1.Solomon, S. et al. (eds.) IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).2.Ganopolski, A. & Calov, R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim. Past 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011 (2011).Article
Google Scholar
3.Timmermann, A. et al. Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka. J. Climate 27, 1863–1875, https://doi.org/10.1175/JCLI-D-13-00311.1 (2013).ADS
Article
Google Scholar
4.Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1 (2002).ADS
Article
Google Scholar
5.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978, https://doi.org/10.1002/joc.1276 (2005).ADS
Article
Google Scholar
6.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5, 180254, https://doi.org/10.1038/sdata.2018.254 (2018).Article
PubMed
PubMed Central
Google Scholar
7.Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, https://doi.org/10.17161/bi.v10i0.4955 (2015).8.Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358, https://doi.org/10.1111/ecog.03031 (2017).Article
Google Scholar
9.Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017 (2017).ADS
CAS
Article
Google Scholar
10.Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Sci Data 6, 1–16, https://doi.org/10.1038/s41597-019-0277-1 (2019).Article
Google Scholar
11.Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Scientific Data 7, 236, https://doi.org/10.1038/s41597-020-0552-1 (2020).Article
PubMed
PubMed Central
Google Scholar
12.Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Climate of the Past 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020 (2020).ADS
Article
Google Scholar
13.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3 (2020).Article
Google Scholar
14.O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series 691 (2012).15.Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. 108, 8171, https://doi.org/10.1029/2002JD002559 (2003).Article
Google Scholar
16.Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr. Quaternary Science Reviews 29, 43–55, https://doi.org/10.1016/j.quascirev.2009.10.011 (2010).ADS
Article
Google Scholar
17.Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017 (2017).Article
Google Scholar
18.Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 2014GL061957, https://doi.org/10.1002/2014GL061957 (2015).Article
Google Scholar
19.Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q (1991).ADS
Article
Google Scholar
20.Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Clim. Past 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016 (2016).Article
Google Scholar
21.Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_c (VM5a) model. Journal of Geophysical Research: Solid Earth 120, 450–487, https://doi.org/10.1002/2014JB011176 (2014).ADS
Article
Google Scholar
22.Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NOAA NOAA Technical Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M (2009).Article
Google Scholar
23.Lehner, B. & Dőll, P. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028 (2004).ADS
Article
Google Scholar
24.Araya-Melo, P. A., Crucifix, M. & Bounceur, N. Global sensitivity analysis of the Indian monsoon during the Pleistocene. Clim. Past 11, 45–61, https://doi.org/10.5194/cp-11-45-2015 (2015).Article
Google Scholar
25.Lord, N. S. et al. Emulation of long-term changes in global climate: application to the late Pliocene and future. Climate of the Past 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017 (2017).Article
Google Scholar
26.Hoyt, D. V. Percent of Possible Sunshine and the Total Cloud Cover. Monthly Weather Review 105, 648–652, 10.1175/1520-0493(1977)1052.0.CO;2 (1977).27.Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atm. Sci. 35, 2362–2367 (1978).ADS
Article
Google Scholar
28.Krapp, M. Terrestrial climate of the last 800,000 years, Open Science Framework, https://doi.org/10.17605/OSF.IO/8N43X (2021).29.Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nature Communications 7, 11967, https://doi.org/10.1038/ncomms11967 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
