More stories

  • in

    Author Correction: Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaMartin Jung, Matthew Lewis, Dmitry Schepaschenko, Myroslava Lesiv, Steffen Fritz, Michael Obersteiner & Piero ViscontiUN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UKAndy Arnell, Shaenandhoa García-Rangel, Jennifer Mark, Lera Miles, Corinna Ravilious, Oliver Tallowin, Arnout van Soesbergen, Valerie Kapos & Neil BurgessFood and Agriculture Organization of the United Nations (FAO), Rome, ItalyXavier de LamoDepartment of Zoology, University of Cambridge, Cambridge, UKMatthew LewisDepartment of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, USACory MerowRoyal Botanic Gardens, Kew, Richmond, UKIan Ondo, Samuel Pironon & Rafaël GovaertsBotanic Gardens Conservation International, Richmondy, UKMalin RiversSiberian Federal University, Krasnoyarsk, RussiaDmitry SchepaschenkoDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABradley L. Boyle, Brian J. Enquist, Brian Maitner & Erica A. NewmanDepartment of Geography, Florida State University, Tallahassee, FL, USAXiao FengDepartment of Biological Sciences, Macquarie University, North Ryde, New South Wales, AustraliaRachael GallagherSchool of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IsraelShai Meiri & Gali OferDepartment of Geography, King’s College London, London, UKMark MulliganMitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, IsraelUri RollCIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, PortugalJeffrey O. HansonDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanCenter for Biodiversity and Global Change, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanDepartment of Biology and Biotechnologies, Sapienza University of Rome, Rome, ItalyMoreno Di MarcoThe Nature Conservancy, Arlington, VA, USAJennifer McGowanColumbia University, New York, NY, USAJeffrey D. SachsSchool of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, Tasmania, AustraliaVanessa M. AdamsCSIRO Land and Water, Canberra, Australian Capital Territory, AustraliaSamuel C. AndrewDepartment of Biology, University of Kentucky, Lexington, KY, USAJoseph R. BurgerBetty and Gordon Moore Center for Science, Conservation International, Arlington, VA, USALee Hannah & Patrick R. RoehrdanzDepartamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetInstituto de Ecología y Biodiversidad (IEB), Santiago, ChilePablo A. MarquetCentro de Cambio Global UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetThe Santa Fe Institute, Santa Fe, NM, USAPablo A. MarquetInstituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, ChilePablo A. MarquetManaaki Whenua—Landcare Research, Lincoln, New ZealandJames K. McCarthyCenter for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, DenmarkNaia Morueta-HolmeDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USADaniel S. ParkCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningSection for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningCEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FranceCyrille ViolleNaturalis Biodiversity Center, Leiden, The NetherlandsJan J. WieringaWorld Resources Institute, London, UKGraham WynneRio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. StrassburgInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. StrassburgPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgEnvironmental Change Institute, Centre for the Environment, Oxford University, Oxford, UKMichael ObersteinerUN Sustainable Development Solutions Network, Paris, FranceGuido Schmidt-TraubCorrespondence to
    Martin Jung or Piero Visconti. More

  • in

    Effects of fertilizer under different dripline spacings on summer maize in northern China

    1.China. China statistical yearbook. (China Statistics Press, 2020).2.Shiferaw, B., Prasanna, B. M., Hellin, J. & Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3, 307–327 (2011).Article 

    Google Scholar 
    3.Chen, M. P., Sun, F. & Shindo, J. China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios. Resour. Conserv. Recycl. 111, 10–27 (2016).Article 

    Google Scholar 
    4.He, Y. X. et al. Tracking ammonia morning peak, sources and transport with 1 Hz measurements at a rural site in North China Plain. Atmos. Environ. 235, 117630 (2020).CAS 
    Article 

    Google Scholar 
    5.Zhang, Y. et al. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ. Pollut. 158, 490–501 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Ayars, J. E., Fulton, A. & Taylor, B. Subsurface drip irrigation in California—Here to stay?. Agric. Water Manag. 157, 39–47 (2015).Article 

    Google Scholar 
    7.Chauhdary, J. N., Bakhsh, A., Engel, B. A. & Ragab, R. Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach. Agric. Water Manag. 221, 449–461 (2019).Article 

    Google Scholar 
    8.Mali, S. S., Naik, S. K., Jha, B. K., Singh, A. K. & Bhatt, B. P. Planting geometry and growth stage linked fertigation patterns: Impact on yield, nutrient uptake and water productivity of Chilli pepper in hot and sub-humid climate. Sci. Hortic. (Amsterdam) 249, 289–298 (2019).Article 

    Google Scholar 
    9.Silber, A. et al. High fertigation frequency: the effects on uptake of nutrients, water and plant growth. Plant Soil 253, 467–477 (2003).CAS 
    Article 

    Google Scholar 
    10.Wu, D. L. et al. Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agric. Water Manag. 213, 200–211 (2019).Article 

    Google Scholar 
    11.Ning, D. et al. Deficit irrigation combined with reduced N-fertilizer rate can mitigate the high nitrous oxide emissions from Chinese drip-fertigated maize field. Glob. Ecol. Conserv. 20, e00803 (2019).Article 

    Google Scholar 
    12.Sandhu, O. S. et al. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agric. Water Manag. 219, 19–26 (2019).Article 

    Google Scholar 
    13.Li, H. et al. Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agric. Water Manag. 243, 106474 (2021).Article 

    Google Scholar 
    14.Lamm, F. R., Stone, L. R., Manges, H. L. & O’Brien, D. M. Optimum lateral spacing for subsurface drip-irrigated corn. Trans. ASAE 40, 1021–1027 (1997).Article 

    Google Scholar 
    15.Bozkurt, Y., Yazar, A., Gençel, B. & Sezen, M. S. Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey. Agric. Water Manag. 85, 113–120 (2006).Article 

    Google Scholar 
    16.Chen, R. et al. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crop. Res. 179, 52–62 (2015).Article 

    Google Scholar 
    17.Zhou, L. et al. Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil. Agric. Water Manag. 184, 114–123 (2017).Article 

    Google Scholar 
    18.Eissa, M. A. Efficiency of P fertigation for drip-irrigated potato grown on calcareous sandy soils. Potato Res. 62, 97–108 (2019).CAS 
    Article 

    Google Scholar 
    19.Irmak, S., Djaman, K. & Rudnick, D. R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 34, 271–286 (2016).Article 

    Google Scholar 
    20.Yao, Y. L. et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crop. Res. 218, 254–266 (2018).Article 

    Google Scholar 
    21.Ziadi, N., Cambouris, A. N., Nyiraneza, J. & Nolin, M. C. Across a landscape, soil texture controls the optimum rate of N fertilizer for maize production. Field Crop. Res. 148, 78–85 (2013).Article 

    Google Scholar 
    22.Fang, H. et al. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau. China. Soil Tillage Res. 199, 104546 (2020).Article 

    Google Scholar 
    23.Zheng, J. et al. Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China. Agric. Water Manag. 248, 106778 (2021).Article 

    Google Scholar 
    24.Qi, X. L. et al. Grain yield and apparent N recovery efficiency of dry direct-seeded rice under different N treatments aimed to reduce soil ammonia volatilization. Field Crop. Res. 134, 138–143 (2012).Article 

    Google Scholar 
    25.Han, K., Zhou, C. J. & Wang, L. Q. Reducing ammonia volatilization from maize fields with separation of nitrogen fertilizer and water in an alternating furrow irrigation system. J. Integr. Agric. 13, 1099–1112 (2014).CAS 
    Article 

