More stories

  • in

    Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria

    Strains belonging to the same species display distinct growth dynamics on the marine polysaccharide alginateWe first quantified the growth dynamics of the 12 Vibrionaceae strains (Supplementary Table 1) on alginate in well-mixed batch cultures. Growth of populations was initiated at approximately the same inoculum density (105 colony forming units (c.f.u.) ml−1). We tracked the growth dynamics by measuring the optical density at 600 nm and compared the maximum population size reached over the course of 36 h (Fig. 1 and S1). We found significant differences in the maximal optical density achieved by different strains within each species (Fig. 1 and S1). In V. splendidus, strains 12B01 and FF6 reached a lower maximum population size compared to strains 1S124 and 13B01 (Fig. 1 and S1A). In V. cyclitrophicus, strain ZF270 reached a lower maximum population size compared to strains 1F175, 1F111, and ZF28 (Fig. 1 and S1A). Similarly, in V. sp. F13, strain 9ZC77 reached a lower maximum population size than strains 9CS106, 9ZC13, and ZF57 (Fig. 1 and S1A). These findings suggest that some strains are limited in their growth abilities in well-mixed environments, perhaps as a consequence of differences in the amount and activity of enzymes they release (Supplementary Table 1).Fig. 1: Vibrionaceae strains differ in their growth dynamics on the marine polysaccharide alginate under well-mixed conditions.Maximum optical density (measured at 600 nm) achieved by populations of strains belonging to Vibrio splendidus, Vibrio cyclitrophicus, and Vibrio sp. F13 during the course of a 36 h growth cycle on the same concentration (0.1% weight/volume) of the polysaccharide alginate. Points and error bars indicate the mean of measurements across populations within each ecotype (npopulations = 3) and the 95% confidence interval (CI), respectively. Different letters indicate statistically significant differences between strains within one species (One-way ANOVA and Dunnett’s post-hoc test; V. splendidus: p  More

  • in

    The spatio-temporal distribution of alkaline phosphatase activity and phoD gene abundance and diversity in sediment of Sancha Lake

    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sc. Pollut. R. Int. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading an analysis of contemporary long term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Kim, L. H., Choi, E. & Michal, K. S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50, 53–61 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, X. J., Xiang, C. & Yao, Y. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Res. 42, 2251–2259 (2008).Article 
    CAS 

    Google Scholar 
    Wang, S. R., Jin, X. C. & Bu, Q. Y. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf. A 316, 245–252 (2008).Article 
    CAS 

    Google Scholar 
    Miao, S. Y., De-Laune, R. D. & Jug-Sujinda, A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci. Total Environ. 371, 334–343 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Smits, J. G. C. & Van Beek, J. K. L. ECO: A generic eutrophication model including comprehensive sediment-water interaction. PLoS ONE 8, e68104 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Topcu, A. & Pulatsu, S. Phosphorus fractions and cycling in the sediment of a shallow eutrophic pond. Tarim Bilim. Derg. 20, 63–70 (2014).Article 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Song, C. L., Cao, X. Y. & Liu, Y. B. Seasonal variations in chlorophyll a concentrations in relation to potentials of sediment phosphate release by different mechanisms in a large chinese shallow eutrophic lake (Lake Taihu). Geomicrobiol. J. 26, 508–515 (2009).Article 
    CAS 

    Google Scholar 
    Pop, O., Martin, U., Abel, C. & Müller, J. P. The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous tat translocation system. J. Biol. Chem. 277, 3268–3273 (2002).Article 
    CAS 

    Google Scholar 
    Luo, H. W., Zhang, H. M. & Long, R. A. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 62, 61–69 (2011).Article 

    Google Scholar 
    Tan, H. et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 49, 661–672 (2012).Article 

    Google Scholar 
    Wan, W. J. et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degrad. Dev. 32, 766–776 (2021).Article 

    Google Scholar 
    Chen, X. et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl. Soil Ecol. 119, 197–204 (2017).Article 
    ADS 

    Google Scholar 
    Sagnon, A. et al. Amendment with Burkina Faso phosphate rock-enriched composts alters soil chemical properties and microbial structure, and enhances sorghum agronomic performance. Sci. Rep. 12, 13945 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhabra, S. et al. Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol. Fertil. Soils 49, 31–39 (2012).Article 

    Google Scholar 
    Luo, H. W., Benner, R., Long, R. A. & Hu, J. J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. 106, 212–219 (2009).Article 

    Google Scholar 
    Zhang, T. X. et al. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci. Total Environ. 728, 138615 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, H. et al. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial growth and their succession. J. Environ. Sci. 103, 255–267 (2021).Article 
    CAS 

    Google Scholar 
    Sun, T. T., Huang, T. & Liu, Y. X. Effects of cyanobacterial growth and decline on the phoD-harboring bacterial community structure in sediments of Lake Chaohu. J. Lake Sci. 34, 32 (2022).ADS 

    Google Scholar 
    Li, Y., Ai, M. J., Sun, Y., Zhang, Y. Q. & Zhang, J. Q. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 67, 3144–3149 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Xu, W. L. & Mou, Z. S. Microbial community structure in the sediments and its relation to environmental factors in eutrophicated Sancha Lake. Int. J. Environ. Res. Public Health 16, 1931–1946 (2019).Article 
    CAS 

    Google Scholar 
    Jia, B. Y., Tang, Y. & Fu, W. L. Relationship among sediment characteristics, eutrophication process and human activities in the Sancha Lake. China Environ. Sci. 33, 1638–1644 (2013).CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Zhang, J. Q., Xu, W. L. & Mou, Z. S. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a Eutrophic Lake. Int. J. Environ. Res. Public Health 16, 2141 (2019).Article 
    CAS 

    Google Scholar 
    Ruban, V., Brigault, S., Demare, D. & Philippe, A. M. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues reservoir, France. J. Environ. Monit. 1, 403–407 (1999).Article 
    CAS 

    Google Scholar 
    Ruban, V., López-Sánchez, J. F. & Pardo, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius J. Anal. Chem. 370, 224–228 (2001).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Fu, W. L. & Wu, D. M. Fractions and temporal and spatial distribution of phosphorus in the sediments of Sancha lake. Appl. Ecol. Environ. Res. 17, 11731–11743 (2019).Article 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Xu, W. L. & Mou, Z. S. Gcd gene diversity of quinoprotein glucose dehydrogenase in the sediment of Sancha lake and its response to the environment. Int. J. Environ. Res. Public Health 16, 1–10 (2019).Article 

    Google Scholar 
    Luo, G. W. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 
    CAS 

    Google Scholar 
    Lagos, L. et al. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 52, 1007–1019 (2016).Article 
    CAS 

    Google Scholar 
    Acuña, J. et al. Bacterial alkaline phosphomono-esterase in the rhizospheres of plants grown in chilean extreme environments. Biol. Fertil. Soils 52, 763–773 (2016).Article 

    Google Scholar 
    Nicholas, A. B. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods. 10, 57–59 (2013).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).Article 
    CAS 

    Google Scholar 
    Fan, X. F. & Xing, P. The vertical distribution of sediment archaeal community in the (black bloom) disturbing Zhushan Bay of Lake Taihu. Archaea 2016, 201–208 (2016).Article 

    Google Scholar 
    White, J. R., Nagarajan, N. & Pop, M. O. Statistical methods for detecting differentially abundant features in clinical metagenomic samples (differential abundance in clinical metagenomics). PLoS Comput. Biol. 5, 1–11 (2009).Article 

    Google Scholar 
    Hu, H., Chen, X. J., Hou, F. J., Wu, Y. P. & Cheng, Y. X. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front. Microbiol. 8, 606 (2017).Article 

    Google Scholar 
    Dai, J. Y. et al. Bacterial alkaline phosphatases and affiliated encoding genes in natural waters: A review. J. Lake Sci. 28, 1153–1166 (2016).Article 

