More stories

  • in

    Increased ranking change in wheat breeding under climate change

    1.Reynolds, M. P. et al. Improving global integration of crop research. Science 357, 359–360 (2017).CAS 
    Article 

    Google Scholar 
    2.Braun, H., Atlin, G. & Payne, T. Multi-location testing as a tool to identify plant response to global climate change. in Climate Change and Crop Production (ed. Reynolds, M. P.) 115–138 (CABI, 2010).3.Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 

    Google Scholar 
    4.Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).Article 

    Google Scholar 
    5.Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 14–21 (2007).Article 

    Google Scholar 
    6.Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).Article 

    Google Scholar 
    7.Crespo-Herrera, L. A. et al. Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype × environment interaction. Crop Sci. 57, 789–801 (2017).Article 

    Google Scholar 
    8.Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).CAS 
    Article 

    Google Scholar 
    9.Rosegrant, M. W. & Cline, S. A. Global food security: challenges and polices. Science 302, 1917–1919 (2003).CAS 
    Article 

    Google Scholar 
    10.Li, Y., Suontama, M., Burdon, R. D. & Dungey, H. S. Genotype by environment interactions in forest tree breeding: review of methodology and perspective on research and application. Tree Genet. Genomes 13, 60 (2017).Article 

    Google Scholar 
    11.Mishra, R. M. et al. Crossover interactions for grain yield in multienvironmental trials of winter wheat. Crop Sci. 46, 1291–1298 (2006).Article 

    Google Scholar 
    12.Allard, R. W. & Bradshaw, A. D. Implications of genotype–environmental interactions in applied plant breeding. Crop Sci. 4, 503–508 (1964).Article 

    Google Scholar 
    13.Reynolds, M. P., Hays, D. & Chapman, S. Breeding for adaptation to heat and drought stress. in Climate Change and Crop Production (ed. Reynolds, M. P.) 71–91 (CABI, 2010).14.Leon, N., Jannink, J., Edwards, J. W. & Kaeppler, S. M. Introduction to a special issue on genotype by environment interaction. Crop Sci. 56, 2081–2089 (2016).Article 

    Google Scholar 
    15.Reynolds, M. & Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171 (2016).Article 

    Google Scholar 
    16.Gourdji, S. M., Mathews, K. L., Reynolds, M., Crossa, J. & Lobell, D. B. An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc. R. Soc. B. 2018, 20122190 (2012).
    Google Scholar 
    17.Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).CAS 
    Article 

    Google Scholar 
    18.Sharma, R. C. et al. Genetic gains for grain yield in CIMMYT spring bred wheat across international environment. Crop Sci. 52, 1522–1533 (2012).Article 

    Google Scholar 
    19.Boehm Jr, J. D., Ibba, M., Kiszonas, A. & Morris, C. F. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality. Crop Sci. 57, 1485–1498 (2017).Article 

    Google Scholar 
    20.Lillemo, M., van Ginkel, M., Trethowan, R. M., Hernandez, E. & Crossa, J. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci. 45, 2443–2453 (2005).Article 

    Google Scholar 
    21.Manes, Y. et al. Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Sci. 52, 1543–1552 (2012).Article 

    Google Scholar 
    22.You, L. et al. Spatial Production Allocation Model (SPAM) 2005 V3.2 International Food Policy Research Institute (IFPRI), International Institute fo Applied Systems Analysis (IIASA) (2017).23.Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programme. Aus. J. Agric. Res. 14, 742–754 (1963).Article 

    Google Scholar 
    24.De los Campos et al. A data-driven simulation platform to predict cultivars’ performance under uncertain weather conditions. Nat. Commun. 11, 4876 (2020).Article 

    Google Scholar 
    25.Lantican, M. A. et al. Impacts of International Wheat Improvement Research 1994–2014 (CIMMYT, 2016).26.Dreccer, M. F., Bonnett, D. & Lafarge, T. Plant breeding under a changing climate. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 8013–8024 (Springer, 2012).27.Laiding, F., Drobek, T. & Meyer, U. Genotypic and environmental variability of yield for cultivars from 30 different crops in German official variety trials. Plant Breed. 127, 541–547 (2008).Article 

    Google Scholar 
    28.Allard, R. W. Principles of Plant Breeding 2nd edn (John Wiley & Sons, 1999).29.Kusmec, A., Srinivasan, S., Nettleton, D. & Schnable, P. S. Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat. Plants 3, 715–723 (2017).CAS 
    Article 

    Google Scholar 
    30.Gauch, H. G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs (Elsevier, 1992). More

  • in

    Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens

    1.Huang Y, Liu Q, Jia WQ, Yan CR, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut. 2020;260:114096.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Li WF, Wufuer R, Duo J, Wang SZ, Luo YM, Zhang DY, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci Total Environ. 2020;749:141420.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Weithmann N, Moller JN, Loder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv. 2018;4:eaap8060.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Jiang JH, Wang XW, Ren HY, Cao GL, Xie GJ, Xing DF, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci Total Environ. 2020;746:141378.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun. 2020;11:3381.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Roblin B, Ryan M, Vreugdenhil A, Aherne J. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland). Environ Sci Technol. 2020;54:11100–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Xu CY, Zhang BB, Gu CJ, Shen CS, Yin SS, Aamir M, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J Hazard Mater. 2020;400:123228.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Machado AAD, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol. 2018;24:1405–16.Article 

    Google Scholar 
    9.Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020;368:1430–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol. 2016;50:5774–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Boots B, Russell CW, Green DS. Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol. 2019;53:11496–506.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Li H-Z, Zhu D, Lindhardt JH, Lin S-M, Ke X, Cui L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ Sci Technol. 2021;55:4658–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Machado AAD, Lau CW, Kloas W, Bergmann J, Bacheher JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53:6044–52.Article 
    CAS 

    Google Scholar 
    14.Zhu D, Chen Q-L, An X-L, Yang X-R, Christie P, Ke X, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem. 2018;116:302–10.CAS 
    Article 

    Google Scholar 
    15.Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Arias-Andres M. Who is where in the plastisphere, and why does it matter? Mol Ecol Resour. 2020;20:617–9.Article 

    Google Scholar 
    17.Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the plastisphere. ISME J. 2020;15:789–806.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Yang Y, Liu W, Zhang Z, Grossart H-P, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biot. 2020;104:6501–11.CAS 
    Article 

    Google Scholar 
    19.Bhagwat G, Zhu Q, O’Connor W, Subashchandrabose S, Grainge I, Knight R, et al. Exploring the composition and functions of plastic microbiome using whole-genome sequencing. Environ Sci Technol. 2021;55:4899–913.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Arias-Andres M, Klumper U, Rojas-Jimenez K, Grossart HP. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut. 2018;237:253–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Zhou J, Gui H, Banfield CC, Wen Y, Zang H, Dippold MA, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem. 2021;156:108211.CAS 
    Article 

    Google Scholar 
    22.Hernando-Amado S, Coquet TM, Baquero F, Martinez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4:1432–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186–200.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Zhu Y-G, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, et al. Soil biota, antimicrobial resistance and planetary health. Environ Int. 2019;131:105059.PubMed 
    Article 

    Google Scholar 
    25.Bank MS, Ok YS, Swarzenski PW. Microplastic’s role in antibiotic resistance. Science. 2020;369:1315.PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019;165:114979.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Yang K, Chen Q-L, Chen M-L, Li H-Z, Liao H, Pu Q, et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environ Sci Technol. 2020;54:11322–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Yang YY, Liu GH, Song WJ, Ye C, Lin H, Li Z, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Lu X-M, Lu P-Z, Liu X-P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci Total Environ. 2020;709:136276.CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Yan XY, Yang XY, Tang Z, Fu JJ, Chen FM, Zhao Y, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ Pollut. 2020;262:114270.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Zhu D, Ding J, Yin Y, Ke X, O’Connor P, Zhu Y-G. Effects of earthworms on the microbiomes and antibiotic resistomes of detritus fauna and phyllospheres. Environ Sci Technol. 2020;54:6000–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol R 2017;81:e00002–17.Article 

    Google Scholar 
    35.Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 2019;366:886–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Change Biol. 2020;26:3221–9.Article 

    Google Scholar 
    38.de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. Soil microbial moisture dependences and responses to drying-rewetting: the legacy of 18 years drought. Glob Change Biol. 2019;25:1005–15.Article 

    Google Scholar 
    39.Li MM, Ray P, Teets C, Pruden A, Xia K, Knowlton KF. Short communication: Increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries. J Dairy Sci. 2020;103:2877–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Luo T, Wang Y, Pandey P. The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment. Environ Sci Pollut R. 2021;28:6675–83.CAS 
    Article 

