More stories

  • in

    The taxonomy of two uncultivated fungal mammalian pathogens is revealed through phylogeny and population genetic analyses

    After 90 years of taxonomic uncertainties, using phenotypic, phylogenetic, and population genetics analyses, the two uncultivated fungi causing skin disease in humans and dolphins, long known as Lacazia loboi8, are now placed as separate species within the genus Paracoccidioides. Early studies using phenotypic or phylogenetic data alone erroneously placed these two fungal pathogens in different genera and species3,4,5,6,7,8,12,13,15,16,17,24,25. This trend persisted for years2,13,16,17,25. For instance, recent studies using several partial DNA sequences recovered from Brazilian humans with skin disease in phylogenetic analyses concluded that the genus Lacazia, the accepted name at that time, was an independent taxon from Paracoccidioides species16,24,25. Their phylogenetic data was correct, but their analyses missed the inclusion of DNA from the uncultivated pathogen causing skin disease in dolphins. This was an understandable mistake, since the collection and processing specimens from infected dolphins is highly regulated and the fact that the etiology of dolphins’ disease was long believed to be the same as that in humans, as shown in Fig. 1 and Table 1. Although P. cetii has numerous phenotypic differences with Paracoccidioides species (Table 1, Fig. 1), in the pass used to group them in separated clusters2,3,7,8, our data showed they share several phylogenetic features in common (Figs. 4, 5 and 6). With the addition of P. cetii DNA sequences, the phylogenetic support of closely related Paracoccidioides species dramatically changed. For example, P. loboi clustered in a monophyletic group sister to P. lutzii, even with the inclusion of homologous dimorphic Onygenales DNA sequences as outgroup (Figs. 4b, 5), whereas the support of monophyletic species within the genus weakened (Figs. 4, 5 and 6). More dolphin DNA sequences from different geographical locations must be sequenced to understand P. cetii´s true evolutionary traits.Several studies reported geographical cryptic speciation among Paracoccidioides species14,24,26,27,28. In those analyses the presence of at least five species within the genus, including P. lutzii, was found14,15,24,27,29,30. Recent genome sequencing in phylogenetic analysis tend to validate these findings26,28,29. Although the DNA sequences of P. loboi were used in some of the analyses, the human skin pathogen was always placed as an independent genus from that in Paracoccidioides species16,24,25. The placement of P. cetii sister to P. americana DNA sequences in this study, indicates the use of phenotypic or phylogenetic characteristics without the inclusion of anomalous species, can lead to inaccuracies in the taxonomic and phylogenetic classification of these type of microbes. For instance, our data, using several statistical tools, consistently showed the presence of different clusters within Paracoccidioides species. In our analyses, P. americana, P. cetii, P. lutzii, and P. loboi were placed in monophyletic groups sister to the remaining Paracoccidioides species (Figs. 2, 3, 4, 5 and 6). Therefore, the addition of P. cetii to the genus Paracoccidioides not only confirmed that the genus has indeed a high level of speciation but, indicates that the concept of species delimitation in this genus must be revisited12,31.Recently, Vilela et al.16, using phylogenetic analysis of five different genes, showed P. loboi shared the same ancestor with Paracoccidioides species. The results in our study support their proposal. The main obstacle of this hypothesis at that time was the phenotypic features of P. loboi (Fig. 1). However, if P. loboi and P. cetii (both uncultivated and subcutaneous pathogens) share the same ancestor with other Paracoccidioides species (cultivated and causing systemic infections), the likelihood that the ancestor of Paracoccidioides species could growth in culture, as previously suggested, is a strong possibility16. If this concept is correct, when in the evolutionary history of P. cetii and P. loboi they lost the capacity to grow in culture? What evolutionary pressure triggered such a change? Sadly, as is common in neglected pathogens such as P. cetii and P. loboi key questions such as these, remain without an answer. Interestingly, the uncultivated feature found in these two neglected fungi was also reported in a strain of Histoplasma capsulatum infecting monkeys, suggesting that an uncultivated ancestral trait in the Onygenales dimorphic fungi may be at work32. However, the evolutionary pressures that triggered such ancestral feature remains an enigma.The report of new human cases of paracoccidioidomycosis loboi acquired by traveling to endemic areas2,3,4,5,33,34,35,36, suggests P. loboi may has a similar phenotype (hyphae with conidia) to the one displayed by Paracoccidioides species in nature and in culture. Thus, it may be present in specific ecological niches in the endemic areas (around the Amazon basin and other Latin American big rivers)2,14,15,25. Therefore, it is possible P. cetii and P. loboi may have a phenotype in nature similar to that of Paracoccidioides species (hyphae with conidia). Under this scenario, both uncultivated pathogens display a mycelia form with conidia and the classic life cycle style of dimorphic fungi in nature25. As is the case in other dimorphic fungi, these propagules could then contact susceptible hosts (human, dolphins) switching from hyphae → yeast thus, causing subcutaneous infections. Perhaps due to abnormalities on the molecular mechanisms of yeast → hyphae conversion (mutations?), once the hyphae → yeast conversion occurs, it cannot longer switch back from yeast to hyphal phase. However, the yeast phase of both pathogens can infect other hosts, as had been demonstrated in accidental and experimental infection with yeast-like cells from infected humans and dolphins2,37,38,39,40,41,42. Despite attempts made by the Broad Institute (https://www.broadinstitute.org/fungal-genome-initiative/lacazia-loboi-sequencing), only fragmented genomic information is available for P. loboi, and the genome of P. cetii is yet to be sequence. We hypothesize that the genomes of both uncultivated pathogens may hide important genomic clues that could answer this and other evolutionary questions.Several P. cetii DNA sequences recovered from dolphins captured in Brazil, Cuba, Japan, and the USA are currently available in the database (Table S1)19,20,21,22,23. The complete ITS DNA sequences from Brazilian and Cuban dolphins with paracoccidioidomycosis ceti, showed high percentage of identify with the DNA sequences in this study (ITS = 100%) whereas the partial Gp43 DNA sequences from a Japanese dolphin (471 bp) had 98.62% identity with P. cetii DNA sequences from dolphins captured in the Americas. During Gp43 DNA alignment of Japanese and USA dolphins, a five nucleotides gap was consistently present in the DNA sequences of USA dolphins. Moreover, two additional 266 bp GP43 DNA sequences extracted from a Japanese dolphin (Lagenorhynhus obliquidens) with paracoccidioidomycosis ceti showing, 99.62% identity with P. brasiliensis (sensu lato). In our analyses, these two sequences (only 110 bp could be used) clustered also with P. brasiliensis (Fig. 4, red rectangle). However, the same DNA sequences clustered close to P. cetii in haplotype analysis indicating a fragile relationship (Fig. 3). If P. cetii DNA sequences from Japanese dolphins are accurate, the differences in the genetic makeup of these two populations of uncultivated pathogens is intriguing and deserve further analysis. Our data suggest P. cetii strains causing paracoccidioidomycosis ceti in Japanese and USA dolphins, likely are evolving into two different populations.According to Teixeira et al.24, the estimated time for genetic divergence in Paracoccidioides species was calculated around 33 million years. Although, others have questioned this result31, Carruthers et al.43, cautioned that the use of linage-specific data usually demonstrate approximate divergence time regardless of the number of loci interrogated. Nonetheless, according to these reports, Paracoccidioides species probably diverged from their ancestor from a fraction of a million of years (P. restrepiensis and P. venezuelensis) to 10–30 million of years (P. lutzii and P. brasiliensis, sensu lato)24,31. Conversely, dolphins evolved into aquatic mammals ~ 50 to 30 million years ago, around late Paleocene period (Eocene, Oligocene epochs)44. According to fossil records, South America at this time had a large body of water crossing from the north Atlantic Ocean to what is today Bolivia, Brazil, Ecuador, Colombia, Peru and Venezuela45, all endemic areas of these species3,4,5,24,26,29, that lasted for millions of years. A similar situation occurred in what is today the estuary of the Amazon River. The current location of Paracoccidioides species (including P. loboi), coincide with the locations of such geological periods, and then it is quite possible that during the time following these geological events, an ancestor of P. cetii first encountered dolphins entering these areas. Since humans came to South Americas only ~ 15,000-year ago46, likely the ancestor of Paracoccidioides species infected dolphin first and later humans. Whether this event had a role on the pathogenic capabilities of the genus to infect mammals is difficult to determine, nonetheless it is an intriguing possibility.Working with uncultivated pathogens infecting the skin of mammals is challenging. Not only because collecting specimens from these species (dolphins are protected species and human cases are located in poor remote rural areas) is extremely difficult, but because open lesions usually harbor numerous environmental contaminants, which in the past had led to erroneous conclusions on the classifications of these two anomalous pathogens2,8,15,16,25,47. Furthermore, these unusual fungi are not in the list of neglected pathogens, thus discouraging investigators to submit proposals to funding organizations. Previous studies using P. loboi in phenotypic or phylogenetic analyses placed this anomalous pathogen away from the genus Paracoccidioides2,4,15,16,25. This study found that the use of phenotypic or phylogenetic approaches without the inclusion of DNA from infected dolphins, likely led previous studies to flawed data15,16,25. Thus, the failure of including organisms sharing a common ancestor, based in phenotypic or phylogenetic traits alone, could result in incomplete or incorrect assessment of the investigated populations. This study showed that the interpretation of taxonomic and/or phylogenetic data could be affected by missing neighboring anomalous taxa. More

  • in

    Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions

    1.Singh, M. & Bhatia, H. S. Thermal time requirement for phenophases of apple genotypes in Kullu valley. J. Agrometeorol. 13(1), 46–49 (2011).
    Google Scholar 
    2.Amgain, L. P. Agro-meteorological indices in relation to phenology and yields of promising wheat cultivars in Chitwan, Nepal. J. Agric. Environ. 14, 111–120 (2013).Article 

    Google Scholar 
    3.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Color-break effect on Kinnow (Citrus nobilis Lour x Citrus deliciosa Tenora) fruit‘s internal quality at early ripening stages under varying environmental conditions. Sci. Hortic. 256, 108514 (2019).Article 

    Google Scholar 
    4.Singh, M. & Jangra, S. Thermal indices and heat use cultivars in Himachal Himalay. Clim. Change 4(14), 224–234 (2018).
    Google Scholar 
    5.Singh, M., Niwas, R., Godara, A. K. & Khichar, M. L. Pheno-thermal response of plum genotypes in semi-arid region of Haryana. J. Agrometeorol 17(2), 230–233 (2015).
    Google Scholar 
    6.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of varying agrometeorological indices on peel color and composition of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones. J. Sci. Food Agric. 100(6), 2688–2704 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khan, M. F. & Khalid, A. Environmental variables influence the developmental stages of the citrus leafminer, infestation level and mined leaves physiological response of Kinnow mandarin. Sci. Rep. 11(1), 1–20 (2021).Article 
    CAS 

