More stories

  • in

    Impacts of water hardness and road deicing salt on zooplankton survival and reproduction

    Herbert, E. R. et al. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere. https://doi.org/10.1890/es14-00534.1 (2015).Article 

    Google Scholar 
    Kelly, V. R. et al. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamater concentration. Environ. Sci. Tech. 42, 410–415. https://doi.org/10.1021/es071391l (2008).Article 
    CAS 

    Google Scholar 
    Tiwari, A. & Rachlin, J. W. A review of road salt ecological impacts. Northeast. Nat. 25, 123–142. https://doi.org/10.1656/045.025.0110 (2018).Article 

    Google Scholar 
    Hintz, W. D. & Relyea, R. A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biol. 64, 1081–1097. https://doi.org/10.1111/fwb.13286 (2019).Article 

    Google Scholar 
    Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl. Acad. of Sci. U.S.A 114, 4453–4458. https://doi.org/10.1073/pnas.1620211114 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. of Sci. U.S.A. 102, 13517–13520. https://doi.org/10.1073/pnas.0506414102 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Kaushal, S. S. et al. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154, 255–292. https://doi.org/10.1007/s10533-021-00784-w (2021).Article 

    Google Scholar 
    Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. of Sci. U.S.A. 115, E574–E583. https://doi.org/10.1073/pnas.1711234115 (2018).Article 
    CAS 

    Google Scholar 
    Hintz, W. D., Fay, L. & Relyea, R. A. Road salts, human safety, and the rising salinity of our fresh waters. Front. Ecol. Environ. 9, 22–30. https://doi.org/10.1002/fee.2433 (2022).Article 

    Google Scholar 
    Petranka, J. W. & Doyle, E. J. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment?. Aquat. Ecol. 44, 155–166. https://doi.org/10.1007/s10452-009-9286-z (2010).Article 
    CAS 

    Google Scholar 
    Petranka, J. W. & Francis, R. A. Effects of road salts on seasonal wetlands: Poor prey performance may compromise growth of predatory salamanders. Wetlands 33, 707–715. https://doi.org/10.1007/s13157-013-0428-7 (2013).Article 

    Google Scholar 
    Searle, C. L., Shaw, C. L., Hunsberger, K. K., Prado, M. & Duffy, M. A. Salinization decreases population densities of the freshwater crustacean Daphnia dentifera. Hydrobiologia 770, 165–172. https://doi.org/10.1007/s10750-015-2579-4 (2016).Article 
    CAS 

    Google Scholar 
    Hebert, M. P. et al. Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments. Limnol. Oceanogr. Let. https://doi.org/10.1002/lol2.10239 (2022).Article 

    Google Scholar 
    Collins, S. J. & Russell, R. W. Toxicity of road salt to nova scotia amphibians. Environ. Pollut. 157, 320–324. https://doi.org/10.1016/j.envpol.2008.06.032 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Milotic, D., Milotic, M. & Koprivnikar, J. Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence. Aquat. Toxicol. 189, 42–49. https://doi.org/10.1016/j.aquatox.2017.05.015 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sanzo, D. & Hecnar, S. J. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ. Pollut. 140, 247–256. https://doi.org/10.1016/j.envpol.2005.07.013 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arnott, S. E. et al. Road salt impacts freshwater zooplankton at concentrations below current water quality guidelines. Envir. Sci. Tech. 54, 9398–9407. https://doi.org/10.1021/acs.est.0c02396 (2020).Article 
    CAS 

    Google Scholar 
    Elphick, J. R. F., Bergh, K. D. & Bailey, H. C. Chronic toxicity of chloride to freshwater species effects of hardness and implications for water quality guidelines. Environ. Toxicol. Chem. 30, 239–246. https://doi.org/10.1002/etc.365 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mount, D. R. et al. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry. Environ. Toxicol. Chem. 35, 3039–3057. https://doi.org/10.1002/etc.3487 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soucek, D. J. Comparison of hardness- and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans. Environ. Toxicol. Chem. 26, 773–779. https://doi.org/10.1897/06-229r.1 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bhateria, R. & Jain, D. Water quality assessment of lake water: A review. Sustain. Wat. Res. Manag. 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7 (2016).Article 

    Google Scholar 
    USGS. Hardness of Water. https://www.usgs.gov/special-topics/water-science-school/science/hardness-water#overview, Accessed: 1 August 2022 (2018).Brown, A. H. & Yan, N. D. Food quantity affects the sensitivity of Daphnia to Road Salt. Environ. Sci. Tech. 49, 4673–4680. https://doi.org/10.1021/es5061534 (2015).Article 
    CAS 

