Towards an integrative view of virus phenotypes
1.Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
3.Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
4.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
5.Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Jiang, S., Steward, G., Jellison, R., Chu, W. & Choi, S. Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb. Ecol. 47, 9–17 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
9.Wei, M. & Xu, K. New insights into the virus-to-prokaryote ratio (VPR) in marine sediments. Front. Microbiol. 11, 1102 (2020).PubMed
PubMed Central
Article
Google Scholar
10.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea. BioScience 49, 781–788 (1999).Article
Google Scholar
11.Brussaard, C. P. D. et al. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2, 575–578 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed
PubMed Central
Article
Google Scholar
13.Nee, S. & Maynard Smith, J. The evolutionary biology of molecular parasites. Parasitology 100, S5–S18 (1990).PubMed
Article
PubMed Central
Google Scholar
14.Hambly, E. & Suttle, C. A. The viriosphere, diversity, and genetic exchange within phage communities. Curr. Opin. Microbiol. 8, 444–450 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).PubMed
PubMed Central
Article
CAS
Google Scholar
16.Holmes, E. C. What does virus evolution tell us about virus origins? J. Virol. 85, 5247–5251 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
17.Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).PubMed
PubMed Central
Article
Google Scholar
18.Kuhn, J. H. et al. Classify viruses-the gain is worth the pain. Nature 566, 318–320 (2019).PubMed
Article
PubMed Central
Google Scholar
19.Record, N. R., Talmy, D. & Våge, S. Quantifying tradeoffs for marine viruses. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00251 (2016). Investigates trade-offs in phenotypes of marine viruses that may influence virus population dynamics and biogeography.Article
Google Scholar
20.Domingo, E. et al. Basic concepts in RNA virus evolution. FASEB J. 10, 859–864 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Solé, R. V., Ferrer, R., González-García, I., Quer, J. & Domingo, E. Red queen dynamics, competition and critical points in a model of RNA virus quasispecies. J. Theor. Biol. 198, 47–59 (1999).PubMed
Article
PubMed Central
Google Scholar
22.Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. Bioessays 33, 43–51 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Daugherty, M. D. & Malik, H. S. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46, 677–700 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Tegally, H. et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat. Med. 27, 440–446 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Lederberg, J. in Emerging Viruses (ed. Morse, S. S.) 3–9 (Oxford University Press, 1993).26.Baltimore, D. Expression of animal virus genomes. Microbiol. Mol. Biol. Rev. 35, 235–241 (1971).CAS
Google Scholar
27.Coutinho, F. H., Edwards, R. A. & Rodríguez-Valera, F. Charting the diversity of uncultured viruses of archaea and bacteria. BMC Biol. 17, 109 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
28.King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowitz, E. J. (eds) Virus Taxonomy. 163–173 (Elsevier, 2012).29.Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013). Among the first reports articulating the viewpoint that infected cells undergoing active virus replication should be recognized as the ‘living form’ of a virus known as a virocell.CAS
PubMed
Article
PubMed Central
Google Scholar
30.Lowen, A. C. Constraints, drivers, and implications of influenza A virus reassortment. Annu. Rev. Virol. 4, 105–121 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Mahner, M. & Kary, M. What exactly are genomes, genotypes and phenotypes? And what about phenomes? J. Theor. Biol. 186, 55–63 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Edwards, K. F. & Steward, G. F. Host traits drive viral life histories across phytoplankton viruses. Am. Nat. 191, 566–581 (2018). Examines the inter-relationships between virus traits and their consequences for population dynamics and the evolution of burst size.PubMed
Article
PubMed Central
Google Scholar
33.Flint, S. J., Racaniello, V. R., Rall, G. F., Skalka, A. M. & Enquist, L. W. Principles of Virology 4th Edn (Wiley, 2015).34.Ghabrial, S. A., Castón, J. R., Jiang, D., Nibert, M. L. & Suzuki, N. 50-plus years of fungal viruses. Virology 479–480, 356–368 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
35.Dunigan, D. D. et al. Chloroviruses lure hosts through long-distance chemical signaling. J. Virol. 93, e01688-18 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741 (2003). Shows how the virus genome interacts with the host to facilitate virus reproduction.CAS