    Google Scholar 
    8.Plett, S. Comparison of seasonal thermal indices for measurement of corn maturity in a prairie environment. Can. J. Plant Sci. 72(4), 1157–1162 (1992).Article 

    Google Scholar 
    9.Dalal, R. P. S., Kumar, A. & Singh, R. Agrometeorological-heat and energy use of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 506–512 (2017).Article 

    Google Scholar 
    10.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 260, 108868 (2020).Article 

    Google Scholar 
    11.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environ. Exp. Bot. 171, 103936 (2020).CAS 
    Article 

    Google Scholar 
    12.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on fruit internal quality of Kinnow mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora) in ripening phase grown under varying environmental conditions. Sci. Hortic. 265, 109235 (2020).CAS 
    Article 

    Google Scholar 
    13.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khalid, A. & Ahmad, T. Economic analysis of citrus (Kinnow Mandarin) during on-year and off-year in the Punjab Province. Pakistan. J Hortic 5(250), 2376–3354 (2018).
    Google Scholar 
    14.Khalid, M. S., Malik, A. U., Saleem, B. A., Khan, A. S. & Javed, N. Horticultural mineral oil application and tree canopy management improve cosmetic fruit quality of Kinnow mandarin. Afr. J. Agric. Res. 7(23), 3464–3472 (2012).Article 

    Google Scholar 
    15.Nawaz, R. et al. Impact of climate change on kinnow fruit industry of Pakistan. Agrotechnology https://doi.org/10.4172/2168-9881.1000186 (2019).Article 

    Google Scholar 
    16.Mazhar, M. S., Malik, A. U., Jabbar, A., Malik, O. H. & Khan, M. N. Fruit blemishes caused by abiotic and biotic factors in Kinnow mandarin. Acta Hortic. 1120, 483–490 (2016).Article 

    Google Scholar 
    17.Solomon. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2007).18.Ullah, R., Shivakoti, G. P. & Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: The case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disast. Risk Reduct. 13, 151–157 (2015).Article 

    Google Scholar 
    19.Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13(8), 1605–1615 (2007).ADS 
    Article 

    Google Scholar 
    20.Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22(3), 534–543 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8(1), 1–6 (2002).ADS 
    Article 

    Google Scholar 
    22.Stocker, T.F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).23.Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Clim. Change. 73, 319–343 (2005).ADS 
    Article 

    Google Scholar 
    24.Webb, L., Whetton, P. & Barlow, E. W. R. Modeled impact of future climate change on phenology of wine grapes in Australia. Aust. J. Grape Wine Res. 13, 165–175 (2007).Article 

    Google Scholar 
    25.Ferguson, J. J., Koch, K. E. & Huang, T. B. 240 Fruit removal effects on growth and carbon allocation in young citrus trees. HortScience 34(3), 483D – 483 (1999).Article 

    Google Scholar 
    26.Zekri, M. Factors affecting citrus production and quality, Citrus Industry. ifas.ufl.edu (2011).27.Ladaniya, M. S. Physico−chemical, respiratory and fungicide residue changes in wax coated mandarin fruit stored at chilling temperature with intermittent warming. J. Food Sci. Technol. 48(2), 150–158 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Monselise, S. P. & Goldschmidt, E. E. Alternate bearing in fruit trees. Hort. Rev. (Am. Soc. Hort. Sci.) 4, 128–173 (1982).
    Google Scholar 
    29.Garcia-Luis, A., Fornes, F. & Guardiola, J. L. Leaf carbohydrates and flower formation in Citrus. J. Am. Soc. Hort. Sci. 120, 222–227 (1995).CAS 
    Article 

    Google Scholar 
    30.Dalezios, N. R., Loukas, A. & Bampzelis, D. Assessment of NDVI and agrometeorological indices for major crops in central Greece. Phys. Chem. Earth,Parts A/B/C 27(23–24), 1025–1029 (2002).ADS 
    Article 

    Google Scholar 
    31.Dalezios, N. R., Loukas, A. & Bampzelis, D. The role of agrometeorological and agrohydrological indices in the phenology of wheat in central Greece. Phys. Chem. Earth Parts A/B/C 27(23–24), 1019–1023 (2002).ADS 
    Article 

    Google Scholar 
    32.Schmidt, D. et al. Base temperature, thermal time and phyllochron of escarole cultivation. Hortic. Bras. 36(4), 466–472 (2018).Article 

    Google Scholar 
    33.Forland, E. J., Skaugen, T. E., Benestad, R. E., Hanssen-Bauer, I. & Tveito, O. E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 36(3), 347–356 (2004).Article 

    Google Scholar 
    34.Gavilan, R. G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 50(2), 111–120 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12(2), 343–351 (2006).ADS 
    Article 

    Google Scholar 
    36.Kaleem, S., Hassan, F. & Saleem, A. Influence of environmental variations on physiological attributes of sunflower. Afr. J. Biotechnol. 8(15) (2009).37.Monselise, S. P., Brosh, P. & Costo, J. Off-season bloom in ‘Temple’ orange repressed by Gibberellin [Treatment]. HortScience (1981).38.Davies, F. S. & Albrigo, L. G. Citrus Crop Production Science in Agriculture (CAB International, 1994).
    Google Scholar 
    39.Wheaton, T. A. Alternate bearing of citrus. Proc. Int. Semin. Citric. 1, 224–228 (1992).
    Google Scholar 
    40.Flore, J. A. & Lakso, A. N. Environmental and physiological regulation of photosynthesis in fruit crops. Hortic. Rev. 11, 111–157 (1986).
    Google Scholar 
    41.Goldschmidt, E. E. Carbohydrate supply as a critical factor for citrus fruit development and productivity. Hort. Sci. 34, 1020–1024 (1999).
    Google Scholar 
    42.Stander, O. P. J. 2018. Critical factors concomitant to the physiological development of alternate bearing in citrus (Citrus spp.) (Doctoral dissertation, Stellenbosch: Stellenbosch University) (2018).43.Iglesias, D. J. et al. Physiology of citrus fruiting. Braz. J. Plant. Physiol. 19(4), 333–362 (2007).CAS 
    Article 

    Google Scholar 
    44.Scholefield, P. B., Oag, D. R. & Sedgley, M. The relationship between vegetative and reproductive development in the mango in northern Australia. Aust. J. Agric. Res. 37(4), 425–433 (1986).Article 

    Google Scholar 
    45.Goldschmidt, E. E. & Golomb, A. The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J. Am. Soc. Hort. Sci. 107, 206–208 (1982).
    Google Scholar 
    46.Hodgson, R. W. & Cameron, S. H. Studies on the bearing behavior of the “Fuerte” avocado variety. Calif. Avocado Soc. Yrbk. 1935, 150–165 (1935).
    Google Scholar 
    47.Seyyednejad, M., Ebrahimzadeh, H. & Talaie, A. Carbohydrate content in olive Zard cv and alternate bearing pattern. Int. Sugar J. 103(1226), 84–87 (2001).CAS 

    Google Scholar 
    48.Chacko, E. K., Reddy, Y. T. N. & Ananthanarayanan, T. V. Studies on the relationship between leaf number and area and fruit development in mango (Mangifera indica L). J. Hort. Sci. 57, 483–492 (1982).Article 

    Google Scholar 
    49.Nishikawa, F., Iwasaki, M., Fukamachi, H. & Matsumoto, H. The effect of fruit bearing on low-molecular-weight metabolites in stems of Satsuma Mandarin (Citrus unshiu Marc.). Hortic. J. 85(1), 23–29 (2016).CAS 
    Article 

    Google Scholar 
    50.Verreynne, J. S. & Lovatt, C. J. The effect of crop load on budbreak influences return bloom in alternate bearing ‘Pixie’mandarin. J. Am. Soc. Hortic. Sci. 134(3), 299–307 (2009).Article 

    Google Scholar 
    51.Dovis, V. L. et al. Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’sweet orange trees with varying fruit load. Sci. Hortic. 174, 87–95 (2014).CAS 
    Article 

    Google Scholar 
    52.Martínez-Alcántara, B. et al. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. J. Plant Physiol. 176, 108–117 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Monerri, C. et al. Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Sci. Hortic. 129(1), 71–78 (2011).CAS 
    Article 

    Google Scholar 
    54.Khan, S. R. A. Citrus Quality to meet Global Demand. Pakissan.com. http://www.pakissan.com/english/agri.overview/citrus.quality.to.meet.global.demand (2008).55.Moss, G. I., Bellamy, J. & Bevington, K. B. Controlling biennial bearing. Austral. Citrus News 50, 6–7 (1974).
    Google Scholar 
    56.Davis, K., Stover, E. & Wirth, F. Economic of fruit thinning: A review focusing on apple and citrus Production and marketing reports. Hort. Technol. 14(2), 282–289 (2004).Article 

    Google Scholar 
    57.Usman, M., Ashraf, I., Chaudhary, K. M. & Talib, U. Factors impeding citrus supply chain in central Punjab, Pakistan. Int. J. Agric. Ext. 6, 01–05 (2018).Article 

    Google Scholar 
    58.Ghafoor, U., Muhammad, S. & Chaudhary, K. M. Constrains in availability of inputs and information to citrus (Kinnow) growers of tehsil Toba Tek Singh, Pakistan. J. Agric. Sci. 45(4), 520–522 (2008).
    Google Scholar 
    59.Choudhary, D., Singh, R., Dagar, C. S., Kumar, A. & Singh, S. Temperature based agrometeorological indices for Indian mustard under different growing environments in western Haryana, India. Int. J. Curr. Microbiol. App. Sci. 7(1), 1025–1035 (2018).Article 

    Google Scholar 
    60.Hardy, S. & Khurshid, T. Calculating heat units for citrus. In Primefacts (NSW Department of Primary Industries, 2007).
    Google Scholar 
    61.Bootsma, A., Anderson, D. & Gameda, S. Potential impacts of climate change on agroclimatic indices in southern regions of Ontario and Quebec. Tech. Bull. ECORC Contrib. 03–284, 69–92 (2004).
    Google Scholar 
    62.Gordeev, A. V., Kleschenko, A. D., Chernyakov, B. A. & Sirotenko, O. D. Bioclimatic Potential of Russia: Theory and Practice (Tovarischestvo nauchnykh izdanyi KMK, 2006) ((in Russian)).
    Google Scholar 
    63.Karing, P., Kallis, A. & Tooming, H. Adaptation principles of agriculture to climate change. Climate Res. 12(2–3), 175–183 (1999).ADS 
    Article 

