Nature-inspired wax-coated jute bags for reducing post-harvest storage losses
1.World Food Programme. Hunger, Conflict, and Improving the Prospects for Peace. Rome, Italy. https://www.wfp.org/publications/hunger-conflict-and-improving-prospects-peace-fact-sheet-2020 (October 2020).2.United-Nations. World Population Prospects: The 2017 Revision.(United Nations, Department of Economic and Social Affairs, Population Division, 2017).Book
Google Scholar
3.Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12-03. Rome, FAO (FAO, 2012).
Google Scholar
4.FAO. The Future of Food and Agriculture: Trends and Challenges (Food and Agriculture Organization of the United Nations, 2017).
Google Scholar
5.FAO. Global Agriculture Towards 2050 1–4 (Food and Agriculture Organization, 2009).
Google Scholar
6.Ulrike, G., Anja F., Thanh, N. T., & Olaf, E. Food security and the dynamics of wheat and maize value Chains in Africa and Asia.Front. Sustain. Food Syst. 4, (317) https://doi.org/10.3389/fsufs.2020.617009 (2021).Article
Google Scholar
7.FAO. Global Food Losses and Food Waste—Extent, Causes, and Prevention. Rome. http://www.fao.org/3/i2697e/i2697e.pdf (2011).8.Mesterhazy, A., Olah, J. & Popp, J. Losses in the grain supply chain: Causes and solutions. Sustainability https://doi.org/10.3390/su12062342 (2020).Article
Google Scholar
9.Jayas, D. S. Storing grains for food security and sustainability. Agric. Res. 1, 21–24. https://doi.org/10.1007/s40003-011-0004-4 (2012).ADS
CAS
Article
Google Scholar
10.Lal, R. Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energy Secur. 5, 239–251. https://doi.org/10.1002/fes3.99 (2016).Article
Google Scholar
11.Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999-U980. https://doi.org/10.1038/nature08238 (2009).ADS
CAS
Article
PubMed
Google Scholar
12.Solander, K. C., Reager, J. T., Wada, Y., Famiglietti, J. S. & Middleton, R. S. GRACE satellite observations reveal the severity of recent water over-consumption in the United States. Sci. Rep. https://doi.org/10.1038/s41598-017-07450-y (2017).Article
PubMed
PubMed Central
Google Scholar
13.Scanlon, B. R., Longuevergne, L. & Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res. https://doi.org/10.1029/2011wr011312 (2012).Article
Google Scholar
14.Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Chang. 4, 945–948 (2014).ADS
Article
Google Scholar
15.FAO. Seeds Toolkit-Module 6: Seed Storage. Rome, pp. 112. http://www.fao.org/3/ca1495en/CA1495EN.pdf (2018).16.Sawicka, B. Post-harvest losses of agricultural produce. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-69626-3_40-1 (2019).Chapter
Google Scholar
17.De Lucia, M. A. D. Agricultural Engineering in Development: Post-harvest Operations and Management of Foodgrains (FAO Agricultural Services, 1994).
Google Scholar
18.Hodges, R. J., Buzby, J. C. & Bennett, B. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J. Agric. Sci. 149, 37–45. https://doi.org/10.1017/S0021859610000936 (2011).Article
Google Scholar
19.Kumar, D. & Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6, 8–8. https://doi.org/10.3390/foods6010008 (2017).Article
PubMed Central
Google Scholar
20.Abedin, M. R. M., Mia, M. & Rahman, K. In-store losses of rice and ways of reducing such losses at farmers’ level: An assessment in selected regions of Bangladesh. J. Bangladesh Agric. Univ. 10, 133–144. https://doi.org/10.3329/jbau.v10i1.12105 (2012).Article
Google Scholar
21.Tesfaye, W. & Tirivayi, N. The impacts of postharvest storage innovations on food security and welfare in Ethiopia. Food Policy 75, 52–67. https://doi.org/10.1016/j.foodpol.2018.01.004 (2018).Article
Google Scholar
22.Boxall, R. A. Post harvest-losses to insects–A world overview. Int. Biodeterior. Biodegrad. 48, 137–152 (2001).Article
Google Scholar
23.Rachoń, L.B.-M.A. & Szumiło, G. Mycotoxin contamination of grain of selected winter wheat genotypes. Pol. J. Agron. 25, 13–18 (2016).