PubMed
Article
PubMed Central
Google Scholar
38.Mavrich, T. N. & Hatfull, G. F. Evolution of superinfection immunity in cluster A mycobacteriophages. mBio 10, e00971-19 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Marine, R. L., Nasko, D. J., Wray, J., Polson, S. W. & Wommack, K. E. Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology. ISME J. 11, 2479–2491 (2017).PubMed
PubMed Central
Article
Google Scholar
40.ICTV. Virus Taxonomy: The ICTV Report on Virus Classification and Taxon Nomenclature. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/ (2019).41.Ojosnegros, S. et al. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLoS Genet 7, e1001344 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Belshaw, R., Pybus, O. G. & Rambaut, A. The evolution of genome compression and genomic novelty in RNA viruses. Genome Res. 17, 1496–1504 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Van Etten, J. L., Agarkova, I. V. & Dunigan, D. D. Chloroviruses. Viruses 12, 20 (2020).Article
CAS
Google Scholar
44.Iranzo, J. & Manrubia, S. C. Evolutionary dynamics of genome segmentation in multipartite viruses. Proc. Biol. Sci. 279, 3812–3819 (2012).PubMed
PubMed Central
Google Scholar
45.Kellogg, C. A. & Paul, J. H. Degree of ultraviolet radiation damage and repair capabilities are related to G+C content in marine vibriophages. Aquat. Microb. Ecol. 27, 13–20 (2002).Article
Google Scholar
46.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article
Google Scholar
47.Edwards, K. F., Steward, G. F. & Schvarcz, C. R. Making sense of virus size and the tradeoffs shaping viral fitness. Ecol. Lett. 24, 363–373 (2021).PubMed
Article
PubMed Central
Google Scholar
48.Bonachela, J. A. & Levin, S. A. Evolutionary comparison between viral lysis rate and latent period. J. Theor. Biol. 345, 32–42 (2014).PubMed
Article
PubMed Central
Google Scholar
49.Yashchenko, V. V., Gavrilova, O. V., Rautian, M. S. & Jakobsen, K. S. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: ultrastructural studies. Eur. J. Protistol. 48, 149–159 (2012).PubMed
Article
PubMed Central
Google Scholar
50.DeLong, J. P., Al-Ameeli, Z., Duncan, G., Van Etten, J. L. & Dunigan, D. D. Predators catalyze an increase in chloroviruses by foraging on the symbiotic hosts of zoochlorellae. Proc. Natl Acad. Sci. USA 113, 13780–13784 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Wang, I.-N. Lysis timing and bacteriophage fitness. Genetics 172, 17–26 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Smith, C. & Fretwell, S. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article
Google Scholar
53.You, L., Suthers, P. F. & Yin, J. Effects of Escherichia coli physiology on growth of phage T7 In vivo and in silico. J. Bacteriol. 184, 1888–1894 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Hellweger, F. L. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ. Microbiol. 11, 1386–1394 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Schenk, H. & Sieber, M. Bacteriophage can promote the emergence of physiologically sub-optimal host phenotypes. bioRxiv https://doi.org/10.1101/621524 (2019).Article
Google Scholar
57.Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).PubMed
PubMed Central
Article
Google Scholar
58.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Grove, J. & Marsh, M. The cell biology of receptor-mediated virus entry. J. Cell Biol. 195, 1071–1082 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
60.McFadden, G., Mohamed, M. R., Rahman, M. M. & Bartee, E. Cytokine determinants of viral tropism. Nat. Rev. Immunol. 9, 645–655 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Nussenzweig, P. M. & Marraffini, L. A. Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annu. Rev. Genet. 54, 93–120 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020). An overview of the mechanisms and phenotypes related to phage infection and host defence mechanisms.CAS
PubMed
Article
PubMed Central
Google Scholar
64.Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011). Demonstrates the role of virus host range in generating community-wide patterns of host–phage interactions.CAS
PubMed
PubMed Central
Article
Google Scholar
66.Regoes, R. R. & Bonhoeffer, S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol. 13, 269–277 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
67.Atkinson, D., Ciotti, B. J. & Montagnes, D. J. Protists decrease in size linearly with temperature: ca. 2.5% C-1. Proc. R. Soc. Lond. B 270, 2605–2611 (2003).Article
Google Scholar
68.Falkowski, P. G. in Primary Productivity in the Sea (ed. Falkowski, P. G.) 99–119 (Springer, 1980).69.Salsbery, M. E. & DeLong, J. P. The benefit of algae endosymbionts in Paramecium bursariais temperature dependent. Evol. Ecol. Res. 19, 669–678 (2018).
