The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China
1.Huai, J. J. Dynamics of resilience of wheat to drought in Australia from 1991–2010. Sci. Rep. 7, 9532 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
2.Li, M., Peterson, C. A., Tautges, N. E., Scow, K. M. & Gaudin, A. C. M. Yields and resilience outcomes of organic cover crop, and conventional practices in a Mediterranean climate. Sci. Rep. 9, 12283 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
3.Keersmaecker, W. D. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).Article
Google Scholar
4.Griffith, G. P. et al. Ecological resilience of Arctic marine food webs to climate change. Nat. Clim. Change 9, 868–872 (2019).ADS
Article
Google Scholar
5.You, N. S., Meng, J. J. & Zhu, L. K. Sensitivity and resilience of ecosystems to climate variability in the semi-arid to hyper-arid areas of Northern China: a case study in the Heihe River Basin. Ecol. Res. 33, 161–174 (2018).Article
Google Scholar
6.Reijers, V. C. et al. Resilience of beach grasses along a biogeomorphic successive gradient: resource availability vs. clonal integration. Oceologia https://doi.org/10.1007/s00442-019-04568-w (2019).Article
Google Scholar
7.Chambers, J. C. et al. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in clod desert shrublands of western North America. Ecosystems 17, 360–375 (2014).CAS
Article
Google Scholar
8.Driessen, M. M. Fire resilience of a rare, freshwater crustacean in a fire-prone ecosystem and the implications for fire management. Austral Ecol. 44, 1030–1039 (2019).Article
Google Scholar
9.Ren, H., Lu, H. F., Li, Y. D. & Wen, Y. G. Vegetation restoration and its research advancement in Southern China. J. Trop. Subtrop. Bot. 27(5), 469–480 (2019).
Google Scholar
10.Yan, H. M., Zhan, J. Y. & Zhang, T. Review of ecosystem resilience research progress. Prog. Geogr. 31(3), 303–314 (2012).
Google Scholar
11.Zhan, J. Y., Yan, H. M., Deng, X. Z. & Zhang, T. Assessment of forest ecosystem resilience in Lianhua County of Jiangxi Province. J. Nat. Resour. 27(8), 1304–1315 (2012).
Google Scholar
12.Pérez-Girón, J. C., Álvarez-Álvarez, P., Díaz-Valera, E. R. & Lopes, D. M. M. Influence of climate variations on primary production indicators and on the resilience of forest ecosystems in a future scenario of climate change: application to sweet chestnut agroforestry systems in the Iberian Peninsula. Ecol. Indic. 113, 106199 (2020).Article
Google Scholar
13.Meng, Y. Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).Article
Google Scholar
14.Han, L. et al. Species composition, community structure, and floristic characteristics of desert riparian forest community along the mainstream of Tarim River. Plant Sci. J. 37(3), 324–336 (2019).
Google Scholar
15.Zhou, H. H. et al. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: evidence from tree-rings of Populus euphratica. Ecol. Indic. 111, 105997 (2020).Article
Google Scholar
16.Aini, A. et al. Analysis of stakeholders’ cognition on desert riparian forest ecosystem services in the lower reaches of Tarim River, China. Res. Soil Water Conserv. 23(1), 205–209 (2016).
Google Scholar
17.Li, Y. Q., Chen, Y. N., Zhang, Y. Q. & Xia, Y. Rehabilitating China’s largest inland river. Conserv. Biol. 23(3), 531–536 (2009).PubMed
Article
Google Scholar
18.Dai, J. S. Evaluation of eco-environment and socio-economic benefits on comprehensive reclamation projects on the Tarim River Basin. Doctoral Dissertation of Xinjiang Agricultural University (2015).19.Han, L., Wang, H. Z., Niu, J. L., Wang, J. Q. & Liu, W. Y. Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim River Basin. Acta Ecol. Sin. 37, 6836–6846 (2017).
Google Scholar
20.Yang, G. & Guo, Y. P. The change and prospect of vegetation in the end of the lower reaches of Tarim River after ecological water delivery. J. Desert Res. 24(2), 167–172 (2004).
