More stories

  • in

    Non-lethal effects of entomopathogenic nematode infection

    1.Gaugler, R. Entomopathogenic nematology (2002).2.Gaugler, R. Entomopathogenic Nematodes in Biological Control (CRC Press, 2018).Book 

    Google Scholar 
    3.Grewal, P. S., Ehlers, R.-U. & Shapiro-Ilan, D. I. Nematodes as Biocontrol Agents (CABI, 2005).Book 

    Google Scholar 
    4.Duncan, L. & McCoy, C. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (coleoptera: Curculionidae) of two species of entomogenous nematodes (rhabditida: Steinernematidae; heterorhabditidae). Environ. Entomol. 25, 174–178 (1996).Article 

    Google Scholar 
    5.Duncan, L., McCoy, C. & Terranova, A. Estimating sample size and persistence of entomogenous nematodes in sandy soils and their efficacy against the larvae of Diaprepes abbreviatus in Florida. J. Nematol. 28, 56 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Bullock, R., Pelosi, R. & Killer, E. Management of citrus root weevils (coleoptera: Curculionidae) on florida citrus with soil-applied entomopathogenic nematodes (nematoda: Rhabditida). Florida Entomologist 1–7 (1999).7.Koppenhöfer, A. M. & Fuzy, E. M. Steinernema scarabaei for the control of white grubs. Biol. Control 28, 47–59 (2003).Article 

    Google Scholar 
    8.Grewal, P., Power, K., Grewal, S., Suggars, A. & Haupricht, S. Enhanced consistency in biological control of white grubs (coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 30, 73–82 (2004).Article 

    Google Scholar 
    9.Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006).Article 

    Google Scholar 
    10.Labaude, S. & Griffin, C. T. Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72 (2018).Article 

    Google Scholar 
    11.Li, X.-Y., Cowles, R., Cowles, E., Gaugler, R. & Cox-Foster, D. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37, 365–374 (2007).CAS 
    Article 

    Google Scholar 
    12.Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547 (2011).CAS 
    Article 

    Google Scholar 
    13.Ribeiro, C. et al. Insect immunity-effects of factors produced by a nematobacterial complex on immunocompetent cells. J. Insect Physiol. 45, 677–685 (1999).CAS 
    Article 

    Google Scholar 
    14.Garriga, A., Mastore, M., Morton, A., Garcia del Pino, F. & Brivio, M. F. Immune response of drosophila suzukii larvae to infection with the nematobacterial complex steinernema carpocapsae-xenorhabdus nematophila. Insects 11, 210 (2020).Article 

    Google Scholar 
    15.Ebrahimi, L., Niknam, G., Dunphy, G. & Toorchi, M. Side effects of immune response of colorado potato beetle, leptinotarsa decemlineata against the entomopathogenic nematode, steinernema carpocapsae infection. Invertebr. Surviv. J. 11, 132–142 (2014).
    Google Scholar 
    16.Ebrahimi, L., Niknam, G. & Lewis, E. Lethal and sublethal effects of iranian isolates of steinernema feltiae and heterorhabditis bacteriophora on the colorado potato beetle, leptinotarsa decemlineata. Biocontrol 56, 781–788 (2011).Article 

    Google Scholar 
    17.Chen, S., Li, J., Han, X. & Moens, M. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to delia radicum. Biocontrol 48, 713–724 (2003).Article 

    Google Scholar 
    18.Mastore, M., Quadroni, S., Toscano, A., Mottadelli, N. & Brivio, M. F. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J. Therm. Biol 79, 15–23 (2019).CAS 
    Article 

    Google Scholar 
    19.Wojda, I. Temperature stress and insect immunity. J. Therm. Biol 68, 96–103 (2017).CAS 
    Article 

    Google Scholar 
    20.Lee, J. H., Dillman, A. R. & Hallem, E. A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 14, 1–17 (2016).Article 

    Google Scholar 
    21.Girling, R., Ennis, D., Dillon, A. & Griffin, C. The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (coleoptera: Curculionidae). J. Invertebr. Pathol. 104, 195–202 (2010).CAS 
    Article 

    Google Scholar 
    22.Mastore, M., Arizza, V., Manachini, B. & Brivio, M. F. Modulation of immune responses of Rhynchophorus ferrugineus (insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (nematoda: Rhabditida). Insect Sci. 22, 748–760 (2015).CAS 
    Article 

    Google Scholar 
    23.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Attract and kill: spinosad containing spheres to control onion maggot (Delia antiqua). Pest Manag. Sci. 76, 2720–2725 (2020).CAS 
    Article 

    Google Scholar 
    24.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Field monitoring of onion maggot (Delia antiqua) fly through improved trapping. J. Appl. Entomol. 144, 382–387 (2020).Article 

    Google Scholar 
    25.Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, 281–324 (Elsevier, 1997).26.White, G. et al. A method for obtaining infective nematode larvae from cultures. Science (Washington) 66, 302–303 (1927).ADS 
    CAS 
    Article 

    Google Scholar 
    27.R Core Team. R: A. Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2021).28.Wickham, H. et al. Welcome to the tidyverse. J. Open Sour. Softw. 4, 1686 (2019). https://doi.org/10.21105/joss.01686ADS 
    Article 

    Google Scholar 
    29.Fox, J. & Weisberg, S. An R Companion to Applied Regression third. (Sage, 2019).
    Google Scholar 
    30.Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021). R package version 1.5.5-1.31.Franceschi, C. et al. Genes involved in immune response/inflammation, igf1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: The lesson of centenarians. Mech. Ageing Dev. 126, 351–361 (2005).CAS 
    Article 

    Google Scholar 
    32.Kumar, S. et al. Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell 49, 100–117 (2019).CAS 
    Article 

    Google Scholar 
    33.Bruno, P. et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    34.Stock, S. P., Campos-Herrera, R., El-Borai, F. & Duncan, L. Steinernema khuongi n. sp. (panagrolaimomorpha, steinernematidae), a new entomopathogenic nematode species from Florida, USA. J. Helminthol. 93, 226–241 (2019).CAS 
    Article 

    Google Scholar 
    35.Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor

    1.Köhler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science 341(6147), 759–765 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418(6898), 671–677 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A. & Siddiqui, Z. H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 110, 194–209 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Monica, R. C. & Cremonini, R. Nanoparticles and higher plants. Caryologia 62(2), 161–165 (2009).Article 

    Google Scholar 
    5.Zheng, L., Hong, F., Lu, S. & Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104(1), 83–91 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Lin, D. & Xing, B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Front. Chem. 3, 64 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7(3), 219–242 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Selvarajan, V., Obuobi, S. & Ee, P. L. R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 8, 602 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lykov, A. et al. Silica Nanoparticles as a Basis for Efficacy of Antimicrobial Drugs. Nanostruct. Antimicrob. Therapy 1, 551–575 (2017).Article 

    Google Scholar 
    11.Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007).CAS 
    Article 

    Google Scholar 
    12.Sharma, A., Patni, B., Shankhdhar, D. & Shankhdhar, S. C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 19(1), 11–20 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Kawachi, M. et al. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol. 50(6), 1156–1170 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Yan, A. & Chen, Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 20(5), 1003 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    15.Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: the mealworm beetle Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Renukadevi, K. P., Saravana, P. S. & Angayarkanni, J. Antimicrobial and antioxidant activity of Chlamydomonas reinhardtii sp. Int. J. Pharm. Sci. Res. 2(6), 1467 (2011).
    Google Scholar 
    17.Jayshree, A., Jayashree, S. & Thangaraju, N. Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators. Indian J. Pharm. Sci. 78(5), 575–581 (2016).CAS 
    Article 

    Google Scholar 
    18.Kamble, P., Cheriyamundath, S., Lopus, M. & Sirisha, V. L. Chemical characteristics, antioxidant and anticancer potential of sulfated polysaccharides from Chlamydomonas reinhardtii. J. Appl. Phycol. 30(3), 1641–1653 (2018).CAS 
    Article 

    Google Scholar 
    19.Vishwakarma, J., Parmar, V. & Vavilala, S. L. Nitrate stress-induced bioactive sulfated polysaccharides from Chlamydomonas reinhardtii. Biomed. Res. J. 6(1), 7 (2019).
    Google Scholar 
    20.Burghardt, M., Schreiber, L. & Riederer, M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 46(4), 1593–1602 (1998).CAS 
    Article 

    Google Scholar 
    21.Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    22.Debnath, N. et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J. Pest Sci. 84(1), 99–105 (2011).Article 

    Google Scholar 
    23.Aktar, M. W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Majumder, D. D. et al. Current status and future trends of nanoscale technology and its impact on modern computing, biology, medicine and agricultural biotechnology. In 2007 International Conference on Computing: Theory and Applications (ICCTA’07), 563–573 (2007).25.Rahman, A. et al. Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96(1), 31–38 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pérez-de-Luque, A. & Rubiales, D. Nanotechnology for parasitic plant control. Pest Manag. Sci.: Formerly Pesticide Sci. 65(5), 540–545 (2009).Article 
    CAS 

    Google Scholar 
    27.Chakravarthy, A. K. et al. Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica 6(3), 271–281 (2012).
    Google Scholar 
    28.Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 25(13), 12329–12341 (2018).CAS 
    Article 

    Google Scholar 
    29.Karthiga, P., Rajeshkumar, S. & Annadurai, G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J. Cluster Sci. 29(6), 1233–1241 (2018).CAS 
    Article 

    Google Scholar 
    30.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 72(4), 590 (2012).Article 

    Google Scholar 
    31.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F(Col: Bruchidae). J. Entomol. Res. 4(4), 297–305 (2013).
    Google Scholar 
    32.Sabbour, M. M. Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J. Novel Appl. Sci. 1(4), 103–108 (2012).
    Google Scholar 
    33.Stadler, T., Buteler, M. & Weaver, D. K. Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci.: Formerly Pesticide Sci. 66(6), 577–579 (2010).CAS 
    Article 

    Google Scholar 
    34.Xu, R. ISO International standards for particle sizing. China Particuol. 2(4), 164–167 (2004).CAS 
    Article 

    Google Scholar 
    35.Lee, Y. S., Kang, M. H., Cho, S. Y. & Jeong, C. S. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Arch. Pharmacal Res. 30(4), 436–443 (2007).CAS 
    Article 

