Microbial transfers from permanent grassland ecosystems to milk in dairy farms in the Comté cheese area
1.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of nitrogen inputs on multiple facets of plant biodiversity in mountain grasslands: Does nutrient source matter?. Appl. Veg. Sci. 19, 206–217 (2016).Article
Google Scholar
2.Mesbahi, G., Michelot-Antalik, A., Goulnik, J. & Plantureux, S. Permanent grassland classifications predict agronomic and environmental characteristics well, but not ecological characteristics. Ecol. Indic. 110, 105956 (2020).Article
Google Scholar
3.Karimi, B. et al. Biogeography of soil microbial habitats across France. Glob. Ecol. Biogeogr. 29, 1399–1411 (2020).Article
Google Scholar
4.Mahaut, L., Fort, F., Violle, C. & Freschet, G. T. Multiple facets of diversity effects on plant productivity: Species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 34, 287–298 (2020).Article
Google Scholar
5.Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).
Google Scholar
6.van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed
Article
PubMed Central
Google Scholar
7.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity: Linking microbial diversity and stability. Environ. Microbiol. Rep. 6, 173–183 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
9.Fierer, N., Barberan, A. & Laughlin, D. C. Seeing the forest for the genes: Using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).PubMed
PubMed Central
Article
Google Scholar
10.Loreau, M. Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philos. Trans. R. Soc. B 365, 49–60 (2010).Article
Google Scholar
11.Buchin, S., Martin, B., Dupont, D., Bornard, A. & Achilleos, C. Influence of the composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. J. Dairy Res. 66, 579–588 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Bugaud, C., Buchin, S., Hauwy, A. & Coulon, J.-B. Flavour and texture of cheeses according to grazing type: The Abundance cheese. INRA Prod. Anim. 15, 31–36 (2002).Article
Google Scholar
13.Monnet, J. C., Berodier, F. & Badot, P. M. Characterization and localization of a cheese georegion using edaphic criteria (Jura Mountains, France). J. Dairy Sci. 83, 1692–1704 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
14.Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F. & Buttler, A. Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J. Ecol. 101, 763–773 (2013).Article
Google Scholar
15.Montel, M.-C. et al. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 177, 136–154 (2014).PubMed
Article
PubMed Central
Google Scholar
16.Bouton, Y., Guyot, P., Berthier, F., & Beuvier, E. Investigation of bacterial community development from raw milk and starter to curd and mature Comte cheese. in Cheese ripening and technology: abstracts of IDF symposium held in Banff, Canada, March 2000 (ed. International Dairy Federation) 85 (Brussel, Belgium, 2000).17.Demarigny, Y., Beuvier, E., Buchin, S., Pochet, S. & Grappin, R. Influence of raw milk microflora on the characteristics of Swiss-type cheese. Lait 77, 151–167 (1997).CAS
Article
Google Scholar
18.Bouton, Y., Buchin, S., Duboz, G., Pochet, S. & Beuvier, E. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese. Food Microbiol. 26, 183–191 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
19.Vacheyrou, M. et al. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int. J. Food Microbiol. 146, 253–262 (2011).PubMed
Article
PubMed Central
Google Scholar
20.Verdier-Metz, I. et al. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl. Environ. Microbiol. 78, 326–333 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
21.Doyle, C. J., Gleeson, D., O’Toole, P. W. & Cotter, P. D. Impacts of seasonal housing and teat preparation on raw milk microbiota: A high-throughput sequencing study. Appl. Environ. Microbiol. 83(e02694–16), e02694-e2716 (2017).CAS
PubMed
PubMed Central
Google Scholar
22.Frétin, M. et al. Bacterial community assembly from cow teat skin to ripened cheeses is influenced by grazing systems. Sci. Rep. 8, 200 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
23.Falentin, H. et al. Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. Front. Microbiol. 7, 480 (2016).PubMed
PubMed Central
Article
Google Scholar
24.Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Dequiedt, S. et al. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 1, 251–255 (2009).PubMed
Article
PubMed Central
Google Scholar
27.Sadet-Bourgeteau, S. et al. Lasting effect of repeated application of organic waste products on microbial communities in arable soils. Appl. Soil Ecol. 125, 278–287 (2018).Article
Google Scholar
28.Nacke, H. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in german forest and grassland soils. PLoS ONE 6, e17000 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
29.Coolon, J. D., Jones, K. L., Todd, T. C., Blair, J. M. & Herman, M. A. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in Tallgrass Prairie. PLoS ONE 8, e67884 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
30.Toyota, K. & Kuninaga, S. Comparison of soil microbial community between soils amended with or without farmyard manure. Appl. Soil Ecol. 33, 39–48 (2006).Article