    Google Scholar 
    26.Amin, A.E.-E.A.Z. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Sci. Total Environ. 726, 138489 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Li, H. T. et al. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agric. Ecosyst. Environ. 308, 107272 (2021).CAS 
    Article 

    Google Scholar 
    28.Sun, B. et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int. 144, 105989 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Tabli, N. et al. Plant growth promoting and inducible antifungal activities of irrigation well water-bacteria. Biol. Control 117, 78–86 (2018).Article 

    Google Scholar 
    30.Zhong, X. M. et al. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 306, 107183 (2021).CAS 
    Article 

    Google Scholar 
    31.Li, C., Sun, M. X., Xu, X. B. & Zhang, L. X. Characteristics and influencing factors of mulch film use for pollution control in China: Microcosmic evidence from smallholder farmers. Resour. Conserv. Recycl. 164, 105222 (2021).Article 

    Google Scholar 
    32.Li, M. N., Wang, Y. L., Adeli, A. & Yan, H. J. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crop. Res. 218, 115–125 (2018).Article 

    Google Scholar 
    33.Pinheiro, P. L. et al. Straw removal reduces the mulch physical barrier and ammonia volatilization after urea application in sugarcane. Atmos. Environ. 194, 179–187 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Zhu, H. et al. Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. CATENA 190, 104527 (2020).CAS 
    Article 

    Google Scholar 
    35.Oppong Danso, E. et al. Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 147, 34–42 (2015).Article 

    Google Scholar 
    36.Liu, R. H. et al. Chemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou Reservoir. Nutr. Cycl. Agroecosystems 98, 295–307 (2014).CAS 
    Article 

    Google Scholar 
    37.Sanz-Cobena, A. et al. Strategies for greenhouse gas emissions mitigation in mediterranean agriculture: A review. Agric. Ecosyst. Environ. 238, 5–24 (2017).CAS 
    Article 

    Google Scholar 
    38.Zhou, J. B., Xi, J. G., Chen, Z. J. & Li, S. X. Leaching and transformation of nitrogen fertilizers in soil after application of n with irrigation: A soil column method. Pedosphere 16, 245–252 (2006).CAS 
    Article 

    Google Scholar 
    39.Rosemary, F., Vitharana, U. W. A., Indraratne, S. P., Weerasooriya, R. & Mishra, U. Exploring the spatial variability of soil properties in an Alfisol soil catena. CATENA 150, 53–61 (2017).CAS 
    Article 

    Google Scholar 
    40.Liu, Y., Lv, J. S., Zhang, B. & Bi, J. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Sci. Total Environ. 450–451, 108–119 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Vasu, D. et al. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res. 169, 25–34 (2017).Article 

    Google Scholar 
    42.Jin, J. Y., Bai, Y. L. & Yang, L. P. High Efficiency Soil Nutrient Testing Technology and Equipment (China Agriculture Press, 2006) (in Chinese).
    Google Scholar 
    43.Tan, Y. et al. Improving wheat grain yield via promotion of water and nitrogen utilization in arid areas. Sci. Rep. 11, 13821 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Ren, Y. et al. Effect of sowing proportion on above- and below-ground competition in maize–soybean intercrops. Sci. Rep. 11, 15760 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Wang, Z. H., Liu, X. J., Ju, X. T., Zhang, F. S. & Malhi, S. S. Ammonia volatilization loss from surface-broadcast urea: comparison of vented- and closed-chamber methods and loss in winter wheat–summer maize rotation in North China plain. Commun. Soil Sci. Plant Anal. 35, 2917–2939 (2004).CAS 
    Article 

    Google Scholar 
    46.Zhou, L. P. et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field. J. Plant Nutr. Fertil. 22, 1449–1457 (2016) (in Chinese).
    Google Scholar 
    47.Huang, T. M. et al. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China. Soil Tillage Res. 191, 57–65 (2019).Article 

    Google Scholar 
    48.Wang, Z., Li, J. & Li, Y. Effects of drip system uniformity and nitrogen application rate on yield and nitrogen balance of spring maize in the North China Plain. Field. Crop. Res. 159, 10–20 (2014).Article 

    Google Scholar 
    49.Brar, H. S., Vashist, K. K. & Bedi, S. Phenology and yield of spring maize (Zea mays L.) under different drip irrigation regimes and planting methods. J. Agric. Sci. Technol. 18, 831–843 (2016).
    Google Scholar 
    50.Poch-Massegú, R., Jiménez-Martínez, J., Wallis, K. J., Ramírez de Cartagena, F. & Candela, L. Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agric. Water Manag. 134, 1–13 (2014).Article 

    Google Scholar 
    51.Yuan, Z. Q. et al. Film mulch with irrigation and rainfed cultivations improves maize production and water use efficiency in Ethiopia. Ann. Appl. Biol. 175, 215–227 (2019).Article 

    Google Scholar 
    52.Wang, J. L. Research on the use of water and fertilizer for drip irrigation multiple cropping silage maize (Shihezi University, 2016) (in Chinese).
    Google Scholar 
    53.Lamm, F. R. & Trooien, T. P. Subsurface drip irrigation for corn production: a review of 10 years of research in Kansas. Irrig. Sci. 22, 195–200 (2003).Article 

    Google Scholar 
    54.Yan, X. L., Jia, L. M. & Dai, T. F. Effects of water and nitrogen coupling under drip irrigation on tree growth and soil nitrogen content of Populus × euramericana cv. ‘Guariento’. Chin. J. Appl. Ecol. 29, 2195 (2018) (in Chinese).
    Google Scholar 
    55.Sun, W. T., Sun, Z. X., Wang, C. X., Gong, L. & Zhang, Y. L. Coupling effect of water and fertilizer on corn yield under drip fertigation. Sci. Agric. Sin. 39, 563–568 (2006) (in Chinese).
    Google Scholar 
    56.Banerjee, B., Pathak, H. & Aggarwal, P. Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization from an alluvial soil under a rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Biol. Fertil. Soils 36, 207–214 (2002).CAS 
    Article 

    Google Scholar 
    57.Yang, Q. L., Liu, P., Dong, S. T., Zhang, J. W. & Zhao, B. Effects of fertilizer type and rate on summer maize grain yield and ammonia volatilization loss in northern China. J. Soils Sediments 19, 2200–2211 (2019).CAS 
    Article 

    Google Scholar 
    58.Zhou, G. W. et al. Effects of saline water irrigation and N application rate on NH3 volatilization and N use efficiency in a drip-irrigated cotton field. Water Air Soil Pollut. 227, 103 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    59.Zheng, J., Kilasara, M. M., Mmari, W. N. & Funakawa, S. Ammonia volatilization following urea application at maize fields in the East African highlands with different soil properties. Biol. Fertil. Soils 54, 411–422 (2018).CAS 
    Article 

    Google Scholar 
    60.Li, Z. et al. Nitrogen use efficiency and ammonia oxidation of corn field with drip irrigation in Hetao irrigation district. J. Irrig. Drain. 37, 37–42,49 (2018) (in Chinese).61.Zheng, L. et al. Impact of fertilization on ammonia volatilization and N2O emissions in an open vegetable field. Chin. J. Appl. Ecol. 29, 4063–4070 (2018) (in Chinese).
    Google Scholar 
    62.Li, Y. Q., Liu, G., Hong, M., Wu, Y. & Chang, F. Effect of optimized nitrogen application on nitrous oxide emission and ammonia volatilization in Hetao irrigation area. Acta Sci. Circumst. 39, 578–584 (2019) (in Chinese).CAS 