Google Scholar
24.Kumar, R., Mishra, A. K., Dubey, N. K. & Tripathi, Y. B. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 115, 159–164. https://doi.org/10.1016/j.ijfoodmicro.2006.10.017 (2007).CAS
Article
PubMed
Google Scholar
25.Liu, Y. & Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 118, 818–824. https://doi.org/10.1289/ehp.0901388 (2010).CAS
Article
PubMed
PubMed Central
Google Scholar
26.Roberts, E. H. & Ellis, R. H. Water and seed survival. Ann. Bot. 63, 39–39. https://doi.org/10.1093/oxfordjournals.aob.a087727 (1989).Article
Google Scholar
27.Bradford, K. J., Dahal, P. & Bello, P. Using relative humidity indicator paper to measure seed and commodity moisture contents. Agric. Environ. Lett. https://doi.org/10.2134/ael2016.04.0018 (2016).Article
Google Scholar
28.Bradford, K. J. et al. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 71, 84–93. https://doi.org/10.1016/j.tifs.2017.11.002 (2018).MathSciNet
CAS
Article
Google Scholar
29.Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M. & Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy 3rd edn. (Springer, 2013).Book
Google Scholar
30.Harrington, J. F. In Seed Biology, Vol. III (ed. Kozlowski, T. T.) (Academic Press, 1972).
Google Scholar
31.Harrington, J. F. Biochemical basis of seed longevity. Seed Sci. Technol. 1, 453–461 (1973).CAS
Google Scholar
32.Delouche, J. C., Matthes, R. K., Dougherty, G. M. & Boyd, A. H. Storage of seed in sub-tropical and tropical regions. Seed Sci. Technol. 1, 671–700 (1973).
Google Scholar
33.Roberts, E. H. Predicting the storage life of seeds. Seed Sci. Technol. 1, 499–514 (1973).
Google Scholar
34.Roberts, E. H. Viability of Seeds (Springer, 2012).
Google Scholar
35.Harrington, J. F. Drying, storage, and packaging seed to maintain germination and vigor. Seed Technology Papers. 44. https://scholarsjunction.msstate.edu/seedtechpapers/44 (1959).36.Bakhtavar, M. A. & Afzal, I. Climate smart dry chain technology for safe storage of quinoa seeds. Sci. Rep. https://doi.org/10.1038/s41598-020-69190-w (2020).Article
PubMed
PubMed Central
Google Scholar
37.Murdock, L. L. & Baoua, I. B. On Purdue Improved Cowpea Storage (PICS) technology: Background, mode of action, future prospects. J. Stored Prod. Res. 58, 3–11. https://doi.org/10.1016/j.jspr.2014.02.006 (2014).Article
Google Scholar
38.Baoua, I. B., Amadou, L. & Murdock, L. L. Triple bagging for cowpea storage in rural Niger: Questions farmers ask. J. Stored Prod. Res. 52, 86–92. https://doi.org/10.1016/j.jspr.2012.12.004 (2013).Article
Google Scholar
39.Murdock, L. L., Margam, V., Baoua, I., Balfe, S. & Shade, R. E. Death by desiccation: Effects of hermetic storage on cowpea bruchids. J. Stored Prod. Res. 49, 166–170. https://doi.org/10.1016/j.jspr.2012.01.002 (2012).Article
Google Scholar
40.Bakhtavar, M. A., Afzal, I. & Basra, S. M. A. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag. PLoS One https://doi.org/10.1371/jounal.pone.0207569 (2019).Article
PubMed
PubMed Central
Google Scholar
41.Gupta, M. K., Srivastava, R. K. & Bisaria, H. Potential of jute fibre reinforced polymer composites: a review. Int. J. Fiber Textile Res. 5, 30–38 (2015).ADS
Google Scholar
42.Wang, W.-M., Cai, Z.-S. & Yu, J.-Y. Study on the chemical modification process of jute fiber. J. Eng. Fibers Fabr. 3, 155892500800300200. https://doi.org/10.1177/155892500800300203 (2008).Article
Google Scholar
43.Rajesh, G. & Prasad, A. V. R. Tensile properties of successive alkali-treated short jute fiber reinforced PLA composites. Procedia
Mater. Sci. 5, 2188–2196 (2014).44.Mwaikambo, L. Y. & Ansell, M. P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84, 2222–2234. https://doi.org/10.1002/app.10460 (2002).CAS
Article
Google Scholar