    Google Scholar 
    41.Yun H, Liang B, Ding Y, Li S, Wang Z, Khan A, et al. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Res. 2021;194:116926.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Zhang Y-J, Hu H-W, Chen Q-L, Singh BK, Yan H, Chen D, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int. 2019;130:104912.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Zhou S-Y-D, Zhu D, Giles M, Daniell T, Neilson R, Yang X-R. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environ Int. 2020;136:105359.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Chen Y, Leng Y, Liu X, Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut. 2020;257:113449.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review. Crit Rev Env Sci Tec. 2020;50:2175–222.CAS 
    Article 

    Google Scholar 
    48.Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.PubMed 
    Article 

    Google Scholar 
    49.Zhu D, An X-L, Chen Q-L, Yang X-R, Christie P, Ke X, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ Sci Technol. 2018;52:3081–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Zhu D, Delgado-Baquerizo M, Su J-Q, Ding J, Li H, Gillings MR, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ Sci Technol. 2021;55:7445–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 2016;10:1998–2009.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Liu C, Li H, Zhang Y, Si D, Chen Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour Technol. 2016;216:87–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Zhu D, Xiang Q, Yang X-R, Ke X, O’Connor P, Zhu Y-G. Trophic transfer of antibiotic resistance genes in a soil detritus food chain. Environ Sci Technol. 2019;53:7770–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018;6:90.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Chen Q, An X, Li H, Su J, Ma Y, Zhu Y-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92-93:1–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Li H, Zhou X-Y, Yang X-R, Zhu Y-G, Hong Y-W, Su J-Q. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci Total Environ. 2019;665:61–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:884–90.Article 
    CAS 

    Google Scholar 
    59.Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.PubMed 
    Article 

    Google Scholar 
    61.Brown LD, Cai TT, DasGupta A, Agresti A, Coull BA, Casella G, et al. Interval estimation for a binomial proportion—comment—rejoinder. Stat Sci. 2001;16:101–33.Article 

    Google Scholar 
    62.Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    64.Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome. 2020;15:11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Frere L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ Pollut. 2018;242:614–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Parrish K, Fahrenfeld NL. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ Sci-Wat Res. 2019;5:495–505.CAS 

    Google Scholar 
    67.Hossain MR, Jiang M, Wei Q, Leff LG. Microplastic surface properties affect bacterial colonization in freshwater. J Basic Micro. 2019;59:54–61.CAS 
    Article 

    Google Scholar 
    68.Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Hesse E, O’Brien S, Luján AM, Sanders D, Bayer F, van Veen EM, et al. Stress causes interspecific facilitation within a compost community. Ecol Lett. 2021;00:1–9.
    Google Scholar 
    70.Kurtz ZD, Mueller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Adair KL, Wilson M, Bost A, Douglas AE. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 2018;12:959–72.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. Msystems. 2016;1:e00024–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Kwon J-H, Chang S, Hong SH, Shim WJ. Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives. Integr Environ Assess. 2017;13:494–9.Article 

    Google Scholar 
    75.Xiang Q, Zhu D, Chen Q-L, O’Connor P, Yang X-R, Qiao M, et al. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (similar to 2 mm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environ Sci Technol. 2019;53:12823–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Virsek MK, Lovsin MN, Koren S, Krzan A, Peterlin M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull. 2017;125:301–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Caruso G. Microplastics as vectors of contaminants. Mar Pollut Bull. 2019;146:921–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    78.MacLean RC, San Millan A. The evolution of antibiotic resistance. Science. 2019;365:1082–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ Pollut. 2018;237:460–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Zhang H, Wang J, Zhou B, Zhou Y, Dai Z, Zhou Q, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ Pollut. 2018;243:1550–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    1.Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012;109:35–47.Article 

    Google Scholar 
    2.Behm JE, Kiers ET. A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol. 2014;102:315–27.Article 

    Google Scholar 
    3.Relyea RA. Phenotypic plasticity in the interactions and evolution of species. Ecology. 2005;86:321–6.Article 

    Google Scholar 
    4.Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann N Y Acad Sci. 2010;1206:35–55.PubMed 
    Article 

    Google Scholar 
    5.Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15:684–92.CAS 
    Article 

    Google Scholar 
    6.Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol. 2008;14:1125–40.Article 

    Google Scholar 
    7.Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000;5:537–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Chevin LM, Gallet R, Gomulkiewicz R, Holt RD, Fellous S Phenotypic plasticity in evolutionary rescue experiments. Philos Trans R Soc B Biol Sci. 2013;368:20120089.9.Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett. 2014;17:1351–64.PubMed 
    Article 

    Google Scholar 
    10.Slepecky RA, Starmer WT. Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia. 2009;101:823–32.PubMed 
    Article 

    Google Scholar 
    11.Grimbergen AJ, Siebring J, Solopova A, Kuipers OP. Microbial bet-hedging: the power of being different. Curr Opin Microbiol. 2015;25:67–72.PubMed 
    Article 

    Google Scholar 
    12.Rong M, Zheng X, Ye M, Bai J, Xie X, Jin Y, et al. Phenotypic plasticity of staphylococcus aureus in liquid medium containing vancomycin. Front Microbiol. 2019;10:1–11.Article 

    Google Scholar 
    13.Schmidt K, van Oosterhout C, Collins S, Mock T. The role of phenotypic plasticity and epigenetics in experimental evolution with phytoplankton. Perspect Phycol. 2016;3:29–36.
    Google Scholar 
    14.Graham EB, Crump AR, Kennedy DW, Arntzen E, Fansler S, Purvine SO, et al. Multi’omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Sci Total Environ. 2018;642:742–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Frac M, Hannula SE, Belka M, Jȩdryczka M. Fungal biodiversity and their role in soil health. Front Microbiol. 2018;9:1–9.Article 

    Google Scholar 
    17.Ritz K, Young IM. Interactions between soil structure and fungi. Mycologist. 2004;18:52–59.Article 

    Google Scholar 
    18.Kwon MJ, Haraguchi A, Kang H. Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biol Biochem. 2013;60:33–44.CAS 
    Article 

    Google Scholar 
    19.Sardans J, Peñuelas J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem. 2005;37:455–61.CAS 
    Article 

    Google Scholar 
    20.Hsu JP, Chen TH, Wang HH. A kinetic study of the growth of a Rhizopus colony. J Theor Biol. 1989;140:445–51.Article 

    Google Scholar 
    21.Baath E. Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol. Soil Biol Biochem. 2001;33:2011–8.CAS 
    Article 

    Google Scholar 
    22.Querejeta JI. Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. Mycorrhizal mediation of soil. Elsevier; 2017. p. 299–317.23.Tisdall JM. Fungal hyphae and structural stability of soil. Aust J Soil Res. 1991;29:729–43.Article 

    Google Scholar 
    24.Augé RM, Stodola AJW, Tims JE, Saxton AM. Moisture retention properties of a mycorrhizal soil. Plant Soil. 2001;230:87–97.Article 

    Google Scholar 
    25.Chevin LM, Lande R, Mace GM. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 2010;8:e1000357.26.Rodriguez C, Dominguez A. The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Can J Microbiol. 1984;30:605–12.CAS 
    Article 

    Google Scholar 
    27.De Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, et al. Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang. 2012;2:276–80.Article 

    Google Scholar 
    28.Xiong J, Peng F, Sun H, Xue X, Chu H. Divergent responses of soil fungi functional groups to short-term warming. Microb Ecol. 2014;68:708–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Chevin LM, Collins S, Lefèvre F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol. 2013;27:967–79.Article 

    Google Scholar 
    30.Beier S, Rivers AR, Moran MA, Obernosterer I. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures. ISME J. 2015;9:1141–51.PubMed 
    Article 

    Google Scholar 
    31.Hall EK, Singer GA, Kainz MJ, Lennon JT. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Funct Ecol. 2010;24:898–908.Article 

    Google Scholar 
    32.Lennon JT, Aanderud ZT, Lehmkuhl BK Jr, Mapping DRS. the niche space of soil microorganisms using taxonomy and traits. Ecology. 2016;93:1867–79.Article 

    Google Scholar 
    33.Glassman SI, Weihe C, Li J, Albright M, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Bárcenas‐Moreno G, Gómez‐Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.Article 

    Google Scholar 
    35.Geisseler D, Horwath WR, Scow KM. Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia. 2011;54:71–78.Article 

    Google Scholar 
    36.Allison SD, Romero-Olivares AL, Lu L, Taylor JW, Treseder KK. Temperature acclimation and adaptation of enzyme physiology in Neurospora discreta. Fungal Ecol. 2018;35:78–86.Article 

    Google Scholar 
    37.Cross D, Kenerley CM. Modelling the growth of Trichoderma virens with limited sampling of digital images. J Appl Microbiol. 2004;97:486–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Ramin KI, Allison SD. Bacterial tradeoffs in growth rate and extracellular enzymes. Front Microbiol. 2019;10:1–10.Article 

