More stories

  • in

    Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management

    1.Hamza MA, Anderson WK. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Res. 2005;82:121–45.Article 

    Google Scholar 
    2.Etana A, Larsbo M, Keller T, Arvidsson J, Schjønning P, Forkman J, et al. Persistent subsoil compaction and its effects on preferential flow patterns in a loamy till soil. Geoderma. 2013;192:430–6.Article 

    Google Scholar 
    3.de Andrade Bonetti J, Anghinoni I, de Moraes MT, Fink JR. Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil Tillage Res. 2017;174:104–12.Article 

    Google Scholar 
    4.FAO. Status of the world’s soil resources – main report. Food and agriculture organization of the United Nations and intergovernmental technical panel on soils. 607 (2015). http://www.fao.org/3/i5199e/I5199E.pdf5.Garrigues E, Corson MS, Angers DA, Van Der Werf HMG, Walter C. Development of a soil compaction indicator in life cycle assessment. Int J Life Cycle Assess. 2013;18:1316–24.Article 

    Google Scholar 
    6.Schäffer B, Stauber M, Mueller TL, Müller R, Schulin R. Soil and macro-pores under uniaxial compression. I. Mechanical stability of repacked soil and deformation of different types of macro-pores. Geoderma. 2008;146:183–91.Article 

    Google Scholar 
    7.Pagliai M, Marsili A, Servadio P, Vignozzi N, Pellegrini S. Changes in some physical properties of a clay soil in Central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil Tillage Res. 2003;73:119–29.Article 

    Google Scholar 
    8.Gysi M, Ott A, Flühler H. Influence of single passes with high wheel load on a structured, unploughed sandy loam soil. Soil Tillage Res. 1999;52:141–51.Article 

    Google Scholar 
    9.Czyz EA. Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil Tillage Res. 2004;79:153–66.Article 

    Google Scholar 
    10.Drewry JJ, Paton RJ, Monaghan RM. Soil compaction and recovery cycle on a Southland dairy farm: Implications for soil monitoring. Aust J Soil Res. 2004;42:851–6.Article 

    Google Scholar 
    11.Keller T, Colombi T, Ruiz S, Manalili MP, Rek J, Stadelmann V, et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zo. J. 2017;16:1–16.
    Google Scholar 
    12.Wingate-Hill R, Jakobsen BF. Increased mechanisation and soil damage in forests – a review. New Zeal J For Sci. 1982;12:380–93.
    Google Scholar 
    13.Fierer N, Schimel JP, Holden PA. Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem. 2003;35:167–76.CAS 
    Article 

    Google Scholar 
    14.Jégou D, Brunotte J, Rogasik H, Capowiez Y, Diestel H, Schrader S, et al. Impact of soil compaction on earthworm burrow systems using X-ray computed tomography: preliminary study. Eur J Soil Biol. 2002;38:329–36.Article 

    Google Scholar 
    15.Larsen T, Schjønning P, Axelsen J. The impact of soil compaction on euedaphic Collembola. Appl Soil Ecol. 2004;26:273–81.Article 

    Google Scholar 
    16.Rosolem C, Foloni JS, Tiritan C. Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res. 2002;65:109–15.Article 

    Google Scholar 
    17.Arvidsson J, Håkansson I. Response of different crops to soil compaction-Short-term effects in Swedish field experiments. Soil Tillage Res. 2014;138:56–63.Article 

    Google Scholar 
    18.van der Linden AMA, Jeurisson LJJ, Van Veen JA, Schippers G. Turnover of soil microbial biomass as influence by soil compaction. In: Hansen J., Henriksen K. Editors. Nitrogen in Organic Wastes Applied to Soil, London, UK: Academic Press;1989, pp. 25–36.19.Weisskopf P, Reiser R, Rek J, Oberholzer HR. Effect of different compaction impacts and varying subsequent management practices on soil structure, air regime and microbiological parameters. Soil Tillage Res. 2010;111:65–74.Article 

    Google Scholar 
    20.Li Q, Lee Allen H, Wollum AG. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biol Biochem. 2004;36:571–9.CAS 
    Article 

    Google Scholar 
    21.Tan X, Chang SX. Soil compaction and forest litter amendment affect carbon and net nitrogen mineralization in a boreal forest soil. Soil Tillage Res. 2007;93:77–86.Article 

    Google Scholar 
    22.Dexter AR. Soil physical quality Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma. 2004;120:201–14.Article 

    Google Scholar 
    23.Renault P, Sierra J. Modeling oxygen diffusion in aggregated soils: II. Anaerobiosis in topsoil layers. Soil Sci Soc Am J. 1994;58:1017–23.CAS 
    Article 

    Google Scholar 
    24.Schnurr-Pütz S, Bååth E, Guggenberger G, Drake HL, Küsel K. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiol Ecol. 2006;58:503–16.PubMed 
    Article 
    CAS 

    Google Scholar 
    25.Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 2014;8:226–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Marshall VG. Impacts of forest harvesting on biological processes in northern forest soils. For Ecol Manage. 2000;133:43–60.Article 

    Google Scholar 
    27.Ponder F, Tadros M. Phospholipid fatty acids in forest soil four years after organic matter removal and Soil compaction. Appl Soil Ecol. 2002;19:173–82.Article 

    Google Scholar 
    28.Frey B, Kremer J, Rüdt A, Sciacca S, Matthies D, Lüscher P. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur J Soil Biol. 2009;45:312–20.Article 

    Google Scholar 
    29.Hartmann M, Howes CG, VanInsberghe D, Yu H, Bachar D, Christen R, et al. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J. 2012;6:2199–218.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Calonego JC, Raphael JPA, Rigon JPG, de Oliveira Neto L, Rosolem CA. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur J Agron. 2017;85:31–37.Article 

    Google Scholar 
    31.Flisch R, Sinaj S, Charles R, Richner W. Grundlagen für die Düngung im Acker- und Futterbau (GRUDAF). Agrar Schweiz. 2009;16:6–31.
    Google Scholar 
    32.Suter D, Rosenberg E, Mosimann E, Frick R. Mélanges standard pour la production fourragère. Recherche agronomique suisse. 2017;8:1–16.33.Bürgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods. 2001;45:7–20.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016;92:1–17.Article 
    CAS 

    Google Scholar 
    35.Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8:774–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods. 2004;59:327–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol. 2006;72:5957–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.40.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.Article 

    Google Scholar 
    41.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Edgar R. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016. bioRxiv:081257. Available from: https://doi.org/10.1101/081257.44.Edgar R. UCHIME2: improved chimera prediction for amplicon sequencing. 2016. bioRxiv:074252. Available from: https://doi.org/10.1101/074252.45.Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DG, et al. metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15:1403–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–9.
    Google Scholar 
    47.Edgar R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 2016. bioRxiv:074161. Available from: https://doi.org/10.1101/074161.48.Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol. 2010;186:281–5.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017. https://www.R-project.org/.51. Dinno A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. R  package version 1.3.5. 2017. https://CRAN.R-project.org/package=dunn.test.52.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-7. 2020. https://CRAN.R-project.org/package=vegan.53.Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 2017;11:490–9.PubMed 
    Article 

    Google Scholar 
    54.Hemkemeyer M, Christensen BT, Tebbe CC, Hartmann M. Taxon-specific fungal preference for distinct soil particle size fractions. Eur J Soil Biol. 2019;94:1–9.Article 

    Google Scholar 
    55.Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    56.Maxime Hervé. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. 2020. https://CRAN.R-project.org/package=RVAideMemoire.57.Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1996;53:325–38.Article 

    Google Scholar 
    58.Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.Article 

    Google Scholar 
    59.Kindt R, Coe R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, Nairobi, Kenya (2005) ISBN 92-9059-179-X60.Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Storey JD, Bass A, Dabney A, Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.22.0; 2020. http://qvalue.princeton.edu.62.Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.Article 
    CAS 

    Google Scholar 
    63.Louca S, Parfrey LW, Doebeli M. Faprotax: decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open-annotation database for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.Article 

    Google Scholar 
    65.Horn R. Stress-strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes. Geoderma. 2003;116:77–88.Article 

    Google Scholar 
    66.Reiser R, Stadelmann V, Weisskopf P, Grahm L, Keller T. System for quasi-continuous simultaneous measurement of oxygen diffusion rate and redox potential in soil. J Plant Nutr Soil Sci. 2020;183:316–26.CAS 
    Article 

    Google Scholar 
    67.Keller T, Colombi T, Ruiz S, Schymanski SJ, Weisskopf P, Koestel J, et al. Soil structure recovery following compaction – short-term evolution of soil physical properties in a loamy soil. Soil Sci Soc Am J. 2021;18:1–19.
    Google Scholar 
    68.Yvan C, Stéphane S, Stéphane C, Pierre B, Guy R, Hubert B. Role of earthworms in regenerating soil structure after compaction in reduced tillage systems. Soil Biol Biochem. 2012;55:93–103.CAS 
    Article 

    Google Scholar 
    69.Jabro JD, Allen BL, Rand T, Dangi SR, Campbell JW. Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land. 2021;202:1–10.
    Google Scholar 
    70.Batey T. Soil compaction and soil management – a review. Soil Use and Manag. 2009;25:335–45.Article 

    Google Scholar 
    71.Cambi M, Certini G, Neri F, Marchi E. The impact of heavy traffic on forest soils: a review. For Ecol Manag. 2015;338:124–38.Article 

    Google Scholar 
    72.Hu W, Tabley F, Beare M, Tregurtha C, Gillespie R, Qiu W, et al. Short-term dynamics of soil physical properties as affected by compaction and tillage in a silt loam soil. Vadose Zo J. 2018;17:1–13.
    Google Scholar 
    73.Manyiwa T, Dikinya O. Impact of tillage types on compaction and physical properties of soils of Sebele farms in Botswana. Soil Environ. 2014;33:124–32.
    Google Scholar 
    74.Håkansson I, Reeder RC. Subsoil compaction by vehicles with high axle load-extent, persistence and crop response. Soil Tillage Res. 1994;29:277–304.Article 

    Google Scholar 
    75.Grayston SJ, Wang S, Campbell CD, Edwards AC. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem. 1998;30:369–78.CAS 
    Article 

    Google Scholar 
    76.Degrune F, Theodorakopoulos N, Colinet G, Hiel MP, Bodson B, Taminiau B, et al. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front Microbiol. 2017;8:1–15.Article 