45.Ali, A. et al. Hydrophobic treatment of natural fibers and their composites—a review. J. Ind. Text. 47, 2153–2183. https://doi.org/10.1177/1528083716654468 (2018).CAS
Article
Google Scholar
46.Manandhar, A., Milindi, P. & Shah, A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture 8, 57 (2018).Article
Google Scholar
47.Nagpal, M. & Kumar, A. Grain losses in India and government policies. Qual. Assur. Saf. Crops Foods 4, 143–143 (2012).Article
Google Scholar
48.Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8. https://doi.org/10.1007/s004250050096 (1997).CAS
Article
Google Scholar
49.Mahadik, G. A. et al. Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Sci. Rep. 10, 7785. https://doi.org/10.1038/s41598-020-64563-7 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
50.Das, R., Ahmad, Z., Nauruzbayeva, J. & Mishra, H. Biomimetic coating-free superomniphobicity. Sci. Rep. 10, 7934. https://doi.org/10.1038/s41598-020-64345-1 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
51.Pan, Z. et al. The upside-down water collection system of Syntrichia caninervis. Nat. Plants 2, 16076. https://doi.org/10.1038/nplants.2016.76 (2016).Article
PubMed
Google Scholar
52.Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34. https://doi.org/10.1038/35102108 (2001).ADS
CAS
Article
PubMed
Google Scholar
53.Darmanin, T. & Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 18, 273–285. https://doi.org/10.1016/j.mattod.2015.01.001 (2015).CAS
Article
Google Scholar
54.Narhe, R. D. & Beysens, D. A. Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98–104. https://doi.org/10.1209/epl/i2006-10069-9 (2006).ADS
CAS
Article
Google Scholar
55.Ray, D., Sarkar, B. K., Rana, A. K. & Bose, N. R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 24, 129–135. https://doi.org/10.1007/bf02710089 (2001).CAS
Article
Google Scholar
56.Chauhan, P., Kumar, A. & Bhushan, B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J. Colloid Interface Sci. 535, 66–74. https://doi.org/10.1016/j.jcis.2018.09.087 (2019).ADS
CAS
Article
PubMed
Google Scholar
57.Bhushan, B. Biomimetics: Lessons from nature—an overview. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1445–1486. https://doi.org/10.1098/rsta.2009.0011 (2009).ADS
CAS
Article
PubMed
Google Scholar
58.Gassan, J. & Bledzki, A. K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 59, 1303–1309. https://doi.org/10.1016/S0266-3538(98)00169-9 (1999).CAS
Article
Google Scholar
59.Taha, I., Steuernagel, L. & Ziegmann, G. Optimization of the alkali treatment process of date palm fibres for polymeric composites. Compos. Interfaces 14, 669–684. https://doi.org/10.1163/156855407782106528 (2007).CAS
Article
Google Scholar
60.Kuruvilla, J., Sabu, T., Pavithran, C. & Brahmakumar, M. Tensile properties of short sisal fiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 47, 1731–1739. https://doi.org/10.1002/app.1993.070471003 (1993).Article
Google Scholar
61.Chen, H. et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 24, 333–347. https://doi.org/10.1007/s10570-016-1116-6 (2017).CAS
Article
Google Scholar
62.Wang, X., Chang, L. L., Shi, X. L. & Wang, L. H. Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials https://doi.org/10.3390/ma12091386 (2019).Article
PubMed
PubMed Central
Google Scholar
63.Oushabi, A. et al. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–polyurethane composite. South Afr. J. Chem. Eng. 23, 116–123. https://doi.org/10.1016/j.sajce.2017.04.005 (2017).Article
Google Scholar
64.Subramanian, N. et al. Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. J. Colloid Interface Sci. 533, 723–732. https://doi.org/10.1016/j.jcis.2018.08.054 (2019).ADS
CAS
Article
PubMed
Google Scholar
65.Gallo Jr, A., K. et al. Superhydrophobic sand mulches increase agricultural productivity in arid regions. arXiv preprint. arXiv:2102.00495 (2021).
