnain, S. S. The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. J Mol Biol 388, 310–326. https://doi.org/10.1016/j.jmb.2009.03.026 (2009).66.Marklund, S. L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem J 222, 649–655. https://doi.org/10.1042/bj2220649 (1984).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Bannister, J. V., Bannister, W. H. & Rotilio, G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22, 111–180 (1987).CAS 
    Article 

    Google Scholar 
    68.James, E. R. Superoxide dismutase. Parasitol Today 10, 481–484. https://doi.org/10.1016/0169-4758(94)90161-9 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Ferro, D. et al. Cu, Zn superoxide dismutases from Tetrahymena thermophila: molecular evolution and gene expression of the first line of antioxidant defenses. Protist 166, 131–145. https://doi.org/10.1016/j.protis.2014.12.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Arnaiz, O. & Sperling, L. ParameciumDB in 2011: new tools and new data for functional and comparative genomics of the model ciliate Paramecium tetraurelia. Nucleic Acids Res 39, D632-636. https://doi.org/10.1093/nar/gkq918 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Fink, R. C. & Scandalios, J. G. Molecular evolution and structure–function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys 399, 19–36. https://doi.org/10.1006/abbi.2001.2739 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Lee, Y. M., Friedman, D. J. & Ayala, F. J. Superoxide dismutase: an evolutionary puzzle. Proc Natl Acad Sci U S A 82, 824–828. https://doi.org/10.1073/pnas.82.3.824 (1985).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Pischedda, A. et al. Antarctic marine ciliates under stress: superoxide dismutases from the psychrophilic Euplotes focardii are cold-active yet heat tolerant enzymes. Sci Rep 8, 14721. https://doi.org/10.1038/s41598-018-33127-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Yang, G. et al. Characterization of the first eukaryotic cold-adapted patatin-like phospholipase from the psychrophilic Euplotes focardii: Identification of putative determinants of thermal-adaptation by comparison with the homologous protein from the mesophilic Euplotes crassus. Biochimie 95, 1795–1806. https://doi.org/10.1016/j.biochi.2013.06.008 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Li, J., Zhou, L., Lin, X., Yi, Z. & Al-Rasheid, K. A. Characterizing dose-responses of catalase to nitrofurazone exposure in model ciliated protozoan Euplotes vannus for ecotoxicity assessment: enzyme activity and mRNA expression. Ecotoxicol Environ Saf 100, 294–302. https://doi.org/10.1016/j.ecoenv.2013.08.021 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Prast-Nielsen, S., Huang, H. H. & Williams, D. L. Thioredoxin glutathione reductase: its role in redox biology and potential as a target for drugs against neglected diseases. Biochim Biophys Acta 1262–1271, 2011. https://doi.org/10.1016/j.bbagen.2011.06.024 (1810).CAS 
    Article 

    Google Scholar 
    77.Kabani, M. & Martineau, C. N. Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity?. Curr Genomics 9, 338–248. https://doi.org/10.2174/138920208785133280 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.La Terza, A., Miceli, C. & Luporini, P. The gene for the heat-shock protein 70 of Euplotes focardii, an Antarctic psychrophilic ciliate. Antarct. Sci. 16, 23–28. https://doi.org/10.1017/S0954102004001774 (2004).ADS 
    Article 

    Google Scholar 
    79.Chen, X. et al. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 19, 1292–1308. https://doi.org/10.1111/1755-0998.13023 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Chen, Z. et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 105, 12944–12949. https://doi.org/10.1073/pnas.0802432105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Li, Y. et al. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics 20, 624. https://doi.org/10.1186/s12864-019-5988-3 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Andrews, S. (2010).84.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Nikolenko, S. I., Korobeynikov, A. I. & Alekseyev, M. A. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14 Suppl 1, S7. https://doi.org/10.1186/1471-2164-14-S1-S7 (2013).86.Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Boscaro, V., Husnik, F., Vannini, C. & Keeling, P. J. Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria-eukaryote endosymbioses. Proc Biol Sci 286, 20190693. https://doi.org/10.1098/rspb.2019.0693 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Serra, V. et al. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov. Sci Rep 10, 20311. https://doi.org/10.1038/s41598-020-76348-z (2020).89.Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34, W435-439. https://doi.org/10.1093/nar/gkl200 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323. https://doi.org/10.1186/1471-2105-12-323 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. https://doi.org/10.1093/bioinformatics/bti610 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    92.Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067. https://doi.org/10.1093/bioinformatics/btm071 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32, 11–16. https://doi.org/10.1093/nar/gkh152 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res 36, W70-74. https://doi.org/10.1093/nar/gkn188 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res 40, e112. https://doi.org/10.1093/nar/gks339 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659. https://doi.org/10.1093/bioinformatics/btl158 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    99.Shigematsu, M. et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res 45, e70. https://doi.org/10.1093/nar/gkx005 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Bushnell, B., Rood, J. & Singer, E. BBMerge: accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056. https://doi.org/10.1371/journal.pone.0185056 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17, 3. https://doi.org/10.14806/ej.17.1.200 (2011).102.Holmes, A. D., Howard, J. M., Chan, P. P. & Lowe, T. M. tRNA Analysis of eXpression (tRAX): A tool for integrating analysis of tRNAs, tRNA-derived small RNAs, and tRNA modifications. (Submitted) (2020).103.Sievers, F. & Higgins, D. G. Clustal omega. Curr Protoc Bioinformatics 48, 3 13 11–16. https://doi.org/10.1002/0471250953.bi0313s48 (2014).104.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. 54, 5 6 1–5 6 37. https://doi.org/10.1002/cpbi.3 (2016).106.Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296–W303. https://doi.org/10.1093/nar/gky427 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Ichikawa, M. et al. Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. Proc Natl Acad Sci U S A 116, 19930–19938. https://doi.org/10.1073/pnas.1911119116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Chaaban, S. et al. The Structure and Dynamics of C. elegans Tubulin Reveals the Mechanistic Basis of Microtubule Growth. Dev Cell 47, 191–204 e198. https://doi.org/10.1016/j.devcel.2018.08.023 (2018).109.Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445. https://doi.org/10.1038/35078000 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    110.Howes, S. C. et al. Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J Cell Biol 216, 2669–2677. https://doi.org/10.1083/jcb.201612195 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Ma, M. et al. Structure of the Decorated Ciliary Doublet Microtubule. Cell 179, 909–922 e912. https://doi.org/10.1016/j.cell.2019.09.030 (2019).112.Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001 (2015).ADS 
    Article 

