More stories

  • in

    Adaptive ecological niche migration does not negate extinction susceptibility

    1.Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Edie, S. M., Huang, S., Collins, K. S., Roy, K. & Jablonski, D. Loss of biodiversity dimensions through shifting climates and ancient mass extinctions. Integr. Comp. Biol. 58, 1179–1190. https://doi.org/10.1093/icb/icy111 (2018).Article 
    PubMed 

    Google Scholar 
    3.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111. https://doi.org/10.1038/S51586-019-1132-4 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351. https://doi.org/10.1126/science.1203060 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Smits, P. & Finnegan, S. How predictable is extinction? Forecasting species survival at million-year timescales. Philos. Trans. R. Soc. B Biol. Sci. 374, 1. https://doi.org/10.1098/rstb.2019.0392 (2019).Article 

    Google Scholar 
    6.Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927. https://doi.org/10.1111/j.1469-185X.2011.00178.x (2011).Article 
    PubMed 

    Google Scholar 
    7.Edgar, K. M., Hull, P. M. & Ezard, T. H. G. Evolutionary history biases inferences of ecology and environment from δ13C but not δ18O values. Nat. Commun. 8, 1106. https://doi.org/10.1038/s41467-017-01154-7 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Knappertsbusch, M. Morphological variability of Globorotalia menardii (planktonic foraminifera) in two DSDP cores from the Caribbean Sea and the Eastern Equatorial Pacific. Carnets de Géologie/Notebooks Geol. CG2007 1–34. https://doi.org/10.4267/2042/8455 (2007).9.Wade, B. S., Al-Sabouni, N., Hemleben, C. & Kroon, D. Symbiont bleaching in fossil planktonic foraminifera. Evol. Ecol. 22, 253–265. https://doi.org/10.1007/s10682-007-9176-6 (2008).Article 

    Google Scholar 
    10.Wade, B. S. & Olsson, R. K. Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 39–46. https://doi.org/10.1016/j.palaeo.2009.08.026 (2009).Article 

    Google Scholar 
    11.Edgar, K. M. et al. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene climatic optimum. Geology 41, 15–18. https://doi.org/10.1130/G33388.1 (2013).ADS 
    Article 

    Google Scholar 
    12.Pearson, P. N. & Ezard, T. H. G. Evolution and speciation in the Eocene planktonic foraminifer Turborotalia. Paleobiology 40, 130–143. https://doi.org/10.1666/13004 (2014).Article 

    Google Scholar 
    13.Wade, B. S., Poole, C. R. & Boyd, J. L. Giantism in Oligocene planktonic foraminifera Paragloborotalia opima: Morphometric constraints from the equatorial Pacific Ocean. Newsl. Stratigr. 49, 421–444. https://doi.org/10.1127/nos/2016/0270 (2016).Article 

    Google Scholar 
    14.Brombacher, A., Wilson, P. A., Bailey, I. & Ezard, T. H. G. The breakdown of static and evolutionary allometries during climatic upheaval. Am. Nat. https://doi.org/10.5061/dryad.8jf2k (2017).15.Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kučera, M. Disruptive selection and bet-hedging in planktonic Foraminifera: Shell morphology as predictor of extinctions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2014.00064 (2014).Article 

    Google Scholar 
    16.Weinkauf, M. F. G., Bonitz, F. G. W., Martini, R. & Kučera, M. An extinction event in planktonic Foraminifera preceded by stabilizing selection. PLoS ONE 14, 1–21. https://doi.org/10.1371/journal.pone.0223490 (2019).CAS 
    Article 

    Google Scholar 
    17.Falzioni, F., Petrizzo, M. R. & Valagussa, M. A morphometric methodology to assess planktonic foraminiferal response to environmental perturbations: The case study of Oceanic Anoxic Event 2, Late Cretaceous. Bollettino della Società Paleontologica Italiana 57, 103–124. https://doi.org/10.4435/BSPI.2018.07 (2018).Article 

    Google Scholar 
    18.Si, W. & Aubry, M. P. Vital effects and ecologic adaptation of photosymbiont-bearing planktonic foraminifera during the Paleocene-Eocene thermal maximum, implications for paleoclimate. Paleoceanogr. Paleoclimatol. 33, 112–125. https://doi.org/10.1002/2017PA003219 (2018).ADS 
    Article 

    Google Scholar 
    19.Fox, L. R., Stukins, S., Hill, T. & Miller, G. Quantifying the effect of anthropogenic climate change on calcifying plankton. Sci. Rep. 10, 1620. https://doi.org/10.1038/s41598-020-58501-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Todd, C. L., Schmidt, D. N., Robinson, M. M. & De Schepper, S. Planktonic foraminiferal test size and weight response to the late Pliocene environment. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003738 (2020).Article 

    Google Scholar 
    21.Shaw, J. O. et al. Photosymbiosis in planktonic foraminifera across the Paleocene-Eocene thermal maximum. Paleobiology https://doi.org/10.1017/pab.2021.7 (2021).Article 

    Google Scholar 
    22.Schmidt, D. N., Thierstein, H. R. & Bollmann, J. The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 159–180. https://doi.org/10.1016/j.palaeo.2004.06.002 (2004).Article 

    Google Scholar 
    23.Brierley, C. M. & Fedorov, A. V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene–Pleistocene climate evolution. Paleoceanogr. Paleoclimatol. 25, 1–16. https://doi.org/10.1029/2009PA001809 (2010).Article 

    Google Scholar 
    24.Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals. Mar. Micropaleontol. 101, 127–145. https://doi.org/10.1016/j.marmicro.2013.02.002 (2013).ADS 
    Article 

    Google Scholar 
    25.
    Grubbs, F. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21. https://doi.org/10.1080/00401706.1969.10490657 (1969).Article 

    Google Scholar 
    26.Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60. https://doi.org/10.1214/aoms/1177730491 (1947).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    27.Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean 1–350 (Springer, 2017). https://doi.org/10.1007/978-3-66250297-6.Book 

    Google Scholar 
    28.Schmidt, D. N., Thierstein, H. R., Bollmann, J. & Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 303, 207–210. https://doi.org/10.1126/science.1090592 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Rillo, M., Miller, G., Kučera, M. & Ezard, T. Predictability of intraspecific size variation in extant planktonic foraminifera. BioRxiv https://doi.org/10.1101/468165 (2018).Article 

    Google Scholar 
    30.Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection 327 (Blakiston Company, 1949).
    Google Scholar 
    31.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315. https://doi.org/10.1111/j.1558-5646.1987.tb05799.x (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Williams, G. C. Natural Selection. Domains Levels and Challenges 53–103 ( Oxford University Press, 1992).
    Google Scholar 
    33.West-Eberhard, M. J. Developmental Plasticity and Evolution 794 (Oxford University Press, 2003).Book 

    Google Scholar 
    34.Slatkin, M. Hedging one’s evolutionary bets. Nature 250, 704705. https://doi.org/10.1038/250704b0 (1974).Article 

    Google Scholar 
    35.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44. https://doi.org/10.1016/0169-5347(89)90138-9 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Grafen, A. Formal Darwinism, the individual-as-maximising-agent analogy, and bet-hedging. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266, 799–803. https://doi.org/10.1098/rspb.1999.0708 (1999).Article 

    Google Scholar 
    37.Wade, B. S. & Twitchett, R. J. Extinction, dwarfing and the Lilliput effect: Extinction, dwarfing and the Lilliput effect. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 1–3. https://doi.org/10.1016/j.palaeo.2009.08.019 (2009).Article 

    Google Scholar 
    38.Wade, B. S. et al. Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene Dentoglobigerina and Globoquadrina. In Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al.) Lawrence, KS, Cushman Foundation for Foraminiferal Research, Special Publication No. 46 (2018) 331–384.39.Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology 35–49 (Oxford University Press, 1991).
    Google Scholar 
    40.O’Brien, C. L. et al. The enigma of Oligocene climate and global surface temperature evolution. Proc. Natl. Acad. Sci. 117, 25302–25309. https://doi.org/10.1073/pnas.2003914117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Stoecker, D. K., Johnson, M. D., De Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310. https://doi.org/10.3354/ame01340 (2009).Article 

    Google Scholar 
    42.Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396. https://doi.org/10.5194/bg-16-3377-2019 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Luciani, V., D’Onofrio, R., Dickens, G. R. & Wade, B. S. Did photosymbiont bleaching lead to the Demise planktic foraminifer Morozovella at the Early Eocene climatic optimum. Paleoceanography 32, 1115–1136. https://doi.org/10.1002/2017PA003138 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Lutz, B. P. Low-latitude northern hemisphere oceanographic and climatic responses to early shoaling of the Central American Seaway. Stratigraphy 7, 151–176 (2010).
    Google Scholar 
    45.Norris, R. D. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals, and foraminifera. Paleontol. Soc. Pap. 4, 68–100. https://doi.org/10.1017/S1089332600000401 (1998).Article 

    Google Scholar 
    46.Ezard, T. H. G., Edgar, K. M. & Hull, P. M. Environmental and biological controls on size-specific δ13C and δ18O in recent planktonic foraminifera. Paleoceanography 30, 151–173. https://doi.org/10.1002/2014PA002735 (2015).ADS 
    Article 

    Google Scholar 
    47.Hughes, T. P. et al. Global warming transforms coral reef assemblages Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Schmidt, C., Heinz, P., Kucera, M. & Uthicke, S. Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr. 56, 1587–1602. https://doi.org/10.4319/lo.2011.56.5.1587 (2011).ADS 
    Article 

    Google Scholar 
    49.Spezzaferri, S., El Kateb, A., Pisapia, C. & Hallock, P. In situ observations of foraminiferal bleaching in the Maldives, Indian Ocean. J. Foraminifer. Res. 48, 75–84. https://doi.org/10.2113/gsjfr.48.1.75 (2018).Article 

    Google Scholar 
    50.Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the World’s Coral Reefs 1985–2012. Sci. Rep. 6, 38402. https://doi.org/10.1038/srep38402 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138. https://doi.org/10.1007/s003380050249 (1997).Article 

    Google Scholar 
    53.Saravanan, R., Ranjith, L., Jasmine, S. & Joshi, K. K. Coral bleaching: Causes, consequences and mitigation. Mar. Fish. Inf. Serv. Tech. Extens. Ser. 231, 3–9 (2017).
    Google Scholar 
    54.Kucera, M. & Darling, K. F. Cryptic species of planktonic foraminifera: Their effect on palaeoceanographic reconstructions . Proc. R. Soc Lond. Ser. A Math. Phys. Eng. Sci. 360, 695–718. https://doi.org/10.1098/rsta.2001.0962 (2002).ADS 
    Article 

    Google Scholar 
    55.Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H. & Kucera, M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol. Ecol. 21, 4063–4073. https://doi.org/10.1111/j.1365-294X.2012.05686 (2012).Article 
    PubMed 

    Google Scholar 
    56.Matsui, H. et al. Changes in the depth habitat of the Oligocene planktic foraminifera (Dentoglobigerina venezuelana) induced by thermocline deepening in the eastern equatorial Pacific. Paleoceanography 31, 715–731. https://doi.org/10.1002/2016PA002950 (2016).ADS 
    Article 

    Google Scholar 
    57.Morard, R., Reinelt, M., Chiessi, C. M., Groeneveld, J. & Kucera, M. Tracing shifts in oceanic fronts using the cryptic diversity of the planktonic foraminifera Globorotalia inflata. Paleoceanography 31, 1193–1205. https://doi.org/10.1002/2016PA002977 (2016).ADS 
    Article 

    Google Scholar 
    58.Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30. https://doi.org/10.1371/journal.pone.0225246 (2019).CAS 
    Article 

    Google Scholar 
    59.Prasanna, K., Ghosh, P., Bhattacharya, S. K., Mohan, K. & Anilkumar, N. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean. Sci. Rep. 6, 21533. https://doi.org/10.1038/srep21533 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Waterson, A. M., Edgar, K. M., Schmidt, D. N. & Valdes, P. J. Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum. Paleoceanography 32, 74–89. https://doi.org/10.1002/2016PA002964 (2017).ADS 
    Article 

    Google Scholar 
    61.Andre, A. et al. Disconnection between genetic and morphological diversity in the planktonic foraminifer Neogloboquadrina pachyderma from the Indian sector of the Southern Ocean. Mar. Micropaleontol. 144, 1424. https://doi.org/10.1016/j.marmicro.2018.10.001 (2018).Article 

    Google Scholar 
    62.Schiebel, R. et al. Advances in planktonic foraminifer research: New perspectives for paleoceanography. Rev. Micropaléontol. 61, 113–138. https://doi.org/10.1016/j.revmic.2018.10.001 (2018).Article 

    Google Scholar 
    63.Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152. https://doi.org/10.1126/science.abb6643 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Pälike, H. et al. Site 1338. Proceedings of the Integrated Ocean Drilling Program, vol 320/321. https://doi.org/10.2204/iodp.proc.320321.101.2010 (2010).65.Drury, A. J., Lee, G. P., Pennock, G. M. & John, C. M. Data report: Late Miocene to early Pliocene coccolithophore and
    foraminiferal preservation at Site U1338 from scanning electron microscopy. In Proceedings of the Integrated Ocean Drilling Program, 320/321 (eds Pälike, H. et al.) https://doi.org/10.2204/iodp.proc.320321.218.2014 (Integrated Ocean Drilling Program Management International, Inc., Tokyo, 2014).66.Fox, L. R. & Wade, B. S. Systematic taxonomy of early-middle Miocene planktonic foraminifera from the Equatorial Pacific Ocean: Integrated Ocean Drilling Program, Site U1338. J. Foraminifer. Res. 43, 374–405. https://doi.org/10.2113/gsjfr.43.4.374 (2015).Article 

    Google Scholar 
    67.Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142. https://doi.org/10.1016/j.earscirev.2010.09.003 (2011).ADS 
    Article 

    Google Scholar 
    68.Kennett, J. P. & Srinivasan, M. S. Neogene Planktonic Foraminifera: A Phylogenetic Atlas 1–265 (Hutchinson Ross Publishing Co., 1983).
    Google Scholar 
    69.Lyle, M., Joy Drury, A., Tian, J., Wilkens, R. & Westerhold, T. Late Miocene to Holocene high-resolution eastern equatorial pacific carbonate records: Stratigraphy linked by dissolution and paleoproductivity. Clim. Past 15, 1715–1739. https://doi.org/10.5194/cp-15-1715-2019 (2019).Article 

    Google Scholar 
    70.Kotov, S. & Pälike, H. QAnalySeries—A cross-platform time series tuning and analysis tool. AGU https://doi.org/10.1002/essoar.10500226.1 (2018).Article 

    Google Scholar 
    71.Brombacher, A., Wilson, P. A. & Ezard, T. H. G. Calibration of the repeatability of foraminiferal test size and shape measures with recommendations for future use. Mar. Micropaleontol. 133, 21–27. https://doi.org/10.1016/j.marmicro.2017.05.003 (2017).ADS 
    Article 

    Google Scholar 
    72.Brombacher, A., Elder, L. E., Hull, P. M., Wilson, P. A. & Ezard, T. H. G. Calibration of test diameter and area as proxies for body size in the planktonic foraminifer Globoconella puncticulata. J. Foraminifer. Res. 48, 241–245. https://doi.org/10.2113/gsjfr.48.3.241 (2018).Article 

    Google Scholar 
    73.Silverman, B. W. Density Estimation for Statistics and Data Analysis 176 (Chapman & Hall/CRC, 1986).Book 

    Google Scholar 
    74.R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org (2020).75.Cohen, J. Statistical Power Analysis for the Behavioural Sciences (Lawrence Earlbaum Associates, 1988).MATH 

    Google Scholar 
    76.Champely, S. pwr: Basic Functions for Power Analysis. R package version 1.3–0 (2020) https://CRAN.R-project.org/package=pwr.77.Edgar, K. M., Pälike, H. & Wilson, P. A. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography 28, 468–480. https://doi.org/10.1002/palo.20045 (2013).ADS 
    Article 

    Google Scholar 
    78.Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography https://doi.org/10.1029/2008PA001683 (2009).Article 

    Google Scholar 
    79.Rasmussen, T. L. & Thomsen, E. Holocene temperature and salinity variability of the Atlantic Water inflow to the Nordic seas. Holocene 20, 1223–1234. https://doi.org/10.1177/0959683610371996 (2010).ADS 
    Article 

    Google Scholar 
    80.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    81.Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).82.Fay, M. P. asht: Applied Statistical Hypothesis Tests. R package version 0.9.6. https://CRAN.R-project.org/package=asht (2020).83.Arnholt, A. T. & Evans, B. BSDA: Basic Statistics and Data Analysis. R package version 1.2.0. https://CRAN.R-project.org/package=BSDA (2017). More

  • in

    Equatorial pliosaurid from Venezuela marks the youngest South American occurrence of the clade

    1.Madzia, D. & Cau, A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: Discussion of niche occupation in Late Cretaceous seas. PeerJ 8, e8941 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Benson, R. B. et al. A giant pliosaurid skull from the Late Jurassic of England. PLoS ONE 8, e65989. https://doi.org/10.1371/journal.pone.0065989 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Schumacher, B. A., Carpenter, K. & Everhart, M. J. A new Cretaceous pliosaurid (Reptilia, Plesiosauria) from the Carlile Shale (middle Turonian) of Russell County, Kansas. J. Vertebrate Paleontol. 33, 613–628 (2013).Article 

    Google Scholar 
    4.Madzia, D. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England. PeerJ 4, e1998 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Zverkov, N. G., Fischer, V., Madzia, D. & Benson, R. B. J. Increased pliosaurid dental disparity across the Jurassic–Cretaceous transition. Palaeontology 61, 825–846 (2018).Article 

    Google Scholar 
    6.Madzia, D., Sachs, S. & Lindgren, J. Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon. Geol. Mag. 156, 1201–1216 (2019).Article 

    Google Scholar 
    7.Tarlo, L. B. A review of the Upper Jurassic pliosaurs. Bull. Br. Museum (Nat. Hist.) Geol. Lond. 4(5), 145–189 (1960).
    Google Scholar 
    8.Noè, L. F. A taxonomic and functional study of the Callovian (Middle Jurassic) Pliosauroidea (Reptilia, Sauropterygia), PhD thesis, University of Derby, 616 pp (2001).9.Ketchum, H. F. & Benson, R. B. J. The cranial anatomy and taxonomy of Peloneustes philarchus (Sauropterygia, Pliosauridae) from the Peterborough member (Callovian, Middle Jurassic) of the United Kingdom. Palaeontology 54(3), 639–665 (2011).Article 

    Google Scholar 
    10.Knutsen, E. M. A taxonomic revision of the genus Pliosaurus (Owen, 1841a) Owen, 1841b. Norw. J. Geol. 92, 259–276 (2012).
    Google Scholar 
    11.Knutsen, E. M., Druckenmiller, P. S. & Hurum, J. H. A new species of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian of central Spitsbergen, Norway. Norw. J. Geol. 92, 235–258 (2012).
    Google Scholar 
    12.Williston, S. W. North American plesiosaurs. Field Columbian Museum, Pub. 73, Geological Series 2, 1–79 (1903).
    13.Williston, S. W. The skull of Brachauchenius, with special observations on the relationships of the plesiosaurs. US Natl. Museum Proc. 32, 477–489 (1907).Article 

    Google Scholar 
    14.Welles, S. P. & Slaughter, B. H. The first record of the plesiosaurian genus Polyptychodon (Pliosauridae) from the New World. J. Paleontol. 37, 131–133 (1963).
    Google Scholar 
    15.Hampe, O. Ein großwüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungs-Institut Senckenberg 145, 1–32 (1992).
    Google Scholar 
    16.Carpenter, K. A review of short-necked plesiosaurs from the Cretaceous of the Western Interior, North America. Neues Jb. Geol. Paläontol. Abh. 201, 259–287 (1996).Article 

    Google Scholar 
    17.VonLoh, J. P. & Bell, G. L. Jr. Fossil Reptiles from the Late Cretaceous Greenhorn Formation (Late Cenomanian-Middle Turonian) of the Black Hills Region, South Dakota. Dakoterra 5, 28–38 (1998).
    Google Scholar 
    18.Kear, B. P. Cretaceous marine reptiles of Australia: A review of taxonomy and distribution. Cretac. Res. 24, 277–303 (2003).Article 

    Google Scholar 
    19.Hampe, O. Considerations on a Brachauchenius skeleton (Pliosauroidea) from the lower Paja Formation (late Barremian) of Villa de Leyva area (Colombia). Fossil Record 8, 37–51 (2005).Article 

    Google Scholar 
    20.Liggett, G. A., Shimada, K., Bennett, S. C. & Schumacher, B. A. Cenomanian (Late Cretaceous) reptiles from northwestern Russell County, Kansas. PaleoBios 25, 9–17 (2005).
    Google Scholar 
    21.Schumacher, B. A. & Everhart, M. J. A stratigraphic and taxonomic review of plesiosaurs from the old “Fort Benton Group” of central Kansas: A new assessment of old records. Paludicola 5, 33–54 (2005).
    Google Scholar 
    22.Albright, B. L., Gillette, D. D. & Titus, A. L. Plesiosaurs from the Upper Cretaceous (Cenomanian-Turonian) tropic shale of southern Utah. Part 1: New records of the pliosaur Brachauchenius lucasi. J. Vertebrate Paleontol. 27, 41–58 (2007).Article 

    Google Scholar 
    23.Ketchum, H. F. & Benson, R. B. J. Global interrelationships of Plesiosauria (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of phylogenetic analyses. Biol. Rev. 85, 361–392 (2010).PubMed 
    Article 

    Google Scholar 
    24.Páramo-Fonseca, M. E., Gómez-Pérez, M., Noè, L. F. & Etayo-Serna, F. Stenorhynchosaurus munozi, gen. et sp. nov. a new pliosaurid from the Upper Barremian (Lower Cretaceous) of Villa de Leiva, Colombia, South America. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 40, 84–103 (2016).Article 

    Google Scholar 
    25.Gómez-Pérez, M. & Noè, L. F. Cranial anatomy of a new pliosaurid Acostasaurus pavachoquensis from the Lower Cretaceous of Colombia, South America. Palaeontogr. Abt. A 310, 5–42 (2017).Article 

    Google Scholar 
    26.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new large pliosaurid from the Barremian (Lower Cretaceous) of Sáchica, Boyacá, Colombia. Earth Sci. Res. J. 22, 223–238 (2018).Article 

    Google Scholar 
    27.Fischer, V. et al. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid. R. Soc. Open Sci. 2, 150552 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Fischer, V. et al. Plasticity and convergence in the evolution of short-necked plesiosaurs. Curr. Biol. 27, 1667-1676.e3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Zverkov, N. G. On a typically Late Jurassic pliosaur from the Lower Cretaceous of Crimea. The International Scientific Conference on the Jurassic/Cretaceous boundary, Samara, Russia, 89–94 (2015).30.Angst, D. & Bardet, N. A new record of the pliosaur Brachauchenius lucasi [Williston, 1903] (Reptilia: Sauropterygia) of Turonian (Late Cretaceous) age, Morocco. Geol. Mag. 153, 449–459 (2016).CAS 
    Article 

    Google Scholar 
    31.Madzia, D. & Machalski, M. Isolated pliosaurid teeth from the Albian-Cenomanian (Cretaceous) of Annopol, Poland. Acta Geol. Pol. 67, 393–403 (2017).CAS 
    Article 

    Google Scholar 
    32.Lukeneder, A. & Zverkov, N. G. First evidence of a conical-toothed pliosaurid (Reptilia, Sauropterygia) in the Hauterivian of the Northern Calcareous Alps, Austria. Cretaceous Res. 106, 104248 (2020).Article 

    Google Scholar 
    33.Zverkov, N. G. & Pervushov, E. M. A gigantic pliosaurid from the Cenomanian (Upper Cretaceous) of the Volga Region, Russia. Cretaceous Res. 110, 104419 (2020).Article 

    Google Scholar 
    34.Kear, B. P., Ekrt, B., Prokop, J. & Georgalis, G. L. Turonian marine amniotes from the Bohemian Cretaceous Basin, Czech Republic. Geol. Mag. 151, 183–198 (2014).Article 

    Google Scholar 
    35.Benson, R. B. J. & Druckenmiller, P. S. Faunal turnover of marine tetrapods during the Jurassic–Cretaceous transition. Biol. Rev. 89, 1–23 (2014).PubMed 
    Article 

    Google Scholar 
    36.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new specimen of Stenorhynchosaurus munozi (Páramo-Fonseca et al., 2016) (Plesiosauria, Pliosauridae), from the Barremian of Colombia: new morphological features and ontogenetic implications. J. Vertebrate Paleontol. 39, e1663426 (2019).Article 

    Google Scholar 
    37.Albino, A. M., Carrillo-Briceño, J. D. & Neenan, J. M. An enigmatic snake from the Cenomanian of Northern South America. PeerJ 4, e2027. https://doi.org/10.7717/peerj.2027 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.de Juana, C. G., de Arocena, J. I. & Picard, X. Geologia de Venezuela y de sus Cuencas Petroliferas Vol. 103, 1 (Foninves, 1980).
    Google Scholar 
    39.Renz, O. Estratigrafía del Cretáceo en Venezuela occidental. Boletín de Geología 5(10), 3–48 (1959).
    Google Scholar 
    40.Guinot, G. & Carrillo-Briceño, J. D. Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela. Cretac. Res. 82, 1–20 (2018).Article 

    Google Scholar 
    41.Colbert, E. A new Cretaceous plesiosaur from Venezuela. Am. Mus. Novit. 1420, 1–22 (1949).
    Google Scholar 
    42.Bengston, P. & Kakabadze, M. V. Ammonites and the mid-Cretaceous saga. Cretac. Res. 88, 90–99 (2018).Article 

    Google Scholar 
    43.Páramo-Fonseca, M. E., O’Gorman, J. P., Gasparini, Z., Padilla, S. & Parra-Ruge, M. L. A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia. Cretaceous Res. 99, 30–40 (2019).Article 

    Google Scholar 
    44.Welles, S. P. A new species of elasmosaur from the Aptian of Colombia, and a review of the Cretaceous plesiosaurs. Univ. California Publ. Geol. Sci. 44, 1–96 (1962).
    Google Scholar 
    45.Carpenter, K. Revision of North American elasmosaurs from the Cretaceous of the Western Interior. Paludicola 2, 148–173 (1999).
    Google Scholar 
    46.Jaimes, J. J. & Parra, E. N. Callawayasaurus colombiensis (Welles) Carpenter 1999 el plesiosaurio de Villa de Leyva (Boyacá, Colombia). ¿Un nuevo espécimen?. Boletín de Geología 23(38), 9–19 (2001).
    Google Scholar 
    47.Goñi, R. & Gasparini, Z. B. Nuevos restos de “Alzadasaurus colombiensis” (Reptilia, Plesiosauria) del Cretácico temprano de Colombia. Geologia Norandina 7, S.49–54 (1983).
    Google Scholar 
    48.Meza-Velez, I. & O’Gorman, J. E. registro fósil de plesiosaurios (Diapsida, Sauropterygia) en el Perú. Rev. Peru. Biol. 28(2), 1–8 (2021).Article 

    Google Scholar 
    49.Jaillard, E., Cordova, A., Mazin, J.-M. & Mourier, T. La transgression du Cénomanien supérieur-Turonien inférieur dans le région de Jaén (Nord du Pérou): donnés sédimentologique et stratigraphiques: Découverte du premier saurien marin du Pérou, Série II. C. R. Acad. Sc. Paris 301(20), 1429–1432 (1985).
    Google Scholar 
    50.Carvalho, I., Velas Bôas, I. & Bergqvist, L. Plesiossauros da regiao equatorial Brasileira Bacia de Sao Luís (Cretáceo Superior) Brazil. Acta Geologica Leopoldensia 23(51), S33–S41 (2000).
    Google Scholar 
    51.Velas Bôas, I. & Carvalho, I. Répteis Marinhos (Mosasauria e Plesiosauria) do Cretáceo Superior da Bacia de São Luís (Maranhão, Brasil). O Cretáceo na Bacia de São Luís-Grajaú, 223–233 (2001).52.O’Gorman, J. P. & Varela, A. N. The oldest lower Upper Cretaceous plesiosaurs (Reptilia, Sauropterygia) from southern Patagonia, Argentina. Ameghiniana 47, 447–459 (2010).Article 

    Google Scholar 
    53.Ameghino, F. Sobre la presencia de vertebrados de aspecto mesozoico en la formación Santacruceña de la Patagonia austral. Revista del Jardín Zoológico de Buenos Aires 1, 76–84 (1893).
    Google Scholar 
    54.Zumberge, J. E. Source rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia. Petroleum geochemistry and source rock potential of carbonate rocks. AAPG Stud. Geol. 18, 127133 (1984).
    Google Scholar 
    55.Tribovillard, N. P. et al. Cretaceous black shales of Venezuelan Andes: Preliminary results on stratigraphy and paleoenvironmental interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 313–321 (1991).Article 

    Google Scholar 
    56.Bralower, T. J. & Lorente, M. A. Paleogeography and stratigraphy of the La Luna Formation and related Cretaceous anoxic depositional systems. Palaios 18(4–5), 301–304 (2003).Article 

    Google Scholar 
    57.Zapata, E. et al. Biostratigraphic, sedimentologic, and chemostratigraphic study of the La Luna Formation (Late Turonian-Campanian) in the San Miguel and Las Hernández sections, western Venezuela. Palaios 18, 367–377. https://doi.org/10.1669/0883-1351(2003)018%3c0367:BSACSO%3e2.0.CO;2 (2003).Article 

    Google Scholar 
    58.MINISTERIO DE ENERGIA Y MINAS. Lexico Estratigraifico de Venezuela, 3’d ed. Boletin de Geologia 12, 1–828 (1997).
    Google Scholar 
    59.Carrillo Briceño, J. D., Alvarado-Ortega, J. & Patiño Torres, C. Primer registro de Xiphactinus Leidy, 1870 (Teleostei, Ichthyodectiformes) en el Cretácico Superior de América del Sur (Formación La Luna, Venezuela). Revista Brasileira de Paleontologia. 15(3), 327–335 (2012).Article 

    Google Scholar 
    60.Albino, A. M., Rothschild, B., Carrillo-Briceño, J. D. & Neenan, J. M. Spondyloarthropathy in vertebrae of the aquatic Cretaceous snake Lunaophis aquaticus, and its first recognition in modern snakes. Sci. Nat. 105(9), 51 (2018).Article 
    CAS 

    Google Scholar 
    61.Renz, O. Die Ammonoidea im Stratotyp des Vraconien bei Sainte Croix (Kanton Waadt). Schweizerische palaontologische Abhandlungen 87, 1–97 (1968).
    Google Scholar 
    62.Erlich, R. N., Macsotay, O., Nederbragt, A. J. & Lorente, M. A. Palaeoceanography, palaeoecology, and depositional environments of Upper Cretaceous rocks of western Venezuela. Palaeogeogr. Palaeoclimatol. Palaeoecol. 153, 203–238 (1999).Article 

    Google Scholar 
    63.Renz, O. The Cretaceous Ammonites of Venezuela (Birkhäuser Verlag, 1982).
    Google Scholar 
    64.Moody, J. M. & Maisey, J. G. New Cretaceous marine vertebrate assemblages from North-Western Venezuela and their significance. J. Vertebr. Paleontol. 14(1), 1–8 (1994).Article 

    Google Scholar 
    65.Macsotay, O., Erlich, R. N. & Peraza, T. Sedimentary structures of the La Luna, Navay and Querecual Formations, Upper Cretaceous of Venezuela. Palaios 18(4–5), 334–348 (2003).Article 

    Google Scholar 
    66.Davis, C., Pratt, L. & Sliter, W. Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela. In Evolution of the Cretaceous Ocean-Climate System Vol. 332 (eds Barrera, E. & Johnson, C. C.) 203–231 (Geological Society of America Special Paper Geological Society of America, 1999).
    Google Scholar 
    67.Martinez, J. I. & Hernandez, R. Evolution and drowning of the Late Cretaceous Venezuelan carbonate platform. J. S. Am. Earth Sci. 5(2), 197–210 (1992).Article 

    Google Scholar 
    68.Ford, A. B., & Houbolt, J. J. H. C. The microfacies of the Cretaceous of western Venezuela: International Sedimentary Petrographical Series 6. EJ Brill, Publisher, Leiden, Germany, 1–109 (1963).69.Caron, M. & Spezzaferri, S. Scanning electron microscope documentation of the lost holotypes of Mornod, 1949: Thalmanninella reicheli and Rotalipora montsalvensis. J. Foraminiferal Res. 36(4), 374–378 (2006).Article 

    Google Scholar 
    70.Veigal, R. & Dzelalija, F. A Regional Overview of the La Luna Formation and the Villeta Groups as Shale Gas/Shale Oil in the Catatumbo Magdalena Valley and Eastern Cordillera Regions, Colombia, Article #10565 21 (American Association of Petroleum Geologists, Search and Discovery, 2014).
    Google Scholar 
    71.Spickert, A. Petroleum System Analysis: Middle Magdalena Valley Basin, Colombia, South America. MSC Report 1–48 (University of Washington, 2014).
    Google Scholar 
    72.De Romero, L. M. et al. An integrated calcareous microfossil biostratigraphic and carbon-isotope stratigraphic framework for the La Luna Formation, western Venezuela. Palaios 18(4–5), 349–366 (2003).Article 

    Google Scholar 
    73.Mendez, C. E. La Formacion La Luna. Caracteristica de una cuenca anoxica en una plataforma de aguas someras. Proceedings of the 7th Congreso Geologico Venezolano, 852–866 (1981).74.Weiler, W. Fischreste aus der Umgebung von San Cristobal, SW. Venezuela. Zentralblatt für Mineralogie Geologie und Paläontologie (B). 1949, 240–255 (1940).
    Google Scholar 
    75.Sánchez-Villagra, M. R., Brinkmann, W. & Lozsán, R. The Paleozoic and Mesozoic vertebrate record of Venezuela: An overview, summary of previous discoveries and report of a mosasaur from the La Luna Formation (Cretaceous). Paläontol. Z. 82(2), 113–124 (2008).Article 

    Google Scholar 
    76.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971).Article 

    Google Scholar 
    77.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/ (2019).78.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Smith, J. B. & Dodson, P. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. J. Vertebr. Paleontol. 23, 1–12 (2003).Article 

    Google Scholar 
    80.de Blainville, H. D. Description de quelques espècesde reptiles de la Californie, précédé de l’analyse d’unsystème général d’Erpétologie et d’Amphibiologie. Nouvelles Annales du Museum National d’Histoire Naturelle Paris 4, 233–296 (1835).
    Google Scholar 
    81.Seeley, H. G. Note on some of the generic modifications of the plesiosaurian pectoral arch. Q. J. Geol. Soc. Lond. 30, 436–449 (1874).Article 

    Google Scholar 
    82.McHenry, C. R. Devourer of gods: The palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus. Doctoral dissertation, University of Newcastle (2009).83.Sato, T., Hasegawa, Y. & Manabe, M. A new elasmosaurid plesiosaur from the Upper Cretaceous of Fukushima, Japan. Palaeontology 49, 467–484 (2006).Article 

    Google Scholar 
    84.Sachs, S. Redescription of Elasmosaurus platyurus Cope 1868 (Plesiosauria: Elasmosauridae) from the Upper Cretaceous (lower Campanian) of Kansas, USA. Paludicola 5, 92–106 (2005).
    Google Scholar 
    85.Welles, S. P. Elasmosaurid plesiosaurs with a description of new material from California and Colorado. Univ. California Publ. Geol. Sci. 13, 125–215 (1943).
    Google Scholar 
    86.Welles, S. P. A new elasmosaur from the Eagle Ford Shale of Texas. Part I. Systematic description. Fondren Sci. Series 1, 1–28 (1949).
    Google Scholar 
    87.Sachs, S. Remarks on the pectoral girdle of Hydrotherosaurus alexandrae (Plesiosauria: Elasmosauridae). PalArch Vertebr. Palaeontol. 4(1), 1–6 (2005).
    Google Scholar 
    88.O’Gorman, J. P. Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation. J. Vertebr. Paleontol. 39(5), e1692025 (2020).Article 

    Google Scholar 
    89.Sachs, S., Kear, B.P. & Lindgren, J. Re-description of Thalassomedon haningtoni—An elasmosaurid from the Cenomanian of North America. 5th Triennial Mosasaur Meeting—A Global Perspective on Mesozoic Marine Amniotes. Abstracts and Program (Sachs, S., Kear, B.P. & Lindgren, eds.), 38–40 (2016).90.Sachs, S. & Kear, B. P. Postcranium of the paradigm elasmosaurid plesiosaurian Libonectes morgani (Welles, 1949). Geol. Mag. 152, 694–710 (2015).Article 

    Google Scholar 
    91.Sachs, S. & Kear, B. P. Redescription of the elasmosaurid plesiosaurian Libonectes atlasense from the Upper Cretaceous of Morocco. Cretac. Res. 74, 205–222 (2017).Article 

    Google Scholar 
    92.Sachs, S., Lindgren, J., Madzia, D. & Kear, B. P. Cranial osteology of the mid-Cretaceous elasmosaurid Thalassomedon haningtoni from the Western Interior Seaway of North America. Cretaceous Res. 123,104769 (2021).93.McKean, R. S. A new species of polycotylid plesiosaur (Reptilia: Sauropterygia) from the Lower Turonian of Utah: Extending the stratigraphic range of Dolichorhynchops. Cretac. Res. 34, 184–199 (2012).Article 

    Google Scholar 
    94.Sachs, S., Madzia, D., Püttmann, T. & Kear, B. P. Enigmatic plesiosaur vertebral remains from the middle Turonian of Germany. Cretaceous Res. 110, 104406 (2020).Article 

    Google Scholar  More

  • in

    Effects of different returning method combined with decomposer on decomposition of organic components of straw and soil fertility

    Site descriptionThe experimental was conducted in Gengzhuang Town, Haicheng(40° 48′ N, 122° 37′ E), Liaoning Province from 2019 to 2020. This area is belonged to the continental monsoon climate zone of warm temperate zone, the annual average temperature is above 10 °C, the annual accumulated temperature is 3000–3100 °C, the frost-free period is about 170 days, and the annual rainfall is 600–800 mm. The soil at the experimental site is classified as brown earth29. Before the experiment, this test field had been in rotary tillage mode each year, with no straw return. The concentration of soil organic carbon, total nitrogen, available nitrogen, available phosphorus, available potassium, and soil bulk density in 0–20 cm surface layer were 12.50 g kg−1, 0.89 g kg−1, 129.6 mg kg−1, 25.96 mg kg−1, 117.94 mg kg−1, and 1.53 g cm−3, respectively. The components and nutrient contents of corn straw were shown in Table 1, The average temperature and precipitation from May 2019 to May 2020 are shown in Fig. 1.Table 1 Initial component content of corn straw.Full size tableFigure 1Daily precipitation and mean air temperature during the straw decomposition period from May 2019 to May 2020.Full size imageExperimental design and managementWe adopted a split plot design, with the main plot as the cultivation method, and with three cultivation options: no-tillage, deep loosening + deep rotary tillage and rotary tillage. Then, when adding straw as a decomposer, two methods were used: adding straw decomposer and not adding it. Our experimental approach included six treatments: No-tillage and straw mulching to the field + straw decomposer (NT + S); no-tillage and straw mulching to the field + no straw decomposer (NT); rotary tillage and straw mixed into the soil + straw decomposer (RT + S); rotary tillage and straw mixed into the soil + no straw decomposer (RT); deep loosening + deep rotary tillage and straw return to the field + straw decomposer (PT + S); and deep loosening + deep rotary tillage and straw return to the field + no straw decomposer (PT). Each treatment was replicated 3 times, located in random blocks, with a total plot area of 68.4 m2. At the same time as the previous year’s corn harvest, straw was returned to the field, crushed to about 10 cm long, spread evenly on the ground. No-tillage mulching and straw return to the field is the direct no-tillage maize sowing operation in spring; In the deep loosening + deep rotary tillage treatment, the soil is turned using a subsoiler to a depth of 35 cm, and then the straw is mixed into the soil through deep rotary tillage (a depth of 30 cm); and rotary tillage involves mixing straw into the soil with a rotary tiller to a depth of 20 cm and then raking it flat.Using the nylon net bag method (mesh bags were 5 cm × 6 cm, small; 15 cm × 20 cm, medium; and large, 25 cm × 35 cm; each size with an aperture of 100 mesh), we simulated three return modes. Soil added to the net bags was taken from the top 0–20 cm prior to sowing in 2019, in the corresponding plots of each treatment. Corn stalks were added at a ratio of 5:4 per stem and leaf (dry weight of stem and leaf of corn stalks in mature stage), and crushed to 2 cm long. In no-tillage treatment, 10 g straw was added to the medium mesh bag, in the rotary tillage and deep loosening + deep rotary tillage treatment, 10 g straw was evenly divided into five parts and put into five small net bags, then the five small net bags were evenly mixed into the soil of the outer large net bag and sealed, the weight of soil added to each large net bag is 2 kg, and the compactness between the inner net bag and the soil in the outer net bag was adjusted.Net bag layout was determined according to different treatment tillage patterns, and bags were placed in the field on seeding day in 2019. Deep loosening + deep rotary tillage was achieved by ploughing furrows 30 cm long, 15 cm wide, and 35 cm deep between corn rows in corresponding plots, large net bags were buried vertically in the furrows, filled with soil and compacted, so that return depth and straw distribution were basically the same as deep loosening + deep rotary tillage in the field. Rotary tillage mode was achieved by ploughing furrows 30 cm long, 15 cm wide, and 20 cm deep between corn rows in the corresponding treatment plot, the packed net bags were tilted in the furrows, filled with soil and moderately compacted, the top end of the net bags was level with the ground surface, which is basically consistent with the return depth of rotary tillage and straw distribution in actual field production. No-tillage mulching treatments involved laying the net bags containing straw on the ground and covering the four corners with soil to prevent the net bag from being blown away by the wind. The decomposer addition treatments involved evenly spraying c. 6.5 ml straw decomposer on the straw surface before bagging, in the treatment without decomposer, 6.5 ml water was sprayed on the surface of straw to maintain the same water content.In all treatments we applied the same amount of N, P and K (N 240 kg hm−2, P2O5 74 kg hm−2 and K2O 89 kg hm−2). The nitrogen fertilizer was urea, the phosphate fertilizer superphosphate, and the potassium fertilizer, potassium chloride. The brand of straw decomposing agent is Gainby and the model number is d-68 (created by NORDOX company and produced by Beijing Shifang Biotechnology Co., Ltd.). Straw decomposer dosage was 1.5 kg hm−2, diluted with water 100 times, and the effective viable bacteria number was ≥ 50 million g−1. The effective bacteria in the decomposer include: Bacillus licheniformis, Aspergillus niger and Saccharomyces cerevisiae and so on.Sampling and analysis methodsOn the 15th, 35th, 55th, 75th, 95th, 145th and 365th day after the nylon net bags were placed in the field plots, 3 bags were randomly sampled from each plot. For each net bag, we first washed the surface soil off with tap water, then washed the sample with distilled water 3 times, dried it at 60 °C, weighed it and then ground it to deter-mine the decomposition rate of straw and its components. At the same time, in the no-tillage treatments, 200 g soil was taken from 0 to 5 cm below the straw net bag, in rotary tillage and deep loosening + deep rotary tillage treatments, 200 g soil from net bag was taken for the determination of soil SOC, MBC and DOC. Content of cellulose, hemicellulose and lignin in straw were determined following Van’s method30, using a SLQ-6A semi-automatic crude fiber analyzer (Shanghai Fiber Testing Instrument Co., Ltd.).The following formula was used to calculate decomposition rate of straw and its components. M0 is the initial straw or cellulose (hemicellulose, lignin) mass, g, and Mt is the straw or cellulose (hemicellulose, lignin) mass at time t, g.$$mathrm{Decomposition ; proportion }left({%}right)= frac{{M}_{ 0}-{ M}_{ t}}{{M , }_{0}}times 100.$$
    (1)
    The following formula was used to calculate the straw carbon release proportion. C0 is the initial straw carbon content, g, Ct is the straw carbon content at time t, g.$$mathrm{Straw ; carbon ; release ; proportion }left({%}right)= frac{{C}_{ 0} -{ C }_{t}}{{C }_{0}}times 100.$$
    (2)
    The following formula was used to calculate the straw and its components decomposition rate. M365 is the quality of straw or cellulose (hemicellulose, lignin) mass on the 365th day, mg day−1.$$mathrm{Decomposition ; rate }left(mathrm{mg }{mathrm{day}}^{-1}right)= frac{{M}_{ 0 }- {M}_{365}}{365}.$$
    (3)
    The relationship of the straw decomposition proportion (%) changes over time was fitted as follows:$${y}_{t} = a+btimes exp left(-ktright),$$
    (4)
    where yt is the proportion of the straw decomposition proportion at time t, %; t is the decomposition time of straw; k is the decomposition rate constant calculated using the least-squares method; a and b are constants.SOC concentrations (g kg−1) was determined using the K2Cr2O7–H2SO4 digestion method31. Soil MBC content was determined using the Chloroform fumigation extraction method32. Two fresh soil samples were weighed, and then one of them was placed in a vacuum dryer with chloroform added, and pumped until the chloroform boiled violently, and after a period of time, the dryer cover was opened, the container containing chloroform removed, and the lid replaced. Another portion of soil was placed in a vacuum dryer without chloroform as a control. Then, 20 g each of fumigated and unfumigated soil samples were weighed, 50 mL 0.5 mg L−1 K2SO4 was added, extracted by vibration for 0.5 h, filtrate was pumped by 0.45 μm organic filter membrane, and then the filtrate was directly analyzed and detected using a TOC organic carbon analyzer. Based on the difference of organic C content between fumigated and unfumigated soil extracts, the microbial biomass carbon was obtained by multiplying the coefficient by 2.64. For the determination of soil DOC content, we used a slightly modified method of Jones33 and Hu Haiqing34. We made a leaching solution with 0.5 mol L K2SO4, weighed 10 g over 2 mm sieve of air dried soil, added the soil to the leaching solution to create a soil mass ratio of 2.5:1, and then applied a shock temperature for 1 h (220 r min−1). Then, after filtering, the filtrate was centrifuged for 20 min (3800 r min−1), filtered with a 0.45 μm organic membrane, and the filtrate subjected to TOC organic carbon analysis meter tests.Data analysisIn this experiment, Excel 2016 (Microsoft Corporation, New Mexico, USA) software was used to collate and analyze the data, and SPSS 19.0 (SPSS Inc., Chicago, Illinois, USA) statistical software was used to conduct variance analysis, LSD multiple analysis comparison and nonlinear regression analysis on the data. Duncan’s multiple range test was used to compare the treatment means at a 95% confidence level. Graphs were drawn using Origin 9.0 (Originlab, Northampton, USA). More

  • in

    Honing in on bioluminescent milky seas from space

    We processed DNB imagery from three key regions per the historical record of mariner sightings2—the northwest Indian Ocean (5° S–20° N, 40–70° E) and Indonesian waters surrounding Java (15° S–0°, 100–115° E) and the Banda Sea (11–1° S, 120–135° E). Our search window spanned 2012–2021, during the periods December–March and July–September corresponding to the peak modes of ship sightings. Data processing and detection criteria are described in “Methods” section.Our search yielded 12 DNB-detected events (listed in Table 1) whose properties met the strict criteria for milky seas. Physically unexplainable in terms of thermal emissions (which would require scene temperatures exceeding 600 K), uncorrelated with clouds/airglow, invisible during the day, and persistent over multiple consecutive nights, these luminous bodies drifted and evolved in ways that were consistent with the analyzed ocean surface currents. The start and end dates of detection were in many cases bound by the observable periods as defined by the lunar cycle. Here, we highlight three exemplary cases, with additional details for all cases summarized in Supplementary Discussion 2.Table 1 Day/Night Band detected milky sea events identified in this study.Full size tableSocotra, July/August 2013On 31 July 2013, the Suomi NPP DNB detected a luminous body with well-defined boundaries (Fig. 2), located east of Socotra in the northwest Indian Ocean, at (14.0° N, 57.0° E). Uncorrelated with the observed cloud field (Fig. 2a–c), the body drifted northeast with the currents at ~ 0.44 m s−1, stretching and curving in a manner consistent with the analysed ocean-surface currents (Fig. 2d–f), which showed a clockwise-rotating eddy located to its south.Figure 2Three-night sequence over 2–4 August 2013 of a bioluminescent milky sea in the Arabian Sea for (a–c) DNB log10—scaled radiance imagery (W cm−2 sr−1), showing a ~ 9000 km2 luminous body persisting amidst the ephemeral cloud cover, and (d–f) a pan-out of HYCOM sea surface currents (magenta box in (d) corresponds to domain of (a–c), with approximate location of the luminous body noted) shown for comparison against the body’s observed structural evolution and drift.Full size imageWhereas DNB imagery showed only dark ocean during the daytime overpasses of the same location, these glowing waters persisted on successive nights over a two-week period. By 2 August the milky sea covered ~ 9000 km2 (involving roughly 5 × 1021 to 5 × 1022 luminous bacteria, per “Methods” section). The DNB lost sight of the milky sea on 14 August due to moonlight, and it was not seen again in the following moon-free period.Suomi NPP’s daytime chlorophyll-a (Chla) retrievals, a proxy for the amount of organic material in the surface waters, showed structural similarities to the milky sea, but were more widespread (Supplementary Fig. S1). Moreover, the most elevated regions of Chla ( > 1 mg m−3) occurred not directly atop, but adjacent to the most luminous waters—a recurring property among the cases documented in this research which may indicate regions of algal stress where (potentially luminous) bacteria would proliferate. On several nights, a faint signature of the luminous body was detectable beneath analyzed cloud cover; its light scattering upward through the clouds in a way similar to the behaviour of city lights in DNB imagery.Somali Sea, January 2018On 12 January 2018, both Suomi NPP and NOAA-20 captured a luminous structure offshore of southern Somalia. Over the next 5 days it stretched into a narrow filament that paralleled the Somali coast, mirroring the behaviour of other winter-mode Somali Sea cases described in Supplementary Discussion 2. Over 18–23 January, the luminous filament extended east/northeast, forming a comma-shape (Fig. 3a–c), with a sharply-defined southeastern edge and gradually fading brightness on its northwestern side. By 20 January, it spanned ~ 15,000 km2, suggesting involvement of roughly 8 × 1021 to 8 × 1022 bacteria. Its scale, shape, time, and location were similar to the Lima-sighted milky sea4,14, as well as to a subset of the surface reports in Supplementary Discussion 1.Figure 3Three-night sequence over 20–22 January 2018 of a bioluminescent milky sea in the Somali Sea for (a–c) DNB log10 – scaled radiance imagery (W cm−2 sr−1), showing a ~ 15,000 km2 luminous feature persistent amidst the variable cloud field. Focusing on 22 January, (d) VIIRS-derived night time SST (K; with cloud cover in black) at 2156Z, (e) daytime VIIRS-retrieved Chla (mg m−3) at 1007Z, and (f) pan-out of HYCOM sea surface currents at 2100Z with approximate location of DNB-observed luminous body.Full size imageComparing the luminous body to satellite retrievals of Sea Surface Temperature (SST; Fig. 3d) showed its eastern boundary aligned with the edge of an oceanic front, residing within relatively cool (298–299 K) waters that extended northeast from the Somali coastal upwelling zone. These cooler SSTs corresponded to elevated Chla values in the range of ~ 0.5–1.0 mg m−3 (Fig. 3e). As in the 2013 Socotra case, the area of elevated Chla was more extensive than the luminous region. Ocean surface currents (Fig. 3f) showed the body’s eastern boundary embedded within counter-clockwise flow and drifting north/northwest at ~ 0.8 m s−1.Java, July–September 2019The DNB detected a large milky sea in the east Indian Ocean, immediately south of Java, Indonesia in 2019. The event spanned two complete moon-free cycles (26 July–9 August, and 25 August–7 September). On the night of 25 July, the DNB detected a luminous anomaly south of Surakarta, Java, near 9.5° S, 111° E. The detection amidst moderate moonlight conditions suggested a particularly strong source of emission. Imagery on subsequent moonless nights confirmed that the initial detection was in fact part of a much larger milky sea, spanning ~ 100,000 km2—approximately the same size as Iceland. A milky sea of this scale suggests involvement of roughly 6 × 1022 to 6 × 1023 luminous bacteria, which would qualify as the largest event on record. Undetectable during the day, the contiguous feature reappeared in nightly imagery throughout the two observable moon-free periods (Fig. 4).Figure 4Day/night comparison of DNB log10—scaled radiance imagery (W cm−2 sr−1) of a bioluminescent milky sea near Java for the period 2–4 August 2019 for (a–c) daytime imagery, and (d–f) night time imagery. The amorphous luminous body, located immediately south of Java and detectable only at night, covered ~ 100,000 km2 of ocean surface. Bright patches seen over Java in (d–f) are city lights.Full size imageSituated within quiescent, low-shear waters (Supplementary Fig. S2) between counter-clockwise-spinning warm-core eddies to its southeast and southwest (Fig. 4), this massive milky sea rotated clockwise like a cog between gears, its centre near 9.0° S, 110.0° E. By 30 July, its northern boundary approached within 25 km of the Java coast, and a 500 km2 area of its core was so bright that certain infrared-detected cumulus clouds appeared in the DNB imagery as dark, attenuating objects in contrast to the glowing waters below them (Supplementary Fig. S3).The DNB radiances measured in the brightest areas of these luminous waters approached Crescent- to Quarter-Moon illumination levels. Based on scotopic vision sensitivity to bioluminescent emission (Supplementary Fig. S4) and direct comparisons against legacy OLS imagery (Supplementary Fig. S5), portions of this milky sea may have appeared visually bright to dark-adapted human vision—perhaps even attaining the classical snowfield effect described in the historical mariner accounts.After losing sight of the luminous body on 10 August due to moonlight contamination, the DNB recaptured it on 25 August and tracked it for 2 weeks thereafter, as described in Supplementary Discussion 2. The longevity of this event, which lasted for at least 45 nights, by far eclipsed all other cases encountered in this study—indicating that significant milky seas offer a reasonable time window for reaching them if a rapid-response team is on the ready.Satellite retrievals of ocean surface properties for the 2019 Java case (Fig. 5) showed cooler waters and elevated Chla along the Java coast. A stream of higher Chla ( > 2 mg m−3), embedded within a tongue of these cooler waters, extended southward and immediately east of the luminous body, following the flow of the south-eastern eddy (Fig. 5b). At this time, the luminous waters were confined to a narrow range of SST over 298 ± 1 K (~ 25 ± 1 °C) and moderate Chla over 1 ± 0.5 mg m−3, demarcated from the surrounding waters at abrupt boundaries defined by coastal upwelling to the north and the two eddies to the south.Figure 5Multi-parameter analysis of the 2019 Java milky sea on 2 August 2019 for (a) night time DNB log10—scaled radiance imagery (W cm−2 sr−1) at 1752Z, (b) pan-out of HYCOM sea surface currents valid at 1800Z (magenta box shows domain of (a), with approximate location of luminous body shaded), (c) VIIRS-retrieved SST (with cloud cover and land surfaces in black) valid at 1752Z, and (d) daytime VIIRS-retrieved Chla at 0554Z.Full size imageFigure 6 relates DNB radiance, SST, and Chla for 10 nights (27 July–5 August) of the 2019 Java case, centred on the luminous body. DNB radiances correlated positively with Chla over 0.5–1.5 mg m−3, and negatively with SST over 297–299 K. The brightest milky sea waters corresponded to asymptotic SST values of ~ 298 K and Chla of ~ 1.2 mg m−3, respectively, and notably, did not overlap with the strongest parts of the algal bloom. The SST values, hovering around 298 K for most DNB-detected cases in this study, may hold significance, as this temperature regime promotes rapid growth of V. harveyi and P. leiognathi over a wide range of ocean salinity values20.Figure 6Relationship between DNB-measured milky sea radiances and ocean surface fields for the 2019 Java case (27 July–5 August, centred on the luminous body). Radiance-specific distributions (i.e., for a given radiance level, each row sums to 100%) are shown as a function of (a) SST and (b) Chla. The DNB noise floor (where SNR = 1) is drawn as a horizontal dashed line.Full size image More

  • in

    Colour and motion affect a dune wasp’s ability to detect its cryptic spider predators

    1.Smith, M. Q. R. P. & Ruxton, G. D. Camouflage in predators. Biol. Rev. 63, 178–216 (2020).
    Google Scholar 
    2.Anderson, A. G. & Dodson, G. N. Colour change ability and its effect on prey capture success in female Misumenoides formosipes crab spiders. Ecol. Entomol. 40, 106–113 (2015).Article 

    Google Scholar 
    3.Gonzálvez, F. G. & Rodríguez-Gironés, M. A. Seeing is believing: information content and behavioural response to visual and chemical cues. Proc. R. Soc. Lond. Ser. B Biol. Sci. 280, 20130886–20130888 (2013).
    Google Scholar 
    4.Schwantes, C. J., Carper, A. L. & Bowers, M. D. Solitary floral specialists do not respond to cryptic flower-occupying predators. J. Insect Behav. 31, 642–655 (2018).Article 

    Google Scholar 
    5.Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, Princeton, 2014).Book 

    Google Scholar 
    6.Caves, E. M., Brandley, N. C. & Johnsen, S. Visual acuity and the evolution of signals. Trends Ecol. Evol. 33, 1–15 (2018).Article 

    Google Scholar 
    7.Burnett, N. P., Badger, M. A. & Combes, S. A. Wind and obstacle motion affect honeybee flight strategies in cluttered environments. J. Exp. Biol. 223, jeb222471-9 (2020).
    Google Scholar 
    8.Hennessy, G. et al. Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Anim. Behav. 161, 23–31 (2020).Article 

    Google Scholar 
    9.Thery, M. & Casas, J. The multiple disguises of spiders: web colour and decorations, body colour and movement. Philos. Trans. R. Soc. B Biol. Sci. 364, 471–480 (2009).Article 

    Google Scholar 
    10.Oxford, G. & Gillespie, R. Evolution and ecology of spider coloration. Annu. Rev. Entomol. 43, 619–643 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Rodríguez-Morales, D. et al. Context-dependent crypsis: a prey’s perspective of a color polymorphic predator. Sci. Nat. 105, 81 (2018).Article 
    CAS 

    Google Scholar 
    12.Gavini, S. S., Quintero, C. & Tadey, M. Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecol. 95, 100–107 (2019).ADS 
    Article 

    Google Scholar 
    13.Morse, D. H. Predatory risk to insects foraging at flowers. Oikos 46, 223–228 (1986).Article 

    Google Scholar 
    14.Brechbuhl, R., Casas, J. & Bacher, S. Ineffective crypsis in a crab spider: a prey community perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 277, 739–746 (2010).
    Google Scholar 
    15.Rodríguez-Gironés, M. A. & Maldonado, M. Detectable but unseen: imperfect crypsis protects crab spiders from predators. Anim. Behav. 164, 83–90 (2020).Article 

    Google Scholar 
    16.Heiling, A., Herberstein, M. & Chittka, L. Pollinator attraction: crab-spiders manipulate flower signals. Nature 421, 334–334 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Llandres, A. L. & Rodríguez-Gironés, M. A. Spider movement, UV reflectance and size, but not spider Crypsis, affect the response of honeybees to Australian crab spiders. PLoS ONE 6, e17136–e17211 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Vieira, C., Ramires, E. N., Vasconcellos-Neto, J., Poppi, R. J. & Romero, G. Q. Crab spider lures prey in flowerless neighborhoods. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    19.Robertson, I. C. & Maguire, D. K. Crab spiders deter insect visitations to slickspot peppergrass flowers. Oikos 109, 577–582 (2005).Article 

    Google Scholar 
    20.Yokoi, T. & Fujisaki, K. Hesitation behaviour of hoverflies Sphaerophoria spp. to avoid ambush by crab spiders. Sci. Nat. 96, 195–200 (2008).Article 
    CAS 

    Google Scholar 
    21.Defrize, J., Thery, M. & Casas, J. Background colour matching by a crab spider in the field: a community sensory ecology perspective. J. Exp. Biol. 213, 1425–1435 (2010).PubMed 
    Article 

    Google Scholar 
    22.Reader, T., Higginson, A. D., Barnard, C. J. & Gilbert, F. S. The effects of predation risk from crab spiders on bee foraging behavior. Behav. Ecol. 17, 933–939 (2006).Article 

    Google Scholar 
    23.Ings, T. & Chittka, L. Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr. Biol. 18, 1520–1524 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Ings, T. C., Wang, M. Y. & Chittka, L. Colour-independent shape recognition of cryptic predators by bumblebees. Behav. Ecol. Sociobiol. 66, 487–496 (2011).Article 

    Google Scholar 
    25.Collett, T. S. & Zeil, J. Flights of learning. Curr. Dir. Psychol. Sci. 5, 149–155 (1996).Article 

    Google Scholar 
    26.Stürzl, W., Zeil, J., Boeddeker, N. & Hemmi, J. M. How wasps acquire and use views for homing. Curr. Biol. 26, 470–482 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Zeil, J., Kelber, A. & Voss, R. Structure and function of learning flights in bees and wasps. J. Exp. Zool. A Ecol. Genet. Physiol. 199, 245–252 (1996).CAS 

    Google Scholar 
    28.Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., & Lindemann, J. P. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front. Neural Circuits. 6, 1–23 (2012).Article 

    Google Scholar 
    29.Lehrer, M. Small-scale navigation in the honeybee: active acquisition of visual information about the goal. J. Evol. Biol. 199, 253–261 (1996).CAS 

    Google Scholar 
    30.Lehrer, M. & Campan, R. Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190, 1–13 (2004).Article 

    Google Scholar 
    31.Nityananda, V., Skorupski, P. & Chittka, L. Can bees see at a glance?. J. Exp. Biol. 217, 1933–1939 (2014).PubMed 

    Google Scholar 
    32.Kral, K. & Poteser, M. Motion parallax as a source of distance information in locusts and mantids. J. Insect Behav. 10, 145–163 (1997).Article 

    Google Scholar 
    33.Dukas, R. Effects of predation risk on pollinators and plants. in Cognitive ecology of pollination 214–236 (Cambridge University Press, Cambridge, 2019).
    Google Scholar 
    34.Rodríguez-Morales, D. et al.. Response of flower visitors to the morphology and color of crab spiders in a coastal environment of the Gulf of Mexico. Isr. J. Ecol. Evol. 66, 32–40 (2019).Article 

    Google Scholar 
    35.Uexküll, J. V. A Foray Into the Worlds of Animals and Humans: With a Theory of Meaning Vol. 12 (University of Minnesota Press, Minnesota, 2013).
    Google Scholar 
    36.Caves, E. M., Nowicki, S. & Johnsen, S. V. Uexküll revisited: addressing human biases in the study of animal perception. Integr. Comp. Biol. 215, 1184–1212 (2019).
    Google Scholar 
    37.Álvarez-Molina, L. L. et al. Biological flora of coastal dunes and wetlands: Palafoxia lindenii A. Gray. J. Coast. Res. 29, 680–693 (2013).
    Google Scholar 
    38.Evans, H. E., O’Neill, K. M. & Evans, H. E. The Sand Wasps: Natural History and Behavior (Harvard University Press, Harvard, 2009).
    Google Scholar 
    39.Alcock, J. & Ryan, A. F. The behavior of microbembex nigrifons. Pan-Pac. Entomol. 49, 144–148 (1973).
    Google Scholar 
    40.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 
    Article 

    Google Scholar 
    42.Peitsch, D. et al. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 170, 23–40 (1992).CAS 
    Article 

    Google Scholar 
    43.Feller, K. D. et al. Surf and turf vision: patterns and predictors of visual acuity in compound eye evolution. Arthropod Struct. Dev. 60, 101002 (2021).PubMed 
    Article 

    Google Scholar 
    44.van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2019).Article 

    Google Scholar 
    45.Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).PubMed 
    Article 

    Google Scholar 
    46.McLean, D. J. & Volponi, M. A. S. trajr: An R package for characterisation of animal trajectories. Ethology 124, 440–448 (2018).Article 

    Google Scholar 
    47.Fu, A.W.-C., Keogh, E., Lau, L. Y. H., Ratanamahatana, C. A. & Wong, R.C.-W. Scaling and time warping in time series querying. VLDB J. 17, 899–921 (2008).Article 

    Google Scholar 
    48.Hu, B., Chen, Y., & Keogh, E. Time series classification under more realistic assumptions. in Proceedings of the 2013 SIAM international conference on data mining 578–586 (Society for Industrial and Applied Mathematics, 2013).
    Google Scholar 
    49.Keogh, E. & Ratanamahatana, C. A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7, 358–386 (2005).Article 

    Google Scholar 
    50.Pewsey, A., Neuhäuser, M. & Ruxton, G. D. Circular Statistics in R (Oxford University Press, Oxford, 2013).MATH 

    Google Scholar  More

  • in

    Habitat monitoring and conservation prioritization of Western Hoolock Gibbon in upper Brahmaputra Valley, Assam, India

    1.Brown, J. H., Mehlman, D. W. & Stevens, G. C. Spatial variation in abundance. Ecology 76, 2028–2043 (1985).Article 

    Google Scholar 
    2.Rylands, A. B. Primate communities in Amazonian forests: Their habitats and food resources. Experientia 43, 267–279 (1987).Article 

    Google Scholar 
    3.Chapman, C. A. & Peres, C. A. Primate conservation in the new millennium: The role of scientists. Evol. Anthropol. 10, 16–33 (2001).Article 

    Google Scholar 
    4.Anderson, J., Cowlishaw, G. & Rowcliff, J. M. Effects of forest fragmentation on the abundance of Colobus angolensis palliates in Kenya’s coastal forests. Int. J. Primatol. 28, 637–655 (2007).Article 

    Google Scholar 
    5.Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportion of suitable habitat: A review. Oikos 7, 340–346 (1994).
    Google Scholar 
    6.Marsh, L. K. Primates in Fragments: Ecology and Conservation (Kluwer/Plenum, 2003).Book 

    Google Scholar 
    7.Harcourt, A. H. Ecological indicators of risk for primates, as judged by susceptibility to logging. In Behavioral Ecology and Conservation Biology (ed Caro, T. M.) pp. 56–79. (Oxford University Press, 1998).8.Harcourt, A. H. Empirical estimates of minimum viable population sizes for primates: Tens to tens of thousands?. Anim. Conserv. 5, 237–244 (2002).Article 

    Google Scholar 
    9.Lindenmayer, D. B. Future directions for biodiversity conservation in managed forests: Indicator species, impact studies and monitoring programs. For. Ecol. Manag. 115, 277–287 (1999).Article 

    Google Scholar 
    10.Das, J. et al. Distribution of hoolock gibbon (Bunopithecus hoolock hoolock) in India and Bangladesh. Zoos Print J. 18, 969–976 (2003).Article 

    Google Scholar 
    11.Das, J., Biswas, J., Bhattacherjee, P. C. & Mohnot, S. M. The distribution and abundance of hoolock gibbons in India. In The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology (eds Lappan, S. & Whittacker, D. J.) 409–433 (Springer, 2009).Chapter 

    Google Scholar 
    12.Islam, M. A. & Feeroz, M. M. Ecology of hoolock gibbons in Bangladesh. Primates 33, 451–464 (1992).Article 

    Google Scholar 
    13.Brockelman, W. Y. et al. Census of eastern hoolock gibbons (Hoolock leuconedys) in Mahamyaing Wildlife Sanctuary, Sagaing Division, Myanmar. In The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology (eds Lappan, S. & Whittaker, D. J.) 435–452 (Springer, 2009).Chapter 

    Google Scholar 
    14.Fan, F. P. et al. Distribution and conservation status of the vulnerable eastern hoolock gibbon Hoolock leuconedys in China. Oryx 45, 129–134 (2011).Article 

    Google Scholar 
    15.Kumar, A., Devi, A., Gupta, A.K., & Sarma, K. Population and Behavioural Ecology and Conservation of Hoolock Gibbon in Northeast India. In: Rare Animals of India (ed Singaravelan, N) 242–266 (Bentham Science Publisher, 2013).16.Kakati, K. Impact on Forest Fragmentation on the Hoolock Gibbon in Assam, India. PhD thesis, University of Cambridge.17.Ray, P. C. et al. Habitat characteristics and their effects on the density of groups of western hoolock gibbon (Hoolock hoolock) in Namdapha National Park, Arunachal Pradesh, India. Int. J. Primatol. 36(3), 445–459 (2015).Article 

    Google Scholar 
    18.Leighton, D.R. Gibbons: Territoriality and monogamy. In Primate Societies (ed Smuts, B. B. et al.) 135–145 (University of Chicago Press, 1987).19.Palombit, R. A. A preliminary study of vocal communication in wild long-tailed macaques (Macaca fascicularis). II. Potential of calls to regulate intragroup spacing. Int. J. Primatol. 13, 183–207 (1992).Article 

    Google Scholar 
    20.Das, J. Socioecology of hoolock gibbon Hylobates hoolock hoolock (Harlan, 1834) in Response to Habitat Change. PhD thesis. Department of Zoology, Gauhati University, Guwahati, India (2002).21.Sarma, K. Studies on Population Status, Behavioural and Habitat Ecology of Eastern Hoolock gibbon (Hoolock leuconedys) in Arunachal Pradesh, India. PhD thesis. Department of Forestry, North Eastern Regional Institute of Science & Technology (NERIST), Itanagar, India (2015).22.Kakati, K. Food Selection and Ranging in the Hoolock Gibbon (Hylobates hoolock) in Borajan Reserve Forest, Assam. MSc dissertation. Wildlife Institute of India, Dehradun, India (1997).23.Sharma, N., Madhusudan, M. D. & Sinha, A. Local and landscape correlates of primate distribution and persistence in the remnant lowland rainforests of the Upper Brahmaputra valley, northeastern India. Conserv. Biol. 28, 95–106 (2013).PubMed 
    Article 

    Google Scholar 
    24.Hanson, J.O., Schuster, R., Morrell, N., Strimas-Mackey, M., Watts, M.E., Arcese, P., Bennett, J., & Possingham, H.P. prioritizr: Systematic conservation prioritization in R. Available at https://github.com/prioritizr/prioritizr (2018).25.Champion, H. G. & Seth, S. K. Revised Survey of Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    26.Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K. & Das, S. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theor. Appl. Climatol. 114, 61–71 (2013).ADS 
    Article 

    Google Scholar 
    27.Nath, K. K. & Deka, R. L. Climate change and agriculture over Assam. In Climate Change and Agriculture Over India (eds Rao, G. S. L. H. V. et al.) 224–243 (PHI Learning Private Ltd., 2010).
    Google Scholar 
    28.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    29.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    30.Phillips, S.J., Dudík, M., & Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning 655–662 (2004).31.Flory, A. R., Kumar, S., Stohlgren, T. J. & Cryan, P. M. Environmental conditions associated with bat whitenose syndrome mortality in the north-eastern United States. J. Appl. Ecol. 49, 680–689 (2012).
    Google Scholar 
    32.Mas, J. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 20, 139–152 (1999).ADS 
    Article 

    Google Scholar 
    33.Hazarika, N., Das, A. & Borah, S. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt. J. Remote. Sens. 39, 107–118 (2015).
    Google Scholar 
    34.Twisa, S. & Buchroithner, M. F. Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. Land 8, 1–15 (2019).Article 

    Google Scholar 
    35.Garcia, M. & Alvarez, R. TM digital processing of a tropical forest region in southern Mexico. Int. J. Remote Sens. 15, 1611–1632 (1994).ADS 
    Article 

    Google Scholar 
    36.Xiao, H. & Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 85, 245–257 (2007).Article 

    Google Scholar 
    37.Gao, J. & Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int J Appl Earth Obs Geoinf 12, 9–16 (2010).Article 

    Google Scholar 
    38.Richards, J. A. & Jia, X. Interpretation of hyperspectral image data. In Remote Sensing Digital Image Analysis: An Introduction 359–388 (Springer, 2006).
    Google Scholar 
    39.Rosenfield, G. H. & Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. PhotogrammEng Remote Sens. 52, 223–227 (1986).
    Google Scholar 
    40.Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991).ADS 
    Article 

    Google Scholar 
    41.Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    42.McGarigal, K., Cushman, S.A., Neel, M.C., & Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at www.umass.edu/landeco/research/fragstats/fragstats.html (2002).43.Hanson, J.O., Schuster, R., Morrell, N., Strimas-Mackey, M., Watts, M.E., Arcese, P., Bennett, J., & Possingham, H.P. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. Available at https://CRAN.R-project.org/package=prioritizr (2020).44.Sharma, N., Madhusudan, M. D., Sarkar, P., Bawri, M. & Sinha, A. Trends in extinction and persistence of diurnal primates in the fragmented lowland rainforests of the Upper Brahmaputra Valley, northeastern India. Oryx 46, 308–311 (2012).Article 

    Google Scholar 
    45.Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).Article 

    Google Scholar 
    46.Corbane, C. Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges. Int. J. Appl. Earth Obs. 37, 7–16 (2015).Article 

    Google Scholar 
    47.Kakati, K., Raghavan, R., Chellam, R., Qureshi, Q. & Chivers, D. J. Status of western hoolock gibbon (Hoolock hoolock) populations in non-protected forests of eastern Assam. Primate Conserv. 24, 127–137 (2009).Article 

    Google Scholar 
    48.Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. 2, 1–10 (2005).Article 

    Google Scholar 
    50.Sarma, K., Kumar, A., Krishna, M., Medhi, M. & Tripathi, O. P. Predicting suitable habitats for the Vulnerable Eastern Hoolock Gibbon Hoolock leuconedys, in India using the Maxent model. Folia Primatol. 86, 387–397 (2015).Article 

    Google Scholar 
    51.Sharma, N., Madhusudan, M. D. & Sinha, A. Socio-economic drivers of forest cover change in Assam: A historical perspective. Econ. Polit. Wkly. 47, 64–72 (2012).
    Google Scholar 
    52.Sarma, K., Kumar, A., Krishna, M., Tripathi, O. P. & Gajurel, P. R. Ground feeding observations on corn (Zea mays) by eastern hoolock gibbon (Hoolock leuconedys). Curr. Sci. 104, 587–589 (2013).
    Google Scholar 
    53.Chetry, D., Chetry, R., & Bhattacharjee, P.C. Hoolock: The Ape of India. Gibbon Conservation Centre, Assam, India (2007). More

  • in

    Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland

    1.European Centre for Disease Prevention and Control and European Food Safety Authority. Tick maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps (2020).
    Accessed 1 May 2021.2.Zając, Z., Woźniak, A. & Kulisz, J. Density of Dermacentor reticulatus ticks in eastern Poland. Int. J. Environ. Res. Public Health. 17, 2814 (2020).PubMed Central 
    Article 

    Google Scholar 
    3.Levytska, V. A. Seasonal activity of ixodid ticks in Podilskyi region. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Vet. Sci. 22, 66–70 (2020).
    Google Scholar 
    4.Rybarova, M., Honsová, M., Papousek, I. & Siroky, P. Variability of species of Babesia Starcovici, 1893 in three sympatric ticks (Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna) at the edge of Pannonia in the Czech Republic and Slovakia. Folia Parasitol. (Praha) 64, 028 (2017).Article 
    CAS 

    Google Scholar 
    5.Chisu, V., Foxi, C. & Masala, G. First molecular detection of Francisella-like endosymbionts in Hyalomma and Rhipicephalus tick species collected from vertebrate hosts from Sardinia island, Italy. Exp. Appl. Acarol. 79, 245–254 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hornok, S. et al. East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin. Parasit. Vectors 10, 1–11 (2017).Article 
    CAS 

    Google Scholar 
    7.Estrada-Peña, A., Mihalca, A. D. & Petney, T. N. Ticks of Europe and North Africa: A Guide to Species Identification 189–196 (Springer, 2018).
    Google Scholar 
    8.Younsi, H. et al. Ixodes inopinatus and Ixodes ricinus (Acari: Ixodidae) are sympatric ticks in North Africa. J. Med. Entomol. 57, 952–956 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Fares, W. et al. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick Borne Dis. 12, 101606 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Boularias, G. et al. High-throughput microfluidic real-time PCR for the detection of multiple microorganisms in Ixodid cattle ticks in northeast Algeria. Pathogens 10, 362 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gunes, T. & Ataş, M. The prevalence of tick-borne pathogens in ticks collected from the northernmost province (Sinop) of Turkey. Vector Borne Zoonotic Dis. 20, 171–176 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Keskin, A., Selçuk, A. Y. & Kefelioğlu, H. Ticks (Acari: Ixodidae) infesting some small mammals from Northern Turkey with new tick–host associations and locality records. Exp. Appl. Acarol. 73, 521–526 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Mancini, F. et al. Prevalence of tick-borne pathogens in an urban park in Rome, Italy. Ann. Agric. Environ. Med. 21, 723–727 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Halos, L. et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 76, 4413–4420 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schulz, M., Mahling, M. & Pfister, K. Abundance and seasonal activity of questing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011. J. Vector Ecol. 39, 56–65 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Lees, A. D. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 1–20 (1946).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Milne, A. The ecology of the sheep tick, Ixodes ricinus L.; host relationships of the tick; observations on hill and moorland grazings in northern England. Parasitology 39, 173–197 (1949).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gassner, F. et al. Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in The Netherlands. Vector Borne Zoonotic Dis. 11, 523–532 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, S3–S14 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Gustafson, R. Epidemiological studies of Lyme borreliosis and tick-borne encephalitis. Scand. J. Infect. Dis. Suppl. 92, 1–63 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Atlas o Infectious Diseases. ECDC. https://atlas.ecdc.europa.eu/public/index.aspx. Accessed 1 May 2021.23.Gnativ, B. & Tokarevich, N. K. Long-term monitoring of tick-borne viral encephalitis and tick-borne borreliosis in the Komi Republic. Infektsiia Immun. https://doi.org/10.15789/2220-7619-ROL-1299 (2020).Article 

    Google Scholar 
    24.Vandekerckhove, O., De Buck, E. & Van Wijngaerden, E. Lyme disease in Western Europe: An emerging problem? A systematic review. Acta Clin. Belg. 76, 244–252 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Rizzoli, A. P. et al. Lyme borreliosis in Europe. Euro Surveill. 16, 19906 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hubálek, Z. & Rudolf, I. Tick-borne viruses in Europe. Parasitol. Res. 111, 9–36 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Grankvist, A. et al. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic non-infectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 58, 1716–1722 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Rizzoli, A. P. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public. Health. 2, 251 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Wójcik-Fatla, A. et al. Occurrence of Francisella spp. in Dermacentor reticulatus and Ixodes ricinus ticks collected in eastern Poland. Ticks Tick Borne Dis. 6, 253–257 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Körner, S. et al. Uptake and fecal excretion of Coxiella burnetii by Ixodes ricinus and Dermacentor marginatus ticks. Parasit. Vectors 13, 75 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.van den Wijngaard, C. C. et al. The cost of Lyme borreliosis. Eur. J. Public Health 27, 538–547 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Muller, I. et al. Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: A retrospective model analysis. Clin. Dev. Immunol 20, 595427 (2012).
    Google Scholar 
    33.Lohr, B. et al. Epidemiology and cost of hospital care for Lyme borreliosis in Germany: Lessons from a health care utilization database analysis. Ticks Tick Borne Dis 6, 56–62 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Maes, E., Lecomte, P. & Ray, N. A cost-of-illness study of Lyme disease in the United States. Clin. Ther. 20, 993–1008 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Rogalska, A. et al. What are the costs of diagnostics and treatment of Lyme borreliosis in Poland?. Front. Public Health 8, 1022 (2021).Article 

    Google Scholar 
    36.Gray, J. S. Ixodes ricinus seasonal activity: Implications of global warming indicated by revisiting tick and weather data. Int. J. Med. Microbiol. 298, 19–24 (2008).Article 

    Google Scholar 
    37.Nilsson, A. Seasonal occurrence of Ixodes ricinus (Acari) in vegetation and on small mammals in southern Sweden. Ecography 11, 161–165 (1988).Article 

    Google Scholar 
    38.Grigoryeva, L. A., Tokarevich, N. K., Freilikhman, O. A., Samoylova, E. P. & Lunina, G. A. Seasonal changes in populations of sheep tick, Ixodes ricinus (L., 1758) (Acari: Ixodinae) in natural biotopes of St. Petersburg and Leningrad province, Russian Federation. Syst. Appl. Acarol. 24, 701–710 (2019).
    Google Scholar 
    39.Kiewra, D. & Lonc, E. Biology of Ixodes ricinus (L.) and its pathogens in Wrocław area. Wiad. Parazytol. 50, 259–264 (2004).PubMed 

    Google Scholar 
    40.Randolph, S. E. Tick ecology: Processes and patterns behind the epidemiological risk posed by Ixodid ticks as vectors. Parasitology 129, S37–S65 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kiewra, D. & Sobczyński, M. Biometrical analysis of the common tick, Ixodes ricinus, in the Ślęża Massif (Lower Silesia, Poland). J. Vector Ecol. 31, 239–244 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Tagliapietra, V. et al. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 183, 114–124 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Perret, J. L., Guigoz, E., Rais, O. & Gern, L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol. Res. 86, 554–557 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Kubiak, K. & Dziekonska-Rynko, J. Seasonal activity of the common European tick, Ixodes ricinus [Linnaeus, 1758], in the forested areas of the city of Olsztyn and its sorroundings. Wiad. Parazytol. 52, 59–64 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    45.Welc-Falęciak, R., Bajer, A., Paziewska-Harris, A., Baumann-Popczyk, A. & Siński, E. Diversity of Babesia in Ixodes ricinus ticks in Poland. Adv. Med. Sci. 57, 364–369 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Buczek, A., Ciura, D., Bartosik, K., Zając, Z. & Kulisz, J. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit. Vectors 7, 562 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bartosik, K. et al. Environmental conditioning of incidence of tick-borne encephalitis in the south-eastern Poland in 1996–2006. Ann. Agric. Environ. Med. 18, 119–126 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    48.Földvári, G. Life cycle and ecology of Ixodes ricinus: The roots of public health importance. In Ecology and Prevention of Lyme borreliosis. Ecology and Control of Vector-Borne Diseases Vol. 4 (eds Braks, M. A. H. et al.) 31–40 (Wageningen Academic Publishers, 2016).Chapter 

    Google Scholar 
    49.Tack, W. et al. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 265, 30–36 (2012).Article 

    Google Scholar 
    50.Mihalca, A. D. & Sándor, A. D. The role of rodents in the ecology of Ixodes ricinus and associated pathogens in Central and Eastern Europe. Front. Cell Infect. Microbiol. 3, 56 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Opalińska, P. et al. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci. Rep. 11, 1–10 (2021).Article 
    CAS 

    Google Scholar 
    52.van Oeveren, F. M. The Role of Ungulates in Ixodes ricinus Density in Europe. Master Thesis, Utrecht University, Faculty of Veterinary Medicine (2021).53.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 3, 29 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 83, e00609-e617 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Cisak, E. et al. Study on Lyme borreliosis focus in the Lublin region (eastern Poland). Ann. Agric. Environ. Med. 15, 327–332 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    56.Wójcik-Fatla, A., Cisak, E., Zając, V., Zwoliński, J. & Dutkiewicz, J. Prevalence of tick-borne encephalitis virus in Ixodes ricinus and Dermacentor reticulatus ticks collected from the Lublin region (eastern Poland). Ticks Tick Borne Dis. 2, 16–19 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.National Institute of Public Health, Department of Epidemiology and Surveillance of Infectious Diseases, Laboratory of Monitoring and Epidemiological Analysis. Reports on cases of infectious diseases and poisonings in Poland. http://wwwold.pzh.gov.pl/oldpage/epimeld/index_p.html (2017–2020). Accessed 1 May 2021.58.Barrios, J. M. et al. Relating land cover and spatial distribution of nephropathia epidemica and Lyme borreliosis in Belgium. Int. J. Environ. Health Res. 23, 132–154 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Randolph, S. E. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1045–1056 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Robertson, J. N., Gray, J. S. & Stewart, P. Tick bite and Lyme borreliosis risk at a recreational site in England. Eur. J. Epidemiol. 16, 647–652 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Szekeres, S. Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasit. Vectors 8, 309 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Gilbert, L. The impacts of climate change on ticks and tick-borne disease risk. Ann. Rev. Entomol. 66, 373–388 (2021).CAS 
    Article 

    Google Scholar 
    63.Statistical Yearbook of Lubelskie Voivodship. https://lublin.stat.gov.pl/publikacje-i-foldery/roczniki-statystyczne/rocznik-statystyczny-wojewodztwa-lubelskiego-2020,2,20.html (2020). Accessed 1 May 2021.64.Kaszewski, B. M. Climatic Conditions of the Lublin Region 1–42 (Maria Curie-Skłodowska University Publishing House, 2008).
    Google Scholar 
    65.Climate data: Poland, Historical weather data in Poland https://en.tutiempo.net/climate/poland.html (2020). Accessed on 1 May 2021.66.Matuszkiewicz, J. M. Plant landscapes and geobotanical regions 1: 2,500,000. Plant landscapes and geobotanical regions. In Atlas of the Republic of Poland (IGiPZ PAN, Chief National Surveyor, 1994).67.Randolph, S. E. & Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Entomol. 36, 741–748 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Complex population structure of the Atlantic puffin revealed by whole genome analyses

    1.Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Velarde, E., Anderson, D. W. & Ezcurra, E. Seabird clues to ecosystem health. Science 365, 116–117 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Piatt, J. F., Sydeman, W. J. & Wiese, F. Introduction: a modern role for seabirds as indicators. Mar. Ecol. Prog. Ser. 352, 199–204 (2007).Article 

    Google Scholar 
    4.Boersma, P. D., Clark, J. A. & Hillgarth, N. Seabird conservation. In Biology of Marine Birds (eds. Schreiber, E. & Burger, J.) 559–579 (CRC Press Boca Raton, 2002).5.Denlinger, L. & Wohl, K. Seabird harvest regimes in the circumpolar nations. Conservation of Arctic Flora and Fauna (CAFF), (2001).6.Merkel, F. & Barry, T. Seabird Harvest in the Arctic. Conservation of Arctic Flora and Fauna (CAFF), (2008).7.Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird. Conserv. Int. 22, 1–34 (2012).Article 

    Google Scholar 
    8.Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950-2010. PLoS ONE 10, e0129342 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Frederiksen, M. Seabirds in the North East Atlantic. Summary of status, trends and anthropogenic impact. TemaNord 587, 21–24 (2010).
    Google Scholar 
    10.Chardine, J. & Mendenhall, V. Human Disturbance at Arctic Seabird Colonies. Conservation of Arctic Flora and Fauna (CAFF), (1998).11.Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Friesen, V. L. Speciation in seabirds: why are there so many species… and why aren’t there more? J. Ornithol. 156, 27–39 (2015).Article 

    Google Scholar 
    16.Taylor, R. S. et al. Sympatric population divergence within a highly pelagic seabird species complex (Hydrobates spp.). J. Avian Biol. 49, 1–14 (2018).Article 

    Google Scholar 
    17.Rexer‐Huber, K. et al. Genomics detects population structure within and between ocean basins in a circumpolar seabird: the white‐chinned petrel. Mol. Ecol. 28, 4552–4572 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    18.Clucas, G. V. et al. Comparative population genomics reveals key barriers to dispersal in Southern Ocean penguins. Mol. Ecol. 27, 4680–4697 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Frugone, M. J. et al. More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Mol. Phylogenet. Evol. 139, 106563 (2019).PubMed 
    Article 

    Google Scholar 
    20.Cristofari, R. et al. Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel. Sci. Rep. 9, 2021 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Tigano, A., Shultz, A. J., Edwards, S. V., Robertson, G. J. & Friesen, V. L. Outlier analyses to test for local adaptation to breeding grounds in a migratory arctic seabird. Ecol. Evol. 7, 2370–2381 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Somvichian-Clausen, A. Behind the stunning photo of a puffin gorging on fish. Natl Geographic (2017).24.Huijbens, E. H. & Einarsson, N. Feasting on Friends: Whales, Puffins, and Tourism in Iceland. In Tourism Experiences and Animal Consumption (ed. Kline, C.) 10–27 (Routledge, 2018).25.Lund, K. A., Kjartansdóttir, K. & Loftsdóttir, K. ‘Puffin love’: performing and creating Arctic landscapes in Iceland through souvenirs. Tour. Stud. 18, 142–158 (2018).Article 

    Google Scholar 
    26.Hodgetts, L. M. Animal bones and human society in the late younger stone age of arctic Norway. (Durham University, 1999).27.Dove, C. J. & Wickler, S. Identification of bird species used to make a Viking age feather pillow. Arctic 69, 29–36 (2016).Article 

    Google Scholar 
    28.Harris, M. P. & Wanless, S. The puffin (T & AD Poyser, Bloomsbury Publishing, 2011).29.BirdLife International. Fratercula arctica. The IUCN Red List of Threatened Species 2017 (2017)30.Anker-Nilssen, T. & Aarvak, T. The population ecology of puffins at Røst. Status after the breeding season 2001. NINA Oppdragsmeld. 736, 1–40 (2002).
    Google Scholar 
    31.Anker-Nilssen, T. et al. Key-site monitoring in Norway 2019, including Svalbard and Jan Mayen. SEAPOP Short Report 1–2020 (2020).32.Lilliendahl, K. et al. Recruitment failure of Atlantic puffins Fratercula arctica and sandeels Ammodytes marinus in Vestmannaeyjar Islands. N.áttúrufræðingurinn 83, 65–79 (2013).
    Google Scholar 
    33.Walker, S. J. & Meijer, H. J. M. Size variation in mid-Holocene North Atlantic Puffins indicates a dynamic response to climate change. PLoS ONE 16, e0246888 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Burnham, K. K., Burnham, J. L. & Johnson, J. A. Morphological measurements of Atlantic puffin (Fratercula arctica naumanni) in High-Arctic Greenland. Polar Res. 39. https://doi.org/10.33265/polar.v39.5242 (2020).35.Gaston, A. J. & Provencher, J. F. A specimen of the high arctic subspecies of Atlantic Puffin, Fratercula arctica naumanni, in Canada. Can. Field-Nat. 126, 50–54 (2012).Article 

    Google Scholar 
    36.Salomonsen, F. The Atlantic Alcidae. vol. 6 (Elanders boktryckeri aktiebolag, 1944).37.Moen, S. M. Morphologic and genetic variation among breeding colonies of the Atlantic puffin (Fratercula arctica). Auk 108, 755–763 (1991).
    Google Scholar 
    38.Harris, M. P. Measurements and weights of British Puffins. Bird. Study 26, 179–186 (1979).Article 

    Google Scholar 
    39.Kim, J. A., Kang, S.-G., Yang, J. W., Hur, W.-H. & Kil, H.-J. Complete mitochondrial genome of Aethia cristatella (Charadriiformes: Alcidae). Mitochondrial DNA Part B 5, 31–32 (2020).Article 

    Google Scholar 
    40.Eo, S. H. & An, J. The complete mitochondrial genome sequence of Japanese murrelet (Aves: Alcidae) and its phylogenetic position in Charadriiformes. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 4574–4575 (2016).CAS 
    PubMed 

    Google Scholar 
    41.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Sánchez-Barreiro, F. et al. Historical Population Declines Prompted Significant Genomic Erosion in the Northern and Southern White Rhinoceros (Ceratotherium Simum). Molecular Ecology. 1–15 https://doi.org/10.1111/mec.16043 (2021).43.Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Lombal, A. J., O’dwyer, J. E., Friesen, V., Woehler, E. J. & Burridge, C. P. Identifying mechanisms of genetic differentiation among populations in vagile species: historical factors dominate genetic differentiation in seabirds. Biol. Rev. Camb. Philos. Soc. 95, 625–651 (2020).PubMed 
    Article 

    Google Scholar 
    45.Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Breton, A. R., Diamond, A. W. & Kress, S. W. Encounter, survival, and movement probabilities from an Atlantic puffin (Fratercula arctica) metapopulation. Ecol. Monogr. 75, 133–149 (2006).47.Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871–3878.e3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Burg, T. M. & Croxall, J. P. Global relationships amongst black-browed and grey-headed albatrosses: analysis of population structure using mitochondrial DNA and microsatellites. Mol. Ecol. 10, 2647–2660 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Lowther, P. E., Diamond, T., Kress, S. W., Robertson, G. J. & Gill, F. Atlantic Puffin (Fratercula arctica). The Birds of North America Online 18, (2002).50.Wojczulanis-Jakubas, K. et al. Weak population genetic differentiation in the most numerous Arctic seabird, the little auk. Polar Biol. 37, 621–630 (2014).Article 

    Google Scholar 
    51.Smith, A. L., Monteiro, L., Hasegawa, O. & Friesen, V. L. Global phylogeography of the band-rumped storm-petrel (Oceanodroma castro; Procellariiformes: Hydrobatidae). Mol. Phylogenet. Evol. 43, 755–773 (2007).PubMed 
    Article 

    Google Scholar 
    52.Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gottinger Stud. 3, 595–708 (1847).
    Google Scholar 
    53.James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390 (1970).Article 

    Google Scholar 
    54.Yamamoto, T. et al. Geographical variation in body size of a pelagic seabird, the streaked shearwater Calonectris leucomelas. J. Biogeogr. 43, 801–808 (2016).Article 

    Google Scholar 
    55.Barrett, R. T., Anker-Nilssen, T. & Krasnov, Y. V. Can Norwegian and Russian razorbills (Alca torda) be identified by their measurements? Mar. Ornithol. 25, 5–8 (1997).
    Google Scholar 
    56.Anker-Nilssen, T., Aarvak, T. & Bangjord, G. Mass mortality of Atlantic Puffins Fratercula arctica off Central Norway, spring 2002: causes and consequences. Atl. Seab. 5, 57–72 (2003).
    Google Scholar 
    57.Pearce, R. L. et al. Mitochondrial DNA suggests high gene flow in ancient murrelets. Condor 104, 84–91 (2002).Article 

    Google Scholar 
    58.Thomas, J. E. et al. Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. eLife 8, e47509 (2019).59.Milot, E., Weimerskirch, H. & Bernatchez, L. The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol. Ecol. 17, 1658–1673 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Edwards, S. & Bensch, S. Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Mol. Ecol. 18, 2930–2936 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.IPCC. Global Warming of 1.5 °C—Summary for Policy Makers. (2018).62.Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).PubMed 
    Article 

    Google Scholar 
    64.Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9, 1056–1082 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–33 (2013).Article 

    Google Scholar 
    67.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Matschiner, M. Fitchi: haplotype genealogy graphs based on the Fitch algorithm. Bioinformatics 32, 1250–1252 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Watterson, G. A. Heterosis or neutrality? Genetics 85, 789–814 (1977).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Chakraborty, R. & Mitochondrial, D. N. A. polymorphism reveals hidden heterogeneity within some Asian populations. Am. J. Hum. Genet. 47, 87–94 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).Article 

    Google Scholar 
    77.Orlando, L. & Librado, P. Origin and evolution of deleterious mutations in horses. Genes 10, 649 (2019).78.Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS 
    PubMed 

    Google Scholar 
    84.Lichstein, J. W. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).Article 

    Google Scholar 
    85.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Pante, E., Simon-Bouhet, B. & Irisson, J.-O. marmap—R package. (2019).87.Goslee, S. & Urban, D. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw., Artic. 22, 1–19 (2007).
    Google Scholar 
    88.Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).Article 

    Google Scholar 
    89.Blanchet, F. G., Legendre, P. & Borcard, D. Modelling directional spatial processes in ecological data. Ecol. Modell. 215, 325–336 (2008).Article 

    Google Scholar 
    90.Benestan, L. M. et al. Population genomics and history of speciation reveal fishery management gaps in two related redfish species (Sebastes mentella and Sebastes fasciatus). Evol. Appl. 14, 588–606 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 8, 551–566 (2018).PubMed 
    Article 

    Google Scholar 
    92.Kersten, O. Code for Population Genomics Analyses of Atlantic Puffin (Fratercula arctica) using Whole Genome Sequencing (Version v1.0). Zenodo. https://doi.org/10.5281/zenodo.4899575 (2021). More