More stories

  • in

    Selecting when to bloom

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Longitudinal patterns in the skin microbiome of wild, individually marked frogs from the Sierra Nevada, California

    1.Fisher MC, Garner TWJ. Chytrid fungi and global amphibian declines. Nat Rev Microbiol. 2020;18:332–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth. 2007;4:125–34.Article 

    Google Scholar 
    3.Voyles J, Vredenburg VT, Tunstall TS, Parker JM, Briggs CJ, Rosenblum EB. Pathophysiology in Mountain Yellow-Legged Frogs (Rana muscosa) during a Chytridiomycosis Outbreak. PLoS ONE. 2012;7:e35374.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, et al. Pathogenesis of Chytridiomycosis, a cause of catastrophic amphibian declines. Science (80-). 2009;326:582–5.CAS 
    Article 

    Google Scholar 
    5.Antwis RE, Harrison XA. Probiotic consortia are not uniformly effective against different amphibian chytrid pathogen isolates. Mol Ecol. 2018;27:577–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Muletz-wolz CR, Almario JG, Barnett SE, DiRenzo GV, Martel A, Pasmans F, et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front Microbiol. 2017;8:1551.7.Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ, et al. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc R Soc London B Biol Sci. 2016;283:20161553.8.Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009;3:818–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP, et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett. 2013;16:817–20.Article 

    Google Scholar 
    10.Becker MH, Harris RN, Minbiole KP, Schwantes CR, Rollins-Smith LA, Reinert LK, et al. Towards a better understanding of the use of probiotics for preventing chytridiomycosis in Panamanian golden frogs. Ecohealth. 2011;8:501–6.PubMed 
    Article 

    Google Scholar 
    11.Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, et al. Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Dis Aquat Organ. 2012;98:11–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell. 2016;165:854–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Harrison XA, Price SJ, Hopkins K, Leung W, Sergeant C, Garner T. Diversity-stability dynamics of the amphibian skin microbiome and susceptibility to a lethal viral pathogen. Front Microbiol. 2019;10:1–13.CAS 
    Article 

    Google Scholar 
    15.Walke JB, Becker MH, Krinos A, Chang E, Santiago C, Umile TP, et al. Seasonal changes and the unexpected impact of environmental disturbance on skin bacteria of individual amphibians in a natural habitat. FEMS Microbiol Ecol. 2021;97:1–14.Article 

    Google Scholar 
    16.Bletz MC, Perl R, Bobowski BT, Japke LM, Tebbe CC, Dohrmann AB, et al. Amphibian skin microbiota exhibits temporal variation in community structure but stability of predicted Bd-inhibitory function. ISME J. 2017;11:1521–34.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Familiar López M, Rebollar EA, Harris RN, Vredenburg VT, Hero J. Temporal variation of the skin bacterial community and Batrachochytrium dendrobatidis infection in the terrestrial cryptic frog Philoria loveridgei. Front Microbiol. 2017;8:1–12.Article 

    Google Scholar 
    18.Longo AV, Savage AE, Hewson I, Zamudio KR. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R Soc Open Sci. 2015;2:140377.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Douglas AJ, Hug LA, Katzenback BA. Composition of the North American wood frog (Rana sylvatica) bacterial skin microbiome and seasonal variation in community structure. Microb Ecol. 2021;81:78–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Estrada A, Hughey MC, Medina D, Rebollar EA, Walke JB, Harris RN, et al. Skin bacterial communities of neotropical treefrogs vary with local environmental conditions at the time of sampling. PeerJ. 2019;2019:1–20.
    Google Scholar 
    21.Longo AV, Zamudio KR. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin. Mol Ecol. 2017;26:4787–97.PubMed 
    Article 

    Google Scholar 
    22.Vredenburg VT, Bingham R, Knapp R, Morgan JAT, Moritz C, Wake D. Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered mountain yellow-legged frog. J Zool. 2007;271:361–74.Article 

    Google Scholar 
    23.Vredenburg VT, McNally S, Sulaeman H, Butler HM, Yap T, Koo MS, et al. Pathogen invasion history elucidates contemporary host pathogen dynamics. PLoS ONE. 2019;14:1–14.Article 
    CAS 

    Google Scholar 
    24.Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci USA. 2010;107:9689–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Briggs CJ, Knapp RA, Vredenburg VT. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc Natl Acad Sci USA. 2010;107:9695–700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Knapp RA, Fellers GM, Kleeman PM, Miller DA, Vredenburg VT, Rosenblum EB, et al. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proc Natl Acad Sci USA. 2016;113:11889–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Jani AJ, Briggs CJ. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci USA. 2014;111:E5049–E5058.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Ellison S, Knapp RA, Sparagon W, Swei A, Vredenburg VT. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol Ecol. 2019;28:127–40.PubMed 
    Article 

    Google Scholar 
    29.Jani AJ, Briggs CJ. Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Front Microbiol. 2018;9:1–17.Article 

    Google Scholar 
    30.Jani AJ, Knapp RA, Briggs CJ. Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proc R Soc B Biol Sci. 2017;284:20170944.31.Vredenburg VT. Reversing introduced species effects: experimental removal of introduced fish leads to rapid recovery of a declining frog. Proc Natl Acad Sci USA. 2004;101:7646–50.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Joseph MB, Knapp RA. Disease and climate effects on individuals drive post-reintroduction population dynamics of an endangered amphibian. Ecosphere 2018;9:e02499.33.Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ. 2004;60:141–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ. 2007;73:175–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.CAS 
    Article 

    Google Scholar 
    40.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
    Google Scholar 
    42.Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61:1–10.Article 

    Google Scholar 
    44.Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131–44.Article 

    Google Scholar 
    45.Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Chang Q, Luan Y, Sun F. Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinformatics. 2011;12:118.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012;28:2106–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.McDonald D, Vázquez-Baeza Y, Koslicki D, McClelland J, Reeve N, Xu Z, et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat Methods. 2018;15:847–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Heal Dis. 2015;26:1–7.
    Google Scholar 
    51.Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Woodhams DC, Alford RA, Antwis RE, Archer H, Becker MH, Belden LK, et al. Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens. Ecology. 2015;96:595.Article 

    Google Scholar 
    53.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.55.Lee G, You HJ, Bajaj JS, Joo SK, Yu J, Park S, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun. 2020;11:1–13.
    Google Scholar 
    56.Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Knapp RA, Briggs CJ, Smith TC, Maurer JR. Nowhere to hide: impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. Ecosphere. 2011;2:art93.Article 

    Google Scholar 
    58.Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Bates KA, Clare FC, O’Hanlon S, Bosch J, Brookes L, Hopkins K, et al. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat Commun. 2018;9:1–11.CAS 
    Article 

    Google Scholar 
    60.Kinney VC, Heemeyer JL, Pessier AP, Lannoo MJ, Samples F. Seasonal pattern of Batrachochytrium dendrobatidis infection and mortality in Lithobates areolatus: affirmation of Vredenburg’ s “10, 000 Zoospore Rule”. PLoS ONE. 2011;6:e16708.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The contribution of insects to global forest deadwood decomposition

    1.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 

    Google Scholar 
    2.Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).ADS 
    CAS 

    Google Scholar 
    3.Chambers, J. Q., Higuchi, N., Schimel, J. P. J., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).ADS 
    CAS 

    Google Scholar 
    4.González, G. et al. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio 37, 588–597 (2008).
    Google Scholar 
    5.Stokland, J., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).6.Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. Philos. Soc. 91, 70–85 (2016).
    Google Scholar 
    8.Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).ADS 
    CAS 

    Google Scholar 
    9.Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).ADS 

    Google Scholar 
    11.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 

    Google Scholar 
    12.Portillo-Estrada, M. et al. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13, 1621–1633 (2016).ADS 
    CAS 

    Google Scholar 
    13.Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: implications for decomposition in the northern forest. Northeast. Nat. 24, B209–B234 (2017).
    Google Scholar 
    14.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).ADS 
    CAS 

    Google Scholar 
    15.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).ADS 
    CAS 

    Google Scholar 
    16.Martin, A., Dimke, G., Doraisami, M. & Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).17.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).ADS 

    Google Scholar 
    18.Marshall, D. J., Pettersen, A. K., Bode, M. & White, C. R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 4, 406–411 (2020).
    Google Scholar 
    19.Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7, 974–985 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Diaz, S., Settele, J. & Brondizio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovermental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).21.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 

    Google Scholar 
    22.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 

    Google Scholar 
    23.Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).ADS 