    Google Scholar 
    113.Morrison, T. B., Weis, J. J. & Wittwer, C. T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954–958, 960, 962 (1998).114.Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45. https://doi.org/10.1093/nar/29.9.e45 (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    115.Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30, e36. https://doi.org/10.1093/nar/30.9.e36 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Physiological responses of Agriophyllum squarrosum and Setaria viridis to drought and re-watering

    Chlorophyll plays an important part in the assimilation, transfer and conversion of light energy during photosynthesis. Its content is therefore closely related to the carbon fixation efficiency of photosynthesis and, because photosynthesis provides the energy source for metabolic responses, plays an important role in the drought resistance of plants. Chlorophyll fluorescence is often used to analyze photosynthesis efficiency under stress1. Fm is the fluorescence output when the reaction center of PSII is completely closed, and therefore reflects the maximum electron transfer through PSII40. Fv/Fm represents the energy conversion efficiency of PSII reactions, and can be used to measure the degree of external stress41.The chlorophyll content and Fm of A. squarrosum first increased and then decreased under moderate and severe drought, indicating that A. squarrosum adjusted its energy capture during the early stage of drought, and because electron transfer was relatively stable, normal photosynthesis was maintained. As stress intensified during prolonged drought, chlorophyll degradation accelerated and electron transfer through PSII slowed, which was similar to the effect of drought stress on chlorophyll of A. halodendron1. On 1 August, when the drought treatments began, the leaves of A. squarrosum in the control became noticeably yellow and slightly wilted, and the chlorophyll content and Fm were lower than those in the drought treatments. After re-watering, the chlorophyll content and Fm of A. squarrosum decreased, but they increased with increasing drought intensity. There is a limit to plant demand for water, and both too much and too little water are not conducive to plant growth. As a pioneer species during vegetation succession in sandy land, A. squarrosum is a xerophyte31. The soil moisture content in the control was higher than its requirements, and its photosynthesis was obviously adversely affected by controlling the water content at a higher level than the plants required. There was a significant positive correlation between Fv/Fm and RWC of the two plants, which indicated that water deficit was the main reason for the decrease of Fv/Fm. The chlorophyll fluorescence of A. squarrosum could maintain higher photosynthetic performance under drought stress because of its stronger water holding capacity than that of S. viridis. For A. squarrosum, Fv/Fm decreased with increasing drought duration and intensity. This is because drought reduced the electron transfer capacity of PSII and photochemical activity, leading to excessive accumulation of excitation energy, and adversely affecting photosynthesis. Fv/Fm increased after re-watering on 8 August, when the reduction of stress slowed the inhibition of photosynthesis by drought, by decreasing the inhibition of photosynthesis.For S. viridis, the chlorophyll content, Fm and Fv/Fm decreased with increasing drought duration and intensity, indicating that drought stress hindered the biosynthesis of chlorophyll, and that chlorophyll decomposition increased, leading to decreased chlorophyll content. At the same time, drought resulted in the decrease of PSII photochemical transformation efficiency and photosynthetic activity, and the damage of PSII receptor, which contributed to the damage of photosynthesis and the decrease of electron transfer ability. Fm and Fv/Fm of S. viridis increased after re-watering on 8 August, showing that rehydration relieved the drought stress. In addition, Fv/Fm increased and Fm decreased after re-watering on 14 August, suggesting that the damage to PSII was mitigated by rehydration, but the electron transfer in the PSII reaction center continued to be slower than normal. The chlorophyll content of S. viridis did not return to normal after re-watering, indicating that the leaves of S. viridis were damaged by both prolonged and severe drought stress and that chlorophyll synthesis was significantly affected1.The cell membrane is both a dynamic barrier between the cell interior and its surroundings, and a channel for the exchange of substance and information with its environment42. In particular, it controls water transport between the cell and its environment, leading to changes in RWC. RWC can be used to indicate the degree of dehydration of cells and assess the level of drought suffered by plants43. Under drought stress, the loss of water in plants is directly related to the stability of the cell membrane, and a stable cell membrane is the most basic requirement for maintaining sufficient water to support the cell’s physiological functions. ROS are produced in large quantities under stress, and this can trigger or exacerbate peroxidation of membrane lipids to produce malondialdehyde. Malondialdehyde can damage the membrane and functional molecules such as proteins and nucleic acids in cells, leading to damage or destruction of the membrane’s structure and functions. This, in turn, can increase the permeability of the membrane, leading to growth inhibition or even death. Therefore, changes in membrane permeability and the malondialdehyde content can reflect the degree of membrane lipid peroxidation and cell damage under stress1,3,32. It is consistent with our correlation analysis that RWC of the two species is negatively correlated with malondialdehyde and membrane permeability, and the correlation between RWC and membrane permeability in S. viridis is significant.In A. squarrosum, membrane permeability in the control on 1 August was significantly less than those under moderate and severe drought, but the malondialdehyde content did not differ among the treatments. The change of membrane permeability may have resulted from degreasing of membrane lipids and destruction of the membrane structure after phospholipid dissociation44. From 1 to 13 August, malondialdehyde content of A. squarrosum in the control first decreased and then increased, while membrane permeability increased continuously, indicating that membrane lipid peroxidation was significantly alleviated in wet soil after short-term drought. In contrast, the severe water deficit during the late stage of drought increased peroxidation of membrane lipids and malondialdehyde accumulation, suggesting that the cell membranes in the control had been damaged during the drought process. The malondialdehyde