    Google Scholar 
    63.Das, P. et al. Emissions of ammonia and nitric oxide from an agricultural site following application of different synthetic fertilizers and manures. Geosci. J. 12, 177–190 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Cai, G. X. et al. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr. Cycl. Agroecosyst. 63, 187–195 (2002).CAS 
    Article 

    Google Scholar 
    65.Wang, X. L. et al. Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin. Agric. Water Manag. 241, 106436 (2020).Article 

    Google Scholar 
    66.Li, G. et al. Effect of drip fertigation on summer maize in north China. Sci. Agric. Sin. 52, 1930–1941 (2019) (in Chinese).
    Google Scholar  More

  • in

    Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa

    1.Binckley, C. A. & Resetarits, W. J. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 1, 370–374 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Foltz, S. J. & Dodson, S. I. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia 621, 49–62 (2009).Article 

    Google Scholar 
    3.Goldberg, F. J., Quinzio, S. & Vaira, M. Oviposition-site selection by the toad Melanophryniscus rubriventris in an unpredictable environment in Argentina. Can. J. Zool. 84, 699–705 (2006).Article 

    Google Scholar 
    4.Blaustein, L. Oviposition site selection in response to risk of predation: Evidence from aquatic habitats and consequences for population dynamics and community. In Evolutionary Theory and Processes: Modern Perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).5.Resetarits, W. J. & Binckley, C. A. Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90, 869–876 (2009).PubMed 
    Article 

    Google Scholar 
    6.Kraus, J. M. & Vonesh, J. R. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 79, 795–802 (2010).PubMed 

    Google Scholar 
    7.Resetarits, W. J. Oviposition site choice and life history evolution. Am. Zool. 36, 205–215 (1996).Article 

    Google Scholar 
    8.Morris, D. W. Toward an ecological synthesis: A case for habitat selection. Oecologia 136, 1–13 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    9.Resetarits, W. J. & Wilbur, H. M. Choice of oviposition site by Hyla chrysoscelis: Role of predators and competitors. Ecology 70, 220–228 (1989).Article 

    Google Scholar 
    10.Resetarits, W. J., Binckley, C. A. & Chalcraft, D. R. Habitat selection, species interactions, and processes of community assembly in complex landscapes: A metacommunity perspective. In Metacommunities: Spatial Dynamics and Ecological Communities (eds. Holyoak, M., Leybold, A. & Holt, R. D.) 374–398 (University of Chicago Press, Chicago, 2005).11.Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    12.Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 139, 1–10 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    13.Åbjörnsson, K., Brönmark, C. & Hansson, L.-A. The relative importance of lethal and non-lethal effects of fish on insect colonisation of ponds: Influence of fish on insect colonisation. Freshw. Biol. 47, 1489–1495 (2002).Article 

    Google Scholar 
    14.Pintar, M. R. & Resetarits, W. J. Jr. Out with the old, in with the new: Oviposition preference matches larval success in cope’s gray treefrog, Hyla chrysoscelis. J. Herpetol. 51, 186–189 (2017).Article 

    Google Scholar 
    15.Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).Article 

    Google Scholar 
    16.Caudill, C. C. & Peckarsky, B. L. Lack of appropriate behavioral or developmental responses by mayfly larvae to trout predators. Ecology 84, 2133–2144 (2003).Article 

    Google Scholar 
    17.Binckley, C. A. & Resetarits, W. J. Functional equivalence of non-lethal effects: Generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102, 623–629 (2003).Article 

    Google Scholar 
    18.Pollard, C. J. et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 81, 720–727 (2017).Article 

    Google Scholar 
    19.Petranka, J. W. & Fakhoury, K. Evidence of a chemically-mediated avoidance response of ovipositing insects to bluegills and green frog tadpoles. Copeia 1991, 234–239 (1991).Article 

    Google Scholar 
    20.McPeek, M. A. Differential dispersal tendencies among Enallagma damselflies (Odonata) inhabiting different habitats. Oikos 56, 187–195 (1989).Article 

    Google Scholar 
    21.Šigutová, H., Šigut, M. & Dolný, A. Intensive fish ponds as ecological traps for dragonflies: An imminent threat to the endangered species Sympetrum depressiusculum (Odonata: Libellulidae). J. Insect Conserv. 19, 961–974 (2015).Article 

    Google Scholar 
    22.Potts, K. M. Survival and development of larval odonates (Anisoptera) and female oviposition site choice in response to predatory fish. https://egrove.olemiss.edu/etd/1854 (2020).23.Blaustein, L., Kiflawi, M., Eitam, A., Mangel, M. & Cohen, J. E. Oviposition habitat selection in response to risk of predation in temporary pools: Mode of detection and consistency across experimental venue. Oecologia 138, 300–305 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    24.Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): An experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica 22, 27–44 (1993).25.Wildermuth, H. Habitatselektion bei Libellen. Adv. Odonatol. 6, 223–257 (1994).
    Google Scholar 
    26.Laurila, A. Breeding habitat selection and larval performance of two anurans in freshwater rock-pools. Ecography 21, 484–494 (1998).Article 

    Google Scholar 
    27.Schwind, R. Spectral regions in which aquatic insects see reflected polarized light. J. Comp. Physiol. A 177, 439–448 (1995).Article 

    Google Scholar 
    28.Horváth, G. & Kriska, G. Polarization vision in aquatic insects and ecological traps for polarotactic insects in Aquatic Insects: Challenges to Populations (eds. Lancaster, J. & Briers, R. A.) 204–229 (CAB International Publishing, 2008).29.Schulte, L. M. et al. The smell of success: Choice of larval rearing sites by means of chemical cues in a Peruvian poison frog. Anim. Behav. 81, 1147–1154 (2011).Article 

    Google Scholar 
    30.Corbet, P. S. Dragonflies: Behavior and ecology of Odonata. (Harley Books, 1999).31.Nicolet, P. et al. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biol. Conserv. 120, 261–278 (2004).Article 

    Google Scholar 
    32.Henrikson, B.-I. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the colour adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera). Ecography 16, 143–153 (1993).Article 

    Google Scholar 
    33.Kokko, H. & Sutherland, W. J. Ecological traps in changing environments: Ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol. Ecol. Res. 3, 537–551 (2001).
    Google Scholar 
    34.Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: Perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).PubMed 
    Article 

    Google Scholar 
    35.Abrams, P. A., Cressman, R. & Křivan, V. The role of behavioral dynamics in determining the patch distributions of interacting species. Am. Nat. 169, 505–518 (2007).PubMed 
    Article 

    Google Scholar 
    36.Denton, J. & Beebee, T. J. C. Palatability of anuran eggs and embryos. Amphib. Reptil. 12, 111–112 (1991).Article 

    Google Scholar 
    37.Larson, D. J. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 11, 245–498 (1985).
    Google Scholar 
    38.Mikolajewski, D. J. & Rolff, J. Benefits of morphological defence demonstrated by direct manipulation in larval dragonflies. Evol. Ecol. Res. 6, 619–626 (2004).
    Google Scholar 
    39.Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).Article 

    Google Scholar 
    40.Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).Article 

