More stories

  • in

    Late Pleistocene human paleoecology in the highland savanna ecosystem of mainland Southeast Asia

    1.Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Heaney, L. R. A synopsis of climatic and vegetational change in Southeast Asia. Clim. Change 19, 53–61 (1991).ADS 
    Article 

    Google Scholar 
    3.Morley, R. J. Origin and Evolution of Tropical Rain Forests (Wiley, 2000).
    Google Scholar 
    4.Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the last Glacial Period: a savanna corridor in Sundaland?. Quat. Sci. Rev. 24, 2228–2242 (2005).ADS 
    Article 

    Google Scholar 
    5.Wurster, C. M., Rifai, H., Zhou, B., Haig, J. & Bird, M. I. Savanna in equatorial Borneo during the late Pleistocene. Sci. Rep. 9, 6392. https://doi.org/10.1038/s41598-019-42670-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Wurster, C. M. & Bird, M. I. Barriers and bridges: early human dispersals in equatorial SE Asia. Geol. Soc. Spec. Publ. 411, 235–250 (2016).ADS 
    Article 

    Google Scholar 
    7.Zaim, Y. Geological evidence for the earliest appearance of hominins in Indonesia. In Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 97–110 (Springer, 2010).Chapter 

    Google Scholar 
    8.Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. USA 106, 11188–11193 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Raes, N. et al. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl. Acad. Sci. USA 111, 16790–16795 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Suraprasit, K., Jongautchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 1055861 (2019).Article 

    Google Scholar 
    11.Pookajorn, S. Human activities and environmental changes during the late pleistocene to middle holocene in Southern Thailand and Southeast Asia. In Humans at the End of the Ice Age: The Archaeology of the Pleistocene—Holocene Transition, Interdisciplinary Contributions to Archaeology (eds Straus, L. G. et al.) 201–213 ( Springer, 1996).Chapter 

    Google Scholar 
    12.Schepartz, L. A., Miller-Antonio, S. & Bakken, D. A. Upland resources and the early palaeolithic occupation of Southern China, Vietnam, Laos Thailand and Burma. World Archaeol. 32, 1–13 (2000).Article 

    Google Scholar 
    13.Mudar, K. & Anderson, D. New evidence for Southeast Asian pleistocene foraging economies: faunal remains from the early levels of Lang Rongrien Rockshelter, Krabi, Thailand. Asian Perspect. 46, 298–334 (2007).Article 

    Google Scholar 
    14.Shoocongdej, R. Late Pleistocene activities at the Tham Lod rockshelter in Highland Pang Mapha, Mae Hong Son province, Norhwestern Thailand. In Uncovering Southeast Asia’s Past (eds Bacus, E. et al.) 22–37 (NUS Press, 2006).
    Google Scholar 
    15.Shoocongdej, R. et al. Final report of Highland Archaeology Project in Pang Mapha District, Mae Hong Son Province Phase 2, Vol. 2 (Thailand Research Fund, 2007).16.Demeter, F. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proc. Natl. Acad. Sci. USA 109, 14375–14380 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17Demeter, F. et al. Early modern humans and morphological variation in Southeast Asia: fossil evidence from Tam Pa Ling. Laos. PLoS ONE 10, e0121193. https://doi.org/10.1371/journal.pone.0121193 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Viet, N. First archaeological evidence of symbolic activities from the Pleistocene of Vietnam. In Emergence and Diversity of Human Behavior Paleolithic Asia (ed. Kaifu, Y.) 133–139 (Texas A&M University Press, 2015).
    Google Scholar 
    19.Higham, C. F. & Thosarat, R. An early hunter-gatherer site at Ban Non Wat, Northeast Thailand. J. Indo. Pacif. Archaeol. 43, 93–96 (2019).Article 

    Google Scholar 
    20.Gorman, C. F. Excavations at Spirit Cave, North Thailand: Some Interim Interpretations. Asian Perspect. 13, 79–107 (1970).
    Google Scholar 
    21.Tayles, N., Halcrow, S. E., Sayavongkhamdy, T. & Souksavatdy, V. A prehistoric flexed human burial from Pha Phen, Middle Mekong Valley, Laos: its context in Southeast Asia. Anthropol. Sci. 123, 1–12 (2015).Article 

    Google Scholar 
    22.Conrad, C., Higham, C., Eda, M. & Marwick, B. Palaeoecology and forager subsistence strategies during the Pleistocene—Holocene transition: A reinvestigation of the zooarchaeological assemblage from Spirit Cave, Mae Hong Son Province, Thailand. Asian Perspect. 5, 2–27 (2016).Article 

    Google Scholar 
    23.Zeitoun, V. D. et al. Discovery of an outstanding Hoabinhian site from the Late Pleistocene at Doi Pha Kan (Lampang province, northern Thailand). Archaeol. Res. Asia 18, 1–16 (2019).Article 

    Google Scholar 
    24.Shoocongdej, R. Forager mobility organization in seasonal tropical environments of western Thailand. World Archaeol. 32, 14–40 (2000).Article 

    Google Scholar 
    25.Forestier, H. et al. The Hoabinhian from Laang Spean Cave in its stratigraphic, chronological, typo-technological and environmental context (Cambodia, Battambang province). J. Archaeol. Sci. Rep. 3, 194–206 (2015).
    Google Scholar 
    26.Chitkament, T., Gaillard, C. & Shoocongdej, R. Tham Lod rockshelter (Pang Mapha district, north-western Thailand): Evolution of the lithic assemblages during the late Pleistocene. Quat. Int. 416, 151–161 (2016).Article 

    Google Scholar 
    27.Marwick, B. The Hoabinhian of Southeast Asia and its relationship to regional Pleistocene lithic technologies. In Lithic Technological Organization and Paleoenvironmental Change Global and Diachronic Perspectives (eds Robinson, E. & Sellet, F.) 63–78 (Springer, 2018).Chapter 

    Google Scholar 
    28.Marwick, B. & Gagan, M. K. Late Pleistocene monsoon variability in northwest Thailand: an oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quat. Sci. Rev. 30, 3088–3098 (2011).ADS 
    Article 

    Google Scholar 
    29.Marwick, B. Multiple Optima in Hoabinhian flaked stone artefact palaeoeconomics and palaeoecology at two archaeological sites in Northwest Thailand. J. Anthropol. Archaeol. 32, 553–564 (2013).Article 

    Google Scholar 
    30.Wattanapituksakul, A., Filoux, A., Amphansri, A. & Tumpeesuwan, S. Late Pleistocene Caprinae assemblages of Tham Lod Rockshelter (Mae Hong Son Province, Northwest Thailand). Quat. Int. 493, 212–226 (2018).Article 

    Google Scholar 
    31.Shoocongdej, R. & Wattanapituksakul, A. Faunal assemblages and demography during the Late Pleistocene (MIS 2–1) to Early Holocene in Highland Pang Mapha, Northwest Thailand. Quat. Int. 563, 51–63 (2020).Article 

    Google Scholar 
    32.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Van Der Merwe, N. J. & Vogel, J. C. 13C Content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276, 815–816 (1978).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl. Acad. Sci. USA 117, 4675–4681 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.van Klinken, G. J. Bone Collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).Article 

    Google Scholar 
    38.Pestle, W. J. & Colvard, M. Bone collagen preservation in the tropics: a case study from ancient Puerto Rico. J. Archaeol. Sci. 39, 2079–2090 (2012).CAS 
    Article 

    Google Scholar 
    39.Ecker, M. et al. Middle Pleistocene ecology and Neanderthal subsistence: Insights from stable isotope analyses in Payre (Ardèche, southeastern France). J. Hum. Evol. 65, 363–373 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40Kohn, M. & Cerling, T. E. Stable isotope compositions of biological apatite. In Phosphates—Geochemical Geobiological and Materials Importance Reviews in Mineralogy and Geochemistry Vol. 48 (eds Kohn, M. et al.) 455–488 (Mineralogical Society of America, 2002).Chapter 

    Google Scholar 
    41.Biasatti, D., Wang, Y., Gao, F., Xu, Y. & Flynn, L. Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes. J. Asian Earth Sci. 44, 48–61 (2012).ADS 
    Article 

    Google Scholar 
    42.Clementz, M. T., Fox-Dobbs, K., Wheatley, P.-V., Koch, P. L. & Doak, D. F. Revisiting old bones: coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geol. J. 44, 605–620 (2009).CAS 
    Article 

    Google Scholar 
    43.Domingo, M. S., Domingo, L., Badgley, C., Sanisidro, O. & Morales, J. Resource partitioning among top predators in a Miocene food web. Proc. R. Soc. B 280, 20122138. https://doi.org/10.1098/rspb.2012.2138 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Codron, D., Clauss, M., Codron, J. & Tütken, T. Within trophic level shifts in collagen–carbonate stable carbon isotope spacing are propagated by diet and digestive physiology in large mammal herbivores. Ecol. Evol. 8, 3983–3995 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45Tejada-Lara, J. V. et al. Body mass predicts isotope enrichment in herbivorous mammals. Proc. R. Soc. B 285, 20181020. https://doi.org/10.1098/rspb.2018.1020 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 110, 10501–10506 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Ayliffe, L. K. & Chivas, A. R. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54, 2603–2609 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl. Acad. Sci. USA 103, 11201–11205 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Bocherens, H., Koch, P., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominoid sites. Palaios 11, 306–308 (1996).ADS 
    Article 

    Google Scholar 
    50.Hambali, K., Ismail, A., Md-Zain, B. M., Amir, A. & Karim, F. A. Diet of long-tailed macaques (Macaca fascicularis) at the entrance of Kuala Selangor Nature Park (anthropogenic habitat): food selection that leads to human-macaque conflict. Acta Biol. Malay. 3, 58–68 (2014).
    Google Scholar 
    51.Nila, S., Suryobroto, B. & Widayati, K. A. Dietary variation of long tailed macaques (Macaca fascicularis) in Telaga Warna, Bogor, West Java. HAYATI J. Biosci. 21, 8–14 (2014).Article 

    Google Scholar 
    52.Lekagul, B. & McNeely, J. A. Mammals of Thailand: Association for the Conservation of Wildlife (Kurusapa Ladproa Press, 1988).
    Google Scholar 
    53.Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).ADS 
    Article 

    Google Scholar 
    54Suraprasit, K. et al. Long-term isotope evidence on the diet and habitat breadth of pleistocene to holocene caprines in Thailand: implications for the extirpation and conservation of Himalayan Gorals. Front. Ecol. Evol. 8, 67. https://doi.org/10.3389/fevo.2020.00067 (2020).Article 

    Google Scholar 
    55.Kohn, M. J. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Dunbar, J. & Wilson, T. Oxygen and hydrogen isotopes in fruits and vegetable juices. Plant Physiol. 72, 725–727 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Yakir, D. Variations in the natural abundances of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15, 1005–1020 (1992).CAS 
    Article 

    Google Scholar 
    59.Fricke, H. C. & O’Neil, J. R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 91–99 (1996).Article 

    Google Scholar 
    60.Fricke, H. C., Clyde, W. C. & O’Neil, J. R. Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochem. Cosmochim. Acta 62, 1839–1850 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Balasse, M., Ambrose, S. H., Smith, A. B. & Price, T. D. The seasonal mobility model for prehistoric herders in the south-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. J. Archaeol. Sci. 29, 917–932 (2002).Article 

    Google Scholar 
    62Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 2015305. https://doi.org/10.1098/rstb.2015.0305 (2016).CAS 
    Article 

    Google Scholar 
    63.Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470 (2005).Article 

    Google Scholar 
    66.Dutt, S. et al. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys. Res. Lett. 42, 5526–5532 (2015).ADS 
    Article 

    Google Scholar 
    67.Ronay, E. R., Breitenbach, S. F. M. & Oster, J. L. Sensitivity of speleothem records in the Indian Summer Monsoon region to dry season infiltration. Sci. Rep. 9, 5091. https://doi.org/10.1038/s41598-019-41630-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68Liu, G. et al. On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records. Sci. Adv. 6, 8eaay8189. https://doi.org/10.1126/sciadv.aay8189 (2020).CAS 
    Article 

    Google Scholar 
    69.Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70Rabett, R. J. Human Adaptation in the Asian Palaeolithic: hominin dispersal and behaviour during the late quaternary (Cambridge University Press, 2012).Book 

    Google Scholar 
    71.Bailey, R. C. et al. Hunting and gathering in tropical rain forest: Is it possible?. Am. Anthropol. 91, 59–82 (1989).Article 

    Google Scholar 
    72.Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthropol. 11, 117–124 (2002).Article 

    Google Scholar 
    73.Mercader, J. Under the Canopy: The Archaeology of Tropical Rainforests (Rutgers University Press, 2002).
    Google Scholar 
    74.Mercader, J. Foragers of the Congo: the early settlement of the Ituri forest. In Under the Canopy: The Archeology of Tropical Rain Forests (ed. Mercader, J.) 93–116 (Rutgers University Press, London, 2003).
    Google Scholar 
    75.Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka. J. Hum. Evol. 61, 254–269 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Roberts, P. et al. Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Roberts, P. et al. Fruits of the forest: human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (~36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739. https://doi.org/10.1038/s41467-019-08623-1 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Ji, X. et al. The oldest Hoabinhian technocomplex in Asia (43.5 ka) at Xiaodong rockshelter, Yunnan Province, southwest China. Quat. Int. 400, 166–174 (2016).Article 

    Google Scholar 
    80.Olsen, J. W. & Ciochon, R. L. A review of evidence for postulated Middle Pleistocene occupations in Viet Nam. J. Hum. Evol. 19, 761–788 (1990).Article 

    Google Scholar 
    81.Rabett, R. et al. The Tràng An Project: Late-to-Post-Pleistocene Settlement of the Lower Song Hong Valley, North Vietnam. J. R. Asiat. Soc. 19, 83–109 (2009).Article 

    Google Scholar 
    82.Rabett, R. et al. Tropical limestone forest resilience and late Pleistocene foraging during MIS-2 in the Tràng An massif, Vietnam. Quat. Int. 448, 62–81 (2017).Article 

    Google Scholar 
    83.Barker, G. et al. The ‘Human Revolution’ in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Piper, P. & Rabett, R. Hunting in a tropical rainforest: evidence from the terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).Article 

    Google Scholar 
    85.Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).ADS 
    Article 

    Google Scholar 
    86.de Vos, J. The Pongo faunas from Java and Sumatra and their significance for biostratigraphical and paleoecological interpretations. Proc. K. Ned. Akad. Wet. B. 86, 417–425 (1983).
    Google Scholar 
    87.Westaway, K. E. An early modern human presence in Sumatra 73000–63000 years ago. Nature 548, 322–325 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Storm, P. et al. Late Pleistocene Homo Sapiens in a tropical rainforest Fauna in East Java. J. Hum. Evol. 49, 536–545 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Storm, P. & de Vos, J. Rediscovery of the late Pleistocene Punung Hominin Sites and the Discovery of a New Site Gunung Dawung in East Java. Senck. Leth. 86, 271–281 (2006).Article 