content and membrane permeability of A. squarrosum increased in the control after rehydration on 8 August, but decreased after rehydration on 14 August. This suggests that rehydration during the early stages of drought can exacerbate the peroxidation of membrane lipids and damage the cell membrane, but that rehydration during the late stages of drought mitigated the stress and eased the damage. Many studies showed that membrane permeability and the malondialdehyde content increased synchronously under stress1, but this contradicts our results for A. squarrosum in the control. This may be because the high soil moisture content in the control was not conducive to normal growth of this xerophyte. That is, long-term natural selection in the species’ arid sandy environment would lead to continuous adaptation to its environment, allowing A. squarrosum to become widely distributed in the mobile dunes of the Horqin sandy land45. With increasing drought duration, the malondialdehyde content and membrane permeability of A. squarrosum increased under both moderate and severe drought, indicating that the accumulation of malondialdehyde after drought stress damaged cell membrane and increased its permeability. The RWC values of A. squarrosum in the control were similar, but the membrane permeability fluctuated greatly. This can be due to more than adequate amount of irrigation.Setaria viridis is a late-successional species, and showed different responses to drought. With increasing drought duration and intensity, RWC of S. viridis decreased, while MDA and membrane permeability increased simultaneously. The results indicated that the early occurrence of water stress and membrane peroxidation in S. viridis under stress was one of the main physiological reasons for its inferior drought tolerance to A. squarrosum. Moreover, the damage degree of plants under drought stress should take into account not only the change of membrane permeability, but also the degree of membrane peroxidation and the ability of plant cell membrane to tolerate membrane lipid peroxidation. The chlorophyll content, Fm and Fv/Fm of S. viridis decreased with increasing drought duration and severity, and Fv/Fm of S. viridis was significantly negatively correlated with membrane permeability, which increased with increasing drought stress. This indicated that membrane lipid peroxidation and the accumulation of ROS under drought stress damaged the membrane and inhibited photosynthesis. Re-hydration of S. viridis increased RWC on both dates and in all drought treatments. This was accompanied by decreased malondialdehyde content, particularly after the 14 August re-watering, and by decreased membrane permeability. Rehydration reduced membrane lipid peroxidation, but it did not return to the control level, showing that drought caused a certain degree of damage that may be permanent or that may take some time to be repaired3.Stress can disrupt the balance of ROS metabolism in aerobic plants. When the concentrations of ROS are too high, peroxidation of membrane lipids and the equilibrium for exchanges of cell materials is also disrupted, resulting in a series of physiological and metabolic disorders. To counteract these disorders, plants have evolved protective enzymes during long-term evolution. The enzymes can eliminate O2-, H2O2, OH- and O- and reduce the damage they cause to the plant46. The changes in antioxidant enzyme activities of both species differed under drought stress. SOD played an active role during initial protection against membrane lipid peroxidation and its activity in A. squarrosum increased gradually during the drought. Under natural drought condition, SOD activities of the two species increased gradually, indicating that SOD activity was easily induced by drought stress. At the end of natural drought, the three enzymes of A. squarrosum maintained high level, and the combination of enzymes could resist drought stress, while only POD and SOD in S. viridis were enhanced to alleviate membrane lipid peroxidation. This transformation of the coordination of enzyme activity may be an important physiological mechanism of drought tolerance of A. squarrosum was stronger than that of S. viridis under severe drought. On 7 August, the peroxidase and catalase activities decreased in the control. Because ROS are a metabolism by-product of photorespiration, photosynthesis was inhibited by short-term drought, and the decreased accumulation of ROS caused by protective antioxidant enzymes reduced membrane lipid peroxidation by decreasing levels of malondialdehyde47. On 7 and 13 August, the activities of protective enzymes in A. squarrosum under moderate and severe drought were greater than that in the control. Drought stress led to the accumulation of ROS, and increased membrane lipid peroxidation, as reflected by the malondialdehyde content. At the same time, the accumulated ROS also stimulated the antioxidant enzyme protection system to continuously increase the activities of enzymes, so as to maintain balance of ROS48.Setaria viridis showed different responses. From 1 to 13 August, its peroxidase activity first decreased and then increased, but catalase activity showed the opposite pattern, and SOD activity increased gradually, indicating the existences of coordination among these enzymes under drought stress49. When catalase activity weakened, SOD and peroxidase activities compensated for this weakness to scavenge more ROS and mitigate cell membrane damage. The catalase activity in S. viridis remained less than 50 U g-1 DW min-1 throughout the study. After rehydration, catalase activity in the control was significantly greater than those under moderate and severe drought. There was a close relationship between Fv/Fm and catalase activity in S. viridis. It is possible that the enzyme must be contributing through ROS scavenging. Some of the antioxidant enzymes of both species did not recover after rehydration, which may be related to the possibility that in xerophytes, rehydration did not immediately improve physiological metabolism. It is possible that their antioxidant enzyme systems were so damaged that they would take longer than our study period to return to normal levels, and our samples were collected1 day after rehydration. More

  • in

    Host selection pattern and flavivirus screening of mosquitoes in a disturbed Colombian rainforest

    1.Figueiredo, M. Human urban arboviruses can infect wild animals and jump to sylvatic maintenance cycles in South America. Front Cell Infect. Microbiol. 9, 1–6. https://doi.org/10.3389/fcimb.2019.00259 (2019).Article 

    Google Scholar 
    2.Reeves, L. E. et al. Interactions between the invasive Burmese python, Python bivittatus Kuhl, and the local mosquito community in Florida. PLoS ONE 13, 1–15. https://doi.org/10.1371/journal.pone.0190633 (2018).CAS 
    Article 

