Current contrasting population trends among North American hummingbirds
1.United Nations Environment Programme. Making Peace With Nature (Tech. Rep, United Nations Environment Programme, 2021).2.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).ADS
CAS
Article
PubMed
Google Scholar
3.Urban, M. C. Accelerating extinction risk from climate change. Science. (80-. ) 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).ADS
CAS
Article
Google Scholar
4.Rosenberg, K. V. et al. Decline of the North American avifauna. Science. (80-. ) 366, 120–124. https://doi.org/10.1126/science.aaw1313 (2019).ADS
CAS
Article
Google Scholar
5.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219. https://doi.org/10.1371/journal.pbio.0050157 (2007).CAS
Article
Google Scholar
6.Abrahamczyk, S. & Renner, S. S. The temporal build-up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evol. Biol.https://doi.org/10.1186/s12862-015-0388-z (2015).Article
PubMed
PubMed Central
Google Scholar
7.Grant, V. & Grant, K. A. A Hummingbird-Pollinated Species of Boraginaceae in the Arizona Flora. Proc. Natl. Acad. Sci. 66, 917–919. https://doi.org/10.1073/pnas.66.3.917 (1970).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
8.Ratto, F. et al. Global importance of vertebrate pollinators for plant reproductive success: A meta-analysis. Front. Ecol. Environ. 16, 82–90. https://doi.org/10.1002/fee.1763 (2018).Article
Google Scholar
9.McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916. https://doi.org/10.1016/j.cub.2014.03.016 (2014).CAS
Article
PubMed
Google Scholar
10.Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & Ziolkowski, D. J. The North American breeding bird survey 1966–2011: Summary analysis and species accounts. N. Am. Fauna 79, 1–32. https://doi.org/10.3996/nafa.79.0001 (2013).Article
Google Scholar
11.Bairlein, F. Migratory birds under threat. Science (80-. ). 354, 547–548. https://doi.org/10.1126/science.aah6647 (2016).ADS
CAS
Article
Google Scholar
12.Battey, C. J. Ecological release of the Anna’s Hummingbird during a Northern range expansion. Am. Nat. 194, 306–315. https://doi.org/10.1086/704249 (2019).CAS
Article
PubMed
Google Scholar
13.Clark, C. J. EBird records show substantial growth of the Allen’s Hummingbird (Selasphorus sasin sedentarius) population in urban Southern California. Condor 119, 122–130. https://doi.org/10.1650/CONDOR-16-153.1 (2017).Article
Google Scholar
14.Sleeter, B. M. et al. Land-cover change in the conterminous United States from 1973 to 2000. Glob. Environ. Change 23, 733–748. https://doi.org/10.1016/j.gloenvcha.2013.03.006 (2013).Article
Google Scholar
15.Gallant, A. L., Loveland, T. R., Sohl, T. L. & Napton, D. E. Using an ecoregion framework to analyze land-cover and land-use dynamics. Environ. Manag.https://doi.org/10.1007/s00267-003-0145-3 (2004).Article
Google Scholar
16.Williamson, S. L. A Field Guide to Hummingbirds of North America (Peterson Field Guide Series) (Houghton Mifflin Company, 2002).
Google Scholar
17.Panjabi, A. O. et al. Avian Conservation Assessment Database Handbook Version 2021. Tech. Rep. (Partners in Flight Technical Series, Bird Conservancy of the Rockies, 2021).
Google Scholar
18.Gillespie, C., Contreras-Martinez, S., Bishop, C. & Alexander, J. Rufous Hummingbird: State of the Science and Conservation : simplebooklet.com. Tech. Rep., (Western Hummingbird Partnership, 2020).19.International Union for Conservation of Nature. IUCN Red List Categories and Criteria: Version 3.1. Tech. Rep. (IUCN Species Survival Commission, 2001).
