1.Milner AM, Khamis K, Battin TJ, Brittain JE, Barrand NE, Füreder L, et al. Glacier shrinkage driving global changes in downstream systems. Proc Nat Acad Sci USA. 2017;114:9770.CAS
PubMed
PubMed Central
Google Scholar
2.Battin TJ, Wille A, Sattler B, Psenner R. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol. 2001;67:799–807.CAS
PubMed
PubMed Central
Google Scholar
3.Wilhelm L, Singer GA, Fasching C, Battin TJ, Besemer K. Microbial biodiversity in glacier-fed streams. ISME J. 2013;7:1651.CAS
PubMed
PubMed Central
Google Scholar
4.Ren Z, Gao H, Elser JJ, Zhao Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci Rep. 2017;7:12668.PubMed
PubMed Central
Google Scholar
5.Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Nat Acad Sci USA. 2015;112:1326.
Google Scholar
6.Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.PubMed
PubMed Central
Google Scholar
7.Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:370.8.Allen R, Hoffmann LJ, Larcombe MJ, Louisson Z, Summerfield TC. Homogeneous environmental selection dominates microbial community assembly in the oligotrophic South Pacific Gyre. Mol Ecol. 2020;29:4680–91.CAS
PubMed
Google Scholar
9.Li Y, Gao Y, Zhang W, Wang C, Wang P, Niu L, et al. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci Tot Environ. 2019;690:50–60.CAS
Google Scholar
10.Zhang K, Shi Y, Cui X, Yue P, Li K, Liu X, et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems. 2019;4:e00225–18.11.Thrash CJ, Temperton B, Swan BK, Landry ZC, Woyke T, DeLong EF, et al. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J. 2014;8:1440–51.PubMed
Google Scholar
12.Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science. 2008;320:1081.CAS
PubMed
Google Scholar
13.Kent AG, Baer SE, Mouginot C, Huang JS, Larkin AA, Lomas MW, et al. Parallel phylogeography of Prochlorococcus and Synechococcus. ISME J. 2019;13:430–41.PubMed
Google Scholar
14.Brown MV, Furham JA. Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol. 2005;41:15–23.
Google Scholar
15.Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev. 2009;73:249.CAS
PubMed
PubMed Central
Google Scholar
16.Yung C-M, Vereen MK, Herbert A, Davis KM, Yang J, Kantorowska A, et al. Thermally adaptive tradeoffs in closely related marine bacterial strains. Environ Microbiol. 2015;17:2421–9.PubMed
Google Scholar
17.Props R, Denef VJ. Temperature and nutrient levels correspond with lineage-specific microdiversification in the ubiquitous and abundant freshwater genus. Limnohabitans Appl Environ Microbiol. 2020;86:e00140–00120.CAS
PubMed
Google Scholar
18.Chase AB, Karaoz U, Brodie EL, Gomez-Lunar Z, Martiny AC, Martiny JBH. Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in ecologically relevant traits. mBio. 2017;8:e01809–17.19.Choudoir MJ, Buckley DH. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa. ISME J. 2018;12:2176–86.CAS
PubMed
PubMed Central
Google Scholar
20.Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.CAS
PubMed
Google Scholar
21.Cohan FM, Koeppel AF. The origins of ecological diversity in prokaryotes. Curr Biol. 2008;18:R1024–34.CAS
PubMed
Google Scholar
22.Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ Microbiol Rep. 2017;9:55–70.CAS
PubMed
Google Scholar
23.Fodelianakis S, Lorz A, Valenzuela-Cuevas A, Barozzi A, Booth JM, Daffonchio D. Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity. Nat Commun. 2019;10:1314.PubMed
PubMed Central
Google Scholar
24.Duarte CM, Røstad A, Michoud G, Barozzi A, Merlino G, Delgado-Huertas A, et al. Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Sci Rep. 2020;10:910.CAS
PubMed
PubMed Central
Google Scholar
25.Kohler TJ, Peter H, Fodelianakis S, Pramateftaki P, Styllas M, Tolosano M, et al. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front Microbiol. 2020;11:2922.
