More stories

  • in

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander DH, Shringarpure SS, Novembre J, Lange K (2015) Admixture 1.3 software manual. UCLA Hum Genet Softw Distrib, Los Angeles
    Google Scholar 
    Angert AL, Bontrager MG, Ågren J (2020) What do we really know about adaptation at range edges? Annu Rev Ecol Evol Syst 51:341–361Article 

    Google Scholar 
    Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1504–1513Article 

    Google Scholar 
    Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471Article 

    Google Scholar 
    Attard CRM, Beheregaray LB, Möller LM (2018) Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of precise bias. Mol Ecol Resour 18:381–390CAS 
    PubMed 
    Article 

    Google Scholar 
    Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:1–7Article 
    CAS 

    Google Scholar 
    Barbosa S, Mestre F, White TA, Paupério J, Alves PC, Searle JB (2018) Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors. Mol Ecol 27:3452–3465PubMed 
    Article 

    Google Scholar 
    Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54Article 

    Google Scholar 
    Beever EA, Ray C, Mote PW, Wilkening JL (2010) Testing alternative models of climate-mediated extirpations. Ecol Appl 20:164–178PubMed 
    Article 

    Google Scholar 
    Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Change Biol 17:2054–2070Article 

    Google Scholar 
    Beever EA, Perrine JD, Rickman T, Flores M, Clark JP, Waters C et al. (2016) Pika (Ochotona princeps) losses from two isolated regions reflect temperature and water balance, but reflect habitat area in a mainland region. J Mammal 97:1495–1511Article 

    Google Scholar 
    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci USA 110:9374–9379CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124:439–450CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calkins MT, Beever EA, Boykin KG, Frey JK, Andersen MC (2012) Not-so-splendid isolation: modeling climate-mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions. Ecography 35:780–791Article 

    Google Scholar 
    Carlson SM, Cunningham CJ, Westley PAH (2014) Evolutionary rescue in a changing world. Trends Ecol Evol 29:521–530PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Jeffress MR, Ray C, Rodhouse TJ, Schwalm D (2016) Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Ecol Appl 26:1660–1676PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci USA 117:13596–13602CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chapman JA, Flux JE (1990) Rabbits, hares and pikas: status survey and conservation action plan. IUCN.Chypre M, Zaidi N, Smans K (2012) ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun 422:1–4CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4Article 

    Google Scholar 
    Eckert CG, Samis EK, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188CAS 
    PubMed 
    Article 

    Google Scholar 
    Erb LP, Ray C, Guralnick R (2011) On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps). Ecology 92:1730–1735PubMed 
    Article 

    Google Scholar 
    Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501Article 

    Google Scholar 
    Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 11:1035–1052PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929Article 

    Google Scholar 
    Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galbreath KE, Hafner DJ, Zamudio KR (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an Alpine specialist (American Pika, Ochotona Princeps). Evolution 63:2848–2863CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gautier M (2015) Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201:1555–1579CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gradogna A, Gavazzo P, Boccaccio A, Pusch M (2017) Subunit‐dependent oxidative stress sensitivity of LRRC8 volume‐regulated anion channels. J Physiol 595:6719–6733CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hafner DJ, Sullivan RM (1995) Historical and ecological biogeography of Nearctic pikas (Lagomorpha: Ochotonidae). J Mammal 76:302–321Article 

    Google Scholar 
    Hafner DJ, Smith AT (2010) Revision of the subspecies of the American pika, Ochotona princeps (Lagomorpha: Ochotonidae). J Mammal 91:401–417Article 

    Google Scholar 
    Hanson JO, Marques A, Veríssimo A, Camacho-Sanchez M, Velo-Antón G, Martínez-Solano Í et al. (2020) Conservation planning for adaptive and neutral evolutionary processes. J Appl Ecol 57:2159–2169Article 

    Google Scholar 
    Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7:1008–1025PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henry P, Russello MA (2013) Adaptive divergence along environmental gradients in a climate-change-sensitive mammal. Ecol Evol 3:3906–3917CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry P, Sim Z, Russello MA (2012) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: the American pika. PLoS One 7:e39077CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Article 

    Google Scholar 
    Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A et al. (2006) Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol 290:C45–56CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoban S (2018) Integrative conservation genetics: Prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Mol Ecol Resour 18:14–17PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Holbrook JD, DeYoung RW, Janecka JE, Tewes ME, Honeycutt RL, Young JH (2012) Genetic diversity, population structure, and movements of mountain lions (Puma concolor) in Texas. J Mammal 93:989–1000Article 

    Google Scholar 
    IPCC (2014) AR5 Synthesis Report: Climate Change 2014. IPCC.Jentsch TJ, Lutter D, Planells-Cases R, Ullrich F, Voss FK (2016) VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflüg Arch Eur J Physiol 468:385–393CAS 
    Article 

    Google Scholar 
    Johnston AN, Bruggeman JE, Beers AT, Beever EA, Christophersen RG, Ransom JI (2019) Ecological consequences of anomalies in atmospheric moisture and snowpack. Ecology 100:e02638PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Johnston KM, Freund KA, Schmitz OJ (2012) Projected range shifting by montane mammals under climate change: implications for Cascadia’s National Parks. Ecosphere 3:art97Article 

    Google Scholar 
    Kilham L (1958) Territorial behavior in pikas. J Mammal 39:307–307Article 

    Google Scholar 
    Kimura M (1971) Theoretical foundation of population genetics at the molecular level. Theor Popul Biol 2:174–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Klingler KB, Jahner JP, Parchman TL, Ray C, Peacock MM (2021) Genomic variation in the American pika: signatures of geographic isolation and implications for conservation. BMC Ecol Evol 21:2CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambers JHR (2015) Extinction risks from climate change. Science 348:501–502CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302Article 

    Google Scholar 
    Latch EK, Scognamillo DG, Fike JA, Chamberlain MJ, Rhodes Jr OE (2008) Deciphering ecological barriers to North American River Otter (Lontra canadensis) gene flow in the Louisiana landscape. J Hered 99:265–274CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lee KM, Coop G (2017) Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207:1591–1619PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KM, Coop G (2019) Population genomics perspectives on convergent adaptation. Philos Trans R Soc B Biol Sci 374:20180236Article 

    Google Scholar 
    Lemay MA, Russello MA (2015) Genetic evidence for ecological divergence in kokanee salmon. Mol Ecol 24:798–811CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio.MacArthur RA, Wang LCH (1974) Behavioral thermoregulation in the pika Ochotona princeps: a field study using radiotelemetry. Can J Zool 52:353–358CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McCain CM (2019) Assessing the risks to United States and Canadian mammals caused by climate change using a trait-mediated model. J Mammal 100:1808–1817
    Google Scholar 
    Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794Article 

    Google Scholar 
    Morin PA, Luikart G, Wayne RK, the SNP Workshop Group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216Article 

    Google Scholar 
    Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264CAS 
    PubMed 
    Article 

    Google Scholar 
    Morrison SF, Hik DS (2007) Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. J Anim Ecol 76:899–907PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moyer‐Horner L, Mathewson PD, Jones GM, Kearney MR, Porter WP (2015) Modeling behavioral thermoregulation in a climate change sentinel. Ecol Evol 5:5810–5822PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10:1808–1813Article 

    Google Scholar 
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669Article 

    Google Scholar 
    Paz-Vinas I, Loot G, Hermoso V, Veyssière C, Poulet N, Grenouillet G et al. (2018) Systematic conservation planning for intraspecific genetic diversity. Proc R Soc B Biol Sci 285:20172746Article 

    Google Scholar 
    Peacock MM (1997) Determining natal dispersal patterns in a population of North American pikas (Ochotona princeps) using direct mark-resight and indirect genetic methods. Behav Ecol 8:340–350Article 

    Google Scholar 
    Peacock MM, Smith AT (1997) Nonrandom mating in pikas Ochotona princeps: evidence for inbreeding between individuals of intermediate relatedness. Mol Ecol 6:801–811CAS 
    PubMed 
    Article 

    Google Scholar 
    Pew J, Muir PH, Wang J, Frasier TR (2015) related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15:557–561PubMed 
    Article 

    Google Scholar 
    Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer New York, New York, NY, p 110–135Chapter 

    Google Scholar 
    Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/Rankin AM, Galbreath KE, Teeter KC (2017) Signatures of adaptive molecular evolution in American pikas (Ochotona princeps). J Mammal 98:1156–1167Article 

    Google Scholar 
    Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H et al. (2018) An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour 18:18–31PubMed 
    Article 

    Google Scholar 
    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370PubMed 
    Article 

    Google Scholar 
    Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185Article 

    Google Scholar 
    Robson KM, Lamb CT, Russello MA (2016) Low genetic diversity, restricted dispersal, and elevation-specific patterns of population decline in American pikas in an atypical environment. J Mammal 97:464–472Article 

    Google Scholar 
    Rochette NC, Rivera‐Colón AG, Catchen JM (2019) Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28:4737–4754CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change 2:285–288Article 

    Google Scholar 
    Russello MA, Waterhouse MD, Etter PD, Johnson EA (2015) From promise to practice: pairing non-invasive sampling with genomics in conservation. PeerJ 3:e1106PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Sjodin BMF, Galbreath KE, Lanier HC, Russello MA (2021) Chromosome-level reference genome assembly for the American pika (Ochotona princeps). J Hered https://doi.org/10.1093/jhered/esab031Smith AT (1974b) The distribution and dispersal of pikas: influences of behavior and climate. Ecology 55:1368–1376Article 

    Google Scholar 
    Smith AT (1974a) The distribution and dispersal of pikas: consequences of insular population structure. Ecology 55:1112–1119Article 

    Google Scholar 
    Smith AT (2020) Conservation status of American pikas (Ochotona princeps). J Mammal 101:1466–1488Article 

    Google Scholar 
    Smith AT, Ivins BL (1983) Colonization in a pika population: dispersal vs philopatry. Behav Ecol Sociobiol 13:37–47Article 

    Google Scholar 
    Smith AT, Weston ML (1990) Ochotona princeps. Mamm Species 352:1–8.Article 

    Google Scholar 
    Smith AT, Millar CI (2018) American pika (Ochotona princeps) population survival in winters with low or no snowpack. West North Am Nat 78:126–132Article 

    Google Scholar 
    La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B Biol Sci 277:3401–3410Article 

    Google Scholar 
    Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stewart JAE, Wright DH, Heckman KA (2017) Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS One 12:e0181834PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart JAE, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE et al. (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42:880–890Article 

    Google Scholar 
    Varner J, Dearing MD (2014) The importance of biologically relevant microclimates in habitat suitability assessments. PLoS One 9:e104648PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waldvogel A-M, Feldmeyer B, Rolshausen G, Exposito‐Alonso M, Rellstab C, Kofler R et al. (2020) Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett 4:4–18PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA—high-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51:16–29Article 

    Google Scholar 
    Waterhouse MD, Erb LP, Beever EA, Russello MA (2018) Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol 27:2512–2528PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 
    PubMed 

    Google Scholar 
    Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:e2001104PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wilkening JL, Ray C (2016) Characterizing predictors of survival in the American pika (Ochotona princeps). J Mammal 97:1366–1375Article 

    Google Scholar 
    Wilkening JL, Ray C, Beever EA, Brussard PF (2011) Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat. Quat Int 235:77–88Article 

    Google Scholar 
    Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wogan GOU, Wang IJ (2018) The value of space-for-time substitution for studying fine-scale microevolutionary processes. Ecography 41:1456–1468Article 

    Google Scholar 
    Yandow LH, Chalfoun AD, Doak DF (2015) Climate tolerances and habitat requirements jointly shape the elevational distribution of the American pika (Ochotona princeps), with implications for climate change effects. PLoS One 10:e0131082PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zgurski JM, Hik DS (2012) Polygynandry and even-sexed dispersal in a population of collared pikas, Ochotona collaris. Anim Behav 83:1075–1082Article 

    Google Scholar 
    Zhang D, Pan J, Cao J, Cao Y, Zhou H (2020) Screening of drought-resistance related genes and analysis of promising regulatory pathway in camel renal medulla. Genomics 112:2633–2639CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction

    1.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Visser, P. M. et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Lürling, M., Mendes e Mello, M., van Oosterhout, F., de Senerpont Domis, L. & Marinho, M. M. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front. Microbiol. 9, 1851 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Low-Décarie, E., Fussmann, G. F. & Bell, G. Aquatic primary production in a high-CO2 world. Trends Ecol. Evol. 29, 223–232 (2014).PubMed 
    Article 

    Google Scholar 
    5.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. PNAS 113, E6325–E6334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Sun, Y. D. et al. Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–370 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end Permian extinction in southeastern Gondwana. Geology 49, https://doi.org/10.1130/G48795.1 (2021).8.Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).CAS 
    Article 

    Google Scholar 
    11.Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48, 288–292 (2020).ADS 
    Article 

    Google Scholar 
    12.Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. GSA Bull. 108, 195–207 (1996).CAS 
    Article 

    Google Scholar 
    13.Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).CAS 
    Article 

    Google Scholar 
    15.Metcalfe, I., Crowley, J. L., Nicoll, R. S. & Schmitz, M. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).CAS 
    Article 

    Google Scholar 
    17.McLoughlin, S. et al. Dwelling in the dead zone—vertebrate burrows immediately succeeding the end-Permian extinction event in Australia. Palaios 35, 342–357 (2020).ADS 
    Article 

    Google Scholar 
    18.Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. 75, 29–57 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mays, C., Vajda, V. & McLoughlin, S. Permian–Triassic non-marine algae of Gondwana—distributions, natural affinities and ecological implications. Earth-Sci. Rev. 212, 103382 (2021).CAS 
    Article 

    Google Scholar 
    20.McLoughlin, S. et al. Age and paleoenvironmental significance of the Frazer Beach Member—a new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Front. Earth Sci. 8, 600976 (2021).Article 

    Google Scholar 
    21.Huber, J. K. A postglacial pollen and nonsiliceous algae record from Gegoka Lake, Lake County, Minnesota. J. Paleolimnol. 16, 23–35 (1996).ADS 
    Article 

    Google Scholar 
    22.Woodward, C. A. & Shulmeister, J. A Holocene record of human induced and natural environmental change from Lake Forsyth (Te Wairewa), New Zealand. J. Paleolimnol. 34, 481–501 (2005).ADS 
    Article 

    Google Scholar 
    23.Pacton, M., Gorin, G. & Fiet, N. Occurrence of photosynthetic microbial mats in a Lower Cretaceous black shale (central Italy): a shallow-water deposit. Facies 55, 401–419 (2009).Article 

    Google Scholar 
    24.Pacton, M., Gorin, G. E. & Vasconcelos, C. Amorphous organic matter—Experimental data on formation and the role of microbes. Rev. Palaeobot. Palynol. 166, 253–267 (2011).Article 

    Google Scholar 
    25.Tyson, R. V. Sedimentary Organic Matter: Organic Facies and Palynofacies (Chapman & Hall, 1995).26.Retallack, G. J. Earliest Triassic claystone breccias and soil-erosion crisis. J. Sediment. Res. 75, 679–695 (2005).ADS 
    Article 

    Google Scholar 
    27.Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Retallack, G. J. Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin. Aust. GSA Bull. 111, 52–70 (1999).CAS 
    Article 

    Google Scholar 
    29.Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Stevenson, R. J. & Smol, J. P. In Freshwater Algae of North America: Ecology and Classification (eds Wehr, J. D., Sheath, R. G. & Kociolek, P.) Ch. 21, 921–962 (Academic Press, 2015).31.Lindström, S., Bjerager, M., Alsen, P., Sanei, H. & Bojesen-Koefoed, J. The Smithian–Spathian boundary in North Greenland: implications for extreme global climate changes. Geol. Mag. 157, 1547–1567 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    32.de Leeuw, J. W., Versteegh, G. J. M. & van Bergen, P. F. in Plants and Climate Change, Plant Ecology (eds Rozema, J., Aerts, R. & Cornelissen, H.) Vol. 182, 209–233 (Springer, 2006).33.Baudelet, P.-H., Ricochon, G., Linder, M. & Muniglia, L. A new insight into cell walls of Chlorophyta. Algal Res 25, 333–371 (2017).Article 

    Google Scholar 
    34.Graham, L. E. & Gray, J. In Plants Invade the Land: Evolutionary and Environmental Perspectives (eds Gensel, P. G. & Edwards, D.) 140–158 (Columbia University Press, 2001).35.Demura, M., Ioki, M., Kawachi, M., Nakajima, N. & Watanabe, M. M. Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells. J. Appl. Phycol. 26, 49–53 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Del Cortona, A. et al. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. PNAS 117, 2551–2559 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Wheeler, A., Van de Wetering, N., Esterle, J. S. & Götz, A. E. Palaeoenvironmental changes recorded in the palynology and palynofacies of a Late Permian Marker Mudstone (Galilee Basin, Australia). Palaeoworld 29, 439–452 (2020).Article 

    Google Scholar 
    38.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    39.Low-Décarie, E., Fussmann, G. F. & Bell, G. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob. Change Biol. 17, 2525–2535 (2011).ADS 
    Article 

    Google Scholar 
    40.von Alvensleben, N., Magnusson, M. & Heimann, K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J. Appl. Phycol. 28, 861–876 (2016).Article 
    CAS 

    Google Scholar 
    41.Chu, D. et al. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeog. Palaeoclimatol. Palaeoecol. 474, 214–231 (2017).ADS 
    Article 

    Google Scholar 
    42.Guo, W. et al. Secular variations of ichnofossils from the terrestrial Late Permian–Middle Triassic succession at the Shichuanhe section in Shaanxi Province, North China. Glob. Planet. Change 181, 102978 (2019).Article 

    Google Scholar 
    43.Lee, J. Y. et al. Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., et al.) 195 pp. (Cambridge University Press, 2021).44.de Jersey, N. J. Palynology of the Permian-Triassic transition in the western Bowen Basin. Geol. Surv. Qld. Publ. 374, 1–39 (1979).
    Google Scholar 
    45.Lindström, S. & McLoughlin, S. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana. Rev. Palaeobot. Palynol. 145, 89–122 (2007).Article 

    Google Scholar 
    46.Grebe, H. Permian plant microfossils from the Newcastle Coal Measures/Narrabeen Group Boundary, Lake Munmorah, New South Wales. Rec. Geol. Surv. NSW 12, 125–136 (1970).
    Google Scholar 
    47.Mishra, S. et al. A new acritarch spike of Leiosphaeridia dessicata comb. nov. emend. from the Upper Permian and Lower Triassic sequence of India (Pranhita-Godavari Basin): its origin and palaeoecological significance. Palaeogeog. Palaeoclimatol. Palaeoecol. 567, 110274 (2021).ADS 
    Article 

    Google Scholar 
    48.Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Kershaw, S. et al. Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10, 25–47 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Schneebeli-Hermann, E. et al. Palynofacies analysis of the Permian–Triassic transition in the Amb section (Salt Range, Pakistan): implications for the anoxia on the South Tethyan Margin. J. Asian Earth Sci. 60, 225–234 (2012).ADS 
    Article 

    Google Scholar 
    51.van Soelen, E. E. & Kürschner, W. M. Late Permian to Early Triassic changes in acritarch assemblages and morphology in the Boreal Arctic: new data from the Finnmark Platform. Palaeogeog. Palaeoclimatol. Palaeoecol. 505, 120–127 (2018).ADS 
    Article 

    Google Scholar 
    52.Spina, A., Cirilli, S., Utting, J. & Jansonius, J. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Rev. Palaeobot. Palynol. 218, 3–14 (2015).Article 

    Google Scholar 
    53.Thomas, B. M. et al. Unique marine Permian‐Triassic boundary section from Western Australia. Aust. J. Earth Sci. 51, 423–430 (2004).ADS 
    Article 

    Google Scholar 
    54.Schneebeli-Hermann, E. & Bucher, H. Palynostratigraphy at the Permian-Triassic boundary of the Amb section, Salt Range, Pakistan. Palynology 39, 1–18 (2015).Article 

    Google Scholar 
    55.Lei, Y. et al. Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China. Palaeogeog. Palaeoclimatol. Palaeoecol. 519, 84–94 (2019).ADS 
    Article 

    Google Scholar 
    56.Algeo, T. J. et al. Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes. Glob. Planet. Change 105, 52–67 (2013).ADS 
    Article 

    Google Scholar 
    57.van Soelen, E. E., Twitchett, R. J. & Kürschner, W. M. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event. Climate 14, 441–453 (2018).
    Google Scholar 
    58.Kaiho, K. et al. Effects of soil erosion and anoxic–euxinic ocean in the Permian–Triassic marine crisis. Heliyon 2, e00137 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeog. Palaeoclimatol. Palaeoecol. 478, 3–29 (2017).ADS 
    Article 

    Google Scholar 
    60.Lindström, S., Erlström, M., Piasecki, S., Nielsen, L. H. & Mathiesen, A. Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Rev. Palaeobot. Palynol. 244, 65–95 (2017).Article 

    Google Scholar 
    61.Garel, S. et al. Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France). Palaeogeog. Palaeoclimatol. Palaeoecol. 376, 184–199 (2013).ADS 
    Article 

    Google Scholar 
    62.van de Schootbrugge, B. & Gollner, S. In Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers (eds Bush, A. M., Pruss, S. B. & Payne, J. L.) 19, 87–114 (The Paleontological Society, 2013).63.Mata, S. A. & Bottjer, D. J. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10, 3–24 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Peterffy, O., Calner, M. & Vajda, V. Early Jurassic microbial mats—a potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeog. Palaeoclimatol. Palaeoecol. 464, 76–85 (2016).ADS 
    Article 

    Google Scholar 
    65.Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 3636, 862–866 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    66.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Vajda, V., Ocampo, A., Ferrow, E. & Bender Koch, C. Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact—evidence from ejecta deposits in Belize and Mexico. Gondwana Res. 27, 1079–1088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Sepúlveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K.-U. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326, 129–132 (2009).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Bralower, T. J. et al. Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact. Earth Planet. Sci. Lett. 548, 116476 (2020).CAS 
    Article 

    Google Scholar 
    70.Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R. & McKee, M. L. No evidence for a large atmospheric CO2 spike across the Cretaceous‐Paleogene boundary. Geophys. Res. Lett. 46, 3462–3472 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    72.Strother, P. K. & Wellman, C. H. The Nonesuch Formation Lagerstätte: a rare window into freshwater life one billion years ago. J. Geol. Soc. 178, jgs2020–jgs2133 (2021).Article 

    Google Scholar 
    73.Sepkoski, J. J., Bambach, R. K. & Droser, M. L. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.) 298–312 (Springer-Verlag, 1991).74.Tyson, R. V. Calibration of hydrogen indices with microscopy: a review, reanalysis and new results using the fluorescence scale. Org. Geochem. 37, 45–63 (2006).CAS 
    Article 

    Google Scholar 
    75.Benninghoff, W. S. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et. Spores 4, 332–333 (1962).
    Google Scholar 
    76.Maher, L. J. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol. 32, 153–191 (1981).Article 

    Google Scholar 
    77.Simpson, M. G. Plant Systematics (Academic Press, 2019).78.Evitt, W. R. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. PNAS 49, 298–302 (1963).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).Article 

    Google Scholar 
    80.Combaz, A. Les palynofaciès. Rev. Micropaléontol. 7, 205–218 (1964).
    Google Scholar 
    81.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    82.Wei, W. & Algeo, T. J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta 287, 341–366 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Rowe, H., Hughes, N. & Robinson, K. The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 324–325, 122–131 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    84.Blakey, R. C. Global paleogeography and tectonics in deep time. https://deeptimemaps.com/global-series-details/. Accessed 16 June 2020 (2016).85.Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Zhang, W., Shi, X., Jiang, G., Tang, D. & Wang, X. Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: Implications for microbial resurgence following an Early Cambrian extinction. Gondwana Res. 28, 432–450 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    87.Vecoli, M. Fossil microphytoplankton dynamics across the Ordovician–Silurian boundary. Rev. Palaeobot. Palynol. 148, 91–107 (2008).Article 

    Google Scholar 
    88.Xie, S. et al. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth Planet. Sci. Lett. 460, 180–191 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    89.Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23, 967–970 (1995).ADS 
    Article 