    Google Scholar 
    3.Reeves, L. E., Gillett-Kaufman, J. L., Kawahara, A. Y. & Kaufman, E. Barcoding blood meals : New vertebrate- specific primer sets for assigning taxonomic identities to host DNA from mosquito blood meal. PLoS Negl. Trop. Dis. 12, 1–18. https://doi.org/10.1371/journal.pntd.0006767 (2018).CAS 
    Article 

    Google Scholar 
    4.Makanga, B. et al. “Show me which parasites you carry and I will tell you what you eat”, or how to infer the trophic behavior of hematophagous arthropods feeding on wildlife. Ecol. Evol. 7, 7578–7584. https://doi.org/10.1002/ece3.2769 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Burkett-Cadena, N. D., Bingham, A. M., Porterfield, C. & Unnasch, T. R. Innate preference or opportunism : Mosquitoes feeding on birds of prey at the Southeastern raptor center. Vector Ecol. 39, 21–31. https://doi.org/10.1111/j.1948-7134.2014.12066.x (2014).Article 

    Google Scholar 
    6.Mendenhall, I. H., Tello, S. A., Neira, L. A., Castillo, L. F. & Ocampo, C. B. Host preference of the Arbovirus vector Culex erraticus (Diptera: host preference of the arbovirus vector Culex erraticus ( Diptera : Culicidae ) at Sonso Lake, Cauca valley department, Colombia. J. Med. Entomol. 49, 1092–1102. https://doi.org/10.1603/me11260 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Harrington, L. C. et al. Why do female Aedes aegypti (Diptera: Culicidae ) feed preferentially and frequently on human blood?. J. Med. Entomol. 38, 411–422. https://doi.org/10.1603/0022-2585-38.3.411 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Catenacci, L. S. et al. Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Bahia, Brazil. EcoHealth 15, 777–791. https://doi.org/10.1007/s10393-018-1361-2 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Infect. Dis. 28, 191. https://doi.org/10.1038/s41426-018-0194-y (2018).Article 

    Google Scholar 
    10.Borremans, B. et al. Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Phil. Trans. R. Soc. B. 374, 20180344. https://doi.org/10.1098/rstb.2018.0344 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends in Microbiol. 21, 360–363. https://doi.org/10.1016/j.tim.2013.03.003 (2013).CAS 
    Article 

    Google Scholar 
    12.Caron, A., Cappelle, J., Cumming, G. S., Garine-wichatitsky, M. D. & Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 46, 1–11. https://doi.org/10.1186/s13567-015-0217-9 (2015).CAS 
    Article 

    Google Scholar 
    13.Komar, N. & Clark, G. G. West Nile virus activity in Latin America and the Caribbean. Rev. Panam. Salud Publica. 19, 112–117. https://doi.org/10.1590/S1020-49892006000200006 (2006).Article 
    PubMed 

    Google Scholar 
    14.Huba, Z. & Weissenbo, H. Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 140, 271–280. https://doi.org/10.1016/j.vetmic.2009.08.025 (2010).Article 

    Google Scholar 
    15.Barrera, R., Navarro, J. & Liria, J. Contrasting sylvatic foci of Venezuelan equine encephalitis virus in Northern South America. Am. J. Trop. Med. Hyg. 67, 324–34. https://doi.org/10.4269/ajtmh.2002.67.324 (2002).Article 
    PubMed 

    Google Scholar 
    16.Hoyos-López, R., Soto, S. U., Rúa-Uribe, G. & Gallego-Gómez, J. C. Molecular identification of Saint Louis encephalitis virus genotype IV in Colombia. Mem. Inst. Oswaldo Cruz. 110, 719–725. https://doi.org/10.1590/0074-02760280040110 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Guzmán, C., Calderón, A., Martinez, C., Oviedo, M. & Mattar, S. Eco-epidemiology of the Venezuelan equine encephalitis virus in bats of Córdoba and Sucre, Colombia. Acta Trop. 191, 178–184. https://doi.org/10.1016/j.actatropica.2018.12.016 (2019).Article 
    PubMed 

    Google Scholar 
    18.Torres-Gutierrez, C. et al. Mitochondrial COI gene as a tool in the taxonomy of mosquitoes Culex subgenus melanoconion. Acta Trop. 164, 137–149. https://doi.org/10.1016/j.actatropica.2016.09.007 (2016).Article 
    PubMed 

    Google Scholar 
    19.Torres-Gutierrez, C. & Sallum, M. A. M. Catalog of the subgenus melanoconion of Culex (Diptera: Culicidae) for South America. Zootaxa. 4028, 1–50. https://doi.org/10.11646/zootaxa.4028.1.1 (2015).Article 
    PubMed 

    Google Scholar 
    20.Torres-Gutierrez, C., Oliveira, T. M. P., Bergo, E. S. & Sallum, M. A. M. Molecular phylogeny of Culex subgenus Melanoconion (Diptera: Culicidae) based on nuclear and mitochondrial protein-coding genes. R Soc Open Sci. 5, 171900. https://doi.org/10.1098/rsos.171900 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitol. 145, 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 

    Google Scholar 
    22.Laurito, M., De Oliveira, T. M. P., Almirón, W. R., Anice, M. & Sallum, M. COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Mem. Inst. Oswaldo Cruz. 108, 110–122. https://doi.org/10.1590/0074-0276130457 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.IUCN 2020. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (2020).24.Roque, A. L. R. & Jansen, A. M. Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl. 3, 251–262 (2014).Article 

    Google Scholar 
    25.Palermo, P. M. et al. Identification of blood meals from potential Arbovirus mosquito vectors in the peruvian amazon basin. Am. J. Trop. Med. Hyg. 95, 1026–1030. https://doi.org/10.4269/ajtmh.16-0167 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Silva, S., Alencar, J., Costa, J. M., Seixas-lorosa, E. & Guimarães, A. É. Feeding patterns of mosquitoes (Diptera: Culicidae) in six Brazilian environmental preservation areas. J. Vector Ecol. 37, 342–350. https://doi.org/10.1111/j.1948-7134.2012.00237 (2012).Article 

