Intermediate ice scour disturbance is key to maintaining a peak in biodiversity within the shallows of the Western Antarctic Peninsula
1.Dell, J. et al. Interaction diversity maintains resiliency in a frequently disturbed ecosystem. Front. Ecol. Evol. 7, 145 (2019).Article
Google Scholar
2.White, P. S. & Pickett, S. T. A. In The Ecology of Natural Disturbance and Patch Dynamics (eds S. T. A. Pickett & P. S. White) 3–13 (Academic Press, 1985).3.Newman, E. A. Disturbance ecology in the anthropocene. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00147 (2019).Article
Google Scholar
4.Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
5.Yuan, Z., Jiao, F., Li, Y. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
6.Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10, 849–864. https://doi.org/10.1111/j.1461-0248.2007.01075.x (2007).Article
PubMed
PubMed Central
Google Scholar
7.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article
Google Scholar
8.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
9.Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92. https://doi.org/10.1016/j.tree.2012.08.014 (2013).Article
PubMed
PubMed Central
Google Scholar
10.Sheil, D. & Burslem, D. F. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 18, 18–26 (2003).Article
Google Scholar
11.Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. E. Recovery in Antarctic benthos after iceberg disturbance: Trends in benthic composition, abundance and growth forms. Mar. Ecol. Prog. Ser. 278, 1–16. https://doi.org/10.3354/meps278001 (2004).ADS
Article
Google Scholar
12.Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10, 143–158 (2007).Article
Google Scholar
13.Johst, K., Gutt, J., Wissel, C. & Grimm, V. Diversity and disturbances in the Antarctic megabenthos: Feasible versus theoretical disturbance ranges. Ecosystems 9, 1145–1155 (2006).Article
Google Scholar
14.Mackey, R. L. & Currie, D. J. The diversity-disturbance relationship: Is it generally strong and peaked?. Ecology 82, 3479–3492. https://doi.org/10.1890/0012-9658(2001) (2001).Article
Google Scholar
15.Huston, M. A. Disturbance, productivity, and species diversity: Empiricism vs. logic in ecological theory. Ecology 95, 2382–2396. https://doi.org/10.1890/13-1397.1 (2014).Article
Google Scholar
16.Smale, D. A., Brown, K. M., Barnes, D. K., Fraser, K. P. & Clarke, A. Ice scour disturbance in Antarctic waters. Science 321, 371. https://doi.org/10.1126/science.1158647 (2008).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
17.Griffiths, H. J., Danis, B. & Clarke, A. Quantifying Antarctic marine biodiversity: The SCAR-MarBIN data portal. Deep Sea Res. Part II 58, 18–29. https://doi.org/10.1016/j.dsr2.2010.10.008 (2011).ADS
Article
Google Scholar
18.Grange, L. J. & Smith, C. R. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: Hotspots of abundance and beta diversity. PLoS ONE 8, e77917 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
19.Gutt, J., Griffiths, H. J. & Jones, C. D. Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodivers. 43, 481–487. https://doi.org/10.1007/s12526-013-0152-9 (2013).Article
Google Scholar
20.Potthoff, M., Johst, K. & Gutt, J. How to survive as a pioneer species in the Antarctic benthos: Minimum dispersal distance as a function of lifetime and disturbance. Polar Biol. 29, 543–551 (2006).Article
Google Scholar
21.Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).Article
Google Scholar
22.Peck, L. S., Brockington, S., Vanhove, S. & Beghyn, M. Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol Progr. Ser. 186, 1–8 (1999).ADS
Article
Google Scholar
23.Lee, H., Vanhove, S., Peck, L. & Vincx, M. Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biol. 24, 918–925. https://doi.org/10.1007/s003000100300 (2001).Article