    Google Scholar 
    36.Hussein, H. A. et al. Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour. Bioprocess. 7(1), 1–17 (2020).MathSciNet 
    Article 

    Google Scholar 
    37.Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Servin, A. et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 17(2), 1–21 (2015).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    39.Barik, T. K., Kamaraju, R. & Gowswami, A. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol. Res. 111(3), 1075–1083 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Gao, Y. et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J. 383, 1269 (2020).
    Google Scholar 
    41.Debnath, N., Das, S., Patra, P., Mitra, S. & Goswami, A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol. Environ. Chem. 94(5), 944–951 (2012).CAS 
    Article 

    Google Scholar 
    42.Debnath, N., Mitra, S., Das, S. & Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 221, 252–256 (2012).CAS 
    Article 

    Google Scholar 
    43.Chang, J. S., Chang, K. L. B., Hwang, D. F. & Kong, Z. L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6), 2064–2068 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60(39), 9781–9792 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Mondal, K. K. & Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 62(2), 889–893 (2012).CAS 
    Article 

    Google Scholar 
    46.Norman, D. J. & Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46(3), 426–428 (2011).CAS 
    Article 

    Google Scholar 
    47.Salem, H. F., Kam, E. & Sharaf, M. A. Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. Int. J. Drug Deliv. 3(2), 293 (2011).CAS 

    Google Scholar 
    48.Lamsa, K. et al. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1), 26–32 (2011).Article 
    CAS 

    Google Scholar 
    49.Schofield, R. M. S. Metals in cuticular structures. Scorp. Biol. Res. 1, 234–256 (2001).
    Google Scholar 
    50.Oonincx, D. G. A. B. & Van der Poel, A. F. B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 30(1), 9–16 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Van Broekhoven, S., Oonincx, D. G., Van Huis, A. & Van Loon, J. J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 73, 1–10 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Locke, M. & Nichol, H. Iron economy in insects: transport, metabolism, and storage. Annu. Rev. Entomol. 37(1), 195–215 (1992).CAS 
    Article 

    Google Scholar 
    53.Jones, M. W., de Jonge, M. D., James, S. A. & Burke, R. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J. Biol. Inorg. Chem. 20(6), 979–987 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Mir, A. H., Qamar, A., Qadir, I., Naqvi, A. H. & Begum, R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 10(1), 1–14 (2020).Article 
    CAS 

    Google Scholar 
    55.Zhang, X. F., Shen, W. & Gurunathan, S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int. J. Mol. Sci. 17(10), 1603 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett. Appl. Microbiol. 25(4), 279–283 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Matsumura, Y., Yoshikata, K., Kunisaki, S. I. & Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gupta, A., Maynes, M. & Silver, S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64(12), 5042–5045 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lee, J. H. et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol. 10(1), 1–14 (2013).Article 
    CAS 

    Google Scholar 
    60.Vinluan, R. D. III. & Zheng, J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine 10(17), 2781–2794 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K. & Duttaroy, A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 8(1), 53186 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    62.Chun, J. P., Choi, J. S. & Ahn, Y. J. Utilization of fruit bags coated with nano-silver for controlling black stain on fruit skin of ‘niitaka’pear (Pyrus pyrifolia). Hortic. Environ. Biotechnol. 51(4), 245–248 (2010).
    Google Scholar 
    63.Jo, Y. K., Kim, B. H. & Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93(10), 1037–1043 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Comparing recurrent convolutional neural networks for large scale bird species classification

    1.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Inger, R. et al. Common European birds are declining rapidly while less abundant species numbers are rising. Ecol. Lett. 18, 28–36 (2015).Article 

    Google Scholar 
    3.Leach, E. C., Burwell, C. J., Ashton, L. A., Jones, D. N. & Kitching, R. L. Comparison of point counts and automated acoustic monitoring: Detecting birds in a rainforest biodiversity survey. Emu 116, 305–309 (2016).Article 

    Google Scholar 
    4.Drake, K. L., Frey, M., Hogan, D. & Hedley, R. Using digital recordings and sonogram analysis to obtain counts of yellow rails. Wildl. Soc. Bull. 40, 346–354 (2016).Article 

    Google Scholar 
    5.Lambert, K. T. & McDonald, P. G. A low-cost, yet simple and highly repeatable system for acoustically surveying cryptic species. Austral. Ecol. 39, 779–785 (2014).Article 

    Google Scholar 
    6.Burnett, K. Distribution, abundance, and acoustic characteristics of Kohala forest birds. Ph.D. thesis, University of Hawaii at Hilo (2020).7.Owen, K. et al. Bioacoustic analyses reveal that bird communities recover with forest succession in tropical dry forests. Avian Conserv. Ecol. 15, 25 (2020).Article 

    Google Scholar 
    8.Furnas, B. J., Landers, R. H. & Bowie, R. C. Wildfires and mass effects of dispersal disrupt the local uniformity of type I songs of hermit warblers in California. Auk 137, ukaa031 (2020).Article 

    Google Scholar 
    9.Aide, T. M. et al. Real-time bioacoustics monitoring and automated species identification. PeerJ 1, e103 (2013).Article 

    Google Scholar 
    10.Potamitis, I., Ntalampiras, S., Jahn, O. & Riede, K. Automatic bird sound detection in long real-field recordings: Applications and tools. Appl. Acoust. 80, 1–9 (2014).Article 

    Google Scholar 
    11.Stowell, D. & Plumbley, M. D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2, e488 (2014).Article 

    Google Scholar 
    12.Tachibana, R. O., Oosugi, N. & Okanoya, K. Semi-automatic classification of birdsong elements using a linear support vector machine. PLoS ONE 9, e92584 (2014).ADS 
    Article 

    Google Scholar 
    13.Zheng, A. & Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists (OReilly, London, 2018).
    Google Scholar 
    14.Najafabadi, M. M. et al. Deep learning applications and challenges in big data analytics. J. Big Data 2, 1 (2015).Article 

    Google Scholar 
    15.Dieleman, S., Brakel, P. & Schrauwen, B. Audio-based music classification with a pretrained convolutional network. In ISMIR (2011).16.Lee, H., Pham, P., Largman, Y. & Ng, A. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in Neural Information Processing Systems22 (2009).17.Bergler, C. et al. Orca-spot: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997 (2019).ADS 
    Article 

    Google Scholar 
    18.Zhong, M. et al. Beluga whale acoustic signal classification using deep learning neural network models. J. Acoust. Soc. Am. 147, 1834–1841 (2020).ADS 
    Article 

    Google Scholar 
    19.Strout, J. et al. Anuran call classification with deep learning. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2662–2665 (2017).20.Salamon, J., Bello, J. P., Farnsworth, A. & Kelling, S. Fusing shallow and deep learning for bioacoustic bird species classification. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2017).21.Stowell, D., Wood, M. D., Pamuła, H., Stylianou, Y. & Glotin, H. Automatic acoustic detection of birds through deep learning: The first bird audio detection challenge. Methods Ecol. Evol. 10, 368–380. https://doi.org/10.1111/2041-210X.13103 (2019).Article 

    Google Scholar 
    22.[Dataset] Cornell Lab of Ornithology. Cornell birdcall identification. https://www.kaggle.com/c/birdsong-recognition (accessed 15 Jun 2020).23.McFee, B. et al. librosa: Audio and music signal analysis in python. In Proceedings of the 14th Python in Science Conference 8 (2015).24.Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR (2015).25.He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In CVPR 770–778 (2016).26.Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. (eds.) Birds of the World Cornell Laboratory of Ornithology, Ithaca, NY, USA, 2020). https://birdsoftheworld.org/bow/home.27.Gu, A., Dao, T., Ermon, S., Rudra, A. & Re, C. Hippo: Recurrent memory with optimal polynomial projections (2020). arXiv:2008.07669.28.Molau, S., Pitz, M., Schluter, R. & Ney, H. Computing mel-frequency cepstral coefficients on the power spectrum. In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221) 1, 73–76 (2001). https://doi.org/10.1109/ICASSP.2001.940770.29.Choi, K., Fazekas, G. & Sandler, M. Automatic tagging using deep convolutional neural networks (2016). arXiv:1606.00298.30.Dieleman, S. & Schrauwen, B. End-to-end learning for music audio. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 6964–6968 (2014).31.Voelker, A., Kajic, I. & Eliasmith, C. Legendre memory units: Continuous-time representation in recurrent neural networks. In NeurIPS (2019).32.Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In CVPR 4700–4708 (2017).33.Doriana, C., Leforta, R., Bonnela, J., Zaraderb, J.-L. & Adam, O. Bi-class classification of humpback whale sound units against complex background noise with deep convolution neural network (2017). arXiv:1702.02741.34.Narasimhan, R., Fern, X. Z. & Raich, R. Simultaneous segmentation and classification of bird song using cnn. In Proc. Int. Conf. Acoust. Speech, Signal Process 146–150 (2017).35.Sankupellay, M. & Konovalov, D. Bird call recognition using deep convolutional neural network, resnet-50 (2018).36.Zhang, L., Wang, D., Bao, C., Wang, Y. & Xu, K. Large-scale whale-call classification by transfer learning on multi-scale waveforms and time-frequency features. Appl. Sci. 9, 1020 (2019).Article 

    Google Scholar 
    37.Berman, P. C., Bronstein, M. M., Wood, R. J., Gero, S. & Gruber, D. F. Deep machine learning techniques for the detection and classification of sperm whale bioacoustics. Sci. Rep. 9, 12588 (2019).ADS 
    Article 

    Google Scholar 
    38.Zhong, M. et al. Improving passive acoustic monitoring applications to the endangered cook inlet beluga whale. J. Acoust. Soc. Am. 146, 3089–3089 (2019).ADS 
    Article 

    Google Scholar 
    39.Efremova, D. B., Sankupellay, M. & Konovalov, D. A. Data-efficient classification of birdcall through convolutional neural networks transfer learning. In 2019 Digital Image Computing: Techniques and Applications (DICTA) 1–8 (2019).40.Zhong, M. et al. Multispecies bioacoustic classification using transfer learning of deep convolutional neural networks with pseudo-labeling. Appl. Acoust. 166, 107375 (2020).Article 