Google Scholar
20.Lehikoinen, A. Climate change, phenology and species detectability in a monitoring scheme. Popul. Ecol. 55, 315–323. https://doi.org/10.1007/s10144-012-0359-9 (2013).Article
Google Scholar
21.Massimino, D., Harris, S. J. & Gillings, S. Phenological mismatch between breeding birds and their surveyors and implications for estimating population trends. J. Ornithol. 162, 143–154. https://doi.org/10.1007/s10336-020-01821-5 (2021).Article
Google Scholar
22.McGrath, L. J., van Riper III, C. & Fontaine, J. J. Flower power: Tree flowering phenology as a settlement cue for migrating birds. J. Anim. Ecol. 78, 22–30. https://doi.org/10.1111/j.1365-2656.2008.01464.x (2009).Article
PubMed
Google Scholar
23.Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108. https://doi.org/10.1111/j.1365-2656.2009.01610.x (2010).Article
PubMed
Google Scholar
24.Courter, J. R. Changes in spring arrival dates of rufous hummingbirds (Selasphorus rufus) In Western North America in the past century. Wilson J. Ornithol. 129, 535–544. https://doi.org/10.1676/16-133.1 (2017).Article
Google Scholar
25.Rooney, T. Deer impacts on forest ecosystems: A North American perspective. Forestry 74, 201–208. https://doi.org/10.1093/forestry/74.3.201 (2001).Article
Google Scholar
26.Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147. https://doi.org/10.2307/annurev.ecolsys.35.021103.30000006 (2004).Article
Google Scholar
27.Decalesta, D. S. Effect of white-tailed deer on songbirds within managed forests in Pennsylvania. J. Wildl. Manag. 58, 711–718 (1994).Article
Google Scholar
28.English, S. G. et al. Neonicotinoid pesticides exert metabolic effects on avian pollinators. Sci. Rep. 11, 2914. https://doi.org/10.1038/s41598-021-82470-3 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
29.Bishop, C. A. et al. Determination of neonicotinoids and butenolide residues in avian and insect pollinators and their ambient environment in Western Canada (2017, 2018). Sci. Total Environ. 737, 139386. https://doi.org/10.1016/j.scitotenv.2020.139386 (2020).ADS
CAS
Article
PubMed
Google Scholar
30.Graves, E. E. et al. Analysis of insecticide exposure in California hummingbirds using liquid chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 26, 15458–15466. https://doi.org/10.1007/s11356-019-04903-x (2019).CAS
Article
Google Scholar
31.Hill, G. E., Sargent, R. R. & Sargent, M. B. Recent change in the winter distribution of Rufous Hummingbirds. Auk 115, 240–245. https://doi.org/10.2307/4089135 (1998).Article
Google Scholar
32.Smith, A. C. & Edwards, B. P. M. North American Breeding Bird Survey status and trend estimates to inform a wide range of conservation needs, using a flexible Bayesian hierarchical generalized additive model. Condor 123, 1–16. https://doi.org/10.1093/ornithapp/duaa065 (2021).Article
Google Scholar
33.Wilson, S. et al. Prioritize diversity or declining species? Trade-offs and synergies in spatial planning for the conservation of migratory birds in the face of land cover change. Biol. Conserv. 239, 108285. https://doi.org/10.1016/j.biocon.2019.108285 (2019).Article
Google Scholar
34.Toledo-Aceves, T., Meave, J. A., González-Espinosa, M. & Ramírez-Marcial, N. Tropical montane cloud forests: Current threats and opportunities for their conservation and sustainable management in Mexico. J. Environ. Manag. 92, 974–981. https://doi.org/10.1016/j.jenvman.2010.11.007 (2011).Article
Google Scholar
35.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science (80-. ). 342, 850–853. https://doi.org/10.1126/SCIENCE.1244693 (2013).ADS
CAS
Article
Google Scholar
36.Westerling, A. L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci.https://doi.org/10.1098/RSTB.2015.0178 (2016).Article
Google Scholar
37.Neeraja, U. V., Rajendrakumar, S., Saneesh, C. S., Dyda, V. & Knight, T. M. Fire alters diversity, composition, and structure of dry tropical forests in the Eastern Ghats. Ecol. Evol. 11, 6593–6603. https://doi.org/10.1002/ECE3.7514 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
38.Courter, J. R., Johnson, R. J., Bridges, W. C. & Hubbard, K. G. Assessing migration of Ruby-throated Hummingbirds (Archilochus colubris) at broad spatial and temporal scales at broad spatial and temporal scales. Auk 130, 107–117. https://doi.org/10.1525/auk.2012.12058 (2013).Article
Google Scholar
39.Greig, E. I., Wood, E. M. & Bonter, D. N. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc. R. Soc. B Biol. Sci.https://doi.org/10.1098/rspb.2017.0256 (2017).Article
Google Scholar
40.Jepson, W. L. & Hickman, J. C. The Jepson manual: Higher plants of California (University of California Press, 1993).