    Google Scholar 
    39.Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.PubMed 
    Article 

    Google Scholar 
    41.Amend AS, Martiny AC, Allison SD, Berlemont R, Goulden ML, Lu Y, et al. Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME J. 2016;10:109–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.A’Bear AD, Jones TH, Kandeler E, Boddy L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol Biochem. 2014;70:151–8.Article 
    CAS 

    Google Scholar 
    43.Alster CJ, German DP, Lu Y, Allison SD. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol Biochem. 2013;64:68–79.CAS 
    Article 

    Google Scholar 
    44.Alster CJ, Weller ZD, von Fischer JC. A meta‐analysis of temperature sensitivity as a microbial trait. Glob Chang Biol. 2018;24:4211–4224.45.Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, et al. Who is who in litter decomposition Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 2012;6:1749–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Luo L, Meng H, Gu JD. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J Environ Manage. 2017;197:539–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Haas L. Conquests and historical identities in California, 1769–1936. 1995. University of California Press.48.KIZH Nation. KIZH NATION (Pronounced Keech), Gabrieleño Band Of Mission Indians. https://gabrielenoindians.org/. Accessed 23 Sep 2020.49.Kimball S, Goulden ML, Suding KN, Parker S. Altered water and nitrogen input shifts succession in a southern California coastal sage community. Ecol Appl. 2014;24:1390–404.PubMed 
    Article 

    Google Scholar 
    50.Potts DL, Suding KN, Winston GC, Rocha AV, Goulden ML. Ecological effects of experimental drought and prescribed fire in a southern California coastal grassland. J Arid Environ. 2012;81:59–66.Article 

    Google Scholar 
    51.Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 2017;11:490–9.PubMed 
    Article 

    Google Scholar 
    52.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). Pcr protocols: a guide to methods and applications. 1990. Academic Press, Inc., San Diego, California, USA; London, England, Uk., pp 315–22.53.Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Matulich KL, Weihe C, Allison SD, Amend AS, Berlemont R, Goulden ML, et al. Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME J. 2015;9:2477–89.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Connor EW, Sandy M, Hawkes CV. Microbial tools in agriculture require an ecological context: Stress-dependent non-additive symbiont interactions. Agron J. 2017;109:917–26.Article 

    Google Scholar 
    56.Sinsabaugh RL, Carreiro MM, Alvarez S. Enzyme and microbial dynamics of litter decomposition. Enzymes in the Environment activity ecology and applications. Marcel Dekker, New York, Basel 2002; 249–65.57.Wohl DL, McArthur JV. Aquatic actinomycete-fungal interactions and their effects on organic matter decomposition: a microcosm stu in the dy. Microb Ecol. 2001;42:446–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Alster CJ, Allison SD, Glassman SI, Martiny A, Treseder K. Exploring trait trade-offs for fungal decomposers in a Southern California grassland. Front Microbiol. 2021;12:665.Article 

    Google Scholar 
    59.Allison SD, Lu Y, Weihe C, Goulden ML, Martiny AC, Treseder KK, et al. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology. 2013;94:714–25.PubMed 
    Article 

    Google Scholar 
    60.Shen Q, Kirschbaum MUF, Hedley MJ, Arbestain MC. Testing an alternative method for estimating the length of fungal hyphae using photomicrography and image processing. PLoS One. 2016;11:1–12.
    Google Scholar 
    61.Killham K. Soil Microbiology and Biochemistry. By EA PAUL and FE CLARK. 23×15 cm. Pp. xiii+340 with 108 text-figures. San Diego, CA, USA: Academic Press: 2nd Edition, 1996. Price h/b: £29.95, ISBN 0 12 546806 7. New Phytol. 1998;138: 563–6.62.Sylvia DM 3 Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi. Methods in microbiology. 1992. Elsevier, pp 53–65.63.Bakken LR, Olsen RA. Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol. 1983;45:1188–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. 2020. R Foundation for Statistical Computing, Vienna, Austria.65.Lenth RV. Response-surface methods in R, using RSM. J Stat Softw. 2009;32:1–17.Article 

    Google Scholar 
    66.Khuri AI. A general overview of response surface methodology. Biometrics Biostat Int J. 2017;5:87–93.
    Google Scholar 
    67.Aydar AY. Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes. InTech; 2018. p. 157–69.68.Brasil JL, Martins LC, Ev RR, Dupont J, Dias SLP, Sales JAA, et al. Factorial design for optimization of flow-injection preconcentration procedure for copper(II) determination in natural waters, using 2-aminomethylpyridine grafted silica gel as adsorbent and spectrophotometric detection. Int J Environ Anal Chem. 2005;85:475–91.CAS 
    Article 

    Google Scholar 
    69.Montgomery DC. Design and analysis of experiments, ninth. 2017. Wiley.70.Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package version 133, 2019. https://CRAN.R-project.org/package=emmeans71.Pagel M. Inferring historical patterns of biological evolution. Nature. 1999;401:877–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution. 2003;57:717–45.Article 

    Google Scholar 
    73.Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.Article 

    Google Scholar 
    74.Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Green JL, Bohannan BJM, Whitaker RJ. Microbial biogeography: from taxonomy to traits. Science. 2008;320:1039–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.García FC, Bestion E, Warfield R, Yvon-Durochera G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci USA. 2018;115:10989–94.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Pold G, DeAngelis KM. Up against the wall: the effects of climate warming on soil microbial diversity and the potential for feedbacks to the carbon cycle. Diversity. 2013;5:409–25.CAS 
    Article 

    Google Scholar 
    78.Nielsen UN, Wall DH, Six J. Soil biodiversity and the environment. Annu Rev Environ Resour. 2015;40:63–90.Article 

    Google Scholar 
    79.Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship. Oikos. 2000;90:279–94.Article 

    Google Scholar 
    80.Goberna M, Navarro-Cano JA, Valiente-Banuet A, García C, Verdú M. Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett. 2014;17:1191–201.PubMed 
    Article 

    Google Scholar 
    81.Mayfield MM, Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett. 2010;13:1085–93.PubMed 
    Article 

    Google Scholar 
    82.Morrison EW, Pringle A, Van Diepen LTA, Frey SD. Simulated nitrogen deposition favors stress-tolerant fungi with low potential for decomposition. Soil Biol Biochem. 2018;125:75–85.CAS 
    Article 

    Google Scholar 
    83.Romero-Olivares AL, Meléndrez-Carballo G, Lago-Lestón A. Soil metatranscriptomes under long-term experimental warming and drying: fungi allocate resources to cell metabolic maintenance rather than decay. Front Microbiol. 2019;10:1–9.Article 

    Google Scholar 
    84.Malik AA, Martiny JBH, Brodie EL, Allison SD, Martiny AC. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:2236–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:4.Article 

    Google Scholar 
    86.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:1–9.Article 

    Google Scholar 
    87.Rafiq M, Hassan N, Rehman M, Hasan F. Adaptation mechanisms and applications of psychrophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds). Fungi in extreme environments: ecological role and biotechnological significance. 2019. Springer International Publishing, Cham, pp 157–74.88.Alster CJ, Baas P, Wallenstein MD, Johnson NG, von Fischer JC. Temperature sensitivity as a microbial trait using parameters from macromolecular rate theory. Front Microbiol 2016;7:1821.89.Angilletta Jr MJ, Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. 2009. Oxford University Press.90.Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. Soil Enzymology. 2011. Springer Berlin/Heidelberg, pp 245–58.91.Allison SD, Weintraub MN, Gartner TB, Waldrop MP. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. Soil Enzymology. 2011. Springer, pp 229–43. More