    Google Scholar 
    90.Richoz, S. et al. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat. Geosci. 5, 662–667 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    91.Lindström, S. et al. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology 40, 531–534 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    92.van de Schootbrugge, B. et al. End-Triassic calcification crisis and blooms of organic-walled “disaster species”. Palaeogeog. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).ADS 
    Article 

    Google Scholar 
    93.Slater, S. M., Twitchett, R. J., Danise, S. & Vajda, V. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. Nat. Geosci. 12, 462–467 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Polgári, M. et al. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeog. Palaeoclimatol. Palaeoecol. 459, 99–120 (2016).ADS 
    Article 

    Google Scholar 
    95.Xu, W. et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 10, 129–134 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Kashiyama, Y. et al. Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: nitrogen and carbon isotopic evidence from sedimentary porphyrin. Org. Geochem. 39, 532–549 (2008).CAS 
    Article 

    Google Scholar 
    97.Jarvis, I. et al. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretac. Res 9, 3–103 (1988).Article 

    Google Scholar 
    98.Layeb, M., Ben Fadhel, M., Layeb-Tounsi, Y. & Ben Youssef, M. First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition). Arab. J. Geosci. 7, 3349–3363 (2014).CAS 
    Article 

    Google Scholar 
    99.Pearce, M. A., Jarvis, I. & Tocher, B. A. The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records. Palaeogeog. Palaeoclimatol. Palaeoecol. 280, 207–234 (2009).ADS 
    Article 

    Google Scholar 
    100.Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A. & Sinninghe Damsté, J. S. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 17, 1051 (2002).ADS 
    Article 

    Google Scholar 
    101.Dodsworth, P., Eldrett, J. S. & Hart, M. B. Cretaceous Oceanic Anoxic Event 2 in eastern England: further palynological and geochemical data from Melton Ross. figshare https://doi.org/10.6084/m9.figshare.c.4987205.v3 (2020).102.Schwab, K. W., Bayliss, G. S., Smith, M. A. & Yoder, N. B. Mushroom and broccoli-head shaped algal fragments from the Eagle Ford Shale of south Texas and Coahuila, Mexico. Search and Discovery 70134 (2013).103.Lyson, T. R. et al. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Scasso, R. A. et al. A high-resolution record of environmental changes from a Cretaceous-Paleogene section of Seymour Island. Antarctica. Palaeogeog. Palaeoclimatol. Palaeoecol. 555, 109844 (2020).ADS 
    Article 

    Google Scholar 
    105.Sosa-Montes de Oca, C. et al. Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain). Palaeogeog. Palaeoclimatol. Palaeoecol. 569, 110310 (2021).ADS 
    Article 

    Google Scholar 
    106.Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1222 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Junium, C. K., Dickson, A. J. & Uveges, B. T. Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nat. Commun. 9, 3186 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    108.Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Kender, S. et al. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sci. Lett. 353–354, 108–120 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    110.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Tot. Environ. 409, 1739–1745 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    A symbiotic aphid selfishly manipulates attending ants via dopamine in honeydew

    1.Darwin, C. On the origin of species. (D. Appleton and Co., 1871). https://doi.org/10.5962/bhl.title.28875.2.Thompson, J. N. Mutualistic webs of species. Science (80–) 312, 372–373 (2006).CAS 
    Article 

    Google Scholar 
    3.Bronstein, J. L. The exploitation of mutualisms. Ecol. Lett. 4, 277–287 (2001).Article 

    Google Scholar 
    4.Bshary, R. & Grutter, A. S. Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: The cleaner fish case. Ecol. Lett. 5, 130–136 (2002).Article 

    Google Scholar 
    5.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Heil, M., Barajas-Barron, A., Orona-Tamayo, D., Wielsch, N. & Svatos, A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol. Lett. 17, 185–192 (2014).Article 

    Google Scholar 
    7.Hindsbo, O. Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333 (1972).ADS 
    Article 

    Google Scholar 
    8.Thomas, F., Renaud, F., de Meeus, T. & Poulin, R. Manipulation of host behaviour by parasites: Ecosystem engineering in the intertidal zone?. Proc. R. Soc. B Biol. Sci. 265, 1091–1096 (1998).Article 

    Google Scholar 
    9.Thomas, F. et al. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?. J. Evol. Biol. 15, 356–361 (2002).Article 

    Google Scholar 
    10.Kadoya, E. Z., Ishii, H. S. & Williams, N. M. Host manipulation of bumble bee queens by Sphaerularia nematodes indirectly affects foraging of non-host workers. Ecology 96, 1361–1370 (2015).Article 

    Google Scholar 
    11.Hojo, M. K., Pierce, N. E. & Tsuji, K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr. Biol. 25, 2260–2264 (2015).CAS 
    Article 

    Google Scholar 
    12.Poulin, R., Brodeur, J. & Moore, J. Parasite manipulation of host behaviour: Should hosts always lose?. Oikos 70, 479 (1994).Article 

    Google Scholar 
    13.Heil, M. et al. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc. Natl. Acad. Sci. USA. 106, 18091–18096 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Watanabe, S., Murakami, T., Yoshimura, J. & Hasegawa, E. Color polymorphism in an aphid is maintained by attending ants. Sci. Adv. 2, (2016).15.Watanabe, S., Yoshimura, J. & Hasegawa, E. Ants improve the reproduction of inferior morphs to maintain a polymorphism in symbiont aphids. Sci. Rep. 8, (2018).16.Sakata, H. Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Res. Popul. Ecol. (Kyoto) 37, 159–164 (1995).Article 

    Google Scholar 
    17.Evans, P. D. Biogenic Amines in the insect nervous system. Adv. In Insect Phys. 15, 317–473 (1980).CAS 
    Article 

    Google Scholar 
    18.Aonuma, H. & Watanabe, T. Octopaminergic system in the brain controls aggressive motivation in the ant Formica japonica. Acta Biol. Hung. 63, 63–68 (2012).Article 

    Google Scholar 
    19.Stevenson, P. A., Dyakonova, V., Rillich, J. & Schildberger, K. Octopamine and experience-dependent modulation of aggression in crickets. J. Neurosci. 25, 1431–1441 (2005).CAS 
    Article 

    Google Scholar 
    20.Kostowski, W. & Tarchalska, B. The effects of some drugs affecting brain 5-HT on the aggressive behaviour and spontaneous electrical activity of the central nervous system of the ant Formica rufa. Brain Res. 38, 143–149 (1972).CAS 
    Article 

    Google Scholar 
    21.Szczuka, A. et al. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol. Exp. (Wars) 73, 495–520 (2013).
    Google Scholar 
    22.Way, M. J. Mutualism between ants and honeydew-producing homoptera. Annu. Rev. Entomol. 8, 307–344 (1963).Article 

    Google Scholar 
    23.Hafer-Hahmann, N. Behavior out of control: Experimental evolution of resistance to host manipulation. Ecol. Evol. 9, 7237–7245 (2019).Article 

    Google Scholar 
    24.Martinez, J., Fleury, F. & Varaldi, J. Heritable variation in an extended phenotype: The case of a parasitoid manipulated by a virus. J. Evol. Biol. 25, 54–65 (2012).Article 

    Google Scholar 
    25.Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149 (2009).Article 

    Google Scholar 
    26.Rosenthal, G. G. & Servedio, M. R. Chase-away sexual selection: Resistance to ‘resistance’. Evolution (N.Y.) 53, 296 (1999).
    Google Scholar 
    27.Woodring, J., Wiedemann, R., Fischer, M. K., Hoffmann, K. H. & Völkl, W. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiol. Entomol. 29, 311–319 (2004).CAS 
    Article 

    Google Scholar 
    28.Stadler, B. & Dixon, A. F. G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36, 345–372 (2005).Article 

    Google Scholar 
    29.Tsuji, K. & Dobata, S. Social cancer and the biology of the clonal ant Pristomyrmex punctatus (Hymenoptera: Formicidae). Myrmecological News 15, 91–99 (2011).
    Google Scholar 
    30.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    31.Agawa, H. & Kawata, M. The effect of color polymorphism on mortality in the aphid Macrosiphoniella yomogicola. Ecol. Res. 10, 301–306 (1995).Article 

    Google Scholar 
    32.Watanabe, S., Murakami, Y. & Hasegawa, E. Effects of attending ant species on the fate of colonies of an aphid, Macrosiphoniella yomogicola (Matsumura) (Homoptera: Aphididae), in an ant-aphid symbiosis. Entomol. News 128, 325 (2019).Article 

    Google Scholar 
    33.Wada-Katsumata, A., Yamaoka, R. & Aonuma, H. Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J. Exp. Biol. 214, 1707–1713 (2011).CAS 
    Article 

    Google Scholar 
    34.Aonuma, H. & Watanabe, T. Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, formica japonica. PLoS One 7, (2012).35.Aonuma, H. Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. J. Exp. Biol. 223, jeb228874 (2020).Article 

    Google Scholar 
    36.R Core Team. R: A Language and Environment for Statistical Computing. (2020).37.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    38.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).39.Hothorn, T. & Hornik, K. exactRankTests: Exact Distributions for Rank and Permutation Tests. (2019). More

  • in

    Trait-mediated shifts and climate velocity decouple an endothermic marine predator and its ectothermic prey

    1.Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).ADS 
    Article 

    Google Scholar 
    3.Fodrie, F. J., Heck, K. L. Jr., Powers, S. P., Graham, W. M. & Robinson, K. L. Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob. Change Biol. 16, 48–59 (2010).ADS 
    Article 

    Google Scholar 
    4.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Simpson, S. D. et al. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr. Biol. 21, 1565–1570 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355 (2017).8.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Article 

    Google Scholar 
    9.Oswald, S. A. & Arnold, J. M. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints. Integr. Zool. 7, 121–136 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Boyles, J. G., Seebacher, F., Smit, B. & McKechnie, A. E. Adaptive thermoregulation in endotherms may alter responses to climate change. Integr. Comp. Biol. 51, 676–690 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B Biol. Sci. 281, 20141097 (2014).Article 

    Google Scholar 
    12.Gibson-Reinemer, D. K., Sheldon, K. S. & Rahel, F. J. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 5, 2340–2347 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pörtner, H.-O. et al. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont. Shelf Res. 21, 1975–1997 (2001).ADS 
    Article 

    Google Scholar 
    14.Neuheimer, A., Thresher, R., Lyle, J. & Semmens, J. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Chang. 1, 110–113 (2011).ADS 
    Article 

    Google Scholar 
    15.Pörtner, H.-O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 739–761 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).Article 

    Google Scholar 
    17.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Przeslawski, R., Falkner, I., Ashcroft, M. B. & Hutchings, P. Using rigorous selection criteria to investigate marine range shifts. Estuar. Coast. Shelf Sci. 113, 205–212 (2012).ADS 
    Article 

    Google Scholar 
    20.Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.MacLeod, C. D. Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger. Species Res. 7, 125–136 (2009).Article 

    Google Scholar 
    22.Sydeman, W., Poloczanska, E., Reed, T. & Thompson, S. Climate change and marine vertebrates. Science 350, 772–777 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bowen, W. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 158, 74 (1997).Article 

    Google Scholar 
    24.Williams, T. M., Estes, J. A., Doak, D. F. & Springer, A. M. Killer appetites: assessing the role of predators in ecological communities. Ecology 85, 3373–3384 (2004).Article 

    Google Scholar 
    25.Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385 (2014).Article 

    Google Scholar 
    26.Neutel, A.-M., Heesterbeek, J. A. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. U.S.A. 102, 5443–5447 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Macnab, B. K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).
    Google Scholar 
    29.Robinson, R. A. et al. Climate change and migratory species (2005).30.Worthy, G. A. & Edwards, E. F. Morphometric and biochemical factors affecting heat loss in a small temperate cetacean (Phocoena phocoena) and a small tropical cetacean (Stenella attenuata). Physiol. Zool., 432–442 (1990).31.Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291 (2007).Article 

    Google Scholar 
    32.Adamczak, S. K., Pabst, D. A., McLellan, W. A. & Thorne, L. H. Do bigger bodies require bigger radiators? Insights into thermal ecology from closely related marine mammal species and implications for ecogeographic rules. J. Biogeogr. 47, 1193–1206 (2020).Article 