    Google Scholar 
    90Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068. https://doi.org/10.1038/s41467-020-15969-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Pasveer, J. M., Clarke, S. J. & Miller, G. H. Late Pleistocene human occupation of inland rainforest, Bird’s Head, Papua. Archaeol. Oceania 37, 92–95 (2002).Article 

    Google Scholar 
    92.Summerhayes, G. R. et al. Human adaptation and plant use in highland New Guinea 49,000 to 44,000 Years Ago. Science 330, 78–81 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Summerhayes, G. R., Field, J. H., Shaw, B. & Gaffney, D. The archaeology of forest exploitation and change in the tropics during the Pleistocene: the case of Northern Sahul (Pleistocene New Guinea). Quat. Int. 448, 14–30 (2017).Article 

    Google Scholar 
    94.Roberts, P., Gaffney, D., Lee-Thorp, J. A. & Summerhayes, G. R. Persistent tropical foraging in the highlands of terminal Pleistocene/Holocene New Guinea. Nature Ecol. Evol. 1, 1–6 (2017).CAS 
    Article 

    Google Scholar 
    95.Wedage, O. et al. Microliths in the South Asian rainforest ~45–4 ka: New insights from Fa-Hien Lena Cave, Sri Lanka. PLoS ONE https://doi.org/10.1371/journal.pone.0222606 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Bettis, E. A. et al. Way out of Africa: early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Brumm, A. et al. Age and context of the oldest known hominin fossils from Flores. Nature 534, 249–253 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar  More

  • in

    Effect of salinity on the zinc(II) binding efficiency of siderophore functional groups and implications for salinity tolerance mechanisms in barley

    1.McLean, J. E., Pabst, M. W., Miller, C. D., Dimkpa, C. O. & Anderson, A. J. Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas Putida. Chemosphere 91(3), 374–382. https://doi.org/10.1016/j.chemosphere.2012.11.071 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant. Cell Environ. 42(10), 2902–2912. https://doi.org/10.1111/pce.13627 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Ma, H. et al. Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere 239, 124706. https://doi.org/10.1016/j.chemosphere.2019.124706 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Ahmed, E. & Holmström, S. J. M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Butler, A. & Theisen, R. M. Iron(III)-siderophore coordination chemistry: Reactivity of marine siderophores. Coord. Chem. Rev. 254(3–4), 288–296. https://doi.org/10.1016/j.ccr.2009.09.010 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27(5), 637. https://doi.org/10.1039/b906679a (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Kirby, M. E., Sonnenberg, J. L., Simperler, A. & Weiss, D. J. Stability series for the complexation of six key siderophore functional groups with uranyl using density functional theory. J. Phys. Chem. A 124(12), 2460–2472. https://doi.org/10.1021/acs.jpca.9b10649 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Harrington, J. et al. Structural dependence of Mn complexation by siderophores: Donor group dependence on complex stability and reactivity. GCA. 88, 106–119 (2012).ADS 
    CAS 

    Google Scholar 
    9.McRose, D. L., Seyedsayamdost, M. R. & Morel, F. M. M. Multiple siderophores: Bug or feature?. JBIC J. Biol. Inorg. Chem. 23(7), 983–993. https://doi.org/10.1007/s00775-018-1617-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Johnstone, T. C., Nolan, E. M. Beyond iron: Non-classical biological functions of bacterial siderophores. In Dalton Transactions. Royal Society of Chemistry April 14, 2015, pp 6320–6339. https://doi.org/10.1039/c4dt03559c.11.Northover, G. H. R., Garcia-España, E. & Weiss, D. J. Unravelling the modus operandi of phytosiderophores during zinc uptake in rice: The importance of geochemical gradients and accurate stability constants. J. Exp. Bot. https://doi.org/10.1093/jxb/eraa580 (2020).Article 

    Google Scholar 
    12.Ghavami, N., Alikhani, H. A., Pourbabaee, A. A. & Besharati, H. Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of canola and maize plants. Commun. Soil Sci. Plant Anal. 47(12), 1517–1527. https://doi.org/10.1080/00103624.2016.1194991 (2016).CAS 
    Article 

    Google Scholar 
    13.Weiss, D. et al. Isotope fractionation of zinc in the paddy rice soil-water environment and the role of 2’deoxymugineic acid (DMA) as zincophore under Zn limiting conditions. Chem. Geol. 577, 120271. https://doi.org/10.1016/j.chemgeo.2021.120271 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Suzuki, M. et al. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J. 48(1), 85–97. https://doi.org/10.1111/j.1365-313X.2006.02853.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Zaman, M. , Shahid, S. A., Heng, L., Shahid, S. A., Zaman, M., Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques 43–53 (Springer, 2018). https://doi.org/10.1007/978-3-319-96190-3_2.16.Alfarrah, N. & Walraevens, K. Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water 10(2), 143. https://doi.org/10.3390/w10020143 (2018).CAS 
    Article 

    Google Scholar 
    17.Trenberth, K. Changes in precipitation with climate change. Clim. Res. 47(1), 123–138. https://doi.org/10.3354/cr00953 (2011).Article 

    Google Scholar 
    18.Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7(1), 1–9. https://doi.org/10.1038/s41598-017-17966-y (2017).CAS 
    Article 

    Google Scholar 
    19.Errabii, T., Gandonou, C. H., Essalmani, H., Jamal; Senhaji, N. S. Effects of NaCl and mannitol induced stress on sugarcane (Saccharum Sp.) Callus Cultures. https://doi.org/10.1007/s11738-006-0006-1.20.Saboora, A., Hajihashemi, S. & Khatam, B. NaCl tolerance of wheat genotypes at germination and early seedling growth article in Pakistan. J. Biol. Sci. https://doi.org/10.3923/pjbs.2006.2009.2021 (2006).Article 

    Google Scholar 
    21.Chand, M., Randhawa, N. S. & Bhumbla, D. R. Effectiveness of zinc chelates in zinc nutrition of greenhouse rice crop in a saline-sodic soil. Plant Soil 59(2), 217–225. https://doi.org/10.1007/BF02184195 (1981).CAS 
    Article 

    Google Scholar 
    22.Lores, E. M. & Pennock, J. R. The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere 37(5), 861–874. https://doi.org/10.1016/S0045-6535(98)00090-3 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Cigala, R. M. et al. Zinc(II) complexes with hydroxocarboxylates and mixed metal species with Tin(II) in different salts aqueous solutions at different ionic strengths: Formation, stability, and weak interactions with supporting electrolytes. Monatshefte fur Chemie 146(4), 527–540. https://doi.org/10.1007/s00706-014-1394-3 (2015).CAS 
    Article 

    Google Scholar 
    24.Laird, D. A., Koskinen, I. W. C. Triazine Soil Interactions. In The Triazine Herbicides 275–299 (Elsevier, 2008). https://doi.org/10.1016/B978-044451167-6.50024-6.25.Cigala, R. M. et al. Speciation of Tin(II) in aqueous solution: Thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatshefte fur Chemie 144(6), 761–772. https://doi.org/10.1007/s00706-013-0961-3 (2013).CAS 
    Article 

    Google Scholar 
    26.Daniele, P. G., Rigano, C. & Sammartano, S. Ionic strength dependence of formation constants-I protonation constants of organic and inorganic acids. Talanta 30(2), 81–87. https://doi.org/10.1016/0039-9140(83)80023-X (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Bretti, C., Foti, C. & Sammartano, S. A new approach in the use of sit in determining the dependence on ionic strength of activity coefficients. Application to Some Chloride Salts Of Interest In The Speciation Of Natural Fluids. Chem. Speciat. Bioavailab. 16(3), 105–110. https://doi.org/10.3184/095422904782775036 (2004).CAS 
    Article 

    Google Scholar 
    28.Bretti, C., De Stefano, C., Foti, C. & Sammartano, S. Critical evaluation of protonation constants. Literature analysis and experimental potentiometric and calorimetric data for the thermodynamics of phthalate protonation in different ionic media. J. Solution Chem. 35(9), 1227–1244. https://doi.org/10.1007/s10953-006-9057-6 (2006).CAS 
    Article 

    Google Scholar 
    29.Cigala, R. M. et al. Quantitative study on the interaction of Sn2+ and Zn2+ with some phosphate ligands, in aqueous solution at different ionic strengths. J. Mol. Liq. 165, 143–153. https://doi.org/10.1016/j.molliq.2011.11.002 (2012).CAS 
    Article 

    Google Scholar 
    30.Northover, G. H. R., Mao, Y., Hanif M. D., Blasco, S., Vilar, R., Garcia-Espana, E. & Weiss, D. J. The control of pH and ionic strength gradients on the interaction of low-molecular-weight organic acids and siderophores. ChemRxiv. Preprint (2021). https://doi.org/10.26434/chemrxiv.14706036.v1.31.Domenico, P. A., Harris, D. R., Schwartz, F. W., Wiley, J., Chichester, N. Y., Brisbane, W. & Singapore, T. Physical and Chemical Hydrogeology 2nd edn.32.Pankow, J.; Taylor & Francis Group. Aquatic Chemistry Concepts 2nd edn.33.Graziano, G. Role of salts on the strength of pairwise hydrophobic interaction. Chem. Phys. Lett. 483(1–3), 67–71. https://doi.org/10.1016/j.cplett.2009.10.040 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Mancera, R. L. Does salt increase the magnitude of the hydrophobic effect? A computer simulation study. Chem. Phys. Lett. 296(5–6), 459–465. https://doi.org/10.1016/S0009-2614(98)01080-X (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Mancera, R. L. Computer simulation of the effect of salt on the hydrophobic effect. J. Chem. Soc. Faraday Trans. 94(24), 3549–3559. https://doi.org/10.1039/a806899b (1998).CAS 
    Article 

    Google Scholar 
    36.Ghosh, T., Kalra, A. & Garde, S. On the salt-induced stabilization of pair and many-body hydrophobic interactions. J. Phys. Chem. B 109(1), 642–651. https://doi.org/10.1021/jp0475638 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Papaneophytou, C. P., Grigoroudis, A. I., McInnes, C. & Kontopidis, G. Quantification of the effects of ionic strength, viscosity, and hydrophobicity on protein-ligand binding affinity. ACS Med. Chem. Lett. 5(8), 931–936. https://doi.org/10.1021/ml500204e (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Ghafoor, K., AL-Juhaimi, F., Ozcan, M. M. & Jahurul, M. H. A. Some nutritional characteristics and mineral contents in Barley (Hordeum Vulgare L.) seeds cultivated under salt stress. Qual. Assur. Saf. Crop. Foods 7(3), 363–368. https://doi.org/10.3920/QAS2013.0380 (2015).CAS 
    Article 

    Google Scholar 
    39.Akman, Z. Effects of plant growth regulators on nutrient content of young wheat and barley plants under
    saline conditions. J. Anim. Vet. Adv. 8(10), 2018–2021 (2009).CAS 

    Google Scholar 
    40.Yousfi, S., Houmani, H., Zribi, F., Abdelly, C. & Gharsalli, M. Physiological responses of wild and cultivated barley to the interactive effect of salinity and iron deficiency. (2012). https://doi.org/10.5402/2012/121983.41.Alderighi, L. et al. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184(1), 311–318. https://doi.org/10.1016/S0010-8545(98)00260-4 (1999).CAS 
    Article 

    Google Scholar 
    42.Gans, P. & O’Sullivan, B. GLEE: A new computer program for glass electrode calibration. Talanta 51(1), 33–37. https://doi.org/10.1016/s0039-9140(99)00245-3 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Gans, P., Sabatini, A. & Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43(10), 1739–1753. https://doi.org/10.1016/0039-9140(96)01958-3 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Hu, W., Xie, J., Chau, H. W. & Si, B. C. Evaluation of parameter uncertainties in nonlinear regression using Microsoft excel spreadsheet. Environ. Syst. Res. 4(1), 1–12. https://doi.org/10.1186/s40068-015-0031-4 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Harris, W. R., Raymond, K. N. & Weitl, F. L. Ferric ion sequestering agents. 6. The spectrophotometric and potentiometric evaluation of sulfonated tricatecholate ligands. J. Am. Chem. Soc. 103(10), 2667–2675. https://doi.org/10.1021/ja00400a030 (1981).CAS 
    Article 

    Google Scholar 
    46.Bravin, M. N., Tentscher, P., Rose, J. & Hinsinger, P. Rhizosphere PH Gradient Controls Copper Availability in a Strongly Acidic Soil. Environ. Sci. Technol. 43(15), 5686–5691. https://doi.org/10.1021/es900055k (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Gollany, H. T. & Schumacher, T. E. Combined use of colorimetric and microelectrode methods for evaluating rhizosphere PH. Plant Soil 154(2), 151–159. https://doi.org/10.1007/BF00012520 (1993).CAS 
    Article 

    Google Scholar 
    48.Kirk, G. J. D. Root ventilation, rhizosphere modification, and nutrient uptake by rice. In Systems Approaches for Agricultural Development 221–232 (Springer, Netherlands, 1993). https://doi.org/10.1007/978-94-011-2842-1_13.49.Li, J. & Heap, A. D. Spatial interpolation methods applied in the environmental sciences: A review. In Environmental Modelling and Software 173–189 (Elsevier, 2014). https://doi.org/10.1016/j.envsoft.2013.12.008.50.Gergely, A., Kiss, T. & Deák, G. Complexes of 3,4-dihydroxyphenyl derivatives. II. Complex formation processes in the Nickel(II)-L-DOPA and Zinc(II)-L-DOPA systems. Inorganica Chim. Acta 36(1), 113–120. https://doi.org/10.1016/S0020-1693(00)89379-2 (1979).CAS 
    Article 

    Google Scholar 
    51.Griesser, R. & Sigel, H. Ternary complexes in solution. XI. complex formation between the cobalt(h)-, nickel(ii)-, copper(ii)-, and zinc(II)-2,2′-bipyridyl 1:1 complexes and ethylenediamine, glycinate, or pyrocatecholate. Inorg. Chem. 10(10), 2229–2232. https://doi.org/10.1021/ic50104a028 (1971).CAS 
    Article 

    Google Scholar 
    52.Das, A. K. Studies on mixed ligand complexes of cobalt(II), nickel(II), copper(II) and zinc(II) involving 8-hydroxyquinoline-5-sulphonic acid as a primary ligand and substituted catechols as secondary ligands. Transition Met. Chem. 14, 200–209 (1989).CAS 
    Article 

    Google Scholar 
    53.Das, A. K. Astatistical aspects of the stabilities of ternary complexes of cobalt(II), nickel(II), copper(II) and zinc(II) involving amino-polycarboxylic acids and heteroaromatic N-bases as primary ligands and acetohydroxamic acid as a secondary ligand. Transition Met. Chem. 14, 66–68 (1989).CAS 
    Article 