    Google Scholar 
    41.Thakura, A., Thapar, D., Rajan, P. & Nigam, A. Deep metric learning for bioacoustic classification: Overcoming training data scarcity using dynamic triplet loss. J. Acoust. Soc. Am. 146, 534 (2019).ADS 
    Article 

    Google Scholar 
    42.Wang, Z., Yan, W. & Oates, T. Time series classification from scratch with deep neural networks: A strong baseline (2016). arXiv:1611.06455.43.Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (1989).Article 

    Google Scholar 
    44.Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).ADS 
    Article 

    Google Scholar 
    45.Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).CAS 
    Article 

    Google Scholar 
    46.Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).CAS 
    Article 

    Google Scholar 
    47.Cho, K., Van Merriënboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder–decoder approaches (2014). arXiv:1409.1259.48.Zeng, Y., Mao, H., Peng, D. & Yi, Z. Spectrogram based multi-task audio classification. Multimed. Tools Appl. 78, 3705–3722 (2019).Article 

    Google Scholar 
    49.Voelker, A. R. & Eliasmith, C. Improving spiking dynamical networks: Accurate delays, higher-order synapses, and time cells. Neural Comput. 30, 569–609 (2018).MathSciNet 
    Article 

    Google Scholar 
    50.Xu, Y., Kong, Q., Huang, Q., Wang, W. & Plumbley, M. D. Convolutional gated recurrent neural network incorporating spatial features for audio tagging (2017). arXiv:1702.07787.51.Keren, G. & Schuller, B. Convolutional RNN: An enhanced model for extracting features from sequential data (2016). arXiv:1602.05875.52.Lai, G., Chang, W.-C., Yang, Y. & Liu, H. Modeling long- and short-term temporal patterns with deep neural networks (2017). arXiv:1703.07015.53.Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Espi, M., Fujimoto, M., Kubo, Y. & Nakatani, T. Spectrogram patch based acoustic event detection and classification in speech overlapping conditions. In 2014 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA) 117–121 (2014).55.Feng, L., Liu, S. & Yao, J. Music genre classification with paralleling recurrent convolutional neural network (2017). arXiv:1712.08370.56.Choi, K., Fazekas, G., Sandler, M. & Cho, K. Convolutional recurrent neural networks for music classification (2016). arXiv:1609.04243.57.Himawan, I., Towsey, M. & Roe, P. 3d convolution recurrent neural networks for bird sound detection. In Wood, M., Glotin, H., Stowell, D. & Stylianou, Y. (eds.) Proceedings of the 3rd Workshop on Detection and Classification of Acoustic Scenes and Events 1–4 (Detection and Classification of Acoustic Scenes and Events, 2018).58.Cakir, E., Adavanne, S., Parascandolo, G., Drossos, K. & Virtanen, T. Convolutional recurrent neural networks for bird audio detection. In 2017 25th European Signal Processing Conference (EUSIPCO) 1744–1748 (2017). More

  • in

    High efficacy of microbial larvicides for malaria vectors control in the city of Yaounde Cameroon following a cluster randomized trial

    1.Guengant, J.-P. & May, J. F. African demography. Glob. J. Emerg. Mark. Econ. 5, 215–267 (2013).
    Google Scholar 
    2.Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5, 27060 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    3.Eder, M. et al. Scoping review on vector-borne diseases in urban areas: Transmission dynamics, vectorial capacity and co-infection. Infect. Dis. Poverty 7, 1–24 (2018).Article 

    Google Scholar 
    4.Keiser, J. et al. Urbanization in sub-Saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71, 118–127 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Tusting, L. S. et al. Environmental temperature and growth faltering in African children: A cross-sectional study. Lancet Planet. Health 4, e116–e123. https://doi.org/10.1016/S2542-5196(20)30037-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Hay, S. I. et al. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 21, 52–53 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211. https://doi.org/10.1038/nature15535 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Kamau, A., Mogeni, P., Okiro, E. A., Snow, R. W. & Bejon, P. A systematic review of changing malaria disease burden in sub-Saharan Africa since 2000: Comparing model predictions and empirical observations. BMC Med. 18, 1–11 (2020).Article 

    Google Scholar 
    9.Nkumama, I. N., O’Meara, W. P. & Osier, F. H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges (WHO, 2020).Book 

    Google Scholar 
    11.World Health Organization. World Malaria Report 2012 (World Health Organization, 2012).Book 

    Google Scholar 
    12.Report, W. M. . Licence: CC BY-NC-SA 3.0 IGO (World Health Organization, 2019).
    Google Scholar 
    13.Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98. https://doi.org/10.1016/j.pt.2010.08.004 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Moyes, C. L. et al. Evaluating insecticide resistance across African districts to aid malaria control decisions. Proc. Natl. Acad. Sci. 117, 22042–22050 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Tropi. Dis. 11, e0005625 (2017).Article 
    CAS 

    Google Scholar 
    17.Staedke, S. G. et al. LLIN evaluation in Uganda Project (LLINEUP)—Impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: Study protocol for a cluster-randomised trial. Trials 20, 1–13 (2019).Article 

    Google Scholar 
    18.Hemingway, J. et al. Country-level operational implementation of the global plan for insecticide resistance management. Proc. Natl. Acad. Sci. 110, 9397–9402. https://doi.org/10.1073/pnas.1307656110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Chanda, E. et al. Scale-up of integrated malaria vector control: Lessons from Malawi. Bull. World Health Organ. 94, 475 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Derua, Y. A., Kweka, E. J., Kisinza, W. N., Githeko, A. K. & Mosha, F. W. Bacterial larvicides used for malaria vector control in sub-Saharan Africa: Review of their effectiveness and operational feasibility. Parasit. Vectors 12, 1–18 (2019).Article 

    Google Scholar 
    21.WHO. Larval Source Management: A Supplementary Measure for Malaria Vector Control (World Health Organization, 2013).
    Google Scholar 
    22.Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar. J. 18, 1–9 (2019).Article 

    Google Scholar 
    23.Fillinger, U. & Lindsay, S. W. Larval source management for malaria control in Africa: Myths and reality. Malar J. https://doi.org/10.1186/1475-2875-10-353 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Shousha, A. T. Species-eradication: The eradication of Anopheles gambioe from Upper Egypt, 1942–1945. Bull. World Health Organ. 1, 309 (1948).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Utzinger, J., Tozan, Y. & Singer, B. H. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med. Int. Health 6, 677–687. https://doi.org/10.1046/j.1365-3156.2001.00769.x (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Fillinger, U., Ndenga, B., Githeko, A. & Lindsay, S. W. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: A controlled trial. Bull. World Health Organ. 87, 655–665 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Choi, L., Majambere, S. & Wilson, A. L. Larviciding to prevent malaria transmission. Cochrane Database Syst. Rev. 8, CD012736 (2019).
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Tusting, L. S. et al. Socioeconomic development as an intervention against malaria: A systematic review and meta-analysis. Lancet 382, 963–972. https://doi.org/10.1016/s0140-6736(13)60851-x (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Choi, L. & Wilson, A. Larviciding to control malaria. Cochrane Database Syst. Rev. 2017, CD012736. https://doi.org/10.1002/14651858.CD012736 (2017).Article 
    PubMed Central 

    Google Scholar 
    30.Tusting, L. S. et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst. Rev. 8, CD008923 (2013).
    Google Scholar 
    31.Geissbuhler, Y. et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam. Tanzania. PLoS One. 4, e5107. https://doi.org/10.1371/journal.pone.0005107 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Castro C. M. et al. Community-based environmental management for malaria control: evidence from a small-scale intervention in Dar es Salaam, Tanzania. Malar J. 8, 57 (2009)PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Maheu-Giroux, M. & Castro, M. C. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS ONE 8, e71638. https://doi.org/10.1371/journal.pone.0071638 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.World Health Organization. A Framework for Malaria Elimination (World Health Organization, 2017).
    Google Scholar 
    35.Wold Health Organization. 11th World Malaria Day “Ready to Beat Malaria” We are the Generation that can End Malaria (ed. World Health Organization). (World Health Oraganization, 2018).
    Google Scholar 
    36.Institut National de Statistiques and IFC. Enquête Démographique et de Santé du Cameroun (ed. INS. ICF.) 1–515 (INS, 2020).
    Google Scholar 
    37.Barbazan, P. et al. Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon. J. Am. Mosq. Control Assoc. 13, 263–269 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Hougard, J.-M. et al. Lutte contre Culex quinquefasciatus par Bacillus sphaericus: résultats d’une campagne pilote dans une agglomération urbaine d’Afrique équatoriale. Bulletin de l’organisation mondiale de la santé 71, 367–375 (1994).
    Google Scholar 
    39.Antonio-Nkondjio, C. et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): Influence of urban agriculture and pollution. Malar J. https://doi.org/10.1186/1475-2875-10-154 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Tene Fossog, B. et al. Water quality and Anopheles gambiae larval tolerance to pyrethroids in the cities of Douala and Yaounde (Cameroon). J. Trop. Med. 2012, 1–10. https://doi.org/10.1155/2012/429817 (2012).Article 

    Google Scholar 
    41.Fondjo, E., Robert, V., Le Goff, G., Toto, J. & Carnevale, P. Urban malaria transmission in Yaounde (Cameroon). 2. Entomologic study in 2 semi urban districts. Bull. Soc. Pathol. Exot. 85, 57–63 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Manga, L., Robert, V., Messi, J., Desfontaines, M. & Le Carnevale, P. paludisme urbain à Yaoundé, Cameroun. 1-Etude entomologique dans deux quartiers centraux. Mém. Soc. R Belge Entomol. 35, 155–162 (1992).
    Google Scholar 
    43.Doumbe-Belisse, P. et al. High malaria transmission sustained by Anopheles gambiae sl occurring both indoors and outdoors in the city of Yaoundé, Cameroon. Wellcome Open Res. 3, 164 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Talipouo, A. et al. Malaria prevention in the city of Yaoundé: Knowledge and practices of urban dwellers. Malar. J. 18, 167. https://doi.org/10.1186/s12936-019-2799-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé, Cameroon. Parasite 27, 10 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Djamouko-Djonkam, L. et al. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect. Dis. Poverty 8, 1–15 (2019).Article 