    Google Scholar 
    33.Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    34.Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Salvadeo, C. J., Lluch-Belda, D., Gómez-Gallardo, A., Urbán-Ramírez, J. & MacLeod, C. D. Climate change and a poleward shift in the distribution of the Pacific white-sided dolphin in the northeastern Pacific. Endanger. Species Res. 11, 13–19 (2010).Article 

    Google Scholar 
    36.Kovacs, K. M., Lydersen, C., Overland, J. E. & Moore, S. E. Impacts of changing sea-ice conditions on Arctic marine mammals. Mar. Biodivers. 41, 181–194 (2011).Article 

    Google Scholar 
    37.MacLeod, C. D. et al. Climate change and the cetacean community of north-west Scotland. Biol. Cons. 124, 477–483 (2005).Article 

    Google Scholar 
    38.Higdon, J. W. & Ferguson, S. H. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecol. Appl. 19, 1365–1375 (2009).PubMed 
    Article 

    Google Scholar 
    39.Evans, P. G. & Hammond, P. S. Monitoring cetaceans in European waters. Mammal Rev. 34, 131–156 (2004).Article 

    Google Scholar 
    40.Kaschner, K., Quick, N. J., Jewell, R., Williams, R. & Harris, C. M. Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PLoS ONE 7, e44075 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Taylor, B. L., Martinez, M., Gerrodette, T., Barlow, J. & Hrovat, Y. N. Lessons from monitoring trends in abundance of marine mammals. Mar. Mamm. Sci. 23, 157–175 (2007).Article 

    Google Scholar 
    42.Pyenson, N. D. The high fidelity of the cetacean stranding record: insights into measuring diversity by integrating taphonomy and macroecology. Proc. R. Soc. B Biol. Sci. 278, 3608–3616 (2011).Article 

    Google Scholar 
    43.Leeney, R. H. et al. Spatio-temporal analysis of cetacean strandings and bycatch in a UK Wsheries hotspot. Biodivers. Conserv. 17, 2323–2338 (2008).Article 

    Google Scholar 
    44.Lambert, E. et al. Quantifying likely cetacean range shifts in response to global climatic change: implications for conservation strategies in a changing world. Endanger. Species Res. 15, 205–222 (2011).Article 

    Google Scholar 
    45.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    46.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Nawojchik, R., St. Aubin, D. J. & Johnson, A. Movements and dive behavior of two stranded, rehabilitated long-finned pilot whales (Globicephala melas) in the northwest Atlantic. Mar. Mammal Sci. 19, 232–239 (2003).Article 

    Google Scholar 
    48.Bloch, D. et al. Short-term movements of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 9, 47–8 (2003).Article 

    Google Scholar 
    49.Hayes, S., Josephson, E., Maze‐Foley, K. & Rosel, P. US Atlantic and Gulf of Mexico marine mammal stock assessments–2019. NOAA Tech Memo NMFS‐NE 264 (2020).50.Gannon, D., Read, A., Craddock, J., Fristrup, K. & Nicolas, J. Feeding ecology of long-finned pilot whales Globicephala melas in the western North Atlantic. Mar. Ecol. Prog. Ser. Oldendorf 148, 1–10 (1997).ADS 
    Article 

    Google Scholar 
    51.Harden Jones, F. R. In Animal migration. Soc. Exp. Biol. Sem. Ser. 13 (ed. Aidley, D. J.) 139–165 (Cambridge Univ. Press, 1981).
    Google Scholar 
    52.Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    53.Heide-Jørgensen, M. P. et al. Diving behaviour of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 8, 307–313 (2002).Article 

    Google Scholar 
    54.Baird, R. W., Borsani, J. F., Hanson, M. B. & Tyack, P. L. Diving and night-time behavior of long-finned pilot whales in the Ligurian Sea. Mar. Ecol. Prog. Ser. 237, 301–305 (2002).ADS 
    Article 

    Google Scholar 
    55.Adamczak, S. K., McLellan, W. A., Read, A. J., Wolfe, C. L. & Thorne, L. H. The impact of temperature at depth on estimates of thermal habitat for short‐finned pilot whales. Mar. Mammal Sci. (2020).56.Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evolut. 4, 109–114 (2020).Article 

    Google Scholar 
    57.Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9, 959–963 (2019).ADS 
    Article 

    Google Scholar 
    58.Kleisner, K. M. et al. The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. PLoS ONE 11, e0149220 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Kleisner, K. M. et al. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 153, 24–36 (2017).ADS 
    Article 

    Google Scholar 
    60.Kavanaugh, M. T., Rheuban, J. E., Luis, K. M. & Doney, S. C. Thirty-three years of ocean benthic warming along the US northeast continental shelf and slope: Patterns, drivers, and ecological consequences. J. Geophys. Res. Oceans 122, 9399–9414 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Grady, J. M. et al. Metabolic asymmetry and the global diversity of marine predators. Science 363 (2019).62.Williams, T. M. et al. The diving physiology of bottlenose dolphins (Tursiops truncatus). III. Thermoregulation at depth. J. Exp. Biol. 202, 2763–2769 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Pabst, D. A., Rommel, S. A. & McLELLAN, W. A. The emergence of whales 379–397 (Springer, 1998).Book 

    Google Scholar 
    64.McNab, B. K. Short-term energy conservation in endotherms in relation to body mass, habits, and environment. J. Therm. Biol 27, 459–466 (2002).Article 

    Google Scholar 
    65.Yeates, L. C. & Houser, D. S. Thermal tolerance in bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 211, 3249–3257 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans (2016).67.Kenney, R. D., Scott, G. P., Thompson, T. J. & Winn, H. E. Estimates of prey consumption and trophic impacts of cetaceans in the USA northeast continental shelf ecosystem. J. Northwest Atl. Fish. Sci. 22, 155–171 (1997).Article 

    Google Scholar 
    68.Read, A. J. & Brownstein, C. R. Considering other consumers: fisheries, predators, and Atlantic herring in the Gulf of Maine. Conserv. Ecol. 7, 2 (2003).
    Google Scholar 
    69.Overholtz, W. & Link, J. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine-Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES J. Mar. Sci. J. Conseil 64, 83–96 (2007).Article 

    Google Scholar 
    70.Smith, L. A., Link, J. S., Cadrin, S. X. & Palka, D. L. Consumption by marine mammals on the Northeast US continental shelf. Ecol. Appl. 25, 373–389 (2015).PubMed 
    Article 

    Google Scholar 
    71.Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. (CR) 33, 271–283 (2007).ADS 
    Article 

    Google Scholar 
    75.Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).PubMed 
    Article 

    Google Scholar 
    76.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?. J. Anim. Ecol. 78, 73–83 (2009).PubMed 
    Article 

    Google Scholar 
    77.Evans, K. et al. Periodic variability in cetacean strandings: links to large-scale climate events. Biol. Let. 1, 147–150 (2005).CAS 
    Article 

    Google Scholar 
    78.Overholtz, W., Hare, J. & Keith, C. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the US Northeast continental shelf. Mar. Coastal Fish. 3, 219–232 (2011).Article 

    Google Scholar 
    79.Roper, C., Lu, C. & Vecchione, M. A revision of the systematics and distribution of Illex species (Cephalopoda: Ommastrephidae). Smithsonian Contrib. Zool., 405–424 (1998).80.Brodziak, J. & Hendrickson, L. An analysis of environmental effects on survey catches of squids Loligo pealei and Illex illecebrosus in the northwest Atlantic. Fish. Bull. 97, 9–24 (1999).
    Google Scholar 
    81.Henderson, M. E., Mills, K. E., Thomas, A. C., Pershing, A. J. & Nye, J. A. Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf. Rev. Fish Biol. Fisheries 27, 411–424 (2017).Article 

    Google Scholar 
    82.Sosebee, K. A. & Cadrin, S. X. A historical perspective on the abundance and biomass of northeast demersal complex stocks from NMFS and Massachusetts inshore bottom trawl surveys, 1963–2002. (2006).83.Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evolut. 10, 2195–2202 (2019).Article 

    Google Scholar  More

  • in

    The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China

    1.Huai, J. J. Dynamics of resilience of wheat to drought in Australia from 1991–2010. Sci. Rep. 7, 9532 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Li, M., Peterson, C. A., Tautges, N. E., Scow, K. M. & Gaudin, A. C. M. Yields and resilience outcomes of organic cover crop, and conventional practices in a Mediterranean climate. Sci. Rep. 9, 12283 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Keersmaecker, W. D. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).Article 

    Google Scholar 
    4.Griffith, G. P. et al. Ecological resilience of Arctic marine food webs to climate change. Nat. Clim. Change 9, 868–872 (2019).ADS 
    Article 

    Google Scholar 
    5.You, N. S., Meng, J. J. & Zhu, L. K. Sensitivity and resilience of ecosystems to climate variability in the semi-arid to hyper-arid areas of Northern China: a case study in the Heihe River Basin. Ecol. Res. 33, 161–174 (2018).Article 

    Google Scholar 
    6.Reijers, V. C. et al. Resilience of beach grasses along a biogeomorphic successive gradient: resource availability vs. clonal integration. Oceologia https://doi.org/10.1007/s00442-019-04568-w (2019).Article 

    Google Scholar 
    7.Chambers, J. C. et al. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in clod desert shrublands of western North America. Ecosystems 17, 360–375 (2014).CAS 
    Article 

    Google Scholar 
    8.Driessen, M. M. Fire resilience of a rare, freshwater crustacean in a fire-prone ecosystem and the implications for fire management. Austral Ecol. 44, 1030–1039 (2019).Article 

    Google Scholar 
    9.Ren, H., Lu, H. F., Li, Y. D. & Wen, Y. G. Vegetation restoration and its research advancement in Southern China. J. Trop. Subtrop. Bot. 27(5), 469–480 (2019).
    Google Scholar 
    10.Yan, H. M., Zhan, J. Y. & Zhang, T. Review of ecosystem resilience research progress. Prog. Geogr. 31(3), 303–314 (2012).
    Google Scholar 
    11.Zhan, J. Y., Yan, H. M., Deng, X. Z. & Zhang, T. Assessment of forest ecosystem resilience in Lianhua County of Jiangxi Province. J. Nat. Resour. 27(8), 1304–1315 (2012).
    Google Scholar 
    12.Pérez-Girón, J. C., Álvarez-Álvarez, P., Díaz-Valera, E. R. & Lopes, D. M. M. Influence of climate variations on primary production indicators and on the resilience of forest ecosystems in a future scenario of climate change: application to sweet chestnut agroforestry systems in the Iberian Peninsula. Ecol. Indic. 113, 106199 (2020).Article 

    Google Scholar 
    13.Meng, Y. Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).Article 

    Google Scholar 
    14.Han, L. et al. Species composition, community structure, and floristic characteristics of desert riparian forest community along the mainstream of Tarim River. Plant Sci. J. 37(3), 324–336 (2019).
    Google Scholar 
    15.Zhou, H. H. et al. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: evidence from tree-rings of Populus euphratica. Ecol. Indic. 111, 105997 (2020).Article 

    Google Scholar 
    16.Aini, A. et al. Analysis of stakeholders’ cognition on desert riparian forest ecosystem services in the lower reaches of Tarim River, China. Res. Soil Water Conserv. 23(1), 205–209 (2016).
    Google Scholar 
    17.Li, Y. Q., Chen, Y. N., Zhang, Y. Q. & Xia, Y. Rehabilitating China’s largest inland river. Conserv. Biol. 23(3), 531–536 (2009).PubMed 
    Article 

    Google Scholar 
    18.Dai, J. S. Evaluation of eco-environment and socio-economic benefits on comprehensive reclamation projects on the Tarim River Basin. Doctoral Dissertation of Xinjiang Agricultural University (2015).19.Han, L., Wang, H. Z., Niu, J. L., Wang, J. Q. & Liu, W. Y. Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim River Basin. Acta Ecol. Sin. 37, 6836–6846 (2017).
    Google Scholar 
    20.Yang, G. & Guo, Y. P. The change and prospect of vegetation in the end of the lower reaches of Tarim River after ecological water delivery. J. Desert Res. 24(2), 167–172 (2004).
    Google Scholar 
    21.Yan, H. M., Zhan, J. Y. & Zhang, T. Resilience of forest ecosystems and its influencing factors. Procedia Environ. Sci. 10, 2201–2206 (2011).Article 