    Google Scholar 
    24.Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).
    Google Scholar 
    25.Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926 (2020).
    Google Scholar 
    26.Wu, D., Seibold, S., Ruan, Z., Weng, C. & Yu, M. Island size affects wood decomposition by changing decomposer distribution. Ecography 44, 456–468 (2021).
    Google Scholar 
    27.Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 15, 1 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 

    Google Scholar 
    29.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 

    Google Scholar 
    30.Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).CAS 

    Google Scholar 
    31.A’Bear, A. D., Jones, T. H., Kandeler, E. & Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70, 151–158 (2014).
    Google Scholar 
    32.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).33.Smyth, C. E., Kurz, W. A., Trofymow, J. A. & CIDET Working Group. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222, 1080–1091 (2011).
    Google Scholar 
    34.Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).
    Google Scholar 
    35.Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).CAS 

    Google Scholar 
    36.Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. in Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).37.Harvell, M. C. E. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS 
    CAS 

    Google Scholar 
    38.Berkov, A. in Saproxylic Insects (ed. Ulyshen, M. D.) 547–580 (Springer, 2018).39.Wang, C., Bond-Lamberty, B. & Gower, S. T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132, 374–381 (2002).ADS 

    Google Scholar 
    40.Peršoh, D. & Borken, W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115, 516–525 (2017).
    Google Scholar 
    41.Campbell, J., Donato, D., Azuma, D. & Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res. 112, G04014 (2007).ADS 

    Google Scholar 
    42.van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11, 7305–7329 (2014).ADS 

    Google Scholar 
    43.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 

    Google Scholar 
    44.Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
    Google Scholar 
    45.Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).
    Google Scholar 
    46.Ryvarden, L. & Gilbertson, R. L. The Polyporaceae of Europe (Fungiflora, 1994).47.Eriksson, J. & Ryvarden, L. The Corticiaceae of North Europe Parts 1–8 (Fungiflora, 1987).48.Boddy, L., Hynes, J., Bebber, D. P. & Fricker, M. D. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50, 9–19 (2009).
    Google Scholar 
    49.Moore, D. Fungal Morphogenesis (Cambridge Univ. Press, 1998).50.Clemencon, H. Anatomy of the Hymenomycetes (Univ. Lausanne, 1997).51.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).52.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    53.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    54.Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).55.Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274, 2753–2759 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Food and Agriculture Organization. Global Ecological Zones for FAO Forest Reporting: 2010 Update, Forest Resource Assessment Working Paper (Food and Agriculture Organization, 2012).57.Food and Agriculture Organization. Global Forest Resources Assessment 2015 (Food and Agriculture Organization, 2016).58.Christensen, M. et al. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Eco. Man. 210, 267–282 (2005).
    Google Scholar 
    59.Kobayashi, T. et al. Production of global land cover data – GLCNMO2013. J. Geogr. Geol. 9, 1–15 (2017).
    Google Scholar 
    60.Harmon, M. E., Woodall, C. W., Fasth, B., Sexton, J. & Yatkov, M. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species Research Paper NRS-15 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).61.Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 7, 36 (2020).
    Google Scholar 
    62.Gora, E. M., Kneale, R. C., Larjavaara, M. & Muller-Landau, H. C. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22, 1189–1205 (2019).CAS 

    Google Scholar 
    63.Hérault, B. et al. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164, 243–251 (2010).ADS 

    Google Scholar 
    64.Thünen-Institut für Waldökosysteme. Der Wald in Deutschland – Ausgewählte Ergebnisse der dritten Bundeswaldinventur (Bundesministerium für Ernährung und Landwirtschaft, 2014).65.Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68 (2019).
    Google Scholar 
    66.Richardson, S. J. et al. Deadwood in New Zealand’s indigenous forests. For. Ecol. Manage. 258, 2456–2466 (2009).
    Google Scholar 
    67.Shorohova, E. & Kapitsa, E. Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For. Ecol. Manage. 356, 273–284 (2015).
    Google Scholar 
    68.Szymañski, C., Fontana, G. & Sanguinetti, J. Natural and anthropogenic influences on coarse woody debris stocks in Nothofagus–Araucaria forests of northern Patagonia, Argentina. Austral Ecol. 42, 48–60 (2017).
    Google Scholar 
    69.Link, K. G. et al. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS One 13, e0200917 (2018).70.Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, B. Saugier & H. A. Mooney) 543–557 (Academic Press, 2001). More

  • in

    Long-term data reveal unimodal responses of ground beetle abundance to precipitation and land use but no changes in taxonomic and functional diversity

    1.Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).Article 

    Google Scholar 
    2.Catalogue of Life. Catalogue of life: 2018 annual checklist. http://www.catalogueoflife.org/annual-checklist/2018/info/ac (2018).3.Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Nielsen, T. F., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 

    Google Scholar 
    7.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. PNAS 118, 1–10 (2021).
    Google Scholar 
    11.Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl. Acad. Sci. U. S. A. 117, 7271–7275 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U. S. A. 110, 19456 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rada, S. et al. Protected areas do not mitigate biodiversity declines: A case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    16.Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Magurran, A. E., Dornelas, M., Moyes, F. & Henderson, P. A. Temporal β diversity—A macroecological perspective. Glob. Ecol. Biogeogr. 28, 1949–1960 (2019).Article 

    Google Scholar 
    18.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Múrria, C., Iturrarte, G. & Gutiérrez-Cánovas, C. A trait space at an overarching scale yields more conclusive macroecological patterns of functional diversity. Glob. Ecol. Biogeogr. 29, 1729–1742 (2020).Article 

    Google Scholar 
    20.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    21.Schmera, D., Heino, J., Podani, J., Erős, T. & Dolédec, S. Functional diversity: A review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787, 27–44 (2017).Article 

    Google Scholar 
    22.Frainer, A., McKie, B. G. & Malmqvist, B. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. J. Anim. Ecol. 83, 460–469 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    25.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).Article 

    Google Scholar 
    28.Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 34, 1241–1251 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Halsch, C. A. et al. Insects and recent climate change. PNAS 118, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    30.Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. PNAS 118, 1–6 (2021).Article 
    CAS 

    Google Scholar 
    31.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Jourdan, J., Baranov, V., Wagner, R., Plath, M. & Haase, P. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J. Anim. Ecol. 88, 1498–1509 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).Article 

    Google Scholar 
    34.Habel, J. C., Ulrich, W., Biburger, N., Seibold, S. & Schmitt, T. Agricultural intensification drives butterfly decline. Insect Conserv. Divers. 12, 289–295 (2019).
    Google Scholar 
    35.Januschke, K. & Verdonschot, R. C. M. Effects of river restoration on riparian ground beetles (Coleoptera: Carabidae) in Europe. Hydrobiologia 769, 93–104 (2016).Article 

    Google Scholar 
    36.Koivula, M. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100, 287–317 (2011).Article 

    Google Scholar 
    37.Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org—a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).38.Kotze, D. J. et al. Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100, 55–148 (2011).Article 

    Google Scholar 
    39.Rainio, J. & Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12, 487–506 (2003).Article 

    Google Scholar 
    40.Pozsgai, G., Baird, J., Littlewood, N. A., Pakeman, R. J. & Young, M. R. Long-term changes in ground beetle (Coleoptera: Carabidae) assemblages in Scotland. Ecol. Entomol. 41, 157–167 (2016).Article 

    Google Scholar 
    41.Jambrošić, V. Ž & Šerić, J. L. Long term changes (1990–2016) in carabid beetle assemblages (Coleoptera: Carabidae) in protected forests on Dinaric Karst on Mountain Risnjak, Croatia. EJE 117, 56–67 (2020).
    Google Scholar 
    42.Marrec, R. et al. Multiscale drivers of carabid beetle (Coleoptera: Carabidae) assemblages in small European woodlands. Glob. Ecol. Biogeogr. 30, 165–182 (2021).Article 

    Google Scholar 
    43.Ribera, I., Dolédec, S., Downie, I. S. & Foster, G. N. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129 (2001).Article 

    Google Scholar 
    44.Gobbi, M. & Fontaneto, D. Biodiversity of ground beetles (Coleoptera: Carabidae) in different habitats of the Italian Po lowland. Agric. Ecosyst. Environ. 127, 273–276 (2008).Article 