    Google Scholar 
    Smith, D. W. & Cooper, S. D. Competition among cladocera. Ecology 63, 1004–1015. https://doi.org/10.2307/1937240 (1982).Article 

    Google Scholar 
    Soucek, D. J. et al. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates. Environ. Toxicol. Chem. 30, 930–938. https://doi.org/10.1002/etc.454 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gust, K. A. et al. Daphnia magna’s sense of competition: Intra-specific interactions (ISI) alter life history strategies and increase metals toxicity. Ecotoxicology 25, 1126–1135. https://doi.org/10.1007/s10646-016-1667-1 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. & Steiner, C. F. Ecotoxicology of salinity tolerance in Daphnia pulex: Interactive effects of clonal variation, salinity stress and predation. J. Plankton Res. 39, 687–697. https://doi.org/10.1093/plankt/fbx027 (2017).Article 
    CAS 

    Google Scholar 
    Evans, M. & Frick, C. The effects of road salts on aquatic ecosystems. Report No. 02-308, (Environment Canada – Water Science and Technology Directorate, 2001).USEPA. (U.S. Environmental Protection Agency, 1988).Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Phil. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0019 (2019).Article 

    Google Scholar 
    Canadian Council of Ministers for the Environment. Candadian water Quality Guidelines for the Protection of Aquatic Life: Chloride. (Environment Canada, Gatineau, Canada, 2011).Valleau, R. E., Paterson, A. M. & Smol, J. P. Effects of road-salt application on Cladocera assemblages in shallow precambrian shield lakes in south-central Ontario, Canada. Freshwat. Sci. 39, 824–836. https://doi.org/10.1086/711666 (2020).Article 

    Google Scholar 
    Hintz, W. D. et al. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl. Acad. of Sci. U.S.A. https://doi.org/10.1073/pnas.2115033119 (2022).Article 

    Google Scholar 
    Valleau, R. E., Celis-Salgado, M. P., Arnott, S. E., Paterson, A. M. & Smol, J. P. Assessing the effect of salinization (NaCl) on the survival and reproduction of two ubiquitous cladocera species (Bosmina longirostris and Chydorus brevilabris). Wat. Air Soil Pollut. 233, 135. https://doi.org/10.1007/s11270-021-05482-9 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Celis-Salgado, M. P., Cairns, A., Kim, N. & Yan, N. D. The FLAMES medium: A new, soft-water culture and bioassay medium for Cladocera. SIL Proc. 1922–2010(30), 265–271. https://doi.org/10.1080/03680770.2008.11902123 (2008).Article 

    Google Scholar 
    USEPA. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed. Office of Water Washington, DC (2002).Hintz, W. D. et al. Concurrent improvement and deterioration of epilimnetic water quality in an oligotrophic lake over 37 years. Limnol. Oceanogr. 65, 927–938. https://doi.org/10.1002/lno.11359 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Winner, R. W. Interactive effects of water hardness and humic acid on the chronic toxicity of cadmium to Daphnia pulex. Aquat. Toxicol. 8, 281–293. https://doi.org/10.1016/0166-445X(86)90080-9 (1986).Article 
    CAS 

    Google Scholar 
    Kaushal, S. S. et al. Novel “chemical cocktails” in inland waters are a consequence of the freshwater salinization syndrome. Phil. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0017 (2019).Article 

    Google Scholar 
    Kaushal, S. S. et al. Making “chemical cocktails”: Evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2020.104632 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cremona, F. et al. How warming and other stressors affect zooplankton abundance, biomass and community composition in shallow eutrophic lakes. Clim. Change 159, 565–580. https://doi.org/10.1007/s10584-020-02698-2 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Lind, L. et al. Salty fertile lakes: How salinization and eutrophication alter the structure of freshwater communities. Ecosphere. https://doi.org/10.1002/ecs2.2383 (2018).Article 

    Google Scholar 
    Stoler, A. B. et al. Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs. Environ. Pollut. 226, 452–462. https://doi.org/10.1016/j.envpol.2017.04.019 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Riessen, H. P. & Sprules, W. G. Demographic costs of antipredator defenses in Daphnia pulex. Ecology 71, 1536–1546. https://doi.org/10.2307/1938290 (1990).Article 

    Google Scholar  More

  • in

    Source apportionment and source-specific risk evaluation of potential toxic elements in oasis agricultural soils of Tarim River Basin