Google Scholar
26.Amalfitano S, Fazi S. Recovery and quantification of bacterial cells associated with streambed sediments. J Microbiol Methods. 2008;75:237–43.CAS
PubMed
Google Scholar
27.Hammes F, Berney M, Wang Y, Vital M, Köster O, Egli T. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res. 2008;42:269–77.CAS
PubMed
Google Scholar
28.Busi SB, Pramateftaki P, Brandani J, Fodelianakis S, Peter H, Halder R, et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ. 2020;8:e9973.PubMed
PubMed Central
Google Scholar
29.Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS
PubMed
Google Scholar
30.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS
PubMed
PubMed Central
Google Scholar
31.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotech. 2019;37:852–7.CAS
Google Scholar
32.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Meth. 2016;13:581–3.CAS
Google Scholar
33.Props R, Kerckhof F-M, Rubbens P, De Vrieze J, Hernandez-Sanabria E, Waegeman W, et al. Absolute quantification of microbial taxon abundances. ISME J. 2017;11:584–7.PubMed
Google Scholar
34.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.PubMed
PubMed Central
Google Scholar
35.DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS
PubMed
PubMed Central
Google Scholar
36.Singer E, Bushnell B, Coleman-Derr D, Bowman B, Bowers RM, Levy A, et al. High-resolution phylogenetic microbial community profiling. ISME J. 2016;10:2020–32.PubMed
PubMed Central
Google Scholar
37.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS
PubMed
PubMed Central
Google Scholar
38.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS
PubMed
PubMed Central
Google Scholar
39.Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539–9.PubMed
PubMed Central
Google Scholar
40.Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput Biol. 2017;13:e1005404.PubMed
PubMed Central
Google Scholar
41.R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.42.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.43.Fodelianakis S, Moustakas A, Papageorgiou N, Manoli O, Tsikopoulou I, Michoud G, et al. Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments. Mol Ecol. 2017;26:2006–18.CAS
PubMed
Google Scholar
44.Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.CAS
PubMed
Google Scholar
45.Washburne AD, Silverman JD, Leff JW, Bennett DJ, Darcy JL, Mukherjee S, et al. Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets. PeerJ. 2017;5:e2969.PubMed
PubMed Central
Google Scholar
46.Washburne AD, Silverman JD, Morton JT, Becker DJ, Crowley D, Mukherjee S, et al. Phylofactorization: a graph partitioning algorithm to identify phylogenetic scales of ecological data. Ecol Monogr. 2019;89:e01353.
Google Scholar
47.Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, et al. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles. 2016;20:403–13.PubMed
PubMed Central
Google Scholar
48.Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016;10:333–45.CAS
PubMed
Google Scholar
49.Tromas N, Taranu ZE, Castelli M, Pimentel JSM, Pereira DA, Marcoz R, et al. The evolution of realized niches within freshwater. Synechococcus Environ Microbiol. 2020;22:1238–50.PubMed
Google Scholar
50.Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.CAS
PubMed
Google Scholar
51.Cerqueira T, Barroso C, Froufe H, Egas C, Bettencourt R. Metagenomic signatures of microbial communities in deep-sea hydrothermal sediments of Azores Vent Fields. Microb Ecol. 2018;76:387–403.CAS
PubMed
Google Scholar
52.Osburn MR, LaRowe DE, Momper LM, Amend JP. Chemolithotrophy in the continental deep subsurface: Sanford underground research facility (SURF), USA. Front Microbiol. 2014;5:610.53.Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, et al. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol. 2018;20:2568–84.CAS
PubMed
Google Scholar