    Google Scholar 
    54.Cannan, R. K. & Kibrick, A. Complex formation between carboxylic acids and divalent metal cations. J. Am. Chem. Soc. 60(10), 2314–2320. https://doi.org/10.1021/ja01277a012 (1938).CAS 
    Article 

    Google Scholar 
    55.Farkas, E., Brown, D. A., Cittaro, R. & Glass, W. K. Metal complexes of glutamic acid-γ-hydroxamic acid (Glu-γ-Ha) (N-hydroxyglutamine) in aqueous solution. J. Chem. Soc. Dalt. Trans. 18, 2803–2807. https://doi.org/10.1039/DT9930002803 (1993).Article 

    Google Scholar 
    56.Farkas, E., Enyedy, É. A. & Csóka, H. Some factors affecting metal ion-monohydroxamate interactions in aqueous solution. J. Inorg. Biochem. 79(1–4), 205–211. https://doi.org/10.1016/S0162-0134(99)00158-0 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Warnke, Z. Investigation on divalent metal complexes with oxyacids in aqueous solutions. 6. Potentiometric investigation on copper(II), zinc(II), and cadmium(II) complexes with glycolic acd. Rocz. Chem. 43, 1939 (1969).CAS 

    Google Scholar 
    58.Lengyel, T. Investigations on ion exchange equilibria with radioactive tracer method. 15. Liquid ion exchange technique for investigating mixed complex species of zinc with glycolic and alpha-hydroxyisobutyric acid. Acta Chim. Acad. Sci. Hung. 60, 373 (1969).CAS 

    Google Scholar 
    59.Athavale, V. T., Prabhu, L. H. & Vartak, D. G. Solution stability constants of some metal complexes of derivatives of catechol. J. Inorg. Nucl. Chem. 28(5), 1237–1249. https://doi.org/10.1016/0022-1902(66)80450-5 (1966).CAS 
    Article 

    Google Scholar 
    60.Portanova, R., Lajunen, L. H. J., Tolazzi, M. & Piispanen, J. Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes: Part II. Aliphatic 2-hydroxycarboxylic acids (IUPAC technical report). Pure Appl. Chem. 75(4), 495–540. https://doi.org/10.1351/pac200375040495 (2003).CAS 
    Article 

    Google Scholar 
    61.Krężel, A. & Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 611, 3–19. https://doi.org/10.1016/j.abb.2016.04.010 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Al-Sogair, F. M.; Operschall, B. P.; Sigel, A.; Sigel, H.; Schnabl, J.; Sigel, R. K. O. Probing the Metal-Ion-Binding Strength of the Hydroxyl Group. In Chemical Reviews. American Chemical Society August 10, 964–5003 (2011). https://doi.org/10.1021/cr100415s.63.Gries, D., Brunn, S., Crowley, D. E. & Parker, D. R. Phytosiderophore release in relation to micronutrient metal deficiencies in Barley. Plant Soil 172(2), 299–308. https://doi.org/10.1007/BF00011332 (1995).CAS 
    Article 

    Google Scholar 
    64.Welch, R. M. & Shuman, L. Micronutrient nutrition of plants. CRC Crit. Rev. Plant Sci. 14(1), 49–82. https://doi.org/10.1080/07352689509701922 (1995).CAS 
    Article 

    Google Scholar 
    65.Arnold, T. et al. Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant. Cell Environ. 33(3), 370–381. https://doi.org/10.1111/j.1365-3040.2009.02085.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Haas, H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 31(10), 1266–1276. https://doi.org/10.1039/c4np00071d (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430(7003), 1024–1027. https://doi.org/10.1038/nature02744 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Wu, D. et al. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8(1), e55431. https://doi.org/10.1371/journal.pone.0055431 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Widodo, Patterson, J. H.; Newbigin, E. et al.. Metabolic responses to salt stress of Barley (Hordeum Vulgare L.) cultivars, sahara and clipper, which differ in salinity tolerance. J. Exp. Bot. 60(14), 4089–4103 (2009). https://doi.org/10.1093/jxb/erp243CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Yang, C.-W. et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of Barley plants. Phytosynthetica 47, 79–86 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Detecting alternative attractors in ecosystem dynamics

    Detecting alternative attractors in ecosystem dynamicsWe use empirical dynamical modeling, a set of equation-free tools for analyzing non-linear time series (for a review and assumptions see25,26, respectively), to test if the temporal dynamics of alternative dynamical regimes are qualitatively different. Empirical dynamic modeling builds fundamentally on Takens embedding theorem, which shows that attractors of multi-dimensional dynamical systems can be reconstructed using higher order lags of its embedded time series27. However, if a dynamical system has gone through a bifurcation, or switched to an alternative basin of attraction, attractors are qualitative dissimilar in the two regimes. Theoretically, this infers that it should be possible to reconstruct the attractor of one regime using information from the same regime, but not from the other regime. In practice, this implies that if a model (attractor reconstruction) based on one dynamical regime is used to predict the dynamics of variables from the same dynamical regime predictions should be accurate (i.e. low prediction errors), whereas if an attractor reconstruction based on one dynamical regime is used to predict the dynamics of variables of another attractor predictions should be less accurate (i.e. high prediction errors). We make use of this idea by specifically testing if prediction errors of across and within regime predictions are different. As explained below this idea can be used for both univariate and multivariate time series data.Univariate approachUnivariate attractor reconstructions can be found using the simplex algorithm28,29. First, for a given dynamical regime, a time series can be split into a library of vectors, and each vector is described by$${underline{y}}_{A}(t)= < {Y}_{A}(t),{Y}_{A}(t-1),{Y}_{A}(t-2),ldots ,{Y}_{A}(t-(E-1)) > ,$$
    (1)
    where ({Y}_{A}(t)) is an observation of variable Y at time t in dynamical regime A and E is the reconstructed attractors embedding dimension. Using the simplex projection algorithm, a one-step ahead forecast is produced as follows:$${hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}=mathop{sum}limits_{m=1ldots E+1}{w}_{m}{Y}_{B}({t}_{m}+1),$$
    (2)
    where tm is a time index of an observation in dynamical regime B, E is the embedding dimension of regime B, and wm is an exponential weighting described by:$${w}_{m}={u}_{m}/mathop{sum}limits_{n=1,ldots ,E+1}{u}_{n},$$
    (3)
    where n and m belongs to the set of the E+1 nearest neighbors of vector ({underline{y}}_{A}(t)) in the set of vectors ({{underline{y}}_{B}({t}_{m})}), ({u}_{m}=exp {-d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{m})]/d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{1})]}), and (d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{1})],)is the Euclidean distance between the prediction vector ({underline{y}}_{A}(t)) and its nearest neighbor ({underline{y}}_{B}({t}_{1})) in the set ({{underline{y}}_{B}({t}_{m})}).The only parameter that is estimated using the simplex algorithm is the embedding dimension E. This parameter is estimated by optimizing the correlation between observations (({Y}_{A}(t+1))) and predictions (({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A})) using a leave-one-out cross validation approach (See Supplementary Discussion). The embedding dimension E and its corresponding set of E-dimensional vectors (Eq. 1) constitutes the reconstructed attractor, MA, of a given dynamical regime A. This reconstructed attractor (MA) is then used to predict data for both the same dynamical regime (({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A})), and the contrasting dynamical regime ({hat{Y}}_{B}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A}). Likewise, the reconstructed attractor MB can be used to predict time series dynamics from both dynamical regimes; that is, ({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}) and ({hat{Y}}_{B}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}), respectively.Multivariate approachA multivariate time series describes a number of simultaneously evolving variables. For example, a bivariate time series can be described by variables X and Y. For such time series, Sugihara et al.30 developed an approach for testing if two variables (time series) are dynamically coupled. Their methodology builds on the fact that a reconstructed attractor should map 1:1 to the original attractor on which the reconstruction is based. This infers that two attractor reconstructions (based on two different variables) should also map 1:1 to each other30. Practically, this means that if two variables are dynamically coupled one-time series should be predictable based on an attractor reconstruction of another variable. However, if a dynamical system has gone through a bifurcation, or potentially switched to an alternative basin of attraction, a new set of rules will govern the dynamics of the system. Hence, a new attractor should have emerged. Now, since this new attractor is most likely governed by a new set of rules it should be difficult to predict the dynamics of this new alternative attractor based on information from the former attractor. Thus, if one variable in one dynamical regime is used to predict another variable in another dynamical regime, predictions should be biased. Yet, if one variable from one dynamical regime is used to predict another variable from the same regime predictions should be more accurate.The simplex algorithm can be used to make predictions of a variable Y using a time series of another variable X30. Predictions are produced as follows:$${hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B}=mathop{sum}limits_{m=1ldots E+1}{w}_{m}{Y}_{B}({t}_{m}),$$
    (4)
    where tm is the time series index of a vector of variable X of dynamical regime B, wm is an exponential weighting based on variable X:$${w}_{m}={u}_{m}/mathop{sum}limits_{n=1,ldots ,E+1}{u}_{n},$$
    (5)
    where n and m belongs to the set of the E+1 nearest neighbors of ({underline{x}}_{A}(t)) in ({{underline{x}}_{B}({t}_{m})}), ({u}_{m}=exp {-d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{m})]/d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{1})]}), and (d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{1})],)is the Euclidean distance between the prediction vector(,{underline{x}}_{A}(t)) and its nearest neighbor ({underline{x}}_{B}({t}_{1})) in dynamical regime (B).The reconstructed attractors, MA and MB, for each variable and regime are found using the univariate simplex algorithm described above28,29,30. Similar to the univariate case, the reconstructed attractor (MA) is used to predict data from the same dynamical regime (({hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{A})), and to predict time series of a contrasting dynamical regime (({hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B})). Yet, it is important to stress that MA here reflects an attractor reconstruction based on a variable that is not being predicted (that is, variable X is used to predict variable Y). This prediction approach thus infers that predictions are made on data that was not used to fit the model (X predicts Y and vice versa). Thus, neither across nor within regime predictions are made on data used to fit a model.Test statisticWe used mean absolute prediction errors to test for difference between across and within regime predictions. Alternative metrics, such as mean sum of square errors, can also be used. However, since our approach gives skewed prediction errors we used mean absolute prediction errors to reduce the impact of extreme values. Further, since the absolute prediction errors are non-normally distributed we used a permutation test. The null hypothesis that is tested reads:$$H0:{{{{{rm{MAP{E}}}}}}}_{A} < {{{{{rm{MAP{E}}}}}}}_{w},$$ (6) where MAPEA is the mean absolute prediction error for across regime predictions (that is, ({{{{{rm{MAP{E}}}}}}}_{A}=frac{1}{n}mathop{sum}limits_{t=1:n}{{{{{rm{abs}}}}}}({hat{Y}}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B}-{Y}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t))), and ({{{{{rm{MAP{E}}}}}}}_{w}) is the mean absolute prediction error for within regime predictions (that is, ({{{{{rm{MAP{E}}}}}}}_{w}=frac{1}{n}mathop{sum}limits_{t=1:n}{{{{{rm{abs}}}}}}({hat{Y}}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{A}-{Y}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t))). A test is consider significant if observed difference in across and within regime mean prediction errors is larger than the 95th percentile of 1000 permuted data sets.Food-chain modelWe used a food-chain model parameterized as in McCann and Yodzis31 to simulate food-chain dynamics:$$frac{{{{{{rm{d}}}}}}R}{{{{{{rm{d}}}}}}t}=Rleft(1-frac{R}{K}right)-frac{{x}_{c}{y}_{c}CR}{R+{R}_{0}}$$ (7) $$frac{{{{{{rm{d}}}}}}C}{{{{{{rm{d}}}}}}t}={x}_{c}Cleft(-1+frac{{y}_{C}R}{R+{R}_{0}}right)-frac{{x}_{P}{y}_{P}PC}{C+{C}_{0}}$$$$,frac{{{{{{rm{d}}}}}}P}{{{{{{rm{d}}}}}}t}={x}_{P}Pleft(-1+frac{{y}_{P}C}{C+{C}_{0}}right),$$where R is the resource density, C consumer density, and P predator density. All parameters, except half-saturation constants R0 (here set to 0.16129) and C0 (here set to 0.5), and resource carrying capacity K, are derived from bioenergetics and body size allometry30 (xc = 0.4, yc = 2.009, yp = 2.876, R0, r = 1, xp = 0.08).This model can display a rich set of dynamics depending on parameter values31. Here we alter resource carrying capacity K in order to simulate the dynamics (using the deSolve package32 in R) of qualitatively different attractors (See Supplementary Fig. 1; K = 0.78, equilibrium; K = 0.85; two-point limit cycle; K = 0.92, four-point limit cycle; K = 0.997, chaotic dynamics). Every fifth time step of the simulated dynamics, corresponding to a sampling frequency of ≈10 samples per cycle for the 2-point limit cycle, was sampled. Observation noise was thereafter added to the deterministic dynamics produced by the model:$${N}_{l}(t)={N}_{l}^{prime}(t)+rho * e(t);e(t) sim N(0,{sigma }_{N^{prime_{l}}}),$$ (8) where (N_{l}^{prime}(t)) is the abundance of species l (P, C or R) simulated by the food-chain model at time point t, (rho) is the level of observation noise and ({sigma }_{N_{l}^{prime}}) is the standard deviation of the deterministic dynamics of species l produced by the food chain model.In order to investigate how time series length and observation noise affects the probability of detecting alternative attractors we derived probability landscapes. These were derived by testing the null-hypothesis (H0:(|{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{i}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}| > |{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{j}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|); See Test statistic above) across 100 replicates for each combination of time series length and level of observation noise, (rho). Time-series length was varied from 10 to 100 in steps of 10, and observation noise, (rho), was varied from 0.01 to 0.3 in steps of 0.01, in total yielding 300 combinations of observation noise and time series length, for each combination of dynamical regimes i and j. Predator dynamics was used to predict consumer and resource dynamics using the multivariate approach described above (results for the cases where consumer or resource dynamics are used to predict the other species´ dynamics are presented in Supplementary Figs. 2, 3). All time series were standardized ((mu =0;sd=1)) prior testing for dynamical difference.Experimental data setThe experimental data set was given by Fussman et al.7. This data set contains 14 time series of a predator Brachionus calyciflorus and its prey Chlorella vulgaris derived from chemostat experiments. Time series for different dilution rates were produced by keeping the dilution rate fixed in different chemostats (Supplementary Figs. 3–11). Brachionus calyciflorus and Chlorella vulgaris time series were used to predict Chlorella vulgaris and Brachionus calyciflorus time series, respectively, using the multivariate approach described above. We tested for qualitative difference in the temporal dynamics across all time series, which were standardized ((mu =0;sd=1)) prior testing.Alternative stable state modelWe used a stochastic version of a well-known alternative stable state model4,33 to produce alternative stochastic dynamical regimes. The model is described by:$${{{{{rm{d}}}}}}x=left(xleft(1-frac{x}{{{{{{rm{K}}}}}}}right)+frac{c{x}^{2}}{1-{x}^{2}}right){{{{{rm{d}}}}}}t+sigma {{{{{rm{d}}}}}}w,$$
    (9)
    where K is the carrying capacity (here set to 11), c is a harvest rate, and σ (here set to 0.01) is the magnitude of noise which is described by a Wiener process (dw).The model was simulated for fixed harvest rates (c) assuming that the system state resides in either of its two basins of attraction. The initial value for the simulation was set to the equilibrium of the noise-free model skeleton for fixed harvest rates c, and σ is set low in order to avoid stochastic flips, so-called flickering, between alternative basins of attraction. Dynamics was integrated (Δt = 0.01) using the matlab-package SDE-Tools34.In order to investigate how time-series length and harvest rate, c, affects the probability of detecting alternative attractors in stochastic regimes we derived probability landscapes.These were derived by testing the null-hypothesis H0:(|{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{i}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}| > |{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{j}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|) (permutation test p = 0.05) across 100 simulated data sets for each combination of time series length and harvest rate, c. Time-series length was varied between 50 and 150 in steps of 10, and c was varied between 1.83 and 2.73 in steps of 0.05, in total yielding 209 combinations of time series length and harvest rate. Each time series was standardized ((mu =0;sd=1)) prior testing for difference in temporal dynamics of contrasting regimes.Natural time-series dataIn a previous study on early warning signals of impending regime shifts, Gsell et al.18 used breakpoint analysis to identify two potential alternative dynamical regimes. We here test if these two-time series segments constitute alternative dynamical attractors. Prior analysis, we imputed a few missing observations (n = 24) using a kalman smoother35. The two time series segments, i.e. pre- and post-breakpoint time series, were standardized ((mu =0;sd=1)) prior testing for dynamical difference.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Male sperm storage impairs sperm quality in the zebrafish