    Google Scholar 
    77.Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Bach EM, Baer SG, Meyer CK, Six J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem. 2010;42:2182–91.CAS 
    Article 

    Google Scholar 
    79.Evans CA, Coombes PJ, Dunstan RH. Wind, rain and bacteria: the effect of weather on the microbial composition of roof-harvested rainwater. Water Res. 2006;40:37–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.He M, Zhang J, Shen L, Xu L, Luo W, Li D, et al. High-throughput sequencing analysis of microbial community diversity in response to indica and japonica bar-transgenic rice paddy soils. PLoS ONE. 2019;14:1–26.
    Google Scholar 
    81.Gschwend F, Aregger K, Gramlich A, Walter T, Widmer F. Periodic waterlogging consistently shapes agricultural soil microbiomes by promoting specific taxa. Appl Soil Ecol. 2020;155:1–9.Article 

    Google Scholar 
    82.De Neve S, Hofman G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biol Fertil Soils. 2000;30:544–9.Article 

    Google Scholar 
    83.Miransari M, Bahrami HA, Rejali F, Malakouti MJ. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res. 2009;103:282–90.Article 

    Google Scholar 
    84.Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol Biochem. 2006;38:263–74.CAS 
    Article 

    Google Scholar 
    85.Bao Q, Ju X, Qu Z, Christie P, Lu Y. Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil. Soil Biol Biochem. 2012;76:130–41.CAS 

    Google Scholar 
    86.Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci. 2014;26:1–20.Article 

    Google Scholar 
    87.Schwarzott D, Walker C, Schüßler A. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol. 2001;21:190–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, et al. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J. Plant Interact. 2015;10:280–7.CAS 
    Article 

    Google Scholar 
    90.Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Kozlowski TT. Soil compaction and growth of woody plants. Scand J For Res. 1999;14:596–619.Article 

    Google Scholar 
    92.Haggett KD, Gray PP, Dunn NW. Crystalline cellulose degradation by a strain of Cellulomonas and its mutant derivatives. Eur J Appl Microbiol Biotechnol. 1979;8:183–90.CAS 
    Article 

    Google Scholar 
    93.Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E. Agromyces ulmi sp. nov., xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol. 2004;54:1987–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol. 2012;80:735–46.PubMed 
    Article 
    CAS 

    Google Scholar 
    95.Brown AM, Howe DK, Wasala SK, Peetz AB, Zasada IA, Denver DR. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biol Evol. 2015;7:2727–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Quandt CA, Beaudet D, Corsaro D, Walochnik J, Michel R, Corradi N, et al. The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. Elife. 2017;6:1–19.Article 

    Google Scholar 
    97.Brussaard L, van Faassen, HG. Effects of compaction on soil biota and soil biological processes. In: Soane BD, van Ouwerkerk C. Soil compaction in crop production. Elsevier; 1994. 11, p. 215–35.98.Shestak CJ, Busse MD. Compaction alters physical but not biological indices of soil health. Soil Sci Soc Am J. 2005;69:236.CAS 
    Article 

    Google Scholar  More

  • in

    Characterizing rhizosphere microbiota of peanut (Arachis hypogaea L.) from pre-sowing to post-harvest of crop under field conditions

    1.Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Bhattarai, A., Bhattarai, B. & Pandey, S. Variation of soil microbial population in different soil horizons. J. Microbiol. Exp. 2, 00044. https://doi.org/10.15406/jmen.2015.02.00044 (2015).Article 

    Google Scholar 
    3.Liu, F. et al. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 19, 201. https://doi.org/10.1186/s12866-019-1572-x (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911-920. https://doi.org/10.1073/pnas.1414592112 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Vives-Peris, V., de Ollas, C., Gomez-Cadenas, A. & Perez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17. https://doi.org/10.1007/s00299-019-02447-5 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Qu, Q. et al. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 68, 5024–5038. https://doi.org/10.1021/acs.jafc.0c00073 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146. https://doi.org/10.1186/s40168-019-0756-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Cordero, J., de Freitas, J. R. & Germida, J. J. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Can. J. Microbiol. 66, 71–85. https://doi.org/10.1139/cjm-2019-0330 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403. https://doi.org/10.1016/j.chom.2015.01.011 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90. https://doi.org/10.1038/nature11237 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Leoni, C. et al. Plant Health and Rhizosphere microbiome: Effects of the bionematicide Aphanocladium album in tomato plants infested by Meloidogyne javanica. Microorganisms https://doi.org/10.3390/microorganisms8121922 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Vitulo, N. et al. Bark and grape microbiome of vitis vinifera: Influence of geographic patterns and agronomic management on bacterial diversity. Front. Microbiol. 9, 3203. https://doi.org/10.3389/fmicb.2018.03203 (2018).Article 
    PubMed 

    Google Scholar 
    13.Hu, J. et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ. Microbiol. 22, 5005–5018. https://doi.org/10.1111/1462-2920.15097 (2020).Article 
    PubMed 

    Google Scholar 
    14.Qiao, Q. et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 3940. https://doi.org/10.1038/s41598-017-04213-7 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Baudoin, E., Benizri, E. & Guckert, A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl. Soil. Ecol. 19, 135–145. https://doi.org/10.1016/S0929-1393(01)00185-8 (2002).Article 

    Google Scholar 
    16.DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178. https://doi.org/10.1038/ismej.2008.103 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Ding, L. J. et al. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz040 (2019).Article 
    PubMed 

    Google Scholar 
    18.Fan, K. et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 113, 275–284. https://doi.org/10.1016/j.soilbio.2017.06.020 (2017).CAS 
    Article 

    Google Scholar 
    19.Jaiswal, S. K., Mohammed, M. & Dakora, F. D. Microbial community structure in the rhizosphere of the orphan legume Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Mol. Biol. Rep. 46, 4471–4481. https://doi.org/10.1007/s11033-019-04902-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Kuramae, E. E. et al. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol. Ecol. 79, 12–24. https://doi.org/10.1111/j.1574-6941.2011.01192.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. https://doi.org/10.1128/AEM.00335-09 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Mendes, L. W., Kuramae, E. E., Navarrete, A. A., van Veen, J. A. & Tsai, S. M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577–1587. https://doi.org/10.1038/ismej.2014.17 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548–6553. https://doi.org/10.1073/pnas.1302837110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Perez-Jaramillo, J. E. et al. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7, 114. https://doi.org/10.1186/s40168-019-0727-1 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Sugiyama, A., Ueda, Y., Zushi, T., Takase, H. & Yazaki, K. Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS ONE 9, e100709. https://doi.org/10.1371/journal.pone.0100709 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894. https://doi.org/10.1038/s41467-018-07343-2 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Haldar, S. & Sengupta, S. Impact of plant development on the rhizobacterial population of Arachis hypogaea: A multifactorial analysis. J. Basic Microbiol. 55, 922–928. https://doi.org/10.1002/jobm.201400683 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Dai, L. et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20092265 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Desmae, H. et al. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breed 138, 425–444. https://doi.org/10.1111/pbr.12645 (2019).Article 
    PubMed 

    Google Scholar 
    30.Pandey, M. K. et al. Translational genomics for achieving higher genetic gains in groundnut. Theor. Appl. Genet. 133, 1679–1702. https://doi.org/10.1007/s00122-020-03592-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086. https://doi.org/10.1038/s41587-020-0501-8 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004. https://doi.org/10.1038/nbt.4229 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Lalucat, J., Mulet, M., Gomila, M. & Garcia-Valdes, E. Genomics in bacterial taxonomy: impact on the genus pseudomonas. Genes https://doi.org/10.3390/genes11020139 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Correa-Galeote, D., Bedmar, E. J., Fernandez-Gonzalez, A. J., Fernandez-Lopez, M. & Arone, G. J. Bacterial communities in the rhizosphere of Amilaceous Maize (Zea mays L.) as assessed by pyrosequencing. Front. Plant Sci. 7, 1016. https://doi.org/10.3389/fpls.2016.01016 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Xu, Y. et al. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). Int. Microbiol. 23, 453–465. https://doi.org/10.1007/s10123-020-00118-0 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140. https://doi.org/10.1111/1462-2920.14031 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Ansari, F. A. & Ahmad, I. Isolation, functional characterization and efficacy of biofilm-forming rhizobacteria under abiotic stress conditions. Antonie Van Leeuwenhoek 112, 1827–1839. https://doi.org/10.1007/s10482-019-01306-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Singh, T. B. et al. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr. Microbiol. 77, 3633–3642. https://doi.org/10.1007/s00284-020-02165-2 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Govindasamy, V. et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 10, 13. https://doi.org/10.1007/s13205-019-2001-4 (2020).Article 
    PubMed 

    Google Scholar 
    41.Abedinzadeh, M., Etesami, H. & Alikhani, H. A. Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol. Rep. 21, e00305. https://doi.org/10.1016/j.btre.2019.e00305 (2019).Article 

    Google Scholar 
    42.Hashem, A., Tabassum, B. & Allah, F. A. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 26, 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542. https://doi.org/10.1038/s41564-017-0012-7 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Gomez-Lama Cabanas, C. et al. Indigenous Pseudomonas spp. strains from the olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Front. Microbiol. 9, 277. https://doi.org/10.3389/fmicb.2018.00277 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ansari, F. A. & Ahmad, I. Fluorescent pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci. Rep. 9, 4547. https://doi.org/10.1038/s41598-019-40864-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Pandey, K. K., Mayilraj, S. & Chakrabarti, T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int. J. Syst. Evol. Microbiol. 52, 1559–1567. https://doi.org/10.1099/00207713-52-5-1559 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22. https://doi.org/10.1016/j.mib.2017.03.010 (2017).Article 
    PubMed 

    Google Scholar 
    48.Adam, E., Bernhart, M., Müller, H., Winkler, J. & Berg, G. The Cucurbita pepo seed microbiome: Genotype-specific composition and implications for breeding. Plant Soil 422, 35–49. https://doi.org/10.1007/s11104-016-3113-9 (2018).CAS 
    Article 

    Google Scholar 
    49.Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50. https://doi.org/10.1111/1758-2229.12181 (2015).Article 

    Google Scholar 
    50.Kong, H. G., Song, G. C. & Ryu, C.-M. Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environ. Microbiol. Rep. 11, 479–486. https://doi.org/10.1111/1758-2229.12760 (2019).Article 
    PubMed 