    Google Scholar 
    45.Cajaiba, R. L. et al. How informative is the response of Ground Beetles’ (Coleoptera: Carabidae) assemblages to anthropogenic land use changes? Insights for ecological status assessments from a case study in the Neotropics. Sci. Total Environ. 636, 1219–1227 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Baulechner, D., Diekötter, T., Wolters, V. & Jauker, F. Converting arable land into flowering fields changes functional and phylogenetic community structure in ground beetles. Biol. Cons. 231, 51–58 (2019).Article 

    Google Scholar 
    47.Hallmann, C. A. et al. Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conserv. Divers. 13, 127–139 (2020).Article 

    Google Scholar 
    48.Brooks, D. R. et al. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 49, 1009–1019 (2012).Article 

    Google Scholar 
    49.Kotze, D. J. & O’Hara, R. B. Species decline—but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135, 138–148 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Homburg, K. et al. Where have all the beetles gone? Long-term study reveals carabid species decline in a nature reserve in Northern Germany. Insect Conserv. Divers. 12, 268–277 (2019).
    Google Scholar 
    51.Thiele, H. U. Carabid Beetles in their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour. (Springer, 1977). https://doi.org/10.1007/978-3-642-81154-8.52.Hengeveld, R. Dynamics of Dutch Beetle Species During the Twentieth Century (Coleoptera, Carabidae). J. Biogeogr. 12, 389–411 (1985).Article 

    Google Scholar 
    53.Engel, J. et al. Pitfall trap sampling bias depends on body mass, temperature, and trap number: Insights from an individual-based model. Ecosphere 8, e01790 (2017).Article 

    Google Scholar 
    54.Eyre, M. D., Rushton, S. P., Luff, M. L. & Telfer, M. G. Investigating the relationships between the distribution of British ground beetle species (Coleoptera, Carabidae) and temperature, precipitation and altitude. J. Biogeogr. 32, 973–983 (2005).Article 

    Google Scholar 
    55.Paetzold, A., Schubert, C. J. & Tockner, K. Aquatic terrestrial linkages along a braided-river: Riparian arthropods feeding on aquatic insects. Ecosystems 8, 748–759 (2005).Article 

    Google Scholar 
    56.Van Looy, K., Vanacker, S., Jochems, H., de Blust, G. & Dufrêne, M. Ground beetle habitat templets and riverbank integrity. River Res. Appl. 21, 1133–1146 (2005).Article 

    Google Scholar 
    57.Lambeets, K., Vandegehuchte, M. L., Maelfait, J.-P. & Bonte, D. Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J. Anim. Ecol. 77, 1162–1174 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Kotze, D. J., Niemelä, J., O’Hara, R. B. & Turin, H. Testing abundance-range size relationships in European carabid beetles (Coleoptera, Carabidae). Ecography 26, 553–566 (2003).Article 

    Google Scholar 
    59.Barber, H. S. Traps for cave-inhabiting insects. J. Elisha Mitchell Sci. Soc. 46, 259–266 (1931).
    Google Scholar 
    60.Dunger, W. Praktische Erfahrungen mit Bodenfallen. Entomologische Nachrichten 7, 41–46 (1963).
    Google Scholar 
    61.Trautner, J. Handfänge als effektive und vergleichbare Methode zur Laufkäfer-Erfassung an Fließgewässern-Ergebnisse eines Tests an der Aich. Angewandte Carabidologie Supplement 1, 139–144 (1999).
    Google Scholar 
    62.Trautner, J. Laufkäfer – Methoden der Bestandsaufnahme und Hinweise für die Auswertung bei Naturschutz- und Eingriffsplanungen. in Arten- und Biotopschutz in der Planung: Methodische Standards zur Erfassung von Tierartengruppen (ed. Trautner, J.) 145–162 (1992).63.Linke, S., Bailey, R. C. & Schwindt, J. Temporal variability of stream bioassessments using benthic macroinvertebrates. Freshw. Biol. 42, 575–584 (1999).Article 

    Google Scholar 
    64.Albrecht, L. Grundlagen, Ziele und Methodik der waldökologischen Forschung in Naturreservaten. vol. 1 (1990).65.Renner, K. Faunistisch-ökologische Untersuchungen der Käferfauna pflanzensoziologisch unterschiedlicher Biotope im Evessell-Buch bei Bielefeld-Sennestadt. Ber. Naturw. V. Bielefeld 145–176 (1980).66.Müller-Motzfeld, G. Die Käfer Mitteleuropas. vol. 2 (Springer Spektrum, 2004).67.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    68.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication. (University of Illinois Press, 1949).69.Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949).ADS 
    MATH 
    Article 

    Google Scholar 
    70.Pielou, E. C. Mathematical Ecology. (Wiley, 1977).71.Smith, B. & Wilson, J. B. A consumer’s guide to Evenness indices. Oikos 76, 70–82 (1996).Article 

    Google Scholar 
    72.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    73.Schmera, D., Podani, J., Heino, J., Erős, T. & Poff, N. L. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 34, 823–830 (2015).Article 

    Google Scholar 
    74.Villéger, S., Grenouillet, G. & Brosse, S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob. Ecol. Biogeogr. 22, 671–681 (2013).Article 

    Google Scholar 
    75.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    77.Pakeman, R. J. Functional trait metrics are sensitive to the completeness of the species’ trait data?. Methods Ecol. Evol. 5, 9–15 (2014).Article 

    Google Scholar 
    78.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Chevene, F., Doléadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).Article 

    Google Scholar 
    80.Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).Article 

    Google Scholar 
    81.Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, 1–12 (2008).Article 

    Google Scholar 
    82.Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: A long-term data analysis. Sci. Total Environ. 621, 588–599 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Büttner, G. Corine land cover and land cover change products. in Land Use and Land Cover Mapping in Europe: Practices & Trends (eds. Manakos, I. & Braun, M.) 55–74 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-7969-3_5.84.Erős, T., Czeglédi, I., Tóth, R. & Schmera, D. Multiple stressor effects on alpha, beta and zeta diversity of riverine fish. Sci. Total Environ. 748, 141407 (2020).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    85.Oksanen, J. et al. Vegan: Community ecology package. https://CRAN.R-project.org/package=vegan (2019).86.Sanders, H. L. Marine benthic diversity: A comparative study. Am. Nat. 102, 243–282 (1968).Article 

    Google Scholar 
    87.Maire, A., Thierry, E., Viechtbauer, W. & Daufresne, M. Poleward shift in large-river fish communities detected with a novel meta-analysis framework. Freshw. Biol. 64, 1143–1156 (2019).Article 

    Google Scholar 
    88.R Development Core Team. R: A language and environment for statistical computing. R Foundation For Statistical Computing, Vienna, Austria https://www.r-project.org/ (2019).89.Lahti, L. & Shetty, S. Microbiome R package. http://microbiome.github.io (2012).90.Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. https://cran.r-project.org/web/packages/FD/citation.html (2014).91.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    92.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team. Nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme (2020).93.Boscaini, A., Franceschini, A. & Maiolini, B. River ecotones: Carabid beetles as a tool for quality assessment. Hydrobiologia 422, 173–181 (2000).Article 

    Google Scholar 
    94.Magura, T., Lövei, G. L. & Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?. Glob. Ecol. Biogeogr. 19, 16–26 (2010).Article 

    Google Scholar 
    95.Kędzior, R., Szwalec, A., Mundała, P. & Skalski, T. Ground beetle (Coleoptera, Carabidae) life history traits as indicators of habitat recovering processes in postindustrial areas. Ecol. Eng. 142, 105615 (2020).Article 

    Google Scholar 
    96.Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).Article 

    Google Scholar 
    97.Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Skarbek, C. J., Kobel-Lamparski, A. & Dormann, C. F. Trends in monthly abundance and species richness of carabids over 33 years at the Kaiserstuhl, southwest Germany. Basic Appl. Ecol. 50, 107–118 (2021).Article 

    Google Scholar 
    99.Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    100.Prather, R. M. & Kaspari, M. Plants regulate grassland arthropod communities through biomass, quality, and habitat heterogeneity. Ecosphere 10, e02909 (2019).Article 

    Google Scholar 
    101.Desender, K., Dekoninck, W., Dufrêne, M. & Maes, D. Changes in the distribution of carabid beetles in Belgium revisited: Have we halted the diversity loss?. Biol. Cons. 143, 1549–1557 (2010).Article 

    Google Scholar 
    102.Haase, P. et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    How deregulation, drought and increasing fire impact Amazonian biodiversity