    Google Scholar 
    64.Chen, C. S. Digital computer simulation of heat units and their use for predicting plant maturity. Int. J. Biometeorol. 17(4), 329–335 (1973).ADS 
    Article 

    Google Scholar 
    65.Darby, H. M. & Lauer, J. G. Harvest date and hybrid influence on corn forage yield, quality, and preservation. Agron. J. 94(3), 559–566 (2002).Article 

    Google Scholar 
    66.Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45(4), 161–169 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Fealy, R. & Fealy, R. M. The spatial variation in degree days derived from locational attributes for the 1961 to 1990 period. Ir. J. Agric. Food Res. 47, 1–11 (2008).
    Google Scholar 
    68.Dolkar, D. et al. Effect of meteorological parameters on plant growth and fruit quality of Kinnow mandarin. Indian J. Agric. Sci. 88(7), 1004–1012 (2018).
    Google Scholar 
    69.Ferree, D. C. & Warrington, I. J. (eds) Apples: Botany, Production, and Uses (CABI, 2003).
    Google Scholar 
    70.Moretti, C. L., Mattos, L. M., Calbo, A. G. & Sargent, S. A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 43(7), 1824–1832 (2010).CAS 
    Article 

    Google Scholar 
    71.Chelong, I. A. & Sdoodee, S. Pollen viability, pollen germination and pollen tube growth of shogun (Citrus reticulate Blanco) under climate variability in southern Thailand. J. Agric. Technol 8, 2297–2307 (2012).
    Google Scholar 
    72.García-Tejero, I. et al. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]. Agric. Water Manag. 97(5), 614–622 (2010).Article 

    Google Scholar 
    73.Zekri, M. & Rouse, R. E. Citrus Problems in the Home Landscape (University of Florida Cooperative Extension Service, 2002).
    Google Scholar 
    74.Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9(1), 1–12 (2019).CAS 
    Article 

    Google Scholar 
    75.Li, M., Yao, J., Guan, J. & Zheng, J. Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmos. Res. 248, 105199 (2020).Article 

    Google Scholar 
    76.Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).Article 

    Google Scholar 
    78.Brodribb, T. J. & McAdam, S. A. Passive origins of stomatal control in vascular plants. Science 331(6017), 582–585 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Mott, K. A. & Peak, D. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ. 36(5), 936–944 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Allen, L. H. & Vu, J. C. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agric. For. Meteorol. 149(5), 820–830 (2009).ADS 
    Article 

    Google Scholar 
    81.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6(11), 1023–1027 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    82.De Carcer, P. S., Signarbieux, C., Schlaepfer, R., Buttler, A. & Vollenweider, P. Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings. Environ. Exp. Bot. 140, 128–140 (2017).Article 

    Google Scholar 
    83.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3(1), 52–58 (2013).ADS 
    Article 

    Google Scholar 
    84.Franks, P. J., Cowan, I. R. & Farquhar, G. D. The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20(1), 142–145 (1997).Article 

    Google Scholar 
    85.Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226(6), 1550–1566 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.do Carmo Araújo, S. A. et al. Photosynthetic characteristics of dwarf elephant grass (Pennisetum purpureum Schum.) genotypes, under stress water. Acta Sci. Anim. Sci. 32(1), 1–7 (2010).
    Google Scholar 
    87.Shirke, P. A. & Pathre, U. V. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Exp. Bot. 55(405), 2111–2120 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47(2), 215–222 (2009).Article 

    Google Scholar 
    89.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ. Exp. Bot. 66(2), 203–211 (2009).CAS 
    Article 

    Google Scholar 
    90.Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737), 424–426 (1979).ADS 
    Article 

    Google Scholar 
    91.Bevington, K. B. & Castle, W. S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J. Am. Soc. Hortic. Sci. 110(6), 840–845 (1985).
    Google Scholar 
    92.Khurshid, T. & Hutton, R. J. Heat unit mapping a decision support system for selection and evaluation of citrus cultivars. In International Symposium on Harnessing the Potential of Horticulture in the Asian-Pacific Region 694, 265–269 (2004).93.Dalal, R. P. S. & Raj Singh, A. K. ,. Prevailing weather condition impact on different phenophases of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 497–505 (2017).Article 

    Google Scholar 
    94.Koshita, Y. Effect of temperature on fruit color development. In Abiotic Stress Biology in Horticultural Plants 47–58 (Springer, 2015).
    Google Scholar 
    95.Sastry, P. S. N. & Chakravarty, N. V. K. Energy summation indices for wheat crop in India. Agric. Meteorol. 27, 45–48 (1982).Article 

    Google Scholar 
    96.Moriondo, M., Giannakopoulos, C. & Bindi, M. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 104(3), 679–701 (2011).ADS 
    Article 

    Google Scholar 
    97.Hilgeman, R. H., Dunlap, J. A. & Sharp, P. O. Effect of time of harvest of ‘Valencia’ oranges in Arizona on fruit grade and size and yield, the following year. Proc. Amer. Soc. Hort. Sci. 90, 103–109. Fruit Load Limits Root Growth, Summer Vegetative Shoot Development, and Flowering in Alternatebearing ‘Nadorcott’ Mandarin Trees (1967).98.Dalal, R. P. S., Beniwal, B. S. & Sehrawat, S. K. Seasonal variation in growth, leaf physiology and fruit development in Kinnow, a Mandarin Hybrid. J. Plant Stud. 2(1), 72–77 (2013).
    Google Scholar 
    99.Bower, J. P. The Pre-and post -Harvest Application Potential for Crop- Set TM and ISR2000TM on Citrus. http://en.engormix.com/MAagriculture/articles/th-pre (2007).100.Sharma, N., Sharma, S. & Niwas, R. Thermal time and phenology of citrus in semi-arid conditions. J. Pharmacogn. Phytochem. 6(5), 27–30 (2017).
    Google Scholar 
    101.Goldschmidt, E. E. & Koch, K. E. Citrus. In Photoassimilate Distribution in Plants and Crops: Source-Sink Relations (eds Zaminski, E. & Schaffer, A. A.) 797–823 (Marcel Dekker, 1996).
    Google Scholar 
    102.Munoz-Fambuena, N. et al. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann. Bot. 108, 511–519 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Shalom, L. et al. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J. Exp. Bot. 65(12), 3029–3044 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Smith, P. F. Collapse of ‘Murcott’ tangerine trees [Root starvation]. J. Am. Soc. Hortic. Sci. 101, 23–25 (1976).CAS 

    Google Scholar 
    105.Koshita, Y., Takahara, T., Ogata, T. & Goto, A. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc). Sci. Hortic. 79(3–4), 185–194 (1999).CAS 
    Article 

    Google Scholar 
    106.Whiley, A. W., Rasmussen, T. S. & Wolstenholme, B. N. Delayed harvest effects on yield, fruit size and starch cycling in avocado (Persea americana Mill.) in subtropical environments. I. the early-maturing cv. Fuerte. Sci. Hortic. 66(1–2), 23–34 (1996).CAS 
    Article 

    Google Scholar 
    107.Syvertsen, J. P. & Lloyd, J. J. Citrus. Handb. Environ. Physiol. Fruit Crops 2, 65–99 (1994).
    Google Scholar 
    108.Scholefield, P. B., Sedgley, M. & Alexander, D. M. Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Sci. Hortic. 25(2), 99–110 (1985).Article 

    Google Scholar 
    109.Shalom, L. et al. Alternate bearing in citrus: Changes in the expression of flowering control genes and in global gene expression in on-versus off-crop trees. PLoS ONE 7(10), e46930 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.der Merwe, V. & Schalk, I. Studies on the Phenology and Carbohydrate Status of Alternate Bearing ‘Nadorcott’mandarin trees (Doctoral dissertation, Stellenbosch: Stellenbosch University, 2012).111.Ward, D. L. Factors affecting Pre-harvest Fruit Drop of Apple. Ph.D thesis. Virginia Polytechnic Institute and State University 143 (2004).112.Blanusa, T., Else, M. A., Davies, W. J. & Atkinson, C. J. Regulation of sweet cherry fruit abscission: The role of photo-assimilation, sugars and abscisic acid. J. Hortic. Sci. Biotechnol. 81(4), 613–620 (2006).CAS 
    Article 

    Google Scholar 
    113.Nartvaranant, P., Sornsanid, K. & Nuanpraluk, S. Preharvest Fruit Drop and Seasonal Variation of Plant Nutrient in ‘Thongdee’and ‘Khao Nam Pleung’pummelo on Nakhon Chaisri-Mae Klong river basin regions. Research Project Report (Thailand Research Fund, 2010).
    Google Scholar 
    114.Ruiz, R., Garcıa-Luis, A., Monerri, C. & Guardiola, J. L. Carbohydrate availability in relation to fruitlet abscission in Citrus. Ann. Bot. 87(6), 805–812 (2001).CAS 
    Article 

    Google Scholar 
    115.Atkinson, C. J. The effects of phloem girdling on the abscission of Prunus avium L. fruits. J. Hortic. Sci. Biotechnol. 77(1), 22–27 (2002).Article 

    Google Scholar 
    116.Spiegel-Roy, P. & Goldschmidt, E. E. The Biology of Citrus (Cambridge University Press, 1996).Book 

    Google Scholar 
    117.Thind, S. K. & Kumar, K. Integrated management of fruit drop in Kinnow mandarin. Indian J Hort 65(4), 497–499 (2008).
    Google Scholar 
    118.Kumar, A., Avasthe, R. K., Pandey, B., Lepcha, B. & Rahman, H. Effect of fruit size and orchard location on fruit quality and seed traits of mandarin (Citrus reticulata) in Sikkim Himalayas. Indian J. Agric. Sci. 81(9), 821 (2011).CAS 

    Google Scholar 
    119.Ashraf, M. Y., Gul, A., Ashraf, M., Hussain, F. & Ebert, G. Improvement in yield and quality of Kinnow (Citrus deliciosa × Citrus nobilis) by potassium fertilization. J. Plant Nutr. 33, 1625–1637 (2010).CAS 
    Article 