Google Scholar
31.Garnier, E. & Navas, M.-L. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology: A review. Agron. Sustain. Dev. 32, 365–399 (2012).Article
Google Scholar
32.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of management type and intensity on multiple facets of grassland biodiversity in the French Jura Mountains. Appl. Veg. Sci. 17, 645–657 (2014).Article
Google Scholar
33.Chytrý, M. et al. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 15, 98–107 (2009).Article
Google Scholar
34.Klaudisová, M., Hejcman, M. & Pavlů, V. Long-term residual effect of short-term fertilizer application on Ca, N and P concentrations in grasses Nardus stricta L. and Avenella flexuosa L. Nutr. Cycl. Agroecosyst. 85, 187–193 (2009).Article
CAS
Google Scholar
35.Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
36.Terrat, S. et al. Improving soil bacterial taxa–area relationships assessment using DNA meta-barcoding. Heredity 114, 468–475 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Navrátilová, D. et al. Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy208 (2018).Article
Google Scholar
38.Zhang, Q. et al. Niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with antarctic vascular plants. Front. Microbiol. 11, 1036 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Falardeau, J., Keeney, K., Trmčić, A., Kitts, D. & Wang, S. Farm-to-fork profiling of bacterial communities associated with an artisan cheese production facility. Food Microbiol. 83, 48–58 (2019).CAS
PubMed
Article
Google Scholar
40.Plassart, P. et al. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 9, 605 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
41.Rastogi, G., Coaker, G. L. & Leveau, J. H. J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1–10 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Andrews, T., Neher, D. A., Weicht, T. R. & Barlow, J. W. Mammary microbiome of lactating organic dairy cows varies by time, tissue site, and infection status. PLoS ONE 14, e0225001 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Karimi, B. et al. Biogeography of soil bacteria and archaea across France. Sci. Adv. 4, 1808 (2018).ADS
Article
Google Scholar
44.Lewin, G. R. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70, 235–254 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Li, N. et al. Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Sci. Rep. 8, 2371 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
46.Lavoie, K., Touchette, M., St-Gelais, D. & Labrie, S. Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci. Technol. 92, 455–468 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Verdier-Metz, I. & Monsallier, F. Place des pâturages des bovins dans les flux microbiens laitiers. Fourrages 6, 1–10 (2012).
Google Scholar
48.Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
49.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
50.Mallet, A. et al. Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int. Dairy J. 27, 13–21 (2012).Article
Google Scholar
51.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Metz 15, 259–263 (2006).ADS
Article
Google Scholar
52.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed
PubMed Central
Article
Google Scholar
53.QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org (2021).54.Homburger, H. & Hofer, G. Diversity change of mountain hay meadows in the Swiss Alps. Basic Appl. Ecol. 13, 132–138 (2012).Article
Google Scholar
55.Gillet, F., Mauchamp, L., Badot, P.-M. & Mouly, A. Recent changes in mountain grasslands: a vegetation resampling study. Ecol. Evol. 6, 2333–2345 (2016).PubMed
PubMed Central
Article
Google Scholar
56.Maabel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97–114 (1979).Article
Google Scholar
57.Jost, L. The relation between evenness and diversity. Diversity 26, 207–230 (2010).Article
Google Scholar
58.ChemidlinPrévost-Bouré, N. et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6, e24166 (2011).ADS
Article
CAS
Google Scholar
59.Djemiel, C. et al. BIOCOM-PIPE: A new user-friendly metabarcoding pipeline for the characterization of microbial diversity from 16S, 18S and 23S rRNA gene amplicons. BMC Bioinform. 21, 492. https://doi.org/10.1186/s12859-020-03829-3 (2020).CAS
Article
Google Scholar
60.Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 15, 293 (2014).Article
Google Scholar
62.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).63.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed
PubMed Central
Article
Google Scholar
64.Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029. https://doi.org/10.7717/peerj.1029 (2015).Article
PubMed
PubMed Central
Google Scholar
65.Yekutieli, D. & Benjamini, Y. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188 (2001).MathSciNet
MATH
Google Scholar
66.Gysi, D. M., Voigt, A., Fragoso, T. M., Almaas, E. & Nowick, K. wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinform. 19, 392 (2018).Article
Google Scholar
67.Kursa, M. B. & Rudnicki, W. R. Feature Selection with the Boruta Package. J. Stat. Soft. 36, 11 (2010).Article
Google Scholar More