  • in

    Using plant physiological stable oxygen isotope models to counter food fraud

    Independent reference samplesThe authentic, independent strawberry (Fragaria × ananassa) reference samples used for model validation in this study were provided by Agroisolab GmbH (Jülich, Germany). The samples were collected either directly by the company or on their behalf through authorized sample collectors between 2007 and 2017. The primary purpose of such authentic reference samples is the direct comparison between their stable isotope compositions (oxygen, hydrogen, carbon, nitrogen, or sulfur) to those of samples of suspect origin. Accompanying metadata for each reference sample included information about the geographic origin as community name, postal code, or location coordinates, and information about the month and year the strawberry sample was picked. In total, we used δ18O values from 154 reference samples. Most samples were collected in the UK, Germany, Sweden, and Finland (Fig. 1). All reference samples were grown on open strawberry-fields rather than artificial greenhouse conditions. All berry samples were collected from cultivated, non-endangered plant species (“garden strawberry”), and the research conducted complies with all relevant institutional, the corresponding national, and also international guidelines and legislation.After collection in the field, samples were stored in airtight containers and shipped directly to Agroisolab, where they were stored frozen prior to analysis. In order to analyze the oxygen stable isotope composition of the organic strawberry tissue, the lipids were solvent-extracted with dichloromethane for a at least 4 h, using a Soxhlet extractor. The remaining samples were dried and milled to a fine powder. 1.5 mg of the powder was weighed into silver capsules. The silver capsules were equilibrated for at least 12 h in a desiccator with a fixed relative humidity of 11.3%. After a further vacuum drying the samples were measured via high-temperature furnace (Hekatech, Wegberg, Germany) in combination with an Isotope-ratio mass spectrometer (IRMS) Horizon (NU Instruments, Wrexham, UK). The pyrolysis temperature was 1530 °C and the pyrolysis tube consisted of covalent-bound SiC (Agroisolab patented). The reproducibility of the measurement was better than 0.6 ‰.Oxygen isotope model calculationPlant physiological stable isotope models simulate the oxygen isotopic composition of leaf water or organic compounds synthesized therein as δ18O values in per mil (‰), where δ18O = (18O/16O)sample/(18O/16O)VSMOW − 1, and VSMOW is Vienna Standard Mean Ocean Water as defined by the VSMOW-Standard Light Antarctic Precipitation (SLAP) scale. The Craig-Gordon model57, which was developed to mathematically describe the isotopic enrichment of standing water bodies during evaporation and later modified for plants, is the basis for modelling plant water δ18O values23,58. Plant source water is the baseline for the model, which is the precipitation-derived soil water that plants take up through their roots without isotope fractionation51,59,60. The 18O enrichment of water within leaves is described by the following equation (Eq. 1)36,61:$$ Delta^{18} {text{O}}_{{text{e leaf}}} = left( {1 +upvarepsilon ^{ + } } right)left[ {left( {1 + {upvarepsilon }_{{text{k}}} } right)left( {1 – {text{e}}_{{text{a}}} /{text{e}}_{{text{i}}} } right) + {text{e}}_{{text{a}}} /{text{e}}_{{text{i}}} (1 + Delta^{18} {text{O}}_{{{text{Vapor}}}} )} right]{-}1 $$
    (1)

    where Δ18Oe_leaf is the oxygen isotopic enrichment above source of water at the evaporative site in leaves, ε+ is the equilibrium fractionation between liquid water and water vapor, εk is the kinetic fractionation associated with the diffusion through the stomata and the boundary layer. ea/ei is the ratio of ambient vapor pressure in the atmosphere to intercellular vapor pressure in the leaf. Δ18OVapor is the isotopic composition of the ambient vapor above source water, which in this study is assumed to be in equilibrium with the source water (Δ18OV = − ε+)62,63. This assumption can be used, if the atmosphere is well mixed, and plants’ source water derives from recent precipitation events. For crops, growing in the temperate climate of the mid latitudes this is usually the case, especially over the long time periods (several weeks) over which strawberries grow. If such a model is applied in other climatic zones (e.g. tropics), this assumption should, however, be reevaluated64. The equilibrium fractionation factor (ε+)65,66 and kinetic fractionation factor (εk)67 can be calculated with the following equations (Eqs. 2 and 3):$$upvarepsilon ^{ + } = left[ {exp left( {frac{1.137}{{left( {273 + T} right)^{2} }}*10^{3} – frac{0.4156}{{273 – T}} – 2.0667*10^{ – 3} } right) – 1} right]*1000 $$
    (2)

    where T is the leaf temperature in degrees Celsius. In our calculations, leaf temperature was set to 90% of the monthly mean air temperature, which describes a realistic leaf-energy balance scenario for well-watered crops68,69, and also yielded the best model performance with respect to the reference data. As leaf to air temperature differences have a strong influence on leaf water δ18O values, this assumption needs to be independently tested in future applications. For example, changing leaf temperature from 20 °C to 22 °C at a constant air temperature of 20 °C and a source water δ18O value of -10 ‰ will affect leaf water δ18O values by + 1.4 ‰.$$upvarepsilon _{{text{k}}} = frac{{28{text{r}}_{{text{s}}} + 19{text{r}}_{{text{b}}} }}{{{text{r}}_{{text{s}}} + {text{r}}_{{text{b}}} }} $$
    (3)

    where rs is the stomatal resistance and rb is the boundary layer resistance in m2s/mmol, which is the inverse of the stomatal and boundary layer conductance. For our model calculations, we consistently used stomatal conductance values of 0.4 mol/m2s, stomatal resistance values of 1 m2s/mol70.The Craig-Gordon model predicted leaf water values are often enriched in 18O relative to measured bulk leaf water δ18O values26,27. This is because the model describes the δ18O values of water at the site of evaporation while measurements typically give bulk leaf water δ18O values36,71. The two-pool modification to the Craig-Gordon model corrects for this effect by separating bulk leaf water into a pool of evaporatively enriched water at the site of evaporation (δ18Oe_leaf derived from the Craig-Gordon model, Eq. 1) and a pool of unenriched plant source water (δ18Osource water)25. δ18Oe_leaf is calculated as follows:$$updelta ^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} = , (Delta^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} +updelta ^{18} {text{O}}_{{text{source water}}} ) , + , (Delta^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} * ,updelta ^{18} {text{O}}_{{text{source water}}} )/1000) $$
    (4)
    In the two-pool modified Craig-Gordon model (Eq. 5), the proportion of unenriched source water is described as fxylem36.$$updelta ^{18} {text{O}}_{{text{leaf water}}} = , left( {1 , {-}f_{xylem} } right) , * ,updelta ^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} + , left( {f_{xylem} * ,updelta ^{18} {text{O}}_{{text{source water}}} } right) $$
    (5)
    Values for fxylem in leaf water generally range from 0.10 to 0.3336,37,38,39,40 but higher values have also been observed72. For strawberry plants, leaf water fxylem values were recently shown to vary between 0.24 and 0.3428.Organic molecules in leaves generally reflect the δ18O values of the bulk leaf water plus additional isotopic effects occurring during the assimilation of carbohydrates and post-photosynthetic processes21,22,34. The fractionations occur when carbonyl-group oxygen exchanges with leaf tissue water during the primary assimilation of carbohydrates (trioses and hexoses)42. This process causes 18O enrichment, described as εwc42, and has been determined to be ~  + 27 ‰21,22,73.During the synthesis of cellulose from primary assimilates, sucrose molecules are broken down to glucose and re-joined, allowing some of the carbonyl group oxygen to further exchange with water in the developing cell. The isotopic fractionation (εwc) during this process is assumed to be the same as in the carbonyl oxygen exchange during primary carbohydrate assimilation (~ + 27 ‰)41,42. During the formation of cellulose, the δ18O values of the primary assimilates are thus partially modified by the water in the developing cell33. Equation (6) describes this process34$$updelta ^{18} {text{O}}_{{{text{cellulose}}}} = {text{ p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} *left( {updelta ^{18} {text{O}}_{{text{source water}}} + ,upvarepsilon _{{{text{wc}}}} } right) , + , left( {1 , – {text{p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} } right) , * , left( {updelta ^{18} {text{O}}_{{text{leaf water}}} + ,upvarepsilon _{{{text{wc}}}} } right) $$
    (6)