    Google Scholar 
    22.Abenayake, C. C., Mikami, Y., Matsuda, Y. & Jayasinghe, A. Ecosystem service-based composite indicator for assessing community resilience to floods. Environ. Dev. 27, 34–46 (2018).Article 

    Google Scholar 
    23.Maestas, J. D., Campbell, S. B., Chambers, J. C., Pellant, M. & Miller, R. F. Tapping soil survey information for rapid assessment of sagebrush ecosystem resilience and resistance. Rangelands 38(3), 120–128 (2016).Article 

    Google Scholar 
    24.Ponce-Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Frazier, A. E., Renschler, C. S. & Miles, S. B. Evaluating post-disaster ecosystem resilience using MODIS GPP data. Int. J. Appl. Earth Obs. Geoinform. 21, 43–52 (2013).ADS 
    Article 

    Google Scholar 
    26.Kahiluoto, H. et al. Decline in climate resilience of European wheat. PNAS 116(1), 123–128 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Li, X. Y. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evolut. 4, 1075–1083 (2020).Article 

    Google Scholar 
    28.Li, C. H., Zhou, M., Wang, Y. T., Zhu, T. B., Sun, H., Yin, H. H., Cao, H. J., Han, H. Y. Inter-annual variations of vegetation net primary productivity and their spatial-temporal contribution and climate driving in arid Northwest China: a case study of Hexi Corridor. Chin. J. Ecol. (2020).29.Song, J. et al. A global database of plant production and carbon exchange from global change manipulative experiments. Sci. Data 7, 1–7 (2020).Article 
    CAS 

    Google Scholar 
    30.Yang, G. et al. Research progress of ecosystem resilience assessment. Zhejiang Agric. Sci. 60(3), 508–513 (2019).
    Google Scholar 
    31.Liu, J. Z. & Chen, Y. N. Analysis on converse succession of plant communities at the lower reaches of Tarim River. Arid Land Geogr. 25(3), 231–236 (2002).
    Google Scholar 
    32.Chen, X., Bao, A. M., Wang, X. P., Guli, J. P. E. & Huang, Y. Recent ecological effectiveness assessment of integrated management projects in the Tarim River. Bull. Chin. Acad. Sci. 32(1), 20–28 (2017).
    Google Scholar 
    33.Zhao, H., Yan, L. & Ji, F. The dynamics of land utilization in the upper reaches of Tarim River. J. Arid Land Resour. Environ. 15(4), 40–43 (2001).
    Google Scholar 
    34.Sun, F., Wang, Y. & Chen, Y. N. Dynamics of desert-oasis ecotone and its influencing factors in the Tarim Basin. Chin. J. Ecol. 39(10), 1–11 (2020).
    Google Scholar 
    35.Xu, G. H. A genetic explanation of the recent changes of ecological environment in the Tarim River Basin, southern Xinjiang. Xinjiang Meteorol. 28–31 (2005).36.Kamkin, A. & Lozinsky, I. Mechanically Gated Channels and Their Regulation (Springer, 2012).Book 

    Google Scholar 
    37.Feyisa, K. et al. Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands. CATENA 159, 9–19 (2017).Article 

    Google Scholar 
    38.Wang, G. H., Ren, Y. J. & Gou, Q. Q. The changes of soil physical and chemical property during the enclosure process in a typical desert oasis ecotone of the Hexi Corridor in northwestern China. J. Desert Res. 40(2), 222–231 (2020).
    Google Scholar 
    39.Xu, H. L., Ye, M. & Li, J. M. Changes in groundwater levels and the response of natural vegetation to the transfer of water to the lower reaches of the Tarim River. J. Environ. Sci. 19(10), 1199–1207 (2007).Article 

    Google Scholar 
    40.Zhang, P. F., Guli, J., Bao, A. M., Meng, F. H. & Guo, H. Ecological effects evaluation for short term planning of the Tarim River. Arid Land Geogr. 40(1), 156–164 (2017).
    Google Scholar 
    41.Gulimire, H., Wang, G. Y., Zhang, Y., Liu, Q. Q. & Su, L. T. Influence mechanisms of intermittent ecological water conveyance on groundwater level and vegetation in arid land. Arid Land Geogr. 41(4), 726–733 (2018).
    Google Scholar 
    42.Guo, H. W., Xu, H. L. & Ling, H. B. Study of ecological water transfer mode and ecological compensation scheme of the Tarim River Basin in dry years. J. Nat. Resour. 32(10), 1705–1717 (2017).
    Google Scholar 
    43.Wu, T. Z., Ding, J., Guan, W. K., Ruan, C. J. & Guan, Y. Populus euphratica forest replacement and photosynthetic characteristics in Tarim Populus euphratica national nature reserve. Prot. For. Sci. Technol. 8, 1–4 (2020).
    Google Scholar 
    44.Zhu, C. G., Aikeremu, A., Li, W. H. & Zhou, H. H. Ecosystem restoration of Populus euphratica forest under the ecological water conveyance in the lower reaches of Tarim River. Arid Land Geography, 44(3), 629–636 (2021).
    Google Scholar 
    45.Chen, Y. N. Study on Eco-hydrological Problems of the Tarim River Basin in Xinjiang (Science Press, 2010).
    Google Scholar 
    46.Halik, U., Aishan, T., Betz, F., Kurban, A. & Rouzi, A. Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China’s largest inland river. Ecol. Eng. 127, 11–22 (2019).Article 

    Google Scholar 
    47.Xinjiang Morning News. In the past three years, the area of the Populus euphratica forest reserve in the Tarim River Basin has increased by 569.95 km2. https://www.sohu.com/a/308626663_100034331?sec=wd (2019).48.China News Service. Ecological water transfer for desert vegetation in lower reaches of Konqi River in Xinjiang. https://news.sina.com.cn/o/2020-02-22/doc-iimxyqvz4945915.shtml (2020). More