    Google Scholar 
    51.Frindte, K., Pape, R., Werner, K., Loffler, J. & Knief, C. Temperature and soil moisture control microbial community composition in an arctic-alpine ecosystem along elevational and micro-topographic gradients. ISME J. 13, 2031–2043. https://doi.org/10.1038/s41396-019-0409-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cook, R. J. et al. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U.S.A. 92, 4197–4201. https://doi.org/10.1073/pnas.92.10.4197 (1995).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803. https://doi.org/10.1038/ismej.2013.196 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. & Gobi, T. A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2, 587. https://doi.org/10.1186/2193-1801-2-587 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kumar, A., Prakash, A. & Johri, B. N. In Bacteria in Agrobiology: Crop Ecosystems (ed. Maheshwari, D. K.) 37–59 (Springer, 2011).Chapter 

    Google Scholar 
    56.Sachdev, D., Nema, P., Dhakephalkar, P., Zinjarde, S. & Chopade, B. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol. Res. 165, 627–638. https://doi.org/10.1016/j.micres.2009.12.002 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Lareen, A., Burton, F. & Schafer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90, 575–587. https://doi.org/10.1007/s11103-015-0417-8 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1. https://doi.org/10.1093/nar/gks808 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Res 5, 1492. https://doi.org/10.12688/f1000research.8986.2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2019).61.Alishum, A. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea. doi: 10.5281/zenodo.2541239 (2019).62.Callahan, B. Silva taxonomic training data formatted for DADA2 (Silva version 132). doi: 10.5281/zenodo.1172783 (2018).63.Callahan, B. RDP taxonomic training data formatted for DADA2 (RDP trainset 16/release 11.5). doi: 10.5281/zenodo.801828 (2017).64.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.2.5. https://CRAN.R-project.org/package=ggpubr (2020).66.Lahti, L. & Shetty, S. Tools for microbiome analysis in R Version 2.1.26. http://microbiome.github.com/microbiome (2017).67.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).68.Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. R package version 0.0.1. (2017).69.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    71.Martin, C. ggConvexHull: Add a convex hull geom to ggplot2. R package version 0.1.0. http://github.com/cmartin/ggConvexHull (2017).72.Campitelli, E. ggnewscale: Multiple Fill and Colour Scales in ‘ggplot2’. R package version 0.4.1. https://CRAN.R-project.org/package=ggnewscale (2020).73.Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.8.2. https://CRAN.R-project.org/package=ggrepel (2020).74.Dowle, M. & Srinivasan, A. data.table: Extension of `data.frame`. R package version 1.12.8. https://CRAN.R-project.org/package=data.table (2019).75.Ammar, R. randomcoloR: Generate Attractive Random Colors. R package version 1.1.0.1. https://CRAN.R-project.org/package=randomcoloR (2019).76.Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.0.0. https://CRAN.R-project.org/package=tidyr (2019).77.Wichmann, H. & Seidel, D. scales: Scale Functions for Visualization. R package version 1.1.0. https://CRAN.R-project.org/package=scales (2019).78.Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1–2. https://CRAN.R-project.org/package=RColorBrewer (2014). More

  • in

    Temporal analysis shows relaxed genetic erosion following improved stocking practices in a subarctic transnational brown trout population

    1.Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10(2), 121–139 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12(8), 1505–1512 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Habel, J. C., Husemann, M., Finger, A., Danley, P. D. & Zachos, F. E. The relevance of time series in molecular ecology and conservation biology. Biol. Rev. 89(2), 484–492 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Klütsch, C. F. C. et al. Genetic changes caused by restocking and hydroelectric dams in demographically bottlenecked brown trout in a transnational subarctic riverine system. Ecol. Evol. 9(10), 6068–6081 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Hansen, M. M., Fraser, D. J., Meier, K. & Mensberg, K.-L.D. Sixty years of anthropogenic pressure: A spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol. Ecol. 18(12), 2549–2562 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Savary, R. et al. Stocking activities for the Arctic char in Lake Geneva: Genetic effects in space and time. Ecol. Evol. 7(14), 5201–5211 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Perrier, C., Guyomard, R., Bagliniere, J.-L., Nikolic, N. & Evanno, G. Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol. Evol. 3(7), 2334–2349 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Vøllestad, L. A. & Hesthagen, T. Stocking of freshwater fish in Norway: management goals and effects. Nordic J. Freshwater Res. 75, 143–152 (2001).
    Google Scholar 
    10.Christie, M. R., Marine, M. L., French, R. A., Waples, R. S. & Blouin, M. S. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109, 254–260 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Araki, H., Cooper, B. & Blouin, M. S. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol. Lett. 5, 621–624 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.O’Sullivan, R. J. et al. Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. Proc. R. Soc. B 287, 20201671 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Amundsen, P.-A. et al. Invasion of vendace Coregonus albula in a subarctic watercourse. Biol. Conserv. 88(3), 405–413 (1999).Article 

    Google Scholar 
    14.Jensen, H., Bøhn, T., Amundsen, P.-A. & Aspholm, P. E. Feeding ecology of piscivorous brown trout (Salmo trutta L.) in a subarctic watercourse. Ann. Zool. Fenn. 41(1), 319–328 (2004).
    Google Scholar 
    15.Jensen, H. et al. Predation by brown trout (Salmo trutta) along a diversifying prey community gradient. Can. J. Fish. Aquat. Sci. 65, 1831–1841 (2008).Article 

    Google Scholar 
    16.Jensen, H. et al. Food consumption rates of piscivorous brown trout (Salmo trutta) foraging on contrasting coregonid prey. Fish. Manag. Ecol. 22, 295–306 (2015).Article 

    Google Scholar 
    17.Haugland, Ø. Langtidsstudie av næringsøkologi og vekst hos storørret i Pasvikvassdraget. Mastergradsoppgave i biologi (Universitetet i Tromsø, Fakultet for Biovitenskap, fiskeri og økonomi, Institutt for arktisk og marin biologi, 2014).18.Gossieaux, P., Bernatchez, L., Sirois, P. & Garant, D. Impacts of stocking and its intensity on effective population size in Brook Charr (Salvelinus fontinalis) populations. Conserv. Genet. 20(4), 729–742 (2019).Article 

    Google Scholar 
    19.Pinter, K., Epifanio, J. & Unfer, G. Release of hatchery-reared brown trout (Salmo trutta) as a threat to wild populations? A case study from Austria. Fish. Res. 219, 105296 (2019).Article 

    Google Scholar 
    20.Wringe, B. F., Purchase, C. F. & Fleming, I. A. In search of a “cultured fish phenotype”: A systematic review, meta-analysis and vote-counting analysis. Rev. Fish Biol. Fish. 26(3), 351–373 (2016).Article 

    Google Scholar 
    21.Gossieaux, P. et al. Effects of genetic origin on phenotypic divergence in Brook Trout populations stocked with domestic fish. Ecosphere 11(5), e03119 (2020).Article 

    Google Scholar 
    22.Fleming, I. A., Jonsson, B. & Gross, M. R. Phenotypic divergence of sea-ranched, farmed, and wild salmon. Can. J. Fish. Aquat. Sci. 51, 2808–2824 (1994).Article 

    Google Scholar 
    23.Heath, D. D., Heath, J. W., Bryden, C. A., Johnson, R. M. & Fox, C. W. Rapid evolution of egg size in captive salmon. Science 299, 1738–1740 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Naish, K. A., Seamons, T. R., Dauer, M. B., Hauser, L. & Quinn, T. P. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol. Ecol. 22, 1295–1309 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Van Oosterhout, C., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6(1), 255–256 (2006).Article 

    Google Scholar 
    26.Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8(6), 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    27.Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    28.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19), 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Szpiech, Z. A., Jacobsson, M. & Rosenberg, N. A. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21), 2498–2504 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Waples, R. S. & Anderson, E. C. Purging putative siblings from population genetic data sets: A cautionary view. Mol. Ecol. 26(5), 1211–1224 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. Related: An R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15(3), 557–561 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Piry, S., Luikart, G. & Cornuet, J.-M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90(4), 502–503 (1999).Article 

    Google Scholar 
    35.Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4), 2001–2014 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21(14), 3403–3418 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Luikart, G. Usefulness of molecular markers for detecting population bottlenecks and monitoring genetic change. Ph. D. Thesis. (University of Montana, 1997).38.Do, C. et al. NEESTIMATOR v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Zhdanova, O. L. & Pudovkin, A. I. Nb_HetEx: A program to estimate the effective number of breeders. J. Hered. 99(6), 694–695 (2008).PubMed 
    Article 

    Google Scholar 
    41.Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1, 462–474 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jones, O. R. & Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Wang, J. A. comparison of single-sample estimators of effective population sizes from genetic data. Mol. Ecol. 25, 4692–4711 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Nei, M. & Chesser, R. K. Estimation of fixation indexes and gene diversities. Ann. Hum. Genet. 47(3), 253–259 (1983).CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    45.Jost, L. Gst and its relatives do not measure differentiation. Mol. Ecol. 17(18), 4015–4026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57(1), 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).48.White, T., van der Ende, J. & Nichols, T. E. Beyond Bonferroni revisited: Concerns over inflated false positive research findings in the fields of conservation genetics, biology, and medicine. Conserv. Genet. 20, 927–937 (2019).Article 

    Google Scholar 
    49.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164(4), 1567–1587 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9(5), 1322–1332 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).52.Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8(7), e70651 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18(1), 176–177 (2018).PubMed 
    Article 

    Google Scholar 
    54.Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16(3), 608–627 (2016).PubMed 
    Article 

    Google Scholar 
    55.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Anderson, E. C. & Dunham, K. K. The influence of family groups on inferences made with the program structure. Mol. Ecol. Resour. 8, 1219–1229 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Dray, S. & Dufour, A. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20 (2007).Article 