    We acknowledge the herbaria that contributed data to this work: HA, FCO, MFU, UNEX, VDB, ASDM, BPI, BRI, CLF, L, LPB, AD, TAES, FEN, FHO, A, ANSM, BCMEX, RB, TRH, AAH, ACOR, AJOU, UI, AK, ALCB, AKPM, EA, AAU, ALU, AMES, AMNH, AMO, ANA, GH, ARAN, ARM, AS, CICY, ASU, BAI, AUT, B, BA, BAA, BAB, BACP, BAF, BAL, COCA, BARC, BBS, BC, BCN, BCRU, BEREA, BG, BH, BIO, BISH, SEV, BLA, BM, MJG, BOL, CVRD, BOLV, BONN, BOUM, BR, BREM, BRLU, BSB, BUT, C, CAMU, CAN, CANB, CAS, CAY, CBG, CBM, CEN, CEPEC, CESJ, CHR, ENCB, CHRB, CIIDIR, CIMI, CLEMS, COA, COAH, COFC, CP, COL, COLO, CONC, CORD, CPAP, CPUN, CR, CRAI, FURB, CU, CRP, CS, CSU, CTES, CTESN, CUZ, DAO, HB, DAV, DLF, DNA, DS, DUKE, DUSS, E, HUA, EAC, ECU, EIF, EIU, GI, GLM, GMNHJ, K, GOET, GUA, EKY, EMMA, HUAZ, ERA, ESA, F, FAA, FAU, UVIC, FI, GZU, H, FLAS, FLOR, HCIB, FR, FTG, FUEL, G, GB, GDA, HPL, GENT, GEO, HUAA, HUJ, CGE, HAL, HAM, IAC, HAMAB, HAS, HAST, IB, HASU, HBG, IBUG, HBR, IEB, HGI, HIP, IBGE, ICEL, ICN, ILL, SF, NWOSU, HO, HRCB, HRP, HSS, HU, HUAL, HUEFS, HUEM, HUSA, HUT, IAA, HYO, IAN, ILLS, IPRN, FCQ, ABH, BAFC, BBB, INPA, IPA, BO, NAS, INB, INEGI, INM, MW, EAN, IZTA, ISKW, ISC, GAT, IBSC, UCSB, ISU, IZAC, JBAG, JE, SD, JUA, JYV, KIEL, ECON, TOYA, MPN, USF, TALL, RELC, CATA, AQP, KMN, KMNH, KOR, KPM, KSTC, LAGU, UESC, GRA, IBK, KTU, KU, PSU, KYO, LA, LOMA, SUU, UNITEC, NAC, IEA, LAE, LAF, GMDRC, LCR, LD, LE, LEB, LI, LIL, LINN, AV, HUCP, MBML, FAUC, CNH, MACF, CATIE, LTB, LISI, LISU, MEXU, LL, LOJA, LP, LPAG, MGC, LPD, LPS, IRVC, MICH, JOTR, LSU, LBG, WOLL, LTR, MNHN, CDBI, LYJB, LISC, MOL, DBG, AWH, NH, HSC, LMS, MELU, NZFRI, M, MA, UU, UBT, CSUSB, MAF, MAK, MB, KUN, MARY, MASS, MBK, MBM, UCSC, UCS, JBGP, OBI, BESA, LSUM, FULD, MCNS, ICESI, MEL, MEN, TUB, MERL, CGMS, FSU, MG, HIB, TRT, BABY, ETH, YAMA, SCFS, SACT, ER, JCT, JROH, SBBG, SAV, PDD, MIN, SJSU, MISS, PAMP, MNHM, SDSU, BOTU, MPU, MSB, MSC, CANU, SFV, RSA, CNS, JEPS, BKF, MSUN, CIB, VIT, MU, MUB, MVFA, SLPM, MVFQ, PGM, MVJB, MVM, MY, PASA, N, HGM, TAM, BOON, MHA, MARS, COI, CMM, NA, NCSC, ND, NU, NE, NHM, NHMC, NHT, UFMA, NLH, UFRJ, UFRN, UFS, ULS, UNL, US, NMNL, USP, NMR, NMSU, XAL, NSW, ZMT, BRIT, MO, NCU, NY, TEX, U, UNCC, NUM, O, OCLA, CHSC, LINC, CHAS, ODU, OKL, OKLA, CDA, OS, OSA, OSC, OSH, OULU, OXF, P, PACA, PAR, UPS, PE, PEL, SGO, PEUFR, PH, PKDC, SI, PMA, POM, PORT, PR, PRC, TRA, PRE, PY, QMEX, QCA, TROM, QCNE, QRS, UH, R, REG, RFA, RIOC, RM, RNG, RYU, S, SALA, SANT, SAPS, SASK, SBT, SEL, SING, SIU, SJRP, SMDB, SNM, SOM, SP, SRFA, SPF, STL, STU, SUVA, SVG, SZU, TAI, TAIF, TAMU, TAN, TEF, TENN, TEPB, TI, TKPM, TNS, TO, TU, TULS, UADY, UAM, UAS, UB, UC, UCR, UEC, UFG, UFMT, UFP, UGDA, UJAT, ULM, UME, UMO, UNA, UNM, UNR, UNSL, UPCB, UPNA, USAS, USJ, USM, USNC, USZ, UT, UTC, UTEP, UV, VAL, VEN, VMSL, VT, W, WAG, WII, WELT, WIS, WMNH, WS, WTU, WU, Z, ZSS, ZT, CUVC, AAS, AFS, BHCB, CHAM, FM, PERTH and SAN. X.F., D.S.P., E.A.N., A.L. and J.R.B. were supported by the University of Arizona Bridging Biodiversity and Conservation Science program. Z.L. was supported by NSFC (41922006) and K. C. Wong Education Foundation. The BIEN working group was supported by the National Center for Ecological Analysis and Synthesis, a centre funded by NSF EF-0553768 at the University of California, Santa Barbara, and the State of California. Additional support for the BIEN working group was provided by iPlant/Cyverse via NSF DBI-0735191. B.J.E., B.M. and C.M. were supported by NSF ABI-1565118. B.J.E. and C.M. were supported by NSF ABI-1565118 and NSF HDR-1934790. B.J.E., L.H. and P.R.R. were supported by the Global Environment Facility SPARC project grant (GEF-5810). D.D.B. was supported in part by NSF DEB-1824796 and NSF DEB-1550686. S.R.S. was supported by NSF DEB-1754803. X.F. and A.L. were partly supported by NSF DEB-1824796. B.J.E. and D.M.N. were supported by NSF DEB-1556651. M.M.P. is supported by the São Paulo Research Foundation (FAPESP), grant 2019/25478-7. D.M.N. was supported by Instituto Serrapilheira/Brazil (Serra-1912-32082). E.I.N. was supported by NSF HDR-1934712. We thank L. López-Hoffman and L. Baldwin for constructive comments. More

  • in

    Wavelet geographically weighted regression for spectroscopic modelling of soil properties

    1.Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Drobnik, T., Greiner, L., Keller, A. & Grêt-Regamey, A. Soil quality indicators-from soil functions to ecosystem services. Ecol. Ind. 94, 151–169 (2018).Article 

    Google Scholar 
    3.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    4.Viscarra Rossel, R. et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 155, 198–230 (2016).5.Amundson, R. & Biardeau, L. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl. Acad. Sci. 115, 11652–11656 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Smith, P. et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 26, 219–241 (2020).ADS 
    Article 

    Google Scholar 
    7.Zhang, S., Yu, Z., Lin, J. & Zhu, B. Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis. Geoderma 361, 114069 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Bot, A. & Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. 80 (Food & Agriculture Org., 2005).9.Rawles, W. J. & Brakensiek, D. Estimating soil water retention from soil properties. J. Irrig. Drain. Div. 108, 166–171 (1982).Article 

    Google Scholar 
    10.Zhao, D., Zhao, X., Khongnawang, T., Arshad, M. & Triantafilis, J. A Vis–NIR spectral library to predict clay in Australian cotton growing soil. Soil Sci. Soc. Am. J. 82, 1347–1357 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Demattê, J. A., Campos, R. C., Alves, M. C., Fiorio, P. R. & Nanni, M. R. Visible–NIR reflectance: A new approach on soil evaluation. Geoderma 121, 95–112 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Viscarra Rossel, R. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra. J. Geophys. Res. Earth Surf. 116 (2011).13.Viscarra Rossel, R., Walvoort, D., McBratney, A., Janik, L. J. & Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2006).14.Viscarra Rossel, R. & Lark, R. Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur. J. Soil Sci. 60, 453–464 (2009).15.Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010).Article 