    where δ18Ocellulose is the oxygen isotopic composition of cellulose, pex is the fraction of carbonyl oxygen in cellulose that exchanges with the medium water during synthesis, and px is the proportion of unenriched source water in the bulk water of the cell where cellulose is synthesized33. Bulk water in developing cells where cellulose is synthesized, i.e. in the leaf growth-and-differentiation zone, has been found to primarily reflect the isotope composition of source water43. Therefore, px in Eq. 6 is likely larger than fxylem in Eq. (5). For practical reasons, the parameters px or pex are typically not determined individually, but as the combined parameter pxpex45. For cellulose in leaves of grasses, crops, and trees pxpex has been found to range from 0.25 to 0.5445,46,47,48,49.In this study as in many applied examples where plant δ18O values are used for origin analysis we attempt to simulate the δ18O values of dried bulk tissue. Bulk dried plant tissue (δ18Obulk) contains in addition to carbohydrates compounds such as lignin, lipids, and proteins, which can be 18O-depleted compared to carbohydrates50. Since this needs to be accounted for in the model, we included the parameter c into the model. As pxpex and c cannot be determined separately they are used as a combined model parameter in our approach pxpexc:$$updelta ^{18} {text{O}}_{{{text{bulk}}}} = {text{ p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} {text{c}}*left( {updelta ^{18} {text{O}}_{{text{source water}}} + ,upvarepsilon _{{{text{wc}}}} } right) , + , left( {1 – {text{ p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} {text{c}}} right) , * , left( {updelta ^{18} {text{O}}_{{text{leaf water}}} + ,upvarepsilon _{{{text{wc}}}} } right) $$
    (7)
    Bulk dried tissue δ18O values of strawberries in Cueni et al. (in review) did not differ statistically from pure cellulose δ18O values in strawberries. Consequently, pxpex and pxpexc are identical for strawberries and ranges from 0.41 to 0.51. This approach allows the calculation of bulk dried tissue δ18O values without the knowledge of cellulose δ18O values, which is the case for the data set used in this study, and contrasts to the approach by Barbour & Farquhar (2000), where bulk dried tissue δ18O values are assessed by an offset (εcp) to the cellulose δ18O values.Model parameter selectionTo find the best values of the key model parameters for the prediction of strawberry bulk dried tissue δ18O values, we used different combinations of the values for the parameters. Specifically, we compared average parameter values from the literature that were derived from leaves and parameter values that were specifically derived for berries (Cueni et al. in review) to test if a leaf-level parameterization of the model is sufficient or if a berry-specific parameterization is necessary for producing satisfying model prediction. These values were either (i) fxylem and pxpex values reported in literature for leaf water and cellulose from various species that were averaged, (ii) values averaged for leaves (fxylem) and berries (pxpexc) of berry producing plants, or (iii) values for leaves (fxylem) and berries (pxpexc) specifically obtained for strawberry plants. For the general leaf-derived parameter values we used mean literature values originally obtained for leaf water and leaf cellulose δ18O for different species and averaged these values (0.22 for fxylem36,37,38,39,40 and 0.40 for pxpex45,46,47,48,49) (Table 1). For berries (average of the values of raspberries and strawberries) the mean leaf-derived fxylem value was 0.26 and the value for pxpexc was determined to be 0.46 (Table 1) (data derived from Cueni et al. in review). For strawberry plants, the leaf-derived fxylem value we used was 0.30, and the value for bulk dried tissue (pxpexc) was determined to be 0.46 (Table 1) (data derived from Cueni et al. in review). Since the pxpexc values of different berry species did not differ, this resulted in a total of six different model input parameter combinations.Table 1 Values of the model parameters (fxylem and pxpex/pxpexc) used for the simulations of strawberry bulk dried tissue δ18O values.Full size tableEnvironmental model input data selectionIn order to apply the strawberry parametrized bulk dried tissue oxygen model on a spatial scale, spatially gridded climate and precipitation isotope data layers were used as model inputs. The accurate simulation of geographically distinct δ18O values, however, requires the use of the most appropriate and best available input variables. We therefore tested the importance of the temporal averaging and lead time of the input data relative to the picking date of the berry. We defined these collectively as the “integration time” of the input data. Climate of the growing season46,53, and precipitation δ18O values of rain-events prior and during the growing season51,54,55 have been shown to shape plant tissue water and organic compound δ18O values. The major objective of our study was thus a careful evaluation of the most appropriate type and integration time of model input variables needed for this kind of model simulation. Moreover, to find the best data source provided, we also used several different spatial climate and precipitation isotope datasets in our evaluations (Table 2).Table 2 (a) Table showing the different climatic (air temperature and vapor pressure) and isotope (precipitation and vapor δ18O) data products, (b) as well as the different integration times and names used in the study used to simulate strawberry bulk dried tissue δ18O values.Full size tableTwo precipitation isotope data products were compared (Table 2): (1) The mean monthly precipitation δ18O grids by Bowen (2020), which are updated versions of the grids produced by Bowen and Revenaugh (2003) and Bowen et al. (2005) (Online Isotopes in Precipitation Calculator, OIPC Version 3.2). They provide global grids of monthly long-term mean precipitation isotope values. The resolution of these global grids is 5’. (2) Precipitation isotope predictions from Piso.AI (Version 1.01)32. This source provides values for individual months and years based on station coordinates32. Both data sets were on the one hand used for the precipitation δ18O input data of the model, and also to extrapolate the vapor δ18O values from sets (see model description above), which we treated as two individual, independent input data sets.For the climatic drivers of the model (air temperature and vapor pressure), we used the gridded data products from the Climatic Research Unit (CRU) (TS Version 4.04)29 and the E-OBS gridded dataset by the European Climate Assessment & Dataset (Version 22.0e)30 (Table 2). The CRU dataset provided global gridded monthly mean air temperature, and mean vapor pressure with a resolution of 0.5°. The E-OBS dataset included European daily mean air temperature and relative humidity gridded data, with a resolution of 0.1 arc-degrees. We calculated monthly mean air temperature and relative humidity grid layers, on the basis of these daily mean air temperature and relative humidity grids, respectively.Fruit tissue formation takes place over a period of several weeks leading up to picking date46,53. This results in a lead time between the date that best represents the mean climate conditions, and source water and vapor stable isotope signal influencing the isotope signal during tissue formation, and the picking date. As integration time of the input data, we therefore investigated lead times of 1, 2, 3, and 4 months, as well as the three months leading up to the picking date (Table 2). Moreover we also used more general European strawberry growing season averages76, independent of either the sampling month (yearly May to July mean) or the sampling year (2007 to 2017 May to July mean) (Table 2). Precipitation isotope data means were calculated as amount-weighted averages using CRU mean monthly precipitation data. This means that the long term mean precipitation δ18O values taken from OIPC were weighted by yearly specific CRU monthly precipitation totals for the case of the three months or growing season averages for individual years, and by average monthly precipitation totals (May, June, and July) from 2007 to 2017 for the long-term growing season calculation. The same assessment was also made using precipitation values from Piso.AI.Validation of model with reference samplesUsing the plant physiological model described above, we calculated the strawberry bulk dried tissue δ18O values for the location and the growing time of each authentic reference sample. For the model input data, we tested variable combinations using each of the eight integration times described in Table 2, along with all combinations of the data sources outlined in Table 2. This resulted in a total of 65,536 combinations of input variables per model parameter combination (fxylem and pxpex/pxpexc, Table 1), yielding model results to be evaluated against the measured reference samples. Our approach can be described with the following equation:$$updelta ^{18} {text{O}},{text{plant }} = fleft( {{text{air}},{text{temp}}left( {text{s,t}} right),{text{ relative}},{text{humidity}}left( {text{s,t}} right), updelta ^{18} {text{O}},{text{precip}}.left( {text{s,t}} right),updelta ^{18} {text{O}},{text{vapor }}left( {text{s,t}} right)} right) $$
    (8)

    where δ18O plant is the simulated δ18O value of the strawberry, s is the data product for the specified input variable (Table 2), and t is the integration time of the specified variable (Table 2).For the crucial model parameters fxylem and pxpex/pxpexc we on the one hand used the values proposed for leaves by literature (for pxpex), and on the other hand average of the values of raspberries and strawberries and strawberry-specific values determined from Cueni et al. (in review) (for pxpexc). In all calculations an εwc value of + 27 ‰ was used. To calculate mean monthly relative humidity values from the provided CRU vapor pressure data, site specific elevation was extracted from the ETOPO1 digital elevation model77, and used to calculate the approximate atmospheric pressure. These values were then used in combination with air temperature to calculate the saturation vapor pressure after Buck (1981), in order to assess relative humidity (relative humidity = vapor pressure/saturation vapor pressure). The R-script of the model is available on “figshare”, find the URL in the data availability statement.Statistical analysesStatistical analyses were done using the statistical package R version 3.5.379. The relationships of the range δ18O values observed with latitude, and between CRU and E-OBS mean air temperature were compared with a linear regression model, and with an alpha level that was set to α = 0.05. The results of the 65,536 models for each of the six physiological parameter combinations were compared with the measured δ18O bulk dried tissue values of the authentic reference samples (n = 154) by calculation of the root mean squared error (RMSE).Calculation of prediction mapsPrediction maps showing the regions of possible origin of a sample with unknown provenance are the product that is of interest in the food forensic industry. We calculated the prediction maps shown in Fig. 5 for three example δ18O values of strawberries collected in July 2017: (i) + 20 ‰ representing a mean Finish/Swedish sample, (ii) + 24.5 ‰ representing a mean German sample, and (iii) + 27 ‰ representing a mean southern European sample.The prediction maps were calculated in a two-step approach. First, we calculated a map of the expected strawberry bulk dried tissue δ18O values of berries grown in July 2017. For this we used the average berry model input parameters (fxylem and pxpexc, Table 1), and the best fitting model input data and integration time combination, which we assessed beforehand (Fig. 2). We thus used CRU mean air temperature and vapor pressure from June 2017, precipitation δ18O values from OIPC as an average from April, May and June, and vapor δ18O values calculated from OIPC precipitation δ18O values from April. Since using spatial maps as model input data, this calculation resulted in a mapped model result. In a second step, we calculated the prediction maps. For this we first subtracted the δ18O value of the bulk dried tissue of the sample strawberry from the mapped result of the best berry-specific model. This was done for each pixel value of the map. This resulted in a map showing the difference of the sample δ18O value and the predicted map δ18O value for each pixel of the map. The places (pixels) that are predicted to have the same δ18O value as the sample strawberry thus are represented by a value of zero. Based on the prediction error of the best berry-specific model (RMSE = 0.96 ‰), the one sigma (68%) and two sigma (95%) confidence intervals around the areas showing no difference to the δ18O value of the suspected sample could be assessed. This means that the bigger the difference between the simulated δ18O value and the sample value, the lower the probability of provenance of the sample. In other words, a difference between the sample’s δ18O value and the predicted δ18O value of 0 ‰ to ± 0.96 ‰ equals a possible provenance of at least 68% (one sigma), and a difference between ± 0.96 ‰ and ± 1.92 ‰ reflects a possible provenance between 68 and 27% (two sigma). Regions on the map with bigger differences than ± 1.92 ‰ represent regions of possible provenance, lower than 5% (bigger than two sigma). More