    Google Scholar 
    Chróst, R. J. & Overbeck, J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterio-plankton in lake plusee (North German Eutrophic Lake). Microb. Ecol. 13, 229–248 (1987).Article 

    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhao, D. D., Luo, J. F., Huang, X. Y. & Lin, W. T. Diversity of bacterial APase phoD gene in the Pearl River water. Acta Sci. Circum. 35, 722–728 (2015).CAS 

    Google Scholar 
    Valdespino-Castillo, P. M. et al. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico. FEMS Microbiol. Ecol. 90, 504–519 (2014).CAS 

    Google Scholar 
    Ni, Z. K., Li, Y. & Wang, S. R. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. Water Res. 220, 118663 (2022).Article 
    CAS 

    Google Scholar 
    Han, S. S. & Wen, T. M. Phosphorus release and affecting factors in the sediments of eutrophic water. J. Ecol. 23, 98–101 (2004).
    Google Scholar 
    Wang, F. F., Qu, J. H. & Hu, Y. S. Spatio-temporal characteristics and correlation of phosphate, pH and alkaline phosphatase on water-sediment interface of Lake Taihu. Ecol. Environ. Sci. 21, 907–912 (2012).
    Google Scholar 
    Lu, Y. M. et al. Bioavailability of organic phosphorus in Lake Chaohu sediments. J. Environ. Eng. Technol. 10, 197–204 (2020).
    Google Scholar 
    LeBrun, E. S., King, R. S., Back, J. A. & Kang, S. Microbial community structure and function decoupling across a phosphorus gradient in streams. Microb. Ecol. 75, 64–73 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. Connecting sources, fractions and algal availability of sediment phosphorus in shallow lakes: An approach to the criteria for sediment phosphorus concentrations. J. Environ. Sci. 25, 798–810 (2023).Article 

    Google Scholar 
    Hu, Y. J. et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci. Total Environ. 628–629, 53–63 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Public interest in individual study animals can bolster wildlife conservation

    Benson, E. S. Sci. Context 29, 107–128 (2016).Article 
    PubMed 

    Google Scholar 
    Buckmaster, C. A. Lab Anim. 44, 237 (2015).Article 

    Google Scholar 
    Kelly, M. J. et al. J. Zool. 244, 473–488 (1998).Article 

    Google Scholar 
    Spagnuolo, O. S. B., Lemerle, M. A., Holekamp, K. E. & Wiesel, I. Mamm. Biol. https://doi.org/10.1007/s42991-022-00309-4 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    California Department of Fish and Wildlife. Mountain lion P-22 compassionately euthanized following complete health evaluation results. wildlife.ca.gov, https://wildlife.ca.gov/News/mountain-lion-p-22-compassionately-euthanized-following-complete-health-evaluation-results (17 December 2022).Road Ecology Center, UC Davis. California roadkill observation system, https://www.wildlifecrossing.net/california/ (accessed 19 December 2022).Wong-Parodi, G. & Feygina, I. Environ. Commun. 15, 571–593 (2021).Article 

    Google Scholar 
    Carmi, N., Arnon, S. & Orion, N. J. Environ. Educ. 46, 183–201 (2015).Article 

    Google Scholar 
    Manfredo, M. J., Urquiza-Haas, E. G., Don Carlos, A. W., Bruskotter, J. T. & Dietsch, A. M. Biol. Conserv. 241, 108297 (2020).Article 

    Google Scholar 
    Schueler, D. S. & Newberry, M. G. III Appl. Environ. Educ. Commun. 19, 259–273 (2020).Article 

    Google Scholar 
    Jennings, L. Public gets to name Dallas Zoo’s baby giraffe. Dallas Zoo https://zoohoo.dallaszoo.com/2014/11/05/public-gets-to-name-dallas-zoos-baby-giraffe/ (5 November 2014).Verma, A., van der Wal, R. & Fischer, A. Ambio 44(Suppl 4), 648–660 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macdonald, D. W., Jacobsen, K. S., Burnham, D., Johnson, P. J. & Loveridge, A. J. Animals 6, 26 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, M. D., Shanahan, E. A. & McBeth, M. K. The Science of Stories: Applications of the Narrative Policy Framework in Public Policy Analysis (Palgrave MacMillan, 2014). More

  • in

    Diagnosing destabilization risk in global land carbon sinks

    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).Article 
    ADS 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bastos, A. et al. Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange. Atmos. Chem. Phys. 19, 12361–12375 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peñuelas, J. et al. Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 152, 49–59 (2018).Article 

    Google Scholar 
    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dakos, V., Nes, E. H. & Scheffer, M. Flickering as an early warning signal. Theor. Ecol. 6, 309–317 (2013).Article 

    Google Scholar 
    Sillmann, J., Daloz, A. S., Schaller, N. & Schwingshackl, C. in Climate Change 3rd edn (ed. Letcher, T. M.) 359–372 (Elsevier, 2021).Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Buermann, W. et al. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences 13, 1597–1607 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).Article 
    ADS 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article 
    PubMed 

    Google Scholar 
    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article 
    ADS 

    Google Scholar 
    Fernández-Martínez, M. et al. Spatial variability and controls over biomass stocks, carbon fluxes and resource-use efficiencies in forest ecosystems. Trees Struct. Funct. 28, 597–611 (2014).Article 

    Google Scholar 
    Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).Article 
    PubMed 

    Google Scholar 
    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).Article 
    ADS 

    Google Scholar 
    Fernández‐Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 26, 7067–7078 (2020).Article 
    ADS 

    Google Scholar 
    Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 0048 (2017).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    IPBES: Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) 1–56 (IPBES, 2019).Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).Article 

    Google Scholar 
    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Martín-Vide, J. & Peñuelas, J. The consecutive disparity index, D, as measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104, 5925–5930 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ackerman, D. E., Chen, X. & Millet, D. B. Global nitrogen deposition (2° × 2.5° grid resolution) simulated with GEOS-Chem for 1984–1986, 1994–1996, 2004–2006, and 2014–2016 (University of Minnesota, 2018); https://conservancy.umn.edu/handle/11299/197613.Harris, I., Jones, P. D. D., Osborn, T. J. J. & Lister, D. H. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).Article 

    Google Scholar 
    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, K. et al. Causes of slowing-down seasonal CO2 amplitude at Mauna Loa. Glob. Change Biol. 26, 4462–4477 (2020).Article 
    ADS 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957–aaf8957 (2016).Article 
    PubMed 

    Google Scholar 
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).Article 
    PubMed 

    Google Scholar 
    Peguero, G. et al. Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Glob. Change Biol. 25, 2727–2738 (2019).Article 
    ADS 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Cardinale, B. J. Biodiversity improves water quality through niche partitioning. Nature 472, 86–91 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scheffer, M. Critical Transitions in Nature and Society (Princeton University Press, 2009).Ostfeld, R. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chevallier, F. et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307 (2010).Article 
    ADS 

    Google Scholar 
    Chevallier, F. et al. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett. 41, 1065–1070 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).Article 
    ADS 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to interannual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 
    ADS 

    Google Scholar 
    Fernández‐Martínez, M. & Peñuelas, J. Measuring temporal patterns in ecology: the case of mast seeding. Ecol. Evol. 11, 2990–2996 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Ohlson, J. A. & Kim, S. Linear Valuation Without OLS: The Theil–Sen Estimation Approach (SSRN, 2015); https://ssrn.com/abstract=2276927.Komsta, L. Package mblm, 0.12.1: Median-based linear models (2013).Keeling, C. D. et al. in A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems (eds Ehleringer, J. R. et al.) 83–113 (Springer Verlag, 2005).Leroux, B. G., Lei, X. & Breslow, N. in Statistical Models in Epidemiology, the Environment and Clinical Trials (eds Halloran, M. & Berry, D.) 179–191 (Springer-Verlag, 2000).Lee, D. CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors. J. Stat. Softw. 55, 1–24 (2013).Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling‐up biodiversity–ecosystem functioning research. Ecol. Lett. 15, ele.13456 (2020).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Fungal parasitism on diatoms alters formation and bio–physical properties of sinking aggregates