    Google Scholar 
    58.Levene, H. Robust tests for equality of variances. in Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (Olkin, I., Hotelling, H. et al. eds.). 278–292 (Stanford University Press, 1960).59.Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.4.0. https://CRAN.R-project.org/package=rstatix (2020).60.Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.White, S. L., Miller, W. L., Dowell, S. A., Bartron, M. L. & Wagner, T. Limited hatchery introgression into wild brook trout (Salvelinus fontinalis) populations despite reoccurring stocking. Evol. Appl. 11(9), 1567–1581 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Lehnert, S. J. et al. Multiple decades of stocking has resulted in limited hatchery introgression in wild brook trout (Salvelinus fontinalis) populations of Nova Scotia. Evol. Appl. 13(5), 1069–1089 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Knudsen, C. M. et al. Comparison of life history traits between first-generation hatchery and wild upper Yakima River spring Chinook salmon. Trans. Am. Fish. Soc. 135, 1130–1144 (2006).Article 

    Google Scholar 
    64.Hansen, M. M. & Mensberg, K.-L.D. Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: Indigenous trout persist in introgressed populations. Biol. Lett. 5, 656–659 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Christie, M. R., Ford, M. J. & Blouin, M. S. On the reproductive success of early-generation hatchery fish in the wild. Evol. Appl. 7, 883–896 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12, 1305–1317 (2019).PubMed 
    Article 

    Google Scholar 
    67.Fischer, J. R. et al. Growth, condition, and trophic relations of stocked trout in southern Appalachian mountain streams. Trans. Am. Fish. Soc. 148, 771–784 (2019).CAS 
    Article 

    Google Scholar 
    68.Hendry, A. P. & Day, T. Population structure attributable to reproductive time: Isolation by time and adaptation by time. Mol. Ecol. 14, 901–916 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Gauthey, Z. et al. Brown trout spawning habitat selection and its effects on egg survival. Ecol. Freshwater Fish 26, 133–140 (2017).Article 

    Google Scholar 
    70.Dupont, P.-P., Bourret, V. & Bernatchez, L. Interplay between ecological, behavioural and historical factors in shaping the genetic structure of sympatric walleye populations (Sander vitreus). Mol. Ecol. 16, 937–951 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Sandoval-Castillo, J. et al. SWINGER: A user-friendly computer program to establish captive breeding groups that minimize relatedness without pedigree information. Mol. Ecol. Resour. 17, 278–287 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Spatiotemporal effects on dung beetle activities in island forests-home garden matrix in a tropical village landscape

    1.Chapin, F. S. & Díaz, S. Interactions between changing climate and biodiversity: Shaping humanity’s future. PNAS 2117, 6295–6296 (2020).Article 
    CAS 

    Google Scholar 
    2.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Scranton, K. & Amarasekare, P. Predicting phenological shifts in a changing climate. PNAS 114, 13212–13217 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Madrigal-González, J. et al. Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment. Sci. Total Environ. 642, 619–628 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Angilletta, M. J. Thermal adaptation: A Theoretical And Empirical Synthesis (Oxford University Press, 2009).Book 

    Google Scholar 
    6.Andresen, E. Effects of season and vegetation type on community organization of Dung beetles in a tropical dry forest. Biotropica 37, 291–300 (2005).Article 

    Google Scholar 
    7.Liberal, C. N., Farias, A. M. I. & Meiado, M. V. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem. J. Insect Sci. 11, 114 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. D. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS One 11, e0157442 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.da Silva, P. G. & Cassenote, S. Environmental drivers of species composition and functional diversity of dung beetles along the Atlantic Forest-Pampa transition zone. Austral Ecol. 44, 786–799 (2019).Article 

    Google Scholar 
    10.Alvarado, F., Salomão, R. P., Hernandez-Rivera, Á. & de Araujo Lira, A. F. Different responses of dung beetle diversity and feeding guilds from natural and disturbed habitats across a subtropical elevational gradient. Acta Oecol. 104, 103533 (2020).Article 

    Google Scholar 
    11.Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS One 6, e17976 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Costa, C. et al. Variegated tropical landscapes conserve diverse dung beetle communities. PeerJ 5, e3125 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Gómez-Cifuentes, A., Gómez, V. C. G., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).Article 

    Google Scholar 
    14.Salomão, R. P. et al. Urbanization effects on dung beetle assemblages in a tropical city. Ecol. Indic. 103, 665–675 (2019).Article 

    Google Scholar 
    15.Correa, C. M., Lara, M. A., Puker, A., Noriega, J. A. & Korasaki, V. Quantifying responses of dung beetle assemblages to cattle grazing removal over a short-term in introduced Brazilian pastures. Acta Oecol. 110, 103681 (2021).Article 

    Google Scholar 
    16.Romero-Alcaraz, E. & Avila, J. M. Effect of elevation and type of habitat on the abundance and diversity of scarabaeoid dung beetles (Scarabaeoidea) assemblages in a Mediterranean area from Southern Iberian Peninsula. Zool. Stud. 39, 351–359 (2000).
    Google Scholar 
    17.Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica 34, 144–154 (2002).Article 

    Google Scholar 
    18.Rios-Diaz, C. L. et al. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J. Insect Conserv. 25, 13–26 (2021).Article 

    Google Scholar 
    19.Krell, F. T., Krell-Westerwalbesloh, S., Weiß, I., Eggleton, P. & Linsenmair, K. E. Spatial separation of Afrotropical dung beetle guilds: A trade-off between competitive superiority and energetic constraints (Coleoptera: Scarabaeidae). Ecography 26, 210–222 (2003).Article 

    Google Scholar 
    20.Verdú, J. R., Díaz, A. & Galante, E. Thermoregulatory strategies in two closely related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiol. Entomol. 29, 32–38 (2004).Article 

    Google Scholar 
    21.Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endotermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. J. Insect Physiol. 52, 854–860 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Verdú, J. R., Arellano, L., Numa, C. & Micó, E. Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol. 32, 544–551 (2007).Article 

    Google Scholar 
    23.Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and microcomputer tomography. PLoS One 7, e33914 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Giménez-Gómez, V. C., Lomáscolo, S. B., Zurita, G. A. & Ocampo, F. Daily activity patterns and thermal tolerance of three sympatric dung beetle species (Scarabaeidae: Scarabaeinae: Eucraniini) from the Monte Desert, Argentina. Neotrop. Entomol. 47, 821–827 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Gómez, V. C. G., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. 28, 1076–2086 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Gallego, B., Verdú, J. R. & Lobo, J. M. Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). J. Therm. Biol. 74, 84–91 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Feer, F. Effects of dung beetles (Scarabaeidae) on seeds dispersed by howler monkeys (Alouatta seniculus) in the French Guianan rainforest. J. Trop. Ecol. 15, 1–14 (1999).Article 

    Google Scholar 
    29.Feer, F. & Pincebourne, S. Diel flight activity and ecological segregation within an assemblage of tropical forest dung and carrion beetles. J. Trop. Ecol. 21, 21–30 (2005).Article 

    Google Scholar 
    30.Niino, M. et al. Diel flight activity and habitat preference of dung beetles (Coleoptera: Scarabaeidae) in Peninsular Malaysia. Raffles Bull. Zool. 62, 795–804 (2014).
    Google Scholar 
    31.da Silva, P. G., Lobo, J. M. & Hernandez, M. I. M. The role of habitat and daily activity patterns in explaining the diversity of mountain Neotropical dung beetle assemblages. Austral Ecol. 44, 300–312 (2019).Article 

    Google Scholar 
    32.Cambefort, Y. Dung beetles in tropical savannas in Africa. In Dung Beetle Ecology (eds Hanski, I. & Camberfort, Y.) 156–178 (Princeton University Press, 1991).Chapter 

    Google Scholar 
    33.Hernández, M. I. M. The night and day of dung beetles (Coleoptera, Scarabaeidae) in the Serra do Japi, Brazil: Elytra colour related to daily activity. Rev. Bras. Entomol. 46, 597–600 (2002).Article 

    Google Scholar 
    34.Krell-Westerwalbesloh, S., Krell, F. T. & Eduard Linsenmair, K. Diel separation of Afrotropical dung beetle guilds—avoiding competition and neglecting resources (Coleoptera: Scarabaeoidea). J. Nat. Hist. 38, 2225–2249 (2004).Article 

    Google Scholar 
    35.Rajesh, T. P., Prashanth Ballullaya, U., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of south India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    36.Prashanth Ballullaya, U. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmental perceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104–213 (2019).Article 

    Google Scholar 
    37.Manoj, K. et al. Diversity of platygastridae in leaf litter and understory layers of tropical rainforests of the Western Ghats biodiversity hotspot, India. Environ. Entomol. 46, 685–692 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Rajesh, T., Unni, A., Prashanth Ballullaya, U., Manoj, K. & Sinu, P. A. An insight into the quality of sacred groves—an island habitat—using leaf-litter ants as an indicator in a context of urbanization. J. Trop. Ecol. 37, 82–90. https://doi.org/10.1017/S0266467421000134 (2021).Article 

    Google Scholar 
    39.Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitat are different. J. Trop. Ecol. https://doi.org/10.1017/S0266467421000225 (2021) (Accepted).Article 

    Google Scholar 
    40.Krell, F. T. Dung beetle sampling protocols. Denver Museum of Nature and Science Technical Report 6, 1–11 (2007).
    Google Scholar 
    41.Arrow, G. J. The Fauna of British India including Ceylon and Burma, Coleoptera: Lamellicornia (Coprinae) (Taylor and Francis, 1931).
    Google Scholar 
    42.Sabu, T. K., Vinod, K. V. & Vineesh, P. J. Guild structure, diversity and succession of dung beetles associated with Indian elephant dung in South Western Ghats forests. J. Insect Sci. 6, 6–17 (2006).Article 

    Google Scholar 
    43.Beiroz, W. et al. Dung beetle community dynamics in undisturbed tropical forests: Implications for ecological evaluations of land-use change. Insect Conserv. Divers. 10, 94–106 (2017).Article 

    Google Scholar 
    44.De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.McGeoch, M. A., van Rensburg, B. J. & Botes, A. The verification and application of bioindicators: A case of study of dung beetles in a savanna ecosystem. J. Appl. Ecol. 39, 661–672 (2002).Article 

    Google Scholar 
    46.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and extrapolation for species diversity. R package version 2.0.12 (2016).47.Oksanen, J. et al. vegan: Community Ecology Package. R package, version 2.5‐3 (2018).48.Caveney, S., Scholtz, C. H. & McIntyre, P. Patterns of daily flight activity in Onitine dung beetles (Scarabaeinae: Onitini). Oecologia 103, 444–452 (1995).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Spector, S. & Ayzama, S. Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian Neotropical forest-savanna ecotone. Biotropica 35, 394–404 (2003).
    Google Scholar 
    50.Escobar, F. S. Diversity and composition of dung beetle (Scarabaeinae) assemblages in a heterogeneous Andean landscape. Trop. Zool. 17, 123–136 (2004).Article 