    Google Scholar 
    120.Ibrahim, M., Ahmad, N., Anwar, S. A. & Majeed, T. Effect of micronutrients on citrus fruit yield growing on calcareous soils. In Advances in Plant and Animal Boron Nutrition 179–182 (2007).121.Razi, M. F. D., Khan, I. A. & Jaskani, M. J. Citrus plant nutritional profile in relation to Huanglongbing prevalence in Pakistan. Pak. J. Agri. Sci. 48, 299–304 (2011).
    Google Scholar 
    122.Valiente, J. I. & Albrigo, L. G. Flower bud induction of sweet orange trees [Citrus sinensis (L.) Osbeck]: Effect of low temperatures, crop load, and bud age. J. Am. Soc. Hortic. Sci. 129(2), 158–164 (2004).Article 

    Google Scholar 
    123.Yakushiji, H. et al. Sugar accumulation enhanced by osmoregulation in satsuma mandarin fruit. J. Am. Soc. Hortic. Sci. 121, 466–472 (1996).CAS 
    Article 

    Google Scholar 
    124.Holland, N., Menezes, H. C. & Lafuente, M. T. Carbohydrates as related to the heat induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 25, 181–191 (2002).CAS 
    Article 

    Google Scholar 
    125.Chelong, I. A. & Sdoodee, S. Effect of climate variability and degree-day on development, yield and quality of shogun (Citrus reticulata Blanco) in Southern Thailand. J. Nat. Sci. 47, 333–341 (2013).
    Google Scholar 
    126.Khalid, M. S. et al. Geographical location and agro-ecological conditions influence kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruit quality. Int. J. Agric. Biol. 20, 647–654 (2018).Article 

    Google Scholar 
    127.Guardiola, J. L. & García-Luis, A. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31(1–2), 121–132 (2000).CAS 
    Article 

    Google Scholar 
    128.Hield, H. Z. & Hilgeman, R. H. Alternate bearing and chemical fruit thinning of certain citrus varieties. Proc. Intl. Citrus Symp. 3, 1145–1153 (1969).
    Google Scholar 
    129.Verreynne, J. S. The Mechanism and Underlying Physiology Perpetuating Alternate Bearing in ‘Pixie’mandarin (Citrus reticulata Blanco) (University of California, 2005).
    Google Scholar 
    130.Sanginés de Cárcer, P. et al. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24(3), 1108–1122 (2018).ADS 
    Article 

    Google Scholar  More

  • in

    ROV assessment of mesophotic fish and associated habitats across the continental shelf of the Amathole region

    1.Milligan, R. J., Spence, G., Roberts, J. M. & Bailey, D. M. Fish communities associated with cold-water corals vary with depth and substratum type. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 43–54 (2016).ADS 
    Article 

    Google Scholar 
    2.Anderson, T. J., Syms, C., Roberts, D. A. & Howard, D. F. Multi-scale fish-habitat associations and the use of habitat surrogates to predict the organisation and abundance of deep-water fish assemblages. J. Exp. Mar. Bio. Ecol. 379, 34–42 (2009).Article 

    Google Scholar 
    3.Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    4.Hinderstein, L. M. et al. Mesophotic coral ecosystems: Characterization, ecology, and management. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    5.Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    6.Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    7.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361(6399), 281–284 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Cerrano, C. et al. Temperate mesophotic ecosystems: gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).Article 

    Google Scholar 
    9.Williams, J., Jordan, A., Harasti, D., Davies, P. & Ingleton, T. Taking a deeper look: Quantifying the differences in fish assemblages between shallow and mesophotic temperate rocky reefs. PLoS ONE 14, e0206778 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Bio. Ecol. 375, 1–8 (2009).Article 

    Google Scholar 
    11.Armstrong, R. A., Pizarro, O. & Roman, C. Underwater robotic technology for imaging mesophotic coral ecosystems. in Mesophotic Coral Ecosystems. 973–988. (Springer, 2019).12.Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).Article 

    Google Scholar 
    13.Durden, J. M. et al. Perspectives in visual imaging for marine biology and ecology: From acquisition to understanding. Oceanogr. Mar. Biol. Annu. Rev. 54, 1–72 (2016).
    Google Scholar 
    14.Stevens, T. & Connolly, R. M. Local-scale mapping of benthic habitats to assess representation in a marine protected area. Mar. Freshw. Res. 56, 111–123 (2005).Article 

    Google Scholar 
    15.Bernard, A. T. et al. New possibilities for research on reef fish across the continental shelf of South Africa. S. Afr. J. Sci. 110, 1–5. https://doi.org/10.1590/sajs.2014/a0079 (2014).Article 

    Google Scholar 
    16.Rees, S. E., Foster, N. L., Langmead, O., Pittman, S. & Johnson, D. E. Defining the qualitative elements of Aichi Biodiversity Target 11 with regard to the marine and coastal environment in order to strengthen global efforts for marine biodiversity conservation outlined in the United Nations Sustainable Development Goal 14. Mar. Policy 93, 241–250 (2018).Article 

    Google Scholar 
    17.South African National Biodiversity Institute. South Africa Announces New Marine Protected Area Network. https://www.sanbi.org/media/south-africa-announces-new-marine-protected-area-network/. (2018).18.der Bank, V., Harris, L., Atkinson, L., Kirkman, S., & Karenyi, N. Marine Realm in South African National Biodiversity Assessment 2018 Technical Report. Vol. 4 (South African National Biodiversity Institute, 2019).19.Sink, K. The marine protected areas debate: Implications for the proposed Phakisa marine protected areas network. S. Afr. J. Sci. 112, 9–10 (2016).Article 

    Google Scholar 
    20.Turpie, J. K., Beckley, L. E. & Katua, S. M. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biol. Conserv. 92, 59–72 (2000).Article 

    Google Scholar 
    21.Götz, A. & Phillips, M. SAEON Elwandle Applies Expertise to Marine Protected Area Management in Amathole. http://www.saeon.ac.za/enewsletter/archives/2016/august2016/doc03 (2019).22.DEA (Department of Environmental Affairs). Notice Declaring the Amathole Offshore Marine Protected Area Under Section 22A of the National Environmental Management: Protected Areas Act, 2003 (Act No.57 of 2003). Government Gazette, Republic of South Africa (2016).23.Green, A. N. et al. Relict and contemporary influences on the postglacial geomorphology and evolution of a current swept shelf: The Eastern Cape Coast, South Africa. Mar. Geol. 427, 106230 (2020).ADS 
    Article 

    Google Scholar 
    24.Parker, D., Winker, H., Attwood, C. & Kerwath, S. Dark times for dageraad Chrysoblephus cristiceps: Evidence for stock collapse. Afr. J. Mar. Sci. 38, 341–349. https://doi.org/10.2989/1814232X.2016.1200142 (2016).Article 

    Google Scholar 
    25.Kerwath, S. et al. Tracking the decline of the world’s largest seabream against policy adjustments. Mar. Ecol. Prog. Ser. 610, 163–173. https://doi.org/10.3354/meps12853 (2019).ADS 
    Article 

    Google Scholar 
    26.African Coelacanth Ecosystem Programme Project. African Coelacanth Ecosystem Programme Project Overviews 2017/2018. (2018).27.Donovan, B. A Retrospective Assessment of the Port Alfred Linefishery with Respect to the Changes in the South African Fisheries Management Environment (Rhodes University, 2010).
    Google Scholar 
    28.International Union for Conservation of Nature and Natural Resources. The IUCN Red List of Threatened Species (IUCN Global Species Programme Red List Unit, 2017).
    Google Scholar 
    29.Götz, A., Kerwath, S. E., Attwood, C. G. & Sauer, W. H. H. Effects of fishing on population structure and life history of roman Chrysoblephus laticeps (Sparidae). Mar. Ecol. Prog. Ser. 362, 245–259 (2008).ADS 
    Article 

    Google Scholar 
    30.McCord, M. & Zweig, T. Fisheries: Facts and Trends. http://awsassets.wwf.org.za/downloads/wwf_a4_fish_facts_report_lr.pdf (2011).31.Southern African Marine Linefish Species Profiles (South African Association for Marine Biological Research, 2013).32.Smith, J. L. B. Smiths’ Sea Fishes. https://doi.org/10.1007/978-3-642-82858-4 (Springer, 1986).33.Compagno, L. J. V., Ebert, D. A. & Smale, M. J. Guide to the Sharks and Rays of Southern Africa (Struik, 1989).
    Google Scholar 
    34.Peres, M. B. & Klippel, S. Reproductive biology of Southwestern Atlantic wreckfish, Polyprion americanus (Teleostei: Polyprionidae). Environ. Biol. Fish. 68, 163–173 (2003).Article 

    Google Scholar 
    35.Baillon, S., Hamel, J.-F., Wareham, V. E. & Mercier, A. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356 (2012).Article 

    Google Scholar 
    36.Sink, K. J., Boshoff, W., Samaai, T., Timm, P. G. & Kerwath, S. E. Observations of the habitats and biodiversity of the submarine canyons at Sodwana Bay: Coelacanth research. S. Afr. J. Sci. 102, 466–474 (2006).
    Google Scholar 
    37.Heemstra, P. C. & Heemstra, E. Coastal Fishes of Southern Africa (National Inquiry Services Centre, 2004).
    Google Scholar 
    38.Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fish. 102, 479–497. https://doi.org/10.1007/s10641-019-0845-4 (2019).Article 

    Google Scholar 
    39.Booth, A. J. & Buxton, C. D. The biology of the panga, Pterogymnus laniarius (Teleostei: Sparidae), on the Agulhas Bank, South Africa. Environ. Biol. Fish. 49, 207–226 (1997).Article 

    Google Scholar 
    40.Turner, J. A., Babcock, R. C., Hovey, R. & Kendrick, G. A. Deep thinking: A systematic review of mesophotic coral ecosystems. ICES J. Mar. Sci. 74, 2309–2320. https://doi.org/10.1093/icesjms/fsx085 (2017).Article 

    Google Scholar 
    41.Heyns, E., Bernard, A. T., Richoux, N. & Götz, A. Depth-related distribution patterns of subtidal macrobenthos in a well-established marine protected area. Mar. Biol. 163, 39. https://doi.org/10.1007/s00227-016-2816-z (2016).CAS 
    Article 

    Google Scholar 
    42.Bridge, T. C. L. et al. Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30, 143–153 (2011).ADS 
    Article 

    Google Scholar 
    43.Doty, M. S. & Oguri, M. The Island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    44.Fabricius, K. E., Logan, M., Weeks, S. & Brodie, J. The effects of river run-off on water clarity across the central Great Barrier Reef. Mar. Pollut. Bull. 84, 191–200 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).Article 

    Google Scholar 
    46.Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Bio. Ecol. 150, 163–182 (1991).Article 