    Google Scholar 
    47.Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    49.Ngadjeu, C. S. et al. Influence of house characteristics on mosquito distribution and malaria transmission in the city of Yaoundé, Cameroon. Malar. J. 19, 53 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Nkahe, D. L. et al. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res. 5, 171 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Historique-Meteo. https://www.historique-meteo.net/afrique/cameroun/ (2020).52.Govella, N. et al. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar. J. 8, 157. https://doi.org/10.1186/1475-2875-8-157 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Wilson, A. L. et al. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 31, 380–390 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Fillinger, U., Sonye, G., Killeen, G. F., Knols, B. G. & Becker, N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: Operational observations from a rural town in western Kenya. Trop. Med. Int. Health 9, 1274–1289 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malar. J. 6, 1–14 (2007).Article 

    Google Scholar 
    56.Gillies, M. T. & Coetzee, M. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region) (South African Institute for Medical Research, 1987).
    Google Scholar 
    57.Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Fossog Tene, B. et al. Resistance to DDT in an urban setting: Common mechanisms implicated in both M and S forms of Anopheles gambiae in the City of Yaoundé, Cameroon. PLoS ONE 8, e61408. https://doi.org/10.1371/journal.pone.0061408 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Antonio-Nkondjio, C. et al. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar. J. 15, 424. https://doi.org/10.1186/s12936-016-1483-3 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155. https://doi.org/10.1186/s12936-015-0675-6 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Bamou, R. et al. Assessment of the Anophelinae blood seeking bionomic and pyrethroids resistance of local malaria vectors in the forest region of Southern Cameroon. JEZS 8, 1054–1062 (2020).
    Google Scholar 
    62.World Health Organization. The Role of Larviciding for Malaria Control in Sub-Saharan Africa: Interim Position Statement (World Health Organization, 2012).
    Google Scholar 
    63.Talipouo, A. et al. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci. Rep. 11, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    64.Haines, A. et al. Promoting health and advancing development through improved housing in low-income settings. J. Urban Health 90, 810–831 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Tusting, L. S. et al. Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 14, e1002234. https://doi.org/10.1371/journal.pmed.1002234 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Tusting, L. S. et al. The evidence for improving housing to reduce malaria: A systematic review and meta-analysis. Malar. J. 14, 209. https://doi.org/10.1186/s12936-015-0724-1 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Organization, W. H. Report of the Nineteenth WHOPES Working Group Meeting: WHO/HQ, Geneva, 8–11 February 2016: Review of Veeralin LN, VectoMax GR, Bactivec SC.(World Health Organization, 2016).68.Service M. Mosquito Ecology. Field Sampling Methods (Elsevier Applied Science, 1993).Book 

    Google Scholar 
    69.Edwards, F. W. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae (1941).70.Edwards, F. W. Mosquitoes of the Ethiopian region. III, Culicine adults and pupae (Brit. Mus. Nat. Hist., 1941).71.Gillies, M. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Pub South Afr Inst Med Res 55, 143 (1987).
    Google Scholar 
    72.Wagtech, P. Water Quality Testing 1–139. https://www.palintest.com/product-categories/wagtech/ (Wagtech, 2012).73.Gillies, M. T. & DeMeillon, B. The Anopheline of Africa, south of the Sahara (Ethiopian zoogeographical region) Johannesburg: publication of south African Institute of Medical Research no. 54. (SAIMR, 1968).74.Gillies, T. & Coetzee, M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region) (Publication of the South African Institute of Medical Research, 1987).
    Google Scholar 
    75.Santolamazza, F. et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar. J. 7, 74 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Koekemoer, L., Kamau, L., Hunt, R. & Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: culicidae) group. Am. J. Trop. Med. Hyg. 66, 804–811 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Livak, K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107, 611–634 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Wirtz, R., Burkot, T., Graves, P. & Andre, R. Field evaluation of enzymelinked immunosorbent assays for P. falciparum and P. vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua, new Guinea. J. Med. Entomol. 24, 433–437. https://doi.org/10.1093/jmedent/24.4.433 (1987).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Bass, C. et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: A comparison of a new high-throughput assay with existing methods. Malar. J. 7, 177 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes (WHO, 2013). https://doi.org/10.1371/journal.pone.0013140.Book 

    Google Scholar 
    81.Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: A comparison of two new high-throughput assays with existing methods. Malar. J. 6, 1–14. https://doi.org/10.1186/1475-2875-6-111 (2007).CAS 
    Article 

    Google Scholar 
    82.Mulla, M. S., Norland, L. R., Fanara, D. M., Darwazeh, H. A. & McKean, D. W. Control of chironomid midges in recreational lakes. J. Econ. Entomol. 64, 300–307 (1971).CAS 
    Article 

    Google Scholar  More

  • in

    The rate and fate of N2 and C fixation by marine diatom-diazotroph symbioses

    Abundances of N2 fixing symbioses in the WTNATo date, the various marine symbiotic diatoms are notoriously understudied, and hence our understanding of their abundances and distribution patterns is limited [7]. In general, these symbiotic populations are capable of forming expansive blooms, but largely co-occur at low densities in tropical and subtropical waters with a few rare reports in temperate waters [26,27,28,29, 39,40,41,42]. The Rhizosolenia-Richelia symbioses have been more commonly reported in the North Pacific gyre [26, 27, 31], and the western tropical North Atlantic (WTNA) near the Amazon and Orinoco River plumes is an area where widespread blooms of the H. hauckii-Richelia symbioses are consistently recorded [28, 29, 42,43,44,45,46,47].In the summer of 2010, bloom densities (105−106 cells L−1) of the H. hauckii-Richelia symbioses were encountered at multiple stations with mesohaline (30–35 PSU) surface salinities (Supplementary Table 1). The R. clevei-Richelia symbioses were less abundant (2–30 cells L−1). Similar densities of H. hauckii-Richelia have been reported in the WTNA during spring (April–May) and summer seasons (June–July) (28–29; 46). In fall 2011, less dense symbiotic populations (0–50 cells L−1) were observed, and the dominant symbioses was the larger cell diameter (30–50 µm) H. membranaceus associated with Richelia. Previous observations of H. membranaeus-Richelia in this region are limited and reported as total cells (i.e., 12-218 cells) and highest numbers recorded in Aug–Sept in waters near the Bahama Islands [43]. On the other hand, Rhizosolenia-Richelia are even less reported in the WTNA, and most studies by quantitative PCR assays based on the nifH gene (for nitrogenase enzyme for N2 fixation) of the symbiont (44; 46–7). Unlike qPCR which cannot resolve if the populations are symbiotic or active for N2 fixation, the densities and activity reported here represent quantitative counts and measures of activity for symbiotic Rhizosolenia.The WTNA is largely influenced by both riverine and atmospheric dust deposition (e.g., Saharan dust) [48], including the silica necessary for the host diatom frustules, and trace metals (e.g., iron) necessary for photosynthesis by both partners and the nitrogenase enzyme (for N2 fixation) of the symbiont. We observed similar hydrographic