    Google Scholar 
    41.McCauley, S. J., Davis, C. J. & Werner, E. E. Predator induction of spine length in larval Leucorrhinia intacta (Odonata). Evol. Ecol. Res. 10, 435–447 (2008).
    Google Scholar 
    42.Nöllert, A. & Nöllert, C. Die Amphibien Europas. (Franckh-Kosmos Verlags-GmbH and Company, 1992).43.Maštera, J., Zavadil, V. & Dvořák, J. Vajíčka a larvy obojživelníků České republiky. (Academia, 2015).44.Speybroeck, J., Beukema, W., Bok, B. & Van der Voort, J. Field Guide to the Amphibians and Reptiles of Britain and Europe. (Bloomsbury Natural History, 2016).45.Sternberg, K. & Buchwald, R. Die Libellen Baden-Württembergs. Band 2: Großlibellen (Anisoptera). (Verlag Eugen Ulmer Gmbh & Co., 2000).46.Mikolajewski, D. J. & Johansson, F. Morphological and behavioral defenses in dragonfly larvae: Trait compensation and cospecialization. Behav. Ecol. 15, 614–620 (2004).Article 

    Google Scholar 
    47.Kjærstad, G., Dolmen, D., Olsvik, H. A. & Tilseth, E. The backswimmer Notonecta glauca L. (Hemiptera, Notonectidae) in Central Norway. Nor. J. Entomol. 56, 44–49 (2009).
    Google Scholar 
    48.Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects 22, 81–98 (2000).Article 

    Google Scholar 
    49.Macan, T. T. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 45, 913–922 (1976).Article 

    Google Scholar 
    50.Lock, K., Adriaens, T., Meutter, F. V. D. & Goethals, P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): Results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 49, 121–128 (2013).Article 

    Google Scholar 
    51.Cook, W. L. & Streams, F. A. Fish predation on Notonecta (Hemiptera): Relationship between prey risk and habitat utilization. Oecologia 64, 177–183 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Swevers, L., Lambert, J. G. D. & De Loof, A. Synthesis and metabolism of vertebrate-type steroids by tissues of insects: A critical evaluation. Experientia 47, 687–698 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Bergsten, J. & Miller, K. B. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 31, 145–197 (2005).Article 

    Google Scholar 
    54.Åbjörnsson, K., Wagner, B. M. A., Axelsson, A., Bjerselius, R. & Olsén, K. H. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111, 166–171 (1997).ADS 
    PubMed 
    Article 

    Google Scholar 
    55.Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana 43(Suppl.), 1–289 (2007).
    Google Scholar 
    56.Gioria, M., Schaffers, A., Bacaro, G. & Feehan, J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133 (2010).Article 

    Google Scholar 
    57.Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).58.Briers, R. A. & Warren, P. H. Competition between the nymphs of two regionally co-occurring species of Notonecta (Hemiptera: Notonectidae). Freshw. Biol. 42, 11–20 (1999).Article 

    Google Scholar 
    59.Wiggins, G. B., Mackay, R. J. & Smith, I. M. Evolutionary and ecological strategies of animals on annual temporary pools. Arch. Für Hydrobiol. Suppl. 58, 197–206 (1980).
    Google Scholar 
    60.Culler, L. E., Ohba, S. & Crumrine, P. Predator-Prey Interactions of Dytiscids. In Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).61.Schuh, R. T. & Slater, J. A. True Bugs of the World (Hemiptera:Heteroptera): Classification and Natural History (Cornell University Press, Cornell, 1995).
    Google Scholar 
    62.Streams, F. A. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 85, 265–273 (1992).Article 

    Google Scholar 
    63.Giacoma, C., Zugolaro, C. & Beani, L. The advertisement calls of the green toad (Bufo viridis): Variability and role in mate choice. Herpetologica 53, 454–464 (1997).
    Google Scholar 
    64.Pekár, S. & Brabec, M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology 124, 86–93 (2018).Article 

    Google Scholar 
    65.Halekoh, U., Højsgaard, S. & Yan, J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation for Statistical Computing, Vienna, Austria). https://www.r-project.org/ (2020).67.Wells, K. D. The Ecology and Behavior of Amphibians. (University of Chicago Press, 2007).68.Purrenhage, J. L. & Boone, M. D. Amphibian community response to variation in habitat structure and competitor density. Herpetologica 65, 14–30 (2009).Article 

    Google Scholar 
    69.Formanowicz, D. R. & Bobka, M. S. Predation risk and microhabitat preference: An experimental study of the behavioral responses of prey and predator. Am. Midl. Nat. 121, 379–386 (1989).Article 

    Google Scholar 
    70.Egan, R. S. & Paton, P. W. C. Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands 24, 1–13 (2004).Article 

    Google Scholar 
    71.Ward, S. A. Optimal habitat selection in time-limited dispersers. Am. Nat. 129, 568–579 (1987).Article 

    Google Scholar 
    72.Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Biotheoretica 19, 16–36 (1970).Article 

    Google Scholar 
    73.Austad, S. N. A classification of alternative reproductive behaviors and methods for field-testing ESS models. Am. Zool. 24, 309–319 (1984).Article 

    Google Scholar 
    74.Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article 

    Google Scholar 
    75.Wildermuth, H. Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: A behavioural field test. Naturwissenschaften 85, 297–302 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).
    Google Scholar 
    77.Dolný, A., Mižičová, H. & Harabiš, F. Natal philopatry in four European species of dragonflies (Odonata: Sympetrinae) and possible implications for conservation management. J. Insect Conserv. 17, 821–829 (2013).Article 

    Google Scholar 
    78.Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).Article 

    Google Scholar 
    79.Brodin, T., Mikolajewski, D. J. & Johansson, F. Behavioural and life history effects of predator diet cues during ontogeny in damselfly larvae. Oecologia 148, 162–169 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    80.Kershenbaum, A., Spencer, M., Blaustein, L. & Cohen, J. E. Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition. Evol. Ecol. 26, 955–974 (2012).Article 

    Google Scholar 
    81.Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44, 535–560 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Gioria, M. Habitats. In Ecology, Systematics, and the Natural History of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 307–362 (Springer, Netherlands, 2014).
    Google Scholar 
    83.Diehl, S. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology 73, 1646–1661 (1992).Article 

    Google Scholar 
    84.Giller, P. S. & McNeill, S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera). J. Anim. Ecol. 50, 789–808 (1981).Article 

    Google Scholar 
    85.Ribera, I. & Nilsson, A. N. Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). Can. J. Zool. 73, 2343–2360 (2011).Article 

    Google Scholar 
    86.Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).Article 

    Google Scholar 
    87.Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).PubMed 
    Article 

    Google Scholar 
    88.Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: How alarm cues and kairomones induce different prey defences. Funct. Ecol. 23, 1114–1121 (2009).Article 

    Google Scholar 
    89.McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Fecal filtrate transplantation protects against necrotizing enterocolitis

    Initial clinical courseAmong the 75 cesarean-delivered preterm piglets, nine were excluded before randomization (e.g. failed resuscitation, stillbirth), whereas the remaining 66 animals were group allocated. An additional seven animals were euthanized preschedule for reasons not related to the interventions (respiratory failure, iatrogenic complications). Two animals were euthanized preschedule with clinical NEC signs (1 CON, 1 FFTr), whereas the remaining 57 animals survived until day 5. During the course of the experiment, we observed rectal bleeding in 31% (5/16) of CON and 19% (3/16) of FMT animals relative to 0% (0/13) in both FFT groups (p  More

  • in

    The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability

    1.Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723 (2004).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Huang, J. & Douglas, A. E. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biol. Lett. 11, 12–15 (2015).Article 
    CAS 