    Google Scholar 
    27.Edman, J. D. Host-feeding patterns of florida mosquitoes I. Aedes, anopheles, coquillettidia, Mansonia and Psorophora. J. Med. Entomol. 30, 687–695. https://doi.org/10.1093/jmedent/8.6.687 (1971).Article 

    Google Scholar 
    28.Gabriel, Z. et al. Culex nigripalpus Theobald (Diptera, Culicidae) feeding habit at the Parque Ecológico. Rev. Bras. Entomol. 52, 4. https://doi.org/10.1590/S0085-56262008000400019 (2008).Article 

    Google Scholar 
    29.Zimmerman, R. H., Galardo, A. K., Lounibos, L, P., Arruda, M. & Wirtz, R. Bloodmeal Hosts of Anopheles Species (Diptera: Culicidae) in a Malaria-Endemic Area of the Brazilian Amazon. J. Med. Entomol. 43, 947–56. https://doi.org/10.1093/jmedent/43.5.947 (2006).Article 
    PubMed 

    Google Scholar 
    30.Mitchell, C. J. et al. Hostfeeding patterns of Argentine mosquitoes (Diptera: Culicidae) collected during and after an epizootic of western equine encephalitis. J. Med. Entomol. 24, 260–267. https://doi.org/10.1093/jmedent/24.2.260 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Stein, M., Zalazar, L., Willener, J. A., Almeida, F. L. & Almirón, W. R. Culicidae (Diptera ) selection of humans, chickens and rabbits in three different environments in the province of Chaco, Argentina. Mem. Inst. Oswaldo Cruz. 108, 563–571. https://doi.org/10.1590/0074-0276108052013005 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Burkett-Cadena, N. D. et al. Blood. Feeding patterns of potential arbovirus vectors of the genus. Am. J. Trop. Med. Hyg. 79, 809–815 (2008).Article 

    Google Scholar 
    33.Takken, W. & Verhulst, N. O. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol. 13, 433–453. https://doi.org/10.1146/annurev-ento-120811-153618 (2013).CAS 
    Article 

    Google Scholar 
    34.Besansky, N. J., Hill, C. A. & Costantini, C. No accounting for taste: host preference in malaria vectors. Trends Parasitol. 20, 249–251. https://doi.org/10.1016/j.pt.2004.03.007 (2004).Article 
    PubMed 

    Google Scholar 
    35.Burkett-Cadena, N. D. & Hayes, L. E. Hosts or habitats: What drives the spatial distribution of mosquitoes? Hosts or habitats. Ecosphere 4, 30. https://doi.org/10.1890/ES13-00009.1 (2013).Article 

    Google Scholar 
    36.Borkent, A. & Belton, P. Attraction of female Uranotaenia lowii (Diptera: Culicidae) to frog calls in Costa Rica. Cambridge Univ. 94, 91–94. https://doi.org/10.4039/n04-113 (2006).Article 

    Google Scholar 
    37.Scott, T. W. & Takken, W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 28, 114–121. https://doi.org/10.1016/j.pt.2012.01.001 (2012).Article 
    PubMed 

    Google Scholar 
    38.Dizney, L. J. & Ruedas, L. A. Increased host species diversity and decreased prevalence of Sin nombre virus. Emerg. Infect. Dis. 15, 1012–1018. https://doi.org/10.3201/eid1507.081083 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511. https://doi.org/10.1086/664612 (2012).Article 
    PubMed 

    Google Scholar 
    40.Rodrigues, B. N. & Boscolo, D. Do bipartite binary antagonistic and mutualistic networks have different responses to the taxonomic resolution of nodes?. Ecol. Entomol. 45, 709–717. https://doi.org/10.1111/een.12844 (2020).Article 

    Google Scholar 
    41.Segar, S. et al. The role of evolutionary processes in shaping ecological networks. Trends Ecol. Evol. 35, 4454–4466 (2020).
    Google Scholar 
    42.Svensson-Coelho, A. M. et al. Reciprocal specialization in multihost malaria parasite communities of birds: A temperate-tropical comparison. Am. Nat. 184, 624–635. https://doi.org/10.1086/678126 (2014).Article 
    PubMed 

    Google Scholar 
    43.Ghalmane, Z., El Hassouni, M., Cherifi, C. & Cherifi, H. Centrality in modular networks. EPJ. Data. Sci. 8, 15. https://doi.org/10.1140/epjds/s13688-019-0195-7 (2019).Article 

    Google Scholar 
    44.Rushmore, J., Bisanzio, D. & Gillespie, T. R. Making new connections: insights from primateparasite networks. Trends Parasitol. 33, 547–560 (2017).Article 

    Google Scholar 
    45.de Carneiro, I.O. et al. Knowledge, practice and perception of human-marsupial interactions in health promotion. J. Infect. Dev. Ctries. 13, 342–347. https://doi.org/10.3855/jidc.10177 (2019).Article 
    PubMed 

    Google Scholar 
    46.Root, J. J. et al. Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am. J. Trop. Med. Hyg. 72, 622–630 (2005).Article 

    Google Scholar 
    47.Cardoso, J. et al. Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus. Emerg. Infect. Dis. 16, 1918–1924. https://doi.org/10.3201/eid1612.100608 (2010).Article 
    PubMed Central 

    Google Scholar 
    48.Muñoz, M. & Navarro, J. C. Virus Mayaro: un arbovirus reemergente en Venezuela y Latinoamérica. Biomedica 32(286–302), 2012. https://doi.org/10.7705/biomedica.v32i2.64786-302 (2012).Article 