  • in

    Universal scaling of robustness of ecosystem services to species loss

    1.Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16 (2017).Article 

    Google Scholar 
    2.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    4.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).PubMed 
    Article 

    Google Scholar 
    6.Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).PubMed 
    Article 

    Google Scholar 
    7.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    8.Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).PubMed 
    Article 

    Google Scholar 
    11.Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    13.Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B. 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    15.Kaiser‐Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 
    Article 

    Google Scholar 
    16.Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B 282, 20151348 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 
    Article 

    Google Scholar 
    19.Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).PubMed 
    Article 

    Google Scholar 
    20.Mastrángelo, M. E. et al. Key knowledge gaps to achieve global sustainability goals. Nat. Sustain. 2, 1115–1121 (2019).Article 

    Google Scholar 
    21.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Mace, G. M., Hails, R. S., Cryle, P., Harlow, J. & Clarke, S. J. Towards a risk register for natural capital. J. Appl. Ecol. 52, 641–653 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1072–1085 (2016).Article 

    Google Scholar 
    24.Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Pillar, V. D. et al. Functional redundancy and stability in plant communities. J. Veg. Sci. 24, 963–974 (2013).Article 

    Google Scholar 
    27.Feit, B., Blüthgen, N., Traugott, M. & Jonsson, M. Resilience of ecosystem processes: a new approach shows that functional redundancy of biological control services is reduced by landscape simplification. Ecol. Lett. 22, 1568–1577 (2019).PubMed 
    Article 

    Google Scholar 
    28.Salski, A. Ecological applications of fuzzy logic. Pages 3–14 in Ecological Informatics (ed. Recknagel, F.) (Springer, 2003).29.Ehrlich, P. R. & Mooney, H. A. Extinction, substitution, and ecosystem services. Bioscience 33, 248–254 (1983).Article 

    Google Scholar 
    30.Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 276, 229–237 (2009).PubMed 
    Article 

    Google Scholar 
    31.Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B 269, 1721–1727 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    34.Maseyk, F. J. F., Demeter, L., Csergő, A. M. & Buckley, Y. M. Effect of management on natural capital stocks underlying ecosystem service provision: a ‘provider group’ approach. Biodivers. Conserv. 26, 3289–3305 (2017).Article 

    Google Scholar 
    35.Schröter, M. et al. Assumptions in ecosystem service assessments: increasing transparency for conservation. Ambio 50, 289–300 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 

    Google Scholar 
    37.Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Lafuite, A.-S., de Mazancourt, C. & Loreau, M. Delayed behavioural shifts undermine the sustainability of social–ecological systems. Proc. R. Soc. B 284, 20171192 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    40.Wyborn, C. et al. Imagining transformative biodiversity futures. Nat. Sustain. 3, 670–672 (2020).Article 

    Google Scholar 
    41.Bodin, Ö. et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat. Sustain. 2, 551–559 (2019).Article 

    Google Scholar 
    42.Palumbi, S. R. et al. Managing for ocean biodiversity to sustain marine ecosystem services. Front. Ecol. Environ. 7, 204–211 (2009).Article 

    Google Scholar 
    43.Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 
    Article 

    Google Scholar 
    44.White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).PubMed 
    Article 

    Google Scholar 
    45.Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    46.Moreno-Mateos, D. et al. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 4, 676–685 (2020).PubMed 
    Article 

    Google Scholar 
    47.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Purvis, A., Agapow, P. M., Gittleman, J. L. & Mace, G. M. Nonrandom extinction and the loss of evolutionary history. Science 288, 328–330 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).Article 

    Google Scholar 
    51.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Ross, S. R. P.-J. et al. Code from: Universal scaling of robustness of ecosystem services to species loss (Version V0.4.2-beta). zenodo https://doi.org/10.5281/zenodo.4749405 (2021). More

  • in

    Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world

    Spatial databaseWe collected species occurrences from the most accurate and available source of data for each taxonomic group. For mammals, birds, reptiles and amphibians, we used the IUCN spatial database to assign realm identity for each species15. By doing this, we assigned a realm for 5489 mammal species, 10,787 bird species, 5489 reptile species and 5833 amphibian species. Since IUCN spatial database does not cover all species, we completed our database with two additional sources of species occurrences: (1) the WWF WildFinder species database23, except for mammals where we used the latest version of the species distribution provided by ref. 24. If (1) was not available, we used (2) the global biodiversity information facility (GBIF). Using WWF WildFinder, we assigned a realm for 1634 bird species, 7378 reptile species and 2006 amphibian species. 437 mammal species were assigned using ref. 24. From GBIF, we downloaded all the records belonging to the four classes of animals (Mammals50, Aves51, Reptiles52 and Amphibians53). Before using the spatial data, we cleaned the dataset following a cleaning procedure that was similar to but more conservative than other currently available methods (e.g. CoordinatesCleaner, BDCleaner54). First, records were screened, and only those with (1) coordinates; (2) a taxonomic rank of “species” were kept. From this list, we filtered out the records with clearly false locality coordinates (e.g. latitude equal to longitude, both latitude and longitude equal to 0, and longitude/latitude outside the possible range (i.e. −180; 180 for longitude and −90; 90 for latitude)). Those are the most common errors encountered with GBIF occurrence data55. In addition, we removed the records from living specimens (i.e. from zoos, botanical gardens), conserved specimens (i.e. museums), and unknown sources. We also excluded the species with less than 50 records within each realm as a low number of records can be due to misidentifications, which might have strong effects on our analyses. We finally refined the dataset by overlaying the occurrences within the six biogeographic realms (see below) and dropping the species that fall outside of the polygons. This spatial overlay process was conducted using the ‘sp’ library56 in R. The number of species for which realm was assigned using GBIF was 1 ( More

  • in

    2000 years of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize

    1.Marles, R. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 56, 93–103 (2017).CAS 
    Article 

    Google Scholar 
    2.Davis, D. Declines in iron content of foods. Br. J. Nutr. 109, 2111 (2013).CAS 
    Article 

    Google Scholar 
    3.Davis, D. Commentary on: “Historical variation in the mineral composition of edible horticultural products” (White, P. J and Broadley, M.R (2005) Journal of Horticultural Science & Biotechnology, 80, 660-667). J. Horticult. Sci. Biotechnol. 81(3), 553–554 (2006).Article 

    Google Scholar 
    4.Broadley, M. R., Mead, A. & White, P. J. Replay to Davis (2006) Commentary. J. Horticult. Sci. Technol. 81(3), 554–555 (2006).
    Google Scholar 
    5.Teklic, T., Loncaric, Z., Kovacevic, V. & Singh, B. R. Metallic trace elements in cereal grain—a review: How much metal do we eat?. Food Energy Secur. 2(2), 81–95 (2013).Article 

    Google Scholar 
    6.Ranum, P., Peña-Rosas, J. P. & Garcia-Casal, M. N. Global maize production, utilization and consumption. Ann N Y Acad Sci. 1312, 105–112 (2014).ADS 
    Article 

    Google Scholar 
    7.Vidal Elgueta, A., Hinojosa, L. F., Pérez, M. F., Peralta, G. & Rodríguez, M. U. Genetic and phenotypic diversity in 2000 years old maize (Zea mays L.) samples from the Tarapacá region, Atacama Desert, Chile. PLoS ONE 14(1), e0210369. https://doi.org/10.1371/journal.pone.0210369 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Fan, M. S., Fairweather, S., Polton, P., Dunham, S. & Mcrath, S. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22, 315–324 (2008).CAS 
    Article 

    Google Scholar 
    9.McGrath, S. The effects of increasing yields on the macro- and microelement concentrations and offtakes in the grain of winter wheat. J. Sci. Food Agric. 36, 1073–1083 (1985).CAS 
    Article 

    Google Scholar 
    10.De Fries, R., Fanzo, J., Remans, R., Palm, C. & Wood, S. Metrics for land-scarce agriculture Nutrient content must be better integrated into planning. Science 349(6245), 238–240 (2015).ADS 
    Article 

    Google Scholar 
    11.Roschzttardtz, H., Conéjéro, G., Curie, C. & Mari, S. Identification of the endotermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).CAS 
    Article 