  • in

    The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole

    Research cruisesThis dataset consists of sequence data from 4 separate cruises: ARK-XXVII/1 (PS80)—17th June to 9th July 2012; Stratiphyt-II— April to May 2011; ANT-XXIX/1 (PS81)—1st to 24th November 2012 and ANT-XXXII/2 (PS103)—16th December 2016 to 3rd February 2017 and covers a transect of the Atlantic Ocean from Greenland to the Weddell Sea (71.36°S to 79.09°N) (Supplementary Table 1). In order to study the composition, distribution and activity of microbial communities in the upper ocean across the broadest latitudinal ranges possible, samples have been collected during four field campaigns as shown in Fig. 1A. The first collection of samples was collected in the North Atlantic Ocean from April to May 2011 by Dr. Willem van de Poll of the University of Groningen, Netherlands and Dr. Klaas Timmermans of the Royal Netherlands Institute for Sea Research. The second set of samples was collected in the Arctic Ocean from June to July 2012, and the third set of samples was collected in the South Atlantic Ocean from October to November 2012. Both of which were collected by Dr. Katrin Schmidt of the University of East Anglia. The final set of samples was collected in the Antarctic Ocean from December 2016 to January 2017 by Dr. Allison Fong of the Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.SamplingWater samples from the Arctic Ocean and South Atlantic Ocean expeditions were collected using 12 L Niskin bottles (Rosette sampler with an attached Sonde (CTD, conductivity, temperature, depth) either at the chlorophyll maximum (10–110 m) and/or upper of the ocean (0–10 m). As soon as the rosette sampler was back on board, water samples were immediately transferred into plastic containers and transported to the laboratory. All samples were accompanied by measurements on salinity, temperature, sampling depth and silicate, nitrate, phosphate concentration (Supplementary Table 1). Water samples were pre-filtered with a 100 μm mesh to remove larger organisms and subsequently filtered onto 1.2 μm polycarbonate filters (Isopore membrane, Millipore, MA, USA). All filters were snap frozen in liquid nitrogen and stored at −80 °C until further analysis.Water samples from the North Atlantic Ocean cruise were also taken with 12 L Niskin bottles attached to a Rosette sampler with a Sonde. However, these samples were filtered onto 0.2 μm polycarbonate filters (Isopore membrane, Millipore, MA, USA) without pre-filtration but snap frozen in liquid nitrogen and stored at −80 °C as the other samples.Water samples from the Southern Ocean cruise were taken with 12 L Niskin bottles attached to an SBE911plus CTD system equipped with 24 Niskin samplers. These samples were filtered onto 1.2 μm polycarbonate membrane filters (Merck Millipore, Germany) in a container cooled to 4 °C and snap frozen in liquid nitrogen and stored at −80 °C as the other samples. Environmental data recorded at the time of sampling can be found in Supplementary Table 1.DNA extractions: Arctic Ocean and South Atlantic Ocean samplesDNA was extracted with the EasyDNA Kit (Invitrogen, Carlsbad, CA, USA) with modification to optimise DNA quantity and quality. Briefly, cells were washed off the filter with pre-heated (65 °C) Solution A and the supernatant was transferred into a new tube with one small spoon of glass beads (425–600 μm, acid washed) (Sigma-Aldrich, St. Louis, MO, USA). Samples were vortexed three times in intervals of 3 s to break the cells. RNase A was added to the samples and incubated for 30 min at 65 °C. The supernatant was transferred into a new tube and Solution B was added followed by a chloroform phase separation and an ethanol precipitation step. DNA was pelleted by centrifugation and washed several times with isopropanol, air dried and suspended in 100 μL TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, pH 8.0). Samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.DNA extractions: North Atlantic Ocean samplesNorth Atlantic Ocean samples were extracted with the ZR-Duet™DNA/RNA MiniPrep kit (Zymo Research, Irvine, USA) allowing simultaneous extraction of DNA and RNA from one sample filter. Briefly, cells were washed from the filters with DNA/RNA Lysis Buffer and one spoon of glass beads (425–600 μm, Sigma-Aldrich, MO, USA) was added. Samples were vortexed quickly and loaded onto Zymno-Spin™IIIC columns. The columns were washed several times and DNA was eluted in 60 μmL, DNase-free water. Samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.DNA extractions: Southern Ocean samplesDNA from the Southern Ocean samples was extracted with the NucleoSpin Soil DNA extraction kit (Macherey‐Nagel) following the manufacturer’s instructions. Briefly, cells were washed from the filters with DNA Lysis Buffer and into a lysis tube containing glass beads was added. Samples were disrupted by bead beating for 2 × 30 s interrupted by 1 min cooling on ice and loaded onto the NucleoSpin columns. The columns were washed three times and DNA was eluted in 50 μL, DNase-free water. Samples were stored at −20 °C until further processing.Amplicon sequencing of 16S and 18S rDNAAll extracted DNA samples were sequenced and pre-processed by the Joint Genome Institute (JGI) (Department of Energy, Berkeley, CA, USA). iTAG amplicon sequencing was performed at JGI with primers for the V4 region of the 16S (FW(515F): GTGCCAGCMGCCGCGGTAA; RV(806R): GGACTACNVGGGTWTCTAAT)49 and 18S (FW(565F): CCAGCASCYGCGGTAATTCC; RV(948R): ACTTTCGTTCTTGATYRA)50. (Supplementary Table 6) rRNA gene (on an Illumina MiSeq instrument with a 2 × 300 base pairs (bp) read configuration51. 18S sequences were pre-processed, this consisted of scanning for contamination with the tool Duk (US Department of Energy Joint Genome Institute (JGI), 2017,a) and quality trimming of reads with cutadapt52. Paired end reads were merged using FLASH53 with a max mismatch set to 0.3 and min overlap set to 20. A total of 54 18S samples passed quality control after sequencing. After read trimming, there was an average of 142,693 read pairs per 18S sample with an average length of 367 bp and 2.8 Gb of data over all samples.16S sequences were pre-processed, this consisted of merging the overlapping read pairs using USEARCH’s merge pairs54 with the parameter minimum number of differences (merge max diff pct) set to 15.0 into unpaired consensus sequences. Any reads that could not be merged are discarded. JGI then applied the tool USEARCH’s search oligodb tool with the parameters mean length (len mean) set to 292, length standard deviation (len stdev) set to 20, primer trimmed max difference (primer trim max diffs) set to 3, a list of primers and length filter max difference (len filter max diffs) set to 2.5 to ensure the Polymerase Chain Reaction (PCR) primers were located with the correct direction and inside the expected spacing. Reads that did not pass this quality control step were discarded. With a max expected error rate (max exp err rate) set to 0.02, JGI evaluated the quality score of the reads and those with too many expected errors were discarded. Any identical sequence was de-duplicated. These are then counted and sorted alphabetically for merging with other such files later. A total of 57 × 16S samples passed quality control after sequencing. There was an average 393,247 read pairs per sample and an average base length of 253 bp for each sequence with a total of 5.6 Gb.RNA extractions: Arctic Ocean and Atlantic samplesRNA from the Arctic and Atlantic Ocean samples was extracted using the Direct-zol RNA Miniprep Kit (Zymo Research, USA). Briefly, cells were washed off the filters with Trizol into a tube with one spoon of glass beads (425–600 μm, Sigma-Aldrich, MO, USA). Filters were removed and tubes bead beaten for 3 min. An equal volume of 95% ethanol was added, and the solution was transferred onto Zymo-Spin™ IICR Column and the manufacturer instructions were followed. Samples were treated with DNAse to remove DNA impurities, snap frozen in liquid nitrogen and stored at −80 °C until sequencing.RNA extractions: Southern OceanRNA from the Southern Ocean samples was extracted using the QIAGEN RNeasy Plant Mini Kit (QIAGEN, Germany) following the manufacturer’s instructions with on-column DNA digestion. Cells were broken by bead beating like for the DNA extractions before loading samples onto the columns. Elution was performed with 30 µm RNase-free water. Extracted samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.Metatranscriptome sequencingAll samples were sequenced and pre-processed by the U.S. Department of Energy Joint Genome Institute (JGI). Metatranscriptome sequencing was performed on an Illumina HiSeq-2000 instrument27. A total of 79 samples passed quality control after sequencing with 19.87 Gb of sequence read data over all samples for analysis. This comprised a total of 34,241,890 contigs, with an average length of 503 and an average GC% of 51%. This resulted in 36354419 of non-redundant genes detected.JGI employed their suite of tools called BBTools55 for preprocessing the sequences. First, the sequences were cleaned using Duk a tool in the BBTools suite that performs various data quality procedures such as quality trimming and filtering by kmer matching. In our dataset, Duk identified and removed adaptor sequences, and also quality trimmed the raw reads to a phred score of Q10. In Duk the parameters were; kmer-trim (ktrim) was set to r, kmer (k) was set to 25, shorter kmers (mink) set to 12, quality trimming (qtrim) was set to r, trimming phred (trimq) set to 10, average quality below (maq) set to 10, maximum Ns (maxns) set to 3, minimum read length (minlen) set to 50, the flag “tpe” was set to t, so both reads are trimmed to the same length and the “tbo” flag was set to t, so to trim adaptors based on pair overlap detection. The reads were further filtered to remove process artefacts also using Duk with the kmer (k) parameter set to 16.BBMap55 is another a tool in the BBTools suite, that performs mapping of DNA and RNA reads to a database. BBMap aligns the reads by using a multi-kmer-seed-and-extend approach. To remove ribosomal RNA reads, the reads were aligned against a trimmed version of the SILVA database using BBMap with parameters set to; minratio (minid) set to 0.90, local alignment converter flag (local) set to t and fast flag (fast) set to t. Also, any human reads identified were removed using BBMap.BBmerge56 is a tool in the BBTools suite that performs the merging of overlapping paired end reads (Bushnell, 2017). For assembling the metatranscriptome, the reads were first merged with the tool BBmerge, and then BBNorm was used to normalise the coverage so as to generate a flat coverage distribution. This type of operation can speed up assembly and can even result in an improved assembly quality.Rnnotator52 was employed for assembling the metatranscriptome samples 1–68. Rnnotator assembles the transcripts by using a de novo assembly approach of RNA-Seq data and it accomplishes this without a reference genome52. MEGAHIT57 was employed for assembling the metatranscriptome samples 69–82. The tool BBMap was used for reference mapping, the cleaned reads were mapped to metagenome/isolate reference(s) and the metatranscriptome assembly.Metatranscriptome analysisJGI performed the functional analysis on the metatranscriptomic dataset. JGI’s annotation system is called the Metagenome Annotation Pipeline (MAP) (v4.15.2)27. JGI used HMMER 3.1b258 and the Pfam v3059 database for the functional analysis of our metatranscriptomic dataset. This resulted in 11,205,641 genes assigned to one or more Pfam domain. This resulted in 8379 Pfam functional assignments and their gene counts across the 79 samples. The files were further normalised by applying hits per million.18S rDNA analysisA reference dataset of 18S rRNA gene sequences that represent algae taxa was compiled for the construction of the phylogenetic tree by retrieving sequences of algae and outgroups taxa from the SILVA database (SSUREF 115)60 and Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database61. The algae reference database consists of 1636 species from the following groups: Opisthokonta, Cryptophyta, Glaucocystophyceae, Rhizaria, Stramenopiles, Haptophyceae, Viridiplantae, Alveolata, Amoebozoa and Rhodophyta. A diagram of the 18S classification pipeline can be found in Supplementary Fig. 1. In order to construct the algae 18S reference database, we first retrieved all eukaryotic species from the SILVA database with a sequence length of  > = 1500 base pairs (bp) and converted all base letters of U to T. Under each genus, we took the first species to represent that genus. Using a custom written script (https://github.com/SeaOfChange/SOC/blob/master/get_ref_seqs.pl), the species of interest (as stated above) were selected from the SILVA database, classified with NCBI taxa IDs and a sequence information file produced that describes each of the algae sequences by their sequence ID and NCBI species ID. Taxonomy from the NCBI database, eukaryote sequences from the SILVA database and a list of algal taxa including outgroups were used as input for the script. This information was combined with the MMETSP database excluding duplications.The algae reference database was clustered to remove closely related sequences with CD-HIT (4.6.1)62 using a similarity threshold of 97%. Using ClustalW (2.1)63 we aligned the reference sequences with the addition of the parameter iteration numbers set to 5. The alignment was examined by colour coding each species to their groups and visualising in iTOL64. It was observed that a few species were misaligning to other groups and these were then deleted using Jalview65. The resulting alignment was tidied up with TrimAL (1.1)66 by applying parameters to delete any positions in the alignment that have gaps in 10% or more of the sequence, except if this results in less than 60% of the sequence remaining. A maximum likelihood phylogenetic reference tree and statistics file based on our algae reference alignment was constructed by employing RaxML (8.0.20)67 with a general time reversible model of nucleotide substitution along with the GAMMA model of rate heterogeneity. For a description of the lineages of all species back to the root in the algae reference database, the taxa IDs were submitted for each species to extract a subset of the NCBI taxonomy with the NCBI taxtastic tool (0.8.4)68 Based on the algae reference multiple sequence alignment, with HMMER3 (3.1B1)69 a Profile HMM was created. A pplacer reference package using taxtastic was generated, which produced an organized collection of all the files and taxonomic information into one directory. With the reference package, a SQLite database was created using pplacer’s Reference Package PReparer (rppr). With hmmalign, the query sequences were aligned to the reference set and created a combined Stockholm format alignment. Pplacer (re-aligned to the reference set and created a combined Stockholm format alignment. Pplacer (1.1)70 was used to place the query sequences on the phylogenetic reference tree by means of the reference alignment according to a maximum likelihood model70 The place files were converted to CSV with pplacer’s guppy tool; in order to easily take those with a maximum likelihood score of  > = 0.5 and counted the number of reads assigned to each classification. This resulted in 6,053,291 reads that were taxonomically assigned being taken for analysis.Normalisation of 18S rDNA gene copy number18S rDNA gene copy number vary widely among eukaryotes. In order to create an estimate of abundances of the species in the samples the data had to be normalised. Previous work has explored the link between copy number and genome size71. However, there is not a single database of 18S rDNA gene copy numbers for eukaryote species. In order to address this, gene copy number and related genome sizes of 185 species across the eukaryote tree was investigated and plotted (Supplementary Fig. 2, Supplementary Table 4)68,71,72,73,74,75,76,77,78,79. Based on the log transformed data, a significant correlation with a R2 of 0.55 with a p-value  More