    Google Scholar 
    49.Turell, M. J. et al. Susceptibility of peruvian mosquitoes to eastern equine encephalitis virus. J. Med. Entomol. 45, 720–725. https://doi.org/10.1603/0022-2585 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Ferro, C. et al. Natural enzootic vectors of venezuelan equine encephalitis virus. Emerg. Infect. Dis. 9, 49–54. https://doi.org/10.3201/eid0901.020136 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Marsh, C., Link, A., King-Balley, G. & Donati, G. Effects of fragment and vegetation structure on the population abundance of Ateles hybridus, Alouatta seniculus and Cebus albifrons in Magdalena Valley, Colombia. Folia. Primatol. 87, 17–30. https://doi.org/10.1159/000443929 (2016).Article 

    Google Scholar 
    52.Link, A., De Luna, A. G., Alfonso, F., Giraldo-Beltran, P. & Ramirez, F. Initial effects of fragmentation on the density of three neotropical primate species in two lowland forests of Colombia. Endanger. Species Res. 13, 41–50. https://doi.org/10.3354/esr00312 (2010).Article 

    Google Scholar 
    53.Galindo, P., Blanton, S. & Peyton, E. L. A revision of the Uranotaenia of Panama with notes on other American species of the genus (Diptera, Culicidae). Ann. Entomol. Soc. Am. 47, 107–177. https://doi.org/10.1093/aesa/47.1.107 (1954).Article 

    Google Scholar 
    54.Forattini, O.P. Culicidologia médica Identificacao, biologia e epidemiologia. 884. (EDUSP, Sao Paulo, 2002).55.Folmer, Black, M., Hoeh, W. & Lutz, R. 1994 DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    56.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD. Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).CAS 
    Article 

    Google Scholar 
    57.Guindon, S. et al. New Algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Molaei, G., Andreadis, T. G., Armstrong, P. M., Anderson, J. F. & Vossbrinck, C. R. Host feeding patterns of Culex Mosquitoes and West Nile virus transmission, Northeastern United States. Emerg. Infect. Dis. 12, 468–474. https://doi.org/10.3201/eid1203.051004 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Ferro, C. et al. Phlebotomine vector ecology in the domestic transmission of American cutaneous leishmaniasis in chaparral, Colombia. Am. J. Trop. Med. Hyg. 85, 847–856. https://doi.org/10.4269/ajtmh.2011.10-0560 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Moureau, G. et al. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis. 7, 467–477. https://doi.org/10.1089/vbz.2007.0206 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Lanciotti, R. S. et al. Genetic and serologic properties of zika virus associated with an epidemic, Yap State. Emerg. Infec. Dis. 14, 1232–1239. https://doi.org/10.3201/eid1408.080287 (2008).CAS 
    Article 

    Google Scholar 
    62.Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Icwsm. 8, 361–362 (2009).
    Google Scholar 
    63.Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. https://doi.org/10.1098/rsos.140536 (2016).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98. https://doi.org/10.1111/2041-210X.12139 (2014).Article 

    Google Scholar 
    65.Almeida-Neto, M., Guimara, P., Guimara, P. R. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(1227–1239), 39. https://doi.org/10.1111/j.2008.0030-1299.16644.x (2008).Article 

    Google Scholar 
    66.Almeida-Neto, M. & Ulrich, W. Environmental Modelling & Software A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178. https://doi.org/10.1016/j.envsoft.2010.08.003 (2011).Article 

    Google Scholar 
    67.Bascompte, J., Olesen, J. M., Jordano, P. & Melia, C. J. The nested assembly of plant–animal mutualistic networks. PNAS 100, 9383–9387. https://doi.org/10.1073/pnas.1633576100100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. https://doi.org/10.1186/1472-6785-6-9 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Romain, J., Joanne, C., Vincent, D., Frederic, J. & Denis, C. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244. https://doi.org/10.1111/j.1461-0248.2006.00977.x (2006).Article 

    Google Scholar 
    70.Bascompte, J., Jordano, P. & Olesen, J. M. Facilitate biodiversity maintenance. Science 312, 431–433. https://doi.org/10.1126/science.1123412 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Insights into the origin of the invasive populations of Trioza erytreae in Europe using microsatellite markers and mtDNA barcoding approaches