conditions (i.e., low to immeasurable concentrations of dissolved N, sufficient concentrations of dissolved inorganic P and silicates, and variable surface salinities; 22; 28–29; 40–47) as reported earlier that favor high densities of H. hauckii-Richelia blooms. Unfortunately our data is too sparse to determine if these conditions are in fact priming and favoring the observed blooms of the H.hauckii-Richelia symbioses in summer 2010, and to a lesser extent in the Fall 2011.A biometric relationship between C and N activity and host biovolumeThe diatom-Richelia symbioses are considered highly host specific [10, 11], however, the driver of the specificity between partners remains unknown. We initially hypothesized that host selectivity could be related to the N2 fixation capacity of the symbiont. Moreover, it would be expected that the larger H. membranaceus and R. clevei hosts which are ~2–2.5 and 3.5–5 times, respectively, larger in cell dimensions than the H. hauckii cells would have higher N requirements (Supplementary Table 2). In fact, recently it was reported that the filament length of Richelia is positively correlated with the diameter of their respective hosts [22]. Thus, to determine if there is also a size dependent relationship between activity and cell biovolume, the enrichment of both 15N and 13C measured by SIMS was plotted as a function of symbiotic cell biovolume.Given the long incubation times (12 h) and previous work [32] that show fixation and transfer of reduced N to the host is rapid (i.e., within 30 min), we expected most if not all of the reduced N, or enrichment of 15N, to be transferred to the host diatom during the experiment (Fig. 1). Therefore, we measured and report the enrichment for the whole symbiotic cell, rather than the enrichment in the individual partners (Supplementary Table 2; Fig. 2). The enrichment of both 13C/12C and 15N/14N was significantly higher in the larger H. membranaceus-Richelia cells (atom % 13C: 1.5628–2.0500; atom % 15N: 0.8645–1.0200) than the enrichment measured in the smaller H. hauckii-Richelia cells (atom % 13C: 1.0700–1.3078; atom % 15N: 0.3642–0.7925) (Fig. 2) (13C, Mann–Whitney p = 0.009; 15N, Mann–Whitney p 50 symbiotic cells in a chain) were reported at station 2 with fully intact symbiotic Richelia filaments (2–3 vegetative cells and terminal heterocyst), and at station 25 chains were short (1–2 symbiotic cells) and associated with short Richelia filaments (only terminal heterocyst). Moreover, the symbiotic H. hauckii hosts possessed poor chloroplast auto-fluorescence at station 25 [46]. Given that the cells selected for NanoSIMS were largely single cells, rather than chains, we suspect that these cells were in a less than optimal cell state, which was also reflected in the low 13C/12C enrichment ratios and low estimated C-based growth rates (0.30–57 div d−1). These are particularly reduced compared to the growth rates recently reported for enrichment cultures of H. hauckii-Richelia (0.74–93 div d−1§) (Supplementary Table 2) [33].In 2011, higher cellular N2 fixation rates (15.4–27.2 fmols N cell−1 h−1) were measured for the large cell diameter H. membranaceus-Richelia, symbioses. Despite high rates of fixation, cell abundances were low (4–19 cells L−1), and resulted in a low overall contribution of the symbiotic diatoms to the whole water N2 ( >1%) and C-fixation ( >0.01%). The estimated C-based growth rates for H. membranaceus were high (1.9–3.5 div d−1), whereas estimated N-based growth rates (0.3–4 div d−1) were lower than previously published (33; 52–53). Hence the populations in 2011 were likely in a pre-bloom condition given the low cell densities.Estimating symbiotically derived reduced N to surface oceanTo date, determining the fate of the newly fixed N from these highly active but fragile symbiotic populations has been difficult. Thus, we attempted to estimate the excess N fixed and potentially available for release to the surround by using the numerous single cell-specific rates of N2 fixation determined by SIMS on the Hemiaulus spp.-Richelia symbioses (Supplementary Materials). Because the populations form chains during blooms and additionally sink, we calculated the size-dependent sinking rates for both single cells and chains ( >50 cells). Initially we hypothesized that sinking rates of the symbiotic associations would be more rapid than the N excretion rates, such that most newly fixed N would contribute less to the upper water column (sunlit).The sinking velocities were plotted (Fig. 5) as a function of cell radius at a range (min, max) of densities and included two different form resistances (∅ = 0.3 and 1.5). As expected, the combination of form resistance and density has a large impact on the sinking velocity. For example, a H. hauckii cell of similar radius (10 μm) and density (3300 kg m−3) but higher form resistance (0.3 vs. 1.5) sinks twice as fast at the lower form resistance (Fig. 5). This points to chain formation (e.g., increased form resistance) as a potential ecological adaptation to reduce sinking rates. Recently, colony formation was identified as an important phenotypic trait that could be traced back ancestrally amongst both free-living and symbiotic diatoms that presumably functions for maintaining buoyancy and enhancing light capture [22].Fig. 5: The influence of cell characteristics on estimated sinking velocity for symbiotic Hemiaulus spp.The range of diatom sinking speed predicted using the modified Stokes approximation for diatoms [74] and accounting for the symbioses (cylinders) having varying cell size characteristics (form resistance by altering chain length, density; Supplementary Table 4). Note that form resistance increases with chain length and that the longest chains would have sinking speeds less than 10 m d−1.Full size imageThe concentration of fixed N surrounding a H. hauckii and H. membranaceus cell were modeled (Supplementary Materials; Supplementary Table 4; Fig. 6). First, the cellular N requirement (QN, mol N cell−1) for a cell of known volume, V, as per the allometric formulation of Menden-Deuer and Lessard [71] is calculated by the following.$${{{{{{{mathrm{Q}}}}}}}}_{{{{{{{mathrm{N}}}}}}}} = (10^{ – 12}/12) times 0.76 ;times, {{{{{{{mathrm{V}}}}}}}}^{^{0.189}}$$
    (1)
    Fig. 6: The simplified case of diffusive nitrogen (N) exudate plumes for non-motile symbioses.The concentration of dissolved N (nmol L−1) is presented at of varying cell sizes (3 µm and 30 µm) for H. hauckii-Richelia (A and B, respectively) and H. membranaceus-Richelia (C and D, respectively) growing at specific growth rates of 0.4 d−1 (dashed red lines) or 0.68 d−1 (solid black lines). Exudation follows the same principle as diffusive uptake as per Kiorboe [72] in the absence of turbulence.Full size imageVolume calculations assume a cylindrical shape; whereas exudation assumes an equivalent spherical volume. Then, using published growth rates of 0.4 d−1 and 0.68 d−1 for the symbioses [52, 53], N uptake rate (VN) necessary to sustain the QN was determined. N loss was assumed to be a constant fraction (f) of the VN; this fraction was assumed to be 7.5% and 11% for H. hauckii and H. membranaceus, respectively, or the estimated excess N which was fixed given the assumed growth rate [31]. The excretion rate (EN) of the individual cells was then calculated as$${{{{{{{mathrm{E}}}}}}}}_{{{{{{{mathrm{N}}}}}}}} = {{{{{{{mathrm{fQ}}}}}}}}_{{{{{{{mathrm{N}}}}}}}}$$
    (2)
    The concentration of fixed N surrounding the cell (Cr) was iteratively calculated by the following:$${{{{{{{mathrm{C}}}}}}}}_{{{{{{{mathrm{r}}}}}}}} = {{{{{{{mathrm{E}}}}}}}}_{{{{{{{mathrm{N}}}}}}}}/(4pi * {{{{{mathrm{D}}}}}}* {{{{{mathrm{r}}}}}}_{{{{{mathrm{{x}}}}}}}) + {{{{{{{mathrm{C}}}}}}}}_{{{{{{{mathrm{i}}}}}}}}$$
    (3)
    The concentric radius (rx) as per Kiørboe [72] uses a diffusivity of N assumed to be 1.860 × 10−5 cm2 sec−1 and the background concentration of N (Ci) is assumed to be negligible. Figure 5 presents the results for the two symbioses: H. membranaceus and H. hauckii at the two growth rates and as chains or singlets. Mean sinking rates for cells with a high form resistance (e.g., chains) are More