54.Vick-Majors TJ, Priscu JC, Amaral-Zettler LA. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME J. 2014;8:778–89.CAS
PubMed
Google Scholar
55.Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK. Global distribution of Polaromonas phylotypes – evidence for a highly successful dispersal capacity. PloS ONE. 2011;6:e23742.CAS
PubMed
PubMed Central
Google Scholar
56.Smith HJ, Foreman CM, Ramaraj T. Draft genome sequence of a metabolically diverse Antarctic supraglacial stream organism, Polaromonas sp. strain CG9_12, determined using Pacific Biosciences single-molecule real-time sequencing technology. Genome Announc. 2014;2:e01242–01214.PubMed
PubMed Central
Google Scholar
57.Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 2016;10:1625–41.CAS
PubMed
PubMed Central
Google Scholar
58.Liu Q, Zhou Y-G, Xin Y-H. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing. Syst Appl Microbiol. 2015;38:578–85.PubMed
Google Scholar
59.Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol. 2006;56:2819–23.CAS
PubMed
Google Scholar
60.Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, et al. Whole-genome analysis of the methyl tert-butyl ether-degrading Beta-Proteobacterium Methylibium petroleiphilum PM1. J Bacteriol. 2007;189:1931.CAS
PubMed
Google Scholar
61.Martineau C, Mauffrey F, Villemur R, Müller V. Comparative analysis of denitrifying activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl Environ Microbiol. 2015;81:5003–14.CAS
PubMed
PubMed Central
Google Scholar
62.Dieser M, Broemsen ELJE, Cameron KA, King GM, Achberger A, Choquette K, et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 2014;8:2305–16.CAS
PubMed
PubMed Central
Google Scholar
63.Michaud AB, Dore JE, Achberger AM, Christner BC, Mitchell AC, Skidmore ML, et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat Geosci. 2017;10:582–6.CAS
Google Scholar
64.Bendall ML, Stevens SLR, Chan L-K, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.PubMed
PubMed Central
Google Scholar
65.Baker JM, Riester CJ, Skinner BM, Newell AW, Swingley WD, Madigan MT, et al. Genome sequence of Rhodoferax antarcticus ANT.BRT; a psychrophilic purple nonsulfur bacterium from an Antarctic microbial mat. Microorganisms. 2017;5:8.66.Crisafi F, Giuliano L, Yakimov MM, Azzaro M, Denaro R. Isolation and degradation potential of a cold-adapted oil/PAH-degrading marine bacterial consortium from Kongsfjorden (Arctic region). Rendiconti Lincei. 2016;27:261–70.
Google Scholar
67.Zhong Z-P, Solonenko NE, Gazitúa MC, Kenny DV, Mosley-Thompson E, Rich VI, et al. Clean low-biomass procedures and their application to ancient ice core microorganisms. Front Microbiol. 2018;9:1094.68.Bai Y, Huang X, Zhou X, Xiang Q, Zhao K, Yu X, et al. Variation in denitrifying bacterial communities along a primary succession in the Hailuogou Glacier retreat area, China. PeerJ. 2019;7:e7356.PubMed
PubMed Central
Google Scholar
69.Garcia-Lopez E, Rodriguez-Lorente I, Alcazar P, Cid C. Microbial communities in coastal glaciers and tidewater tongues of Svalbard archipelago, Norway. Front Mar Sci. 2019;5:512.70.Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, et al. Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME J. 2020;14:2488–504.CAS
PubMed
PubMed Central
Google Scholar
71.Harrold ZR, Skidmore ML, Hamilton TL, Desch L, Amada K, van Gelder W, et al. Aerobic and anaerobic thiosulfate oxidation by a cold-adapted, subglacial chemoautotroph. Appl Environ Microbiol. 2016;82:1486–95.CAS
PubMed Central
Google Scholar
72.Franzetti A, Pittino F, Gandolfi I, Azzoni RS, Diolaiuti G, Smiraglia C, et al. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiol Ecol. 2020;96:10.73.Kohler TJ, Van Horn DJ, Darling JP, Takacs-Vesbach CD, McKnight DM. Nutrient treatments alter microbial mat colonization in two glacial meltwater streams from the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol. 2016;92:4.