Google Scholar
41.Scarfe, A. & Finlay, J. C. Rapid second nesting by Anna’s Hummingbird near its Northern breeding limit. West. Birds 32, 131–133 (2001).
Google Scholar
42.Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, 1992).
Google Scholar
43.Thogmartin, W. E. et al. A review of the population estimation approach of the North American landbird conservation plan. Auk 123, 892–904. https://doi.org/10.1093/auk/123.3.892 (2006).Article
Google Scholar
44.Carter, M. F., Hunter, W. C., Pashley, D. N. & Rosenberg, K. V. Setting conservation priorities for landbirds in the United States: The partners in flight approach. Auk 117, 541–548. https://doi.org/10.1093/auk/117.2.541 (2000).Article
Google Scholar
45.Sauer, J. R. & Link, W. A. Analysis of the North American breeding bird survey using hierarchical models. Auk 128, 87–98. https://doi.org/10.1525/auk.2010.09220 (2011).Article
Google Scholar
46.Sauer, J. R., Niven, D. K., Pardieck, K. L., Ziolkowski, D. J. & Link, W. A. Expanding the North American Breeding Bird Survey analysis to include additional species and regions. J. Fish Wildl. Manag. 8, 154–172. https://doi.org/10.3996/102015-JFWM-109 (2017).Article
Google Scholar
47.Stanton, J. C., Blancher, P., Rosenberg, K. V., Panjabi, A. O. & Thogmartin, W. E. Estimating uncertainty of North American landbird population sizes. Avian Conserv. Ecol.https://doi.org/10.5751/ACE-01331-140104 (2019).Article
Google Scholar
48.Schuster, R. et al. Optimizing the conservation of migratory species over their full annual cycle. Nat. Commun.https://doi.org/10.1038/s41467-019-09723-8 (2019).Article
PubMed
PubMed Central
Google Scholar
49.Johnston, A. et al. Abundance models improve spatial and temporal prioritization of conservation resources. Ecol. Appl. 25, 1749–1756. https://doi.org/10.1890/14-1826.1 (2015).Article
PubMed
Google Scholar
50.Robbins, C., Bystrak, D. & Geissler, P. The Breeding Bird Survey: Its First Fifteen Years, 1965–1979. Tech. Rep. (U.S. Fish and Wildlife Service, 1986).51.R Core Team. R: A language and environment for statistical computing (Version 4.0.3) [Computer software] (2020).52.Smith, A. C., Hudson, M.-A., Aponte, V. & Francis, C. North American Breeding Bird Survey—Canadian Trends Website. Data-version 2017 (2019).53.Edwards, B. P. M. & Smith, A. C. bbsBayes: An R package for hierarchical Bayesian analysis of North American breeding bird survey data. J. Open Res. Softw.https://doi.org/10.5334/JORS.329 (2021).Article
Google Scholar
54.North American Bird Conservation Initiative. Bird Conservation Region Descriptions. Tech. Rep. (U. S. Fish and Wildlife Service, 2000).
Google Scholar More