    Google Scholar 
    16.Næs, T. & Martens, H. Principal component regression in NIR analysis: Viewpoints, background details and selection of components. J. Chemom. 2, 155–167 (1988).Article 

    Google Scholar 
    17.Geladi, P. & Kowalski, B. R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 185, 1–17 (1986).CAS 
    Article 

    Google Scholar 
    18.Rossel, R. V. Robust modelling of soil diffuse reflectance spectra by “bagging-partial least squares regression”. J. Near Infrared Spectrosc. 15, 39–47 (2007).19.Viscarra Rossel, R. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54 (2010).20.Tsakiridis, N. L., Keramaris, K. D., Theocharis, J. B. & Zalidis, G. C. Simultaneous prediction of soil properties from VNIR–SWIR spectra using a localized multi-channel 1-d convolutional neural network. Geoderma 367, 114208 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Yang, J., Wang, X., Wang, R. & Wang, H. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using Vis–NIR spectroscopy. Geoderma 380, 114616 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Shen, Z. & Viscarra Rossel, R. A. Automated spectroscopic modelling with optimised convolutional neural networks. Sci. Rep. 11, 208. https://doi.org/10.1038/s41598-020-80486-9 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Li, F., Wang, L., Liu, J., Wang, Y. & Chang, Q. Evaluation of leaf n concentration in winter wheat based on discrete wavelet transform analysis. Remote Sens. 11, 1331 (2019).ADS 
    Article 

    Google Scholar 
    24.Meng, X. et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 89, 102111 (2020).Article 

    Google Scholar 
    25.Jiang, B. Geospatial analysis requires a different way of thinking: The problem of spatial heterogeneity. GeoJournal 80, 1–13 (2015).Article 

    Google Scholar 
    26.Song, Y., Wang, J., Ge, Y. & Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 57, 593–610 (2020).Article 

    Google Scholar 
    27.Yang, Z. et al. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci. Rep. 5, 1–7 (2015).
    Google Scholar 
    28.Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).29.Ye, H. et al. Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spat. Stat. 20, 76–91 (2017).MathSciNet 
    Article 

    Google Scholar 
    30.Viscarra Rossel, R. & Webster, R. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. Eur. J. Soil Sci. 63. https://doi.org/10.1111/j.1365-2389.2012.01495.x (2012).31.Sila, A., Pokhariyal, G. & Shepherd, K. Evaluating regression-kriging for mid-infrared spectroscopy prediction of soil properties in western Kenya. Geoderma Reg. 10, 39–47 (2017).Article 

    Google Scholar 
    32.Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (Wiley, 2003).33.Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).Article 

    Google Scholar 
    34.Bidanset, P. E. & Lombard, J. R. The effect of kernel and bandwidth specification in geographically weighted regression models on the accuracy and uniformity of mass real estate appraisal. J. Prop. Tax Assess. Admin. 11, 5–14 (2014).
    Google Scholar 
    35.Brunsdon, C., Fotheringham, A. & Charlton, M. Geographically weighted summary statistics? A framework for localised exploratory data analysis. Comput. Environ. Urban Syst. 26, 501–524 (2002).MATH 
    Article 

    Google Scholar 
    36.Comber, A. et al. The GWR route map: A guide to the informed application of geographically weighted regression. arXiv preprint arXiv:2004.06070 (2020).37.Fotheringham, A. S., Yang, W. & Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 107, 1247–1265 (2017).
    Google Scholar 
    38.Yu, H. et al. Inference in multiscale geographically weighted regression. Geogr. Anal. 52, 87–106 (2020).Article 

    Google Scholar 
    39.Wheeler, D. & Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 7, 161–187 (2005).Article 

    Google Scholar 
    40.Harris, P., Fotheringham, A. S. & Juggins, S. Robust geographically weighted regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Ann. Assoc. Am. Geogr. 100, 286–306 (2010).Article 

    Google Scholar 
    41.Harris, P., Brunsdon, C., Lu, B., Nakaya, T. & Charlton, M. Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models. Spat. Stat. 21, 241–261 (2017).MathSciNet 
    Article 

    Google Scholar 
    42.Cho, S.-H., Lambert, D. M. & Chen, Z. Geographically weighted regression bandwidth selection and spatial autocorrelation: An empirical example using Chinese agriculture data. Appl. Econ. Lett. 17, 767–772 (2010).Article 

    Google Scholar 
    43.Lu, B., Yang, W., Ge, Y. & Harris, P. Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Comput. Environ. Urban Syst. 71, 41–57 (2018).Article 

    Google Scholar 
    44.Arabameri, A., Pradhan, B. & Rezaei, K. Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in gis. J. Environ. Manag. 232, 928–942 (2019).Article 

    Google Scholar 
    45.Li, X. et al. Mapping soil organic carbon and total nitrogen in croplands of the corn belt of northeast china based on geographically weighted regression kriging model. Comput. Geosci. 135, 104392 (2020).CAS 
    Article 

    Google Scholar 
    46.Cao, K., Diao, M. & Wu, B. A big data-based geographically weighted regression model for public housing prices: A case study in Singapore. Ann. Am. Assoc. Geogr. 109, 173–186 (2019).
    Google Scholar 
    47.Ge, Y. et al. Geographically weighted regression-based determinants of malaria incidences in northern China. Trans. GIS 21, 934–953 (2017).Article 

    Google Scholar 
    48.Viscarra Rossel, R. A. & Hicks, W. S. Soil organic carbon and its fractions estimated by visible–near infrared transfer functions. Eur. J. Soil Sci. 66(3), 438–450 (2015).CAS 
    Article 

    Google Scholar 
    49.Wight, J. P., Ashworth, A. J. & Allen, F. L. Organic substrate, clay type, texture, and water influence on NIR carbon measurements. Geoderma 261, 36–43 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Costa, L. R., Tonoli, G. H. D., Milagres, F. R. & Hein, P. R. G. Artificial neural network and partial least square regressions for rapid estimation of cellulose pulp dryness based on near infrared spectroscopic data. Carbohyd. Polym. 224, 115186 (2019).Article 
    CAS 

    Google Scholar 
    51.Murphy, R. J., Schneider, S., Taylor, Z. & Nieto, J. Mapping clay minerals in an open-pit mine using hyperspectral imagery and automated feature extraction. In Vertical Geology, From Remote Sensing to 3D Geological Modelling. Proceedings of the first Vertical Geology Conference, Lausanne, Switzerland, 5–7 (2014).52.Todorova, M. H. & Atanassova, S. L. Near infrared spectra and soft independent modelling of class analogy for discrimination of chernozems, luvisols and vertisols. J. Near Infrared Spectrosc. 24, 271–280 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Stenberg, B., Viscarra Rossel, R., Mouazen, A. & Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science, vol. 107 (Academic Press, 2010).54.Harris, P., Fotheringham, A., Crespo, R. & Charlton, M. The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets. Math. Geosci. 42, 657–680 (2010).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    55.Department of Primary Industries and Regional Development, Western Australia. South West Agricultural Region (dpird-008) (2020).56.Australian Bureau of Statistics. Value of Agricultural Commodities Produced, Australia (2020).57.Department of Primary Industries and Regional Development, Western Australia. Western Australian Wheat Industry (2019).58.Rayment, G. E. & Lyons, D. J. Soil Chemical Methods—Australasia (CSIRO Publishing, 2010).59.Dolui, S. et al. Structural correlation-based outlier rejection (score) algorithm for arterial spin labeling time series. J. Magn. Reson. Imaging 45, 1786–1797 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Pollet, T. V. & van der Meij, L. To remove or not to remove: The impact of outlier handling on significance testing in testosterone data. Adapt. Hum. Behav. Physiol. 3, 43–60 (2017).Article 

    Google Scholar 
    61.Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).Article 

    Google Scholar 
    62.Mallat, S. G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989).ADS 
    MATH 
    Article 

    Google Scholar 
    63.Whitcher, B. waveslim: Basic Wavelet Routines for One-, Two-, and Three-Dimensional Signal Processing (2020).64.O’brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).65.Akinwande, M. O. et al. Variance inflation factor: As a condition for the inclusion of suppressor variable (s) in regression analysis. Open J. Stat. 5, 754 (2015).Article 

    Google Scholar 
    66.Webster, R. & Oliver, M. A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 43, 177–192 (1992).Article 