    Google Scholar 
    12.Zang, J. et al. Maize YSL2 is required for iron distribution and development in kernels. J. Exp. Bot. 71, 5896–5910 (2020).CAS 
    Article 

    Google Scholar 
    13.Roschzttardtz, H. et al. Plant cell nucleolus as a hot spot for iron. J. Biol. Chem. 286, 27863–27866 (2011).CAS 
    Article 

    Google Scholar 
    14.Ibeas, M., Grant-Grant, S., Navarro, N., Perez, F. & Roschzttardtz, H. Dynamic subcellular localization of iron during embryo development in Brassicaceae seeds. Front. Plant Sci. 8, 2186 (2017).Article 

    Google Scholar 
    15.Santana-Sagredo, F. et al. ‘White gold’ guano fertilizer drove agricultural intensification in the Atacama Desert from AD 1000. Nat. Plants. 7, 152–158 (2021).CAS 
    Article 

    Google Scholar 
    16.García, M. et al. Alimentos, tecnologías vegetales y paleoambiente en las aldeas formativas de la pampa del Tamarugal (ca. 900 a.C.–800 d.C.). Estudios Atacameños. 47, 33–58 (2014).Article 

    Google Scholar 
    17.Santana-Sagredo, F., Uribe, M., Herrera, M. J., Retamal, R. & Flores, S. Brief communication: Dietary practices in ancient populations from northern chile during the transition to agriculture (Tarapaca Region, 1000 BC-AD 900). Am. J. Phys. Anthropol. 158(4), 751–758 (2014).Article 

    Google Scholar 
    18.Santoro, C. M. et al. Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. J. Anthropol. Archaeol. 46, 28–39 (2017).Article 

    Google Scholar 
    19.Roschzttardtz, H., Conejero, G., Curie, C. & Mari, S. Identification of the endodermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).CAS 
    Article 

    Google Scholar 
    20.Ibeas, M. et al. The diverse iron distribution in Eudicotyledoneae seeds: From Arabidopsis to Quinoa. Front. Plant Sci. 15, 1985 (2019).Article 

    Google Scholar 
    21.Davis, D., Epp, M. & Riordan, H. Changes in USDA food composition data for 43 Garden crops, 1950 to 1990. J. Am. Coll. Nutr. 23(6), 669–682 (2004).CAS 
    Article 

    Google Scholar 
    22.White, P. J. & Broadley, M. R. Historical variation in the mineral composition of edible horticultural products. J. Horticult. Sci. Biotrchnol. 80(6), 660–667 (2005).Article 

    Google Scholar 
    23.Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59(2), 1809–1833 (2017).Article 

    Google Scholar 
    24.Hogg, A. G. et al. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4), 1889–1903 (2013).CAS 
    Article 

    Google Scholar 
    25.Gao, F., Robe, K., Bettembourg, M., Navarro, N., Rofidal, V., Santoni, V., Gaymard, F., Vignols, F., Roschzttardtz, H., Izquierdo, E., & Dubos, C. The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in arabidopsis. Plant Cell, 32, 508–524 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years

    1.Solomon, S. et al. (eds.) IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).2.Ganopolski, A. & Calov, R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim. Past 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011 (2011).Article 

    Google Scholar 
    3.Timmermann, A. et al. Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka. J. Climate 27, 1863–1875, https://doi.org/10.1175/JCLI-D-13-00311.1 (2013).ADS 
    Article 

    Google Scholar 
    4.Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1 (2002).ADS 
    Article 

    Google Scholar 
    5.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978, https://doi.org/10.1002/joc.1276 (2005).ADS 
    Article 

    Google Scholar 
    6.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5, 180254, https://doi.org/10.1038/sdata.2018.254 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, https://doi.org/10.17161/bi.v10i0.4955 (2015).8.Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358, https://doi.org/10.1111/ecog.03031 (2017).Article 

    Google Scholar 
    9.Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Sci Data 6, 1–16, https://doi.org/10.1038/s41597-019-0277-1 (2019).Article 

    Google Scholar 
    11.Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Scientific Data 7, 236, https://doi.org/10.1038/s41597-020-0552-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Climate of the Past 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020 (2020).ADS 
    Article 

    Google Scholar 
    13.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3 (2020).Article 

    Google Scholar 
    14.O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series 691 (2012).15.Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. 108, 8171, https://doi.org/10.1029/2002JD002559 (2003).Article 

    Google Scholar 
    16.Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr. Quaternary Science Reviews 29, 43–55, https://doi.org/10.1016/j.quascirev.2009.10.011 (2010).ADS 
    Article 

    Google Scholar 
    17.Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017 (2017).Article 

    Google Scholar 
    18.Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 2014GL061957, https://doi.org/10.1002/2014GL061957 (2015).Article 

    Google Scholar 
    19.Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q (1991).ADS 
    Article 

    Google Scholar 
    20.Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Clim. Past 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016 (2016).Article 

    Google Scholar 
    21.Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_c (VM5a) model. Journal of Geophysical Research: Solid Earth 120, 450–487, https://doi.org/10.1002/2014JB011176 (2014).ADS 
    Article 

    Google Scholar 
    22.Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NOAA NOAA Technical Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M (2009).Article 

    Google Scholar 
    23.Lehner, B. & Dőll, P. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028 (2004).ADS 
    Article 

    Google Scholar 
    24.Araya-Melo, P. A., Crucifix, M. & Bounceur, N. Global sensitivity analysis of the Indian monsoon during the Pleistocene. Clim. Past 11, 45–61, https://doi.org/10.5194/cp-11-45-2015 (2015).Article 

    Google Scholar 
    25.Lord, N. S. et al. Emulation of long-term changes in global climate: application to the late Pliocene and future. Climate of the Past 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017 (2017).Article 

    Google Scholar 
    26.Hoyt, D. V. Percent of Possible Sunshine and the Total Cloud Cover. Monthly Weather Review 105, 648–652, 10.1175/1520-0493(1977)1052.0.CO;2 (1977).27.Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atm. Sci. 35, 2362–2367 (1978).ADS 
    Article 

    Google Scholar 
    28.Krapp, M. Terrestrial climate of the last 800,000 years, Open Science Framework, https://doi.org/10.17605/OSF.IO/8N43X (2021).29.Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nature Communications 7, 11967, https://doi.org/10.1038/ncomms11967 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Schulzweida, U. CDO User Guide. Zenodo https://doi.org/10.5281/zenodo.3539275 (2019).31.Kőster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522, https://doi.org/10.1093/bioinformatics/bts480 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).33.Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9, 90–95, https://doi.org/10.1109/MCSE.2007.55 (2007).ADS 
    Article 

    Google Scholar 
    34.Met Office. Cartopy: a cartographic python library with a Matplotlib interface (2010–2015).35.Flyamer, I. et al. Phlya/adjustText: 0.8 beta. Zenodo https://doi.org/10.5281/zenodo.3924114 (2020).36.Whitaker, J. et al. Unidata/netcdf4-python: version 1.5.5 release. Zenodo https://doi.org/10.5281/zenodo.4308773 (2020).37.Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Reback, J. et al. pandas-dev/pandas: Pandas 1.0.3. Zenodo https://doi.org/10.5281/zenodo.3715232 (2020).39.McKinney, W. Data Structures for Statistical Computing in Python. In Walt, S. v. d. & Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a (2010).40.Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Walt, Svd et al. scikit-image: image processing in Python. PeerJ 2, e453, https://doi.org/10.7717/peerj.453 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.da Costa-Luis, C. et al. tqdm: A fast, Extensible Progress Bar for Python and CLI. Zenodo https://doi.org/10.5281/zenodo.4531988 (2021).43.Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 2015RG000482, https://doi.org/10.1002/2015RG000482 (2016).44.Schaefer, G. et al. Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific. Marine Micropaleontology 54, 191–212, https://doi.org/10.1016/j.marmicro.2004.12.001 (2005).ADS 
    Article 

    Google Scholar 
    45.Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography and Paleoclimatology 4, 353–412, https://doi.org/10.1029/PA004i004p00353 (1989).Article 

    Google Scholar 
    46.Nürnberg, D., Müller, A. & Schneider, R. R. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K’, oxygen isotopes, and foraminiferal transfer function. Paleoceanography and Paleoclimatology 15, 124–134, https://doi.org/10.1029/1999PA000370 (2000).Article 