  • in

    Climatic windows for human migration out of Africa in the past 300,000 years

    Late Quaternary climate reconstructionsPrecipitationOur reconstructions of Late Quaternary precipitation are based on outputs from a statistical emulator of the HadCM3 general circulation model62. The emulator was developed using 72 3.75° × 2.5° resolution snapshot climate simulations of HadCM3, covering the last 120k years and in 2k year time steps from 120k to 22k years ago and 1k-year time steps from 21k years ago to the present, where each time slice represents climatic conditions averaged across a 30-year post-spin-up period28,63. The emulator is based on grid-cell-specific linear regressions between the local time series of HadCM3 climate data and four time-dependent forcings, given by the mean global atmospheric CO2 concentration and three orbital parameters: eccentricity, obliquity, and precession. The values of these four predictors are known well beyond the last 120k years; thus, applying them to the calibrated grid-cell-specific linear regressions allows for the statistical extrapolation of global climate up to 800k years into the past62. The emulated climate data have been shown to correspond closely to the original HadCM3 simulations for the last 120k years, and to match long-term empirical climate reconstructions well62.Here, we used precipitation data from the emulator, denoted ({bar{{{{bf{P}}}}}}_{{{{{rm{HadCM3}}}}}_{{{{rm{em}}}}}}(t)), of the last 300k years at 1k-year time steps, (tin {{{{bf{T}}}}}_{300k}). The data were spatially downscaled from their native 3.75° × 2.5° grid resolution, and subsequently bias-corrected, in two steps, similar to the approach described in ref. 64, whose description we follow here. Both steps use variations of the delta method65, under which a high-resolution, bias-corrected reconstruction of precipitation at sometime t is obtained by applying the difference between lower-resolution present-day simulated and high-resolution present-day observed climate—the correction term—to the simulated climate at time t. The delta method has been used to downscale and bias-correct palaeoclimate simulations before (e.g. for the WorldClim database66), and, despite its conceptual simplicity, has been shown to outperform alternative methods commonly used for downscaling and bias-correction67.A key limitation of the delta method is that it assumes the present-day correction term to be representative of past correction terms. This assumption is substantially relaxed in the dynamic delta method used in the first step of our approach to downscale ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) to a ~1° resolution. This method involves the use of a set of high-resolution climate simulations that were run for a smaller but climatically diverse subset of T300k. Simulations at this resolution are computationally very expensive, and therefore running substantially larger sets of simulations is not feasible; however, these selected data can be very effectively used to generate a suitable time-dependent correction term for each (tin {{{{bf{T}}}}}_{300k}). In this way, we can increase the resolution of the original climate simulations by a factor of ∼9, while simultaneously allowing for the temporal variability of the correction term. In the following, we describe the approach in detail.We used high-resolution precipitation simulations from the HadAM3H model63, generated for the last 21,000 years in 9 snapshots (2k year time intervals from 12k to 6k years ago, and 3k year time intervals otherwise) at a 1.25° × .83° grid resolution, denoted ({bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(t)), where (tin {{{{bf{T}}}}}_{21k},)represents the nine time slices for which simulations are available. These data were used to downscale ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) to a 1.25° × 0.83° resolution by means of the multiplicative dynamic delta method, yielding$${bar{{{{bf{P}}}}}}_{ sim 1^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(t)cdot frac{{bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})}{{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})}.$$
    (1)
    The ⊞-notation indicates that the coarser-resolution data were interpolated to the grid of the higher-resolution data, for which we used an Akima cubic Hermite interpolant68, which, unlike the bilinear interpolation, is continuously differentiable but, unlike the bicubic interpolation, avoids overshoots. The time (hat{t}in {{{{bf{T}}}}}_{21k}) is chosen as the time at which climate was, in a sense specified below, close to that at time (tin {{{{bf{T}}}}}_{300k}). In contrast to the classical delta method (for which (hat{t}=0) for all (t)), this approach does not assume that the resolution correction term, ((frac{{bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})}{{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})})), is constant over time. Instead, the finescale heterogeneities that are applied to the coarser-resolution ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) are chosen from the wide range of patterns simulated for the last 21k years. The strength of the approach lies in the fact that the last 21k years account for a substantial portion of the glacial-interglacial range of climatic conditions present during the whole Late Quaternary. Following ref. 64, we used global CO2, a key indicator of the global climatic state, as the metric according to which (hat{t}) is chosen; i.e. among the times for which HadAM3H simulations are available, (hat{t}) is the time at which global CO2 was closest to the respective value at the time of interest, t.In the second step of our approach, we used the classical multiplicative delta method to bias-correct and further downscale ({{{{bf{P}}}}}_{ sim 1^circ }(t)) to a hexagonal grid69 with an internode spacing of ~55 km (~0.5°),$${bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{ sim 1^circ }^{ boxplus }(t)cdot frac{{bar{{{{bf{P}}}}}}_{{{{rm{obs}}}}}(0)}{{bar{{{{bf{P}}}}}}_{ sim 1^circ }^{ boxplus }(0)},$$
    (2)
    where ({{{{bf{P}}}}}_{{{{rm{obs}}}}}(0)) denotes present-era (1960–1990) observed precipitation70.We reconstructed land configurations for the last 300k years using present-day elevation71 and a time series of Red Sea sea level72. For locations that are currently below sea level, the delta method does not work. For these locations, precipitation was extrapolated using a inverse distance weighting approach. With the exception of a brief window from 124–126k years ago, sea level in the past was lower than it is today; thus, present-day coastal patterns are spatially extended as coastlines move, but not removed. For all (tin {{{{bf{T}}}}}_{300k}), maps of annual precipitation ({bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)) with the appropriate land configuration are available as Supplementary Movie 1.Based on these data representing 30-year climatological normals at 1k-year time steps between 300k years ago and the present, we generated, for each millennium, 100 maps representing 10-year average climatologies as follows. We used 3.75° × 2.5° climate simulations from the HadCM3B-M2.1 model, providing a 1000-years-long annual time series of annual precipitation for each millennium between 21k years ago and the present73. Millennia were simulated in parallel; thus, the 1000-years-long time series representing each millennium is in itself continuous, but the beginnings and ends of the time series of successive millennia generally do not coincide. For (tin {{{{bf{T}}}}}_{21k}), we denote the available 1000 successive maps of annual precipitation by ({{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(1)}(t),ldots ,{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(1000)}(t)). We used these data to compute the relative deviation of the climatic average of each decade within a given millennium, and the climatic average of the 30-year period containing the specific decade as$${{{{boldsymbol{epsilon }}}}}_{HM}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{{sum }_{i=1+(d-1)cdot 10}^{dcdot 10}{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(i)}(t)}{{sum }_{n=1+(d-2)cdot 10}^{(d+1)cdot 10}{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(n)}(t)},d=1,ldots ,100$$
    (3)
    Finally, we applied these ratios of 10-year to 30-year climatic averages to the previously derived 1k-year time step climatologies to obtain, for each (tin ,{{{{bf{T}}}}}_{300k}), 100 sets of 10-year average annual precipitation,$${{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)cdot {{{{boldsymbol{epsilon }}}}}_{HM}^{(d), boxplus }(hat{t}),,d=1,ldots ,100$$
    (4)
    where, analogous to our approach in Eq. (1),(, boxplus ) denotes the interpolation to the ~55 km hexagonal grid, and where (hat{t}) is chosen as the time at which global CO2 was closest to the respective value at time t.AridityThe Köppen aridity index used here is defined as the ratio of annual precipitation (in mm) to the sum of mean annual temperature (in °C) and a constant of 33 °C (cf. Eq. (8)). This measure of aridity was found to be the most reliable one of a set of alternative indices in palaeoclimate contexts30.Decadal-scale mean annual temperature data between 300k years ago and the present were created using analogous methods to those previously applied to reconstruct precipitation. 3.75° × 2.5° resolution emulator-derived simulations of mean annual temperature of the past 300k years at 1k time steps62, denoted ({bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)), were first downscaled by means of the additive dynamic delta method, using 1.25° × 0.83° HadAM3H simulations of mean annual temperature of the past 21k years, denoted ({bar{{{{bf{T}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(t)), yielding, analogous to Eq. (1),$${bar{{{{bf{T}}}}}}_{ sim 1^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(t)+left({bar{{{{bf{T}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})-{bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})right).$$
    (5)
    Analogous to Eq. (2), Next, present-day observed mean annual temperature, ({bar{{{{bf{T}}}}}}_{{{{rm{obs}}}}}(0)), was used to further downscale and bias-correct the data by means of the additive delta method to obtain$${bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{ sim 1^circ }^{ boxplus }(t)+left({bar{{{{bf{T}}}}}}_{{{{rm{obs}}}}}(0)-{bar{{{{bf{T}}}}}}_{ sim 1^circ }^{ boxplus }(hat{t})right).$$
    (6)
    For all (tin {{{{bf{T}}}}}_{300k}), maps of mean annual temperature ({bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)) with the appropriate land configuration are available as Supplementary Movie 1.Finally, we incorporated HadCM3B-M2 simulations of mean annual temperature of the past 21k years, ({{{{bf{T}}}}}_{{{{rm{HM}}}}}^{(1)}(t),ldots ,{{{{bf{T}}}}}_{{{{rm{HM}}}}}^{(1000)}(t)) for (tin {{{{bf{T}}}}}_{21k}), to obtain 10-year average mean annual temperature,$$begin{array}{c}{{{{bf{T}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)+{left(mathop{sum }limits_{i=1+(d-1)cdot 10}^{dcdot 10}{bar{{{{bf{T}}}}}}_{{{{rm{HM}}}}}^{(i)}(t)-mathop{sum }limits_{n=1+(d-2)cdot 10}^{(d+1)cdot 10}{bar{{{{bf{T}}}}}}_{{{{rm{HM}}}}}^{(n)}(t)right)}^{ boxplus },\ d=1,ldots ,100end{array}$$
    (7)
    Based on these data, the Köppen aridity index at the same spatial and temporal resolution is calculated as$${{{{bf{A}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{{{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)}{{{{{bf{T}}}}}_{ sim 0.5^circ }^{(d)}(t)+33}.$$
    (8)
    Comparison with empirical proxiesLong-term proxy records
    Long-term proxy records allow us to assess whether simulations capture key qualitative dynamics observed in the empirical data. The lack of direct long-term time series reconstructions of annual precipitation and mean annual temperature makes it necessary to use proxies related to these two climate variables. Proxies providing temporal coverage beyond the last glacial maximum are not only extremely sparse in North Africa and Southwest Asia, but even the few records that exist are affected by environmental factors other than the specific climate variables considered here. For example, reconstructions of past wetness and aridity use proxies that reflect not only rainfall conditions but also the interaction of precipitation with other local and non-local hydro-climatic variables, e.g. river discharge or hydrological catchment across a larger area. Here, we have not attempted to correct for such processes, but assumed that the simulated climate at the site where the empirical record was taken provide a suitable approximation of the potentially broader climatic conditions relevant for the proxy data. Realistic climate simulations would therefore be expected to match major qualitative trends of the empirical records, rather than exhibit a perfect correlation with the data. We compared our precipitation simulations against three long-term humidity-related empirical proxies (Fig. 4a). Proxy 174 provides a time series of Dead Sea lake levels, for which wet and dry periods are associated with high-stand and low-stand conditions, respectively. Proxy 219 from the southern tip of the Arabian Peninsula was obtained from a marine sediment core that allows for reconstructing past changes in aridity over land from the stable hydrogen isotopic composition of leaf waxes (δDwax). Proxy 318 is an XRF-derived humidity index from a core near the Northwest African coast. Temperature simulations were compared against two long-term records of δ18O, which varies over time as a result of temperature fluctuations (in addition to other factors), from the Peqiin and Soreq caves in Northern Israel75 (Fig. 4e). Overall, the simulated data capture key phases observed in the empirical records well for both precipitation (Fig. 4b–d) and temperature proxies (Fig. 4f–h).Fig. 4: Comparison of our data to long-term proxy records.a Geographical locations of empirical proxies on a map of present-day annual precipitation. b–d Comparisons of simulated annual precipitation against the three wetness proxies. e Geographical locations of empirical proxies on a map of present-day mean annual temperature. f, g Comparisons of simulated mean annual temperature against the two δ18O records. Black lines represent the simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)), grey shades represent the 10th and 90th percentile of the decadal simulations (n = 100; Eqs. (4) and (7)).Full size image

    Pollen-based reconstructions
    Pollen records used to empirically reconstruct past climate do not reach as far back in time as the above-described proxy records and are not available at the same temporal resolution; however, in contrast to those proxies, they can be used to quantitatively estimate local annual precipitation and mean annual temperature directly. Here, we used the dataset of pollen-based reconstructions of precipitation and temperature for the mid-Holocene (6k years ago) and the last glacial maximum (21k years ago)76 (Fig. 5a). Our precipitation and temperature data are overall in good agreement with the empirical reconstructions (Fig. 5b–e). During the mid-Holocene, our simulations suggest slightly less precipitation at low levels than most of the empirical records (Fig. 5d), while our data match the empirical reconstruction available from a very arid location during the last glacial maximum very well (Fig. 5e).Fig. 5: Comparison of our data to pollen-based climate reconstructions from the mid-Holocene and the last interglacial period.a Geographical locations and timings of pollen records. b–e Comparisons of our data against empirical reconstructions. Vertical centre measures and error bars represent the empirical reconstructed values and their uncertainties, respectively; horizontal centre measures and error bars represent simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)) and the 10th and 90th percentile of the simulated decadal data (n = 100; Eqs. (4) and (7)), respectively.Full size image