    Google Scholar 
    51.Lobo, J. M., Lumaret, J. P. & Jay-Robert, P. Sampling dung beetles in French Mediterranean area: Effects of abiotic factors and farm practices. Pedobiologia 42, 252–266 (1998).
    Google Scholar 
    52.Zamora, J., Verdu, J. R. & Galante, E. Species richness in Mediterranean agroecosystems: Spatial and temporal analysis for biodiversity conservation. Biol. Conserv. 134, 113–121 (2007).Article 

    Google Scholar 
    53.Calatayud, J. et al. Multidimensionality in the thermal niches of dung beetles could limit species’ responses to temperature changes. BioRxiv. https://doi.org/10.1101/2020.11.15.383612(2021) (2020).Article 

    Google Scholar 
    54.Iannuzzi, L., Salomão, R. P., Costa, F. C. & Liberal, C. N. Environmental patterns and daily activity of dung beetles (Coleoptera: Scarabaeidae) in the Atlantic Rainforest of Brazil. Entomotropica 31, 196–207 (2016).
    Google Scholar 
    55.Venugopal, K. S., Thomas, S. K. & Flemming, A. T. Diversity and community structure of dung beetles (Coleoptera: Scarabaeinae) associated with semi-urban fragmented agricultural land in the Malabar coast in southern India. JoTT 4, 2685–2692 (2012).
    Google Scholar 
    56.Price, P. W. Insect Ecology (Wiley, 1984).
    Google Scholar 
    57.Hanski, I. & Cambefort, Y. Dung Beetle Ecology (Princeton University Press, 1991).Book 

    Google Scholar 
    58.Finn, J. A. & Gittings, T. A review of competition in north temperate dung beetle communities. Ecol. Entomol. 28, 1–13 (2003).Article 

    Google Scholar 
    59.Doube, B. Dung beetles of southern Africa. In Dung Beetle Ecology (eds Hanski, I. & Cambefort, Y.) 133–155 (Princeton University Press, 1991).Chapter 

    Google Scholar 
    60.Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv. 21, 147–156 (2017).Article 

    Google Scholar 
    61.Estrada, A. & Coates-Estrada, R. Howler monkeys (Alouatta palliate), dung beetles (Scarabaeidae) and seed dispersal-ecological interactions in the tropical rain-forest of Los-Tuxtlas, Mexico. J. Trop. Ecol. 7, 459–474 (1991).Article 

    Google Scholar 
    62.Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1084–1104 (2007).Article 

    Google Scholar 
    63.Vinod, K. V. & Sabu, T. K. Species composition and community structure of dung beetles attracted to dung of gaur and elephant in the moist forests of South Western Ghats. J. Insect Sci. 7, 1–14 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Chao, A., Simon-Freeman, R. & Grether, G. Patterns of Niche partitioning and alternative reproductive strategies in an east African dung beetle assemblage. J. Insect Behav. 26, 525–539 (2013).Article 

    Google Scholar 
    65.Sowig, P. Habitat selection and offspring survival rate in three paracoprid dung beetles: The influence of soil type and soil moisture. Ecography 18, 147–154 (1995).Article 

    Google Scholar 
    66.Sowig, P. Brood care in the dung beetle Onthophagus vacca (Coleoptera: Scarabaeidae): The effect of soil moisture on time budget, nest structure, and reproductive success. Ecography 19, 254–258 (1996).
    Google Scholar 
    67.Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).Article 

    Google Scholar 
    68.Latha, T. & Thomas, S. K. Edge effect on roller dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in the moist South Western Ghats. J. Entomol. 8, 1044–1047 (2020).
    Google Scholar 
    69.Bartholomew, G. A. & Heinrich, B. Endothermy in African dung beetles during flight, ball making, and ball rolling. J. Exp. Biol. 73, 65–83 (1978).Article 

    Google Scholar 
    70.Boonrotpong, S., Sotthibandhu, S. & Pholpunthin, C. Species composition of dung beetles in the primary and secondary forests at Ton Nga Chang Wildlife Sanctuary. Sci. Asia 30, 59–65 (2004).Article 

    Google Scholar 
    71.Davis, A. J. Does reduced-impact logging help preserve biodiversity in tropical rainforest? A case study from Borneo using dung beetles (Coleoptera: Scarabaeoidea) as indicators. Environ. Entomol. 29, 467–475 (2000).Article 

    Google Scholar 
    72.Davis, A. J. et al. Dung beetles as indicators of change in the forests of northern Borneo. J. Appl. Ecol. 38, 593–616 (2001).Article 

    Google Scholar 
    73.Jayaprakash, S. B. Taxonomy guild structure and dung specificity of dung beetles in a coffee plantation belt in south Wayanad. Ph.D. thesis, University of Calicut. http://hdl.handle.net/10603/222605 (2018). More

  • in

    Tropical cyclones shape mangrove productivity gradients in the Indian subcontinent

    1.Kossin, J. P., Knapp, K. R., Olander, T. L. & Velden, C. S. Global increase in major tropical cyclone exceedance probability over the past four decades. Atmos. Planet. Sci. 117, (2020).2.Smith, T. J. et al. Cumulative impacts of hurricanes on florida mangrove ecosystems: sediment deposition, storm surges and land crabs of corcovado national park view project hydrologic response to increased water management capability at the great dismal swamp National Wildl. Wetlands https://doi.org/10.1672/08-40.1 (2009).Article 

    Google Scholar 
    3.Kumar, S., Lal, P. & Kumar, A. Turbulence of tropical cyclone ‘Fani’ in the Bay of Bengal and Indian subcontinent. Nat. Hazards 103, 1613–1622 (2020).Article 

    Google Scholar 
    4.Jayanta, B. South Bengal ravaged by Cyclone Amphan. DownToEarth (2020).5.Castañeda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U. S. A. 117, 4831–4841 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Lovelock, C. E. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11, 342–354 (2008).CAS 
    Article 

    Google Scholar 
    8.Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13 (2008).ADS 
    Article 

    Google Scholar 
    9.Lovelock, C. E., Ruess, R. W. & Feller, I. C. Co2 efflux from cleared mangrove peat. PLoS ONE 6, 1–4 (2011).Article 
    CAS 

    Google Scholar 
    10.FSI. India State of Forest Report, Ministry of Environment, Forest & Climate Change. (2019).11.Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49, 131–146 (2008).
    Google Scholar 
    12.Ragavan, P. et al. A review of the mangrove floristics of India. Taiwania 61, 224–242 (2016).
    Google Scholar 
    13.Blasco, F., Janodet, E. & Bellan, M. F. Natural Hazards and Mangroves in the Bay of Bengal. Source: Journal of Coastal Research (1994).14.Kathiresan, K. & Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 65, 601–606 (2005).ADS 
    Article 

    Google Scholar 
    15.Suresh, H.S., Mangrove area assessment in India: Implications of loss of mangroves. J. Earth Sci. Clim. Change 06, (2015).16.Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).Article 

    Google Scholar 
    17.Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. U. S. A. 106, 7357–7360 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Rathore, L. S., Mohapatra, M. & Geetha, B. Collaborative mechanism for tropical cyclone monitoring and prediction over north Indian ocean. in Tropical Cyclone Activity over the North Indian Ocean 3–27 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-40576-6_119.Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9, (2018).20.Silva Pedro, M., Rammer, W. & Seidl, R. A disturbance-induced increase in tree species diversity facilitates forest productivity. Landsc. Ecol. 31, 989–1004 (2016).Article 

    Google Scholar 
    21.Matayaya, G., Wuta, M. & Nyamadzawo, G. Effects of different disturbance regimes on grass and herbaceous plant diversity and biomass in Zimbabwean dambo systems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 13, 181–190 (2017).Article 

    Google Scholar 
    22.Galeano, A., Urrego, L. E., Botero, V. & Bernal, G. Mangrove resilience to climate extreme events in a Colombian Caribbean Island. Wetl. Ecol. Manag. 25, 743–760 (2017).Article 

    Google Scholar 
    23.Capdeville, C. et al. Mangrove facies drives resistance and resilience of sediment microbes exposed to anthropic disturbance. Front. Microbiol. 9, 10 (2019).Article 

    Google Scholar 
    24.Banerjee, K. et al. High blue carbon stock in mangrove forests of Eastern India. Trop. Ecol. 61, 150–167 (2020).CAS 
    Article 

    Google Scholar 
    25.Murthy, T. V. R. Biophysical characterisation and site suitability analysis for Indian mangroves. (2019).26.Whelan, K. R., Smith, T. J., Anderson, G. H., & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23 (2009).Article 

    Google Scholar 
    27.Smoak, J. M., Breithaupt, J. L., Smith, T. J. & Sanders, C. J. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. CATENA 104, 58–66 (2013).CAS 
    Article 

    Google Scholar 
    28.Bala Krishna Prasad, M. Nutrient stoichiometry and eutrophication in Indian mangroves. Environ. Earth Sci. 67, 293–299 (2012).CAS 
    Article 

    Google Scholar 
    29.Reddy, Y. et al. Assessment of bioavailable nitrogen and phosphorus content in the sediments of Indian mangroves. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-13638-7 (2021).Article 

    Google Scholar 
    30.Bala Krishna Prasad, M., Ramanathan, A. L., Alongi, D. M. & Kannan, L. Seasonal variations and decadal trends in concentrations of dissolved inorganic nutrients in Pichavaram mangrove waters Southeast India. Bull. Mar. Sci. 79, 287–300 (2006).
    Google Scholar 
    31.Nandy Datta, P. & Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans. India. J. Plant Biol. 44, 213–219 (2001).Article 

    Google Scholar 
    32.Ball, M. C. & Critchley, C. Photosynthetic responses to irradiance by the grey mangrove, avicennia marina, grown under different light regimes. Plant Physiol. 70, 1101–1106 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Cheeseman, J. M. et al. The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves. Photosynth. Res. 29, 11–22 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Rajkumar, R., Shaijumon, C. S., Gopakumar, B. & Gopalakrishnan, D. Extreme rainfall and drought events in Tamil Nadu India. Clim. Res. 80, 175–188 (2020).Article 