    Google Scholar 
    47.Tait, R. V. & Dipper, F. Elements of marine ecology (Butterworth-Heinemann, 1998).
    Google Scholar 
    48.Williams, A. & Bax, N. J. Delineating fish-habitat associations for spatially based management: An example from the south-eastern Australian continental shelf. Mar. Freshw. Res. 52, 513 (2001).Article 

    Google Scholar 
    49.Pearson, R. & Stevens, T. Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar. Ecol. Prog. Ser. 532, 185–196 (2015).ADS 
    Article 

    Google Scholar 
    50.MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).ADS 
    Article 

    Google Scholar 
    51.Fukunaga, A., Kosaki, R. K. & Wagner, D. Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands. Coral Reefs 36, 785–790 (2017).ADS 
    Article 

    Google Scholar 
    52.Sih, T. L., Cappo, M. & Kingsford, M. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia). Sci. Rep. 7, 10886 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: What have we learned so far?. Am. Nat. 163, E1-23 (2004).PubMed 
    Article 

    Google Scholar 
    55.Makwela, M. S. et al. Notes on a remotely operated vehicle survey to describe reef ichthyofauna and habitats—Agulhas Bank, South Africa. Bothalia 46, 1–7 (2016).Article 

    Google Scholar 
    56.Quantum GIS Development Team. Quantum GIS Geographic Information System. (2002).57.Kleczkowski, M., Babcock, R. C. & Clapin, G. Density and size of reef fishes in and around a temperate marine reserve. Mar. Freshw. Res. 59, 165 (2008).Article 

    Google Scholar 
    58.Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).60.Charrad, M., Ghazzali, N., Boiteau, V. & Maintainer, A. N. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1 (2014).Article 

    Google Scholar 
    61.Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).
    Google Scholar 
    62.De’ath, G. Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology 83, 1105 (2002).
    Google Scholar 
    63.Zuur, A. F. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    64.South African National Biodiversity Institute. https://www.sanbi.org/. (2021). More

  • in

    Microbial transfers from permanent grassland ecosystems to milk in dairy farms in the Comté cheese area

    1.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of nitrogen inputs on multiple facets of plant biodiversity in mountain grasslands: Does nutrient source matter?. Appl. Veg. Sci. 19, 206–217 (2016).Article 

    Google Scholar 
    2.Mesbahi, G., Michelot-Antalik, A., Goulnik, J. & Plantureux, S. Permanent grassland classifications predict agronomic and environmental characteristics well, but not ecological characteristics. Ecol. Indic. 110, 105956 (2020).Article 

    Google Scholar 
    3.Karimi, B. et al. Biogeography of soil microbial habitats across France. Glob. Ecol. Biogeogr. 29, 1399–1411 (2020).Article 

    Google Scholar 
    4.Mahaut, L., Fort, F., Violle, C. & Freschet, G. T. Multiple facets of diversity effects on plant productivity: Species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 34, 287–298 (2020).Article 

    Google Scholar 
    5.Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    6.van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity: Linking microbial diversity and stability. Environ. Microbiol. Rep. 6, 173–183 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Fierer, N., Barberan, A. & Laughlin, D. C. Seeing the forest for the genes: Using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Loreau, M. Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philos. Trans. R. Soc. B 365, 49–60 (2010).Article 

    Google Scholar 
    11.Buchin, S., Martin, B., Dupont, D., Bornard, A. & Achilleos, C. Influence of the composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. J. Dairy Res. 66, 579–588 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bugaud, C., Buchin, S., Hauwy, A. & Coulon, J.-B. Flavour and texture of cheeses according to grazing type: The Abundance cheese. INRA Prod. Anim. 15, 31–36 (2002).Article 

    Google Scholar 
    13.Monnet, J. C., Berodier, F. & Badot, P. M. Characterization and localization of a cheese georegion using edaphic criteria (Jura Mountains, France). J. Dairy Sci. 83, 1692–1704 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F. & Buttler, A. Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J. Ecol. 101, 763–773 (2013).Article 

    Google Scholar 
    15.Montel, M.-C. et al. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 177, 136–154 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bouton, Y., Guyot, P., Berthier, F., & Beuvier, E. Investigation of bacterial community development from raw milk and starter to curd and mature Comte cheese. in Cheese ripening and technology: abstracts of IDF symposium held in Banff, Canada, March 2000 (ed. International Dairy Federation) 85 (Brussel, Belgium, 2000).17.Demarigny, Y., Beuvier, E., Buchin, S., Pochet, S. & Grappin, R. Influence of raw milk microflora on the characteristics of Swiss-type cheese. Lait 77, 151–167 (1997).CAS 
    Article 

    Google Scholar 
    18.Bouton, Y., Buchin, S., Duboz, G., Pochet, S. & Beuvier, E. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese. Food Microbiol. 26, 183–191 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Vacheyrou, M. et al. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int. J. Food Microbiol. 146, 253–262 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Verdier-Metz, I. et al. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl. Environ. Microbiol. 78, 326–333 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Doyle, C. J., Gleeson, D., O’Toole, P. W. & Cotter, P. D. Impacts of seasonal housing and teat preparation on raw milk microbiota: A high-throughput sequencing study. Appl. Environ. Microbiol. 83(e02694–16), e02694-e2716 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Frétin, M. et al. Bacterial community assembly from cow teat skin to ripened cheeses is influenced by grazing systems. Sci. Rep. 8, 200 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Falentin, H. et al. Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. Front. Microbiol. 7, 480 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dequiedt, S. et al. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 1, 251–255 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sadet-Bourgeteau, S. et al. Lasting effect of repeated application of organic waste products on microbial communities in arable soils. Appl. Soil Ecol. 125, 278–287 (2018).Article 

    Google Scholar 
    28.Nacke, H. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in german forest and grassland soils. PLoS ONE 6, e17000 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Coolon, J. D., Jones, K. L., Todd, T. C., Blair, J. M. & Herman, M. A. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in Tallgrass Prairie. PLoS ONE 8, e67884 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Toyota, K. & Kuninaga, S. Comparison of soil microbial community between soils amended with or without farmyard manure. Appl. Soil Ecol. 33, 39–48 (2006).Article 

    Google Scholar 
    31.Garnier, E. & Navas, M.-L. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology: A review. Agron. Sustain. Dev. 32, 365–399 (2012).Article 

    Google Scholar 
    32.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of management type and intensity on multiple facets of grassland biodiversity in the French Jura Mountains. Appl. Veg. Sci. 17, 645–657 (2014).Article 

    Google Scholar 
    33.Chytrý, M. et al. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 15, 98–107 (2009).Article 

    Google Scholar 
    34.Klaudisová, M., Hejcman, M. & Pavlů, V. Long-term residual effect of short-term fertilizer application on Ca, N and P concentrations in grasses Nardus stricta L. and Avenella flexuosa L. Nutr. Cycl. Agroecosyst. 85, 187–193 (2009).Article 
    CAS 

    Google Scholar 
    35.Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Terrat, S. et al. Improving soil bacterial taxa–area relationships assessment using DNA meta-barcoding. Heredity 114, 468–475 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Navrátilová, D. et al. Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy208 (2018).Article 

    Google Scholar 
    38.Zhang, Q. et al. Niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with antarctic vascular plants. Front. Microbiol. 11, 1036 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Falardeau, J., Keeney, K., Trmčić, A., Kitts, D. & Wang, S. Farm-to-fork profiling of bacterial communities associated with an artisan cheese production facility. Food Microbiol. 83, 48–58 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Plassart, P. et al. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 9, 605 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Rastogi, G., Coaker, G. L. & Leveau, J. H. J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1–10 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Andrews, T., Neher, D. A., Weicht, T. R. & Barlow, J. W. Mammary microbiome of lactating organic dairy cows varies by time, tissue site, and infection status. PLoS ONE 14, e0225001 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Karimi, B. et al. Biogeography of soil bacteria and archaea across France. Sci. Adv. 4, 1808 (2018).ADS 
    Article 

    Google Scholar 
    44.Lewin, G. R. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70, 235–254 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, N. et al. Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Sci. Rep. 8, 2371 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Lavoie, K., Touchette, M., St-Gelais, D. & Labrie, S. Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci. Technol. 92, 455–468 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Verdier-Metz, I. & Monsallier, F. Place des pâturages des bovins dans les flux microbiens laitiers. Fourrages 6, 1–10 (2012).
    Google Scholar 
    48.Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Mallet, A. et al. Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int. Dairy J. 27, 13–21 (2012).Article 

    Google Scholar 
    51.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Metz 15, 259–263 (2006).ADS 
    Article 

    Google Scholar 
    52.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org (2021).54.Homburger, H. & Hofer, G. Diversity change of mountain hay meadows in the Swiss Alps. Basic Appl. Ecol. 13, 132–138 (2012).Article 

    Google Scholar 
    55.Gillet, F., Mauchamp, L., Badot, P.-M. & Mouly, A. Recent changes in mountain grasslands: a vegetation resampling study. Ecol. Evol. 6, 2333–2345 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Maabel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97–114 (1979).Article 

    Google Scholar 
    57.Jost, L. The relation between evenness and diversity. Diversity 26, 207–230 (2010).Article 

    Google Scholar 
    58.ChemidlinPrévost-Bouré, N. et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6, e24166 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    59.Djemiel, C. et al. BIOCOM-PIPE: A new user-friendly metabarcoding pipeline for the characterization of microbial diversity from 16S, 18S and 23S rRNA gene amplicons. BMC Bioinform. 21, 492. https://doi.org/10.1186/s12859-020-03829-3 (2020).CAS 
    Article 

    Google Scholar 
    60.Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 15, 293 (2014).Article 

    Google Scholar 
    62.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).63.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029. https://doi.org/10.7717/peerj.1029 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Yekutieli, D. & Benjamini, Y. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188 (2001).MathSciNet 
    MATH 

    Google Scholar 
    66.Gysi, D. M., Voigt, A., Fragoso, T. M., Almaas, E. & Nowick, K. wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinform. 19, 392 (2018).Article 

    Google Scholar 
    67.Kursa, M. B. & Rudnicki, W. R. Feature Selection with the Boruta Package. J. Stat. Soft. 36, 11 (2010).Article 