Google Scholar
24.Armstrong, T. World Meteorological Organization. WMO sea-ice nomenclature. Terminology, codes and illustrated glossary. Edition 1970. Geneva, Secretariat of the World Meteorological Organization, 1970. [ix], 147 p. [including 175 photos]+ corrigenda slip. (WMO/OMM/BMO, No. 259, TP. 145.). J. Glaciol. 11, 148–149 (1972).25.Robinson, B. J., Barnes, D. K. & Morley, S. A. Disturbance, dispersal and marine assemblage structure: A case study from the nearshore Southern Ocean. Mar. Environ. Res. 160, 105025 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Gutt, J., Starmans, A. & Dieckmann, G. Impact of iceberg scouring on polar benthic habitats. Mar. Ecol. Prog. Ser. 137, 311–316 (1996).ADS
Article
Google Scholar
27.Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 11–38. https://doi.org/10.1098/rstb.2006.1951 (2007).Article
PubMed
PubMed Central
Google Scholar
28.Smale, D. A. Ecological traits of benthic assemblages in shallow Antarctic waters: Does ice scour disturbance select for small, mobile, secondary consumers with high dispersal potential?. Polar Biol. 31, 1225–1231. https://doi.org/10.1007/s00300-008-0461-9 (2008).Article
Google Scholar
29.Barnes, D. K. A. The influence of ice on polar nearshore benthos. J. Mar. Biol. Assoc. U.K. 79, 401–407 (1999).Article
Google Scholar
30.Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 24, 553–564 (2001).Article
Google Scholar
31.Barnes, D. K. A. & Tarling, G. A. Polar oceans in a changing climate. Curr. Biol. 27, R454–R460. https://doi.org/10.1016/j.cub.2017.01.045 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Barnes, D. K. A., Fleming, A., Sands, C. J., Quartino, M. L. & Deregibus, D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170176. https://doi.org/10.1098/rsta.2017.0176 (2018).ADS
Article
Google Scholar
33.Cook, A. J., Fox, A. J., Vaughan, D. G. & Ferrigno, J. G. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308, 541–544. https://doi.org/10.1126/science.1104235 (2015).ADS
CAS
Article
Google Scholar
34.Cook, A. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
35.Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 149–166. https://doi.org/10.1098/rstb.2006.1958 (2007).Article
PubMed
Google Scholar
36.Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nat. News 547, 275 (2017).CAS
Article
Google Scholar
37.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).Article
Google Scholar
38.Barnes, D. K. A. & Souster, T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat. Clim. Chang. 1, 365–368. https://doi.org/10.1038/nclimate1232 (2011).ADS
Article
Google Scholar
39.Parkinson, C. L. Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Clim. 27, 9377–9382. https://doi.org/10.1175/jcli-d-14-00605.1 (2014).ADS
Article
Google Scholar
40.Rogers, A. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Morley, S. A. et al. Global drivers on Southern Ocean ecosystems: Changing physical environments and anthropogenic pressures in an Earth system. Front. Mar. Sci. 7, 1097 (2020).Article
Google Scholar
42.Barnes, D. K. et al. Blue carbon gains from glacial retreat along Antarctic fjords: What should we expect?. Glob. Change Biol. 26, 2750–2755 (2020).ADS
Article
Google Scholar
43.Barnes D. K. A. Blue carbon on polar and subpolar seabeds. In Carbon capture, utilization and sequestration (InTech, 2018). https://doi.org/10.5772/intechopen.78237.44.Bowler, D. et al. The geography of the Anthropocene differs between the land and the sea. bioRxiv https://doi.org/10.1101/432880 (2019).Article
Google Scholar
45.Arntz, W., Brey, T. & Gallardo, V. Antarctic zoobenthos. Oceanogr. Mar. Biol. 32, 241–304 (1994).