    Concentrations of PTEs in agricultural soil of oasesThe descriptive statistical results of 11 PTE concentrations in agricultural soils of the four oases are shown in Table 1. The concentration order of different PTEs in the four oases was different. In terms of mean values, the concentrations of Co, Cu, Ni, Pb, Sb, V and Zn in Kashgar Oasis agricultural soil were higher than those in the other three oases, and the concentrations of Sn and Tl in Hotan Oasis agricultural soil were the highest. The Cv value of As in the Hotan Oasis was the highest (0.31), indicating that compared with that in other oases and other PTEs, the As in Hotan Oasis soil was more likely to have external inputs other than natural sources59. According to the “Soil Environmental Quality · Agricultural Land Soil Pollution Risk Control Standard (Trial)” (GB15618-2018)60, the corresponding elements of oasis agricultural soil in the source region of the Tarim River did not exceed the pollution risk control standard. Compared with the soil environmental quality provisions in the “Environmental Quality Assessment Standard for Producing Areas of Edible Agricultural Products” (HJ332-2006)61, the corresponding elements in the soil of the four oases were also below the limits.Table 1 Descriptive statistics of PTEs of oasis agricultural soil in the source region of the Tarim River.Full size tableCompared with the PTE concentrations in the agricultural soil of oases in other arid areas, the concentrations of Cd, Cu and V in the soil of the study area were lower than those of the Bortala River Basin and Ili River Basin3 in the northern Tianshan Mountains, while the concentrations of Co, Ni, Pb and Zn were similar to those of corresponding elements in agricultural soil of the Bortala River Basin and Ili River Basin3. Compared with the concentrations of PTEs in agricultural soil of Wuwei and Jiuquan cities in the Hexi Corridor62,63, the concentrations of Cu, Ni, Pb and V elements in agricultural soil of the four oases in the study area were lower. Similarly, the concentrations of Cu, V and Zn in the study area were much lower than the corresponding concentrations in the agricultural soil of the Bahariya Oasis, Egypt64.Geochemical baseline values of PTEs in oasis agricultural soilsThe PTE concentration of the subsoil (60–80 cm) after logarithmic and reciprocal conversion passed the KS normal distribution test (p  > 0.05). The GBVs of PTEs in agricultural soils of the four oases in the source region of the Tarim River were calculated according to the cumulative frequency method, and the results are shown in Supplementary Figs. S1–4 and Table 2. The GBVs of PTEs in agricultural soils were very different among the four oases. For example, except for those of Ni, Sn, Tl and V, the GBVs of PTEs in agricultural soils of the Hotan Oasis were much lower than those of the other three oases (Table 2). There was also a large gap between the GBVs of PTEs in agricultural soil and the soil background values in China65, Xinjiang66,67 and Xinjiang agricultural land66. In particular, the GBV of Zn obtained in this study was 3.6–5 times the soil background value of Xinjiang agricultural land. Under the same land use type, there are differences in the abundance of environmental PTEs due to heterogeneity in the disturbance degree of human activities and the parent material and soil formation processes68. Therefore, there were some differences in the GBVs of each PTE among the four oases in this study when the land use types were all agricultural soils.Table 2 GBVs of PTEs in oasis agricultural soils of the source region of the Tarim River.Full size tablePollution characteristics of PTEs in agricultural soil of oasesAccording to the GBVs of the above elements, the PF, PLI and PN of PTEs in agricultural soil of the four oases were calculated, and the results are shown in Fig. 2. The results of PF showed that (Fig. 2a), except for As and Cd in the Hotan Oasis, the PTEs of agricultural soils in the four oases were at uncontaminated and slightly contaminated levels, indicating that the oasis agricultural soils in the source region of the Tarim River were affected by human activities to a certain extent. From the perspective of individual elements, the PF of Cd in agricultural soils of the four oases was higher than that of other PTEs. Among them, Cd in most soil samples from the Hotan Oasis (81.25%) showed mild contamination, while Cd in the remaining samples (18.75%) showed moderate contamination. Since Cd in soil is generally regarded as an indicator of agricultural activities involving fertilizer use, the results suggest that soil in oases (especially the Hotan Oasis) in the source region of the Tarim River may be seriously affected by agricultural activities.Figure 2Box-whisker plots of PF (a), PLI (b) and PN (c) of PTEs in oasis agricultural soils.Full size imageThe results of the pollution load index of multiple PTEs showed that the agricultural soils in the Yarkant River Oasis, Kashgar Oasis and Aksu Oasis were between uncontaminated and moderate