    Falkowski, P. The power of plankton. Nature 483, 17–20 (2012).Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grossart, H. P. & Simon, M. Significance of limnetic organic aggregates (lake snow) for the sinking flux of particulate organic matter in a large lake. Aquat. Microb. Ecol. 15, 115–125 (1998).Article 

    Google Scholar 
    Weyhenmeyer, G. A. & Bloesch, J. The pattern of particle flux variability in Swedish and Swiss lakes. Sci. Total Environ. 266, 69–78 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fender, C. K. et al. Investigating particle size-flux relationships and the biological pump across a range of plankton ecosystem states from coastal to oligotrophic. Front. Marine Sci. 6, https://doi.org/10.3389/fmars.2019.00603 (2019).Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 57, 771–784 (2010).Article 
    CAS 

    Google Scholar 
    Griffiths, J. R. et al. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 23, 2179–2196 (2017).Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jenny, J. P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Chang Biol. 22, 1481–1489 (2016).Article 
    PubMed 

    Google Scholar 
    Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl Acad. Sci. 111, 5628–5633 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, M., Grossart, H. P., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211 (2002).Article 

    Google Scholar 
    Burd, A. B. & Jackson, G. A. Particle aggregation. Ann. Rev. Mar. Sci. 1, 65–90 (2009).Article 
    PubMed 

    Google Scholar 
    Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323 (1994).Article 

    Google Scholar 
    Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: Is there consensus? Prog. Oceanogr. 72, 276–312 (2007).Article 

    Google Scholar 
    Legendre, L. & Rivkin, R. B. Fluxes of carbon in the upper ocean: regulation by food-web control nodes. Mar. Ecol. Prog. Ser. 242, 95–109 (2002).Article 

    Google Scholar 
    Kaneko, H. et al. Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean. iScience 24, 102002 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P. et al. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17, 339–354 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Amend, A. et al. Fungi in the marine environment: Open questions and unsolved problems. mBio 10, e01189–01118 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 4457 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutiérrez, M. H., Pantoja, S., Tejos, E. & Quiñones, R. A. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar. Biol. 158, 205–219 (2011).Article 

    Google Scholar 
    Edgcomb, V. P., Beaudoin, D., Gast, R., Biddle, J. F. & Teske, A. Marine subsurface eukaryotes: The fungal majority. Environ. Microbiol. 13, 172–183 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Frenken, T. et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol. 19, 3802–3822 (2017).Article 
    PubMed 

    Google Scholar 
    Van den Wyngaert, S. et al. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. ISME J. 16, 2242–2254 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gsell, A. S. et al. Long-term trends and seasonal variation in host density, temperature, and nutrients differentially affect chytrid fungi parasitising lake phytoplankton. Freshwat. Biol. https://doi.org/10.1111/fwb.13958 (2022).Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).Article 
    PubMed 

    Google Scholar 
    Kilias, E. S. et al. Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Commun. Biol. 3, 183 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassett, B. T., Ducluzeau, A. L. L., Collins, R. E. & Gradinger, R. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ. Microbiol. 19, 475–484 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).Article 
    PubMed 

    Google Scholar 
    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G. & Vandenkoornhuyse, P. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75, 6415–6421 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, T. A. et al. Molecular diversity and distribution of marine fungi across 130 european environmental samples. Proc. R. Soc. B Biol. Sci. 282, 20152243 (2015).Article 

    Google Scholar 
    Taylor, J. D. & Cunliffe, M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 10, 2118–2128 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y., Sen, B., He, Y., Xie, N. & Wang, G. Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai Sea. Front. Microbiol. 9, 584 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z., Johnson, Z. I. & Wang, G. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J. 4, 111–120 (2009).Article 
    PubMed 

    Google Scholar 
    Duan, Y. et al. A high-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA). Appl. Environ. Microbiol. 84, e00967–00918 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cleary, A. C., Søreide, J. E., Freese, D., Niehoff, B. & Gabrielsen, T. M. Feeding by Calanus glacialis in a high arctic fjord: Potential seasonal importance of alternative prey. ICES J. Mar. Sci. 74, 1937–1946 (2017).Article 

    Google Scholar 
    Renaud, P. E., Morata, N., Carroll, M. L., Denisenko, S. G. & Reigstad, M. Pelagic–benthic coupling in the western Barents Sea: Processes and time scales. Deep Sea Res. Part II: Topical Stud. Oceanogr. 55, 2372–2380 (2008).Article 
    CAS 

    Google Scholar 
    Lepère, C., Ostrowski, M., Hartmann, M., Zubkov, M. V. & Scanlan, D. J. In situ associations between marine photosynthetic picoeukaryotes and potential parasites – a role for fungi? Environ. Microbiol. Rep. 8, 445–451 (2016).Article 
    PubMed 

    Google Scholar 
    Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).Article 

    Google Scholar 
    Gerphagnon, M., Colombet, J., Latour, D. & Sime-Ngando, T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Sci. Rep. 7, 6056 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ibelings, B. W. et al. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwat. Biol. 56, 754–766 (2011).Article 

    Google Scholar 
    Gsell, A. S. et al. Spatiotemporal variation in the distribution of chytrid parasites in diatom host populations. Freshwat. Biol. 58, 523–537 (2013).Article 

    Google Scholar 
    Grami, B. et al. Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: A linear inverse modeling analysis. PLOS ONE. 6, e23273 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klawonn, I. et al. Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl Acad. Sci. 118, e2102225118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagami, M., Miki, T. & Takimoto, G. Mycoloop: Chytrids in aquatic food webs. Front. Microbiol. 5, 166 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laundon, D. & Cunliffe, M. A call for a better understanding of aquatic chytrid biology. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.708813 (2021).Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).Article 

    Google Scholar 
    Laurenceau-Cornec, E. C., Trull, T. W., Davies, D. M., De La Rocha, C. L. & Blain, S. Phytoplankton morphology controls on marine snow sinking velocity. Mar. Ecol. Prog. Ser. 520, 35–56 (2015).Article 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).Article 

    Google Scholar 
    Alldredge, A. L., Gotschalk, C., Passow, U. & Riebesell, U. Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res. Part II: Topical Stud. Oceanogr. 42, 9–27 (1995).Article 
    CAS 

    Google Scholar 
    Seto, K., Van den Wyngaert, S., Degawa, Y. & Kagami, M. Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota). Fungal Syst. Evol. 5, 17–38 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Engel, A. in Practical Guidelines for the Analysis of Seawater (eds Wurl O & Raton B) (CRC Press, 2009).Cisternas-Novoa, C., Lee, C. & Engel, A. A semi-quantitative spectrophotometric, dye-binding assay for determination of Coomassie Blue stainable particles. Limnol. Oceanogr. Methods. 12, 604–616 (2014).Article 

    Google Scholar 
    Passow, U. & Alldredge, A. L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40, 1326–1335 (1995).Article 
    CAS 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).Article 

    Google Scholar 
    van der Jagt, H., Friese, C., Stuut, J.-B. W., Fischer, G. & Iversen, M. H. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow. Limnol. Oceanogr. 63, 1386–1394 (2018).Article 

    Google Scholar 
    Grossart, H. P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277 (2001).Article 
    CAS 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).Article 
    CAS 

    Google Scholar 
    Ploug, H. & Grossart, H. P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475 (2000).Article 
    CAS 

    Google Scholar 
    Belcher, A. et al. Depth-resolved particle-associated microbial respiration in the northeast Atlantic. Biogeosciences 13, 4927–4943 (2016).Article 

    Google Scholar 
    Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11 (1999).Article 
    CAS 

    Google Scholar 
    Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).Article 

    Google Scholar 
    Nguyen, T. T. H. et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat. Commun. 13, 1657 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. Proc. Natl Acad. Sci. 118, e2016896118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).Article 
    CAS 