    Genome-wide characterisation of SSRsWe identified and mapped a total of 428,342 microsatellites across the 47,828 scaffolds of the unpublished genome sequence draft of T. erytreae using the GMATA software35. The SSRs frequency was estimated at 765.6 SSRs/Mb, which means 1 SSR for every 1.09 Kb. In silico identified SSRs were distributed among ten types of in tandem repeated motifs (from di- to deca-nucleotides). Analysis of SSR distribution revealed that the di-nucleotide motifs (340,227) were the most abundant SSRs, with a frequency of 79.4%. Both tetra- (20,902) and tri- (61,839) nucleotide repeats comprised about 5–15% (Fig. 1A; Supplementary Data 1). The remaining motifs, from hepta- to deca-nucleotides, comprised less than 1.5% of total SSRs identified in this study (Fig. 1A). Considering the unknown orientation of DNA strands in the Tery6 draft genome sequence of T. erytreae, a further SSRs characterization was carried out grouping the repeat motifs into pairs of complementary sequences. According to this, GA/TC (36.6%) and CT/AG (31.9%) are the most frequent motif pairs, with a total frequency of 68.5% (Fig. 1B). Grouped motif pairs GC/GC (0.05%) and CG/CG (~ 0.02%) were the least abundant di-nucleotide motifs. In decrease order, the most abundant tri-nucleotide motif pairs were ATT/AAT, ATA/TAT, ACA/TGT, TAA/TTA, AAC/GTT, TTG/CAA, and AAG/CTT, which encompassed 9.8% of all identified grouped motif pairs. Occurrence frequency of the remaining grouped motifs, including the rest of tri- and those from tetra- to deca-nucleotides (552 all together), was less than 11% of all motif pairs (Fig. 1B). Our data analysis reveals that SSR markers of 10 bp were most frequent, accounting for about 10% all SSR markers identified in this study. The overall trend of SSR length distribution in the T. erytreae genome is that the frequency of occurrence of SSRs gradually decreases as their length increases (Fig. 1C).Figure 1Frequency distribution of different classes of SSR repeat units in the Trioza erytreae genome. (A) Frequency of motif types by unit length (K-mers). (B) Frequency of grouped repeated motifs by nucleotide composition. (C) Length distribution of SSRs (total number of each type of SSR length is shown in the top of the bars).Full size imageSSR markers development for T. erytreae
    Fifteen SSRs chosen from those repeated motifs identified in silico in this study (Table 1) were used as potential markers to investigate the genetic diversity, structure and phylogeography of T. erytreae individuals from populations in mainland Europe and the archipelagos of the Macaronesia. Scaffolds Tery6_s00034 (274,710 bp), Tery6_s02825 (48,689 bp) and Tery6_s07841 (26739 bp) were randomly selected based on their sequence length (long, medium, and short scaffolds, respectively). SSRs were selected on the base of their type of repeat motif (di, tri-, tetra- and penta-nucleotides), nucleotide composition and length (number of in tandem repeated motifs) (Table 1; Supplementary Data 2). For the scaffold Tery6_s00034, 11 SSR loci were chosen from the total of 106 SSRs identified in silico, three for Tery6_s07841 and one for Tery6_s02825. Selected scaffolds were further investigated to know whether SSR loci mapped into coding or non-coding regions (inter-genic or intron sequences). Although gene annotation of the T. erytreae genome draft is not yet completed, it was possible to get this information for most of the selected SSR loci (data not shown). The scaffolds Tery6_s00034, Tery06, − 07, − 13 and − 14 were found in inter-genic regions, while Tery08, − 12 and − 15 were mapped into introns. For Tery05, − 9, − 10 and − 11 was not possible to establish whether they targeted coding or non-coding regions. SSR loci Tery01, − 02 and − 03 were found in intron regions in the scaffold Tery6_s07841, and SSR locus Tery04 in an inter-genic region in the sequence corresponding to the scaffold Tery6_s02825. For amplification of SSR loci, specific PCR primers were designed on the sequence flanking the in tandem repeated motifs. Blast of the different amplicons against the T. erytreae draft genome sequence showed that PCR primers would result in the specific amplification of their specific SSR locus. Experimental validation of PCR primers was carried out on a testing panel of individuals collected in different locations in the Canary Islands and South Africa. Primers pairs for SSR loci Tery04, − 05, − 06, − 08, − 09, − 10, − 11, − 12, − 13 and − 15 yielded DNA fragments of the expected size and were chosen for carry on further population genetic analysis. These loci contain eight di-nucleotides (AC, AG, GA, CA, GT, TC, TA and TG), one tri-nucleotide (TGA), and three tetra-nucleotides (CATA, CTAC and TACC), which arranged in microsatellites of different length (from 5 to 30 in tandem repeated motifs) (Table 1). Five SSR loci (Tery01, − 02, − 03, − 07 and − 14) were not amplified efficiently and the corresponding primer pairs were discarded for further analysis.Table 1 SSR loci developed in Trioza erytreae.Full size tableThe individuals of T. erytreae collected in different geographical locations in the west coast of mainland Spain and Portugal, the Canary Islands and Madeira, as well as in South Africa and Kenya (Table 2), were analysed using the 10 selected SSR markers designed in this study. The scored allelic data for each SSR marker is summarised in the Table 3. The analysis showed that all SSR markers were polymorphic. Seventy alleles were detected over the ten selected SSR loci, and the average number of alleles per locus (Na) was seven. SSR markers Tery08 and Tery11 had the highest number of alleles (12 and 20 alleles respectively), whereas Tery13 had the lowest (only two alleles). The expected (He) and observed (Ho) heterozygosity per locus in the entire population ranged from 0.20 to 0.77 and from 0.03 to 0.84, respectively. SSRs Tery11 and Tery08 displayed the highest diversity (He of 0.77 and 0.72, respectively), and Tery09 and Tery13 (He of 0.20 and 0.22, respectively) were the least informative markers. Most of the SSR markers used in this work showed He values higher than 0.5, apart from Tery05, − 09 and − 13 (with values of 0.39, 0.20 and 0.22, respectively). With the only exception of Tery04 and Tery15, for most of the analysed SSRs He was higher than Ho. It can be also observed that the whole population displayed a deficit of average Ho (0.31) compared with the He value (0.51) under Hardy–Weinberg equilibrium. This observation agrees with the positive value of the Wright’s fixation index (Fw) estimated for all analysed SSR markers over the whole population (Fw = 0.41). The SSR markers Tery12 and Tery13 showed Fw values close to 1.0 (0.81 and 0.85, respectively), suggesting that their alleles were considerably fixed in the population.Table 2 Collection data of T. erytreae populations.Full size tableTable 3 Statistical summary of the diversity of T. erytreae SSR markers.Full size tablePopulation structure based on T. erytreae SSR dataTo assess the differentiation and genetic diversity among the local populations of T. erytreae sampled in newly invaded areas from Spain and Portugal, including Madeira and the Canary Islands, and those from the previous invaded areas in Africa (South Africa and Kenya), we used a Bayesian clustering method to analyse the SSR