High turn-over rates at the upper range limit and elevational source-sink dynamics in a widespread songbird
1.Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).
Google Scholar
2.Sexton, J. P., McIntyre, P., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article
Google Scholar
3.Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: single species approaches. Oikos 108, 18–27 (2005).Article
Google Scholar
4.Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. Lond. B 276, 1395–1406 (2009).
Google Scholar
5.Parmesan, C. et al. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 108, 58–75 (2005).Article
Google Scholar
6.Travis, J. M. J. & Dytham, C. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 337–348 (Oxford University Press, 2012).Chapter
Google Scholar
7.Kirkpatrick, M. & Barton, N. H. Evolution of a species’ range. Am. Nat. 150, 1–23 (1997).PubMed
Article
CAS
Google Scholar
8.Case, T. J. & Taper, M. L. Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am. Nat. 155, 583–605 (2000).PubMed
Article
CAS
Google Scholar
9.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article
Google Scholar
10.Hargreaves, A. L., Eckert, C. G. & Bailey, J. Evolution of dispersal and mating systems along geographic gradients. Implications for shifting ranges. Funct. Ecol. 28, 5–21 (2014).Article
Google Scholar
11.Hille, S. M. & Cooper, C. B. Elevational trends in life histories. Revising the pace-of-life framework. Biol. Rev. Camb. Philos. Soc. 90, 204–213 (2015).PubMed
Article
PubMed Central
Google Scholar
12.Boyle, W. A., Sandercock, B. K. & Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biol. Rev. 91, 469–482 (2016).Article
Google Scholar
13.Badyaev, A. V. & Ghalambor, C. K. Evolution of life histories along elevational gradients: Trade-off between parental care and fecundity. Ecology 82, 2948–2960 (2001).Article
Google Scholar
14.Bears, H., Martin, K. & White, G. C. Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J. Anim. Ecol. 78, 365–375 (2009).PubMed
Article
CAS
PubMed Central
Google Scholar
15.Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H. & Cadena, C. D. Ecological speciation along an elevational gradient in a tropical passerine bird?. J. Evol. Biol. 26, 357 (2013).PubMed
Article
CAS
PubMed Central
Google Scholar
16.Branch, C. L., Jahner, J. P., Kozlovsky, D. Y., Parchman, T. L. & Pravosudov, V. V. Absence of population structure across elevational gradients despite large phenotypic variation in mountain chickadees (Poecile gambeli). R. Soc. Open Sci. 4, 170057. https://doi.org/10.1098/rsos.170057 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
17.Chamberlain, D. E. et al. The altitudinal frontier in avian climate impact research. Ibis 154, 205–209 (2012).Article
Google Scholar
18.Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).PubMed
Article
Google Scholar
19.Graham, C. H., Silva, N. & Velásquez-Tibatá, J. Evaluating the potential causes of range limits of birds of the Colombian Andes. J. Biogeogr. 37, 1863–1875 (2010).
Google Scholar
20.Popy, S., Bordignon, L. & Prodon, R. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J. Biogeogr. 37, 57–67 (2010).Article
Google Scholar
21.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
22.Maggini, R. et al. Are Swiss birds tracking climate change?. Ecol. Model. 222, 21–32 (2011).Article
Google Scholar
23.Pearce-Higgins, J. W. & Green, R. E. Climate Change and Birds: Impacts and Conservation Responses (Cambridge University Press, 2014).Book
Google Scholar
24.Knaus, P. et al. Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein (Schweizerische Vogelwarte, 2018).