    Google Scholar  More

  • in

    Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants

    AS systems display many novel and a high fraction of shared virusesWe used metagenomic sequencing of 30 Gb of sequences per sample to characterize the composition of viral concentrates across six WWTPs (see Methods). After assembly and mapping of reads, 24–34% of the total sequence information could be classified as viral using two different identification pipelines (see Methods). By combining the results of these two pipelines, the final data set consisted of 50,037 viral contigs with an N50 >20 kb. To evaluate whether our sequencing effort sufficiently sampled the viromes, all six WWTP samples were subsampled iteratively to evaluate the saturation dynamics. Rarefaction curves of the number of viral contigs, reached a plateau ~15 Gb of sequencing data for all six samples (Fig. 1a), indicating adequate recovery of prokaryotic viruses in these AS systems at the sequencing depth (30 Gb per sample) in this study.Fig. 1: Compositional variation in viromes among wastewater treatment plants.a Rarefaction curve of each sample. b Rank-abundance curve of each sample. c PCoA analysis of viromes based on the relative abundance of viral genera. d Relative abundance and appearance of dominant viral genera in each WWTP. White color denotes no appearance in this WWTP. Source data are provided as a Source Data file.Full size imageViral contigs were further classified into 8756 viral clusters (VC, equivalent to viral genera) using vConTACT2 by calculating the gene-content-based distance between viral contigs (~40% proteome similarity)11, and each VC was assigned an ID for identification (mean length = 15.2 kb, mean genera size = 3). Compared with the current number of viral sequences from AS systems, our sequencing data increase the AS virome database (N = 2103 in the IMG/VR database v.2.0)10 by 12-fold at the genus level and by 23-fold at the species-level (95% identity, 80% coverage). Comparison with NCBI RefSeq viral genome database showed that across the six AS systems, only 0.4–1.6% of total viral contigs (coverage percentage) could be assigned to a known viral family. Similar to previously described viral metagenomes from the soil, freshwater, and marine system7,12,13, this limited annotation highlights substantial uncharacterized viral diversity in AS communities. Among these recognizable viruses, members of the family Podoviridae (short-tailed phages from the Caudovirales order) were the most prevalent, comprising on average 41.3% of these viral contigs (coverage percentage) across the six WWTPs.All samples displayed high but variable diversity of viral genera with Shannon’s diversity index H’ ranging from 5.22 to 7.14 and Pielou’s evenness index J’ ranging from 0.71 to 0.86 (Supplementary Data 1). These differences are evident in rank-abundance curves, which show that each sample has different viral frequency patterns (Fig. 1b). Most viruses occurred at low frequency with the relative abundance of individual genera diminishing below 0.1% after counting the top 138 viral genera.Principal coordinate analysis (PCoA) of the Bray–Curtis dissimilarity based on the relative abundance of viral genera suggested that most samples are divergent from each other (Fig. 1c), with only two pairs of AS viromes, ST and STL as well as SK and SWH, displaying higher similarity to each other.The overall variability in the viromes is also reflected in different dominance patterns. Each AS sample yielded a different dominant viral genus, and while these were also abundant in some WWTPs, they were below the detection limit in others (Fig. 1d). Although high relative abundance across all WWTPs indicates linkage to consistently abundant hosts, highly variable occurrence suggests that host populations are also more dynamic.Although the viromes appear overall variable in rank abundance, many viral genera were shared across the WWTPs. Fifty-three viral genera were detected in all samples and were thus considered to be common members of the AS viromes, accounting for 1.7–5.4% of viral contigs (coverage percentage) in each WWTP (Fig. 2). Thirteen of these common viral genera were also present in AS viromes in the IMG/VR database v.2.010. Of the total of 8756 unique viral genera collected across samples, STL and ST contained the largest fraction (5245 and 5149 genera, respectively) and shared most viral genera (N = 2885) with each other, far exceeding the number of all the other shared or unique viral genera (Fig. 2). These two WWTPs also had only 45 and 64 site-specific viral genera, consistent with the pattern in the PCoA virome profile. On the other hand, SWH possessed the most unique viral genera (N = 323), making up 11.0% of the total (Fig. 2). In fact, only relatively few viral genera were found exclusively in one of the WWTPs.Fig. 2: Shared viral genera in each WWTP.The UpSet55 chart shows the total number of viral genera and their sharedness in each WWTP. The bar chart on the top right shows the distribution of predicted hosts for common viral genera in all WWTPs. Shared viral genera between ST and STL were labeled orange and shared viral genera in all WWTPs were labeled red. Source data are provided as a Source Data file.Full size imageOverall, these results suggest that the virome across WWTPs consists of many shared genera. The lack of detection of some viral genera in the AS virome of one WWTP may be primarily due to the biological variation in the grab samples and/or the technical variation. Hence, if such technical and biological variations are taken into account, the virome shared among all AS maybe even more diverse.Viruses infect a broad spectrum of bacteria and archaeaTo examine putative host associations of all 50,037 viral contigs in the six WWTPs, we amassed a database of approximately three million CRISPR-Cas spacers from the NCBI prokaryotic complete genomes and metagenomes database (https://www.ncbi.nlm.nih.gov/assembly/). Host prediction was performed by matching CRISPR-Cas spacers at a sequence identity above 97%, sequence coverage over 90% in length, and mismatches 1000 ORFs in each sample were found in the following categories, L: replication, recombination, and repair, M: cell wall/membrane/envelope biogenesis, and K: transcription, confirming that the main functions sustain viral reproduction and transcription. It is noteworthy that viruses encode on average 541 ORFs (1.4% of annotated viral ORFs) in each sample in category G: carbohydrate transport and metabolism. After removing redundant viral ORFs, most unique ORFs (N = 1610) were classified into the glycoside hydrolases (GH) module24 (Fig. 5b). These GHs may be involved in the digestion of capsules to allow the viral tail to reach its membrane receptor on the host. The high representation of this function may be explained by the prevalence of biofilm formation among AS microbes and has previously also been noted among mangrove sediment viruses25.Fig. 5: Distribution of auxiliary metabolic genes (AMGs) relevant to the carbon cycle and nutrient removal.a Boxplot of the overall gene profile for six WWTPs was summarized both as viral ORF hits and viral ORF relative abundance (ORF hits to each COG function class/total ORFs that have hits to eggNOG database). Data in a are presented as mean values (center) and 25%, 75% percentiles (bounds of box). The minima and maxima represent the range of the data. b Number of unique viral ORFs related to each CAZy function class was shown in a descendant order. Source data are provided as a Source Data file.Full size imagePrevious work has shown that many prokaryotic viruses carry auxiliary metabolic genes (AMGs), which can modulate host energy metabolism to provide an energetic advantage during viral genome and protein synthesis26. Broadly speaking, AMGs refer to all metabolic genes in lytic phages27, i.e., all genes in categories C, E, F, G, H, I, and P. Though only about a quarter of the viral ORFs have annotations in the eggNOG database, our data reveal a large repertoire of potential AMGs in the AS viromes (Fig. 5a). For example, 72 ORFs in total are potentially involved with carbon fixation pathways and 35 of them annotate as photosynthetic carbon fixation pathways in KEGG28. Moreover, 10 viral ORFs belong to CobS genes, which are essential for the biosynthesis of cobalamin. Cobalamin biosynthesis pathway is usually not complete in bacterial genomes29, and these viral encoded CobS genes could possibly assist the host metabolic capability. Seven viral genes encode adenylyl-sulfate kinase (CysC), which could facilitate host’s assimilatory sulfate reduction. By modulating host metabolism during infection, AMGs could alter the specific functions of their hosts in WWTPs and therefore influence carbon cycling and the removal of nutrients.Viromes are shared between WWTPs and the water environmentTo investigate whether the WWTP viral genera also occur in other habitats, we compared all viral sequences recovered here with the IMG/VR database v.2.0, which consists of 735,112 viral contigs predicted from metagenomic data10. Viral sequences from five ecosystems (AS, AD, solid waste, freshwater, marine) were included for comparison. For AS (N = 2103), AD (N = 8580), and solid waste (N = 5760), all viral sequences were subjected to our viral clustering pipeline, whereas for freshwater and marine environments, we each randomly selected 50,037 viral sequences to match the number in our samples (N = 50,037).Results showed that viral genera in our samples were shared among multiple environments. There was considerable overlap between WWTPs and freshwater (N = 402) and marine (N = 172) environments (Fig. 6). Moreover, 200, 273, and 244 viral genera were shared with AS, AD, and solid waste, respectively (Fig. 6). This represents a higher number than with marine viromes, and if normalized against the dataset size, there is also a larger fraction of connections than with freshwater viromes. When hosts were predicted for these shared viral genera, Proteobacteria was the most shared host phylum, followed by Firmicutes, Actinobacteria, Bacteroidetes, and Cyanobacteria (Supplementary Data 2). At the genus level, Bacillus was the most abundant between our samples and marine, AD, and AS environments, while Streptomyces displayed a higher prevalence between our samples and freshwater and solid waste environments (Supplementary Data 3). Although it is difficult to identify the source and sink dynamics, AS and AD are typical processes in WWTPs, and solid waste viral sequences mainly stem from compost and leachate microbial communities. The considerable sharing of viromes between WWTPs and marine water may be caused by Hong Kong’s extensive application of marine water for toilet flushing, causing the influent sewage of WWTPs to contain a sizable amount of marine water. These data thus suggest that viruses are extensively shared and that the same viral genera may manipulate microbial communities in these different environments.Fig. 6: Connections between viral genera in AS samples and in five ecosystems from IMG/VR database.Pairwise connections were shown in a Circos56 plot between samples and different ecosystems, including AS, AD, solid waste, freshwater, and marine water. Source data are provided as a Source Data file.Full size imageHi-C validation of virus–host interactions in AS systemHigh throughput chromosome conformation capture (Hi-C) method was used to validate the virus–host connections predicted by our CRISPR-based methods using an additional sample in December 2020 at ST WWTP, by referring to viral contigs and host genome bins obtained from direct sequencing using Illumina and Nanopore metagenomic sequencing (Fig. 7).Fig. 7: General workflow to validate the precision of CRISPR-based methods in the present study.For Illumina data, 91% precision was observed. For Nanopore data, 94% precision was observed. Source data are provided as a Source Data file.Full size imageAs for Illumina metagenomic sequencing, 4578 viral contigs were identified and 1695 of them were deconvoluted in Hi-C data to have virus–host interactions with 197 host bins (Supplementary Data 9). To compare the Hi-C results with the CRISPR-based methods, 21 viruses were predicted by BLASTn-short to link with spacers in eight bins (Supplementary Data 10).As for hybrid assembly using both Nanopore and Illumina reads, 2593 viral contigs were identified and 989 of them were deconvoluted in Hi-C data to have virus–host interactions with 144 host bins (Supplementary Data 11). To compare the Hi-C results with the CRISPR-based methods, 28 viruses were predicted by BLASTn-short to link with spacers in 10 bins (Supplementary Data 12).Results show that CRISPR-based results have very high accuracy. For Illumina data, of the 21 virus–host connections predicted using CRISPR spacers, 11 are simultaneously found in Hi-C data and 10 are not detected in Hi-C data. Of 11 detected connections, only 1 is different in Hi-C data and 10 are the same (91% precision) (Supplementary Data 13). Also for the Nanopore/Illumina hybrid data, of the 28 virus–host connections predicted using CRISPR spacers, 16 are simultaneously found in Hi-C data and 12 are not detected in Hi-C data. Of 16 detected connections, only 1 is different in Hi-C data, 15 are the same (94% precision) (Supplementary Data 14).It should be noticed that some of the predicted CRISPR-based virus–host interactions are undetected in Hi-C data. CRISPR spacers represent a collection of memories regarding past virus invasions, whereas Hi-C data provide a snapshot of ongoing virus–host interactions. Also, Hi-C crosslinking may not be 100% efficient and might miss some of the virus–host interactions. More

  • in

    Marauding elephants, menacing macaques and epicurean bears

    BOOK REVIEW
    13 September 2021

    Marauding elephants, menacing macaques and epicurean bears

    As humans encroach on the habitat of wild animals, is it any surprise that they advance upon ours?