    Google Scholar 
    4.Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Chandler, J. A., Lang, J., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genet. 7, e1002272 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Wong, A. C. N., Chaston, J. M. & Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7, 1922–1932 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Chandler, J. A., James, P. M., Jospin, G. & Lang, J. M. The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2, e474 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Kapun, M. et al. Genomic analysis of European Drosophila malanogaster populations revels longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol. Biol. Evol. 37, 2661 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Morais, P. B., Martins, M. B., Klaczko, L. B., Mendonca-Hagler, L. C. & Hagler, A. N. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl. Environ. Microbiol. 61, 4251–4257 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Wolda, H. Season fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 47, 369–381 (1978).Article 

    Google Scholar 
    12.Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).Article 

    Google Scholar 
    13.Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. U.S.A. 105, 2498–2503 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lee, K. P., Kim, J. S. & Min, K. J. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 86, 987–992 (2013).Article 

    Google Scholar 
    15.Wong, A. C. N., Dobson, A. J. & Douglas, A. E. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217, 1894–1901 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    16.Rodrigues, M. A. et al. Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69–80 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Davies, L. R., Schou, M. F., Kristensen, T. N. & Loeschcke, V. Linking developmental diet to adult foraging choice in Drosophila melanogaster. J. Exp. Biol. 221, 175554 (2018).Article 

    Google Scholar 
    18Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & Ja, W. W. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19Morimoto, J., Simpson, S. J. & Ponton, F. Direct and transgenerational effects of male and female gut microbiota in Drosophila melanogaster. Biol. Lett. 13, 20160966 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).Book 

    Google Scholar 
    21.Wong, A. C. N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S. & Mayntz, D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 56, 336–340 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Kutz, T. C., Sgrò, C. M. & Mirth, C. K. Interacting with change: Diet mediates how larvae respond to their thermal environment. Funct. Ecol. 33, 1940–1951 (2019).Article 

    Google Scholar 
    24.Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Writing 5, 1–34 (1948).
    Google Scholar 
    25.Broderick, N. & Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3, 307–321 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.De Ley, J. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol. 24, 31–50 (1961).Article 

    Google Scholar 
    27Ameyama, M. Gluconobacter oxydans subsp. sphaericus, new subspecies isolated from grapes. Int. J. Syst. Bacteriol. 25, 365–370 (1948).Article 

    Google Scholar 
    28.Deppenmeier, U., Hoffmeister, M. & Prust, C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 60, 233–242 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ryngajłło, M., Kubiak, K., Jędrzejczak-Krzepkowska, M., Jacek, P. & Bielecki, S. Comparative genomics of the Komagataeibacter strains—Efficient bionanocellulose producers. Microbiologyopen 8, 1–25 (2019).Article 
    CAS 

    Google Scholar 
    30.Gilbert, D. G. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46, 135–137 (1980).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Blum, J. E., Fischer, C. N., Miles, J. & Handelsman, J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 4, 1–8 (2013).CAS 
    Article 

    Google Scholar 
    32.Staubach, F., Baines, J. F., Künzel, S., Bik, E. M. & Petrov, D. A. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE 8, e70749 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Wong, A. C. N. et al. The host as the driver of the microbiota in the gut and external environment of Drosophila melanogaster. Appl. Environ. Microbiol. 81, 6232–6240 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Pais, I. S., Valente, R. S., Sporniak, M. & Teixeira, L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 16(7), e2005710 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615–626 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wong, A. C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Manteca, A. & Sanchez, J. Streptomyces development in colonies and soils. Appl. Environ. Microbiol. 75, 2920–2924 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Lee, K. P., Raubenheimer, D., Behmer, S. T. & Simpson, S. J. A correlation between macronutrient balancing and insect host-plant range: Evidence from the specialist caterpillar Spodoptera exempta (Walker). J. Insect Physiol. 49, 1161–1171 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Mevi-Schütz, J. & Erhardt, A. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 18, 2788–2794 (2003).Article 

    Google Scholar 
    40.Lee, K. P. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore. J. Exp. Biol. 210, 3236–3244 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Fanson, B. G., Weldon, C. W., Pérez-Staples, D., Simpson, S. J. & Taylor, P. W. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514–523 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    44.Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333, 101–104 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Ridley, E. V., Wong, A. C. N., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nguyen, B. et al. Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecol. Evol. 9, 6342–6352 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Drew, R. A. I., Courtice, A. C. & Teakle, D. S. Bacteria as a natural source of food for adult fruit flies (Diptera, Tephritidae). Oecologia 60, 279–284 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48Lesperance, D. N. A. & Broderick, N. Gut bacteria mediate nutrient availability in Drosophila diets. Appl. Environ. Microbiol. 59, 211 (2020).
    Google Scholar 
    49.Kristensen, T. N. et al. Fitness components of Drosophila melanogaster developed on a standard laboratory diet or a typical natural food source. Insect Sci. 23, 771–779 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Harrison, A. P. & Pelczar, M. J. Damage and survival of bacteria during freeze-drying and during storage over a ten-year period. J. Gen. Microbiol. 30, 395–400 (1963).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Rubin, B. E. R. et al. Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8, 1–9 (2013).
    Google Scholar 
    52.Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 107, 20051–20056 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Xu, X., Feng, G., Liu, H. & Li, X. Control of spoilage microorganisms in Soybean milk by nipagin complex esters, nisin, sodium dehydroaceate and heat treatment. IPCBEE 67, 35 (2014).ADS 
    CAS 

    Google Scholar 
    54.Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 114, 12767–12772 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Reply to Obadia et al.: Effect of methyl paraben on host–microbiota interactions in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 20, E4549–E4550 (2018).Article 

    Google Scholar 
    56.Ward, D. V. et al. Evaluation of 16s rDNA-based community profiling for human microbiome research. PLoS ONE 7, e39315 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Caporaso, J. et al. Ultra-high-throughput microbial community analysis on Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    60.Overgaard, J., Kristensen, T. N. & Sørensen, J. G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS ONE 7, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). Accessed February 2021. https://www.R-project.org/.62RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).
    Google Scholar 
    63McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Oksanen, J. et al. vegan: Community Ecology Package. R package 2.5-7 (2019). Accessed October 2019. https://CRAN.R-project.org/package=vegan.65.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics

    1.Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    2.Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. U. S. A. 116, 4382–4387 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    3.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).Article 

    Google Scholar 
    4.Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).Article 
    ADS 

    Google Scholar 
    5.Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    6.Lovett, G. M. et al. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecol. Appl. 26, 1437–1455 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci Adv 7, eabe9829 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl. Acad. Sci. U. S. A. 115, 2776–2781 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).PubMed 
    Article 

    Google Scholar 
    10.McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. Biol. Sci. 286, 20192221 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Woodall, C. W., Miles, P. D. & Vissage, J. S. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. For. Ecol. Manag. 216, 367–377 (2005).Article 

    Google Scholar 
    12.Reineke, L. H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46, 627–638 (1933).
    Google Scholar 
    13.Long, J. N. A practical approach to density management. For. Chron. 61, 23–27 (1985).Article 

    Google Scholar 
    14.Domke, G. et al. Forests. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero-Lankao, P. & Zhu, Z.) 365–398 (US Global Change Research Program, 2018).15.Yoda, K., Kira, T., Ogawa, H. & Hozumi, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 106–129 (1963).
    Google Scholar 
    16.Drew, T. J. & Flewelling, J. W. Stand density management: An alternative approach and its application to Douglas-fir plantations. For. Sci. 25, 518–532 (1979).
    Google Scholar 
    17.Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program: National Sampling Design and Estimation Procedures. SRS GTR-80. USDA Forest Service, Southern Research Station, Asheville, North Carolina, USA. (2005). https://doi.org/10.2737/SRS-GTR-80.18.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    19.Andrews, C., Weiskittel, A., D’Amato, A. W. & Simons-Legaard, E. Variation in the maximum stand density index and its linkage to climate in mixed species forests of the North American Acadian Region. For. Ecol. Manag. 417, 90–102 (2018).Article 