    Google Scholar 
    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).Article 
    CAS 

    Google Scholar 
    Henson, S., Le Moigne, F. & Giering, S. Drivers of carbon export efficiency in the global ocean. Glob. Biogeochem. Cycles. 33, 891–903 (2019).Article 
    CAS 

    Google Scholar 
    Gsell, A. S., De Senerpont Domis, L. N., Verhoeven, K. J. F., Van Donk, E. & Ibelings, B. W. Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. ISME J. 7, 2057–2059 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agha, R., Saebelfeld, M., Manthey, C., Rohrlack, T. & Wolinska, J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci. Rep. 6, 35039 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasconi, S. et al. Parasitic chytrids upgrade and convey primary produced carbon during inedible algae proliferation. Protist 171, 125768 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guidi, L. et al. Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis. Limnol. Oceanogr. 54, 1951–1963 (2009).Article 

    Google Scholar 
    Boyd, P. W. & Newton, P. P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 46, 63–91 (1999).Article 
    CAS 

    Google Scholar 
    van der Jagt, H., Wiedmann, I., Hildebrandt, N., Niehoff, B. & Iversen, M. H. Aggregate feeding by the copepods Calanus and Pseudocalanus controls carbon flux attenuation in the arctic shelf sea during the productive period. Front. Mar. Sci. 7, 543124 (2020).Article 

    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).Article 

    Google Scholar 
    Cavan, E. L., Henson, S. A., Belcher, A. & Sanders, R. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences 14, 177–186 (2017).Article 
    CAS 

    Google Scholar 
    Gachon, C. M. M., Küpper, H., Küpper, F. C. & Šetlík, I. Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur. J. Phycol. 41, 395–403 (2006).Article 

    Google Scholar 
    Senga, Y., Yabe, S., Nakamura, T. & Kagami, M. Influence of parasitic chytrids on the quantity and quality of algal dissolved organic matter (AOM). Water Res. 145, 346––353 (2018).Article 
    PubMed 

    Google Scholar 
    Roberts, C., Allen, R., Bird, K. E. & Cunliffe, M. Chytrid fungi shape bacterial communities on model particulate organic matter. Biol. Lett. 16, 20200368 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. 113, 1576–1581 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shibl, A. A. et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc. Natl Acad. Sci. 117, 27445–27455 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guidi, L. et al. Relationship between particle size distribution and flux in the mesopelagic zone. Deep-Sea Res. Part I Oceanogr. Res. Papers. 55, 1364–1374 (2008).Article 
    CAS 

    Google Scholar 
    Jackson, G. A. et al. Particle size spectra between 1 μm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 44, 1739–1767 (1997).Article 

    Google Scholar 
    Frenken, T. et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Glob. Change Biol. 22, 299–309 (2016).Article 

    Google Scholar 
    Mari, X., Passow, U., Migon, C., Burd, A. B. & Legendre, L. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151, 13–37 (2017).Article 

    Google Scholar 
    Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55, 287–333 (2002).Article 

    Google Scholar 
    Prieto, L. et al. Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 49, 1233–1253 (2002).Article 

    Google Scholar 
    Kiørboe, T., Andersen, K. P. & Dam, H. G. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol. 107, 235–245 (1990).Article 

    Google Scholar 
    Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1150 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gärdes, A., Iversen, M. H., Grossart, H. P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).Article 
    PubMed 

    Google Scholar 
    Grossart, H. P. & Simon, M. Interactions of planktonic algae and bacteria: Effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 47, 163–176 (2007).Article 

    Google Scholar 
    Short, S. M. The ecology of viruses that infect eukaryotic algae. Environ. Microbiol. 14, 2253–2271 (2012).Article 
    PubMed 

    Google Scholar 
    Carlström, D. The crystal structure of α-chitin (Poly-N-acetyl-d-glucosamine). J. Biophysical Biochemical Cytol. 3, 669–683 (1957).Article 

    Google Scholar 
    Miklasz, K. A. & Denny, M. W. Diatom sinkings speeds: Improved predictions and insight from a modified Stokes’ law. Limnol. Oceanogr. 55, 2513–2525 (2010).Article 

    Google Scholar 
    Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508 (1999).Article 
    CAS 

    Google Scholar 
    Gerphagnon, M. et al. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environ. Microbiol. 21, 949–958 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kagami, M., Von Elert, E., Ibelings, B. W., De Bruin, A. & Van Donk, E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc. R. Soc. B Biol. Sci. 274, 1561–1566 (2007).Article 

    Google Scholar 
    Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 1–8 (2014).Article 

    Google Scholar 
    Williams, D. M. Synedra, Ulnaria: definitions and descriptions – a partial resolution. Diatom Res. 26, 149–153 (2011).Article 

    Google Scholar 
    Arar, E. J. & Collins, G. B. Method 445.0: In vitro determination of chlorophyll and phaeophytin a in marine and freshwater algae by fluorescence. U.S. Environemental Protection Agency, Cinncinnati, Ohio Revision 1.2, 1–22 (1997).Klawonn, I., Dunker, S., Kagami, M., Grossart, H.-P., Van den Wyngaert, S. Intercomparison of two fluorescent dyes to visualize parasitic fungi (Chytridiomycota) on phytoplankton. Microb. Ecol. 85, 9–23 (2023).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alldredge, A. L. & Gotschalk, C. In situ settling behavior of marine snow. Limnol. Oceanogr. 33, 351 (1988).Article 

    Google Scholar 
    Jackson, G. A. Coagulation in a rotating cylinder. Limnol. Oceanogr. Methods. 13, e10018 (2015).Article 

    Google Scholar 
    Shanks, A. L. & Edmondson, E. W. Laboratory-made artificial marine snow: a biological model of the real thing. Mar. Biol. 101, 463–470 (1989).Article 

    Google Scholar 
    Cowen, R. K. & Guigand, C. M. In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. Methods. 6, 126–132 (2008).Article 

    Google Scholar 
    Jackson, G. A. & Burd, A. B. Simulating aggregate dynamics in ocean biogeochemical models. Prog. Oceanogr. 133, 55–65 (2015).Article 

    Google Scholar 
    Petrik, C. M., Jackson, G. A. & Checkley, D. M. Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 74, 64–81 (2013).Article 

    Google Scholar 
    Johnson, C. P., Li, X. & Logan, B. E. Settling velocities of fractal aggregates. Environ. Sci. Technol. 30, 1911–1918 (1996).Article 
    CAS 

    Google Scholar 
    Laurenceau-Cornec, E. C. et al. New guidelines for the application of Stokes’ models to the sinking velocity of marine aggregates. Limnol. Oceanogr. 65, 1264–1285 (2020).Article 
    CAS 

    Google Scholar 
    Ploug, H. & Grossart, H. P. Bacterial production and respiration in suspended aggregates – A matter of the incubation method. Aquat. Microb. Ecol. 20, 21–29 (1999).Article 

    Google Scholar 
    Berggren, M., Lapierre, J.-F. & del Giorgio, P. A. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984–993 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    R.CoreTeam. R: A language and environment for statistical computing. Vienna, Austria. Retrieved from https://www.R-project.org/ (2016). More

  • in

    Upside down sulphate dynamics in a saline inland lake

    Canfield, D. E.; Kristensen, E.; Thamdrup, B. The Sulfur Cycle. In Advances in Marine Biology; Aquatic Geomicrobiology; Academic Press, 2005; Vol. 48, pp 313–381. https://doi.org/10.1016/S0065-2881(05)48009-8.Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00849 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thamdrup, B., Fossing, H. & Jørgensen, B. B. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay. Denmark. Geochim. Cosmochim. Acta 58(23), 5115–5129. https://doi.org/10.1016/0016-7037(94)90298-4 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Holmer, M. & Storkholm, P. Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw. Biol. 46(4), 431–451. https://doi.org/10.1046/j.1365-2427.2001.00687.x (2001).Article 
    CAS 