    1.Ward, P. I. Intraspecific variation in sperm size characters. Heredity 80, 655–659 (1998).Article 

    Google Scholar 
    2.Schulte-Hostedde, A. I. & Montgomerie, R. Intraspecific variation in ejaculate traits of the northern watersnake (Nerodia sipedon). J. Zool. 270, 147–152. https://doi.org/10.1111/j.1469-7998.2006.00101.x (2006).Article 

    Google Scholar 
    3.Morrow, E. H. & Gage, A. R. Consistent signicant variation between individual males in spermatozoal morphometry. J. Zool. 254, 147–153 (2001).Article 

    Google Scholar 
    4.Locatello, L., Pilastro, A., Deana, R., Zarpellon, A. & Rasotto, M. B. Variation pattern of sperm quality traits in two gobies with alternative mating tactics. Funct. Ecol. 21, 975–981 (2007).Article 

    Google Scholar 
    5.Iglesias-Carrasco, M., Harrison, L., Jennions, M. D. & Head, M. L. Combined effects of rearing and testing temperatures on sperm traits. J. Evol. Biol. 33, 1715–1724. https://doi.org/10.1111/jeb.13710 (2020).Article 
    PubMed 

    Google Scholar 
    6.Evans, J. P. & Magurran, A. E. Geographic variation in sperm production by Trinidadian guppies. Proc. R. Soc. B-Biol. Sci. 266, 2083–2087 (1999).Article 

    Google Scholar 
    7.Morrow, E. H., Leijon, A. & Meerupati, A. Hemiclonal analysis reveals significant genetic, environmental and genotype x environment effects on sperm size in Drosophila melanogaster. J. Evol. Biol. 21, 1692–1702. https://doi.org/10.1111/j.1420-9101.2008.01585.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Firman, R. C., Klemme, I. & Simmons, L. W. Strategic adjustments in sperm production within and between two island populations of house mice. Evolution 67, 3061–3070. https://doi.org/10.5061/dryad.87pk2 (2013).Article 
    PubMed 

    Google Scholar 
    9.Taborsky, M. Sperm competition in fish: ‘bourgeois’ males and parasitic spawning. Trends Ecol. Evol. 13, 222–227 (1998).CAS 
    Article 

    Google Scholar 
    10.Kustra, M. C. & Alonzo, S. H. Sperm and alternative reproductive tactics: a review of existing theory and empirical data. Philos. Trans. R. Soc. B-Biol. Sci. 375, 20200075. https://doi.org/10.1098/rstb.2020.0075 (2020).Article 

    Google Scholar 
    11.Marshall, D. J. Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects. J. Exp. Biol. 218, 107–113. https://doi.org/10.1242/jeb.106427 (2015).Article 
    PubMed 

    Google Scholar 
    12.Vega-Trejo, R. et al. The effects of male age, sperm age and mating history on ejaculate senescence. Funct. Ecol. 33, 1267–1279. https://doi.org/10.1111/1365-2435.13305 (2019).Article 

    Google Scholar 
    13.Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 94, 1722–1739. https://doi.org/10.1111/brv.12524 (2019).Article 
    PubMed 

    Google Scholar 
    14.Johnson, S. L. et al. Evidence that fertility trades off with early offspring fitness as males age. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2017.2174 (2018).Article 

    Google Scholar 
    15.Gasparini, C., Marino, I. A. M., Boschetto, C. & Pilastro, A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J. Evol. Biol. 23, 124–135 (2010).CAS 
    Article 

    Google Scholar 
    16.Velando, A., Noguera, J. C., Drummond, H. & Torres, R. Senescent males carry premutagenic lesions in sperm. J. Evol. Biol. 24, 693–697 (2011).CAS 
    Article 

    Google Scholar 
    17.Pilastro, A., Scaggiante, M. & Rasotto, M. B. Individual adjustment of sperm expenditure accords with sperm competition theory. Proc. Natl. Acad. Sci. U.S.A. 99, 9913–9915 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Nicholls, E. H., Burke, T. & Birkhead, T. R. Ejaculate allocation by male sand martins, Riparia riparia. Proc. R. Soc. B-Biol. Sci. 268, 1265–1270. https://doi.org/10.1098/rspb.2001.1615 (2001).CAS 
    Article 

    Google Scholar 
    19.Oppliger, A., Hosken, D. J. & Ribi, G. Snail sperm production characteristics vary with sperm competition risk. Proc. R. Soc. B-Biol. Sci. 265, 1527–1534 (1998).Article 

    Google Scholar 
    20.Crean, A. J. & Marshall, D. J. Gamete plasticity in a broadcast spawning marine invertebrate. Proc. Natl. Acad. Sci. U.S.A. 105, 13508–13513 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Fisher, H. S., Hook, K. A., Weber, W. D. & Hoekstra, H. E. Sibling rivalry: males with more brothers develop larger testes. Ecol. Evol. 8, 8197–8203. https://doi.org/10.1002/ece3.4337 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ramm, S. A. & Stockley, P. Adaptive plasticity of mammalian sperm production in response to social experience. Proc. R. Soc. B-Biol. Sci. 276, 745–751 (2009).Article 

    Google Scholar 
    23.Pizzari, T., Cornwallis, C. K. & Froman, D. P. Social competitiveness associated with rapid fluctuations in sperm quality in male fowl. Proc. R. Soc. B-Biol. Sci. 274, 853–860. https://doi.org/10.1098/rspb.2006.0080 (2007).Article 

    Google Scholar 
    24.Silva, W. et al. The effects of male social environment on sperm phenotype and genome integrity. J. Evol. Biol. 32, 535–544. https://doi.org/10.1111/jeb.13435 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Firman, R. C., Garcia-Gonzalez, F., Simmons, L. W. & Andre, G. I. A competitive environment influences sperm production, but not testes tissue composition, in house mice. J. Evol. Biol. 31, 1647–1654. https://doi.org/10.1111/jeb.13360 (2018).Article 
    PubMed 

    Google Scholar 
    26.Bozynski, C. C. & Liley, N. R. The effect of female presence on spermiation, and of male sexual activity on “ready” sperm in the male guppy. Anim. Behav. 65, 53–58. https://doi.org/10.1006/Anbe.2002.2024 (2003).Article 

    Google Scholar 
    27.Aitken, R. J. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction 159, R189–R201. https://doi.org/10.1530/REP-19-0452 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Reinhardt, K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 82, 375–393 (2007).Article 

    Google Scholar 
    29.Pizzari, T., Dean, R., Pacey, A., Moore, H. & Bonsall, M. B. The evolutionary ecology of pre- and post-meiotic sperm senescence. Trends Ecol. Evol. 23, 131–140. https://doi.org/10.1016/j.tree.2007.12.003 (2008).Article 
    PubMed 

    Google Scholar 
    30.Gasparini, C., Dosselli, R. & Evans, J. P. Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons. Evol. Lett. 1, 16–25. https://doi.org/10.1002/evl3.2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Reinhardt, K. & Turnell, B. Sperm ageing: a complex business. Funct. Ecol. 33, 1188–1189. https://doi.org/10.1098/rspb.2018.2873 (2019).Article 

    Google Scholar 
    32.Tarin, J. J., Pérez-Albalà, S. & Cano, A. Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update 6, 532–549 (2000).CAS 
    Article 

    Google Scholar 
    33.Li, J. et al. The effect of male sexual abstinence periods on the clinical outcomes of fresh embryo transfer cycles following assisted reproductive technology: a meta-analysis. Male Sexual Reprod. Health 4, 1–8 (2020).
    Google Scholar 
    34.Periyasamy, A. J. et al. Does duration of abstinence affect the live-birth rate after assisted reproductive technology? A retrospective analysis of 1,030 cycles. Fertil. Steril. 108, 988–992. https://doi.org/10.1016/j.fertnstert.2017.08.034 (2017).Article 
    PubMed 

    Google Scholar 
    35.World Health Organization. WHO laboratory manual for the examination and processing of human semen 5th ed. (Geneva: World Health Organization, 2010).36.Comar, V. A. et al. Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assist. Reprod. 21, 306–312. https://doi.org/10.5935/1518-0557.20170052 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Gasparini, C., Kelley, J. L. & Evans, J. P. Male sperm storage compromises sperm motility in guppies. Biol. Let. 10, 20140681. https://doi.org/10.1098/rsbl.2014.0681 (2014).Article 

    Google Scholar 
    38.Poli, F., Immler, S., Gasparini, C. & Taborsky, M. Effects of ovarian fluid on sperm traits and its implications for cryptic female choice in zebrafish. Behav. Ecol. 30, 1298–1305. https://doi.org/10.1093/beheco/arz077 (2019).Article 

    Google Scholar 
    39.Riesco, M. F., Valcarce, D. G., Martinez-Vazquez, J. M. & Robles, V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci. Rep. https://doi.org/10.1038/s41598-019-47702-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Hagedorn, M. & Carter, V. L. Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success. PLoS ONE 6, e21059. https://doi.org/10.1371/journal.pone.0021059 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Zajitschek, S., Hotzy, C., Zajitschek, F. & Immler, S. Short-term variation in sperm competition causes sperm-mediated epigenetic effects on early offspring performance in the zebrafish. Proc. R. Soc. B-Biol. Sci. 281, 20140422. https://doi.org/10.1098/rspb.2014.0422 (2014).Article 

    Google Scholar 
    42.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (2020).43.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar 
    44.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    45.Fox, J. & Weisberg, S. An R companion to applied regression 3rd edn. (Sage, 2019).
    Google Scholar 
    46.Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    47.White, J. et al. Multiple deleterious effects of experimentally aged sperm in a monogamous bird. Proc. Natl. Acad. Sci. U.S.A. 105, 13947–13952 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Reinhardt, K. & Siva-Jothy, M. T. An advantage for young sperm in the house cricket Acheta domesticus. Am. Nat. 165, 718–723 (2005).Article 

    Google Scholar 
    49.Gage, M. J. G. et al. Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr. Biol. (CB) 14, 44–47 (2004).CAS 

    Google Scholar 
    50.Fitzpatrick, J. L. et al. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc. Natl. Acad. Sci. U.S.A. 106, 1128–1132. https://doi.org/10.1073/pnas.0809990106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Alavioon, G. et al. Haploid selection within a single ejaculate increases offspring fitness. Proc. Natl. Acad. Sci. U.S.A. 114, 8053–8058. https://doi.org/10.1073/pnas.1705601114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cosson, J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 76, 240–279. https://doi.org/10.1111/j.1095-8649.2009.02504.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Levitan, D. R. Sperm velocity and longevity trade off each other and influence fertilization in the sea urchin Lytechinus variegatus. Proc. R. Soc. B-Biol. Sci. 267, 531–534 (2000).CAS 
    Article 

    Google Scholar 
    54.Taborsky, M., Schütz, D., Goffinet, O. & van Doorn, G. S. Alternative male morphs solve sperm performance/longevity trade-off in opposite directions. Sci. Adv. 4, 8563 (2018).ADS 
    Article 

    Google Scholar 
    55.Cardozo, G., Devigili, A., Antonelli, P. & Pilastro, A. Female sperm storage mediates post-copulatory costs and benefits of ejaculate anticipatory plasticity in the guppy. J. Evol. Biol. 33, 1294–1305. https://doi.org/10.1111/jeb.13673 (2020).Article 
    PubMed 

    Google Scholar 
    56.delBarco-Trillo, J. et al. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc. R. Soc. B-Biol. Sci. 283, 20152708 (2016).Article 

    Google Scholar 
    57.Firman, R. C., Young, F. J., Rowe, D. C., Duong, H. T. & Gasparini, C. Sexual rest and post-meiotic sperm ageing in house mice. J. Evol. Biol. 28, 1373–1382. https://doi.org/10.1111/jeb.12661 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Gosálvez, J., López-Fernández, C., Hermoso, A., Fernández, J. L. & Kjelland, M. E. Sperm DNA fragmentation in zebrafish (Danio rerio) and its impact on fertility and embryo viability—implications for fisheries and aquaculture. Aquaculture 433, 173–182. https://doi.org/10.1016/j.aquaculture.2014.05.036 (2014).CAS 
    Article 

    Google Scholar 
    59.Perez-Cerezales, S., Martinez-Paramo, S., Beirao, J. & Herraez, M. P. Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success. Reproduction 139, 989–997. https://doi.org/10.1530/REP-10-0037 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Quay, W. Cloacal sperm in spring migrants: occurrence and interpretation. The Condor 87, 273–280 (1985).Article 

    Google Scholar 
    61.Thomsen, R., Soltis, J. & Teltscher, C. Sperm competition and the function of male masturbation in non-human primates. Sexual selection and reproductive competition in primates: New perspectives and directions (Jones, 2003).62.Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4, 21–40. https://doi.org/10.1089/zeb.2006.9997 (2007).Article 
    PubMed 

    Google Scholar 
    63.Spence, R. & Smith, C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav. Ecol. 17, 779–783. https://doi.org/10.1093/beheco/arl016 (2006).Article 