    Google Scholar 
    67.Atteia, O., Dubois, J.-P. & Webster, R. Geostatistical analysis of soil contamination in the Swiss Jura. Environ. Pollut. 86, 315–327 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Brunsdon, C., Fotheringham, S. & Charlton, M. Geographically weighted regression-modelling spatial non-stationarity. J. R. Stat. Soc. Ser. D (The Statistician) 47, 431–443 (1998).Article 

    Google Scholar 
    69.Gollini, I., Lu, B., Charlton, M., Brunsdon, C. & Harris, P. Gwmodel: An r package for exploring spatial heterogeneity using geographically weighted models. arXiv preprint arXiv:1306.0413 (2013).70.Lu, B., Harris, P., Charlton, M. & Brunsdon, C. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo Spat. Inf. Sci. 17, 85–101 (2014).Article 

    Google Scholar 
    71.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Science & Business Media, 2009).72.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model selection and multimodel inference 2 (2002).73.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria 2020).74.Mevik, B.-H., Wehrens, R., Liland, K. H. & Hiemstra, P. pls: Partial Least Squares and Principal Component Regression (2020).75.Bivand, R., Yu, D., Nakaya, T. & Garcia-Lopez, M. spgwr: Geographically weighted regression. R Package Version 0.6-34. http://cran.r-project.org/web/packages/spgwr/. Accessed August 30th 2020 (2020). More

  • in

    Body size dependent dispersal influences stability in heterogeneous metacommunities

    1.Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784 (1970).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Dunne, J. A. The network structure of food webs. in Ecological Networks: Linking Structure to Dynamics in Food Webs 27–86 (2006).5.Williams, R. J., Brose, U. & Martinez, N. D. Homage to Yodzis and Innes 1992: Scaling up feeding-based population dynamics to complex ecological networks. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems. 37–51 (Springer, 2007).6.Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Fahimipour, A. K., Anderson, K. E. & Williams, R. J. Compensation masks trophic cascades in complex food webs. Theor. Ecol. 10, 245–253 (2017).Article 

    Google Scholar 
    8.Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evolut. 27, 40–46 (2012).Article 

    Google Scholar 
    9.Jacquet, C. et al. No complexity-stability relationship in empirical ecosystems. Nat. Commun. 7, 12573 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Martinez, N. D. Allometric trophic networks from individuals to socio-ecosystems: Consumer-resource theory of the ecological elephant in the room. Front. Ecol. Evolut. 8, 92 (2020).Article 

    Google Scholar 
    12.Segel, L. A. & Levin, S. A. Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. in AIP Conference Proceedings, Vol. 27, 123–152 (American Institute of Physics, 1976).13.Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394 (1994).MATH 
    Article 

    Google Scholar 
    14.McCann, K. S., Rasmussen, J. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Fahimipour, A. K. & Hein, A. M. The dynamics of assembling food webs. Ecol. Lett. 17, 606–613 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B. & Gross, T. Master stability functions reveal diffusion-driven pattern formation in networks. Phys. Rev. E 97, 032307 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Brechtel, A., Gross, T. & Drossel, B. Far-ranging generalist top predators enhance the stability of meta-foodwebs. Sci. Rep. 9, 1–15 (2019).CAS 
    Article 

    Google Scholar 
    18.Gross, T. & et. al. Modern models of trophic meta-communities. Phil. Trans. R. Soc. B (in press).19.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 67–78 (1993).23.Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. 105, 4191–4196 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory Vol. 20 (Springer, 2012).MATH 

    Google Scholar 
    25.Elton, C. S. Animal Ecology (University of Chicago Press, 2001).
    Google Scholar 
    26.Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).Article 

    Google Scholar 
    27.Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge University Press, 1986).
    Google Scholar 
    28.Riede, J. O. et al. Stepping in Elton’s footprints: A general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).29.Kalinkat, G. et al. Body masses, functional responses and predator-prey stability. Ecology letters 16, 1126–1134 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Costa-Pereira, R., Araújo, M. S., Olivier, R. d. S., Souza, F. L. & Rudolf, V. H. Prey limitation drives variation in allometric scaling of predator-prey interactions. Am. Nat. 192, E139–E149 (2018).31.Guzman, L. M. & Srivastava, D. S. Prey body mass and richness underlie the persistence of a top predator. Proc. R. Soc. B 286, 20190622 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Brose, U. et al. Consumer-resource body-size relationships in natural food webs. Ecology 87, 2411–2417 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Potapov, A. M., Brose, U., Scheu, S. & Tiunov, A. V. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194, 823–839 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, 2001).Book 

    Google Scholar 
    36.Simberloff, D. S. & Wilson, E. O. Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296 (1969).Article 

    Google Scholar 
    37.Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).Article 

    Google Scholar 
    38.Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Am. Entomol. 15, 237–240 (1969).
    Google Scholar 
    39.Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat. 138, 768–776 (1991).Article 

    Google Scholar 
    40.Crowley, P. H. Dispersal and the stability of predator-prey interactions. Am. Nat. 118, 673–701 (1981).MathSciNet 
    Article 

    Google Scholar 
    41.Reeve, J. D. Environmental variability, migration, and persistence in host-parasitoid systems. Am. Nat. 132, 810–836 (1988).Article 

    Google Scholar 
    42.Murdoch, W. W. Population regulation in theory and practice. Ecology 75, 271–287 (1994).Article 

    Google Scholar 
    43.Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid-host and predator-prey models: A review. Theor. Popul. Biol. 65, 299–315 (2004).PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    44.Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    45.Mougi, A. & Kondoh, M. Food-web complexity, meta-community complexity and community stability. Sci. Rep. 6, 24478 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Domenici, P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 131, 169–182 (2001).CAS 
    Article 

    Google Scholar 
    47.Hirt, M. R., Lauermann, T., Brose, U., Noldus, L. P. & Dell, A. I. The little things that run: a general scaling of invertebrate exploratory speed with body mass. Ecology 98, 2751–2757 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evolut. 1, 1116–1122 (2017).Article 

    Google Scholar 
    49.Cloyed, C. S., Grady, J. M., Savage, V. M., Uyeda, J. C. & Dell, A. I. The allometry of locomotion. Ecology e03369 (2021).50.Reiss, M. Scaling of home range size: Body size, metabolic needs and ecology. Trends Ecol. Evolut. 3, 85–86 (1988).CAS 
    Article 

    Google Scholar 
    51.Minns, C. K. Allometry of home range size in lake and river fishes. Can. J. Fish. Aquat. Sci. 52, 1499–1508 (1995).Article 

    Google Scholar 
    52.Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Hendriks, A. J., Willers, B. J., Lenders, H. R. & Leuven, R. S. Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography 32, 929–942 (2009).Article 

    Google Scholar 
    54.Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Hartfelder, J. et al. The allometry of movement predicts the connectivity of communities. Proc. Natl. Acad. Sci. 117, 22274–22280 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Vander Zanden, M. J. & Vadeboncoeur, Y. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83, 2152–2161 (2002).Article 

    Google Scholar 
    57.Wolkovich, E. M. et al. Linking the green and brown worlds: The prevalence and effect of multichannel feeding in food webs. Ecology 95, 3376–3386 (2014).Article 

    Google Scholar 
    58.Lomolino, M. V. Immigrant selection, predation, and the distributions of Microtus pennsylvanicus and Blarina brevicauda on islands. Am. Nat. 123, 468–483 (1984).Article 

    Google Scholar 
    59.Beisner, B. E., Peres-Neto, P. R., Lindström, E. S., Barnett, A. & Longhi, M. L. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87, 2985–2991 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.De Bie, T. et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15, 740–747 (2012).PubMed 
    Article 

    Google Scholar 
    61.Kareiva, P. Population dynamics in spatially complex environments: Theory and data. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 330, 175–190 (1990).ADS 
    Article 

    Google Scholar 
    62.Murray, J. Mathematical Biology II: Spatial Models and Biomedical Applications Vol. 3 (Springer, 2001).
    Google Scholar 
    63.Rietkerk, M. & Van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).Article 

    Google Scholar 
    64.Pedersen, E. J., Marleau, J. N., Granados, M., Moeller, H. V. & Guichard, F. Nonhierarchical dispersal promotes stability and resilience in a tritrophic metacommunity. Am. Nat. 187, E116–E128 (2016).PubMed 
    Article 

    Google Scholar 
    65.Haegeman, B. & Loreau, M. General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecol. Lett. 17, 175–184 (2014).PubMed 
    Article 