Google Scholar
70.Kimmance, S. A., Atkinson, D. & Montagnes, D. J. S. Do temperature–food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis marina. Aquat. Microb. Ecol. 42, 63–73 (2006).Article
Google Scholar
71.Maat, D. S., van Bleijswijk, J. D. L., Witte, H. J. & Brussaard, C. P. D. Virus production in phosphorus-limited Micromonas pusilla stimulated by a supply of naturally low concentrations of different phosphorus sources, far into the lytic cycle. FEMS Microbiol. Ecol. 92, fiw136 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar
72.Amla, D. V., Rowell, P. & Stewart, W. D. P. Metabolic changes associated with cyanophage N-1 infection of the cyanobacterium Nostoc muscorum. Arch. Microbiol. 148, 321–327 (1987).CAS
Article
Google Scholar
73.Hadas, H., Einav, M., Fishov, I. & Zaritsky, A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
74.Demory, D. et al. Temperature is a key factor in Micromonas–virus interactions. ISME J. 11, 601–612 (2017). Shows the effect of temperature on the kinetics, phenotypes and life history strategies of prasinoviruses.CAS
PubMed
PubMed Central
Article
Google Scholar
75.Schachtele, C. F., Oman, R. W. & Anderson, D. L. Effect of elevated temperature on deoxyribonucleic acid synthesis in bacteriophage φ29-infected Bacillus amyloliquefaciens. J. Virol. 6, 430–437 (1970).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Choua, M., Heath, M. R., Speirs, D. C. & Bonachela, J. A. The effect of viral plasticity on the persistence of host-virus systems. J. Theor. Biol. 498, 110263 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
77.Ni, T. & Zeng, Q. Diel infection of cyanobacteria by cyanophages. Front. Mar. Sci. https://doi.org/10.3389/fmars.2015.00123 (2016).Article
Google Scholar
78.Sakowski, E. G. et al. Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses. Proc. Natl Acad. Sci. USA 111, 15786–15791 (2014). Demonstrates that genomic features in the viral replicon (that is, module of genes responsible for viral genome replication) may predict the biogeographical distribution of viruses.CAS
PubMed
PubMed Central
Article
Google Scholar
79.Reeson, A. F. et al. Effects of phenotypic plasticity on pathogen transmission in the field in a Lepidoptera-NPV system. Oecologia 124, 373–380 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Stearns, S. C. The evolutionary significance of phenotypic plasticity. BioScience 39, 436–445 (1989).Article
Google Scholar
81.Leggett, H. C., Benmayor, R., Hodgson, D. J. & Buckling, A. Experimental evolution of adaptive phenotypic plasticity in a parasite. Curr. Biol. 23, 139–142 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
82.Oppenheim, A. B., Kobiler, O., Stavans, J., Court, D. L. & Adhya, S. Switches in bacteriophage lambda development. Annu. Rev. Genet. 39, 409–429 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
83.Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488–493 (2017). Demonstrates the use of communication peptides that determine lysogeny in temperate phages.CAS
PubMed
PubMed Central
Article
Google Scholar
84.Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).PubMed
PubMed Central
Article
Google Scholar
85.Labonté, J. M. et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front. Microbiol. 6, 349 (2015).PubMed
PubMed Central
Google Scholar
86.Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
87.Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
88.Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012). Demonstrates the rapid co-evolution of virus and host but highlights the challenge of identifying the critical phenotypes mediating the interaction.CAS
PubMed
PubMed Central
Article
Google Scholar
89.Frickel, J., Feulner, P. G. D., Karakoc, E. & Becks, L. Population size changes and selection drive patterns of parallel evolution in a host–virus system. Nat. Commun. 9, 1706 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
90.Knowles, B. et al. Temperate infection in a virus–host system previously known for virulent dynamics. Nat. Commun. 11, 4626 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
91.Wang, I.-N., Dykhuizen, D. E. & Slobodkin, L. B. The evolution of phage lysis timing. Evol. Ecol. 10, 545–558 (1996).Article
Google Scholar
92.Abedon, S. T., Hyman, P. & Thomas, C. Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl. Environ. Microbiol. 69, 7499–7506 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
93.Palkovacs, E. P. & Hendry, A. P. Eco-evolutionary dynamics: intertwining ecological and evolutionary processes in contemporary time. F1000 Biol. Rep. 2, 1 (2010).PubMed