Google Scholar
46.Clarke, A. Marine benthic populations in Antarctica: Patterns and processes. Antarct. Res. Ser. 70, 373–388 (1996).Article
Google Scholar
47.Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A. & Thomas, D. N. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Sea Res. Part II 55, 1988–2006. https://doi.org/10.1016/j.dsr2.2008.04.035 (2008).ADS
Article
Google Scholar
49.Barnes, D. K. A. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob. Chang. Biol. 23, 2649–2659. https://doi.org/10.1111/gcb.13523 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
50.Pinkerton, M., Bradford-Grieve, J., Bowden, D. & Cummings, V. Benthos: Trophic modelling of the Ross Sea. Support. Docum. CCAMLR Sci. 17, 1–31 (2010).
Google Scholar
51.Pielou, E. Shannon’s formula as a measurement of species diversity: It’s use and disuse. Am. Nat. 100, 463–465 (1966).Article
Google Scholar
52.Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1, 42–58 (1943).Article
Google Scholar
53.Everitt, B. & Skrondal, A. The Cambridge Dictionary of Statistics Vol. 106 (Cambridge University Press, Cambridge, 2002).MATH
Google Scholar
54.Smale, D. A., Barnes, D. K. A. & Fraser, K. P. P. The influence of ice scour on benthic communities at three contrasting sites at Adelaide Island, Antarctica. Aust. Ecol. 32, 878–888. https://doi.org/10.1111/j.1442-9993.2007.01776.x (2007).Article
Google Scholar
55.Peck, L. S., Convey, P. & Barnes, D. K. A. Environmental constraints on life histories in Antarctic ecosystems: Tempos, timings and predictability. Biol. Rev. 81, 75–109. https://doi.org/10.1017/s1464793105006871 (2006).Article
PubMed
PubMed Central
Google Scholar
56.Waller, C., Worland, M., Convey, P. & Barnes, D. Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol. 29, 1077–1083 (2006).Article
Google Scholar
57.Barnes, D. K. A. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Chang Biol. 23, 5083–5091. https://doi.org/10.1111/gcb.13772 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
58.Smith, C. R., Mincks, S. & DeMaster, D. J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep Sea Res. Part II 53, 875–894 (2006).ADS
Article
Google Scholar
59.Jansen, J. et al. Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nat. Ecol. Evolut. 2, 71–80 (2018).Article
Google Scholar
60.Henley, S. F. et al. Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci. 7, 581 (2020).Article
Google Scholar
61.Marshall, G. J. et al. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 31, 14 (2004).Article
Google Scholar
62.Ashton, G. V., Morley, S. A., Barnes, D. K., Clark, M. S. & Peck, L. S. Warming by 1 C drives species and assemblage level responses in Antarctica’s marine shallows. Curr. Biol. 27, 2698-2705e2693 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Riesgo, A. et al. Some like it fat: Comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
64.Toszogyova, A. & Storch, D. Global diversity patterns are modulated by temporal fluctuations in primary productivity. Glob. Ecol. Biogeogr. 28, 1827–1838 (2019).Article
Google Scholar
65.Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Change Biol. 19, 3749–3761 (2013).ADS
Article
Google Scholar
66.Brockington, S., Clarke, A. & Chapman, A. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Mar. Biol. 139, 127–138 (2001).Article
Google Scholar
67.Fratt, D. B. & Dearborn, J. Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biol. 3, 127–139 (1984).Article
Google Scholar
68.Sahade, R., Tatián, M. & Esnal, G. B. Reproductive ecology of the ascidian Cnemidocarpa verrucosa at Potter Cove, South Shetland Islands, Antarctica. Mar. Ecol. Progr. Ser. 272, 131–140 (2004).ADS
Article
Google Scholar
69.Dayton, P. K. et al. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS ONE 8, e56939 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
70.Vacchi, M., Cattaneo-Vietti, R., Chiantore, M. & Dalù, M. Predator-prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct. Sci. 12, 64–68 (2000).ADS
Article
Google Scholar
71.Sheil, D. & Burslem, D. F. Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol. Evol. 28, 571–572. https://doi.org/10.1016/j.tree.2013.07.006 (2013).Article
PubMed
PubMed Central
Google Scholar More