    Google Scholar 
    66.Amarasekare, P. Spatial dynamics of foodwebs. Annu. Rev. Ecol. Evol. Syst. 39, 479–500 (2008).Article 

    Google Scholar 
    67.Fronhofer, E. A., Klecka, J., Melián, C. J. & Altermatt, F. Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18, 954–963 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Fronhofer, E. A. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evolut. 2, 1859–1863 (2018).Article 

    Google Scholar 
    70.Gross, T. & Feudel, U. Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys. Rev. E 73, 016205 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    71.Yeakel, J. D., Stiefs, D., Novak, M. & Gross, T. Generalized modeling of ecological population dynamics. Theor. Ecol. 4, 179–194 (2011).Article 

    Google Scholar 
    72.Hirt, M. R. et al. Bridging scales: Allometric random walks link movement and biodiversity research. Trends Ecol. Evolut. 33, 701–712 (2018).Article 

    Google Scholar 
    73.Othmer, H. G. & Scriven, L. Non-linear aspects of dynamic pattern in cellular networks. J. Theor. Biol. 43, 83–112 (1974).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Post, D. M., Conners, M. E. & Goldberg, D. S. Prey preference by a top predator and the stability of linked food chains. Ecology 81, 8–14 (2000).Article 

    Google Scholar 
    77.Neutel, A.-M., Heesterbeek, J. A. & de Ruiter, P. C. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    79.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    80.Jenkins, D. G. et al. Does size matter for dispersal distance?. Glob. Ecol. Biogeogr. 16, 415–425 (2007).Article 

    Google Scholar 
    81.Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Guzman, L. M. & Srivastava, D. S. Genomic variation among populations provides insight into the causes of metacommunity survival. Ecology 101, e03182 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Leitch, K. J., Ponce, F. V., Dickson, W. B., van Breugel, F. & Dickinson, M. H. The long-distance flight behavior of drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc. Natl. Acad. Sci. 118 (2021).84.Bowman, J., Jaeger, J. A. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83, 2049–2055 (2002).Article 

    Google Scholar 
    85.Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).Article 

    Google Scholar 
    86.Kartascheff, B., Heckmann, L., Drossel, B. & Guill, C. Why allometric scaling enhances stability in food web models. Theor. Ecol. 3, 195–208 (2010).Article 

    Google Scholar 
    87.Hudson, L. N. & Reuman, D. C. A cure for the plague of parameters: Constraining models of complex population dynamics with allometries. Proc. R. Soc. B: Biol. Sci. 280, 20131901 (2013).Article 

    Google Scholar 
    88.Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evolut. 3, 919–927 (2019).Article 

    Google Scholar 
    89.Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).Article 

    Google Scholar 
    90.Siegel, D. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. 105, 8974–8979 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Pillai, P., Loreau, M. & Gonzalez, A. A patch-dynamic framework for food web metacommunities. Theor. Ecol. 3, 223–237 (2010).Article 

    Google Scholar 
    92.Pillai, P., Gonzalez, A. & Loreau, M. Metacommunity theory explains the emergence of food web complexity. Proc. Natl. Acad. Sci. 108, 19293–19298 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Plitzko, S. J. & Drossel, B. The effect of dispersal between patches on the stability of large trophic food webs. Theor. Ecol. 8, 233–244 (2015).Article 

    Google Scholar 
    94.Guichard, F. Recent advances in metacommunities and meta-ecosystem theories. F1000Research 6 (2017).95.Hata, S., Nakao, H. & Mikhailov, A. S. Dispersal-induced destabilization of metapopulations and oscillatory turing patterns in ecological networks. Sci. Rep. 4, 3585 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.White, K. & Gilligan, C. Spatial heterogeneity in three species, plant-parasite-hyperparasite, systems. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 353, 543–557 (1998).Article 

    Google Scholar 
    97.Gibert, J. P. & Yeakel, J. D. Laplacian matrices and turing bifurcations: Revisiting levin 1974 and the consequences of spatial structure and movement for ecological dynamics. Theor. Ecol. 12, 265–281 (2019).Article 

    Google Scholar 
    98.Fox, J. W., Vasseur, D., Cotroneo, M., Guan, L. & Simon, F. Population extinctions can increase metapopulation persistence. Nat. Ecol. Evolut. 1, 1271–1278 (2017).Article 

    Google Scholar 
    99.Hastings, A. Food web theory and stability. Ecology 69, 1665–1668 (1988).Article 

    Google Scholar 
    100.Anderson, H., Hutson, V. & Law, R. On the conditions for permanence of species in ecological communities. Am. Nat. 139, 663–668 (1992).Article 

    Google Scholar 
    101.Haydon, D. Pivotal assumptions determining the relationship between stability and complexity: An analytical synthesis of the stability-complexity debate. Am. Nat. 144, 14–29 (1994).Article 

    Google Scholar 
    102.Chen, X. & Cohen, J. E. Global stability, local stability and permanence in model food webs. J. Theor. Biol. 212, 223–235 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Bjørnstad, O. N., Ims, R. A. & Lambin, X. Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends Ecol. Evolut. 14, 427–432 (1999).Article 

    Google Scholar 
    104.Ims, R. A. & Andreassen, H. P. Spatial synchronization of vole population dynamics by predatory birds. Nature 408, 194–196 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Sundell, J. et al. Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J. Anim. Ecol. 73, 167–178 (2004).Article 

    Google Scholar 
    106.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343 (2014).107.McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347 (2015).108.Parsons, T. The removal of marine predators by fisheries and the impact of trophic structure. Mar. Pollut. Bull. 25, 51–53 (1992).Article 

    Google Scholar 
    109.Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Albert, C. H., Rayfield, B., Dumitru, M. & Gonzalez, A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv. Biol. 31, 1383–1396 (2017).PubMed 
    Article 

    Google Scholar 
    111.Schiesari, L. et al. Towards an applied metaecology. Perspect. Ecol. Conserv. 17, 172–181 (2019).
    Google Scholar 
    112.Vermaat, J. E., Dunne, J. A. & Gilbert, A. J. Major dimensions in food-web structure properties. Ecology 90, 278–282 (2009).PubMed 
    Article 

    Google Scholar 
    113.White, J. W., Rassweiler, A., Samhouri, J. F., Stier, A. C. & White, C. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123, 385–388 (2014).Article 

    Google Scholar 
    114.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).115.Aufderheide, H., Rudolf, L., Gross, T. & Lafferty, K. D. How to predict community responses to perturbations in the face of imperfect knowledge and network complexity. Proc. R. Soc. B Biol. Sci. 280, 20132355 (2013).Article 