    Google Scholar 
    64.Spence, R. & Smith, C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Anim. Behav. 69, 1317–1323. https://doi.org/10.1016/j.anbehav.2004.10.010 (2005).Article 

    Google Scholar 
    65.Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).Article 

    Google Scholar 
    66.Parker, G. A. Sperm competition games: raffles and roles. Proc. R. Soc. B-Biol. Sci. 242, 120–126 (1990).ADS 
    Article 

    Google Scholar  More

  • in

    Predation risk is a function of seasonality rather than habitat complexity in a tropical semiarid forest

    1.Pianka, E. R. Niche relations of desert lizards in Ecology and Evolution of Communities, Cody, M. L. & Diamond, J. M. (Eds). (Harvard University Press, 1975).2.Castilla, A. M. & Labra, A. Predation and spatial distribution of the lizard Podarcis hipanica atrata: an experimental approach. Acta Oecol. 19, 107–114 (1998).ADS 
    Article 

    Google Scholar 
    3.Cantwell, L. R. & Forrest, T. G. Response of Anolis sagrei to acoustic calls from predatory and non-predatory birds. J. Herpetol. 47, 293–298 (2013).Article 

    Google Scholar 
    4.Edmund, M. Defense in animals: A survey of antipredator defenses. (Longman Press, 1974).5.Wilcove, D. Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66, 121l-l214 (1985).Article 

    Google Scholar 
    6.Endler, J. A. Defense against predators in Predator-prey relationships, Feder, M. E. & Lauder, G. V. (Eds). (The University of Chicago Press, 1986).7.Constantini, D., Bruner, E., Fanfani, A. & Dell’Omo, G. Male-biased predation of western green lizards by Eurasian kestrels. Naturwissenschaften 94, 1015–1020. https://doi.org/10.1007/s00114-007-0284-5 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Barnett, A. A. et al. Run, hide or fight: anti-predation strategies in Endangered red-nosed cuxiú (Chiropotes albinasus, Pitheciidae) in south-eastern Amazonia. Primates 58, 353–360. https://doi.org/10.1007/s10329-017-0596-9 (2017).Article 
    PubMed 

    Google Scholar 
    9.Barnett, A. A. et al. Honest error, precaution or alertness advertisement? Reactions to vertebrate pseudopredators in red-nosed cuxiús (Chiropotes albinasus), a high-canopy neo-tropical primate. Ethology 124, 177–187. https://doi.org/10.1111/eth.12721 (2018).Article 

    Google Scholar 
    10.Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Shepard, D. B. Habitat but not body shape affects predator attack frequency on lizard models in the Brazilian Cerrado. Herpetologica 63, 193–202. https://doi.org/10.1655/0018-0831(2007)63[193:HBNBSA]2.0.CO;2 (2007).Article 

    Google Scholar 
    12.Salvidio, S., Costa, A. & Romano, A. The use of clay models in amphibian field studies: a short review. Bull. Env. Life Sc. 1, 8 (2019).
    Google Scholar 
    13.Castilla, A. M., Gosá, A., Galán, P. & Pérez-Mellado, V. Green tails in lizards of the genus Podarcis: do they influence the intensity of predation?. Herpetologica 55, 530–537 (1999).
    Google Scholar 
    14.Bateman, P. W., Fleming, P. A. & Wolfe, A. K. A different kind of ecological modelling: the use of clay model organisms to explore predator-prey interactions in vertebrates. J. Zool. 301, 251–262. https://doi.org/10.1111/jzo.12415 (2017).Article 

    Google Scholar 
    15.Rössler, D., Pröhl, H. & Lötters, S. The future of clay model studies. BMC Zool. 3, 6. https://doi.org/10.1186/s40850-018-0033-6 (2018).Article 

    Google Scholar 
    16.Major, R. E. & Kendal, C. E. The contribution of artificial nest experiments to understanding avian reproductive success: a review of methods and conclusions. Ibis 138, 298–307 (1996).Article 

    Google Scholar 
    17.Kuchta, S. R. Experimental support for aposematic coloration in the salamander Ensatina eschscholtzii xanthoptica: implications for mimicry of Pacific newts. Copeia 267–271, 2005. https://doi.org/10.1643/CH-04-173R (2005).Article 

    Google Scholar 
    18.Kraemer, A. C., Serb, J. M. & Adams, D. C. Both novelty and conspicuousness influence selection by mammalian predators on the colour pattern of Plethodon cinereus (Urodela: Plethodontidae). Biol. J. Linn. Soc. 118, 889–900. https://doi.org/10.1111/bij.12780 (2016).Article 

    Google Scholar 
    19.Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 3–4. https://doi.org/10.1007/s00114-017-1443-y (2017).CAS 
    Article 

    Google Scholar 
    20.Mcelroy, M. T. Teasing apart crypsis and aposematism-evidence that disruptive coloration reduces predation on a noxious toad. Biol. J. Linn. Soc. 17, 285–294. https://doi.org/10.1111/bij.12669 (2016).Article 

    Google Scholar 
    21.Nordberg, E. J. & Schwarzkopf, L. Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem. Sci. Rep. 9, 7718. https://doi.org/10.1038/s41598-019-44159-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Costa, A., Coroller, S. & Salvidio, S. Comparing day and night predation rates on lizard-Like clay models. Herpetol. Conserv. Biol. 15, 198–203 (2020).
    Google Scholar 
    23.Nour, N., Matthysen, E. & Dhondt, A. A. Artificial nest predation and habitat fragmentation: different trends in birds and mammal predators. Ecography 16, 111–116 (1993).Article 

    Google Scholar 
    24.Castilla, A. M. Intensive predation of Audouin’s Gull nests by the yellow legged gull in the Columbretes islands. Colon Waterbirds 18, 226–230. https://doi.org/10.2307/1521487 (1995).Article 

    Google Scholar 
    25.Diego-Rasilla, F. J. Influence of predation pressure on the escape behaviour of Podarcis muralis lizards. Behav. Processes 63, 1–7. https://doi.org/10.1016/S0376-6357(03)00026-3 (2003).Article 
    PubMed 

    Google Scholar 
    26.Stuart-fox, D. M., Moussalli, A., Marshall, N. J. & Owens, I. P. F. Conspicuous males suffer higher predation risk: Visual modeling and experimental evidence from lizards. Anim. Behav. 66, 541–550. https://doi.org/10.1006/anbe.2003.2235 (2003).Article 

    Google Scholar 
    27.Husak, J. F., Macedonia, J. M., Fox, S. F. & Sauceda, R. C. Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. Ethology 112, 572–580. https://doi.org/10.1111/j.1439-0310.2005.01189.x (2006).Article 

    Google Scholar 
    28.Keehn, J. E. & Feldman, C. R. Predator attack rates and anti-predator behavior of Side-blotched Lizards (Uta stransbuiana) at Southern California Wind Farms, USA. Herpetol. Conserv. Biol. 13, 194–204 (2018).
    Google Scholar 
    29.Hansen, N. A., Sato, C. F., Michael, D. L., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).Article 

    Google Scholar 
    30.Hegna, R. H., Saporito, R. A., Gerow, K. G. & Donnelly, M. A. Contrasting colours in an aposematic frog do not affect predation. Ann. Zool. 48, 29–38. https://doi.org/10.5735/086.048.0103 (2011).Article 

    Google Scholar 
    31.Paluh, D. J., Hantak, M. M. & Saporito, R. A. A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. J. Herpetol. 48, 249–254. https://doi.org/10.1670/13-027 (2014).Article 

    Google Scholar 
    32.Rojas, D. P., Stow, A., Amézquita, A., Simões, P. I. & Lima, A. P. No predatory bias with respect to colour familiarity for the aposematic Adelphobates galactonotus (Anura: Dendrobatidae). Behaviour 152, 1637–165. https://doi.org/10.1163/1568539X-00003297 (2015).Article 

    Google Scholar 
    33.Brodie, E. D. I. I. I. Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 47, 227–235. https://doi.org/10.1111/j.1558-5646.1993.tb01212.x (1993).Article 
    PubMed 

    Google Scholar 
    34.Brodie, E. D. I. I. I. & Janzen, F. J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9, 186–190. https://doi.org/10.2307/2390563 (1995).Article 

    Google Scholar 
    35.Pfennig, D. W., Harper, G. R. Jr., Brumo, A. F., Harcombe, W. R. & Pfennig, K. S. Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behav. Ecol. Sociobiol. 61, 505–511. https://doi.org/10.1007/s00265-006-0278-x (2006).Article 

    Google Scholar 
    36.Martín, J. & López, P. An experimental test of the costs of antipredatory refuge use in the wall lizard, Podarcis muralis. Oikos 84, 499–505 (1999).Article 

    Google Scholar 
    37.Amo, L., López, P. & Martín, J. Refuge use: a conflict between avoiding predation and losing mass in lizards. Physiol. Behav. 90, 334–343. https://doi.org/10.1016/j.physbeh.2006.09.035 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Endler, J. A. Interactions between predators and prey in Behavioural Ecology: An Evolutionary Approach, Krebs, J. R. & Davies, N. B., (Eds). (Blackwell, 1991).39.Denno, R. F., Finke, D. L. & Langellotto, G. A. Direct and indirect effects of vegetation structure and habitat complexity on predator-prey and predator-predator interactions in Ecology of Predator-prey Interactions, Barbosa, P. & Castellanos, I. (Eds). (Oxford University Press, 2005).40.Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The evolutionary ecology of crypsis, warning signals, and mimicry. (Oxford University Press, 2004).41.Sih, A. To hide or not to hide? Refuge use in a fluctuating environment. Trends Ecol. Evol. 12, 375–6 (1997).CAS 
    Article 

    Google Scholar 
    42.Martín, J., López, P. & Cooper, W. E. Jr. When to come out from a refuge: balancing predation risk and foraging opportunities in an alpine lizard. Ethology 109, 77–87. https://doi.org/10.1046/j.1439-0310.2003.00855.x (2003).Article 

    Google Scholar 
    43.Bulova, S. J. Ecological correlates of population and individual variation in antipredator behaviour of two species of desert lizards. Copeia 4, 980–992. https://doi.org/10.2307/1446721 (1994).Article 

    Google Scholar 
    44.Vanhooydonck, B. & Van Damme, R. Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Func. Ecol. 17, 160–169. https://doi.org/10.1046/j.1365-2435.2003.00716.x (2003).Article 

    Google Scholar 
    45.Vervust, B., Grbac, I. L. & Van Damme, R. Differences in morphology, performance and behavior between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos 116, 1343–1352. https://doi.org/10.1111/j.2007.0030-1299.15989.x (2007).Article 

    Google Scholar 
    46.Smith, G. R. & Ballinger, R. E. The ecological consequences of habitat and microhabitat use in lizards: a review. Contemp. Herpetol. 3, 1–13. https://doi.org/10.1002/3527600213.ch1 (2001).Article 

    Google Scholar 
    47.Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. Roy. Soc. London 271, 2495–2499. https://doi.org/10.1098/rspb.2004.2894 (2004).Article 

    Google Scholar 
    48.Worthington-Hill, O. & Gill, A. Effects of large-scale heathland management on thermal regimes and predation on adders Vipera berus. Anim. Conserv. 22, 481–492. https://doi.org/10.1111/acv.12489 (2019).Article 

    Google Scholar 
    49.Chiang, J. C. H. & Koutavas, A. Tropical flip-flop connection. Nature 432, 684–685. https://doi.org/10.1038/432684a (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Carmo, R. F. R., Amorim, H. P. & Vasconcelos, S. D. Scorpion diversity in two types of seasonally dry tropical forest in the semi-arid region of Northeastern Brazil. Biota. Neotrop. 13, 340–344. https://doi.org/10.1590/S1676-06032013000200037 (2013).Article 

    Google Scholar 
    51.Warrick, G. D., Kato, T. T. & Rose, B. R. Microhabitat use and home range characteristics of Blunt-nosed leopard lizards. J. Herpetol. 32, 183–191 (1998).Article 

    Google Scholar 
    52.Constantini, D. & Dell’Omo, G. Sex-Specific predation on two lizard species by kestrels. Russ. J. Ecol. 41, 99–101. https://doi.org/10.1134/S1067413610010182 (2010).Article 

    Google Scholar 
    53.Poulin, B. et al. Avian predation upon lizards and frogs in a neotropical forest understory. J. Trop. Ecol. 17, 21–40. https://doi.org/10.1017/S026646740100102X (2001).Article 

    Google Scholar 
    54.Araújo, C. S., Candido, D. M., Araújo, H. F. P., Dias, S. C. & Vasconcellos, A. Seasonal variations in scorpion activities (Arachnida: Scorpiones) in an area of Caatinga vegetation in Northeastern Brazil. Zoologia 27, 372–376. https://doi.org/10.1590/S1984-46702010000300008 (2010).Article 

    Google Scholar 
    55.Vasconcellos, A. et al. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Rev. Bras. Entomol. 54, 471–476. https://doi.org/10.1590/S0085-56262010000300019 (2010).Article 

    Google Scholar 
    56.Schall, J. J. & Pianka, E. R. Evolution of escape behavior diversity. Am. Nat. 115, 551–566 (1980).Article 

    Google Scholar 
    57.Martín, J. & López, P. Influence of habitat structure on the escape tactics of the lizard Psammodromus algirus. Can. J. Zool. 73, 129–132 (1995).Article 

    Google Scholar 
    58.Rocha, C. F. D. & Bergallo, H. G. Intercommunity variation in the distribution of abundance of dominant lizard species in restinga habitats. Ciencia e Cultura 49, 269–274 (1997).
    Google Scholar 
    59.Van-Sluys, M. Growth and body condition of the saxicolous lizard Tropidurus itambere in southeastern Brazil. J. Herpetol. 32, 359–365 (1998).Article 

    Google Scholar 
    60.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: evidence from remote video cameras in arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
    Google Scholar 
    61.DeGregorio, B. A., Weatherhead, P. J. & Sperry, J. H. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol. 4, 1589–1600. https://doi.org/10.1002/ece3.1049 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).Article 

    Google Scholar 
    63.Greene, H. W. Antipredator mechanisms in reptiles in Biology of Reptilian, Gans, C. & Huey, R. B. (Eds.). (Springer, 1998).64.Martín, J. & López, P. Amphibians and reptiles as prey of birds in southwestern Europe. Smit. Herpetol. Inform. Serv. 82, 1–43 (1990).
    Google Scholar 
    65.Steffen, J. E. Perch-height specific predation on tropical lizard clay models: implications for habitat selection in mainland neotropical lizards. Rev. Biol. Trop. 57, 859–864. https://doi.org/10.15517/rbt.v57i3.5498 (2009).Article 
    PubMed 

    Google Scholar 
    66.Dunham, A. E., Grant, B. W. & Overall, K. L. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–355 (1989).Article 

    Google Scholar 
    67.Ruiz-Esparza, J. et al. Birds of the Grota do Angico Natural Monument in the semi-arid Caatinga scrublands of northeastern Brazil. Biota. Neotrop. 11, 1–8. https://doi.org/10.1590/S1676-06032011000200027 (2011).Article 