    Google Scholar 
    Koschorreck, M. Microbial sulphate reduction at a low PH. FEMS Microbiol. Ecol. 64(3), 329–342. https://doi.org/10.1111/j.1574-6941.2008.00482.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kwon, M. J. et al. Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS ONE 11(1), e0146689. https://doi.org/10.1371/journal.pone.0146689 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fründ, C. & Cohen, Y. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58(1), 70–77. https://doi.org/10.1128/aem.58.1.70-77.1992 (1992).
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschall, C., Frenzel, P. & Cypionka, H. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159(2), 168–173. https://doi.org/10.1007/BF00250278 (1993).Article 
    CAS 

    Google Scholar 
    Borzenko, S. V., Kolpakova, M. N., Shvartsev, S. L. & Isupov, V. P. Biogeochemical conversion of sulfur species in saline lakes of steppe Altai. J. Oceanol. Limnol. 36(3), 676–686. https://doi.org/10.1007/s00343-018-6293-8 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Häusler, S. et al. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the dead sea. FEMS Microbiol Ecol 90(3), 956–969. https://doi.org/10.1111/1574-6941.12449 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Komor, S. C. Bidirectional sulfate diffusion in saline-lake sediments: Evidence from Devils Lake, Northeast North Dakota. Geology 20(4), 319–322. https://doi.org/10.1130/0091-7613(1992)020%3c0319:BSDISL%3e2.3.CO;2 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Valiente, N. et al. Tracing sulfate recycling in the hypersaline Pétrola Lake (SE Spain): A combined isotopic and microbiological approach. Chem. Geol. 473, 74–89. https://doi.org/10.1016/j.chemgeo.2017.10.024 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Moreira, N., Walter, L., Vasconcelos, C., McKenzie, J. & McCall, P. Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology 32(8), 701–704. https://doi.org/10.1130/G20353.1 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Jolly, I. D., McEwan, K. L. & Holland, K. L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology https://doi.org/10.1002/eco.6 (2008).Article 

    Google Scholar 
    Williams, W. D. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conserv. 29(2), 154–167. https://doi.org/10.1017/S0376892902000103 (2002).Article 

    Google Scholar 
    CHE. Confederación Hidrográfica del Ebro. https://www.chebro.es/ (Accessed 1 June 2022).Comín, F. A., Rodó, X. & Comín, P. Lake Gallocanta (Aragon, NE Spain), a paradigm of fluctuations at different scales of time. Limnetica 8(1), 79–86 (1992).Article 

    Google Scholar 
    Luna, E.; Latorre, B.; Castañeda, C. Rainfall and the Presence of Water in Gallocanta Lake. http://digital.csic.es/handle/10261/117417. (2014).San Roman Saldaña, J.; García Vera, M. Á.; Blasco Herguedas, Ó.; Coloma López, P. Toma de Datos, Modelación y Gestión Del Agua Subterránea En La Cuenca Endorréica de La Laguna de Gallocanta (España); Alicante, Spain, 2005; pp 551–557.Orellana-Macías, J. M., Merchán, D. & Causapé, J. Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain). Hydrogeol. J. https://doi.org/10.1007/s10040-020-02184-0 (2020).Article 

    Google Scholar 
    Gracia, F. J., Gutierrez, F. & Gutierrez, M. Origin and evolution of the Gallocanta Polije (Iberian range, NE Spain). Z. Geomorph. N. F. 46(2), 245–262 (2002).Article 

    Google Scholar 
    García-Vera, M.A.; San Román Saldaña, J.; Blasco Herguedas, O.; Coloma López, P. Hidrogeología de La Laguna de GalIocanta e Implicaciones Ambientales. In M.A. Casterad and C. Castañeda (Eds.). La Laguna de Gallocanta: Medio Natural, Conservación y Teledetección. Memorias de la Real Sociedad Española de Historia Natural. 2009, 7, 79–104.Comín, F. A., Juli, R., Comín, P. & Plana, F. Hydrogeochemistry of Lake Gallocanta (Aragón, NE Spain). Hydrobiologia 197, 51–66. https://doi.org/10.1007/bf00026938 (1990).Article 

    Google Scholar 
    Mayayo, M. J. et al. Sedimentological evolution of the holocene Gallocanta Lake, NE Spain. Limnol. Spain Tribute Kerry Kelts 14, 359–384 (2003).
    Google Scholar 
    Pérez, A. et al. Sedimentary facies distribution and genesis of a recent carbonate-rich Saline Lake: Gallocanta Lake, Iberian Chain, NE Spain. Sediment. Geol. 148(1–2), 185–202. https://doi.org/10.1016/S0037-0738(01)00217-2 (2002).Article 
    ADS 

    Google Scholar 
    Corzo, A. et al. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain). Geomicrobiol. J. 22(6), 283–298. https://doi.org/10.1080/01490450500183654 (2005).Article 
    CAS 

    Google Scholar 
    Castañeda, C., Gracia, F. J., Luna, E. & Rodríguez-Ochoa, R. Edaphic and geomorphic evidences of water level fluctuations in Gallocanta Lake, NE Spain. Geoderma 239–240, 265–279. https://doi.org/10.1016/j.geoderma.2014.11.005 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Luzón, A. et al. Holocene environmental changes in the Gallocanta lacustrine basin, Iberian range, NE Spain. Holocene 17(5), 649–663. https://doi.org/10.1177/0959683607078994 (2007).Article 
    ADS 

    Google Scholar 
    Schütt, B. Reconstruction of holocene paleoenvironments in the endorheic basin of laguna de Gallocanta, Central Spain by investigation of mineralogical and geochemical characters from lacustrine sediments. J. Paleolimnol. 20, 217. https://doi.org/10.1023/A:1007924000636 (1998).Article 
    ADS 

    Google Scholar 
    Castañeda, C., Luna, E. & Rabenhorst, M. Reducing conditions in soil of Gallocanta Lake. Northeast Spain. Eur. J. Soil Sci. 68(2), 249–258. https://doi.org/10.1111/ejss.12407 (2017).Article 
    CAS 

    Google Scholar 
    Castañeda, C., Gracia, F. J., Conesa, J. A. & Latorre, B. Geomorphological control of habitat distribution in an intermittent shallow Saline Lake, Gallocanta Lake. NE Spain. Sci. Total Environ. 726, 138601. https://doi.org/10.1016/j.scitotenv.2020.138601 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Comín, F. A., Rodó, X. & Menéndez, M. Spatial heterogeneity of macrophytes in lake Gallocanta (Aragón, NE Spain). Hydrobiologia 267(1–3), 169–178. https://doi.org/10.1007/BF00018799 (1993).Article 

    Google Scholar 
    Castro, O. D. et al. A Contribution to the characterization of ruppia drepanensis (ruppiaceae), a key species of threatened mediterranean Wetlands. Ann. Mo. Bot. Gard. 106, 1–9. https://doi.org/10.3417/2020520 (2021).Article 

    Google Scholar 
    Alonso López, J. A., Alonso López, J. C., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. II. Timing and pattern of daily departures. Ardea 78, 379–388 (1990).
    Google Scholar 
    Alonso López, J. C., Alonso López, J. A., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. I. Daily Variations in Migration Volume. Ardea 78, 365–378 (1990).
    Google Scholar 
    Orellana-Macías, J. M., Bautista, L. M., Merchán, D., Causapé, J. & Alonso, J. C. Shifts in crane migration phenology associated with climate change in southwestern Europe. Avian Conserv. Ecol. 15(1), 1–13. https://doi.org/10.5751/ACE-01565-150116 (2020).Article 

    Google Scholar 
    Luzón, A., Mayayo, M. J. & Pérez, A. Stable isotope characterisation of co-existing carbonates from the holocene Gallocanta Lake (NE Spain): Palaeolimnological implications. Int. J. Earth Sci. 98(5), 1129–1150. https://doi.org/10.1007/s00531-008-0308-1 (2009).Article 
    CAS 

    Google Scholar 
    Accoe, F. et al. Evolution of the Δ13C signature related to total carbon contents and carbon decomposition rate constants in a soil profile under grassland. Rapid Commun. Mass Spectrom. 16(23), 2184–2189. https://doi.org/10.1002/rcm.767 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Menéndez-Serra, M., Triadó-Margarit, X., Castañeda, C., Herrero, J. & Casamayor, E. O. Microbial composition, potential functional roles and genetic novelty in gypsum-rich and hypersaline soils of Monegros and Gallocanta (Spain). Sci. Total Environ. 650(September), 343–353. https://doi.org/10.1016/j.scitotenv.2018.09.050 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kendall, C. & McDonnell, J. J. Isotope Tracers in Catchment Hydrology 1st edn. (Elsevier, 1999).