multi-locus genotyping data. The STRUCTURE analysis according to the method of ΔK36 showed that the overall genetic profile of all the individuals sampled could be described with two or three different hypothetically original populations corresponding to the highest ΔK values (Fig. 2). It means that the most likely values of genetic clusters (K) are 2 or 3. Nevertheless, Pritchard’s method37 showed a posterior probability of data at K = 7 (Fig. 2). The estimated likelihood distribution increased from K = 1 to K = 7, and then started to decrease. This implied that seven was the smallest value of K, which was the most likely number of inferred populations in our data set. Interestingly, the value of K at which the likelihood distribution reached its maximum coincided with a further peak value of the ΔK statistic at K = 7, suggesting a more complex hierarchical structure of the T. erytreae populations (Fig. 2). In consequence, we plotted the clustering results for K = 2, K = 3 and K = 7 (Fig. 3). Furthermore, we considered an initial structure of two populations (K = 2) as was suggested by the method of ΔK36 whereby most of the analysed individuals were classified with high probability (Q  > 0.90) in two clusters (Fig. 3). Cluster 1 (in green) was exclusively formed by individuals from newly invaded areas in Spain and Portugal, including those from the archipelagos of Madeira and the Canary Islands. On the other hand, Cluster 2 (in beige) was mainly comprised of individuals from Africa, but also included individuals from Camacha (Madeira). The exception to this pattern involved three locations in Madeira (Quebradas, Camacha and Moreno), Pretoria (South Africa), and Homa Bay (Kenya), where almost all individuals consistently had significant membership in both clusters. Looking at K = 3 plot, the Bayesian clustering analysis resolved Cluster 1 into two by reassigning some individuals to Cluster 3 (in purple). Almost of all individuals from Moreno, Poiso, and Farrobo (in Madeira and Porto Santo, respectively) were entirely reassigned to Cluster 3 along with several individuals from the Canary Islands and Galicia (Spain). In addition, individuals from Vairão (Porto) and São Vicente de Pereira Jusã (Aveiro) (both in the northwest coast of Portugal) were also assigned to Cluster 3, while those individuals sampled from southern locations up to Sobreda (Setúbal) were assigned to Cluster 1. The exceptions to this pattern were the individuals from Ribamar (Ericeira), which were assigned to Cluster 3. Most notably, samples from Kenya were genetically different from those of South Africa and grouped in Cluster 1. At K = 7 the population structure scenario was more hierarchical, but 73% of all individuals (108 out from 147) could be assigned to one of the seven clusters with more than 90% probability (Q  > 0.9). The assignment of half of the remaining individuals (21 out of 39) could be done with more than 70% probability (Q  > 0.7). Among the different groups, Cluster 1 (in green) and 2 (in beige) are restricted to the populations of South Africa and Kenya, respectively, with almost no presence of individuals from any of the newly invaded areas. Clusters 3 (in purple) and 4 (in pink) are mostly exclusive to the individuals from Madeira and Portugal mainland, although with some membership in the Canary Islands and Galicia. Cluster 5 (in light blue) and Cluster 6 (in orange) are represented by individuals from Madeira, the Canary Islands and Galicia, while the individuals from Camacha (Madeira) –the only ones that were collected from Casimiroa edulis La Llave & Lex. (Rutacea: Toddalioideae)—form exclusively Cluster 7 (in dark blue). Remarkably, Q fractions corresponding to Cluster 7 are present in the individuals from Nelspruit, Tzaneen, and some in Pretoria.Figure 2Inference of the number of unique genetic clusters (K) from structure simulations derived from ten SSR markers. Diagrams of posterior probability of SSR data were obtained according to the methods of Evanno et al36 and Pritchard et al37. The likelihood of data given K (ln Pr(X|K), in open circles) and ΔK (the standardised second order rate of change of the likelihood function with respect to K, in bold circles) are plotted as functions of K. Error bars of the ln Pr(X|K) indicate standard deviations, but they are too small to be seen in the plot.Full size imageFigure 3Bayesian clustering analysis of individuals genotyped with ten SSR markers in 23 populations of T. erytreae sampled in Africa, Spain, and Portugal. The assignment of individuals to genetic clusters inferred from STRUCTURE37 simulations are based on average membership coefficient (Q). Estimated membership fractions for each individual and population are shown for K = 2, 3 and 7. Selection of the number of clusters was based both on the K value at which the likelihood distribution began to decrease and the peak values of ΔK. Each individual is represented by a single vertical bar, with the colouring of each bar represents the stacked proportion of assignment probabilities to each genetic cluster. For K = 7, clusters 1, 2, 3, 4, 5, 6 and 7 are shown in green, beige, purple, pink, light blue, orange, and dark blue, respectively. Black vertical lines separate sample sites. Labels identify T. erytreae populations from old invaded areas in Africa, and newly invaded areas in the Iberian Peninsula and the Macaronesia.Full size imageGenetic diversity analysis using T. erytreae SSR allelic dataThe genetic diversity of T. erytreae populations was also assessed by means of a distance-based clustering method. The scored SSR allelic data obtained from the ten SSR loci developed in this study were used to calculate a genetic dissimilarity matrix and to compute a Neighbor Joining (NJ) tree. A preliminary dendogram constructed using only the African populations of T. erytreae showed that the individuals from South Africa grouped together into a single cluster clearly separated from the Kenyan population. The robustness of the tree clustering was supported by the high bootstrap values obtained for nearly all branches (Fig. 4). To confirm the results obtained from the structure analysis a NJ tree under topological constraints was inferred using as initial tree the population structure of individuals from all the sampled areas with Q  > 0.7. The remaining individuals were positioned (constraint) on that previous topology. Inspection of the constrained tree topology revealed seven clusters that were in congruence with the structural population at K = 7 suggested by the STRUCTURE analysis (Fig. 5). It is noteworthy that Cluster 7 emerged as a paraphyletic group in the base of African Cluster 2. The cluster assignments of individuals with low membership coefficients (Q  0.7 according to STRUCTURE37 was used as initial tree, and the remaining individuals were positioned (constraint) on this previous topology. Spain: Aldán (A), Areeiro (AR), Gran Canaria (GC), Los Rodeos (LR), Oratava (O), Portonovo (PN), Tacoronte (T). Portugal: Areeiro-Lisbon (AR-Lis), Barreiralva (B), Camacha (C), Farrobo (F), Moreno (M), Paião (P), Poiso (PO), Quebradas (Q), Ribamar (R), Sobreda (S), São Vicente de Pereira Jusã (SV), Vairão (V). South Africa: Nelspruit (N), Pretoria (PR), Tzaneen (TZ). Kenya: Homa Bay (HB). Genetic clusters for K = 7 are indicated. Admixed individuals with Q  More