    Interglacial palaeolakes on the Arabian Peninsula
    Finally, we plotted time series of our precipitation simulations in three locations in which palaeolakes have been dated to the last interglacial period, following the approach in ref. 24, in which the authors tested whether their climate simulations predicted higher rainfall during the last interglacial period than at present at palaeolake sites on the Arabian Peninsula. Figure 6 shows the locations of three palaeolakes in the northeast (western Nefud near Taymal; proxy 1), the centre (at Khujaymah; proxy 2), and the southwest (at Saiwan; proxy 3) of the peninsula24 (described in detail in refs. 23,77), and our precipitation data in these locations. In two out of the three locations, our data predict that more rainfall occurred at the estimated timings of the palaeolakes than at any point in time since; in the third location, slightly more rainfall than during the dated time interval is simulated only for a period around 8k years ago.Fig. 6: Comparison of our data against the dates of three palaeolakes on the Arabian peninusla.a Geographical locations of the lakes. b–d Time series of our precipitation data. Black lines represent the simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)), grey shades represent the 10th and 90th percentile of the decadal simulations (n = 100; Eq. (4)). Horizontal error bars represent the estimated dates of the lakes24.Full size image
    Determining the minimum precipitation and aridity tolerance required for out-of-Africa exitsWe denote by ({{{bf{X}}}}={({lambda }_{1},{phi }_{1}),({lambda }_{2},{phi }_{2}),ldots },)the set of longitude and latitude coordinates of the hexagonal grid with an internode spacing of ~55 km (~0.5°)69 that are contained in the longitude window [15°E, 70°E] and the latitude window [5°N, 43°N] (shown in Fig. 3). We denote by ({{{bf{E}}}}) the set of the present-day elevation values of the coordinates in ({{{bf{X}}}}) (in meters)78, i.e. ({{{bf{E}}}}({x}_{i})) is a positive number in a point ({x}_{i}=({lambda }_{i},{phi }_{i})) if ({x}_{i}) is currently above sea level, and negative if ({x}_{i}) is currently below sea level. We denote by (s(t)) the sea level (in meters) at the time (tin {{{{bf{T}}}}}_{300k}) (where ({{{{bf{T}}}}}_{300k}) represents the last 300k years in 1k time steps), for which we used a long-term reconstruction of Red Sea sea level72. In particular, we have (s(0)=0) at present day. For each millennium (tin {{{{bf{T}}}}}_{300k}), we denote by (bar{{{{bf{X}}}}}(t)) the subset of points in (X) that are above sea level:$$bar{{{{bf{X}}}}}(t)mathop{=}limits^{{{{rm{def}}}}}{xin {{{bf{X}}}}:{{{bf{E}}}}(x), > , s(t)}$$
    (9)
    Based on the precipitation map ({{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)) for a decade (d=1,ldots ,100) in millennium (t) (Eq. (4)), and a given precipitation threshold value (p) (in mm year−1), we denote by ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) the subset of (bar{{{{bf{X}}}}}(t)) that would be suitable grid cells for humans assuming that they cannot survive in areas where precipitation levels are below (p):$${mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}left{xin bar{{{{bf{X}}}}}(t):{{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)ge pright}$$
    (10)
    We then determined whether there was a connected path in ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) between an initial point, for which we used ({x}_{{{{rm{start}}}}}=(32.6^circ {{{rm{E}}}},10.2^circ {{{rm{N}}}})), and any point in a set of coordinates outside of Africa, defined as ({{{{bf{X}}}}}_{{{{rm{end}}}}}mathop{=}limits^{{{{rm{def}}}}}{(lambda ,phi )in {{{bf{X}}}}:lambda, > , 65^circ {{{rm{E}}}},{{{rm{or}}}},phi , > , 37^circ N}). This was defined to be the case if there was a finite sequence$${x}_{{{{rm{start}}}}}to {x}_{1}to {x}_{2}to ldots to {x}_{n}in {{{{bf{X}}}}}_{{{{rm{end}}}}}$$
    (11)
    of points ({x}_{i}in {mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) such that the distance between any two successive points ({x}_{i}) and ({x}_{i+1}) was less or equal to the maximum internode spacing of the grid (X). Based on this approach, the critical precipitation threshold below which no connected path exists for the precipitation map ({{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)) was determined using the following bisection method. Beginning with ({hat{p}}_{0}=1000) mm y−1 and ({check{p}}_{0}=0) mm y−1, for which a connected path between ({x}_{{{{rm{start}}}}}) and ({{{{bf{X}}}}}_{{{{rm{end}}}}}) exists, respectively, for all and for no (t) and (d), the values ({hat{p}}_{k}) and ({check{p}}_{k}) were iteratively defined as$$ , left.begin{array}{c}{check{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}\ {hat{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}{hat{p}}_{k}hfillend{array}right},{{{rm{if}}}},{{{rm{a}}}},{{{rm{connected}}}},{{{rm{path}}}},{{{rm{exists}}}},{{{rm{for}}}},p=frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}\ , left.begin{array}{c}{check{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}{check{p}}_{k}hfill\ {hat{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}end{array}right}, {{{rm{else}}}}$$
    (12)
    For all (k), the sought critical precipitation threshold, denoted ({p}_{{{{rm{crit}}}}}^{(d)}(t)), is bounded above by ({hat{p}}_{k}) and bounded below by ({check{p}}_{k}). For (kto infty ), both values converge to ({p}_{{{{rm{crit}}}}}^{(d)}(t)). Here, we defined$${p}_{{{{rm{crit}}}}}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{,{hat{p}}_{10}+{check{p}}_{10}}{2},$$
    (13)
    which lies within 1 mm y−1 of the true limit value.To specifically determine the precipitation tolerance required for a northern (Fig. 1a) or southern (Fig. 1b) exit, we rendered the passage of the respective other route impassable by removing appropriate cells from the grid. When investigating the southern route, we additionally assumed that no sea level and precipitation constraints applied within a ~40 km radius around the centre of the Bab al-Mandab strait.For aridity, the procedure is identical, with the exception that ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) is defined based on the relevant aridity map, ({{{{bf{A}}}}}_{ sim 0.5^circ }^{(d)}(t)), and the value 4.0 is used for the initial upper threshold (denoted ({hat{p}}_{0}) above).Width of the Strait of Bab al-MandabSimilar to ref. 52, we reconstructed the minimum distance required to cover on water in order to reach the Arabian peninsula (present-day west coast of Yemen) from Africa (present-day Djibouti and southeast Eritrea). We used a 0.0083° (~1 km at the equator) map of elevation and bathymetry78 and a time series of Red Sea sea level72 to reconstruct very-high-resolution land masks for the last 300k years. For each point in time, we determined the set of connected land masses, and the distances between the closest points of any two land masses. The result can be graph-theoretically represented by a complete graph whose nodes represent connected land masses and whose edge weights correspond to the minimum distances between land masses. The path involving the minimum continuous distance on water was then determined by solving the minmax path problem whose solution is the path between the two nodes representing Africa and the Arabian Peninsula that minimises the maximum weight of any of its edges (Fig. 1b grey shades).Analyses were conducted using Matlab R2019a79.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages

    1.Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-like and T7-like cyanophages using the polony method show they are significant members of the virioplankton in the North Pacific Subtropical Gyre. Front Microbiol. 2020;11:1210.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Waterbury JB, Valois FW. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol. 1993;59:3393–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Marston MF, Sallee JL. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island’s coastal waters. Appl Environ Microbiol. 2003;69:4639–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Clokie MRJ, Mann NH. Marine cyanophages and light. Environ Microbiol. 2006;8:2074–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus -virus coexistence. Nature. 2011;474:604–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Fuhrman JA. Marine virueses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.9.Suttle CA. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Suttle CA, Chan AM. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser. 1993;92:99–109.Article 

    Google Scholar 
    12.Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 
    Article 

    Google Scholar 
    14.Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a “horned” bacteriophage of marine Synechococcus. J Mol Biol. 2007;368:966–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, et al. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol. 2007;9:1675–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ghai R, Martin-Cuadrado AB, Molto AG, Heredia IG, Cabrera R, Martin J, et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 2010;4:1154–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ma Y, Allen LZ, Palenik B. Diversity and genome dynamics of marine cyanophages using metagenomic analyses. Environ Microbiol Rep. 2014;6:583–94.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci USA. 2012;109:2037–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One. 2015;10:1–17.
    Google Scholar 
    23.Ignacio-espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBHH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: Implications for mechanisms of cyanophage evolution. Environ Microbiol. 2009;11:2370–87.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741–741.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA. 2004;101:11013–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr Biol. 2016;26:1585–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kelly L, Ding H, Huang KH, Osburne MS, Chisholm SW. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 2013;7:1827–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Yin Y, Fischer D. Identification and investigation of ORFans in the viral world. BMC Genomics. 2008;9:24.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Clokie MR, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Rihtman B, Bowman‐Grahl S, Millard A, Corrigan RM, Clokie MRJ, Scanlan DJ. Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environ Microbiol Rep. 2019;11:448–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol. 2008;18:442–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Roitman S, Hornung E, Flores-Uribe J, Sharon I, Feussner I, Béjà O. Cyanophage-encoded lipid desaturases: Oceanic distribution, diversity and function. ISME J. 2018;12:343–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Puxty RJ, Perez-Sepulveda B, Rihtman B, Evans DJ, Millard AD, Scanlan DJ. Spontaneous deletion of an “ORFanage” region facilitates host adaptation in a “photosynthetic” cyanophage. PLoS One. 2015;10:e0132642.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Ranade K, Poteete AR. Superinfection exclusion (sieB) genes of bacteriophages P22 and λ. J Bacteriol. 1993;175:4712–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Fogg PCM, Allison HE, Saunders JR, McCarthy AJ. Bacteriophage Lambda: a paradigm revisited. J Virol. 2010;84:6876–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Tuttle MJ, Buchan A. Lysogeny in the oceans: lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol. 2020;22:4919–33.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobian-Guëmes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Touchon M, Bernheim A, Rocha EPC. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. Elife. 2015;4:e08490.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    45.Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA. virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020;14:1304–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 2006;16:1099–108.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Raytcheva DA, Haase-Pettingell C, Piret JM, King JA. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011;85:2406–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Flores-Uribe J, Philosof A, Sharon I, Fridman S, Larom S, Béjà O. A novel uncultured marine cyanophage lineage with lysogenic potential linked to a putative marine Synechococcus ‘relic’ prophage. Environ Microbiol Rep. 2019;11:598–604.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE, Thompson A, et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 2013;7:184–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 2014;11:42–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Sarkis GJ, Jacobs WR, Hatfull GF. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol. 1995;15:1055–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Tanji Y, Furukawa C, Na SH, Hijikata T, Miyanaga K, Unno H. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol. 2004;114:11–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol. 1996;62:1747–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 2009;295:211–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Le S, He X, Tan Y, Huang G, Zhang L, Lux R, et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One. 2013;8:e68562.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Murphy KC. Phage recombinases and their applications. Adv Virus Res. 2012;83:367–414.60.Bujarski JJ. Recombination of viruses. In: Encyclopedia of Virology. Elsevier; 1999. p. 1446–53.61.Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev. 2016;80:523–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Qimron U, Marintcheva B, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA. 2006;103:19039–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Selick HE, Kreuzer KN, Alberts BM. The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem. 1988;263:11336–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42:9504–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Dale JW, Greenaway PJ. Identification of recombinant phages by plaque hybridization. In: Walker JM, editor. Nucleic Acids. Totowa, NJ: Humana Press; 1984. p. 285–8.Chapter 