    Google Scholar 
    20.Nagel, L. M. et al. Adaptive silviculture for climate change: A national experiment in manager–scientist partnerships to apply an adaptation framework. J. For. 115, 167–178 (2017).
    Google Scholar 
    21.Pretzsch, H. & Biber, P. A re-evaluation of the Reineke’s rule and stand density index. For. Sci. 51, 304–320 (2005).
    Google Scholar 
    22.Condés, S. et al. Climate influences on the maximum size-density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. For. Ecol. Manag. 385, 295–307 (2017).Article 

    Google Scholar 
    23.Ducey, M. J., Woodall, C. W. & Bravo-Oviedo, A. Climate and species functional traits influence maximum live tree stocking in the Lake States, USA. For. Ecol. Manag. 386, 51–61 (2017).Article 

    Google Scholar 
    24.Zhao, D., Bullock, B. P., Montes, C. R. & Wang, M. Rethinking maximum stand basal area and maximum SDI from the aspect of stand dynamics. For. Ecol. Manag. 475, 118462 (2020).Article 

    Google Scholar 
    25.Weiskittel, A. R. & Kuehne, C. Evaluating and modeling variation in site-level maximum carrying capacity of mixed-species forest stands in the Acadian Region of northeastern North America. For. Chron. 95, 171–182 (2019).Article 

    Google Scholar 
    26.Pretzsch, H. & del Río, M. Density regulation of mixed and mono-specific forest stands as a continuum: A new concept based on species-specific coefficients for density equivalence and density modification. For. Int. J. For. Res. 93, 1–15 (2020).
    Google Scholar 
    27.Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    28.Woodall, C. W., Perry, C. H. & Miles, P. D. The relative density of forests in the United States. For. Ecol. Manag. 226, 368–372 (2006).Article 

    Google Scholar 
    29.Venturas, M. D., Todd, H. N., Trugman, A. T. & Anderegg, W. R. L. Understanding and predicting forest mortality in the western United States using long-term forest inventory data and modeled hydraulic damage. New Phytol. 230, 1896–1910 (2020).PubMed 
    Article 

    Google Scholar 
    30.Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27, 1–2 (2021).Article 
    ADS 

    Google Scholar 
    31.Peters, M. P. & Iverson, L. R. Projected drought for the conterminous United States in the 21st century. In Effects of Drought on Forests and Rangelands in the United States (eds Vose, J. M., Peterson, D. L., Luce, C. H. & Patel-Weynand, T.) vol. Gen. Tech. Rep. WO-98 19–39 (USDA Forest Service, 2019).32.Coulston, J. W., Woodall, C. W., Domke, G. M. & Walters, B. F. Refined forest land use classification with implications for United States national carbon accounting. Land Use Policy 59, 536–542 (2016).Article 

    Google Scholar 
    33.Wear, D. N. & Coulston, J. W. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 5, 16518 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).Article 

    Google Scholar 
    35.Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219 (2011).PubMed 
    Article 

    Google Scholar 
    36.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A. 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    37.Gunn, J. S., Ducey, M. J. & Belair, E. Evaluating degradation in a North American temperate forest. For. Ecol. Manag. 432, 415–426 (2019).Article 

    Google Scholar 
    38.Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010840117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.King, D. I. & Schlossberg, S. Synthesis of the conservation value of the early-successional stage in forests of eastern North America. For. Ecol. Manag. 324, 186–195 (2014).Article 

    Google Scholar 
    40.Stephens, S. L. et al. Forest restoration and fuels reduction: Convergent or divergent?. Bioscience 71, 85–101 (2020).
    Google Scholar 
    41.Berner, L. T., Law, B. E., Meddens, A. J. H. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).Article 
    ADS 

    Google Scholar 
    42.Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Weiskittel, A. R., Gould, P. J. & Temesgen, H. Sources of variation in the self-thinning boundary line for three species with varying levels of shade tolerance. For. Sci. 55, 84–93 (2009).
    Google Scholar 
    44.Ducey, M. J. & Knapp, R. A. A stand density index for complex mixed species forests in the northeastern United States. For. Ecol. Manag. 260, 1613–1622 (2010).Article 

    Google Scholar 
    45.Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. U. S. A. 105, 1551–1555 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    46.Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Change Biol. 17, 2842–2852 (2011).Article 
    ADS 

    Google Scholar 
    47.Nelson, M. D. et al. Defining the United States land base: A technical document supporting the USDA Forest Service 2020 RPA assessment. In Gen. Tech. Rep. NRS-191, Vol. 191, 1–70 (2020).48.Patterson, P. L. & Reams, G. A. Combining panels for forest inventory and analysis estimation. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, 79–84 (2005).49.Bailey, R. G. Delineation of ecosystem regions. Environ. Manag. 7, 365–373 (1983).Article 
    ADS 

    Google Scholar 
    50.Salas-Eljatib, C. & Weiskittel, A. R. Evaluation of modeling strategies for assessing self-thinning behavior and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57(13), 1–29. http://www.jstatsoft.org/v57/i13/ (2013).
    Google Scholar 
    52.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    53.Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).Article 
    ADS 

    Google Scholar 
    55.De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251 (2007).PubMed 
    Article 

    Google Scholar 
    56.Long, J. N. & Daniel, T. W. Assessment of growing stock in uneven-age stands. West. J. Appl. For. 11, 59–61 (1990).Article 

    Google Scholar 
    57.Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).ADS 
    Article 

    Google Scholar 
    4.McWilliam, M., Chase, T. J. & Hoogenboom, M. O. Neighbor diversity regulates the productivity of coral assemblages. Curr. Biol. 28, 3634–3639 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Gardner, T. A. Long-term region-wide declines in caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27—year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1208909109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Madin, J. S. et al. Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Mar. Ecol. Prog. Ser. 604, 263–268 (2018).ADS 
    Article 

    Google Scholar 
    11.Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef: Demographic change in Australia’s corals. Proc. R. Soc. B Biol. Sci. 287, 20201432 (2020).Article 

    Google Scholar 
    12.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 1–10 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    13.Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).ADS 
    Article 

    Google Scholar 
    14.Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 
    Article 

    Google Scholar 
    15.Hall, T. E. et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecol. Appl. 31, 1–11 (2021).Article 

    Google Scholar 
    16.Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).ADS 
    Article 

    Google Scholar 
    18.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    19.Pratchett, M. et al. Spatial, temporal and taxonomic variation in coral growth—Implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 53, 215–295 (2015).
    Google Scholar 
    20.Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: Porites growth anomalies on the great barrier reef. PLoS ONE 9, e88720 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Linares, C., Pratchett, M. S. & Coker, D. J. Recolonisation of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 438, 97–104 (2011).ADS 
    Article 

    Google Scholar 
    22.Victor, S., Golbuu, Y., Yukihira, H. & Van Woesik, R. Acropora size-frequency distributions reflect spatially variable conditions on coral reefs of Palau. Bull. Mar. Sci. 85, 149–157 (2009).
    Google Scholar 
    23.Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).ADS 
    Article 

    Google Scholar 
    24.Pratchett, M. S., McWilliam, M. J. & Riegl, B. Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs 39, 783–793 (2020).Article 