    Google Scholar 
    35.Lakshmi, S., Nivethaa, E. A. K., Ibrahim, S. N. A., Ramachandran, A. & Palanivelu, K. Prediction of future extremes during the Northeast Monsoon in the coastal districts of Tamil Nadu State in India Based on ENSO. Pure Appl. Geophys. https://doi.org/10.1007/s00024-021-02768-1 (2021).Article 

    Google Scholar 
    36.Aung, T. T., Mochida, Y. & Than, M. M. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manage. 293, 103–113 (2013).Article 

    Google Scholar 
    37.Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island China. Funct. Ecol. 35, 774–786 (2021).Article 

    Google Scholar 
    38.Rasquinha, D. N. & Mishra, D. R. Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in India. Estuar. Coast. Shelf Sci. 248, 106974 (2021).Article 

    Google Scholar 
    39.Ranjan, R. K., Ramanathan, A. L., Chauhan, R. & Singh, G. Phosphorus fractionation in sediments of the Pichavaram mangrove ecosystem, south-eastern coast of India. Environ. Earth Sci. 62, 1779–1787 (2011).CAS 
    Article 

    Google Scholar 
    40.Prasad, A. M., Iverson, L. R. & Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006).Article 

    Google Scholar 
    41.Prasad, M. B. K., Singh, G. & Ramanathan, A. L. Nutrient biogeochemistry and net ecosystem metabolism in a tropical coastal mangrove ecosystem. Indian J. Geo-Marine Sci. 45, 1499–1511 (2016).
    Google Scholar 
    42.Lovelock, C. E., Friess, D. A. & Krauss, K. W. the vulnerability of Indo-Paci & c mangrove forests to sea-level rise. (2015).43.Ward, R. D., Friess, D. A., Day, R. H. & Mackenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Heal. Sustain. 2, e01211 (2016).Article 

    Google Scholar 
    44.Banerjee, K., Gatti, R. C. & Mitra, A. Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio 46, 492–499 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D. & Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Chang. 3, 83–87 (2013).ADS 
    Article 

    Google Scholar 
    46.Eslami-Andargoli, L., Dale, P., Sipe, N. & Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland Australia. Estuar. Coast. Shelf Sci. 85, 292–298 (2009).ADS 
    Article 

    Google Scholar 
    47.Gilman, E., Ellison, J. & Coleman, R. Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environ. Monit. Assess. 124, 105–130 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Field, C. D. Impact of expected climate change on mangroves. in Asia-Pacific Symposium on Mangrove Ecosystems 75–81 (Springer Netherlands, 1995). https://doi.org/10.1007/978-94-011-0289-6_1049.Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article 

    Google Scholar 
    50.Smith, T. J. & Duke, N. C. Physical determinants of inter-estuary variation in mangrove species richness around the tropical coastline of Australia. J. Biogeogr. 14, 9 (1987).Article 

    Google Scholar 
    51.Van Lavieren, H., Spalding, M., Alongi, D. M., Kainuma, M., Clüsener-Godt, M., Adeel, Z. Policy brief: Securing the future of mangroves. (2012).52.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    53.Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. https://doi.org/10.1073/pnas.120051910954.Barr, J. G., Fuentes, J. D., Engel, V. & Zieman, J. C. Physiological responses of red mangroves to the climate in the Florida Everglades. J. Geophys. Res. Biogeosciences. 114, 1-13 (2009).Article 
    CAS 

    Google Scholar 
    55.Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The international best track archive for climate stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 91, 363–376 (2010).ADS 
    Article 

    Google Scholar 
    56.Tao, J. et al. A comparison between the MODIS product (MOD17A2) and a tide-robust empirical GPP model evaluated in a Georgia Wetland. Remote Sens. 10, 1831 (2018).ADS 
    Article 

    Google Scholar 
    57.Hutley, L. B. et al. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions. Environ. Res. Lett. 8, 045023 (2013).ADS 
    Article 

    Google Scholar 
    58.Sannigrahi, S., Sen, S. & Paul, S. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India. Geophysi. Res. Abstracts 18, (2016). More

  • in

    Whole-genome sequencing of endangered Zhoushan cattle suggests its origin and the association of MC1R with black coat colour