    Google Scholar 
    Mayer, B., Fritz, P., Prietzel, J. & Krouse, H. R. The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl. Geochem. 10(2), 161–173. https://doi.org/10.1016/0883-2927(94)00054-A (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Otero, N., Canals, À. & Soler, A. Using dual-isotope data to trace the origin and processes of dissolved sulphate: A case study in calders stream (Llobregat Basin, Spain). Aquat. Geochem. 13(2), 109–126. https://doi.org/10.1007/s10498-007-9010-3 (2007).Article 
    CAS 

    Google Scholar 
    Canfield, D. E. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65(7), 1117–1124. https://doi.org/10.1016/S0016-7037(00)00584-6 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Canfield, D. E. Biogeochemistry of sulfur isotopes. Rev. Mineral. Geochem. 43(1), 607–636. https://doi.org/10.2138/gsrmg.43.1.607 (2001).Article 
    CAS 

    Google Scholar 
    Antler, G., Turchyn, A. V., Ono, S., Sivan, O. & Bosak, T. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim. Cosmochim. Acta 203, 364–380. https://doi.org/10.1016/j.gca.2017.01.015 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Kaplan, I. R. & Rittenberg, S. C. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34(2), 195–212. https://doi.org/10.1099/00221287-34-2-195 (1964).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mangalo, M., Meckenstock, R. U., Stichler, W. & Einsiedl, F. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim. Cosmochim. Acta 71(17), 4161–4171. https://doi.org/10.1016/j.gca.2007.06.058 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Strebel, O., Böttcher, J. & Fritz, P. Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 121(1–4), 155–172. https://doi.org/10.1016/0022-1694(90)90230-U (1990).Article 
    ADS 
    CAS 

    Google Scholar 
    Sim, M. S., Bosak, T. & Ono, S. Large sulfur isotope fractionation does not require disproportionation. Science 333(6038), 74–77. https://doi.org/10.1126/science.1205103 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the phanerozoic sulfur isotope record. Proc. Natl. Acad. Sci. 110(28), 11244–11249. https://doi.org/10.1073/pnas.1218874110 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Utrilla, R., Pierre, C., Orti, F. & Pueyo, J. J. Oxygen and sulphur isotope compositions as indicators of the origin of mesozoic and cenozoic evaporites from Spain. Chem. Geol. 102(1), 229–244. https://doi.org/10.1016/0009-2541(92)90158-2 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Driessche, A. E. S. V., Canals, A., Ossorio, M., Reyes, R. C. & García-Ruiz, J. M. Unraveling the sulfate sources of (Giant) gypsum crystals using gypsum isotope fractionation factors. J. Geol. https://doi.org/10.1086/684832 (2016).Article 

    Google Scholar 
    Wardlaw, G. D. & Valentine, D. L. Evidence for salt diffusion from sediments contributing to increasing salinity in the Salton sea, California. Hydrobiologia 533(1), 77–85. https://doi.org/10.1007/s10750-004-2395-8 (2005).Article 
    CAS 

    Google Scholar 
    Bak, F. & Pfennig, N. Microbial sulfate reduction in littoral sediment of lake constance. FEMS Microbiol. Lett. 85(1), 31–42. https://doi.org/10.1111/j.1574-6968.1991.tb04695.x (1991).Article 
    CAS 

    Google Scholar 
    Dogramaci, S. S., Herczeg, A. L., Schiff, S. L. & Bone, Y. Controls on Δ34S and Δ18O of dissolved sulfate in aquifers of the murray basin, Australia and their use as indicators of flow processes. Appl. Geochem. 16(4), 475–488. https://doi.org/10.1016/S0883-2927(00)00052-4 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodier. L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer; Dunod, 1976.Romain, T. Tester Les Isotopes Stables de l’azote Des Matières Organiques Fossiles Terrestres Comme Marqueur Paléoclimatique Sur Des Séries Pré-Quaternaires, Université Pierre et Marie Curie – Paris VI, 2015. https://tel.archives-ouvertes.fr/tel-01408071. More

  • in

    Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus)

    Ilker, E. & Hinczewski, M. Modeling the growth of organisms validates a general relation between metabolic costs and natural selection. Phys. Rev. Lett. 122, 238101 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boltaña, S. et al. Influences of thermal environment on fish growth. Ecol. Evol. 7, 6814–6825 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenfeld, J., Richards, J., Allen, D., Van Leeuwen, T. & Monnet, G. Adaptive trade-offs in fish energetics and physiology: Insights from adaptive differentiation among juvenile salmonids. Can. J. Fish. Aquat. Sci. 77, 1243–1255 (2020).Article 

    Google Scholar 
    Robertson, D. R. & Collin, R. Inter- and intra-specific variation in egg size among reef fishes across the isthmus of Panama. Front. Ecol. Evol. 2, 84 (2015).Article 

    Google Scholar 
    Zueva, K. J., Lumme, J., Veselov, A. E., Kent, M. P. & Primmer, C. R. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar. Genom. 39, 26–38 (2018).Article 

    Google Scholar 
    Rajkov, J., El Taher, A., Böhne, A., Salzburger, W. & Egger, B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol. Ecol. 30, 274–296 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Verhille, C. E. et al. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail. Conserv. Physiol. 4, 1–12 (2016).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (version Feb 2018). In: Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist (Roskov Y. et al.). (2018). www.catalogueoflife.org/annual-checklist/2019. ISSN 2405–884X.Karås, P. & Klingsheim, V. Effects of temperature and salinity on embryonic development of turbot (Scophthalmus maximus L.) from the North Sea, and comparisons with Baltic populations. Helgolander Meeresuntersuchungen 51, 241–247 (1997).Article 
    ADS 

    Google Scholar 
    Barbut, L. et al. How larval traits of six flatfish species impact connectivity. Limnol. Oceanogr. 64, 1150–1171 (2019).Article 
    ADS 

    Google Scholar 
    Bouza, C., Presa, P., Castro, J., Sánchez, L. & Martínez, P. Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus maximus) in comparison with other Pleuronectiformes. Can. J. Fish. Aquat. Sci. 59, 1460–1473 (2002).Article 
    CAS 

    Google Scholar 
    Nielsen, E. E., Nielsen, P. H., Meldrup, D. & Hansen, M. M. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol. Ecol. 13, 585–595 (2004).Article 
    PubMed 

    Google Scholar 
    Vandamme, S. G. et al. Regional environmental pressure influences population differentiation in turbot (Scophthalmus maximus). Mol. Ecol. 23, 618–636 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vilas, R. et al. A genome scan for candidate genes involved in the adaptation of turbot (Scophthalmus maximus). Mar. Genom. 23, 77–86 (2015).Article 

    Google Scholar 
    Turan, C. et al. Genetics structure analysis of turbot (Scophthalmus maximus, Linnaeus, 1758) in the Black and Mediterranean Seas for application of innovative Management Strategies. Front. Mar. Sci. 6, 740 (2019).Article 

