Wavelet geographically weighted regression for spectroscopic modelling of soil properties
1.Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
2.Drobnik, T., Greiner, L., Keller, A. & Grêt-Regamey, A. Soil quality indicators-from soil functions to ecosystem services. Ecol. Ind. 94, 151–169 (2018).Article
Google Scholar
3.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).ADS
Article
CAS
Google Scholar
4.Viscarra Rossel, R. et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 155, 198–230 (2016).5.Amundson, R. & Biardeau, L. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl. Acad. Sci. 115, 11652–11656 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
6.Smith, P. et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 26, 219–241 (2020).ADS
Article
Google Scholar
7.Zhang, S., Yu, Z., Lin, J. & Zhu, B. Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis. Geoderma 361, 114069 (2020).ADS
CAS
Article
Google Scholar
8.Bot, A. & Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. 80 (Food & Agriculture Org., 2005).9.Rawles, W. J. & Brakensiek, D. Estimating soil water retention from soil properties. J. Irrig. Drain. Div. 108, 166–171 (1982).Article
Google Scholar
10.Zhao, D., Zhao, X., Khongnawang, T., Arshad, M. & Triantafilis, J. A Vis–NIR spectral library to predict clay in Australian cotton growing soil. Soil Sci. Soc. Am. J. 82, 1347–1357 (2018).ADS
CAS
Article
Google Scholar
11.Demattê, J. A., Campos, R. C., Alves, M. C., Fiorio, P. R. & Nanni, M. R. Visible–NIR reflectance: A new approach on soil evaluation. Geoderma 121, 95–112 (2004).ADS
Article
CAS
Google Scholar
12.Viscarra Rossel, R. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra. J. Geophys. Res. Earth Surf. 116 (2011).13.Viscarra Rossel, R., Walvoort, D., McBratney, A., Janik, L. J. & Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2006).14.Viscarra Rossel, R. & Lark, R. Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur. J. Soil Sci. 60, 453–464 (2009).15.Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010).Article
Google Scholar
16.Næs, T. & Martens, H. Principal component regression in NIR analysis: Viewpoints, background details and selection of components. J. Chemom. 2, 155–167 (1988).Article
Google Scholar
17.Geladi, P. & Kowalski, B. R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 185, 1–17 (1986).CAS
Article
Google Scholar
18.Rossel, R. V. Robust modelling of soil diffuse reflectance spectra by “bagging-partial least squares regression”. J. Near Infrared Spectrosc. 15, 39–47 (2007).19.Viscarra Rossel, R. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54 (2010).20.Tsakiridis, N. L., Keramaris, K. D., Theocharis, J. B. & Zalidis, G. C. Simultaneous prediction of soil properties from VNIR–SWIR spectra using a localized multi-channel 1-d convolutional neural network. Geoderma 367, 114208 (2020).ADS
CAS
Article
Google Scholar
21.Yang, J., Wang, X., Wang, R. & Wang, H. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using Vis–NIR spectroscopy. Geoderma 380, 114616 (2020).ADS
CAS
Article
Google Scholar
22.Shen, Z. & Viscarra Rossel, R. A. Automated spectroscopic modelling with optimised convolutional neural networks. Sci. Rep. 11, 208. https://doi.org/10.1038/s41598-020-80486-9 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
23.Li, F., Wang, L., Liu, J., Wang, Y. & Chang, Q. Evaluation of leaf n concentration in winter wheat based on discrete wavelet transform analysis. Remote Sens. 11, 1331 (2019).ADS
Article
Google Scholar
24.Meng, X. et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 89, 102111 (2020).Article
Google Scholar
25.Jiang, B. Geospatial analysis requires a different way of thinking: The problem of spatial heterogeneity. GeoJournal 80, 1–13 (2015).Article
Google Scholar
26.Song, Y., Wang, J., Ge, Y. & Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 57, 593–610 (2020).Article
Google Scholar
27.Yang, Z. et al. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci. Rep. 5, 1–7 (2015).