    Whole-genome sequencing of Zhoushan cattle and Wenling cattle populationsWe collected seven individuals of Zhoushan cattle (Fig. 1a, upper panel). We also collected nine individuals of Wenling cattle (Fig. 1a, lower panel). Wenling cattle have a prominent hump on the back, dewlap, and larger ears, suggesting that its genetic background is largely B. indicus (Fig. 1a, lower panel). We performed whole-genome sequencing of these samples. To resolve their phylogenetic positions and interrelationships within domesticated cattle, we combined our data of 16 cattle individuals with publicly-available whole-genome sequencing data of five individuals from the Angus breed, a typical B. taurus in Europe, and 33 individuals from nine breeds with genetic backgrounds similar to B. indicus3, giving a total of 54 individuals (Fig. 1b, c; Table S1). We performed read trimming and aligned the trimmed reads to the UOA_Brahman_1 assembly of the cattle genome11. This assembly represents the maternal haplotype of an F1 hybrid of Brahman cattle (dam) and Angus (sire)11. After variant calling and filtering, we identified 32,970,327 single-nucleotide polymorphisms (SNPs) and 3,331,322 small indels. Based on this genomic variant information, we conducted the population genomic analyses.Figure 1Phylogenetic analysis of Zhoushan cattle and other cattle breeds. (a) Gross appearance of Zhoushan (upper panel) and Wenling cattle (lower panel). Note that Zhoushan cattle have a dark black coat colour. The arrow indicates the curving horn of Zhoushan cattle. (b) Geographic map indicating the origins of Zhoushan (green dot) and Wenling (orange dot) cattle analysed in this study. We also examined other Chinese cattle (red dots) whose genome sequencing data were available. (c) Regional map around the Zhoushan islands. Wenling, Wannan, and Guangfeng are mainland regions close to the Zhoushan islands. (d) Neighbour-joining tree of the 54 domesticated cattle. The scale bar represents pairwise distances between different individuals. The maps were constructed by R38 and R packages of maps v3.3.0 (https://cran.r-project.org/web/packages/maps) and mapdata v2.3.0 (https://cran.r-project.org/web/packages/mapdata).Full size imageGenetic relationship between Zhoushan cattle and other domesticated cattleTo reveal the phylogenetic positions and interrelationships of Zhoushan and other domesticated cattle, we performed population genomic analyses on 54 cattle individuals. First, we calculated the pairwise evolutionary distance between individuals and generated a neighbour-joining (NJ) tree to reconstruct the phylogenetic relationships between individuals of Zhoushan and other domesticated cattle (Fig. 1d). In the NJ tree, cattle clustered consistently with their geographical location (Fig. 1d). Angus individuals formed a sister group to all other individuals, including Zhoushan cattle, Wenling cattle, and other B. indicus (Fig. 1d). The individuals of Zhoushan and Wenling cattle formed monophyletic groups and were sisters to each other (Fig. 1d). The cattle in Guangfeng formed another monophyletic group and were sisters to both Zhoushan and Wenling cattle (Fig. 1d). Cattle in Wannan, Ji’an, and Leiqiong formed a single group, sister to the cattle of Zhoushan, Wenling, and Guangfeng (Fig. 1d). Zhoushan, Wenling, Guangfeng, Wannan, and Ji’an are geographically close to each other (Fig. 1b, c). The cattle of Dianzhong and Wenshan, which are in the south part of China, were distant from them (Fig. 1d). Cattle in Pakistan and India were located near the root of the phylogenetic tree (Fig. 1d). The branch lengths of Zhoushan cattle were shorter than other B. indicus cattle, suggesting the reduced genetic diversity of Zhoushan cattle (Fig. 1d).To estimate the relatedness between Zhoushan and other domesticated cattle, we performed unsupervised clustering analysis with ADMIXTURE v1.3.0 software (https://dalexander.github.io/admixture/index.html)12. At K = 2, Angus cattle were distinct from all other cattle (Fig. 2a). At K = 3, Zhoushan and Wenling cattle were newly segregated from other cattle, suggesting that these two cattle breeds are genetically close to each other (Fig. 2a). The cattle of Guangfeng, Wannan, Ji’an, Leiqiong, and Wenshan had intermediate genetic structures between Zhoushan cattle and Dianzhong cattle (Fig. 2a). At K = 4, Zhoushan cattle and Wenling cattle were separated from each other (Fig. 2a).Figure 2Admixture and principal component analysis of Zhoushan cattle and other cattle breeds. (a) Admixture plot (K = 2, 3, 4) for the 54 cattle individuals. Each individual is shown as a vertical bar divided into K colours. (b) PCA plot showing the genetic structure of the 54 cattle individuals. The degree of explained variance is given in parentheses. Colours reflect the geographic regions of sampling in Fig. 1d. The cluster composed of cattle in Wenling, Guangfeng, Wannan, Ji’an, and Leiqiong is highlighted in the black dotted ellipse. (c) Estimate of the effective population sizes of Zhoushan (green) and Wenling (orange) cattle over the past 100 generations.Full size imageTo infer the population structure of cattle individuals analysed in this study, we conducted principal component analysis (PCA). The top three principal components accounted for 21.1% of the total variance (Fig. 2b). In the first component of PCA, Angus individuals were separated from all other cattle (Fig. 2b). Additionally, cattle of Wenling, Guangfeng, Wannan, Ji’an, and Leiqiong formed a cluster (dotted ellipse in Fig. 2b). In the second component of PCA, individuals of Zhoushan cattle were separated from all other cattle (Fig. 2b). In the third principal component, Wenling cattle individuals were separated from all other cattle (Fig. 2b).We estimated the trends of the effective population size of Zhoushan and Wenling cattle over the past 100 generations (Fig. 2c). Both populations showed decreasing trends of effective population sizes (Fig. 2c). The effective population size of Zhoushan cattle was estimated to be smaller than that of Wenling cattle, suggesting the effect of island isolation on the genetic diversity of Zhoushan cattle (Fig. 2c).Detection of candidate genes associated with dark black coat colour of Zhoushan cattleTo identify putative genes associated with the dark black coat colour of Zhoushan cattle, we searched genomic regions where the same mutations were shared between Zhoushan cattle and Angus cattle. To achieve this, we calculated the average fixation index (Fst) values in 40 kb windows with 10 kb steps (Fig. 3a). We identified four peaks of Fst at chromosomes 2, 4, 8, and 18 (Fig. 3a). Among these peaks, the highest peak of Fst was identified in the region from 51.05 to 51.35 Mbp on chromosome 18 (Fig. 3a, b). This region contains 18 genes (Fig. 3c). We searched for genes that have mutations altering the amino acid sequence and have been reported to be involved in the regulation of coat colour. Among these 18 genes, only the gene of melanocyte-stimulating hormone receptor (MC1R) is known to involved in the regulation of coat colour13,14,15. Therefore, we regarded MC1R as a strong candidate gene associated with the dark black coat colour of Zhoushan and Angus cattle (Fig. 3c). This gene is located in the region between 51,094,227 bp and 51,095,177 bp on chromosome 18. MC1R is expressed in the skin melanocyte and plays a crucial role in regulating animal coat colour formation16. Mutations of MC1R have been reported to be associated with black coat colour in some animals, such as cattle17, sheep16, pigs18, reindeer19, and geese20. In the protein-coding region of MC1R, we identified one missense mutation (c.583T  > C, p.F195L) and one synonymous mutation (c.663C  > T) (Figs. 3d, 4a). The missense mutation is located in the fifth transmembrane region of MC1R (Fig. 4b). All seven Zhoushan cattle were homozygous for the missense mutation (Figs. 3d, 4a). Four of five Angus individuals were homozygous for the missense mutation, and the remaining one was heterozygous for the missense mutation (Figs. 3d, 4a). Conversely, only 19% (8/42) and 33% (14/42) of B. indicus individuals were homozygous or heterozygous, respectively, for the missense mutation (Figs. 3d, 4a). The remaining 48% (20/42) of individuals of B. indicus were homozygous for the wild-type allele (Figs. 3d, 4a). We also found that the p.F195L mutation is also present in MC1R of Black Angus (accession number: ABX83563.1) in the NCBI Protein database (Fig. S1). Furthermore, we identified 15 upstream variants and three downstream variants in the intergenic regions between neighbouring genes (Table S2).Figure 3Genomic regions associated with dark black coat colour of Zhoushan cattle. (a) Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Zhoushan cattle plus Angus and other B. indicus. A region with an average Fst of more than 0.6 is coloured in green. The arrow indicates the highest peak. The x-axis represents chromosomal positions, and the y-axis represents the average Fst values. (b) Manhattan plot on chromosome 18 for average Fst values in 40 kb windows with 10 kb steps between Zhoushan cattle, Angus, and other B. indicus. (c) Regional plot around the MC1R gene. The genotype of each individual at each variant site is shown. The genotype homozygous for the reference allele is coloured grey. Heterozygous variants are coloured blue. The homozygous genotype for alternative alleles is coloured light blue. Note that homozygous genotypes for alternative alleles are enriched in Zhoushan and Angus cattle in this region. (d) Regional plot showing the mutations around MC1R gene.Full size imageFigure 4Secondary structure of MC1R and protein sequence alignment of MC1R orthologs. (a) Regional highlight of the c.583 T  > C mutation of MC1R. The genomic region from 51,094,590 to 51,094,598 bp on chromosome 18 is shown. Note that MC1R is located on the reverse strand. (b) Secondary structure of MC1R. MC1R is a seven-transmembrane receptor. The p.F195L mutation is located in the 5th transmembrane region and enclosed by the red circle. This figure is generated by using the Protter server application39. (c) Multiple sequence alignment of MC1R orthologs. The black rectangle highlights the 195th phenylalanine residues. The red rectangle encloses the p.F195L mutation in Zhoushan cattle. The cladogram of the species is shown to the left of the species name. The cladogram topology is derived from a previous study40.Full size imageTo characterise the missense mutation of MC1R (c.583T  > C, p.F195L) found in Zhoushan and Angus cattle, we estimated the degree of evolutionary conservation of the 195th phenylalanine of MC1R. We obtained various MC1R orthologs of vertebrates from eight eutherian mammals, two marsupial mammals, four reptiles, two birds, two amphibians, one lobe-finned fish, one polypterus fish, four teleost fish, and two cartilaginous fish (Table S3). We aligned these 26 sequences with MC1R of Zhoushan cattle and B. indicus (Fig. 4c). This analysis revealed that the 195th phenylalanine of MC1R is highly conserved among vertebrates (Fig. 4c).Furthermore, we verified whether any larger structural variants are spanning the MC1R region (chr18:51,058,185–51,148,307 bp) of Zhoushan cattle and Angus. If there are large structural variants in this region for these breeds, we should see regions where the read depth distributions are different among the groups. We assessed the integrated read depth distributions of Wenling cattle (n = 9), Zhoushan cattle (n = 7) and Angus (n = 5) (Fig. 5a). The read depth distribution was very similar among the three groups suggesting that there are not large structural variants spanning the MC1R region in these breeds (Fig. 5a). We also collected the sequence reads mapped to this region, and performed BreakDancer to detect structural variants21. However, no structural variants were detected in this region in any breeds. Moreover, we compared the reference genome sequence in MC1R region of the UOA_Brahman_1 assembly and that of the UOA_Angus_1 assembly11. The UOA_Brahman_1 assembly represents the maternal haplotype of an F1 hybrid of Brahman cattle (dam) and Angus (sire), and the UOA_Angus_1 assembly represents its paternal haplotype11. The results showed that the genome sequence in the MC1R region are highly preserved between these two assemblies (Fig. 5b).Figure 5Read depth distribution, genome alignment and admixture analysis of the MC1R region. (a) Read depth distributions in the MC1R region. The left panel shows the read depth distributions in the region from 51,058,185 to 51,148,307 bp on chromosome 18. The right panel shows the read depth distributions in the region from 51,090,618 to 51,099,796 bp on chromosome 18. For each breed, the sequencing reads were integrated. The first track represents read depth distribution in each breed, and the second track represents read alignments to the reference genome. For a given base position, if the base call in the sequencing read and the corresponding base in the reference genome are different, adenine is shown in green, thymine in red, guanine in orange, and cytosine in blue. (b) Dot plots showing the genome alignments of the MC1R regions of the UOA_Angus_1 assembly (chr18:49,477,288–49,566,766 bp) and the UOA_Brahman_1 assembly (chr18:51,058,185–51,148,307 bp). The left panel shows the genome alignment by minimap2 aligner and the right one shows the genome alignment by LASTZ aligner. The region corresponding to the MC1R gene body is highlighted in red. (c) Admixture analysis of the MC1R region. The SNPs located in the MC1R region (chr18:51,058,185–51,148,307 bp) were collected and subjected to admixture analysis. The order of the samples is the same as in Fig. 2a.Full size imageFinally, we deduced the origin of the MC1R haplotype in Zhoushan cattle. We collected the SNPs located in the MC1R region (chr18:51,058,185–51,148,307 bp) from all individuals and performed admixture analysis using these SNPs. The result showed that Zhoushan cattle and Angus shared highly similar genetic components (Fig. 5c). However, the other individuals of B. indicus showed genetic components that differed from both Zhoushan cattle and Angus (Fig. 5c). These results suggest that the MC1R haplotype in Zhoushan cattle is derived from B. taurus, even though the genome of Zhoushan cattle as a whole is that of B. indicus. More

  • in

    The COVID-19 pandemic as a pivot point for biological conservation

    The entire world has responded to and been impacted by the COVID-19 pandemic. Humans have changed our activities and behaviors, illustrating that rapid societal change is possible. It is important to recognize that many of the root causes of this pandemic are the same as those that are worsening the global climate change and biodiversity crises. As we learn and adapt from this pandemic, opportunities for societal transformation that could change the world and the health of natural systems should not be missed. Vision is needed by our world leaders and those of influence now more than ever to rise from the pandemic years with pathways towards greater sustainability. We suggest seven strategies to maximize the COVID-19 pandemic as a pivot point for biological conservation (Fig. 1).Fig. 1: Seven strategies to maximize the COVID-19 pandemic as a pivot point for biological conservation.Societal transformation will promote a longer-term vision for both ecosystem and economic sustainability. Drawings were provided by Cerren Richards.Full size imageNew understanding gained through the pandemic can be incorporated into conservation plans moving forwards, which will take careful and insightful planning (Fig. 1(1)). This includes fine-tuning predictive models and conservation theory with greater skill and precision. For instance, confining humans to their residences at such large scales has underpinned estimates of the causal impact of reducing human activity on wildlife around the world11.Multiple disturbances and threats are increasing in frequency and intensity (e.g., pandemics, biodiversity loss, climate change). New methodologies with a multi-hazard risk perspective are required (Fig. 1(2)). We call for improvements to management models and prognostic tools to analyze and quantify vulnerabilities across ecological, social, and economic systems in future postpandemic scenarios, coupled with investments to build resilience in these diverse systems to multiple disturbances. Doing so will improve risk management before, during, and after disturbances, including those that overlap, and shift to a more preventative rather than reactive approach.Solutions need to be multisectorial and coordinated, rather than sacrificing one sector for another (Fig. 1(3)). Strategies can be designed and tested for decision-making to balance short-term gains versus investing in long-term transformations. This involves leveraging multidisciplinary knowledge, expertise, and resources toward a shared goal of producing better environmental and human well-being outcomes.Partnerships with local experts can support shared-conservation agendas to achieve both sustainable ecosystems and human well-being (Fig. 1(4)). Investing in local community experts and stewardship also has potential to build stronger local economies and long-term capacity. This requires development of the appropriate legislation and policies and adequate allocation of resources (especially funding) to support Indigenous Peoples and communities to participate and lead conservation efforts. For instance, support of local conservation efforts (e.g., expansion of Hawai’i’s Community Based Subsistence Fishing Areas) and inclusion of Indigenous management systems, are being collaboratively supported by Indigenous Peoples, local communities, governmental and non-governmental organizations, and scientists worldwide.Regions, which heavily and narrowly rely on funding from a single sector (such as international tourism) to support biodiversity conservation, are vulnerable to external shocks and require diversification. This is fundamental for economic resilience and protection against global crises such as pandemics (Fig. 1(5)). Diversification of local economies may offer viable alternatives to (over)exploitation or illegal and unregulated resource use.Strong links between environmental and human health have also come to light (“One Health”) that reinforce support of conservation programs and nature-based solutions18. This needs to be better reflected in policies, strategies, and action from global to local levels. Linking conservation of nature to human health may dampen economic drawdown and lead to strong human well-being and conservation outcomes (Fig. 1(6))Social, economic, and biological systems are intimately connected. We urge economists to engage with ecologists (and vice versa) in discussions about how ecosystem valuation can strengthen the relationship between sustainable development, nature, and society (Fig. 1(7)). More