    Google Scholar 
    Ivanova, P. et al. Genetic diversity and morphological characterisation of three turbot (Scophthalmus maximus L., 1758) populations along the Bulgarian Black Sea coast. Nat. Conserv. 43, 123–146 (2021).Article 

    Google Scholar 
    do Prado, F. D. et al. Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus). Evol. Appl. 11, 1322–1341 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    do Prado, F. D. et al. Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations. Aquac. Environ. Interact. 10, 447–463 (2018).Article 

    Google Scholar 
    Robledo, D. et al. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. Comp. Biochem. Physiol. Part D Genom. Proteom. 21, 41–55 (2017).CAS 

    Google Scholar 
    Sánchez-Molano, E. et al. Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics 12, 473 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ramilo, S. T. et al. QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genom. 12, 541 (2011).Article 

    Google Scholar 
    Robledo, D. et al. Integrative transcriptome, genome and quantitative trait loci resources identify single nucleotide polymorphisms in candidate genes for growth traits in turbot. Int. J. Mol. Sci. 17, 243 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sciara, A. A. et al. Validation of growth-related quantitative trait loci markers in turbot (Scophthalmus maximus) families as a step toward marker assisted selection. Aquaculture 495, 602–610 (2018).Article 

    Google Scholar 
    Ma, A., Huang, Z., Wang, X. & Xu, Y. & Guo, X.,. Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Sci. Rep. 11, 1–12 (2021).Article 

    Google Scholar 
    Cui, W. et al. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. Fish Physiol. Biochem. 46, 1519–1536 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183, 1443–1452 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez, P. et al. A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus maximus). Genomics 113, 1705–1718 (2021).Article 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Turbot (Scophthalmus maximus) genomic resources:application for boosting aquaculture production. Genomics in Aquaculture (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-801418-9.00006-8.Saura, M. et al. Disentangling genetic variation for resistance and endurance to scuticociliatosis in turbot using pedigree and genomic information. Front. Genet. 10, 539 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramburu, O. et al. Genomic signatures after five generations of intensive selective breeding: Runs of homozygosity and genetic diversity in representative domestic and wild populations of turbot (Scophthalmus maximus). Front. Genet. 11, 1–14 (2020).Article 

    Google Scholar 
    Aramburu, O., Blanco, A., Bouza, C. & Martínez, P. Integration of host-pathogen functional genomics data into the chromosome-level genome assembly of turbot (Scophthalmus maximus). Aquaculture 564, 739067 (2023).Article 
    CAS 

    Google Scholar 
    Saul, M. C., Philip, V. M., Reinholdt, L. G. & Chesler, E. J. High-diversity mouse populations for complex traits. Trends Genet. 35, 501–514 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moen, T. et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics 200, 1313–1326 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pavelin, J. et al. The nedd-8 activating enzyme gene underlies genetic resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genomics 113, 3842–3850 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barson, N. J. et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405–408 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, J. et al. Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring. Commun. Biol. 4, 795 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imsland, A. K., Brix, O., Nævdal, G. & Samuelsen, E. N. Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth. Comp. Biochem. Physiol. A Physiol. 116, 157–165 (1997).Article 

    Google Scholar 
    Imsland, A. K., Foss, A., Stefansson, S. O. & Nævdal, G. Hemoglobin genotypes of turbot (Scophthalmus maximus): Consequences for growth and variations in optimal temperature for growth. Fish Physiol. Biochem. 23, 75–81 (2000).Article 
    CAS 

    Google Scholar 
    Andersen, Ø., Rubiolo, J. A., De Rosa, M. C. & Martinez, P. The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations. Fish Physiol. Biochem. 46, 2367–2376 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torrisi, M., Pollastri, G. & Le, Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 18, 1301–1310 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    AlQuraishi, M. Machine learning in protein structure prediction. Curr. Opin. Chem. Biol. 65, 1–8 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Powder, K. E., Cousin, H., McLinden, G. P. & Craig Albertson, R. A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development. Mol. Biol. Evol. 31, 3113–3124 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gupta, A. M., Chakrabarti, J. & Mandal, S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 22, 598–607 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verde, C. et al. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochem. J. 389, 297–306 (2005).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearce, R. & Zhang, Y. Toward the solution of the protein structure prediction problem. J. Biol. Chem. 297, 100870 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 40 (2008).Article 

    Google Scholar 
    Pirolli, D. et al. Insights from molecular dynamics simulations: Structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS ONE 9, e103866 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, J., Freddolino, P. L. & Zhang, Y. From Protein Structure to Function with Bioinformatics. In From Protein Structure to Function with Bioinformatics: Second Edition (ed. Rigden, D. J.) (2017). https://doi.org/10.1007/978-94-024-1069-3Baek, M. et al. Accurate prediction of protein structures and interactions using a 3-track neural network. Science 373, 871–876 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, J. et al. Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci. Aquaculture 242, 119–135 (2004).Article 
    CAS 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv ID 1303.3997v2 00, 1–3 (2013).Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vera, M. et al. Development and validation of single nucleotide polymorphisms (SNPs) markers from two transcriptome 454-runs of turbot (Scophthalmus maximus) using high-throughput genotyping. Int. J. Mol. Sci. 14, 5694–5711 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J. A. & Ong, B. The MassARRAY® system for targeted SNP genotyping. Methods in molecular biology vol. 1492 (2017).Choi, Y. & Chan, A. P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, M. J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22, 475–483 (2006).Article 
    PubMed 

    Google Scholar 
    Blanchet, S., Rey, O. & Loot, G. Evidence for host variation in parasite tolerance in a wild fish population. Evol. Ecol. 24, 1129–1139 (2010).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).Article 
    PubMed 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A bayesian perspective. Genetics 993, 977–993 (2008).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).Article 
    PubMed 

    Google Scholar 
    Narum, S. R. & Hess, J. E. Comparison of FST outlier tests for SNP loci under selection. Mol. Ecol. Resour. 11, 184–194 (2011).Article 
    PubMed 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romero, P. et al. Sequence complexity of disordered protein. Prot. Struct. Funct. Genet. 42, 38–48 (2001).Article 
    CAS 

    Google Scholar 
    Jones, D. T. & Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mészáros, B., Erdös, G. & Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucl. Acids Res. 46, W329–W337 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishida, T. & Kinoshita, K. PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucl. Acids Res. 35, W460-464 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ito, N., Komiyama, N. H. & Fermi, G. Structure of deoxyhaemoglobin of the Anctartic fish Pagothenia bernacchi and structural basis of the root effect. J. Mol. Biol. https://doi.org/10.2210/pdb1hbh/pdb (1995).Article 
    PubMed 

    Google Scholar 
    Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).Article 
    PubMed 

    Google Scholar 
    Gou, X. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24, 1308–1315 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, J. M., Sella, G., Davis, J. C. & Petrov, D. A. Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177, 2083–2099 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Howe, D. G. et al. ZFIN, the Zebrafish model organism database: Increased support for mutants and transgenics. Nucl. Acids Res. 41, 854–860 (2013).Article 

    Google Scholar 
    Huber, C. D., Kim, B. Y., Marsden, C. D. & Lohmueller, K. E. Determining the factors driving selective effects of new nonsynonymous mutations. Proc. Natl. Acad. Sci. USA 114, 4465–4470 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenson, P. D. et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 139, 1197–1207 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naruse, K., Hori, H., Shimizu, N., Kohara, Y. & Takeda, H. Medaka genomics: A bridge between mutant phenotype and gene function. Mech. Dev. 121, 619–628 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chintalapati, M. & Moorjani, P. Evolution of the mutation rate across primates. Curr. Opin. Genet. Dev. 62, 58–64 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rodin, R. E. et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci. 24, 176–185 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cayuela, H. et al. Thermal adaptation rather than demographic history drives genetic structure inferred by copy number variants in a marine fish. Mol. Ecol. 30, 1624–1641 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kess, T. et al. A putative structural variant and environmental variation associated with genomic divergence across the Northwest Atlantic in Atlantic Halibut. ICES J. Mar. Sci. 78, 2371–2384 (2021).Article 