Google Scholar
28.Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).29.Ye, H. et al. Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spat. Stat. 20, 76–91 (2017).MathSciNet
Article
Google Scholar
30.Viscarra Rossel, R. & Webster, R. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. Eur. J. Soil Sci. 63. https://doi.org/10.1111/j.1365-2389.2012.01495.x (2012).31.Sila, A., Pokhariyal, G. & Shepherd, K. Evaluating regression-kriging for mid-infrared spectroscopy prediction of soil properties in western Kenya. Geoderma Reg. 10, 39–47 (2017).Article
Google Scholar
32.Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (Wiley, 2003).33.Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).Article
Google Scholar
34.Bidanset, P. E. & Lombard, J. R. The effect of kernel and bandwidth specification in geographically weighted regression models on the accuracy and uniformity of mass real estate appraisal. J. Prop. Tax Assess. Admin. 11, 5–14 (2014).
Google Scholar
35.Brunsdon, C., Fotheringham, A. & Charlton, M. Geographically weighted summary statistics? A framework for localised exploratory data analysis. Comput. Environ. Urban Syst. 26, 501–524 (2002).MATH
Article
Google Scholar
36.Comber, A. et al. The GWR route map: A guide to the informed application of geographically weighted regression. arXiv preprint arXiv:2004.06070 (2020).37.Fotheringham, A. S., Yang, W. & Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 107, 1247–1265 (2017).
Google Scholar
38.Yu, H. et al. Inference in multiscale geographically weighted regression. Geogr. Anal. 52, 87–106 (2020).Article
Google Scholar
39.Wheeler, D. & Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 7, 161–187 (2005).Article
Google Scholar
40.Harris, P., Fotheringham, A. S. & Juggins, S. Robust geographically weighted regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Ann. Assoc. Am. Geogr. 100, 286–306 (2010).Article
Google Scholar
41.Harris, P., Brunsdon, C., Lu, B., Nakaya, T. & Charlton, M. Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models. Spat. Stat. 21, 241–261 (2017).MathSciNet
Article
Google Scholar
42.Cho, S.-H., Lambert, D. M. & Chen, Z. Geographically weighted regression bandwidth selection and spatial autocorrelation: An empirical example using Chinese agriculture data. Appl. Econ. Lett. 17, 767–772 (2010).Article
Google Scholar
43.Lu, B., Yang, W., Ge, Y. & Harris, P. Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Comput. Environ. Urban Syst. 71, 41–57 (2018).Article
Google Scholar
44.Arabameri, A., Pradhan, B. & Rezaei, K. Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in gis. J. Environ. Manag. 232, 928–942 (2019).Article
Google Scholar
45.Li, X. et al. Mapping soil organic carbon and total nitrogen in croplands of the corn belt of northeast china based on geographically weighted regression kriging model. Comput. Geosci. 135, 104392 (2020).CAS
Article
Google Scholar
46.Cao, K., Diao, M. & Wu, B. A big data-based geographically weighted regression model for public housing prices: A case study in Singapore. Ann. Am. Assoc. Geogr. 109, 173–186 (2019).