    Josie Glausiusz

    0

    Josie Glausiusz

    Josie Glausiusz is a science journalist in Israel.Twitter: @josiegz

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    An adult male elephant wanders through the town of Siliguri, India, in February 2016.Credit: Diptendu Dutta/AFP/Getty

    Fuzz: When Nature Breaks the Law Mary Roach W. W. Norton (2021)On 8 September 1488, the French fiefdom of Beaujeu issued an unusual order. Curates were charged with warning slugs three times “to cease from vexing the people by corroding and consuming the herbs of the fields and the vines, and to depart”. Mary Roach cites this episode in her introduction to Fuzz: When Nature Breaks the Law — eliciting the first laugh of many in a book in which she turns her deft wit on the destruction and death that results from human–wildlife conflict. It is a fitting sequel to her previous ‘science-ofs’: Stiff (about cadavers), Spook (the afterlife), Bonk (sex), Gulp (eating) and Grunt (combat).Beyond medieval proceedings against slugs, caterpillars and weevils, Roach addresses more modern resolutions to our rivalry with species that “regularly commit acts that put them at odds with humans”. Travelling from the alleyways of Aspen, Colorado, where epicurean bears forage among restaurant dustbins, to “leopard-terrorized hamlets” in the Himalayas, she investigates how wild creatures from cougars to crows menace humans, their crops and their property.Fundamentally, she asks: when we encroach on the habitat of wild creatures, is it any surprise that they advance on ours? Perhaps nowhere is this collision clearer than in the Indian region of North Bengal, where, each year, dozens of people die after elephant attacks. Elephants there forage at night and sleep by day in patches of teak and red sandalwood trees, the remnants of forests that once stretched from the state of Assam to the eastern border of Nepal. This elephant corridor was fractured by imperialist-era tea estates and more recently by military bases. As the population of elephants in the remaining pockets spikes, the animals are wandering into villages, eating crops and grain stores.
    The long goodbye
    A bull elephant in must — the periodic hormonal tumult signified by frequent erections and ogling eyeballs — is highly aggressive and can crush people. Roach accompanies researchers from the Wildlife Institute of India in Dehradun to visit “awareness camps”, where they teach villagers to stay calm and call the local Elephant Squad so that rangers can herd roving elephants back into the forest. Even better, conservationist Dipanjan Naha tells her, would be to install seismic sensors to warn of approaching elephant footfalls. But, as one officer notes: “We are disturbing them.”In India, where in Hindu tradition elephants are the incarnation of the god Ganesha, it is customary to offer compensation to the families of those killed by elephants, and by leopards. In the United States, by contrast, the focus is not on compensation but on euthanizing the few bears who attack and kill humans. With bears, too, habitat fragmentation as well as climate change appear to play a major part in the conflict with humans. Major highways on the US–Canada border might restrict the movement of black bears. In California, drought is pushing bears into urban areas and, during a record-breaking heatwave earlier this year, into the waters of Lake Tahoe.

    Pushed into urban areas by encroaching development, bears raid bins for food.Credit: Tomas Hulik ARTpoint/Shutterstock

    Once upon a time, bears in the forests around Aspen, Colorado, dined well on acorns, chokecherries and “the outrageous fecundity of crabapple trees”. Roach watches them in the wee hours gorging instead on crab legs and cabbage leaves, tossed out by the city’s restaurants. Stewart Breck at the National Wildlife Research Center in Fort Collins, Colorado, argues that limiting the availability of human food can reduce the need to kill or ward off marauding bears. But replacing busted bear-resistant dumpsters, hiring staff to enforce bin-locking laws, and issuing tickets to restaurants and “alpha residents” who ignore local waste-disposal ordinances isn’t easy: “the county is home to about as many billionaires as bears,” Roach writes.Complex trade-offsOften, it’s our meddling that created the threat in the first place, as when humans introduce animals that inflict unbridled harm upon native species. Case in point: carnivorous stoat (Mustela erminea), that were shipped from Europe to New Zealand in the late nineteenth century to control rabbits, themselves originally imported for food and sport. Stoats, which are agile climbers and swimmers, now prey upon New Zealand’s birds, eating eggs and chicks of tree-trunk-nesting mohua (Mohoua ochrocephala), kākā (Nestor meridionalis) and yellow-crowned kākāriki (Cyanoramphus auriceps), as well as coastal-dwelling endangered hoiho (Megadyptes antipodes).
    Conservation: Backyard jungles
    New Zealand launched the Predator Free 2050 programme to protect native biodiversity by eradicating stoats and two other invasive predators, rats and brushtail possums (Trichosurus vulpecula). The effort relies on humane trapping as well as helicopter drops of a biodegradable toxin called 1080. The programme has led to some small predator-free havens such as Tiritiri Matangi island, but 1080 also kills deer and native kea birds (Nestor notabilis).Such trade-offs are complex, and Roach does a fine job of weighing human needs against those of pests and predators. After all, it can be ruinous for Indian villagers to have their granaries looted by elephants and dangerous for people in Delhi to be attacked by hordes of macaques. (Roach is at her most entertaining when she attempts to track down Ishwar Singh, chief wildlife warden for the Delhi government and an expert on macaque contraception. He finally answers her call with two words, “laparoscopic sterilization”, before slamming down the phone.)But the biggest pest is clearly us. As a 2020 report by the conservation group WWF shows, populations of wild mammals, birds, fish, amphibians and reptiles have dropped by 68% on average since 1970, and one million wildlife species are in danger of extinction, because of burned forests, overfished seas, and the destruction of wild areas. There’s no mirth in that.

    Nature 597, 325-326 (2021)
    doi: https://doi.org/10.1038/d41586-021-02484-9

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Among the warriors

    Conservation: Backyard jungles

    The long goodbye

    Down the hatch

    Subjects

    Ecology

    Environmental sciences

    Latest on:

    Ecology

    Pollination advantage of rare plants unveiled
    News & Views 08 SEP 21

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Widespread woody plant use of water stored in bedrock
    Article 08 SEP 21

    Environmental sciences

    Spacefarers, protect our planet from falling debris
    Correspondence 07 SEP 21

    Australian bush fires and fuel loads
    Correspondence 31 AUG 21

    Boost for Africa’s research must protect its biodiversity
    Correspondence 31 AUG 21

    Jobs

    Reseacher, indefinite-term employment, RIKEN(21W19)

    RIKEN
    Saitama, Japan

    Post-Doc : Chemical characterization and hydrogeological modeling of fractured aquifers. Application to Volvic volcanic watershed

    Université Bourgogne Franche-Comté (UBFC)
    BESANCON, France

    Lab Manager (f/m/div)

    Max Planck Institute of Biophysics (MPIBP)
    Frankfurt am Main, Germany

    International PhD Program in Quantum Materials

    The University of British Columbia (UBC)
    Vancouver, Canada More

  • in

    Climate change and the increase of human population will threaten conservation of Asian cobras

    1.Reading, C. J. et al. Are snake populations in widespread decline?. Biol. Lett. 6, 777–780 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Gibbons, J. W. et al. The Global Decline of Reptiles, Déja Vu Amphibians. Bioscience 50, 653–666 (2000).Article 

    Google Scholar 
    3.Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615 (1998).Article 

    Google Scholar 
    4.Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.IUCN. Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species. (IUCN, 2009).6.Needleman, R. K., Neylan, I. P. & Erickson, T. Potential environmental and ecological effects of global climate change on venomous terrestrial species in the wilderness. Wilderness Environ. Med. 29, 226–238 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Segura, C., Feriche, M., Pleguezuelos, J. M. & Santos, X. Specialist and generalist species in habitat use: Implications for conservation assessment in snakes. J. Nat. Hist. 41, 2765–2774 (2007).Article 

    Google Scholar 
    8.Moreno-Rueda, G., Pleguezuelos, J. M. & Alaminos, E. Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus. Clim. Change 92, 235–242 (2009).ADS 
    Article 

    Google Scholar 
    9.Brown, G. P. & Shine, R. Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia. Biol. J. Linn. Soc. 89, 159–168 (2006).Article 

    Google Scholar 
    10.Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    11.Uetz, P., Freed, P. & Hošek, J. The Reptile Database. http://www.reptile-database.org (2019).12.Wallach, V., Wüster, W. & Broadley, D. G. In praise of subgenera: Taxonomic status of cobras of the genus. Zootaxa 2236, 26–36 (2009).Article 

    Google Scholar 
    13.Wüster, W. Taxonomic changes and toxinology: Systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon 34, 399–406 (1996).PubMed 
    Article 

    Google Scholar 
    14.Wüster, W., Thorpe, R. S., Cox, M., Jintakune, P. & Nabhitabhata, J. Population systematics of the snake genus Naja (Reptilia: Serpentes: Elapidae) in Indochina: Multivariate morphometrics and comparative mitochondrial DNA sequencing (cytochrome oxidase I). J. Evol. Biol. 8, 493–510 (1995).Article 

    Google Scholar 
    15.Smith, M. A. The Fauna of British India Vol. 3 (Taylor and Francis, 1943).
    Google Scholar 
    16.Wüster, W. & Thorpe, R. S. Asiatic Cobras: Population systematics of the Naja naja Species Complex (Serpentes: Elapidae) in India and Central Asia. Herpetologica 48, 69–85 (1992).
    Google Scholar 
    17.IUCN. The IUCN Red List of Threatened Species. Version 2019-3. https://www.iucnredlist.org (2019).18.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 
    Article 