    Google Scholar 
    66.Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol. 2013;15:1476–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Doron S, Fedida A, Hernndez-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann NY Acad Sci. 2015;1341:41–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host–virus interactions in SAR11 marine bacteria. Nat Microbiol. 2020;5:1011–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol. 2015;17:76–90.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. Switches in bacteriophage lambda development. Annu Rev Genet. 2005;39:409–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Ray U, Sakalka A. Lysogenization of Escherichia coli by bacteriophage Lambda: complementary activity of the host’s DNA polymerase I and ligase and bacteriophage replication proteins Q and P. J Virol. 1976;18:511–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Greengrass E. Resistance of marine Synechococcus to podovirus infection: genetic basis and phenotypic characterization. M.Sc. thesis. Technion – Israel Inst Technol. 2013.75.Fedida A, Lindell D. Two Synechococcus genes, two different effects on cyanophage infection. Viruses. 2017;9:136.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Shao Q, Trinh JT, McIntosh CS, Christenson B, Balázsi G, Zeng L. Lysis-lysogeny coexistence: prophage integration during lytic development. Microbiol Open. 2017;6:e00395.Article 
    CAS 

    Google Scholar 
    77.Chen F, Lu J. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68:2589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2016;10:437–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Pratama AA, van Elsas JD. The ‘neglected’ soil virome—potential role and impact. Trends Microbiol. 2018;26:649–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008;159:349–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2018;21:1989–2001.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:1–11.Article 
    CAS 

    Google Scholar 
    85.Wyman M, Gregory RPF, Carr NG. Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science. 1985;230:818–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lindell D, Padan E, Post AF. Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. strain WH 7803. J Bacteriol. 1998;180:1878–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.CAS 
    Article 

    Google Scholar 
    88.Lindell D. The genus Prochlorococcus, phylum cyanobacteria. In: The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Springer-Verlag Berlin Heidelberg; 2014. p. 829–45.89.Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol. 2008;74:4530–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Wolk CP, Fan Q, Zhou R, Huang G, Lechno-Yossef S, Kuritz T, et al. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch Microbiol. 2007;188:551–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Bryksin A, Matsumura I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques. 2010;48:463–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat Biotechnol. 1983;1:784–91.CAS 
    Article 

    Google Scholar 
    93.Henn MR, Sullivan MB, Stange-Thomann N, Osburne MS, Berlin AM, Kelly L, et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS One. 2010;5:e9083.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ, Scanlan DJ, et al. Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl Environ Microbiol. 2006;72:723–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Mitra RD, Church GM. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 1999;27:e34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Schwartz DA, Lindell D. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME J. 2017;11:1836–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, et al. Exceptional convergent evolution in a virus. Genetics. 1997;147:1497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Quinlan AR. BEDTools: the Swiss-army Tool for genome feature analysis. Curr Protoc Bioinform. 2014;47:1–34. 11.12.Article 

    Google Scholar 
    100.Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:180176.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Haro-Moreno JM, López-Pérez M, de la Torre JR, Picazo A, Camacho A, Rodriguez-Valera F. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome. 2018;6:128.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol. 2017;27:1362–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol. 2017;2:17118.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    105.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014;URL: https://www.osti.gov/servlets/purl/1241166.106.Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;1303:3997.
    Google Scholar 
    107.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Areas of global importance for conserving terrestrial biodiversity, carbon and water

    1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    3.Butchart, S. H. M., Miloslavich, P., Reyers, B. & Subramanian, S. M. in IPBES Global Assessment on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T.) Ch. 3 (IPBES, 2019).4.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021); https://www.cbd.int/meetings/WG2020-036.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).Article 
    CAS 

    Google Scholar 
    9.Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375, 20190128 (2020).CAS 
    Article 

    Google Scholar 
    10.Greve, M., Reyers, B., Mette Lykke, A. & Svenning, J.-C. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nat. Commun. 4, 2975 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).Article 
    CAS 

    Google Scholar 
    14.Allan, J. R. et al. Conservation attention necessary across at least 44% of Earth’s terrestrial area to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2019).15.Fastre, S., Mogg, C., Jung, M. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).16.Rinnan, D. S. & Jetz, W. Terrestrial conservation opportunities and inequities revealed by global multi-scale prioritization. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).17.Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 943–953 (2020).Article 

    Google Scholar 
    18.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.McInnes, L. et al. Do global diversity patterns of vertebrates reflect those of monocots? PLoS ONE 8, e56979 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Daru, B. H. et al. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob. Ecol. Biogeogr. 28, 757–766 (2019).Article 

    Google Scholar 
    22.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).Article 

    Google Scholar 
    25.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (W. W. Norton, 2016).26.Laffoley, D. et al. An introduction to ‘other effective area-based conservation measures’ under Aichi Target 11 of the Convention on Biological Diversity: origin, interpretation and emerging ocean issues. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 130–137 (2017).Article 

    Google Scholar 
    27.IUCN Red List Categories and Criteria Version 3.1 (IUCN, 2012).28.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1368 (2009).CAS 
    Article 

    Google Scholar 
    30.Strassburg, B. B. N. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 3, 98–105 (2010).Article 

    Google Scholar 
    31.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Woodley, S. et al. A review of evidence for area-based conservation targets for the post-2020 global biodiversity framework. Parks 25, 31–46 (2019).Article 

    Google Scholar 
    33.Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Chauvenet, A. L. M., Kuempel, C. D., McGowan, J., Beger, M. & Possingham, H. P. Methods for calculating Protection Equality for conservation planning. PLoS ONE 12, e0171591 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2, 1042–1043 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.World Checklist of Vascular Plants (WCVP, 2020); http://wcvp.science.kew.org/44.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019); www.iucnredlist.org45.Bird Species Distribution Maps of the World Version 2019.1 (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis46.Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical informationnetwork to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615 (2016).48.Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).Article 

    Google Scholar 
    49.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article 

    Google Scholar 
    50.Forest Inventory and Analysis National Program (US Forest Service, 2013); www.fia.fs.fed.us/51.Peet, R., Lee, M., Jennings, M. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodivers. Ecol. 4, 233–241 (2012).Article 

    Google Scholar 
    52.Boyle, B. & Enquist, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. https://doi.org/10.7809/b-e.00086 (2012).53.Wiser, S., Bellingham, P. & Burrows, L. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
    Google Scholar 
    54.DeWalt, S. J., Bourdy, G., ChÁvez de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).Article 

    Google Scholar 
    55.Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2001).
    Google Scholar 
    56.Fegraus, E. Tropical ecology assessment and monitoring network (TEAM Network). Biodivers. Ecol. 4, 287–287 (2012).Article 

    Google Scholar 
    57.Oliveira-Filho, A. T. in Fitossociologia no Brasil—Métodos e Estudos de Caso Vol. 2 (eds. Eisenlohr, P. V. et al.) Ch. 19 (Editora UFV, 2015).58.Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    59.Rondinini, C., Stuart, S. & Boitani, L. Habitat suitability models and the shortfall in conservation planning for African vertebrates. Conserv. Biol. 19, 1488–1497 (2005).Article 

    Google Scholar 
    60.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Habitats Classification Scheme Version 3.1 (IUCN, 2012).63.Lesiv, M. et al. Global planted trees extent 2015. Zenodo https://doi.org/10.5281/zenodo.3931930 (2020).64.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    65.Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (International Working Group on Taxonomic Databases for Plant Sciences, 2001).67.Santoro, M. GlobBiomass—Global Datasets of Forest Biomass (PANGAEA, 2018); https://doi.org/10.1594/PANGAEA.89471168.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e408469.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).Article 

    Google Scholar 
    70.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    71.Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).Article 

    Google Scholar 
    72.Spawn, S. A., Lark, T., & Gibbs, H. New Global Biomass Map for the Year 2010 (American Geophysical Union, 2017).73.Schepaschenko, D. et al. Improved estimates of biomass expansion factors for Russian forests. Forests 9, 312 (2018).Article 

    Google Scholar 
    74.Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 5 (IPCC, 2006).75.Hengl, T. & Wheeler, I. Soil organic carbon stock in kg/m2 for 5 standard depth intervals (0–10, 10–30, 30–60, 60–100 and 100–200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/ZENODO.2536040 (2018).76.Hengl, T. & Nauman, T. Predicted USDA soil orders at 250 m (probabilities) (version v0.1). Zenodo https://doi.org/10.5281/zenodo.2658183 (2019).77.Mulligan, M. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrol. Res. 44, 748–769 (2013).Article 

    Google Scholar 
    78.Mulligan, M. in The Impacts of Climate Change on Water Resources in Agriculture (eds Zolin, A. C. & Rodrigues, R. A. R.) 184–204 (CRC, 2014).79.van Soesbergen, A. & Mulligan, M. Potential outcomes of multi-variable climate change on water resources in the Santa Basin, Peru. Int. J. Water Res. Dev. 34, 150–165 (2018).Article 

    Google Scholar 
    80.Van Soesbergen, A. & Mulligan, M. Uncertainty in data for hydrological ecosystem services modelling: potential implications for estimating services and beneficiaries for the CAZ Madagascar. Ecosyst. Serv. 33, 175–186 (2018).Article 

    Google Scholar 
    81.Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Adams, V. M., Pressey, R. L. & Naidoo, R. Opportunity costs: who really pays for conservation? Biol. Conserv. 143, 439–448 (2010).Article 

    Google Scholar 
    84.Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. N. Y. Acad. Sci. 1322, 61–76 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Eklund, J., Arponen, A., Visconti, P. & Cabeza, M. Governance factors in the identification of global conservation priorities for mammals. Philos. Trans. R. Soc. B 366, 2661–2669 (2011).Article 

    Google Scholar 
    86.McCreless, E., Visconti, P., Carwardine, J., Wilcox, C. & Smith, R. J. Cheap and nasty? The potential perils of using management costs to identify global conservation priorities. PLoS ONE 8, e80893 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Carwardine, J. et al. Cost-effective priorities for global mammal conservation. Proc. Natl Acad. Sci. USA 105, 11446–11450 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Arponen, A., Heikkinen, R., Thomas, C. D. & Moilanen, A. The value of biodiversity in reserve selection: representation, species weighting, and benefit functions. Conserv. Biol. 19, 2009–2014 (2005).Article 

    Google Scholar 
    90.Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Model. 328, 14–22 (2016).Article 

    Google Scholar 
    91.Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).Article 

    Google Scholar 
    92.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).93.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. (2020); https://CRAN.R-project.org/package=prioritizr94.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019). More