    Google Scholar 
    25.Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    26.Van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    27.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article 

    Google Scholar 
    28.Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).Article 

    Google Scholar 
    29.Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Team, R. C. R: A Language and Environment for Statistical Computing. (2020).35.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    36.Evans, R. D. et al. Early recovery dynamics of turbid coral reefs after recurring bleaching events. J. Environ. Manag. 268, 110666 (2020).Article 

    Google Scholar 
    37.Carlot, J. et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob. Chang. Biol. 27, 2623–2632 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    39.Baird, A., Emslie, M. & Lewis, A. Extended periods of coral recruitment on the Great Barrier Reef. In Proc. 12th Int. Coral Reef Symp. (2012).40.Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: The massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Edmunds, P. J. Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 202, 113–124 (2000).ADS 
    Article 

    Google Scholar 
    42.Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7 (2019).Article 

    Google Scholar 
    46.Abràmoff, M. D., Hospitals, I., Magalhães, P. J. & Abràmoff, M. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar  More

  • in

    Humpback whale song recordings suggest common feeding ground occupation by multiple populations

    1.Clapham, P. J. Humpback whale: Megaptera novaeangliae. In Encyclopedia of Marine Mammals 489–492 (Elsevier, 2018).Chapter 

    Google Scholar 
    2.Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    3.Geijer, C. K. A., Notarbartolo di Sciara, G. & Panigada, S. Mysticete migration revisited: Are Mediterranean fin whales an anomaly?. Mamm. Rev. 46, 284–296 (2016).Article 

    Google Scholar 
    4.Baker, C. S. & Herman, L. M. Aggressive behavior between humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Can. J. Zool. 62, 1922–1937 (1984).Article 

    Google Scholar 
    5.Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).PubMed 
    Article 

    Google Scholar 
    6.Palsbøll, P. J., Clapham, P. J., Mattila, D. K. & Vasquez, O. Composition and dynamics of humpback whale competitive groups in the West Indies. Behaviour 122, 182–194 (1992).Article 

    Google Scholar 
    7.Payne, R. S. & Mcvay, S. Songs of Humpback Whales. Science 173, 585–597 (1971).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Kroodsma, D. E. & Byers, B. E. The function (s) of bird song. Am. Zool. 31, 318–328 (1991).Article 

    Google Scholar 
    9.Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the Ocean Basin Scale. Curr. Biol. 21, 687–691 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495 (2007).Article 

    Google Scholar 
    11.Smith, J. N., Goldizen, A. W., Dunlop, R. A. & Noad, M. J. Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Anim. Behav. 76, 467–477 (2008).Article 

    Google Scholar 
    12.Ross-Marsh, E., Elwen, S., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics 30, 163–179 (2020).Article 

    Google Scholar 
    13.Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Vu, E. T. et al. Humpback whale song occurs extensively on feeding grounds in the western North Atlantic Ocean. Aquat. Biol. 14, 175–183 (2012).Article 

    Google Scholar 
    15.McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).Article 

    Google Scholar 
    16.Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).Article 

    Google Scholar 
    17.Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. B 271, 1051–1057 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.International Whaling Commission. Report on the workshop on the comprehensive assessment of Southern Hemisphere humpback whales. J. Cetac. Res. Manag. 3, 1–50 (2011).
    Google Scholar 
    19.International Whaling Commission. Annex H: Report of the Sub-Committee on Other Southern Hemisphere Whale Stocks. (2016).20.Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    21.Gabriele, C. & Frankel, A. The occurrence and significance of humpback whale songs in Glacier Bay, Southeastern Alaska. Arctic Res. USA 16, 42–47 (2002).
    Google Scholar 
    22.Payne, R. & Guinee, L. Humpback whales (Megaptera novaeangliae) songs as an indicator of stocks. In Communication and Behavior of Whales (ed. Payne, R.) 333–358 (Westview Press, 1983).
    Google Scholar 
    23.Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Z. Tierpsychol. 68, 89–114 (1985).Article 

    Google Scholar 
    24.Winn, H. et al. Song of the humpback whale—population comparisons. Behav. Ecol. Sociobiol. 8, 41–46 (1981).Article 

    Google Scholar 
    25.Winn, H. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    26.Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mamm. Sci. 29, E312–E332 (2013).Article 

    Google Scholar 
    27.Kowarski, K., Moors-Murphy, H., Maxner, E. & Cerchio, S. Western North Atlantic humpback whale fall and spring acoustic repertoire: Insight into onset and cessation of singing behavior. J. Acoust. Soc. Am. 145, 2305–2316 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    28.Magnúsdóttir, E. E. & Lim, R. Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter. PLoS ONE 14, e0210057 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Magnúsdóttir, E. E. et al. Humpback whale (Megaptera novaeangliae) song unit and phrase repertoire progression on a subarctic feeding ground. J. Acoust. Soc. Am. 138, 3362–3374 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    30.Mattila, D. K., Guinee, L. N. & Mayo, C. A. Humpback whale songs on a North Atlantic feeding ground. J. Mammal. 68, 880–883 (1987).Article 

    Google Scholar 
    31.Teschke, K., Pehlke, H., Deininger, M., Jerosch, K. & Brey, T. Scientific Background Document in Support of the Development of a CCAMLR MPA in the Weddell Sea (Antarctica)–Version 2016. (2016).32.Gridley, T., Silva, M., Wilkinson, C., Seakamela, S. & Elwen, S. H. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa. J. Acoust. Soc. Am. 143, 298–304 (2018).Article 
    ADS 

    Google Scholar 
    33.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res.-Oceans 113, C02S03 (2008).Article 
    ADS 

    Google Scholar 
    34.Tynan, C. T. & Thiele, D. Report on Antarctic ice edge definition by the ad hoc working group on ice data collection in the Antarctic. Paper: SC/55/19, submitted to the Scientific Committee of the International Whaling Commission (2003).35.Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).Article 

    Google Scholar 
    36.Kohonen, T. Median strings. Pattern Recogn. Lett. 3, 309–313 (1985).Article 
    ADS 

    Google Scholar 
    37.Schall, E. et al. Multi-year presence of humpback whales in the Atlantic sector of the Southern Ocean but not during El Niño. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    38.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    39.Darling, J. D., Acebes, J. M. V., Frey, O., Urbán, R. J. & Yamaguchi, M. Convergence and divergence of songs suggests ongoing, but annually variable, mixing of humpback whale populations throughout the North Pacific. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    40.Schall, E. et al. Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean. R. Soc. Open Sci. 7, 201347 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    41.Van Opzeeland, I., Van Parijs, S., Kindermann, L., Burkhardt, E. & Boebel, O. Calling in the cold: Pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters. PLoS ONE 8, 1–7 (2013).
    Google Scholar 
    42.Craig, A. S., Herman, L. M., Gabriele, C. M. & Pack, A. A. Migratory timing of humpback whales (Megaptera novaeangliae) in the central north Pacific varies with age, sex and reproductive status. Behaviour 140, 981–1001 (2003).Article 

    Google Scholar 
    43.Dawbin, W. Temporal segregation of humpback whales during migration in southern hemisphere waters. Mem. Qld. Mus. 42, 105–138 (1997).
    Google Scholar 
    44.Magnúsdóttir, E., Rasmussen, M., Lammers, M. & Svavarsson, J. Humpback whale songs during winter in subarctic waters. Polar Biol. 37, 427–433 (2014).Article 

    Google Scholar 
    45.Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. Part 1 91, 101–114 (2014).Article 

    Google Scholar 
    46.Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Research (Part II, Topical Studies in Oceanography) 51, 2311–2325 (2004).Article 
    ADS 

    Google Scholar 
    47.Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    48.McDonald, M. A., Mesnick, S. L. & Hildebrand, J. A. Biogeographic characterisation of blue whale song worldwide: Using song to identify populations. J. Cetac. Res. Manage. 8, 55–65 (2006).
    Google Scholar 
    49.Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).Article 

    Google Scholar 
    50.Oleson, E. M., Širović, A., Bayless, A. R. & Hildebr, J. A. Synchronous seasonal change in fin whale song in the North Pacific. PLoS ONE 9, e115678 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    52.Stafford, K. M. et al. Spitsbergen’s endangered bowhead whales sing through the polar night. Endanger. Species Res. 18, 95–103 (2012).Article 

    Google Scholar 
    53.Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013).Article 
    ADS 

    Google Scholar 
    54.Brenowitz, E. A., Margoliash, D. & Nordeen, K. W. An introduction to birdsong and the avian song system. J. Neurobiol. 33, 495–500 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Tobias, J., Gamarra-Toledo, V., García-Olaechea, D., Pulgarin, P. & Seddon, N. Year-round resource defence and the evolution of male and female song in suboscine birds: Social armaments are mutual ornaments. J. Evol. Biol. 24, 2118–2138 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Vu, E. T., Clark, C., Catelani, K., Kellar, N. M. & Calambokidis, J. Seasonal blubber testosterone concentrations of male humpback whales (Megaptera novaeangliae). Mar. Mam. Sci. 31, 1258–1264 (2015).Article 

    Google Scholar 
    57.Yamada, K. & Soma, M. Diet and birdsong: Short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    58.Casagrande, S., Pinxten, R., Zaid, E. & Eens, M. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder. PeerJ 4, e2512 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Weinrich, M. Humpback whale competitive groups observed on a high-latitude feeding ground. Mar. Mamm. Sci. 11, 251–254 (1995).Article 

    Google Scholar 
    60.Chittleborough, R. The breeding cycle of the female humpback whale, Megaptera nodosa (Bonnaterre). Mar. Freshw. Res. 9, 1–18 (1958).Article 

    Google Scholar 
    61.Chittleborough, R. Studies on the ovaries of the humback whale, Megaptera nodosa (bonnaterre), on the western Australian coast. Mar. Freshw. Res. 5, 35–63 (1954).Article 

    Google Scholar 
    62.Cerchio, S., Jacobsen, J. K. & Norris, T. F. Temporal and geographical variation in songs of humpback whales, Megaptera novaeangliae: Synchronous change in Hawaiian and Mexican breeding assemblages. Anim. Behav. 62, 313–329 (2001).Article 

    Google Scholar 
    63.Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    64.Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B 285, 20182088 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Stevick, P. T. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetac. Res. Manag. 6, 109–113 (2004).
    Google Scholar 
    66.Engel, M. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253–1262 (2008).CAS 
    Article 

    Google Scholar 
    67.Amaral, A. R. et al. Population genetic structure among feeding aggregations of humpback whales in the Southern Ocean. Mar. Biol. 163, 1–13 (2016).Article 

    Google Scholar 
    68.Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. R. Soc. Open Sci. 5, 172305 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    69.Darling, J. D. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in the western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566 (2005).Article 

    Google Scholar 
    70.Razafindrakoto, Y., Cerchio, S., Collins, T., Rosenbaum, H. & Ngouessono, S. Similarity of humpback whale song from Madagascar and Gabon indicates significant contact between South Atlantic and southwest Indian Ocean populations. PLoS ONE 8, e79422 (2009).
    Google Scholar 
    71.Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetac. Res. Manag. 3, 113–118 (2011).
    Google Scholar 
    72.Rosenbaum, H. C., Maxwell, S. M., Kershaw, F. & Mate, B. Long-range movement of humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean. Conserv. Biol. 28, 604–615 (2014).PubMed 
    Article 

    Google Scholar 
    73.Filun, D. et al. Frozen verses: Antarctic minke whales (Balaenoptera bonaerensis) call predominantly during austral winter. R. Soc. Open Sci. 7, 192112 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    74.Rettig, S. et al. In International Confence and Exhibition on Underwater Acoustics. (eds Papadakis, J. & Bjorno, L.) 1669–1674.75.Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    76.Klinck, H. et al. Long-range underwater vocalizations of the crabeater seal (Lobodon carcinophaga). J. Acoust. Soc. Am. 128, 474–479 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    77.Risch, D. et al. Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaerensis). Biol. Lett. 10, 20140175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Schall, E. & Van Opzeeland, I. Calls produced by Ecotype C killer whales (Orcinus orca) off the Eckstrom iceshelf, Antarctica. Aquat. Mamm. 43, 117–126 (2017).Article 

    Google Scholar 
    79.Van Opzeeland, I. et al. Acoustic ecology of Antarctic pinnipeds. Mar. Ecol. Prog. Ser. 414, 267–291 (2010).Article 
    ADS 

    Google Scholar 
    80.Dunlop, R. A., Cato, D. H. & Noad, M. J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mamm. Sci. 24, 613–629 (2008).Article 

    Google Scholar 
    81.Stimpert, A. K., Au, W. W., Parks, S. E., Hurst, T. & Wiley, D. N. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. J. Acoust. Soc. Am. 129, 476–482 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    82.Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996).
    Google Scholar 
    83.Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).Article 
    ADS 

    Google Scholar 
    84.Greene, C. A. Daily Antarctic Sea Ice Concentration (2020).85.Schall, E., Roca, I. & Van Opzeeland, I. Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean. J. Acoust. Soc. Am. 149, 4649–4658 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    86.Dalla Rosa, L., Secchi, E., Maia, Y. G., Zerbini, A. & Heide-Jørgensen, M. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).Article 

    Google Scholar 
    87.Zann, R. & Cash, E. Developmental stress impairs song complexity but not learning accuracy in non-domesticated zebra finches (Taeniopygia guttata). Behav. Ecol. Sociobiol. 62, 391–400 (2008).Article 

    Google Scholar 
    88.Woodgate, J. L., Mariette, M. M., Bennett, A. T., Griffith, S. C. & Buchanan, K. L. Male song structure predicts reproductive success in a wild zebra finch population. Anim. Behav. 83, 773–781 (2012).Article 

    Google Scholar 
    89.Boogert, N. J., Giraldeau, L.-A. & Lefebvre, L. Song complexity correlates with learning ability in zebra finch males. Anim. Behav. 76, 1735–1741 (2008).Article 

    Google Scholar 
    90.Templeton, C. N., Laland, K. N. & Boogert, N. J. Does song complexity correlate with problem-solving performance in flocks of zebra finches?. Anim. Behav. 92, 63–71 (2014).Article 

    Google Scholar 
    91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.92.Suzuki, R., Terada, Y. & Shimodaira, H. pvclust: Hierarchical Clustering with P-values via Multiscale Bootstrap Resampling. R Package Version 2.2–0 (2019).93.Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: Tests using humpback whale song. Behaviour 149, 1413–1441 (2012).Article 

    Google Scholar 
    94.Van der Loo, M. P. The stringdist package for approximate string matching. R J. 6, 111–122 (2014).Article 

    Google Scholar 
    95.Pawlowicz, R. M_Map: A Mapping Package for MATLAB v. Version 1.4m. www.eoas.ubc.ca/~rich/map.html (2020). More