Google Scholar
47.Ge, Y. et al. Geographically weighted regression-based determinants of malaria incidences in northern China. Trans. GIS 21, 934–953 (2017).Article
Google Scholar
48.Viscarra Rossel, R. A. & Hicks, W. S. Soil organic carbon and its fractions estimated by visible–near infrared transfer functions. Eur. J. Soil Sci. 66(3), 438–450 (2015).CAS
Article
Google Scholar
49.Wight, J. P., Ashworth, A. J. & Allen, F. L. Organic substrate, clay type, texture, and water influence on NIR carbon measurements. Geoderma 261, 36–43 (2016).ADS
CAS
Article
Google Scholar
50.Costa, L. R., Tonoli, G. H. D., Milagres, F. R. & Hein, P. R. G. Artificial neural network and partial least square regressions for rapid estimation of cellulose pulp dryness based on near infrared spectroscopic data. Carbohyd. Polym. 224, 115186 (2019).Article
CAS
Google Scholar
51.Murphy, R. J., Schneider, S., Taylor, Z. & Nieto, J. Mapping clay minerals in an open-pit mine using hyperspectral imagery and automated feature extraction. In Vertical Geology, From Remote Sensing to 3D Geological Modelling. Proceedings of the first Vertical Geology Conference, Lausanne, Switzerland, 5–7 (2014).52.Todorova, M. H. & Atanassova, S. L. Near infrared spectra and soft independent modelling of class analogy for discrimination of chernozems, luvisols and vertisols. J. Near Infrared Spectrosc. 24, 271–280 (2016).ADS
CAS
Article
Google Scholar
53.Stenberg, B., Viscarra Rossel, R., Mouazen, A. & Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science, vol. 107 (Academic Press, 2010).54.Harris, P., Fotheringham, A., Crespo, R. & Charlton, M. The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets. Math. Geosci. 42, 657–680 (2010).MathSciNet
CAS
MATH
Article
Google Scholar
55.Department of Primary Industries and Regional Development, Western Australia. South West Agricultural Region (dpird-008) (2020).56.Australian Bureau of Statistics. Value of Agricultural Commodities Produced, Australia (2020).57.Department of Primary Industries and Regional Development, Western Australia. Western Australian Wheat Industry (2019).58.Rayment, G. E. & Lyons, D. J. Soil Chemical Methods—Australasia (CSIRO Publishing, 2010).59.Dolui, S. et al. Structural correlation-based outlier rejection (score) algorithm for arterial spin labeling time series. J. Magn. Reson. Imaging 45, 1786–1797 (2017).PubMed
Article
PubMed Central
Google Scholar
60.Pollet, T. V. & van der Meij, L. To remove or not to remove: The impact of outlier handling on significance testing in testosterone data. Adapt. Hum. Behav. Physiol. 3, 43–60 (2017).Article
Google Scholar
61.Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).Article
Google Scholar
62.Mallat, S. G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989).ADS
MATH
Article
Google Scholar
63.Whitcher, B. waveslim: Basic Wavelet Routines for One-, Two-, and Three-Dimensional Signal Processing (2020).64.O’brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).65.Akinwande, M. O. et al. Variance inflation factor: As a condition for the inclusion of suppressor variable (s) in regression analysis. Open J. Stat. 5, 754 (2015).Article
Google Scholar
66.Webster, R. & Oliver, M. A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 43, 177–192 (1992).Article
Google Scholar
67.Atteia, O., Dubois, J.-P. & Webster, R. Geostatistical analysis of soil contamination in the Swiss Jura. Environ. Pollut. 86, 315–327 (1994).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Brunsdon, C., Fotheringham, S. & Charlton, M. Geographically weighted regression-modelling spatial non-stationarity. J. R. Stat. Soc. Ser. D (The Statistician) 47, 431–443 (1998).Article
Google Scholar
69.Gollini, I., Lu, B., Charlton, M., Brunsdon, C. & Harris, P. Gwmodel: An r package for exploring spatial heterogeneity using geographically weighted models. arXiv preprint arXiv:1306.0413 (2013).70.Lu, B., Harris, P., Charlton, M. & Brunsdon, C. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo Spat. Inf. Sci. 17, 85–101 (2014).Article
Google Scholar
71.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Science & Business Media, 2009).72.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model selection and multimodel inference 2 (2002).73.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria 2020).74.Mevik, B.-H., Wehrens, R., Liland, K. H. & Hiemstra, P. pls: Partial Least Squares and Principal Component Regression (2020).75.Bivand, R., Yu, D., Nakaya, T. & Garcia-Lopez, M. spgwr: Geographically weighted regression. R Package Version 0.6-34. http://cran.r-project.org/web/packages/spgwr/. Accessed August 30th 2020 (2020). More