30.Schulzweida, U. CDO User Guide. Zenodo https://doi.org/10.5281/zenodo.3539275 (2019).31.Kőster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522, https://doi.org/10.1093/bioinformatics/bts480 (2012).CAS
Article
PubMed
Google Scholar
32.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).33.Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9, 90–95, https://doi.org/10.1109/MCSE.2007.55 (2007).ADS
Article
Google Scholar
34.Met Office. Cartopy: a cartographic python library with a Matplotlib interface (2010–2015).35.Flyamer, I. et al. Phlya/adjustText: 0.8 beta. Zenodo https://doi.org/10.5281/zenodo.3924114 (2020).36.Whitaker, J. et al. Unidata/netcdf4-python: version 1.5.5 release. Zenodo https://doi.org/10.5281/zenodo.4308773 (2020).37.Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
38.Reback, J. et al. pandas-dev/pandas: Pandas 1.0.3. Zenodo https://doi.org/10.5281/zenodo.3715232 (2020).39.McKinney, W. Data Structures for Statistical Computing in Python. In Walt, S. v. d. & Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a (2010).40.Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
41.Walt, Svd et al. scikit-image: image processing in Python. PeerJ 2, e453, https://doi.org/10.7717/peerj.453 (2014).Article
PubMed
PubMed Central
Google Scholar
42.da Costa-Luis, C. et al. tqdm: A fast, Extensible Progress Bar for Python and CLI. Zenodo https://doi.org/10.5281/zenodo.4531988 (2021).43.Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 2015RG000482, https://doi.org/10.1002/2015RG000482 (2016).44.Schaefer, G. et al. Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific. Marine Micropaleontology 54, 191–212, https://doi.org/10.1016/j.marmicro.2004.12.001 (2005).ADS
Article
Google Scholar
45.Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography and Paleoclimatology 4, 353–412, https://doi.org/10.1029/PA004i004p00353 (1989).Article
Google Scholar
46.Nürnberg, D., Müller, A. & Schneider, R. R. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K’, oxygen isotopes, and foraminiferal transfer function. Paleoceanography and Paleoclimatology 15, 124–134, https://doi.org/10.1029/1999PA000370 (2000).Article
Google Scholar
47.Horikawa, K., Murayama, M., Minagawa, M., Kato, Y. & Sagawa, T. Latitudinal and downcore (0–750 ka) changes in n-alkane chain lengths in the eastern equatorial Pacific. Quaternary Research 73, 573–582, https://doi.org/10.1016/j.yqres.2010.01.001 (2010).ADS
CAS
Article
Google Scholar
48.Martrat, B. et al. Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin. Science 317, 502–507, https://doi.org/10.1126/science.1139994 (2007).ADS
CAS
Article
PubMed
Google Scholar
49.Rincón-Martínez, D. & Leduc, G. Sea surface temperature calculated from alkenones for the last 285 ka with high-reolution Holocene of sediment core MD02-2529, Panama Basin. PANGAEA https://doi.org/10.1594/PANGAEA.777473 (2012).50.Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F. & Naughton, F. Iberian Margin sea surface temperature during MIS 15 to 9 (580–300 ka): Glacial suborbital variability versus interglacial stability. Paleoceanography 26, PA1204, https://doi.org/10.1029/2010PA001927 (2011).ADS
Article
Google Scholar
51.Hayward, B. W. et al. Planktic foraminifera-based sea-surface temperature record in the Tasman Sea and history of the Subtropical Front around New Zealand, over the last one million years. Marine Micropaleontology 82–83, 13–27, https://doi.org/10.1016/j.marmicro.2011.10.003 (2012).ADS
Article
Google Scholar
52.Russon, T. et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophysical Research Letters 37, https://doi.org/10.1029/2010GL043191 (2010).53.Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710, https://doi.org/10.1038/385707a0 (1997).ADS
CAS
Article
Google Scholar
54.Rostek, F. et al. Reconstructing sea surface temperature and salinity using $delta{18}O$ and alkenone records. Nature 364, 319, https://doi.org/10.1038/364319a0 (1993).ADS
CAS
Article
Google Scholar
55.Caley, T. et al. High-latitude obliquity as a dominant forcing in the Agulhas current system. Clim. Past 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011 (2011).Article