    Google Scholar 
    Le Moan, A., Bekkevold, D. & Hemmer-Hansen, J. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity (Edinb). 126, 668–683 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruigrok, M. et al. The relative power of structural genomic variation versus SNPs in explaining the quantitative trait growth in the marine teleost Chrysophrys auratus. Genes (Basel). 13, 1129 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De la Herran, R. et al. A chromosome-level genome assembly enables the identification of the follicle stimulating hormone receptor as the master sex determining gene in Solea senegalensis. Mol. Ecol. Resour. 00, 1–19 (2023).
    Google Scholar 
    Harrison, P. W. et al. The FAANG data portal: Global, open-access, “FAIR”, and richly validated genotype to phenotype data for high-quality functional annotation of animal genomes. Front. Genet. 12, 639238 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figueras, A. et al. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): A fish adapted to demersal life. DNA Res. 23, 181–192 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, J. S. et al. Conservation genomics of anadromous Atlantic salmon across its North American range: Outlier loci identify the same patterns of population structure as neutral loci. Mol. Ecol. 23, 5680–5697 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barrio, A. M. et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. Elife 5, e12081 (2016).Article 

    Google Scholar 
    Pettersson, M. E. et al. A chromosome-level assembly of the Atlantic herring genome-detection of a supergene and other signals of selection. Genome Res. 29, 1919–1928 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bo, J. et al. Opah (Lampris megalopsis) genome sheds light on the evolution of aquatic endothermy. Zool. Res. 43, 26–29 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments. Sci. Rep. 11, 5064 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meng, Z., Hu, P., Lei, J. & Jia, Y. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus). Gen. Comp. Endocrinol. 235, 11–17 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ren, H. & Gao, S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. Gen. Comp. Endocrinol. 167, 344–351 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ding, J., Li, Q., Tsai, W. & Pozios, K. Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proc. Natl. Acad. Sci. USA 96, 15274–15279 (1999).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Furqon, A., Gunawan, A., Ulupi, N., Suryati, T. & Sumantri, C. A Polymorphism of Insulin-like growth factor binding protein 2 gene associated with growth and body composition traits in Kampong Chickens. J. Vet. 19, 183 (2018).
    Google Scholar 
    Kibbey, M. M., Jameson, M. J., Eaton, E. M. & Rosenzweig, S. A. Insulin-like growth factor binding protein-2: Contributions of the C-terminal domain to insulin-like growth factor-1 binding. Mol. Pharmacol. 69, 833–845 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Coughlan, J. P. et al. Microsatellite DNA variation in wild populations and farmed strains of turbot from Ireland and Norway: A preliminary study. J. Fish Biol. 52, 916–922 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, H. et al. Characterization and Identification of Single Nucleotide Polymorphism within the IGF-1R gene associated with growth traits of Odontobutis potamophila. J. World Aquac. Soc. 49, 366–379 (2018).Article 
    CAS 

    Google Scholar 
    Guo, L., Yang, S., Li, M. M., Meng, Z. N. & Lin, H. R. 2016) Divergence and polymorphism analysis of IGF1Ra and IGF1Rb from orange-spotted grouper, Epinephelus coioides (Hamilton). Genet. Mol. Res. 15, 1. https://doi.org/10.4238/gmr15048768 (2016).Article 
    CAS 

    Google Scholar 
    Yu, X. et al. Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 22, 426 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harano, T. et al. Hemoglobin Kawachi [α44 (CE2) Pro → Arg]: A new hemoglobin variant of high oxygen affinity with amino acid substitution at α1β2 contact. Hemoglobin 6, 43–49 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alharby, E. et al. A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia. Clin. Genet. 92, 579–586 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ceinos, R. M. et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus. PLoS ONE 14, e0219153 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishiwaki-Ohkawa, T. & Yoshimura, T. Molecular basis for regulating seasonal reproduction in vertebrates. J. Endocrinol. 229, R117–R127 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wood, S. H. et al. Circadian clock mechanism driving mammalian photoperiodism. Nat. Commun. 11, 4291 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piovesan, D. et al. DisProt 7.0: A major update of the database of disordered proteins. Nucl. Acids Res. 45, 219–227 (2017).Article 

    Google Scholar 
    Pajkos, M. & Dosztányi, Z. Chapter Two – Functions of intrinsically disordered proteins through evolutionary lenses. in Dancing Protein Clouds: Intrinsically Disordered Proteins in the Norm and Pathology, Part C (ed. Uversky, V. N. B. T.-P. in M. B. and T. S.) vol. 183 45–74 (Academic Press, 2021).Malagrinò, F. et al. Understanding the binding induced folding of intrinsically disordered proteins by protein engineering: Caveats and pitfalls. Int. J. Mol. Sci. 21, 3484 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, A., Cowan, M. E., Migaud, H., Wright, P. J. & Davie, A. Neuroendocrine regulation of reproduction in Atlantic cod (Gadus morhua): Evidence of Eya3 as an integrator of photoperiodic cues and nutritional regulation to initiate sexual maturation. Comput. Biochem. Physiol. -Part A Mol. Integr. Physiol. 260, 111000 (2021).Silver, S. J., Davies, E. L., Doyon, L. & Rebay, I. Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol. Cell. Biol. 23, 5989–5999 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin, M. & Mardon, G. Distinct biochemical activities of eyes absent during drosophila eye development. Sci. Rep. 6, 23228 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGowan, K. L., Passow, C. N., Arias-Rodriguez, L., Tobler, M. & Kelley, J. L. Expression analyses of cave mollies (Poecilia mexicana) reveal key genes involved in the early evolution of eye regression. Biol. Lett. 15, 20190554 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, W. et al. Transcriptomic analysis reveals putative osmoregulation mechanisms in the kidney of euryhaline turbot Scophthalmus maximus responded to hypo-saline seawater. J. Oceanol. Limnol. 38, 467–479 (2020).Article 
    CAS 

    Google Scholar 
    Mármol-Sánchez, E., Quintanilla, R., Cardoso, T. F., Jordana Vidal, J. & Amills, M. Polymorphisms of the cryptochrome 2 and mitoguardin 2 genes are associated with the variation of lipid-related traits in Duroc pigs. Sci. Rep. 9, 9025 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takvam, M., Wood, C. M., Kryvi, H. & Nilsen, T. O. Ion transporters and osmoregulation in the didney of teleost fishes as a function of salinity. Front. Physiol. 12, 664588 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engelund, M. B. & Madsen, S. S. The role of aquaporins in the kidney of euryhaline teleosts. Front. Physiol. 2, 51 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nam, B. H. et al. Identification and characterization of the prepro-vasoactive intestinal peptide gene from the teleost Paralichthys olivaceus. Vet. Immunol. Immunopathol. 127, 249–258 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paladini, F. et al. Age-dependent association of idiopathic achalasia with vasoactive intestinal peptide receptor 1 gene. Neurogastroenterol. Motil. 21, 597–602 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hosseinpour, L., Nikbin, S., Hedayat-Evrigh, N. & Elyasi-Zarringhabaie, G. Association of polymorphisms of vasoactive intestinal peptide and its receptor with reproductive traits of turkey hens. South Afr. J. Anim. Sci. 50, 345–352 (2020).Article 
    CAS 

    Google Scholar 
    Pereiro, P., Figueras, A. & Novoa, B. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. Fish Shellfish Immunol. 32, 879–889 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, J., Yu, L., Ping, L., Fei, M. & Sun, L. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol. 38, 127–134 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Legally protect marine food web’s lower echelons

    Plankton are microscopic organisms at the base of aquatic food webs and therefore essential to all life on Earth. In our view, international legal protection of plankton is urgently needed because of their high susceptibility to the effects of climate change, including ocean warming and acidification.
    Competing Interests
    The authors declare no competing interests. More