contamination levels, and most soil samples in the Hotan Oasis were moderately contaminated. PN showed similar results. The reason for this result was the high PF values of As and Cd in the agricultural soil of the Hotan Oasis (Fig. 2a), which caused the high comprehensive pollution index in this area. It is worth noting that compared with those in the other three areas, most PTEs (As, Cd, Pb, Sb, V and Zn) in the agricultural soil of the Hotan Oasis had lower mean values, but their PLI and PN values were higher. This was closely related to the lower GBVs of PTEs in the Hotan area.Source apportionment and source specific risk assessment of PTEs in oasis agricultural soilSource apportionment of soil PTEsFactor analysis and correlation analysis were used to identify the main sources of PTEs in the main oasis agricultural soil in the source region of the Tarim River. The results are shown in Table 3 and Supplementary Fig. S5. Table 3 shows that PTEs in the agricultural soil of the Yarkant River Oasis had two principal factors. The first principal component F1, which explained 61.6% of the total variance, mainly described Co, V, Cu and Sb and moderately described Cd, Ni and Tl. The second principal component, F2, accounted for 21.8% of the variance and mainly described As, Pb and Sn. There were three main factors for PTEs in Kashgar Oasis agricultural soil. Factor 1, which explained 58.9% of the total variance, was mainly composed of As, Co, Cu, Ni, Pb, Sb, V and Zn; factor 2, which accounted for 24.8% of the variance, was mainly composed of Sn and Tl; and factor 3, which accounted for 7.9% of the variance, was composed of Cd. There were three main factors for the PTEs of Aksu Oasis agricultural soil. Factor 1 was mainly composed of Cd, Co, Cu, Ni, Pb, V and Zn; factor 2 was mainly composed of Sn and Tl; and factor 3 was composed of As and Sb. PTEs in agricultural soil of the Hotan Oasis had only one main factor, which was composed of all (11) elements. To verify the above results of PTE extraction from oasis agricultural soil by PCA, Spearman correlation analysis was performed on PTEs from the soils of the four oases. The results showed that the correlations between PTEs in agricultural soils of the four oases were consistent with the results of PCA, indicating the reliability of the PCA results.Table 3 Principal component analysis results of PTEs of oasis agricultural soil in the source region of the Tarim River.Full size tableTo further determine the specific sources and contribution rates of PTEs in oasis agricultural soil in the source region of the Tarim River, the PMF model was adopted for analysis, and the results are shown in Fig. 3. Overall, the classification results of PTEs in agricultural soils of the four oases by the PMF model were consistent with the results of PCA. According to the above results, eight environmental factors related to the source of soil PTEs were selected: distance from factory (DF), distance from road (DR), pH, soil type (ST), total nitrogen (TN), soil fine silty particle size percentage (Fine silty), soil silty particle size percentage (Silty), and soil coarse silty particle size percentage (Coarse silty). A Geodetector model of PTEs and environmental factors in soil was constructed, and the results are shown in Supplementary Table S5. Among them, the TN content in soil was considered to be an index related to the intensity of agricultural activities69. Since the particle composition of atmospheric dust in the study area is mainly silt70, the silty particle size content of soil was selected as the atmospheric dust index in this study.Figure 3PMF analysis results of PTEs of agricultural soils in the Yarkant River Oasis (a), Kashgar Oasis (b) and Aksu Oasis (c).Full size imageIn the Yarkant River Oasis, Co, Cu and Zn showed no pollution at most of the sampling points for the first source factor of PTEs in agricultural soil (Fig. 2), indicating that the levels of these elements in soil were less affected by human activities. Meanwhile, the results of the factor detector showed that ST was one of the factors explaining the spatial distribution of Co, Cu, Sb, V and Zn (Supplementary Table S5). The Geodetector results revealed TN as one of the strong drivers of Cd and Tl, the former of which is found in pesticides and fertilizers and the latter of which may also enter agricultural soil through sewage irrigation and fertilizers contaminated by industrial wastewater71,72. Therefore, it is inferred that F1 in the agricultural soil of the Yarkant River Oasis had a mixed source of natural resources and agricultural activities. The three elements in F2 (As, Pb and Sn) were closely related to fuel combustion and traffic factors, among which Pb is usually selected as an identifying element for traffic sources (including leaded exhaust gas, vehicle tires and brake pads)73. In the results of the Geodetector model, the best explanatory factors for Pb and Sn were Silt and DR, while the best explanatory factor for As was Slit. Therefore, F2 was inferred to be the source of road