Google Scholar
56.Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation. Science 301, 948–952, https://doi.org/10.1126/science.1084451 (2003).ADS
CAS
Article
PubMed
Google Scholar
57.Garidel–Thoron, T. d. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, https://doi.org/10.1029/2006PA001269 (2005).58.Liu, Z., Altabet, M. A. & Herbert, T. D. Glacial-interglacial modulation of eastern tropical North Pacific denitrification over the last 1.8-Myr. Geophysical Research Letters 32, https://doi.org/10.1029/2005GL024439 (2005).59.Yamamoto, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quaternary Science Reviews 26, 405–414, https://doi.org/10.1016/j.quascirev.2006.07.014 (2007).ADS
Article
Google Scholar
60.Herbert, T. D. Collapse of the California Current During Glacial Maxima Linked to Climate Change on Land. Science 293, 71–76, https://doi.org/10.1126/science.1059209 (2001).ADS
CAS
Article
PubMed
Google Scholar
61.Schefuβ, E., Damsté, J. S. S. & Jansen, J. H. F. Forcing of tropical Atlantic sea surface temperatures during the mid-Pleistocene transition. Paleoceanography 19, https://doi.org/10.1029/2003PA000892 (2004).62.Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Pliocene–Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37, 871–874, https://doi.org/10.1130/G25733A.1 (2009).ADS
CAS
Article
Google Scholar
63.McClymont, E. L., Rosell-Melé, A., Giraudeau, J., Pierre, C. & Lloyd, J. M. Alkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic: Implications for the U37K’ index and South African climate. Quaternary Science Reviews 24, 1559–1572, https://doi.org/10.1016/j.quascirev.2004.06.024 (2005).ADS
Article
Google Scholar
64.Martínez–Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, https://doi.org/10.1029/2008PA001657 (2009).65.Crundwell, M., Scott, G., Naish, T. & Carter, L. Glacial–interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 202–229, https://doi.org/10.1016/j.palaeo.2007.08.023 (2008).ADS
Article
Google Scholar
66.Hayward, B. W. et al. The effect of submerged plateaux on Pleistocene gyral circulation and sea-surface temperatures in the Southwest Pacific. Global and Planetary Change 63, 309–316, https://doi.org/10.1016/j.gloplacha.2008.07.003 (2008).ADS
Article
Google Scholar
67.Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth and Planetary Science Letters 309, 10–20, https://doi.org/10.1016/j.epsl.2011.04.016 (2011).ADS
CAS
Article
Google Scholar
68.Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical Ocean Temperatures Over the Past 3.5 Million Years. Science 328, 1530–1534, https://doi.org/10.1126/science.1185435 (2010).ADS
CAS
Article
PubMed
Google Scholar
69.Nürnberg, D. & Groeneveld, J. Pleistocene variability of the Subtropical Convergence at East Tasman Plateau: Evidence from planktonic foraminiferal Mg/Ca (ODP Site 1172 A). Geochemistry, Geophysics, Geosystems 7, https://doi.org/10.1029/2005GC000984 (2006).70.Dyez, K. A., Ravelo, A. C. & Mix, A. C. Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature. Paleoceanography 31, 2015PA002873, https://doi.org/10.1002/2015PA002873 (2016).Article
Google Scholar
71.Alonso-Garcia, M. et al. Ocean circulation, ice sheet growth and interhemispheric coupling of millennial climate variability during the mid-Pleistocene (ca 800–400ka). Quaternary Science Reviews 30, 3234–3247, https://doi.org/10.1016/j.quascirev.2011.08.005 (2011).ADS
Article
Google Scholar
72.Medina-Elizalde, M. & W Lea, D. The Mid-Pleistocene Transition in the Tropical Pacific. Science 310, 1009–12, https://doi.org/10.1126/science.1115933 (2005).ADS
CAS
Article
PubMed
Google Scholar
73.Liu, Z. Pleistocene climate evolution in the eastern Pacific and implications for the orbital theory of climate change. Ph.D., Brown University, United States – Rhode Island (2004).74.Dyez, K. A. & Ravelo, A. C. Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geological Society of America 41, 23–26, https://doi.org/10.1130/G33425.1 (2013).CAS
Article
Google Scholar
75.Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar Link to the Emergence of the Modern Equatorial Pacific Cold Tongue. Science 328, 1550–1553, https://doi.org/10.1126/science.1184480 (2010).ADS
CAS
Article
PubMed
Google Scholar
76.Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218, https://doi.org/10.1029/2008PA001669 (2009).ADS
Article
Google Scholar
77.Schmidt, M. W., Vautravers, M. J. & Spero, H. J. Western Caribbean sea surface temperatures during the late Quaternary. Geochemistry Geophysics Geosystems 7, https://doi.org/10.1029/2005GC000957 (2006).78.Ho, S. L. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, https://doi.org/10.1029/2012PA002317 (2012).79.Tierney, J. E., deMenocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. The Geological Society of America 45, 1023–1026, https://doi.org/10.1130/G39457.1 (2017).Article
Google Scholar
80.Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 360, 877–881, https://doi.org/10.1126/science.aam5825 (2018).ADS
CAS
Article
PubMed
Google Scholar
81.Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Scientific Reports 6, 24374, https://doi.org/10.1038/srep24374 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
82.Guo, Z. T., Berger, A., Yin, Q. Z. & Qin, L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim. Past 5, 21–31, https://doi.org/10.5194/cp-5-21-2009 (2009).Article
Google Scholar
83.Carolin, S. A. et al. Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6. Earth and Planetary Science Letters 439, 182–193, https://doi.org/10.1016/j.epsl.2016.01.028 (2016).ADS
CAS
Article
Google Scholar
84.Waldmann, N., Torfstein, A. & Stein, M. Northward intrusions of low- and mid-latitude storms across the Saharo-Arabian belt during past interglacials. Geology 38, 567–570, https://doi.org/10.1130/G30654.1 (2010).ADS
CAS
Article
Google Scholar
85.Landwehr, J. M., Sharp, W. D., Coplen, T. B., Ludwig, K. R. & Winograd, I. J. The Chronology for the δ18O Record from Devils Hole, Nevada, Extended Into the Mid-Holocene. Tech. Rep., US Geological Survey (2011).86.Stoykova, D. A., Shopov, Y. Y., Garbeva, D., Tsankov, L. T. & Yonge, C. J. Origin of the climatic cycles from orbital to sub-annual scales. Journal of Atmospheric and Solar-Terrestrial Physics 70, 293–302, https://doi.org/10.1016/j.jastp.2007.08.018 (2008).ADS
Article
Google Scholar
87.Jouzel, J. et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 317, 793–796, https://doi.org/10.1126/science.1141038 (2007).ADS
CAS
Article
PubMed
Google Scholar
88.Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters 39, https://doi.org/10.1029/2011GL050202 (2012).89.Prokopenko, A. A., Hinnov, L. A., Williams, D. F. & Kuzmin, M. I. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews 25, 3431–3457, https://doi.org/10.1016/j.quascirev.2006.10.002 (2006).ADS
Article
Google Scholar
90.Melles, M. et al. 2.8 Million Years of Arctic Climate Change from Lake El’gygytgyn, NE Russia. Science 337, 315–320, https://doi.org/10.1126/science.1222135 (2012).ADS
CAS
Article
PubMed
Google Scholar
91.Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29, 2647–2662, https://doi.org/10.1016/j.quascirev.2010.06.014 (2010).ADS
Article
Google Scholar
92.Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 3181–3199, https://doi.org/10.1016/S0016-7037(02)01031-1 (2003).ADS
CAS
Article
Google Scholar
93.Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646, https://doi.org/10.1038/nature18591 (2016).ADS
CAS
Article
PubMed
Google Scholar
94.Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25, 3416–3430, https://doi.org/10.1016/j.quascirev.2006.09.002 (2006).ADS
Article
Google Scholar
95.Vaks, A. et al. Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384–399, https://doi.org/10.1016/j.epsl.2006.07.009 (2006).ADS
CAS
Article
Google Scholar
96.K. Thomas, E. et al. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters 455, https://doi.org/10.1016/j.epsl.2016.09.044 (2016).97.Hao, Q. et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393–396, https://doi.org/10.1038/nature11493 (2012).ADS
CAS
Article
PubMed
Google Scholar More