    Google Scholar  More

  • in

    Assessment of global hydro-social indicators in water resources management

    Evaluating indicatorsAmong the selected parameters the ratio of rural to the urban population directly relates to the per capita renewable water, whereas the population density, internet users, and education index exhibit an inverse relation with the per capita renewable water worldwide. It means the per capita renewable water decreases with decreasing rural to urban population and increasing population density, internet users, and education index. The urban population has increased in developing regions, which feature increasing population density. People’s health is threatened by poor urban sanitary infrastructure leading to disease and social decay. Increasing population density and a reduction in per capita renewable water inflict social harm and disrupt society’s economic growth58. Population density also is positively related to the relative number of elderly and social vulnerability because potential casualties increase with population size40. On the other hand, with the increase of Internet users and education index, the per capita renewable water has increased. As long as the knowledge and awareness of communities improved, the consumption algorithm decreased, leading to a reduction of renewable water per capita. Therefore, the level of literacy and knowledge for a community can be the basis for making the right decisions in agriculture, health, natural resource management, and other activities related to water resources for decision-makers. The latter situation calls for better communication among water users through social media and improved education to learn and develop optimal water management.Evaluating models and developing hydro-social equationsThree soft-computing approaches, namely ANN-LM, ANFIS-SC, and GEP, were applied to develop predictive equations with social indicators worldwide. The ANN-Levenberg–Marquardt (LM) backpropagation algorithm with one hidden layer was applied, and the hidden nodes’ number was determined by trial and error. A hybrid algorithm was combined with the ANFIS-SC models. There is no rule for determining the radii values of the ANFIS-SC models. The final radii values were determined by trial-and-error.The numbers of neurons in the ANN-LM models and the radii values of the ANFIS-SC models are listed in Table 4. The activation functions of the output nodes were linear for all the continents. The activation functions of the hidden nodes of the ANN-LM models for the P1 through P4 indicators were respectively the tangent sigmoid, tangent sigmoid, tangent sigmoid, and logarithm sigmoid for Africa; the activation functions of the proportion of rural to urban population was the tangent sigmoid for all the continents. Table 5 lists the results of the soft computing optimal models’ estimates of the proportion of rural to urban population (PRUP), population density (PD), internet users (IU), and education index (EI), denoted respectively by P1 through P4, during the test period in the world’s continents. Figures 4 and 5 display the characteristics of ANN (the number of neurons and activation functions of hidden and output layers) and ANFIS-SC (radii values) models, respectively. The values of R and RMSE for Africa corresponding to the ANN-LM models were respectively (0.921, 0.981, 0.858, 0.862) and (0.193, 0.058, 0.190, 0.172) associated with the PRUP, PD, IU, and EI parameters, respectively. The values of R and RMSE for Africa corresponding to the ANFIS-SC models equaled respectively (0.933, 0.991, 0.868, 0.891) and (0.130, 0.044, 0.186, 0.156) for the P1 through P4 parameters, respectively. Concerning the GEP models, the root relative squared error (RRSE) was selected as the pressure tree’s fitness function. The values of RMSE for GEP models equaled (0.084, 0.029, 0.178, 0.135), (0.197, 0.056, 0.152, 0.163), (0.151, 0.036, 0.123, 0.210), (0.182, 0.039, 0.148, 0.204) and (0.141, 0.030, 0.226, 0.082) for Africa, America, Asia, Europe, and Oceania, respectively. Table 5 results for the R, RMSE, and MAE values establish the GEP model estimates of PRUP, PD, IU, and EI indicators had the highest R values and the lowest RMSE values. The average R values of the best models (GEP) for all selected social parameters equaled 0.942, 0.909, 0.910, 0.889, and 0.947 for Africa, America, Asia, Europe, and Oceania, respectively. These results indicate the climatic characteristics of the continents influence the performance of the models. The models’ performances for Africa and Oceania associated with the type B dominant Koppen climate classification was the best. The models’ performances for Asia and America that have similar climatic classification were nearly equal. The average model performance for Europe in the type D climate classification was the poorest among the continents.Table 4 The characteristics of ANN (the number of neurons) and ANFIS (radii values) models corresponding to social indicators and continents.Full size tableTable 5 The results of soft computing optimal models corresponding to the testing period in the world’s continents.Full size tableFigure 4The characteristics of optimal ANN models; showing the number of neurons and activation functions of hidden and output layers.Full size imageFigure 5The characteristic of optimal ANFIS-SC model showing the radii values.Full size imageFigures 6, 7, 8, 9 and 10 show the observed and estimated social parameters obtained with the soft-computing models during the test period in Africa, America, Asia, Europe, and Oceania, respectively. Figure 11 compares the R, RMSE, and MAE values from the soft-computing models. The R values for soft-computing models are close to 1, with the quality relations being: RGEP  > RANFIS-SC  > RANN-LM for all social indicators. Figure 11 establishes that the ANFIS-SC model exceeded the ANN-LM models’ performance. Also, the GEP models had better performance than the ANFIS-SC and ANN-LM for estimating the proportion of rural to urban population (PRUP), population density (PD), internet users (IU), and education index (EI) parameters in Africa, America, Asia, Europe, and Oceania.Figure 6Observed and estimated social parameters during the testing period in Africa.Full size imageFigure 7Observed and estimated social parameters during the testing period in America.Full size imageFigure 8Observed and estimated social parameters during the testing period in Asia.Full size imageFigure 9Observed and estimated social parameters during the testing period in Europe.Full size imageFigure 10Observed and estimated social indicators during the testing period in Oceania.Full size imageFigure 11Comparison of R, RMSE and MAE values corresponding to the soft computing methods.Full size imageThe main advantage of the GEP over other soft computing methods (e.g., ANFIS and ANN) is in producing predictive equations. The equations obtained with the optimal models for the social indicators (i.e., the proportion of rural to urban population (PRUP), population density (PD), internet users (IU), and education index (EI) in Africa, America, Asia, Europe, and Oceania) are listed in Table 6. The equations that the GEP model discovers as a structure do not necessarily correspond to reality. The equations listed in Table 6 merely show the optimal equations extracted from the model after the evolution, for all indicators and in all basins (considering renewable water per capita as a decision variable).Table 6 Mathematical equations governing hydro-social indicators.Full size tableThe performance of the GEP models in estimating the social indicators in three ranges of values, namely, 20% of the maximum estimated values (20%max), 60% of median estimated values (60%mid or 20%min to 20%max), and 20% of minimum estimated values (20%min), during the test period for the proportion of rural to urban population (PRUP), population density (PD), internet users (IU) and the education index (EI) parameters of Africa, America, Asia, Europe, and Oceania are listed in Table 7. Table 7’s results indicate there is not a regular rule to determine the best-cited ranges performances. The education index and the population density have the lowest and highest R values among the other parameters in the three different ranges (20%max, 60%mid, and 20%min) in Africa, America, Asia, Europe, and Oceania. Therefore, the results indicate a strong pattern of association between the population density parameter and water resources status in all continents of the world.Table 7 The performance of GEP models with respect to selected ranges.Full size tableFigure 12 depicts the distribution of estimated data values of the social parameters (i = 1, 2, 3, 4) and their comparison through the continents. The box plots are a graphic display integrating multiple numerical relations. One approach to understanding the distribution or dispersion of data is through the box diagram, which is based on the “minimum,” “first quartile-Q1(0.25%)”, “median (0.50%)”, “third quartile-Q3(0.75%)” and “maximum” statistical indicators. Figure 12 shows Oceania and Africa exhibit the smallest and largest values of the rural to urban population, respectively. America has the lowest values of the first to the third quartile. The estimated population density value in Europe has the most values in the third quartile (0.75%). The median values of estimated internet users have the smallest and largest values in Africa and Europe, respectively. America has the lowest values of the first quartile, median, third quartile, and maximum values associated with the estimated education index values among the continents.Figure 12Distribution of estimated data values of social indicators (Pi, i = 1, 2, …, 4).Full size imageThe summary of hydro-social equations performance is listed in Table 8, where it is seen the best models’, performances are such that PD  > PRUP  > EI  > IU, PD  > IU  > EI  > PRUP, PD  > IU  > PRUP  > EI, PD  > PRUP  > IU  > EI and PD  > EI  > IU  > PRUP for Africa, America, Asia, Europe, and Oceania, respectively.Table 8 Summary of hydro-social equations performance.Full size tableThis paper’s results indicate the pattern of association between social parameters and water resources is complex. Renewable water per capita was estimated using social indicators PRUP, PD, IU, and EI based on gene expression programming. The results of GEP to estimate RWPC corresponding to the testing period in the world’s continents as listed in Table 9. The values of RMSE for optimal GEP models equaled 0.089, 0.058, 0.042, 0.049, and 0.036 for Africa, America, Asia, Europe, and Oceania, respectively. Figure 13 displays the observed and estimated RWPC parameter during the test period in the world’s continents. The equations obtained with the optimal models for the renewable water per capita in Africa, America, Asia, Europe, and Oceania are listed in Table 10. The fitted equations can be applied at variable spatial and temporal scales. The derived equations imply that water resources in Africa and Oceania are governed by the PRUP, PD, IU, and EI indicators. Also, the PRUP, PD, and IU indicators in Europe and PD and IU indicators in America and Asia have the most influence on their water resources status. The association between social parameters and water resources in all continents is variable. The linking of these social indicators with the per capita renewable water is a function of the countries’ cultural and economic conditions, thus bearing on the future management and policymaking across continents. This study’s results concerning hydro-social indicators are consistent with the findings by Forouzani et al.2, Carey et al.15, Lima et al.25, Pande et al.7, Diep et al.26, and Diaz et al.22.Table 9 The results of GEP estimating RWPC corresponding to the testing period in the world’s continents.Full size tableFigure 13Observed and estimated RWPC parameters during the test period in the world’s continents.Full size imageTable 10 Mathematical equations governing hydro-social indicators.Full size tableThis paper’s results establish the importance of examining the interactions between climate, the status of water resources, and social indicators. The state and social conditions of a country reflect the status of its water resources. Therefore, this study has shown how significant an impact the management and planning of a country can have on its water resources. Each successful water resources project rests on a successful social setting. More