    Google Scholar 
    20.United Nations. World Population Prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).21.UNESCAP. Factsheet: Urbanization trends in Asia and the Pacific 4 (2013).22.Zhou, Z. & Jiang, Z. International trade status and crisis for snake species in China. Conserv. Biol. 18, 1386–1394 (2004).Article 

    Google Scholar 
    23.Li, Y. & Li, D. The dynamics of trade in live wildlife across the Guangxi border between China and Vietnam during 1993–1996 and its control strategies. Biodivers. Conserv. 7, 895–914 (1998).Article 

    Google Scholar 
    24.CITES. CITES Appendices I, II, and III. (2019).25.Gutiérrez, J. M., Williams, D., Fan, H. W. & Warrell, D. A. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 56, 1223–1235 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Kasturiratne, A. et al. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).Article 

    Google Scholar 
    27.Longbottom, J. et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet 392, 673–684 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Warrell, D. A. Clinical toxicology of snakebite in Asia. In Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds Meier, J. & White, J.) 493–594 (CRC Press, 1995).
    Google Scholar 
    29.Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109, 16083–16088 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Yue, S., BoneBrake, T. C. & GiBSon, L. Human-snake conflict patterns in a dense urban-forest mosaic landscape. Herpetol. Conserv. Biol. 14, 143–154 (2019).
    Google Scholar 
    31.Yousefi, M., Kafash, A., Khani, A. & Nabati, N. Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    32.Slowinski, J. B. & Wüster, W. A New Cobra (Elapidae: Naja) from Myanmar (Burma). Herpetologica 56, 257–270 (2000).
    Google Scholar 
    33.Wüster, W. & Thorpe, R. S. Population affinities of the asiatic cobra (Naja naja) species complex in south-east Asia: Reliability and random resampling. Biol. J. Linn. Soc. 36, 391–409 (1989).Article 

    Google Scholar 
    34.Wüster, W., Warrell, D. A., Cox, M. J., Jintakune, P. & Nabhitabhata, J. Redescription of Naja siamensis (Serpentes: Elapidae), a widely overlooked spitting cobra from S.E. Asia: Geographic variation, medical importance and designation of a neotype. J. Zool. 243, 771–788 (1997).Article 

    Google Scholar 
    35.Kuch, U. et al. A new species of krait (Squamata: Elapidae) from the Red River System of Northern Vietnam. Copeia 2005, 818–833 (2005).Article 

    Google Scholar 
    36.Journé, V., Barnagaud, J. Y., Bernard, C., Crochet, P. A. & Morin, X. Correlative climatic niche models predict real and virtual species distributions equally well. Ecology 101, 1–14 (2020).Article 

    Google Scholar 
    37.Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. B 374, 20180176 (2019).Article 

    Google Scholar 
    38.Siqueira, L. H. C. & Marques, O. A. V. Effects of Urbanization on Bothrops jararaca Populations in São Paulo Municipality, Southeastern Brazil. J. Herpetol. 52, 299–306 (2018).Article 

    Google Scholar 
    39.Santra, V. et al. Confirmation of Naja oxiana in Himachal Pradesh, India. Herpetol. Bull. https://doi.org/10.33256/hb150.2628 (2019).Article 

    Google Scholar 
    40.IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria, Vol. 1 (2019).41.IUCN. Guidelines for Application of IUCN Red List Criteria At Regional And National Levels. (IUCN, 2012).42.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Sahlean, T. C., Gherghel, I., Papeş, M., Strugariu, A. & Zamfirescu, ŞR. Refining climate change projections for organisms with low dispersal abilities: A case study of the Caspian whip snake. PLoS ONE 9, e91994 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Wolfe, A. K., Fleming, P. A. & Bateman, P. W. Impacts of translocation on a large urban-adapted venomous snake. Wildl. Res. 45, 316–324 (2018).Article 

    Google Scholar 
    45.Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B Biol. Sci. 275, 649–659 (2008).Article 

    Google Scholar 
    46.Chen, C., Qu, Y., Zhou, X. & Wang, Y. Human overexploitation and extinction risk correlates of Chinese snakes. Ecography (Cop.) 42, 1777–1788 (2019).Article 

    Google Scholar 
    47.CITES. Full CITES Trade Database 2000–2018. https://trade.cites.org/ (2018).48.Braimoh, A. K., Subramanian, S. M., Elliot, W. & Gasparatos, A. Climate and Human-Related Drivers of Biodiversity Decline in Southeast Asia. (United Nations University Institute of Advanced Studies, 2010) https://unu.edu/publications/articles/unraveling-the-drivers-of-southeast-asia-biodiversity-loss.html#info.49.Wood, S., Sebastian, K. & Scherr, S. Pilot Analysis of Global Ecosystems: Agroecosystems: A Joint Study (International Food Policy Research Institute and World Resources Institute, 2000).
    Google Scholar 
    50.Castelletta, M., Sodhi, N. S. & Subaraj, R. Heavy extinctions of forest avifauna in Singapore: Lessons for biodiversity conservation in Southeast Asia. Conserv. Biol. 14, 1870–1880 (2000).Article 

    Google Scholar 
    51.Zhao, S. et al. Land use change in Asia and the ecological consequences. Ecol. Res. 21, 890–896 (2006).Article 

    Google Scholar 
    52.Estoque, R. C. & Murayama, Y. Trends and spatial patterns of urbanization in Asia and Africa: A comparative analysis. In Urban Development in Asia and Africa 393–414 (2017).53.Shankar, P. G., Singh, A., Ganesh, S. R. & Whitaker, R. Factors influencing human hostility to King Cobras (Ophiophagus hannah) in the Western Ghats of India. Hamadryad 36, 91–100 (2013).
    Google Scholar 
    54.United Nations. Progress Towards the Sustainable Development Goals. https://undocs.org/en/E/2020/57 (2020).55.Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: Ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).ADS 
    Article 

    Google Scholar 
    56.Organization, W. H. Snakebite Envenoming: A Strategy for Prevention and Control (World Health Organization, 2019).
    Google Scholar 
    57.Zancolli, G. et al. When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proc. R. Soc. B Biol. Sci. 286, 20182735 (2019).CAS 
    Article 

    Google Scholar 
    58.Wüster, W. & Thorpe, R. S. Systematics and biogeography of the Asiatic cobra (Naja naja) species complex in the Philippine Islands. In Vertebrates in the Tropics (eds Peters, G. & Hutterer, R.) 333–344 (Museum Alexander Koenig, 1990).
    Google Scholar 
    59.Kazemi, E., Kaboli, M., Khosravi, R. & Khorasani, N. Evaluating the importance of environmental variables on spatial distribution of caspian cobra naja oxiana (Eichwald, 1831) in Iran. Asian Herpetol. Res. 10, 129–138 (2019).
    Google Scholar 
    60.Khan, M. The snakebite problem in Pakistan. Bull. Chicago Herp. Soc 49, 165–167 (2014).
    Google Scholar 
    61.Showler, D. A. A Checklist of the Amphibians and Reptiles of the Republic of Uzbekistan with a Review and Summary of Species Distribution. https://www.sustainablehoubaramanagement.org/wp-content/uploads/2018/09/Uzbekistan-Amphibian-Reptile-Checklist-14Sept2018-PDF.pdf (2018).62.Prakash, S., Kumar Mishra, A. & Raziuddin, M. A new record of cream coloured morph of Naja kaouthia Lesson, 1831 (Reptilia, Serpentes, Elapidae) from Hazaribag, Jharkhand, India. Biodivers. J. 3, 153–155 (2012).
    Google Scholar 
    63.Kazemi, E., Nazarizadeh, M., Fatemizadeh, F., Khani, A. & Kaboli, M. The phylogeny, phylogeography, and diversification history of the westernmost Asian cobra (Serpentes: Elapidae: Naja oxiana) in the Trans-Caspian region. Ecol. Evol. https://doi.org/10.1002/ece3.7144 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Bivand, R. et al. Tools for Handling Spatial Objects. (2019).65.Lima-Ribeiro, M. et al. The ecoClimate Database. http://ecoclimate.org.66.Rangel, T. F. & Loyola, R. D. Labeling ecological niche models. Nat. Conserv. 10, 119–126 (2012).Article 

    Google Scholar 
    67.Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251–270 (2005).Article 

    Google Scholar 
    68.Hijmans, R. J. et al. Geographic Data Analysis and Modeling. https://cran.r-project.org/package=raster (2019).69.Bivand, R. et al. Bindings for the ‘Geospatial’ Data Abstraction Library Version. Cran (2019).70.Pebesma, E. et al. Classes and Methods for Spatial Data. (R News, 2019).71.Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Species Distribution Modeling. (2017).72.Sharma, S. K. et al. Venomous Snakes of Nepal. (2013).73.Whitaker, R. & Captain, A. Snakes of India: The Field Guide. Draco Books (Chennai), (2008).74.Gao, J. Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells. NCAR Technical Note NCAR/TN-537+STR https://sedac.ciesin.columbia.edu/data/set/popdynamics-pop-projection-ssp-downscaled-1km-2010-2100. https://doi.org/10.5065/D60Z721H (2017).75.van Vuuren, D. P. et al. A new scenario framework for Climate Change Research: Scenario matrix architecture. Clim. Change 122, 373–386 (2014).Article 

    Google Scholar  More

  • in

    Warming climate challenges breeding

    1.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics, 4th edn (Longman, 1996).2.Xiong, W. et al. Nat. Plants https://doi.org/10.1038/s41477-021-00988-w (2021).3.Tadesse, W. et al. Crop Breed Genet Genom. 1, e190005 (2019).
    Google Scholar 
    4.Li, X., Guo, T., Mu, Q., Li, X. & Yu, J. Proc. Natl Acad. Sci. USA 115, 6679–6684 (2018).CAS 
    Article 

    Google Scholar 
    5.Anderson, D. R. Model Based Inference in the Life Sciences (Springer, 2008).6.Zhao, Y. et al. Sci. Adv. 7, eabf9106 (2021).CAS 
    Article 

    Google Scholar 
    7.Shi, L., Li, B., Kim, C., Kellnhofer, P. & Matusik, W. Nature 591, 234–239 (2021).CAS 
    Article 

    Google Scholar 
    8.Li, J. et al. Mol. Ecol. 28, 3544–3560 (2019).CAS 
    Article 

    Google Scholar 
    9.CGIAR. One CGIAR, https://www.cgiar.org/food-security-impact/one-cgiar/ More