    Google Scholar 
    47.Horikawa, K., Murayama, M., Minagawa, M., Kato, Y. & Sagawa, T. Latitudinal and downcore (0–750 ka) changes in n-alkane chain lengths in the eastern equatorial Pacific. Quaternary Research 73, 573–582, https://doi.org/10.1016/j.yqres.2010.01.001 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Martrat, B. et al. Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin. Science 317, 502–507, https://doi.org/10.1126/science.1139994 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Rincón-Martínez, D. & Leduc, G. Sea surface temperature calculated from alkenones for the last 285 ka with high-reolution Holocene of sediment core MD02-2529, Panama Basin. PANGAEA https://doi.org/10.1594/PANGAEA.777473 (2012).50.Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F. & Naughton, F. Iberian Margin sea surface temperature during MIS 15 to 9 (580–300 ka): Glacial suborbital variability versus interglacial stability. Paleoceanography 26, PA1204, https://doi.org/10.1029/2010PA001927 (2011).ADS 
    Article 

    Google Scholar 
    51.Hayward, B. W. et al. Planktic foraminifera-based sea-surface temperature record in the Tasman Sea and history of the Subtropical Front around New Zealand, over the last one million years. Marine Micropaleontology 82–83, 13–27, https://doi.org/10.1016/j.marmicro.2011.10.003 (2012).ADS 
    Article 

    Google Scholar 
    52.Russon, T. et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophysical Research Letters 37, https://doi.org/10.1029/2010GL043191 (2010).53.Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710, https://doi.org/10.1038/385707a0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Rostek, F. et al. Reconstructing sea surface temperature and salinity using $delta{18}O$ and alkenone records. Nature 364, 319, https://doi.org/10.1038/364319a0 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Caley, T. et al. High-latitude obliquity as a dominant forcing in the Agulhas current system. Clim. Past 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011 (2011).Article 

    Google Scholar 
    56.Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation. Science 301, 948–952, https://doi.org/10.1126/science.1084451 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Garidel–Thoron, T. d. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, https://doi.org/10.1029/2006PA001269 (2005).58.Liu, Z., Altabet, M. A. & Herbert, T. D. Glacial-interglacial modulation of eastern tropical North Pacific denitrification over the last 1.8-Myr. Geophysical Research Letters 32, https://doi.org/10.1029/2005GL024439 (2005).59.Yamamoto, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quaternary Science Reviews 26, 405–414, https://doi.org/10.1016/j.quascirev.2006.07.014 (2007).ADS 
    Article 

    Google Scholar 
    60.Herbert, T. D. Collapse of the California Current During Glacial Maxima Linked to Climate Change on Land. Science 293, 71–76, https://doi.org/10.1126/science.1059209 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Schefuβ, E., Damsté, J. S. S. & Jansen, J. H. F. Forcing of tropical Atlantic sea surface temperatures during the mid-Pleistocene transition. Paleoceanography 19, https://doi.org/10.1029/2003PA000892 (2004).62.Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Pliocene–Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37, 871–874, https://doi.org/10.1130/G25733A.1 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    63.McClymont, E. L., Rosell-Melé, A., Giraudeau, J., Pierre, C. & Lloyd, J. M. Alkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic: Implications for the U37K’ index and South African climate. Quaternary Science Reviews 24, 1559–1572, https://doi.org/10.1016/j.quascirev.2004.06.024 (2005).ADS 
    Article 

    Google Scholar 
    64.Martínez–Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, https://doi.org/10.1029/2008PA001657 (2009).65.Crundwell, M., Scott, G., Naish, T. & Carter, L. Glacial–interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 202–229, https://doi.org/10.1016/j.palaeo.2007.08.023 (2008).ADS 
    Article 

    Google Scholar 
    66.Hayward, B. W. et al. The effect of submerged plateaux on Pleistocene gyral circulation and sea-surface temperatures in the Southwest Pacific. Global and Planetary Change 63, 309–316, https://doi.org/10.1016/j.gloplacha.2008.07.003 (2008).ADS 
    Article 

    Google Scholar 
    67.Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth and Planetary Science Letters 309, 10–20, https://doi.org/10.1016/j.epsl.2011.04.016 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical Ocean Temperatures Over the Past 3.5 Million Years. Science 328, 1530–1534, https://doi.org/10.1126/science.1185435 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Nürnberg, D. & Groeneveld, J. Pleistocene variability of the Subtropical Convergence at East Tasman Plateau: Evidence from planktonic foraminiferal Mg/Ca (ODP Site 1172 A). Geochemistry, Geophysics, Geosystems 7, https://doi.org/10.1029/2005GC000984 (2006).70.Dyez, K. A., Ravelo, A. C. & Mix, A. C. Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature. Paleoceanography 31, 2015PA002873, https://doi.org/10.1002/2015PA002873 (2016).Article 

    Google Scholar 
    71.Alonso-Garcia, M. et al. Ocean circulation, ice sheet growth and interhemispheric coupling of millennial climate variability during the mid-Pleistocene (ca 800–400ka). Quaternary Science Reviews 30, 3234–3247, https://doi.org/10.1016/j.quascirev.2011.08.005 (2011).ADS 
    Article 

    Google Scholar 
    72.Medina-Elizalde, M. & W Lea, D. The Mid-Pleistocene Transition in the Tropical Pacific. Science 310, 1009–12, https://doi.org/10.1126/science.1115933 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Liu, Z. Pleistocene climate evolution in the eastern Pacific and implications for the orbital theory of climate change. Ph.D., Brown University, United States – Rhode Island (2004).74.Dyez, K. A. & Ravelo, A. C. Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geological Society of America 41, 23–26, https://doi.org/10.1130/G33425.1 (2013).CAS 
    Article 

    Google Scholar 
    75.Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar Link to the Emergence of the Modern Equatorial Pacific Cold Tongue. Science 328, 1550–1553, https://doi.org/10.1126/science.1184480 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218, https://doi.org/10.1029/2008PA001669 (2009).ADS 
    Article 

    Google Scholar 
    77.Schmidt, M. W., Vautravers, M. J. & Spero, H. J. Western Caribbean sea surface temperatures during the late Quaternary. Geochemistry Geophysics Geosystems 7, https://doi.org/10.1029/2005GC000957 (2006).78.Ho, S. L. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, https://doi.org/10.1029/2012PA002317 (2012).79.Tierney, J. E., deMenocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. The Geological Society of America 45, 1023–1026, https://doi.org/10.1130/G39457.1 (2017).Article 

    Google Scholar 
    80.Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 360, 877–881, https://doi.org/10.1126/science.aam5825 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Scientific Reports 6, 24374, https://doi.org/10.1038/srep24374 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Guo, Z. T., Berger, A., Yin, Q. Z. & Qin, L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim. Past 5, 21–31, https://doi.org/10.5194/cp-5-21-2009 (2009).Article 

    Google Scholar 
    83.Carolin, S. A. et al. Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6. Earth and Planetary Science Letters 439, 182–193, https://doi.org/10.1016/j.epsl.2016.01.028 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Waldmann, N., Torfstein, A. & Stein, M. Northward intrusions of low- and mid-latitude storms across the Saharo-Arabian belt during past interglacials. Geology 38, 567–570, https://doi.org/10.1130/G30654.1 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    85.Landwehr, J. M., Sharp, W. D., Coplen, T. B., Ludwig, K. R. & Winograd, I. J. The Chronology for the δ18O Record from Devils Hole, Nevada, Extended Into the Mid-Holocene. Tech. Rep., US Geological Survey (2011).86.Stoykova, D. A., Shopov, Y. Y., Garbeva, D., Tsankov, L. T. & Yonge, C. J. Origin of the climatic cycles from orbital to sub-annual scales. Journal of Atmospheric and Solar-Terrestrial Physics 70, 293–302, https://doi.org/10.1016/j.jastp.2007.08.018 (2008).ADS 
    Article 

    Google Scholar 
    87.Jouzel, J. et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 317, 793–796, https://doi.org/10.1126/science.1141038 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters 39, https://doi.org/10.1029/2011GL050202 (2012).89.Prokopenko, A. A., Hinnov, L. A., Williams, D. F. & Kuzmin, M. I. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews 25, 3431–3457, https://doi.org/10.1016/j.quascirev.2006.10.002 (2006).ADS 
    Article 

    Google Scholar 
    90.Melles, M. et al. 2.8 Million Years of Arctic Climate Change from Lake El’gygytgyn, NE Russia. Science 337, 315–320, https://doi.org/10.1126/science.1222135 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29, 2647–2662, https://doi.org/10.1016/j.quascirev.2010.06.014 (2010).ADS 
    Article 

    Google Scholar 
    92.Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 3181–3199, https://doi.org/10.1016/S0016-7037(02)01031-1 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    93.Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646, https://doi.org/10.1038/nature18591 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25, 3416–3430, https://doi.org/10.1016/j.quascirev.2006.09.002 (2006).ADS 
    Article 

    Google Scholar 
    95.Vaks, A. et al. Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384–399, https://doi.org/10.1016/j.epsl.2006.07.009 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    96.K. Thomas, E. et al. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters 455, https://doi.org/10.1016/j.epsl.2016.09.044 (2016).97.Hao, Q. et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393–396, https://doi.org/10.1038/nature11493 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More