  • in

    Herbaceous perennial ornamental plants can support complex pollinator communities

    1.Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).Article 

    Google Scholar 
    2.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insectdecline in the anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. 118, e2023989118. https://doi.org/10.1073/pnas.2023989118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Harrison, T. & Winfree, R. Urban drivers of plant–pollinator interactions. Funct. Ecol. 29, 879–888 (2015).Article 

    Google Scholar 
    4.Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).Article 

    Google Scholar 
    6.Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities dependson floral resource availability and bee functional traits. PLoS One 14, e025852. https://doi.org/10.1371/journal.pone.0225852 (2019).CAS 
    Article 

    Google Scholar 
    7.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    8.Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).Article 

    Google Scholar 
    9.Threlfall, C. G. et al. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 187, 240–248 (2015).Article 

    Google Scholar 
    10.Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).PubMed 
    Article 

    Google Scholar 
    11.Bartomeus, I. et al. Historical changes in Northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. U. S. A. 110, 4656–4660 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Willmer, P. Pollination and Floral Ecology (Princeton University Press, Princeton, 2011).Book 

    Google Scholar 
    13.Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).Book 

    Google Scholar 
    14.Robertson, C. Heterotropic bees. Ecology 6, 412–436 (1925).Article 

    Google Scholar 
    15.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U. S. A. 100, 9383–9387 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B Biol. Sci. 271, 2605–2611 (2004).Article 

    Google Scholar 
    17.Tylianakis, J. M. & Coux, C. Tipping points in ecological networks. Trends Plant Sci. 19, 281–283 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along agradient of urbanisation. PLoS One 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170. https://doi.org/10.3389/fevo.2018.00170 (2018).Article 

    Google Scholar 
    21.Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).Article 

    Google Scholar 
    22.Cohen, H., Philpott, S. M., Liere, H., Lin, B. B. & Jha, S. The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosyst. 24, 275–290 (2021).Article 

    Google Scholar 
    23.Menz, M. H. M. et al. Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends Plant Sci. 16, 4–12 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.M’Gonigle, L. K., Williams, N. M., Lonsdorf, E. & Kremen, C. A tool for selecting plants when restoring habitat for pollinators. Conserv. Lett. 10, 105–111 (2017).Article 

    Google Scholar 
    25.Köppler, M.-R. & Hitchmough, J. D. Ecology good, aut-ecology better; improving the sustainability of designed plantings. J. Landsc. Archit. 10, 82–91 (2015).Article 

    Google Scholar 
    26.Tabassum, S. et al. Using ecological knowledge for landscaping with plants in cities. Ecol. Eng. 158, 106049. https://doi.org/10.1016/j.ecoleng.2020.106049 (2020).Article 

    Google Scholar 
    27.Campbell, B., Khachatryan, H. & Rihn, A. Pollinator-friendly plants, reasons for and barriers to purchase. Am. Soc. Hortic. Sci. 27, 831–839 (2017).
    Google Scholar 
    28.Khachatryan, H. et al. Visual attention to eco-labels predicts consumer preferences for pollinator friendly plants. Sustainability 9, 1743. https://doi.org/10.3390/su9101743 (2017).Article 

    Google Scholar 
    29.Hitchmough, J. & Woudstra, J. The ecology of exotic herbaceous perennials grown in managed, native grassy vegetation in urban landscapes. Landsc. Urban Plan. 45, 107–121 (1999).Article 

    Google Scholar 
    30.Ault, J. Breeding and development of new ornamental plants from North American native taxa. Acta Hortic. 624, 37–42 (2003).Article 

    Google Scholar 
    31.Comba, L. et al. Garden flowers: Insect visits and the floral reward of horticulturally-modified variants. Ann. Bot. 83, 73–86 (1999).Article 

    Google Scholar 
    32.Garbuzov, M. & Ratnieks, F. L. W. Using the British National Collection of asters to compare the attractiveness of 228 varieties to flower-visiting insects. Environ. Entomol. 44, 638–646 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Erickson, E. et al. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 49, 178–188 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Garbuzov, M. & Ratnieks, F. L. W. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).Article 

    Google Scholar 
    35.Russo, L., DeBarros, N., Yang, S., Shea, K. & Mortensen, D. Supporting crop pollinators with floral resources: Network-based phenological matching. Ecol. Evol. 3, 3125–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Thompson, J. D. How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system?. Oecologia 126, 386–394 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Tuell, J. K., Fiedler, A. K., Landis, D. & Isaacs, R. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs. Environ. Entomol. 37, 707–718 (2008).PubMed 
    Article 

    Google Scholar 
    38.Fowler, J. Specialist bees of the Northeast: Host plants and habitat conservation. Northeast. Nat. 23, 305–320 (2016).Article 

    Google Scholar 
    39.Jessica J. R. Catch the buzz-pollinator diversity, distribution, and phenology in Shenandoah National Park (Natural Resource Report. NPS/SHEN/NRR—2017/1441. National Park Service, 2017).40.Savoy-Burke, G. Woodland Bee Diversity in the Mid-Atlantic. (Master’s Thesis, University of Delaware, Newark DE, 2017).41.Fisher, R. M. Evolution and host specificity: Dichotomous invasion success of Psithyrus citrinus (Hymenoptera: Apidae), a bumblebee social parasite in colonies of its two hosts. Can. J. Zool. 63, 977–981 (1985).Article 

    Google Scholar 
    42.Packer, L., Genaro, J. & Sheffield, C. S. The bee genera of Eastern Canada. Can. J. Arthropod Identif. 3, 1–32 (2007).
    Google Scholar 
    43.Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: A century of change. J. Insect Conserv. 23, 45–62 (2019).Article 

    Google Scholar 
    44.Domínguez-García, V. & Muñoz, M. A. Ranking species in mutualistic networks. Sci. Rep. 5, 8182. https://doi.org/10.1038/srep08182 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008).Article 

    Google Scholar 
    46.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: Analysingecological networks. R News 8(2), 8–11 (2008).
    Google Scholar 
    47.Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    48.Wright, G. A. & Schiestl, F. P. The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 23, 841–851 (2009).Article 

    Google Scholar 
    49.Corbet, S. et al. Native or Exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 87, 219–232 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Campbell, D. R., Bischoff, M., Lord, J. M. & Robertson, A. W. Flower color influences insect visitation in alpine New Zealand. Ecology 91, 2638–2649 (2010).PubMed 
    Article 

    Google Scholar 
    51.Harder, L. D. Morphology as a predictor of flower choice by bumble bees. Ecology 66, 198–210 (1985).Article 

    Google Scholar 
    52.Wilde, H. D., Gandhi, K. J. K. & Colson, G. State of the science and challenges of breeding landscape plants with ecological function. Hortic. Res. 2, 14069. https://doi.org/10.1038/hortres.2014.69 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Stearn, W. T. Nepeta mussinii and N. × Faassenii. J. R. Hortic. Soc. 75, 403–406 (1950).
    Google Scholar 
    55.Seitz, N., VanEngelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Kammerer, M., Tooker, J. F. & Grozinger, C. M. A long-term dataset on wild bee abundance in Mid-Atlantic United States. Sci. Data 7, 240. https://doi.org/10.1038/s41597-020-00577-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).PubMed 
    Article 

    Google Scholar 
    58.Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species?. J. Appl. Ecol. 52, 1156–1164 (2015).CAS 
    Article 

    Google Scholar 
    59.Mach, B. M. & Potter, D. A. Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS One 13, e0208428. https://doi.org/10.1371/journal.pone.0208428 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Sponsler, D. B., Shump, D., Richardson, R. T. & Grozinger, C. M. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11, e03102. https://doi.org/10.1002/ecs2.3102 (2020).Article 

    Google Scholar 
    61.Rollings, R. & Goulson, D. Quantifying the attractiveness of garden flowers for pollinators. J. Insect Conserv. 23, 803–817 (2019).Article 

    Google Scholar 
    62.Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).Article 

    Google Scholar 
    63.Vrdoljak, S. M., Samways, M. J. & Simaika, J. P. Pollinator conservation at the local scale: Flower density, diversity and community structure increase flower visiting insect activity to mixed floral stands. J. Insect Conserv. 20, 711–721 (2016).Article 

    Google Scholar 
    64.Burkle, L. A. & Alarcon, R. The future of plant–pollinator diversity: Understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).PubMed 
    Article 

    Google Scholar 
    65.Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting bee (Hymenoptera: Apiformes) Fauna. J. Kansas Entomol. Soc. 80, 179–181 (2007).Article 

    Google Scholar 
    66.Baum, K. A. & Wallen, K. E. Potential bias in pan trapping as a function of floral abundance. J. Kansas Entomol. Soc. 84, 155–159 (2011).Article 

    Google Scholar 
    67.Robertson, A. W. & MacNair, M. R. The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos 72, 106–114 (1995).Article 

    Google Scholar 
    68.Bennett, A. B. & Lovell, S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One 14, e0212034. https://doi.org/10.1371/journal.pone.0212034 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Frankie, G. W. et al. Ecological patterns of bees and their host ornamental flowers in two Northern California cities. J. Kansas Entomol. Soc. 78, 227–246 (2005).Article 

    Google Scholar 
    70.Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).Article 

    Google Scholar 
    71.Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—a systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article 

    Google Scholar 
    72.Potted herbaceous perennial plants sold. Census of Agriculture – 2014 census of horticultural specialties (USDA-NASS, 2014).73.Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering mediterranean shrub. Oikos 58, 277–288 (1990).Article 

    Google Scholar 
    75.Tuell, J. K. & Isaacs, R. Elevated pan traps to monitor bees in flowering crop canopies. Entomol. Exp. Appl. 131, 93–98 (2009).Article 

    Google Scholar 
    76.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020)77.Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.3. (2020).78.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5–7. (2020).79.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).MATH 
    Book 

    Google Scholar 
    80.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 

    Google Scholar  More