Google Scholar
21.Yan, H. M., Zhan, J. Y. & Zhang, T. Resilience of forest ecosystems and its influencing factors. Procedia Environ. Sci. 10, 2201–2206 (2011).Article
Google Scholar
22.Abenayake, C. C., Mikami, Y., Matsuda, Y. & Jayasinghe, A. Ecosystem service-based composite indicator for assessing community resilience to floods. Environ. Dev. 27, 34–46 (2018).Article
Google Scholar
23.Maestas, J. D., Campbell, S. B., Chambers, J. C., Pellant, M. & Miller, R. F. Tapping soil survey information for rapid assessment of sagebrush ecosystem resilience and resistance. Rangelands 38(3), 120–128 (2016).Article
Google Scholar
24.Ponce-Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352 (2013).ADS
CAS
PubMed
Article
Google Scholar
25.Frazier, A. E., Renschler, C. S. & Miles, S. B. Evaluating post-disaster ecosystem resilience using MODIS GPP data. Int. J. Appl. Earth Obs. Geoinform. 21, 43–52 (2013).ADS
Article
Google Scholar
26.Kahiluoto, H. et al. Decline in climate resilience of European wheat. PNAS 116(1), 123–128 (2019).CAS
PubMed
Article
Google Scholar
27.Li, X. Y. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evolut. 4, 1075–1083 (2020).Article
Google Scholar
28.Li, C. H., Zhou, M., Wang, Y. T., Zhu, T. B., Sun, H., Yin, H. H., Cao, H. J., Han, H. Y. Inter-annual variations of vegetation net primary productivity and their spatial-temporal contribution and climate driving in arid Northwest China: a case study of Hexi Corridor. Chin. J. Ecol. (2020).29.Song, J. et al. A global database of plant production and carbon exchange from global change manipulative experiments. Sci. Data 7, 1–7 (2020).Article
CAS
Google Scholar
30.Yang, G. et al. Research progress of ecosystem resilience assessment. Zhejiang Agric. Sci. 60(3), 508–513 (2019).
Google Scholar
31.Liu, J. Z. & Chen, Y. N. Analysis on converse succession of plant communities at the lower reaches of Tarim River. Arid Land Geogr. 25(3), 231–236 (2002).
Google Scholar
32.Chen, X., Bao, A. M., Wang, X. P., Guli, J. P. E. & Huang, Y. Recent ecological effectiveness assessment of integrated management projects in the Tarim River. Bull. Chin. Acad. Sci. 32(1), 20–28 (2017).
Google Scholar
33.Zhao, H., Yan, L. & Ji, F. The dynamics of land utilization in the upper reaches of Tarim River. J. Arid Land Resour. Environ. 15(4), 40–43 (2001).
Google Scholar
34.Sun, F., Wang, Y. & Chen, Y. N. Dynamics of desert-oasis ecotone and its influencing factors in the Tarim Basin. Chin. J. Ecol. 39(10), 1–11 (2020).
Google Scholar
35.Xu, G. H. A genetic explanation of the recent changes of ecological environment in the Tarim River Basin, southern Xinjiang. Xinjiang Meteorol. 28–31 (2005).36.Kamkin, A. & Lozinsky, I. Mechanically Gated Channels and Their Regulation (Springer, 2012).Book
Google Scholar
37.Feyisa, K. et al. Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands. CATENA 159, 9–19 (2017).Article
Google Scholar
38.Wang, G. H., Ren, Y. J. & Gou, Q. Q. The changes of soil physical and chemical property during the enclosure process in a typical desert oasis ecotone of the Hexi Corridor in northwestern China. J. Desert Res. 40(2), 222–231 (2020).
Google Scholar
39.Xu, H. L., Ye, M. & Li, J. M. Changes in groundwater levels and the response of natural vegetation to the transfer of water to the lower reaches of the Tarim River. J. Environ. Sci. 19(10), 1199–1207 (2007).Article
Google Scholar
40.Zhang, P. F., Guli, J., Bao, A. M., Meng, F. H. & Guo, H. Ecological effects evaluation for short term planning of the Tarim River. Arid Land Geogr. 40(1), 156–164 (2017).
Google Scholar
41.Gulimire, H., Wang, G. Y., Zhang, Y., Liu, Q. Q. & Su, L. T. Influence mechanisms of intermittent ecological water conveyance on groundwater level and vegetation in arid land. Arid Land Geogr. 41(4), 726–733 (2018).
Google Scholar
42.Guo, H. W., Xu, H. L. & Ling, H. B. Study of ecological water transfer mode and ecological compensation scheme of the Tarim River Basin in dry years. J. Nat. Resour. 32(10), 1705–1717 (2017).
Google Scholar
43.Wu, T. Z., Ding, J., Guan, W. K., Ruan, C. J. & Guan, Y. Populus euphratica forest replacement and photosynthetic characteristics in Tarim Populus euphratica national nature reserve. Prot. For. Sci. Technol. 8, 1–4 (2020).
Google Scholar
44.Zhu, C. G., Aikeremu, A., Li, W. H. & Zhou, H. H. Ecosystem restoration of Populus euphratica forest under the ecological water conveyance in the lower reaches of Tarim River. Arid Land Geography, 44(3), 629–636 (2021).
Google Scholar
45.Chen, Y. N. Study on Eco-hydrological Problems of the Tarim River Basin in Xinjiang (Science Press, 2010).
Google Scholar
46.Halik, U., Aishan, T., Betz, F., Kurban, A. & Rouzi, A. Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China’s largest inland river. Ecol. Eng. 127, 11–22 (2019).Article
Google Scholar
47.Xinjiang Morning News. In the past three years, the area of the Populus euphratica forest reserve in the Tarim River Basin has increased by 569.95 km2. https://www.sohu.com/a/308626663_100034331?sec=wd (2019).48.China News Service. Ecological water transfer for desert vegetation in lower reaches of Konqi River in Xinjiang. https://news.sina.com.cn/o/2020-02-22/doc-iimxyqvz4945915.shtml (2020). More