Google Scholar
74.Sawayama M, Suzuki T, Hashimoto H, Kasai T, Furutani M, Miyata N, et al. Isolation of a Leptothrix strain, OUMS1, from ocherous deposits in groundwater. Cur Microbiol. 2011;63:173–80.CAS
Google Scholar
75.Li Y, Cha Q-Q, Dang Y-R, Chen X-L, Wang M, McMinn A, et al. Reconstruction of the functional ecosystem in the high light, low temperature union glacier region, Antarctica. Front Microbiol. 2019;10.76.Cauvy-Fraunié S, Dangles O. A global synthesis of biodiversity responses to glacier retreat. Nat Ecol Evol. 2019;3:1675–85.PubMed
Google Scholar
77.Jorquera MA, Graether SP, Maruyama F. Editorial: bioprospecting and biotechnology of extremophiles. Front Bioeng Biotech. 2019;7:204.
Google Scholar
78.Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, et al. Genotypic diversity within a natural coastal bacterioplankton population. Science. 2005;307:1311.CAS
PubMed
Google Scholar
79.Chase AB, Gomez-Lunar Z, Lopez AE, Li J, Allison SD, Martiny AC, et al. Emergence of soil bacterial ecotypes along a climate gradient. Environ Microbiol. 2018;11:4112–26.
Google Scholar
80.Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.PubMed
Google Scholar
81.Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.PubMed
PubMed Central
Google Scholar
82.Garcia-Garcia N, Tamames J, Linz AM, Pedros-Alio C, Puente-Sanchez F. Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions. ISME J. 2019;13:2969–83.CAS
PubMed
PubMed Central
Google Scholar
83.Becraft ED, Wood JM, Rusch DB, Kühl M, Jensen SI, Bryant DA, et al. The molecular dimension of microbial species: 1. Ecological distinctions among, and homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial mat of Mushroom Spring, Yellowstone National Park. Front Microbiol. 2015;6:590.PubMed
PubMed Central
Google Scholar
84.Becraft ED, Cohan FM, Kühl M, Jensen SI, Ward DM. Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park. Appl Environ Microbiol. 2011;77:7689–97.CAS
PubMed
PubMed Central
Google Scholar
85.Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Nat Acad Sci USA. 2008;105:2504.CAS
PubMed
PubMed Central
Google Scholar
86.Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.CAS
PubMed
PubMed Central
Google Scholar
87.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.88.Ning D, Deng Y, Tiedje JM, Zhou J. A general framework for quantitatively assessing ecological stochasticity. Proc Nat Acad Sci USA. 2019;116:16892–8.CAS
PubMed
PubMed Central
Google Scholar
89.Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD, et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Nat Acad Sci USA. 2014;111:E836–45.CAS
PubMed
PubMed Central
Google Scholar
90.Evans S, Martiny JBH, Allison SD. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 2017;11:176–85.PubMed
Google Scholar
91.Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun. 2020;11:4717.CAS
PubMed
PubMed Central
Google Scholar
92.Cohan FM. Systematics: the cohesive nature of bacterial species taxa. Curr Biol. 2019;29:169–72.
Google Scholar
93.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed
PubMed Central
Google Scholar
94.Callahan BJ, Grinevich D, Thakur S, Balamotis MA, Yehezkel TB. Ultra-accurate microbial amplicon sequencing with synthetic long reads. Microbiome. 2021;9:130.PubMed
PubMed Central
Google Scholar
95.Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T, et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiol. 2021;21:35.CAS
PubMed
PubMed Central
Google Scholar
96.Nygaard AB, Tunsjø HS, Meisal R, Charnock C. A preliminary study on the potential of Nanopore MinION and Illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Sci Rep. 2020;10:3209.CAS
PubMed
PubMed Central
Google Scholar More