Google Scholar
66.Mishra, H. et al. Time-dependent wetting behavior of PDMS surfaces with bioinspired, hierarchical structures. ACS Appl. Mater Interfaces 8, 8168–8174. https://doi.org/10.1021/acsami.5b10721 (2016).CAS
Article
PubMed
Google Scholar
67.Kaufman, Y. et al. Simple-to-Apply wetting model to predict thermodynamically stable and metastable contact angles on textured/rough/patterned surfaces. J. Phys. Chem. C 121, 5642–5656. https://doi.org/10.1021/acs.jpcc.7b00003 (2017).CAS
Article
Google Scholar
68.Shi, M., Das, R., Arunachalam, S., & Mishra, H. Unexpected Suppression of Leidenfrost Phenomenon on Superhydrophobic Surfaces. arXiv preprint. https://arxiv.org/pdf/2102.02499.pdf (2021).69.Gallo Jr., A., Tavares, F., Das, R. & Mishra, H., How Particle–Particle and Liquid–Particle Interactions Govern the Fate of Evaporating Liquid Marbles. Soft Matter, https://doi.org/10.1039/D1SM00750E (2021)70.Ghosh, S. K., Ray Gupta, K., Bhattacharyya, R., Sahu, R. B. & Mandol, S. Improvement of life expectancy of jute based needlepunched geotextiles through bitumen treatment. J. Inst. Eng. India Ser. E 95, 111–121. https://doi.org/10.1007/s40034-014-0036-y (2014).CAS
Article
Google Scholar
71.Das, R. et al. Proof-of-concept for gas-entrapping membranes derived from water-loving SiO2/Si/SiO2 wafers for green desalination. JoVE https://doi.org/10.3791/60583 (2020).Article
PubMed
Google Scholar
72.Pillai, S. et al. A molecular to macro level assessment of direct contact membrane distillation for separating organics from water. J. Membr. Sci. 608, 118140. https://doi.org/10.1016/j.memsci.2020.118140 (2020).CAS
Article
Google Scholar
73.Arunachalam, S. et al. Rendering SiO2/Si surfaces omniphobic by carving gas-entrapping microtextures comprising reentrant and doubly reentrant cavities or pillars. JoVE https://doi.org/10.3791/60403 (2020).Article
PubMed
Google Scholar
74.Das, R., Arunachalam, S., Ahmad, Z., Manalastas, E. & Mishra, H. Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination. J. Membr. Sci. https://doi.org/10.1016/j.memsci.2019.117185 (2019).Article
Google Scholar
75.Gonzalez-Avila, S. R. et al. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). Sci. Adv. 6, eaax6192. https://doi.org/10.1126/sciadv.aax6192 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
76.Arunachalam, S., Das, R., Nauruzbayeva, J., Domingues, E. M. & Mishra, H. Assessing omniphobicity by immersion. J. Colloid Interface Sci. 534, 156–162. https://doi.org/10.1016/j.jcis.2018.08.059 (2019).ADS
CAS
Article
PubMed
Google Scholar
77.Domingues, E. M., Arunachalam, S. & Mishra, H. Doubly reentrant cavities prevent catastrophic wetting transitions on intrinsically wetting surfaces. ACS Appl. Mater. Interface 9, 21532–21538. https://doi.org/10.1021/acsami.7b03526 (2017).CAS
Article
Google Scholar
78.Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate change and food systems. Annu. Rev. Environ. Resour. 37, 195–222. https://doi.org/10.1146/annurev-environ-020411-130608 (2012).Article
Google Scholar
79.Jury, W. A. & Vaux, H. The role of science in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA 102, 15715–15720. https://doi.org/10.1073/pnas.0506467102 (2005).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
80.Wexler, A. & Hasegawa, S. Relative humidity–temperature relationships of some saturated salt solutions in the temperature range 0-degree to 50-degrees-C. J. Res. Natl. Bur. Stand. 53, 19–26. https://doi.org/10.6028/jres.053.003 (1954).CAS
Article
Google Scholar
81.Suma, A., Sreenivasan, K., Singh, A. K. & Radhamani, J. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa. Sci. World J. https://doi.org/10.1155/2013/504141 (2013).Article
Google Scholar
82.OriginPro. OriginLab Corporation. https://www.originlab.com/. Northampton, MA, USA (Version 2017). More