    Google Scholar 
    68.Lima, C. P., Santos, S. S. & Lima, R. C. Levantamento e Anilhamento da Ornitofauna na Pátria da Arara-Azul-de-Lear (Anodorhynchus leari, Bonaparte, 1856): um complemento ao Levantamento realizado por Sick, H., Gonzaga, L. P. e Teixeira, D. M., 1987. Atual. Ornitol. 112, 11–22 (2003).69.Roos, A. L. et al. Avifauna da região do Lago de Sobradinho: composição, riqueza e biologia. Ornithologia 1, 135–160 (2006).
    Google Scholar 
    70.Farias, G. B., Pereira, G. P. & Burgos, K. Q. Aves da Floresta Nacional de Negreiros (Serrita, Pernambuco). Atual. Ornitol. 157, 41–46 (2010).
    Google Scholar 
    71.Sousa, P. A. G. & Freire, E. M. X. Coleodactylus natalensis (NCN). Predation. Herpetol. Rev. 41, 218 (2010).
    Google Scholar 
    72.Ribeiro, L. B., Gogliath, M. & Freire, E. M. X. Hemidactylus brasilianus (Amaral’s Brazilian Gecko) and Cnemidophorus ocellifer (Spix`s Whiptail). Predation. Herpetol. Bull. 117, 31–32 (2011).
    Google Scholar 
    73.De-Carvalho, C. B. et al. Gymnodactylus geckoides (Naked-Toed Gecko): Predation. Herpetol. Bull. 121, 41–43 (2012).
    Google Scholar 
    74.McCormick, S. & Polis, G. A. Arthropods that prey on vertebrates. Biol. Rev. 57, 29–58 (1982).Article 

    Google Scholar 
    75.Rocha, C. F. D. & Vrcibradic, D. Reptiles as predators of vertebrates and as preys in a restinga habitat of southeastern Brazil. Ciencia e Cultura 50, 364–368 (1998).
    Google Scholar 
    76.Armas, L. F. Frogs and lizards as prey of some Greater Antillean arachnids. Rev. Iberica Aracnol. 3, 87–88 (2000).
    Google Scholar 
    77.Schatz, B., Suzzoni, J. P., Corbara, B. & Dejean, A. Selection and capture of prey in the African ponerine ant Plectroctena minor (Hymenoptera: formicidae). Acta Oecol. 22, 55–60. https://doi.org/10.1016/S1146-609X(00)01100-0 (2001).ADS 
    Article 

    Google Scholar 
    78.Nordberg, E. J., Edwards, L. & Schwarzkopf, L. Terrestrial invertebrates: an underestimated predator guild for small vertebrate groups. Food Webs 15, e00080 (2018).Article 

    Google Scholar 
    79.Seifert, C. L., Schulze, C. H., Dreschke, T. C. T., Frötscher, H. & Fiedler, K. Day vs. night predation on artificial caterpillars in primary rainforest habitats-an experimental approach. Entomol. Exp. Appl. 158, 54–59. https://doi.org/10.1111/eea.12379 (2016).Article 

    Google Scholar 
    80.Andrade, L. A., Pereira, I. M., Leite, U. T. & Barbosa, M. R. V. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, estado da Paraíba. Cerne 11, 253–262 (2005).
    Google Scholar 
    81.Castelletti, C. H. M., Silva, J. M. C., Tabarelli, M. & Santos, A. M. M. Quanto ainda resta da Caatinga? Uma estimative preliminar in Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação, Silva, J. M. C., Tabarelli, M., Fonseca, M. T. & Lins, L. V. (Eds.). (Ministério do Meio Ambiente Publishing, 2004).82.Albuquerque, U. P. et al. Caatinga revisited: ecology and conservation of an important seasonal dry forest. Sci. World J. 1–18, 2012. https://doi.org/10.1100/2012/205182 (2012).Article 

    Google Scholar 
    83.Da Silva, A. C. C., Prata, A. P. N. & Mello, A. A. Flowering plants of the Grota do Angico Natural Monument, Caatinga of Sergipe, Brazil. Check List 9, 733–739 (2013).Article 

    Google Scholar 
    84.Nimer, E. Climatologia da Região Nordeste do Brasil: Introdução à Climatologia Dinâmica. Rev. Bras. Geog. 34, 3–51 (1972).
    Google Scholar 
    85.Santos, A. F. & Andrade, J. A. O quadro natural: caracterização e delimitação do semi-árido sergipano. Sergipe. Brazil. (CNPq/UFS, 1992).86.SEMARH–Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos. Plano de Manejo do Monumento Natural Grota do Angico. Sergipe, Brazil. (Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos, 2011)87.Ferreira, A. S., Silva, A. O., Conceição, B. M. & Faria, R. G. The diet of six species of lizards in an area of Caatiga, Brazil. Herpetol. J. 27, 151–160 (2017).
    Google Scholar 
    88.Rocha, S. M. et al. Lizards from the Alto Sertão region of Sergipe state, northeastern Brazil. Biota Neotrop. 21(2), e20201137 (2021).Article 

    Google Scholar 
    89.Bennett, A. T. D., Cuthill, I. C. & Norris, K. J. Sexual selection and the mismeasure of color. Am. Nat. 144, 848–860 (1994).Article 

    Google Scholar 
    90.Niskanen, M. & Mappes, J. Significance of the dorsal zigzag pattern of Vipera latastei gaditana against avian predators. J. Anim. Ecol. 74, 1091–1101. https://doi.org/10.1111/j.1365-2656.2005.01008.x (2005).Article 

    Google Scholar 
    91.R Core Team. R: A language and environment for statistical computing (2020). More

  • in

    European primary forest database v2.0

    1.Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Eco. Evo. 2, 599–610 (2018).Article 

    Google Scholar 
    2.European Commission. in COM(2020) 380 final (Brussels, 2020).3.Vandekerkhove, K. et al. Reappearance of Old-Growth Elements in Lowland Woodlands in Northern Belgium: Do the Associated Species Follow? Silva Fenn. 45, 909–935 (2011).Article 

    Google Scholar 
    4.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Zhou, G. Y. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Burrascano, S., Keeton, W. S., Sabatini, F. M. & Blasi, C. Commonality and variability in the structural attributes of moist temperate old-growth forests: A global review. For. Ecol. Manag. 291, 458–479 (2013).Article 

    Google Scholar 
    8.Bauhus, J., Puettmann, K. & Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 258, 525–537 (2009).Article 

    Google Scholar 
    9.Moore, K. D. In the shadow of the cedars: the spiritual values of old-growth forests. Conserv. Biol. 21, 1120–1123 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.FOREST EUROPE. State of Europe’s Forests 2015. (Ministerial Conference on the Protection of Forests in Europe, Madrid, 2015).11.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. For. Ecol. Manag. 315, 160–172 (2014).Article 

    Google Scholar 
    13.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3 (2017).14.Schickhofer, M. & Schwarz, U. Inventory of Potential Primary and Old-Growth Forest Areas in Romania (PRIMOFARO). Identifying the largest intact forests in the temperate zone of the European Union. (Euronatur Foundation, 2019).15.Knorn, J. et al. Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environ. Conserv. 40, 182–193 (2013).Article 

    Google Scholar 
    16.Court of Justice of the European Union. C-441/17 – Commission v Poland (Forêt de Białowieża) Judgment of the Court (Grand Chamber) of 17 April 2018 (2018).17.Chylarecki, P. & Selva, N. Ancient forest: spare it from clearance. Nature 530, 419–419 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Earthsight. Complicit in corruption. How billion-dollar firms and EU governments are failing Ukraine’s forests. (Earthsight, 2018).19.Mikoláš, M. et al. Primary forest distribution and representation in a Central European landscape: Results of a large-scale field-based census. For. Ecol. Manag. 449, 117466 (2019).Article 

    Google Scholar 
    20.Hance, J. IKEA Logging Old-growth Forest for Low-price Furniture in Russia. https://news.mongabay.com/2012/05/ikea-logging-old-growth-forest-for-low-price-furniture-in-russia/ (2012).21.Sabatini, F. M. et al. Protection gaps and restoration opportunities for primary forests in Europe. Divers. Distrib. 26, 1646–1662 (2020).Article 

    Google Scholar 
    22.Barredo Cano, J. I. et al. Mapping and assessment of primary and old-growth forests in Europe. (EUR 30661 EN, Publications Office of the European Union, 2021).23.Adam, D. & Vrška, T. Important localities of old-growth forests in Landscape Atlas of the Czech Republic (eds T Hrnčiarová, P Mackovčin, & I Zvara) (Ministry of Environment and Silva Tarouca Research Institute, Prague–Silva Tarouca Research Institute for Landscape and Ornamental Gardening, 2009).24.Diaci, J. Virgin forests and forest reserves in Central and East European countries-History, present status and future development. Proceedings of the invited lecturers’ reports presented at the COST E4 management committee and working groups meeting in Ljubljana, Slovenia (1999).25.Kirchmeir, H. & Kovarovics, A. Nomination Dossier “Primeval Beech Forests of the Carpathians and Other Regions of Europe“ as extension to the existing Natural World Heritage Site “Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of Germany” (1133bis). (2016).26.García Feced, C., Berglund, H. & Strnad, M. Scoping document: information related to European old growth forests. (ETC/BD report to the EEA, 2015).27.Veen, P. et al. Virgin forests in Romania and Bulgaria: results of two national inventory projects and their implications for protection. Biodivers. Conserv. 19, 1805–1819 (2010).Article 

    Google Scholar 
    28.Ibisch, P. L. & Ursu, A. Potential primary forests of Romania. (Greenpeace CEE Romania; Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development; Geography Department, A. I. Cuza University of Iași, 2017).29.Spracklen, B. D. & Spracklen, D. V. Identifying European Old-Growth Forests using Remote Sensing: A Study in the Ukrainian Carpathians. Forests 10, 127 (2019).Article 

    Google Scholar 
    30.Frank, G. et al. COST Action E27. Protected Forest Areas in Europe-analysis and harmonisation (PROFOR): results, conclusions and recommendations. (Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), 2007).31.Sabatini, F. M. et al. Where are Europe’s last primary forests? Divers. Distrib. 24, 1426–1439 (2018).Article 

    Google Scholar 
    32.McRoberts, R. E., Susanne, W., Gherardo, C. & Elizabeth, L. Assessing Forest Naturalness. For. Sci. 58, 294–309 (2012).Article 

    Google Scholar 
    33.Sabatini, F. M. et al. European Primary Forest Database. figshare https://doi.org/10.6084/m9.figshare.13194095.v1 (2020).34.FAO. Global Forest Resources Assessment 2015. Terms and definitions. (FAO, 2015).35.Buchwald, E. A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation in Proceedings: Third expert meeting on harmonizing forest-related definitions for use by various stakeholders (Food and Agriculture Organization of the United Nations, 2005).36.Blasi, C., Burrascano, S., Maturani, A. & Sabatini, F. M. Old-growth forests in Italy. (Palombi Editori, 2010).37.Cateau, E. et al. Le patrimoine forestier des réserves naturelles. Focus sur les forêts à caractère naturel. Cahier n°7. (Réserves Naturelles de France, 2017).38.Svoboda, M. et al. Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J. Veg. Sci. 25, 386–401 (2014).Article 

    Google Scholar 
    39.Potapov, P. et al. Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc. 13 (2008).40.Britz, H. et al. Nomination of the “Ancient Beech Forests of Germany” as Extension to the World Natural heritage “Primeval Beech Forests of the Carpathians”. Nationale Naturlandschaften, Federal Republic of Germany. Nieden-stein: Specialised editing Cognitio Kommunikation & Planung (2009).41.UNEP-WCMC & IUCN. Protected Area Profile for Ancient and Primeval Beech Forests of the Carpathians and Other Regions of Europe from the World Database of Protected Areas https://www.protectedplanet.net/903141 (2019).42.EEA. Biogeographical regions of Europe https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (2016).43.EEA. European forest types. Categories and types for sustainable forest management reporting and policy. (EEA Technical Report No 9/2006. EEA, Copenhagen, 2006).44.Bohn, U. et al. Map of the natural vegetation of Europe. Explanatory text with CD-ROM, (German Federal Agency for Nature Conservation, Bonn, Germany, 2003).45.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    46.R Development Core Team. R: A language and environment for statistical computing v. 3.6.1. R Foundation for Statistical Computing http://www.R-project.org/ (2019).47.Miljødirektoratet. (2016).48.FAO. Global Forest Resources Assessment 2015. Desk reference. 245 (FAO, Rome, 2015).49.FOREST EUROPE. Quantitative Indicators Country reports 2015 https://foresteurope.org/state-europes-forests-2015-report/#1476295965372-d3bb1dd0-e9a0 (2015).50.Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 205, 131–140 (2018).ADS 
    Article 

    Google Scholar 
    51.Kennedy, E. R. et al. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sensing 10 (2018).52.Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    53.Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).ADS 
    Article 

    Google Scholar 
    54.Griffiths, P., Van Der Linden, S., Kuemmerle, T. & Hostert, P. A pixel-based landsat compositing algorithm for large area land cover mapping IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6, 2088–2101 (2013).55.Cohen, W. B. & Spies, T. A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. Remote Sens. Environ. 41, 1–17 (1992).ADS 
    Article 

    Google Scholar 
    56.Czerwinski, C. J., King, D. J. & Mitchell, S. W. Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987–2010. Remote Sens. Environ. 141, 188–200 (2014).ADS 
    Article 

    Google Scholar 
    57.Cohen, W. B., Yang, Z. & Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 114, 2911–2924 (2010).ADS 
    Article 

    Google Scholar 
    58.Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R. & Fensholt, R. Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series. Remote Sens. Environ. 169, 438–453 (2015).ADS 
    Article 

    Google Scholar 
    59.De Marzo, T. et al. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series. International Journal of Applied Earth Observation and Geoinformation 98, 102310 (2021).Article 

    Google Scholar 
    60.Frank, A. Inventering av nyckelbiotoper: resultat till och med 2003. (Skogsstyr., 2004).61.Länsstyrelsen Västerbotten. LstAC Skogar med höga naturvärden ovan gränsen för fjällnära skog 2003–2015 https://ext-geodatakatalog.lansstyrelsen.se/GeodataKatalogen/ (2019).62.Naturvårdsverket. Skyddsvärda statliga skogar http://mdp.vic-metria.nu/miljodataportalen/GetMetaDataById?UUID=3919E66E-2E09-440D-9171-B5074DF0C0ED (2017).63.Naturvårdsverket. Skogliga värdekärnor http://gpt.vic-metria.nu/data/land/skogliga_vardekarnor_2016.zip (2016).64.Naturvårdsverket. Preciserad kartering av kontinuitetsskog i Jämtlands län http://gpt.vic-metria.nu/data/land/Preciserad_kskog_jamtland.zip (2019).65.Ahlkrona, E., Giljam, C. & Wennberg, S. Kartering av kontinuitetsskogi boreal region. Metria AB på uppdrag av Naturvårdsverket (2017).66.Naturvårdsverket. Skyddad fjallbarrskog https://gpt.vic-metria.nu/data/land/NMD/Skyddad_Fjallbarrskog.zip (2019).67.Trotsiuk, V. et al. A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. For. Ecol. Manag. 334, 144–153 (2014).Article 