Google Scholar
25.Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).Article
Google Scholar
26.Chamberlain, D. & Pearce-Higgins, J. Impacts of climate change on upland birds. Complex interactions, compensatory mechanisms and the need for long-term data. Ibis 155, 451–455 (2013).Article
Google Scholar
27.Sergio, F. & Newton, I. Occupancy as a measure of territory quality. J. Anim. Ecol. 72, 857–865 (2003).Article
Google Scholar
28.Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1969).Article
Google Scholar
29.Grüebler, M. U., Korner-Nievergelt, F. & von Hirschheydt, J. The reproductive benefits of livestock farming in barn swallows Hirundo rustica: Quality of nest site or foraging habitat?. J. Appl. Ecol. 47, 1340–1347 (2010).Article
Google Scholar
30.Schaub, M. & von Hirschheydt, J. Effects of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. Ecol. 78, 625–635 (2009).PubMed
Article
Google Scholar
31.Furrer, R. D. & Pasinelli, G. Empirical evidence for source-sink populations: A review on occurrence, assessments and implications. Biol. Rev. Camb. Philos. Soc. 91, 782–795 (2016).PubMed
Article
Google Scholar
32.Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 8, e01364. https://doi.org/10.1002/ecm.1364 (2019).Article
Google Scholar
33.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).PubMed
Article
Google Scholar
34.Grüebler, M. U., Morand, M. & Naef-Daenzer, B. A predictive model of the density of airborne insects in agricultural environments. Agric. Ecosyst. Environ. 123, 75–80 (2008).Article
Google Scholar
35.Jenni-Eiermann, S., Glaus, E., Grüebler, M. U., Schwabl, H. & Jenni, L. Glucocorticoid response to food availability in breeding barn swallows (Hirundo rustica). Gen. Comp. Endocrinol. 155, 558–565 (2008).PubMed
Article
CAS
Google Scholar
36.Schifferli, L., Grüebler, M. U., Meijer, H. A. J., Visser, G. H. & Naef-Daenzer, B. Barn Swallow Hirundo rustica parents work harder when foraging conditions are good. Ibis 156, 777–787 (2014).Article
Google Scholar
37.Shields, W. M. Factors Affecting nest and site fidelity in Adirondack barn swallows (Hirundo rustica). Auk 101, 780–789 (1984).Article
Google Scholar
38.Saino, N., Calza, S., Ninni, P. & Møller, A. P. Barn swallows trade survival against offspring condition and immunocompetence. J. Anim. Ecol. 68, 999–1009 (1999).Article
Google Scholar
39.Turner, A. The Barn Swallow (T & A D Poyser, 2006).
Google Scholar
40.Newton, I. The Migration Ecology of Birds 1st edn. (Academic Press, 2007).
Google Scholar
41.Ambrosini, R. & Saino, N. Environmental effects at two nested spatial scales on habitat choice and breeding performance of barn swallow. Evol. Ecol. 24, 491–508 (2010).Article
Google Scholar
42.Ambrosini, R. et al. The distribution and colony size of barn swallows in relation to agricultural land use. J. Appl. Ecol. 39, 524–534 (2002).Article
Google Scholar
43.Evans, K. L., Bradbury, R. B. & Wilson, J. D. Selection of hedgerows by Swallows Hirundo rustica foraging on farmland: the influence of local habitat and weather. Bird Study 50, 8–14 (2003).Article
Google Scholar
44.Newton, I. Population Limitation in Bird (Academic Press, 1998).
Google Scholar
45.Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).Article
Google Scholar
46.Scandolara, C. et al. Context-, phenotype-, and kin-dependent natal dispersal of barn swallows (Hirundo rustica). Behav. Ecol. 25, 180–190 (2014).Article
Google Scholar
47.Schaub, M., von Hirschheydt, J. & Grüebler, M. U. Differential contribution of demographic rate synchrony to population synchrony in barn swallows. J. Anim. Ecol. 84, 1530–1541 (2015).PubMed
Article
Google Scholar
48.Camfield, A. F., Pearson, S. F. & Martin, K. Life history variation between high and low elevation subspecies of horned larks Eremophila spp. J. Avian Biol. 41, 273–281 (2010).Article
Google Scholar
49.Møller, A. P. Phenotype-dependent arrival time and its consequences in a migratory bird. Behav. Ecol. Sociobiol. 35, 115–122 (1994).Article
Google Scholar
50.Møller, A. P. Sexual Selection and the Barn Swallow (Oxford University Press, 1994).
Google Scholar
51.Lerche-Jørgensen, M., Korner-Nievergelt, F., Tøttrup, A. P., Willemoes, M. & Thorup, K. Early returning long-distance migrant males do pay a survival cost. Ecol. Evol. 8, 11434–11449. https://doi.org/10.1002/ece3.4569 (2018).Article
PubMed
PubMed Central
Google Scholar
52.Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).Article
Google Scholar
53.Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article
Google Scholar
54.Møller, A. P., de Lope, F. & Saino, N. Parasitism, immunity, and arrival date in a migratory bird, the barn swallow. Ecology 85, 206–219 (2004).Article
Google Scholar
55.Huntley, B., Green, R. E., Collingham, Y. C. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Lynx Edicions, 2007).
Google Scholar
56.Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).Article
Google Scholar
57.Cormack, R. M. Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438 (1964).MATH
Article
Google Scholar
58.Jolly, G. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247 (1965).MathSciNet
PubMed
MATH
Article
CAS
PubMed Central
Google Scholar
59.Seber, G. A. F. A note on the multiple-recapture census. Biometrika 52, 249–259 (1965).MathSciNet
PubMed
MATH
Article
CAS
PubMed Central
Google Scholar
60.Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article
Google Scholar
61.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
62.Saino, N., Martinelli, R. & Romano, M. Ecological and phenological covariates of offspring sex ratio in barn swallows. Evol. Ecol. 22, 659–674 (2008).Article
Google Scholar
63.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).64.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).
Google Scholar More