PubMed Central
Article
Google Scholar
94.Brown, C. M., Lawrence, J. E. & Campbell, D. A. Are phytoplankton population density maxima predictable through analysis of host and viral genomic DNA content? J. Mar. Biol. Assoc. UK 86, 491–498 (2006).CAS
Article
Google Scholar
95.Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
96.Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).PubMed
PubMed Central
Article
Google Scholar
97.Poorvin, L., Rinta-Kanto, J. M., Hutchins, D. A. & Wilhelm, S. W. Viral release of iron and its bioavailability to marine plankton. Limnol. Oceanogr. 49, 1734–1741 (2004).CAS
Article
Google Scholar
98.Shelford, E. J., Middelboe, M., Møller, E. F. & Suttle, C. A. Virus-driven nitrogen cycling enhances phytoplankton growth. Aquat. Microb. Ecol. 66, 41–46 (2012).Article
Google Scholar
99.Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
100.Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
101.Dawkins, R. The Extended Phenotype: The Long Reach of the Gene (Oxford University Press, 1999).102.Dawkins, R. Extended phenotype–but not too extended. A reply to Laland, Turner and Jablonka. Biol. Philosophy 19, 377–396 (2004).Article
Google Scholar
103.Ogata, H. Habitat alterations by viruses: strategies by Tupanviruses and others. Microbes Environ. 33, 117–119 (2018).PubMed
PubMed Central
Article
Google Scholar
104.Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
105.Clark, H. F. & Wiktor, T. J. Plasticity of phenotypic characters of rabies-related viroses: spontaneous variation in the plaque morphology, virulence, and temperature-sensitivity characters of serially propagated Lagos bat and Mokola viruses. J. Infect. Dis. 130, 608–618 (1974).CAS
PubMed
Article
PubMed Central
Google Scholar
106.Abedon, S. T. & Culler, R. R. Optimizing bacteriophage plaque fecundity. J. Theor. Biol. 249, 582–592 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
107.Luo, E., Eppley, J. M., Romano, A. E., Mende, D. R. & DeLong, E. F. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 14, 1304–1315 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
108.Bidle, K. D. Elucidating marine virus ecology through a unified heartbeat. Proc. Natl Acad. Sci. USA 111, 15606–15607 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
109.Schmidt, H. F., Sakowski, E. G., Williamson, S. J., Polson, S. W. & Wommack, K. E. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton. ISME J. 8, 103–114 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
110.Nasko, D. J. et al. Family A DNA polymerase phylogeny uncovers diversity and replication gene organization in the virioplankton. Front. Microbiol. 9, 3053 (2018).PubMed
PubMed Central
Article
Google Scholar
111.Harrison, A. O., Moore, R. M., Polson, S. W. & Wommack, K. E. Reannotation of the ribonucleotide reductase in a cyanophage reveals life history strategies within the virioplankton. Front. Microbiol. 10, 134 (2019).PubMed
PubMed Central
Article
Google Scholar
112.Breitbart, M. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4, 425–448 (2012).Article
Google Scholar
113.Hurwitz, B. L. & U’Ren, J. M. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol. 31, 161–168 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
114.Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
115.Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
116.Walker, G. M., Ozers, M. S. & Beebe, D. J. Cell infection within a microfluidic device using virus gradients. Sens. Actuators B Chem. 98, 347–355 (2004).CAS
Article
Google Scholar
117.Cimetta, E. et al. Microfluidic-driven viral infection on cell cultures: theoretical and experimental study. Biomicrofluidics 6, 024127 (2012).PubMed Central
Article
CAS
Google Scholar
118.Xu, N. et al. A microfluidic platform for real-time and in situ monitoring of virus infection process. Biomicrofluidics 6, 034122 (2012).PubMed Central
Article
CAS
Google Scholar
119.Akin, D., Li, H. & Bashir, R. Real-time virus trapping and fluorescent imaging in microfluidic devices. Nano Lett. 4, 257–259 (2004).CAS
Article
Google Scholar
120.Yu, J. Q. et al. Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. Lab. Chip 14, 3519–3524 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
121.Mashaghi, S. & van Oijen, A. M. Droplet microfluidics for kinetic studies of viral fusion. Biomicrofluidics 10, 024102 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
122.Fischer, A. E. et al. A high-throughput drop microfluidic system for virus culture and analysis. J. Virol. Methods 213, 111–117 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar More