Characterizing rhizosphere microbiota of peanut (Arachis hypogaea L.) from pre-sowing to post-harvest of crop under field conditions
1.Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).CAS
Article
PubMed
Google Scholar
2.Bhattarai, A., Bhattarai, B. & Pandey, S. Variation of soil microbial population in different soil horizons. J. Microbiol. Exp. 2, 00044. https://doi.org/10.15406/jmen.2015.02.00044 (2015).Article
Google Scholar
3.Liu, F. et al. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 19, 201. https://doi.org/10.1186/s12866-019-1572-x (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
4.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911-920. https://doi.org/10.1073/pnas.1414592112 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
5.Vives-Peris, V., de Ollas, C., Gomez-Cadenas, A. & Perez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17. https://doi.org/10.1007/s00299-019-02447-5 (2020).CAS
Article
PubMed
Google Scholar
6.Qu, Q. et al. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 68, 5024–5038. https://doi.org/10.1021/acs.jafc.0c00073 (2020).CAS
Article
PubMed
Google Scholar
7.Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146. https://doi.org/10.1186/s40168-019-0756-9 (2019).Article
PubMed
PubMed Central
Google Scholar
8.Cordero, J., de Freitas, J. R. & Germida, J. J. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Can. J. Microbiol. 66, 71–85. https://doi.org/10.1139/cjm-2019-0330 (2020).CAS
Article
PubMed
Google Scholar
9.Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403. https://doi.org/10.1016/j.chom.2015.01.011 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90. https://doi.org/10.1038/nature11237 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
11.Leoni, C. et al. Plant Health and Rhizosphere microbiome: Effects of the bionematicide Aphanocladium album in tomato plants infested by Meloidogyne javanica. Microorganisms https://doi.org/10.3390/microorganisms8121922 (2020).Article
PubMed
PubMed Central
Google Scholar
12.Vitulo, N. et al. Bark and grape microbiome of vitis vinifera: Influence of geographic patterns and agronomic management on bacterial diversity. Front. Microbiol. 9, 3203. https://doi.org/10.3389/fmicb.2018.03203 (2018).Article
PubMed
Google Scholar
13.Hu, J. et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ. Microbiol. 22, 5005–5018. https://doi.org/10.1111/1462-2920.15097 (2020).Article
PubMed
Google Scholar
14.Qiao, Q. et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 3940. https://doi.org/10.1038/s41598-017-04213-7 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
15.Baudoin, E., Benizri, E. & Guckert, A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl. Soil. Ecol. 19, 135–145. https://doi.org/10.1016/S0929-1393(01)00185-8 (2002).Article
Google Scholar
16.DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178. https://doi.org/10.1038/ismej.2008.103 (2009).CAS
Article
PubMed
Google Scholar
17.Ding, L. J. et al. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz040 (2019).Article
PubMed
Google Scholar
18.Fan, K. et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 113, 275–284. https://doi.org/10.1016/j.soilbio.2017.06.020 (2017).CAS
Article
Google Scholar
19.Jaiswal, S. K., Mohammed, M. & Dakora, F. D. Microbial community structure in the rhizosphere of the orphan legume Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Mol. Biol. Rep. 46, 4471–4481. https://doi.org/10.1007/s11033-019-04902-8 (2019).CAS
Article
PubMed
Google Scholar
20.Kuramae, E. E. et al. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol. Ecol. 79, 12–24. https://doi.org/10.1111/j.1574-6941.2011.01192.x (2012).CAS
Article
PubMed
Google Scholar
21.Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. https://doi.org/10.1128/AEM.00335-09 (2009).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
22.Mendes, L. W., Kuramae, E. E., Navarrete, A. A., van Veen, J. A. & Tsai, S. M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577–1587. https://doi.org/10.1038/ismej.2014.17 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
23.Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548–6553. https://doi.org/10.1073/pnas.1302837110 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
24.Perez-Jaramillo, J. E. et al. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7, 114. https://doi.org/10.1186/s40168-019-0727-1 (2019).Article
PubMed
PubMed Central
Google Scholar
25.Sugiyama, A., Ueda, Y., Zushi, T., Takase, H. & Yazaki, K. Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS ONE 9, e100709. https://doi.org/10.1371/journal.pone.0100709 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
26.Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894. https://doi.org/10.1038/s41467-018-07343-2 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
27.Haldar, S. & Sengupta, S. Impact of plant development on the rhizobacterial population of Arachis hypogaea: A multifactorial analysis. J. Basic Microbiol. 55, 922–928. https://doi.org/10.1002/jobm.201400683 (2015).CAS
Article
PubMed
Google Scholar
28.Dai, L. et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20092265 (2019).Article
PubMed
PubMed Central
Google Scholar
29.Desmae, H. et al. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breed 138, 425–444. https://doi.org/10.1111/pbr.12645 (2019).Article
PubMed
Google Scholar
30.Pandey, M. K. et al. Translational genomics for achieving higher genetic gains in groundnut. Theor. Appl. Genet. 133, 1679–1702. https://doi.org/10.1007/s00122-020-03592-2 (2020).Article
PubMed
PubMed Central
Google Scholar
31.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086. https://doi.org/10.1038/s41587-020-0501-8 (2020).CAS
Article
PubMed
Google Scholar
33.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004. https://doi.org/10.1038/nbt.4229 (2018).CAS
Article
PubMed
Google Scholar
34.Lalucat, J., Mulet, M., Gomila, M. & Garcia-Valdes, E. Genomics in bacterial taxonomy: impact on the genus pseudomonas. Genes https://doi.org/10.3390/genes11020139 (2020).Article
PubMed
PubMed Central
Google Scholar
35.Correa-Galeote, D., Bedmar, E. J., Fernandez-Gonzalez, A. J., Fernandez-Lopez, M. & Arone, G. J. Bacterial communities in the rhizosphere of Amilaceous Maize (Zea mays L.) as assessed by pyrosequencing. Front. Plant Sci. 7, 1016. https://doi.org/10.3389/fpls.2016.01016 (2016).Article
PubMed
PubMed Central
Google Scholar
36.Xu, Y. et al. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). Int. Microbiol. 23, 453–465. https://doi.org/10.1007/s10123-020-00118-0 (2020).CAS
Article
PubMed
Google Scholar
37.Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140. https://doi.org/10.1111/1462-2920.14031 (2018).CAS
Article
PubMed
Google Scholar
38.Ansari, F. A. & Ahmad, I. Isolation, functional characterization and efficacy of biofilm-forming rhizobacteria under abiotic stress conditions. Antonie Van Leeuwenhoek 112, 1827–1839. https://doi.org/10.1007/s10482-019-01306-3 (2019).CAS
Article
PubMed
Google Scholar
39.Singh, T. B. et al. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr. Microbiol. 77, 3633–3642. https://doi.org/10.1007/s00284-020-02165-2 (2020).CAS
Article
PubMed
Google Scholar
40.Govindasamy, V. et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 10, 13. https://doi.org/10.1007/s13205-019-2001-4 (2020).Article
PubMed
Google Scholar
41.Abedinzadeh, M., Etesami, H. & Alikhani, H. A. Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol. Rep. 21, e00305. https://doi.org/10.1016/j.btre.2019.e00305 (2019).Article
Google Scholar
42.Hashem, A., Tabassum, B. & Allah, F. A. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 26, 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
43.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542. https://doi.org/10.1038/s41564-017-0012-7 (2017).CAS
Article
PubMed
Google Scholar
44.Gomez-Lama Cabanas, C. et al. Indigenous Pseudomonas spp. strains from the olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Front. Microbiol. 9, 277. https://doi.org/10.3389/fmicb.2018.00277 (2018).Article
PubMed
PubMed Central
Google Scholar
45.Ansari, F. A. & Ahmad, I. Fluorescent pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci. Rep. 9, 4547. https://doi.org/10.1038/s41598-019-40864-4 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
46.Pandey, K. K., Mayilraj, S. & Chakrabarti, T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int. J. Syst. Evol. Microbiol. 52, 1559–1567. https://doi.org/10.1099/00207713-52-5-1559 (2002).CAS
Article
PubMed
Google Scholar
47.Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22. https://doi.org/10.1016/j.mib.2017.03.010 (2017).Article
PubMed
Google Scholar
48.Adam, E., Bernhart, M., Müller, H., Winkler, J. & Berg, G. The Cucurbita pepo seed microbiome: Genotype-specific composition and implications for breeding. Plant Soil 422, 35–49. https://doi.org/10.1007/s11104-016-3113-9 (2018).CAS
Article
Google Scholar
49.Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50. https://doi.org/10.1111/1758-2229.12181 (2015).Article
Google Scholar
50.Kong, H. G., Song, G. C. & Ryu, C.-M. Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environ. Microbiol. Rep. 11, 479–486. https://doi.org/10.1111/1758-2229.12760 (2019).Article
PubMed
Google Scholar
51.Frindte, K., Pape, R., Werner, K., Loffler, J. & Knief, C. Temperature and soil moisture control microbial community composition in an arctic-alpine ecosystem along elevational and micro-topographic gradients. ISME J. 13, 2031–2043. https://doi.org/10.1038/s41396-019-0409-9 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
52.Cook, R. J. et al. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U.S.A. 92, 4197–4201. https://doi.org/10.1073/pnas.92.10.4197 (1995).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
53.Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803. https://doi.org/10.1038/ismej.2013.196 (2014).CAS
Article
PubMed
Google Scholar
54.Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. & Gobi, T. A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2, 587. https://doi.org/10.1186/2193-1801-2-587 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
55.Kumar, A., Prakash, A. & Johri, B. N. In Bacteria in Agrobiology: Crop Ecosystems (ed. Maheshwari, D. K.) 37–59 (Springer, 2011).Chapter
Google Scholar
56.Sachdev, D., Nema, P., Dhakephalkar, P., Zinjarde, S. & Chopade, B. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol. Res. 165, 627–638. https://doi.org/10.1016/j.micres.2009.12.002 (2010).CAS
Article
PubMed
Google Scholar
57.Lareen, A., Burton, F. & Schafer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90, 575–587. https://doi.org/10.1007/s11103-015-0417-8 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
58.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1. https://doi.org/10.1093/nar/gks808 (2013).CAS
Article
PubMed
Google Scholar
59.Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Res 5, 1492. https://doi.org/10.12688/f1000research.8986.2 (2016).Article
PubMed
PubMed Central
Google Scholar
60.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2019).61.Alishum, A. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea. doi: 10.5281/zenodo.2541239 (2019).62.Callahan, B. Silva taxonomic training data formatted for DADA2 (Silva version 132). doi: 10.5281/zenodo.1172783 (2018).63.Callahan, B. RDP taxonomic training data formatted for DADA2 (RDP trainset 16/release 11.5). doi: 10.5281/zenodo.801828 (2017).64.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
65.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.2.5. https://CRAN.R-project.org/package=ggpubr (2020).66.Lahti, L. & Shetty, S. Tools for microbiome analysis in R Version 2.1.26. http://microbiome.github.com/microbiome (2017).67.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).68.Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. R package version 0.0.1. (2017).69.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
70.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book
Google Scholar
71.Martin, C. ggConvexHull: Add a convex hull geom to ggplot2. R package version 0.1.0. http://github.com/cmartin/ggConvexHull (2017).72.Campitelli, E. ggnewscale: Multiple Fill and Colour Scales in ‘ggplot2’. R package version 0.4.1. https://CRAN.R-project.org/package=ggnewscale (2020).73.Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.8.2. https://CRAN.R-project.org/package=ggrepel (2020).74.Dowle, M. & Srinivasan, A. data.table: Extension of `data.frame`. R package version 1.12.8. https://CRAN.R-project.org/package=data.table (2019).75.Ammar, R. randomcoloR: Generate Attractive Random Colors. R package version 1.1.0.1. https://CRAN.R-project.org/package=randomcoloR (2019).76.Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.0.0. https://CRAN.R-project.org/package=tidyr (2019).77.Wichmann, H. & Seidel, D. scales: Scale Functions for Visualization. R package version 1.1.0. https://CRAN.R-project.org/package=scales (2019).78.Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1–2. https://CRAN.R-project.org/package=RColorBrewer (2014). More