    Google Scholar 
    68.Kozák, D. et al. Profile of tree-related microhabitats in European primary beech-dominated forests. For. Ecol. Manag. 429, 363–374 (2018).Article 

    Google Scholar 
    69.Garbarino, M. et al. Gap disturbances and regeneration patterns in a Bosnian old-growth forest: a multispectral remote sensing and ground-based approach. Ann. For. Sci. 69, 617–625 (2012).Article 

    Google Scholar 
    70.Keren, S. et al. Comparative Structural Dynamics of the Janj Mixed Old-Growth Mountain Forest in Bosnia and Herzegovina: Are Conifers in a Long-Term Decline? Forests 5, 1243–1266 (2014).Article 

    Google Scholar 
    71.Motta, R. et al. Structure, spatio-temporal dynamics and disturbance regime of the mixed beech–silver fir–Norway spruce old-growth forest of Biogradska Gora (Montenegro). Plant Biosyst. 149, 966–975 (2015).Article 

    Google Scholar 
    72.Motta, R. et al. Development of old-growth characteristics in uneven-aged forests of the Italian Alps. Eur. J. For. Res. 134, 19–31 (2015).Article 

    Google Scholar 
    73.Panayotov, M. et al. Mountain coniferous forests in Bulgaria – structure and natural dynamics. (University of Forestry and Geosoft, 2016).74.Lõhmus, A. & Kraut, A. Stand structure of hemiboreal old-growth forests: Characteristic features, variation among site types, and a comparison with FSC-certified mature stands in Estonia. For. Ecol. Manag. 260, 155–165 (2010).Article 

    Google Scholar 
    75.EEA. Developing a forest naturalness indicator for Europe. Concept and methodology for a high nature value (HNV) forest indicator. (EEA Technical report No 13/2014, Luxembourg: Publications Office of the European Union, 2014).76.Rossi, M., Bardin, P., Cateau, E. & Vallauri, D. Forêts anciennes de Méditerrané e et des montagnes limitrophes: références pour la naturalité régionale. WWF France, Marseille, France, 144 (2013).77.Myhre, T. Skogkur 2020. redningsplan for Norges unike skoger. WWF Verdens villmarksfond, Norges naturvernforbund, SABIMA (2012).78.Ruete, A., Snäll, T. & Jönsson, M. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests. Ecol. Appl. 26, 1475–1485 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Heiri, C., Wolf, A., Rohrer, L., Brang, P. & Bugmann, H. Successional pathways in Swiss mountain forest reserves. Eur. J. For. Res. 131, 503–518 (2012).Article 

    Google Scholar 
    80.Brang, P., Heiri, C. & Bugmann, H. Waldreservate: 50 Jahre natürliche Waldentwicklung in der Schweiz. (Haupt, 2011).81.Pantić, D. et al. Structural, production and dynamic characteristics of the strict forest reserve’Račanska šljivovica’on Mt. Tara. Glasnik Šumarskog fakulteta, 93–114 (2011).82.Savoie, J. M. et al. Vieilles forêts pyrénéennes de Midi-Pyrénées. Deuxième phase. Evaluation et cartographie des sites. Recommandations. Rapport final. (Ecole d’Ingénieurs de PURPAN/DREAL Midi-Pyrénées, 2015).83.Savoie, J. M. et al. Forêts pyrénéennes anciennes de Midi-Pyrénées. Rapport d’Etude de projet FEDER 2008–2011. 320 (Ecole d’Ingénieurs de PURPAN/DREAL Midi-Pyrénées, 2011).84.WWF Finland. Kansallisomaisuus turvaan – valtion omistamia suojelun arvoisia metsä- ja suoalueita, (WWF Suomen raportteja, 2012).85.Kitenberga, M. et al. A mixture of human and climatic effects shapes the 250-year long fire history of a semi-natural pine dominated landscape of Northern Latvia. For. Ecol. Manag. 441, 192–201 (2019).Article 

    Google Scholar 
    86.Baders, E., Senhofa, S., Purina, L. & Jansons, A. Natural succession of Norway spruce stands in hemiboreal forests: case study in Slitere national park, Latvia. Baltic Forestry 23, 522–528 (2017).
    Google Scholar 
    87.Kokarēviča, I. et al. Vegetation changes in boreo–nemoral forest stands depending on soil factors and past land use during an 80 year period of no human impact. Can. J. For. Res. 46, 376–386 (2016).Article 

    Google Scholar 
    88.Fernandez López, A. B. Parque Nacional de Garajonay, Patrimonio Mundial. (Organismo Autonomo Parques Nacionales, 2009).89.TRAGSATEC. Segundo inventario ecológico del Parque Nacional de Garajonay. (Parque Nacional de Garajonay, 2006).90.Fernández, A. B. & Gómez, L. Qué son los bosques antiguos de laurisilva. Su valor y situación en Canarias. La Gomera, entre bosques y taparuchas, 177–236 (2016).91.Matović, B. et al. Comparison of stand structure in managed and virgin european beech forests in Serbia. Šumarski list 142, 47–57 (2018).Article 

    Google Scholar 
    92.Kiš, A., Stojšić, V., & Dinić, A. In 2nd International Symposium on Nature Conservation. Proceedings 373–382 (Institute for Nature Conservation of Vojvodina Province, Novi Sad, 2016).93.Kobyakov, K. & Jakolev, J. Atlas of high conservation value areas, and analysis of gaps and representativeness of the protected area network in northwest Russia. (Finnish Environment Institute, 2013).94.Diku, A. & Shuka, L. Pyjet e vjetër të ahut në shqipëri (Old Beech forests in Albania). (PSEDA – ILIRIA, 2017).95.Burrascano, S. et al. It’s a long way to the top: Plant species diversity in the transition from managed to old-growth forests. J. Veg. Sci. 29, 98–109 (2018).Article 

    Google Scholar  More

  • in

    Genetic melting pot and importance of long-distance dispersal indicated in the Gladiolus imbricatus L. populations in the Polish Carpathians

    1.Zarzycki, K. Paprotniki i rośliny kwiatowe (rośliny naczyniowe). In: Flora i Fauna Pienin. (ed. Razowski J). Monogr. Pienińskie 1, 75–79 (2000).
    Google Scholar 
    2.Środoń, W. Pieniny w historii szaty roślinnej Podhala [Pieniny in the history of plant cover in Podhale region]. In : K. Zarzycki (ed.). Przyroda Pienin w obliczu zmian [The nature of the Pieniny Mts (West Carpathians) in face of the coming changes]. Stud. Nat. 30B, 115–126 (1982).
    Google Scholar 
    3.Deptuła, C. Nad rekonstrukcją dziejów regionu czartoryskiego w XIII I XIV wieku [On the reconstruction of the history of the Czorsztyn region from the 13th to 16th centuries]. Pieniny—Człowiek Przyroda 5, 21–35 (1997) (in Polish with English summary).
    Google Scholar 
    4.Kierś, M. (ed.) Wołosi: Nomadzi Bałkanów (Uniwersytet Jagielloński, 2013).
    Google Scholar 
    5.Oravcová, M. & Krupa, E. Pedigree analysis of the former Valachian sheep. Slovak. J. Anim. Sci. 44, 6–12 (2011).
    Google Scholar 
    6.Wace, A.J.B. & Thompson, M.S. The Nomads of the Balkans. Vol. 6 (Methuen & Co., 1914). https://archive.org/stream/nomadsofbalkansa00wace#page/n9/mode/2up. Accessed 28 June 2021.7.Stachurska-Swakoń, A. Phytogeographical aspects of grasses occuring in tall-herb vegetation in the Carpathians. in Grasses in Poland and Elsewhere (ed. Frey, L.). 39–47. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2009).8.Stachurska-Swakoń, A. Syntaxonomical revision of the communities with Rumex alpinus L. in the Carpathians. Phytocoenologia 39, 217–234. https://doi.org/10.1127/0340-269X/2009/0039-0217 (2009).Article 

    Google Scholar 
    9.Ralska-Jasiewiczowa, M., Nalepka, D. & Goslar, T. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veg. Hist. Archaeobot. 12, 233–247. https://doi.org/10.1007/s00334-003-0021-8 (2003).Article 

    Google Scholar 
    10.Pawłowski, B., Pawłowska, S. & Zarzycki, K. Zespoły roślinne kośnych łąk północnej części Tatr i Podtatrza. Fragm. Flor. Geobot. Pol. 6(2), 95–222 (1960).
    Google Scholar 
    11.Korzeniak, J. 6520* Mountain Yellow Trisetum and Bent-Grass Hay Meadows 55–67 (Methodological guide. GIOŚ, 2013).
    Google Scholar 
    12.Wróbel, I. Pasterstwo w regionie pienińskim [Sheep farming in the Pieniny region]. Pieniny Człowiek Przyroda 5, 43–52 (1997) (in Polish with English summary).
    Google Scholar 
    13.Kostrakiewicz-Gierałt, K., Palic, C. C., Stachurska-Swakoń, A., Nedeff, V. & Sandu, I. The causes of disappearance of sward lily Gladiolus imbricatus L from natural stands—Synthesis of current state of knowledge. Int. J. Conserv. Sci. 9, 821–834 (2018).
    Google Scholar 
    14.Wróbel, I. Szata roślinna Pienińskiego Parku Narodowego – podsumowanie Planu Ochrony na lata 2001–2020 [Plant cover of the Pieniny National Park – summing up the Protection Plan for the years 2001–2020]. Pieniny Człowiek Przyroda 8, 63–69 (2003).
    Google Scholar 
    15.Kubíková, P. & Zeidler, M. Habitat demands and population characteristics of the rare plant species Gladiolus imbricatus L. in the Frenštát region (NE Moravia, the Czech Republic). Čas. Slez. Muz. Opava 60(A), 154–164 (2011).
    Google Scholar 
    16.Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zając, M. Flowering Plants and Pteridophytes of Poland, a Checklist (W. Szafer Institute of Botany, Polish Academy of Sciences, 2002).
    Google Scholar 
    17.Hamilton, A. P. The European Gladioli. Quart. Bull. Alp. Gard. Soc. 44, 140–146 (1976).
    Google Scholar 
    18.Kornaś, J. M. & Medwecka-Kornaś, A. Zespoły roślinne Gorców. I. Naturalne i na wpół naturalne zespoły nieleśne. Fragm. Flor. Geobot. Polon. 13(2), 167–316 (1967).
    Google Scholar 
    19.Ascherson, P. & Engler, A. Beiträge zur Flora Westgaliziens und der Central-Karpaten. Osterr. Bot. Z. 15, 273–285. https://doi.org/10.1007/BF01623075 (1865).Article 

    Google Scholar 
    20.Wołoszczak, E. Zapiski botaniczne z Karpat Sądeckich. Spraw. Komis. Fizjogr. AU 30, 174–206 (1895).
    Google Scholar 
    21.Zapałowicz, H. Conspectus Florae Galiciae Criticus Vol. 1 (Nakł. Akad. Umiej., 1906).
    Google Scholar 
    22.Piękoś-Mirkowa, H. & Mirek, Z. Flora Polski. Rośliny Chronione (Oficyna Wydawnicza Multico, 2006).
    Google Scholar 
    23.Dembicz, I. et al. New locality of Trollius europaeus L. and Gladiolus imbricatus L. near Sochocin by Płońsk (Central Poland). Opole Sci. Soc. Nat. J. 44, 36–46 (2011).
    Google Scholar 
    24.Kropač, Z. & Mochnacký, S. Contribution to the segetal communities of Slovakia, Thaiszia. J. Bot. 19, 145–211 (2009).
    Google Scholar 
    25.Mirek, Z., Nikel, A. & Wilk, Ł. Ozdoba łąk reglowych. Tatry 4(50), 50–51 (2014).
    Google Scholar 
    26.Kołos, A. A new locality of Gladiolus imbricatus (Iridaceae) in the North Podlasie Lowland. Fragm. Florist. Geobot. Polon. 22(2), 390–395 (2015).
    Google Scholar 
    27.Falkowski, M. Nowe stanowisko Gladiolus imbricatus (Iridaceae) w dolinie środkowej Wisły. Fragm. Florist. Geobot. Polon. 9, 369–370 (2002).
    Google Scholar 
    28.Nowak, A. & Antonin, A. Interesujące stanowiska Gladiolus imbricatus (Iridaceae) w Bramie Morawskiej. Fragm. Florist. Geobot. Polon. 13(1), 17–22 (2006).
    Google Scholar 
    29.Stepansky, A., Kovalski, I. & Perl-Treves, R. Interspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 271, 313–332. https://doi.org/10.1007/BF00984373 (1999).Article 

    Google Scholar 
    30.Gupta, M., Chyi, Y.-S., Romero-Sverson, J. & Owen. J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998–1006. https://doi.org/10.1007/BF00224530 (1994).31.Sutkowska, A., Pasierbiński, A., Warzecha, T., Mandal, A. & Mitka, J. Refugial pattern of Bromus erectus in Central Europe based on ISSR fingerprinting. Acta Biol. Cracov. Ser. Bot. 55(2), 107–119. https://doi.org/10.2478/abcsb-2013-0026 (2013).Article 

    Google Scholar 
    32.Bonin, A. et al. How to track and assess genotyping errors in population genetic studies. Mol. Ecol. 3, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).CAS 
    Article 

    Google Scholar 
    33.Vekemans, X. AFLP-surv 1.0: A Program for Genetic Diversity Analysis with AFLP (and RAPD) Population Data. https://ebe.ulb.ac.be/ebe/AFLP-SURV.html (Laboratoire de Génétique et d’Ecologie Végétales, Université Libre de Bruxelles, 2002).34.Yeh, F., Yang, R. & Boyle, T. POPGENE Version 1.32. Microsoft-Based Freeware for Population Genetic Analysis. https://www.softpedia.com/get/Science-CAD/Popgene-Population-Genetic-Analysis.shtml (Molecular Biology and Biotechnology Center, University of Alberta, 1999).35.Schönswetter, P. & Tribsch, A. Vicariance and dispersal in the Alpine perennial Bupleurum stellatum L (Apiaceae). Taxon 54, 725–732. https://doi.org/10.2307/25065429 (2005).Article 