  • in

    The cichlid oral and pharyngeal jaws are evolutionarily and genetically coupled

    Macro- and micro-evolutionary integration between jaw complexesWe examined phenotypic associations between the lower oral and pharyngeal jaws (LOJ and LPJ, respectively) of 88 cichlid species from across Africa, primarily sampling from lakes in the East African Rift Valley: lakes Malawi, Tanganyika, and Victoria (Supplementary Data 1). We characterized jaw shapes based on 107 individuals using 3D geometric morphometrics by placing landmarks in positions that capture functionally (e.g., bony processes, sutures, etc.) and developmentally (e.g., distinct cellular origins) important aspects of morphology, including placing mirrored landmarks across midlines to gain symmetric configurations (Fig. 1e, Supplementary Fig. 1). We conducted a Procrustes superimposition, removed the effects of allometry to account for size differences, and then removed the effects of asymmetry to account for developmental noise. We performed a two-block partial least squares (PLS) analysis on the species mean landmark configurations and corrected for phylogenetic non-independence using a Bayesian time-calibrated tree31. We found the LOJ and LPJ were evolutionarily correlated (r-PLS = 0.482, P = 0.002, effect size (Z) = 2.585), but some taxa, particularly those with unique diets and/or modes of feeding, appeared to deviate from the best-fit line, indicating lower levels (or different patterns) of integration between jaws (Fig. 2a). Indeed, we found numerous taxa, typically from Lake Malawi, whereby covariation between the LOJ and LPJ appeared much different relative to other African cichlids. Taxa placed far from the best-fit line either (1) exhibited a specialized feeding morphology to better exploit an foraging niche shared with many competitors (i.e., Labeotropheus, algae; Copadichromis, zooplankton; Taeniolethrinops, insects), or (2) exhibited a specialized feeding morphology to take advantage of a more challenging food source (i.e., Trematocranus, snails). However, not all taxa that consume specialized prey were far from the best-fit line; Pungu, (primarily a sponge-feeder) and Perissodus (a scale-feeder), while exhibiting specialized feeding apparatuses to consume such prey, exhibited a relationship between their LOJ and LPJ that was in-line with other African cichlids (Supplementary Fig. 2). We also noted, that while Malawi cichlids exhibit a range of LOJ-LPJ relationships (from weak to strong), most Tanganyikan cichlids reside close to the best-fit line. However, when we examine the strength of integration in the Tanganyika group (n = 29, r-PLS = 0.698, P = 0.001, Z = 2.954) and Malawi group (n = 40, r-PLS = 0.541, P = 0.020, Z = 2.155), despite Tangyanika cichlids exhibiting higher Z-scores, consistent with stronger integration, a statistical comparison between groups finds no significant difference (Z pairwise = 1.188, P = 0.235). Comparisons between Tanganyikan and Malawi cichlids should not be influenced by sampling bias, as principal components analyses (PCA) on the LOJ and LPJ landmark data (Supplementary Data 2 and 3) showed that our sampling of Tanganyikan cichlids includes many species with extreme morphologies that reside at the outer edges of LOJ and LPJ morphospace (Supplementary Fig. 3). Indeed, cichlids from Lake Tanganyika exhibited similar LOJ morphological disparity (Malawi Procrustes variance (PV) = 0.074; Tanganyika PV = 0.057, P = 0.253) and greater LPJ morphological disparity (Malawi PV = 0.015; Tanganyika PV = 0.023, P = 0.012), relative to cichlids from Lake Malawi. Taken together, this indicates that while Tanganyikan cichlids exhibit comparable (i.e., LOJ), or greater (i.e., LPJ) morphological variation compared to Malawi cichlids, covariation between LOJ and LPJ shapes was generally similar between groups.Fig. 2: Phylogenetic two-block partial least squares analysis to assess macroevolutionary associations between lower oral and pharyngeal jaws.a Jaw shape associations across a broad sample of African cichlids (n = 88). Taxa from Lake Malawi are placed into two groups based on phylogenetic position: an mbuna ‘rock-dwellers’ group, and a non-mbuna group consisting of the utaka ‘sand-dwellers’ alongside other benthic species88. b Jaw shape associations across the Tropheops sp. species complex from across a depth gradient (n = 22). Oral and pharyngeal jaw wireframes denote morphologies at either end of the correlational axis. Source data are provided as a Source Data file.Full size imageWe next investigated the degree of integration at lower taxonomic levels. First, we analyzed the jaws of cichlids within the Tropheops species complex from Lake Malawi that is diverse and known to partition habitat by depth32,33. While Tropheops exhibited strong integration between jaws in on our macroevolutionary assessment, species within this genus occupy a broader niche space. Investigating integration within such a species complex provided an opportunity to understand whether habitat differences could lead to differences in integration between jaw complexes. Using the same landmarking procedure as described above, we characterized shape variation in the LOJs and LPJs of 22 wild-caught Tropheops taxa from 60 individuals, concentrating on members from localities across the southern portion of Lake Malawi (Supplementary Data 4). We again performed a two-block PLS analysis on the mean landmark configurations and accounted for phylogenetic non-independence using an amplified fragment length polymorphism tree33. Again, we found the LOJ and LPJ were evolutionarily correlated (r-PLS = 0.795, P = 0.006, Z = 2.521), indicating jaw integration does not appear to vary by habitat (Fig. 2b).Finally, we measured and compared integration between a species pair that exhibited relatively strong versus weak covariation between LOJ and LPJ shapes in our macroevolutionary assessments, Tropheops sp. ‘red cheek’ (TRC, relatively stronger integration) and Labeotropheus fuelleborni (LF, relatively weaker integration). Using the same landmarking protocol we performed separate two-block PLS analyses between LOJs and LPJs of LF and TRC (Supplementary Data 5). Notably, we found strong and significant integration between jaw complexes in TRC (n = 11, r-PLS = 0.957, P = 0.001, Z = 3.038; Fig. 3a) relative to LF (n = 17, r-PLS = 0.669, P = 0.22, Z = 0.794; Fig. 3b). Further, we found the effect sizes of jaw integration within TRC and LF to be statistically distinct (Z pairwise = 1.678, P = 0.047). Altogether, our data support the assertion that the LOJ and LPJ are evolutionarily integrated at multiple taxonomic levels, but they also appear to indicate that certain taxa, such as Labeotropheus, can more readily generate adaptive morphological variation in each jaw complex independently.Fig. 3: Two-block partial least squares analysis to assess microevolutionary associations between lower oral and pharyngeal jaws.a Shape associations among Tropheops sp. “red cheek” (TRC) individuals (n = 11). b Shape associations among Labeotropheus fuelleborni (LF) individuals (n = 17). c Shape associations among members of a hybrid cross between TRC and LF (n = 409). Oral and pharyngeal jaw wireframes denote morphologies at either end of the correlational axis. Source data are provided as a Source Data file.Full size imageGenetic basis for oral and pharyngeal jaw shape covariationTo understand whether phenotypic covariation between the LOJ and LPJ is genetically determined we performed a quantitative trait loci (QTL) analysis to identify prospective genomic regions involved in jaw shape variation for both the LOJ and LPJ. Specifically, we extended an existing genetic cross between the more strongly integrated TRC and the more weakly integrated LF to the F5 generation. Details of the pedigree may be found in34 and in the supplement. For this experiment, we genotyped 636 F5 hybrids and produced a genetic map containing 812 single-nucleotide polymorphisms (SNPs) spread across 24 linkage groups (Supplementary Data 6). With a total length of 1431 cM, our high-resolution linkage map contained a marker every 1.83 cM, on average, allowing us to leverage the increased number of recombination events that occurred to reach an F5 population. We then characterized LOJ and LPJ shape in 409 F5 hybrids using the same landmarking scheme described above, and performed a two-block PLS analysis. In concordance with our findings from natural populations, we documented an association between jaw complexes in this laboratory pedigree (r-PLS = 0.491, P = 0.001, effect size = 6.189; Fig. 3c).We next performed a PCA on the hybrid landmark configurations to distill the data down to a series of orthogonal axes that best explain shape variation among individuals. We extracted the first two PCs from the LOJ and LPJ as each axis represented more than 10% of the shape variation (Supplementary Data 7; Supplementary Figs. 4 and 5). The first axis of the LOJ reflected more general variation in depth, width, and length of the element (41.8% of variation), while the second axis reflected more specific variation in the length of the ascending arm of the articular––the process for which jaw closing muscles attach (12.7% of variation). The first axis of the LPJ reflected width, length, and wing process size (33.7% of variation), while the second axis reflected depth and the size of the anterior keel – the process for which the pharyngeal jaw pharyngohyoideus muscle attaches and controls jaw adduction (14.2% of variation). We then utilized these PC scores as traits to run in our QTL analyses to investigate the genetic basis for variation in these structures.QTL mapping implicates pleiotropic control of LOJ and LPJ shape variationIntegration between LOJ and LJP shapes in the F5 predicts that this pattern of covariation will be reflected in the genotype-phenotype map. Specifically, we predict that we will find overlapping QTL for both jaws. We used a multiple QTL mapping (MQM) approach to test this prediction. Specifically, we performed QTL scans for all four traits and quantitatively assessed the evidence for significant QTL marker(s) using a permutation procedure that reshuffles the phenotypic data relative to genotypic data 1000 times to generate a null distribution, disassociating any possible relationship between genotype and phenotype, to then compare the empirical distribution against35. Once candidate QTL markers were identified, we calculated an approximate Bayesian credible interval to determine the region in which a potential candidate locus would reside. We uncovered a total of five QTL for LOJ traits, and four QTL for LPJ traits (Fig. 4a; Supplementary Data 8). While most QTL localize to different linkage groups, we also identified some QTL that colocalized. Two traits (LOJ PC1, LPJ PC1) share a marker on LG4, while three traits (LOJ PC1, LOJ PC2, LPJ PC1) colocalized to the same markers on LG7. These data are consistent with pleiotropy on LG7 and possibly LG4.Fig. 4: Genetic analyses to identify regions of the genome responsible for major changes in jaw shape.All plots are based on 409 LFxTRC F5 hybrids. a QTL analysis to identify positions in the genome most associated with each trait. b Pleiotropy analysis on linkage group seven to determine whether the oral jaw PC1 trait colocalizes to the same region as the pharyngeal jaw PC1 trait. Significance was determined using a likelihood ratio test (LLRT). c Pleiotropy analysis on linkage group seven to determine whether the oral jaw PC2 trait colocalizes to the same region as the pharyngeal jaw PC1 trait. Significance was determined using a LLRT. d Fine mapping all traits across the entirety of LG7. Values furthest from 0 reflect the largest differences between hybrids with LF and TRC genotypes at a given marker. We find peak genotype-phenotype association at ~50 mb that coincides with our Bayes credible interval (grey bar). Intervals that surround the average phenotypic effect line denote standard error of the mean. e Fine mapping all traits across the Bayes credible interval. Population level genetic diversity (FST) data are applied to the map (black dots) with the opacity of each SNP dependent on the degree of segregation between LF and TRC, with those falling above an empirical Z-score threshold of 0.6 determined to be significant, and those above 0.9 deemed highly significant (green lines). Within the credible interval there are four SNPs with FST values of 1.0, but a single SNP that falls within a genotype-phenotype peak residing within an intron of dym (black circle). Source data are provided as a Source Data file.Full size imageWe then quantitatively assessed the evidence for pleiotropy using a likelihood ratio test (LLRT) to compare the null hypothesis of a common pleiotropic QTL to the alternative hypothesis that they are affected by separate QTL36,37. The overlap on LG4 at a single marker (43.57 cM) was deemed significant (LLRT = 1.85, P = 0.03), indicating that we can reject the null hypothesis and that these peaks likely represent separate QTL for each trait (Supplementary Fig. 6). The three traits that overlap on LG7 spanned two markers (19.12 cM–28.04 cM) and were all deemed non-significant (LOJpc1-LPJpc1: LLRT = 0.02, P = 0.66, Fig. 4b; LOJpc2-LPJpc1: LLRT = 0.20, P = 0.41, Fig. 4c), leading us to accept the null hypothesis and conclude that this interval likely contains a single pleiotropic QTL. Whether a single gene, or multiple closely linked genes drive this pleiotropic signal requires a fine-mapping approach.Notably, this locus on LG7 has been implicated previously in underlying LOJ and LPJ shape in another Lake Malawi cichlid cross between LF and Maylandia zebra38,39. Maylandia species, like Tropheops, were generally more integrated in our macroevolutionary analysis (Fig. 2a), and thus another cross between LF and a species with higher integration values point to the same locus. This suggests that the genetic mechanism of integration may be conserved.Fine mapping identifies two candidate genes critical for bone formationTo gain insights into which gene(s) may be pleiotropically regulating LOJ and LPJ jaw shape variation on LG7 we constructed a fine map with greater marker density to investigate genotype-phenotype associations with greater resolution. To that end, we anchored QTL intervals to particular stretches of physical sequence of the Maylandia zebra genome40. We then identified additional RAD-seq SNPs across the linkage group of interest and genotyped them in the F5. Based on this we created two fine maps: the first spanned the entirety of LG7 group with an average spacing of around one marker every 490 kb (Supplementary Data 9), the second matched the QTL marker range revealed by the Bayesian credible interval analysis with an average spacing of around one marker every 180 kb (Supplementary Data 10). We also calculated FST from a panel of wild-caught LF (n = 20) and TRC (n = 20), and primarily focused on FST values of 1.0 that would indicate complete segregation of a SNP between LF and TRC. At every marker on our LG7 fine maps, we calculated the difference in the values of our three colocalized traits between those hybrids homozygous for the LF allele and those homozygous for the TRC allele.We identified a small region on LG7 that exhibited large differences in the average phenotypic effect of those hybrids with either LF or TRC alleles. In our full LG7 map we identified a ~2 mb region (46.7 mb–48.7 mb) that peaked in all three traits (Fig. 4d; Supplementary Data 11). Notably, the traces of all three traits across our LG7 fine maps track together in an almost identical fashion. In our fine map that centered on the Bayes credible interval, we found evidence for both large phenotypic effects among all traits, and the presence of several FST markers approaching or equal to 1.0 (Fig. 4e; Supplementary Data 12). One marker combined an FST score of 1.0, indicating complete segregation of that allele between LF and TRC, with high average phenotypic effects across all traits (Supplementary Fig. 7). This SNP fell within an intron of dymeclin (dym), a gene that is necessary for correct organization of Golgi apparatus and controls endochondral bone formation during early development. Dym is critical for chondrocyte development and previous research using the zebrafish model found an expression pattern that spanned the presumptive mandibular and ceratobranchial regions at larval stages41. Mutations in this gene lead to profound effects on the size and shape of bones due to misregulated chondrocyte development42. Just downstream (8 kb, Supplementary Fig. 7) of dym is mothers against decapentaplegic homolog 7 (smad7), an antagonist of both TGF-β and BMP signaling and a suppressor of bone formation. As an inhibitory Smad, smad7 negatively regulates genes from the BMP and TGF-β signaling pathways (i.e., bmp-2, -4, -7, nodal, etc.) that are known to shape phenotypic differences in the craniofacial skeleton across a wide range of taxa including cichlids25,38,43, Geospiza finches44,45, and Anolis lizards46, primarily because these genes have the capacity to influence size in structures of trophic importance such as the mandible47. Both of these genes represent good candidates for controlling shape variation in the LOJ and the LPJ simultaneously. While two of the three traits peak at the dym SNP, when considering markers just outside the credible interval another peak is visible (especially for LOJ PC1) that sits close to notch1a, a gene involved in skeletal development and homeostasis. Notch1a is flanked by two fully segregated FST markers. The upstream marker is around ~60 kb from the promoter region, while the downstream marker resides around ~52 kb away from the gene within an intron of kcnt1, a gene involved in potassium channel development that appears to regulate brain function48. While kcnt1 reflects a poor candidate gene for our analysis, the intronic SNP could act as a distant enhancer of notch1a. Thus, given the combined results from QTL and fine-mapping, dym and smad7 represent strong candidates, but we cannot rule out notch1a.Correlated expression of key genes between LOJ and LPJWe used quantitative real-time PCR (qPCR) to assess and compare the expression levels of dym, smad7, and notch1a in the LOJ and LPJ of three mbuna genera from lake Malawi (Tropheops n = 6, Labeotropheus n = 8, Maylandia n = 8). We used Labeotropheus and Tropheops to complement our quantitative genetic analysis, and all three taxa were represented in our phenotypic assessments of integration, permitting a comparison between macroevolutionary associations of the LOJ and LPJ with the underlying genetic architecture and expression for jaw complex correlation. We collected tissue samples from young juveniles of these four taxa, taking the LOJ and LPJ, alongside the caudal fin to act as an internal control, and performed a phenol/chloroform RNA extraction. We designed primers with high amplification efficiency ( >90%) for our three genes (Supplementary Data 13), and used β-actin as our control gene. We calculated relative expression of the LOJ and LPJ using the 2-ΔΔCT method49, and compared expression across taxa and between tissues (Supplementary Data 14 and 15).We initially compared tissue level expression levels between Labeotropheus and Tropheops and found small differences in dym expression, with LF typically exhibiting slightly higher levels (t-test LOJ t = 2.863, P = 0.014; LPJ t = 1.212, P = 0.249; Fig. 5a). These results are consistent with previous expression studies that demonstrated how Labeotropheus typically has up-regulated bone and collagen markers and as a consequence has greater bone deposition and a more robust craniofacial skeleton50,51. Expression level differences were also noted for notch1a and smad7 (Fig. 5b-c); both showed reduced expression in LF, which is expected based on each genes role as negative regulators of bone formation52,53. While the differences between species were fairly small in smad7 between taxa (t-test LOJ t = −1.869, P = 0.086; LPJ t = −0.359, P = 0.726), they were more notable in notch1a (t-test LOJ t = −1.947, P = 0.080; LPJ t = −3.221, P = 0.009). Notch1a is involved in skeletal remodeling, previous research has shown LF exhibits a minimal plastic response to environmental stimuli51. Thus, the relatively low expression of notch1a in Labeotropheus compared to Tropheops is consistent with this observation. While only representing a single life-history stage, the expression differences between species suggest that all three genes may underlie the development of species-specific shapes for the LOJ and/or LPJ. However, visualizing the data this way cannot speak to whether one or more of these loci underlie the covariation of the jaws.Fig. 5: Comparing expression levels of dym, smad7, and notch1a via qPCR in the oral and pharyngeal jaws.a dym bar plot; (b) notch1a bar plot; (c), smad7 bar plot; (d), dym scatter plot; (e), notch1a scatter plot; (f), smad7 scatter plot. a–c bar plots depict mean relative expression levels, error bars denote standard error. d–f Scatterplots depict relative expression levels of the LOJ and LPJ, error bounds surrounding the linear regression line denote standard error. e inset, linear regression for each genus. Three cichlid taxa were included: Labeotropheus n = 8, Tropheops n = 6, Maylandia n = 8. Bar plot significance determined via t-tests: ●P  More

  • in

    Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour

    1.Gause, G. F. & Witt, A. A. Behavior of mixed populations and the problem of natural selection. Am. Nat. 69, 596–609 (1935).Article 

    Google Scholar 
    2.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    3.Ayala, F. J. Experimental invalidation of the principle of competitive exclusion. Nature 224, 1076–1079 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bengtsson, J. Interspecific competition increases local extinction rate in a metapopulation system. Nature 340, 713–715 (1989).ADS 
    Article 

    Google Scholar 
    5.Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Collins, S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. Biol. Sci. 278, 247–255 (2011).PubMed 

    Google Scholar 
    7.Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368, 20120085 (2013).Article 

    Google Scholar 
    8.Birch, L. C. Selection in Drosophila pseudoobscura in relation to crowding. Evolution 9, 389–399 (1955).Article 

    Google Scholar 
    9.Martin, M. J., Perez-Tome, J. M. & Toro, M. A. Competition and genotypic variability in Drosophila melanogaster. Heredity 60, 119–123 (1988).PubMed 
    Article 

    Google Scholar 
    10.Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Pennacchio, F. & Strand, M. R. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol. 51, 233–258 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35, 59–79 (1990).PubMed 
    Article 

    Google Scholar 
    13.Varaldi, J. et al. Infectious behavior in a parasitoid. Science 302, 1930–1930 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dorn, S. & Beckage, N. E. Superparasitism in gregarious hymenopteran parasitoids: ecological, behavioural and physiological perspectives. Physiol. Entomol. 32, 199–211 (2007).Article 

    Google Scholar 
    15.Gandon, S., Rivero, A. & Varaldi, J. Superparasitism evolution: adaptation or manipulation? Am. Nat. 167, E1–E22 (2006).PubMed 
    Article 

    Google Scholar 
    16.Speirs, D. C., Sherratt, T. N. & Hubbard, S. F. Parasitoid diets: does superparasitism pay? Trends Ecol. Evol. 6, 22–25 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tracy Reynolds, K. & Hardy, I. C. Superparasitism: a non-adaptive strategy? Trends Ecol. Evol. 19, 347–348 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Pan, M., Liu, T. & Nansen, C. Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): the role of natal rearing effects and host availability? Insect Sci. 25, 1035–1044 (2018).PubMed 
    Article 

    Google Scholar 
    19.Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stem borer parasitoid Cotesia flavipes. Entomol. Exp. Appl. 82, 341–348 (1997).Article 

    Google Scholar 
    20.Mackauer, B. B. Influence of superparasitism on development rate and adult size in a solitary parasitoid wasp, Aphidius ervi. Funct. Ecol. 6, 302–307 (1992).Article 

    Google Scholar 
    21.Keasar, T. et al. Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol. Entomol. 31, 277–283 (2006).Article 

    Google Scholar 
    22.Silva-Torres, C. S. A., Ramos, I. T., Torres, J. B. & Barros, R. Superparasitism and host size effects in Oomyzus sokolowskii, a parasitoid of diamondback moth. Entomol. Exp. Appl. 133, 65–73 (2009).Article 

    Google Scholar 
    23.Wylie, H. G. Delayed development of Microctonus vittatae (Hymenoptera: Braconidae) in superparasitized adults of Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Can. Entomol. 115, 441–442 (1983).Article 

    Google Scholar 
    24.White, J. A. & Andow, D. A. Benefits of self-superparasitism in a polyembryonic parasitoid. Biol. Control 46, 133–139 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).Article 

    Google Scholar 
    26.Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Anim. Behav. 69, 1227–1234 (2005).Article 

    Google Scholar 
    27.Varaldi, J., Patot, S., Nardin, M. & Gandon, S. A virus-shaping reproductive strategy in a Drosophila parasitoid. Adv. Parasitol. 70, 333–363 (2009).PubMed 
    Article 

    Google Scholar 
    28.Carton, Y., Bouletreau, M., van Alphen, J. J. M. & van Lenteren, J. C. The Drosophila parasitic wasps. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 347–394 (Academic Press, 1986).29.Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. Fruit flies medicate offspring after seeing parasites. Science 339, 947–950 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Krzemien, J. et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325–328 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Kraaijeveld, A. R. & Godfray, H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hwang, R. Y. et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105–2116 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Mortimer, N. T. et al. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl Acad. Sci. USA 110, 9427–9432 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Huang, J. et al. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat. Commun. 12, 234 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C. H. & Werren, J. H. The evolution of venom by co-option of single-copy genes. Curr. Biol. 27, 2007–2013 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Xu, J. et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep. 3, 1526–1538 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hinge, A. et al. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 8, 14382 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Werner, E. GTPases and reactive oxygen species: switches for killing and signaling. J. Cell Sci. 117, 143–153 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B. & Pierre, J. S. Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. J. Insect Physiol. 47, 339–348 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Hofsvang, T. Discrimination between unparasitized and parasitized hosts in hymenopterous parasitoids. Acta Entomol. Bohemosl 87, 161–175 (1990).
    Google Scholar 
    47.van Lenteren, J. C. in Semiochemicals: Their Role in Pest Control (eds Nordlund, D. A., Jones, R. L. & Lewis, W. J.) 153–179 (Wiley and Sons, 1981).48.Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (hymenoptera: Ichneumonidae). Entomol. Exp. Appl. 17, 36–44 (2011).Article 

    Google Scholar 
    49.Hoffmeister, T. S. & Roitberg, B. D. To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol. Ecol. 11, 145–168 (1997).Article 

    Google Scholar 
    50.Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J. Insect Behav. 15, 1–12 (2002).Article 

    Google Scholar 
    51.Liang, Q., Jia, Y. & Liu, T. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). J. Econ. Entomol. 110, 430–437 (2017).PubMed 

    Google Scholar 
    52.Gandon, S., Varaldi, J., Fleury, F. & Rivero, A. Evolution and manipulation of parasitoid egg load. Evolution 63, 2974–2984 (2009).PubMed 
    Article 

    Google Scholar 
    53.Hughes, D. P. & Libersat, F. Neuroparasitology of parasite-insect associations. Annu. Rev. Entomol. 63, 471–487 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zuzarte-Luis, V. & Mota, M. M. Parasite sensing of host nutrients and environmental cues. Cell Host Microbe 23, 749–758 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Cox, F. E. G. Parasites affect behavior of mice. Nature 294, 515–515 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7, e34414 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Hoover, K. et al. A gene for an extended phenotype. Science 333, 1401–140 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Mcallister, M. K. & Roitberg, B. D. Adaptive suicidal-behavior in pea aphids. Nature 328, 797–799 (1987).ADS 
    Article 

    Google Scholar 
    60.Maure, F., Brodeur, J., Droit, A., Doyon, J. & Thomas, F. Bodyguard manipulation in a multipredator context: different processes, same effect. Behav. Process. 99, 81–86 (2013).Article 

    Google Scholar 
    61.Mohan, P. & Sinu, P. A. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host. PLoS ONE 12, e0178108 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Muller, C. B. & Schmidhempel, P. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363, 65–67 (1993).ADS 
    Article 

    Google Scholar 
    63.Noubade, R. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235–239 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Louradour, I. et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 6, e25496 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Sinenko, S. A., Shim, J. & Banerjee, U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in. Drosoph. EMBO Rep. 13, 83–89 (2012).CAS 
    Article 

    Google Scholar 
    66.Wang, Y. et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Colinet, D. et al. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J. Biol. Chem. 286, 40110–40121 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Colinet, D. et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 43, 601–611 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Carton, Y., Frey, F. & Nappi, A. Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity 69, 393–399 (1992).PubMed 
    Article 

    Google Scholar 
    70.Colinet, D., Schmitz, A., Depoix, D., Crochard, D. & Poirie, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, 2029–2037 (2007).CAS 
    Article 

    Google Scholar 
    71.Colinet, D. et al. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 6, e1001206 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Schlenke, T. A., Morales, J., Govind, S. & Clark, A. G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 3, 1486–1501 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Anderl, I. et al. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12, e1005746 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Forbes, A. A. et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017).PubMed 
    Article 

    Google Scholar 
    75.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    77.Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. P. Roy. Soc. B-Biol. Sci. 274, 839–844 (2007).
    Google Scholar 
    78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Huang, J., Reilein, A. & Kalderon, D. Yorkie and Hedgehog independently restrict BMP production in escort cells to permit germline differentiation in the Drosophila ovary. Development 144, 2584–2594 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Phylogenet. Evol. 35, 543–548 (2017).Article 
    CAS 

    Google Scholar 
    86.Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Werren, J. H. et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Consortium, H. G. S. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    93.Geib, S. M., Liang, G. H., Murphy, T. D. & Sim, S. B. Whole genome sequencing of the braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies. G3-Genes Genom. Genet. 7, 2407–2411 (2017).CAS 

    Google Scholar 
    94.Standage, D. S. et al. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25, 1769–1784 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Lindsey, A. R. et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 16, 54 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Korf, I. Gene finding in novel genomes. BMC Biol. 5, 59 (2004).
    Google Scholar 
    98.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25, 402–408 (2001).CAS 
    Article 

    Google Scholar 
    105.Zhang, X. S., Wang, T., Lin, X. W., Denlinger, D. L. & Xu, W. H. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 114, 7832–7840 (2017).Article 
    CAS 

    Google Scholar  More