    Google Scholar 
    36.Ehrich, D. AFLPdat: A collection of r functions for convenient handling of AFLP data. Mol. Ecol. Notes 6, 603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x. https://mybiosoftware.com/tag/aflpdat (2006).37.Paun, O., Schönswetter, P. & Winkler, M., Intrabiodiv Consortium & Tribsch, A. Historical divergence versus contemporary gene flow: Evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol. Ecol. 17, 4263–4275. https://doi.org/10.1111/j.1365-294x.2008.03908.x (2008).38.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1093/genetics/131.2.479 (1992).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Biol. 1, 47–50. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1177/117693430500100003 (2005).40.Lynch, M. & Milligan, B. Analysis of population-genetic structure using RAPD markers. Mol. Ecol. 3, 91–99. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1111/j.1365-294x.1994.tb00109.x (1994).41.Saitou, N. & Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Makarenkov, V. T-Rex: Reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics 17, 664–668. http://www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex. https://doi.org/10.1093/bioinformatics/17.7.664 (2001).43.Makarenkov, V. & Legendre, P. The fitting of a tree metric to a given dissimilarity with the weighted least squares criterion. J. Classif. 16, 3–26. https://doi.org/10.1007/s003579900040 (1999).Article 

    Google Scholar 
    44.Felsenstein, J. Phylip (Phylogeny Inference Package) Version 3.6. https://evolution.genetics.washington.edu/phylip.html (University of Washington, 2005).45.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269 (1979).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    46.Kruskal, J. B. Nonmetric multidimensional scaling: A new numerical method. Psychometrika 29, 115–129 (1964).MathSciNet 
    Article 

    Google Scholar 
    47.Rohlf, F. J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis, Version 2.1. https://ntsyspc.software.informer.com/ (Exeter Software, 2002).48.Pritchard, J. K, Stephens, M. & Donelly P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. http://web.stanford.edu/group/pritchardlab/structure.html (2000).49.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J. & Toomajian, C. The pattern of polymorphism in Arabidopsis thaliana. PLOS Biol. 3(7), e196. https://doi.org/10.1371/journal.pbio.0030196 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Dybova-Jachowicz, S. & Sadowska, A. (eds) Palinologia (Inst. Botaniki im. W. Szafera, Polska Akademia Nauk, 2003).
    Google Scholar 
    53.Cieślak, E., Szczepaniak, M., Kamiński, R. & Heine, W. Stan zachowania krytycznie zagrożonego gatunku Gladiolus paluster (Iridaceae) w Polsce – Analiza zmienności genetycznej osobników w uprawie Ogrodu Botanicznego Uniwersytetu Wrocławskiego w kontekście prowadzonych działań ochronnych. Fragm. Florist. Geobot. Polon. 21(1), 49–66 (2014).
    Google Scholar 
    54.Kutlunina, N., Permyakova, M. & Belyaev, A. Genetic diversity and reproductive traits in triploid and tetraploid populations of Gladiolus tenuis (Iridaceae). Plant Syst. Evol. 303, 1–10. https://doi.org/10.1007/s00606-016-1347-x (2017).Article 

    Google Scholar 
    55.Sutkowska, A., Pasierbiński, A., Warzecha, T. & Mitka, J. Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Plant Syst. Evol. 300, 1437–1452. https://doi.org/10.2478/abcsb-2013-0026 (2014).Article 

    Google Scholar 
    56.Gajewski, Z, Boroń, P, Lenart-Boroń, A, Nowak, B., Sitek, E. & Mitka, J. Conservation of Primula farinosa in Poland with respect to the genetic structure of populations. Acta Soc. Bot. Pol. 87(2), 3577 (2018). https://doi.org/10.5586/asbp.3577.Article 

    Google Scholar 
    57.Stojak, J., McDevitt, A. D., Herman, J. S., Searle, J. B. & Wójcik, J. M. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biol. J. Linn. Soc. 115, 927–939. https://doi.org/10.1111/bij.1253541 (2015).Article 

    Google Scholar 
    58.Szczepaniak, M. & Cieślak, E. Low level of genetic variation within Melica transsilvanica populations from the Kraków-Częstochowa Upland and the Pieniny Mts revealed by AFLPs analysis. Acta Soc. Bot. Pol. 76(4), 321–331. https://doi.org/10.5586/asbp.2007.036 (2007).Article 

    Google Scholar 
    59.Bennett, K. D. & Provan, J. What do we mean by ‘refugia’?. Quatern. Sci. Rev. 27, 27–28. https://doi.org/10.1016/j.quascirev.2008.08.019 (2008).Article 

    Google Scholar 
    60.Petit, R. J. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300(5625), 1563–1565. https://doi.org/10.1126/science.1083264 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Brus, R. Growing evidence for the existence of glacial refugia of European beech (Fagus sylvatica L.) in the south-eastern Alps and north-western Dinaric Alps. Periodicum Biol. 112, 239–246 (2010).
    Google Scholar 
    62.Jŏgar, Ü. & Moora, M. Reintroduction of a rare plant (Gladiolus imbricatus) population to a river floodplain—How important is meadow management?. Restor. Ecol. 16, 382–385. https://doi.org/10.1111/j.1526-100X.2008.00435.x (2008).Article 

    Google Scholar 
    63.Mitka, J., Boroń, P., Wróblewska, A. & Bąba, W. AFLP analysis reveals intraspecific phylogenetic relationships and population genetic structure of two species of Aconitum in Central Europe. Acta Soc. Bot. Pol. 84(2), 267–276. https://doi.org/10.5586/asbp.2015.012 (2015).CAS 
    Article 

    Google Scholar 
    64.Biernacka, M. Dawne oraz współczesne formy organizacji pasterstwa w Bieszczadach. Etnogr. Polska 6, 41–61. http://webcache.googleusercontent.com/search?q=cache:JDjzqMdApxIJ:cyfrowaetnografia.pl/Content/454+&cd=1&hl=pl&ct=clnk&gl=pl (1962).65.Stachurska-Swakoń, A., Cieślak, E. & Ronikier, M. Phylogeography of subalpine tall-herb species in Central Europe: the case of Cicerbita alpina. Preslia 84, 121–140. https://doi.org/10.1111/j.1095-8339.2012.01323.x (2012).Article 

    Google Scholar  More

  • in

    Successful artificial reefs depend on getting the context right due to complex socio-bio-economic interactions

    When introducing ARs as a fisheries management tool to Senegal, the Japanese management had the mindset of Japanese stakeholders, i.e., introducing fishing rights. However, after discussions with Senegalese stakeholders, it was decided that no-take areas would be delineated around ARs because the establishment of a strong fishing rights regime was not socially acceptable to the Senegalese fishing community. Japanese governance is based on the acceptance and respect of fishers towards individual, private AR concessions. In contrast, fishers in Senegal, and more widely in West Africa, are characterized by high mobility, particularly in the context of climate change and overexploitation18,19. Consequently, respect for local management regulations is lower, with open access being generally assumed. The basic concept of implementing a no-take area on the AR was not easily accepted by fishers. The immersion of AR concrete blocks was set as a top priority by managers at the expense of more complex socio-economic considerations, such as consciousness-raising activities and self-sustaining participative monitoring of the AR.The clear contradiction between the ecological knowledge of fishers and their behavior was explained by the well-known effects of open access resources on individual behavior. This phenomenon was also observed in our mathematical model. The processes in the mathematical model are in accordance with those perceived by the fishers, so that the results are also those expected by fisher’s local ecological knowledge. It is interesting to notice that the theoretical results presented here are the mathematical solutions of the model at equilibrium between fishing effort and fish population growth, i.e. after an oscillation period. It is obvious that short-term effect of fishing on the AR is always to increase the catch, but many fishers did perceive the longer-term effect of decreasing catches. The potential negative effect of the AR on catch when there is high fish attraction combined with high fishing pressure on the AR might explain the reluctance of a part of the fishers community to AR deployment (Fig. 2). In particular, the model illustrates that the AR attraction effect strongly determines the impact of the management. In general, fish attraction is the most immediate effect perceived after AR deployment11, as was true for our study16. Though the AR volume was relatively small (70 m3), the empty space between the higher blocks also contributes approximately 280 to 570 m3 of good habitat/refuge for schooling fish; therefore, it is actually difficult to accurately describe the volume that affects fish. Thus, it is difficult to say whether this AR is below or above the forecasted optimal volume in absence of fishing (120m3 with model parameters). The existence of an optimal volume for AR was also suggested by field studies as a trade off between food supply and refuge20, in line with our results. For management purposes, it is interesting to determine whether the AR is above or below this optimal level because if the volume is too small, the model predicted that any level of fishing on the AR would, in the long term, decrease the catch in the considered area. On the other hand, if the volume is above the optimal level, a small fishing effort on the AR could be authorized and would increase the total catch in the area.Field observation showed that the fish attraction effect was strong16 but precise estimation of this parameter cannot be inferred, as this would need, ideally, individual fish trajectories. Future field research on the attraction effect may permit estimating the AR attraction parameters. The model sensitivity test showed that the stronger the attraction parameter, the better the impact of the AR for the fisheries in case of no or small fishing effort on the AR (Fig. 3). But at the same time, the attraction is a strong incentive for fishers to fish on the AR, and the predicted benefit for fisheries in the fishing area rapidly vanishes when fishing effort on AR increases. This in turn provides further incentive for fishers to fish the AR, challenging the surveillance capacity. If fish attractiveness is strong and too many fishers fish on the AR, catch in the area will be concentrated on the AR, while the adjacent fishing area will be depleted, with catch levels lower than those prior to AR deployment.Specifically, in the context of generalized overfishing in Senegal21, deciding not to fish on the AR represents significant individual loss, despite being recognized as beneficial, globally22. It has been argued that this situation would rarely occur in small-scale fisheries, due to existing arrangements between individuals23. However, in the context of the highly mobile Senegalese artisanal fishing fleet and its overcapacity, as soon as the AR in Yenne was no longer subject to surveillance, it rapidly attracted fishers from other villages. Also, pre-existing arrangements between fishers might be overruled when new ARs are created, changing the structure of existing fishing grounds.At the time of the survey, the surveillance system set up by the co-management entities was not operational in our case study, because it was dependent on temporally limited external financing. These limitations are typical of short-term projects that focus on a single restricted area for a pre-determined duration, usually up to two years (e.g., NGOs, World Bank). Local fishers perceptions were globally in line with the model prediction that this AR fails to improve fisheries yield when surveillance is not in place to ensure AR regulations are observed, despite effective fish attraction and production existing in the AR.The model predicted that enhanced production on ARs could not keep pace with unrestricted access, which might be particularly true in Senegal where fishing effort rapidly reorganizes itself according to local yields24. Enhanced production due to the AR largely increases the catch if the fishing pressure on the AR remains null or very low, but it has no effect on the catch for higher fishing pressures on the AR (Fig. 3). These results were stable even if fish population growth, fish catchability, mobility and economic parameters could modulate the predicted amplitude of the catch and AR optimal volume. These results are consistent with existing theoretical studies of the impact of fisher movement to high production areas in and around MPAs25. Taking into account several species and their interactions (predation, competition) would lead to a very complex ecosystem model specific to the area (e.g. 26), with necessarily more assumptions. This model would necessarily be more difficult to share with fishers and other stakeholders. Both to simplify model structure and facilitate communication of results to stakeholders, we assumed in our model that the balance of entries exits and is in equilibrium, so that the migratory species did not affect the long-term equilibrium between fishing effort and fish abundance.The design of ARs could be adjusted to reduce the effect of illegal fishing by passively preventing both industrial and artisanal fishing activity. Complex structures are more effective for fish production and attraction27. We showed that, although production might have a limited effect on total catch, attraction can largely increase AR efficiency (total catch) if the rate of illegal fishing rate is very low or absent. Complex structures protect fish more effectively from small scale fishing gear28, including divers (Pers. Comm., Mamadou Sarr, Ouakam fishers committee). Thus, ARs should be appropriately designed to help mitigate potential issues28. Such designs might be more costly, and do not exclude the need for surveillance, but would enhance fisheries management, especially when surveillance cannot capture low levels of illegal fishing.Finally, if socio-economic and governance conditions are not met, well-intentioned AR projects will likely disturb the existing equilibrium among fishers that have different levels of access to the AR. Poor governance of marine resources has previously been described in West Africa, particularly in Senegal29, as has the failure of AR projects in a number of other developing countries9, which further deteriorate fishers trust and management plans efficiency30. In order to avoid that, NGO and governmental agencies driving ARs projects must consider that AR management induces collective costs before providing potentially collective gains. Thus, co-management that involves governmental institutions and fisher communities is required. Future management and adaptation plans for fishers, particularly in developing countries, should, therefore, focus efforts on raising long-term awareness of actors in both government institutions and fishing communities. At the level of institutional or development partners, long-term management costs should be included in the set-up of AR projects. For example, the local fishers committee of Yenne recently reported the establishment of a collective ship chandler whose profits are used to finance AR surveillance during the daytime. Subsequently, fishers noted an improvement in catches around the AR, even though illegal fishing likely continues on the AR at night (Pers. Comm. chair of local fishers committee). These observations support model predictions that low levels of illegal fishing might not disturb the positive impact of the AR. Alternatively surveillance effort could be supported by the community if benefits were managed according to ancestral traditions. Indeed, “no take area” regime on the AR would be in line with some past West African tribal laws, applied before the colonization era, which set marine area where fishing activities were restricted for occasional community celebrations. Collective processes where fishers and other stakeholders can design temporary no-take zones around the AR could increase fishers trust and compliance to the rules, fostering a positive socio-ecological feedback loop30.Hybridization of local and scientific knowledge, through the integration of natural sciences and social sciences, is key point for governance setting31,32,33. Indeed, the communication of the resulting hybrid knowledge in specific events gathering local stakeholders helps strengthen fisheries co-management for the establishment of surveillance and regulatory frameworks. This phenomenon was experienced during the public restitution of the present study with the community, fishers, children’s from local schools and governmental stakeholders. Science popularization of the study results was in French and local language (Wolof) retransmitted on national news (available at https://www.youtube.com/watch?v=yQqFU2P4XZU). Posters were exposed during the event, including pictures of local fishers interviewed and statements reflecting their own perception of how the artificial reef interacts with ecological processes and fisheries dynamics. Straightaway, stakeholders and local promoters of AR publicly expressed their concern and willingness to prioritize the setting up an efficient AR surveillance independent from external resources prior to increase AR deployments. Knowledge hybridization could produce more specific models that could be used for warning and advice, for example by considering potential impacts of ARs on species compositions3,34,35, environmental parameters36, and cascade effects on the trophic food web37. However this approach would need to be adapted to local social-ecological governance, which might require dedicated political-anthropological studies (see concept of adaptive co-management32).In summary, best practices should involve all stakeholders, consider local specificities, such as site configuration, governance, ecosystem, availability of ad hoc human and financial resources for AR surveillance, and define AR volume and design accordingly to these parameters. Thus, if plans exist to deploy ARs at large scales we recommend that legislation is strengthened, with detailed Environmental and social Impact Assessments38 to implement ARs, including considerations of long-term governance. More