dust/atmospheric dust.The weights of F1 in Kashgar Oasis agricultural soil PTEs were mainly included As, Co, Cu, Ni, Pb, Sb, V and Zn; the weights of F2 were mainly included Sn and Tl; and F3 were mainly included Cd (Fig. 3b). Similar to the results observed for the Yarkant River Oasis, the factor detector results showed that F1 might have a mixed anthropogenic source, including transportation, industrial and other sources. Both Sn and Tl in F2 are widely used in industrial manufacturing, and Sn can be used as an additive to enhance the properties of steel or alloys74. Tl is used in many different industrial manufacturing and medical fields, and metal smelting, sulfuric acid production, coal burning, cement manufacturing and other industrial activities involving the use of Tl minerals are the main pathways by which this element enters the environment71. At the same time, the strongest explanatory factor for Sn and Tl in the results of the geographic detector was DF, so F2 was inferred to be an industrial source. F3 contained only Cd (related to agricultural activities), so F3 was inferred to be the source of agricultural activities (Supplementary Table S5).In the PMF results, the weights of F1 for the PTEs of Aksu Oasis agricultural soil were mainly included Cu, Ni, Cd, Zn, Co, V and Pb; the weights of F2 were mainly included Sn and Tl; and the weights of F3 were mainly included As and Sb (Fig. 3c). Similarly, from the factor detector calculation results, it was inferred that F1 in the Aksu Oasis was a mixed source. According to the results of Geodetector analysis, the best explanatory factors for Sn and Tl in the agricultural soil of the Aksu Oasis were TN and ST. Previous studies have also shown that Sn in soil may also come from agricultural practices (pesticides)75, so F2 was inferred to represent agricultural activities and natural sources (rock mineralization). Similarly, according to Supplementary Table S5, F3 was inferred to be the source of agricultural activities. Previous studies have also concluded that agricultural activities such as the application of phosphate fertilizer are also the main source of As and Sb in soil76,77, which was consistent with the results of the Geodetector model.The explanatory factors for the PTEs of agricultural soil in the Hotan Oasis were the total nitrogen content and the silty particle size percentage, indicating that the PTEs in agricultural soil in the Hotan Oasis mainly came from agricultural activities and atmospheric dust fall. The economy in the Hotan Oasis is dominated by irrigated agriculture, and since most oases border large deserts, wind and sand disasters are extremely serious (annual average dust days exceeding 220 days)78. The sources of PTEs inferred by the Geodetector model in this study were consistent with the reality.Source-specific ecological risk assessmentBased on the results of source analysis, the source-specific ecological risks posed by agricultural soil PTEs were evaluated in this study, and the results are shown in Fig. 4. The total ecological risks caused by PTEs in the agricultural soils in the Yarkant River Oasis, Kashgar Oasis and Aksu Oasis were null, while those at of all sampling sites in the Hotan Oasis were moderate risk. According to the results of the source-specific ecological risk of PTEs, there was no direct relationship between the contribution degree of source-specific risks to the total ecological risk and its contribution to the existence of PTEs in soil. In particular, the agricultural activity source (F3), which accounted for only 7.9% of the PTEs in Kashgar Oasis agricultural soil, contributed the most to the total risk, the mixed source (F1), which contributed the most to the existence of PTEs in soil, contributed the second most to the total risk, and the industrial source (F2) contributed the least. The reason for this result was that the toxicity factor of Cd (30) introduced by agricultural activities was significantly higher than that of PTEs released from other sources, which was consistent with the conclusion of other studies16,19 that the main source of highly toxic elements was more likely to cause ecological risks than that of low-toxicity elements.Figure 4Source-specific ecological risk boxplots of PTEs of agricultural soils in oases in the source region of the Tarim River.Full size imageTo explore the spatial distribution of ecological risks generated by PTEs from different sources, a distribution map of ecological risks posed by specific sources at each sampling point was generated (Fig. 5). The total ecological risk of the sampling sites near Awat County in the Aksu Oasis was higher than 40, indicating moderate risk. In addition, the total ecological risk at the other sampling sites was at a low level. However, the ecological risks caused by mixed sources (F1) and agricultural activities and natural sources (F2) were high in the southwestern Aksu Oasis and the sampling sites near Aksu city, resulting in high total ecological risks. The ecological risks at all the sampling sites in the two oases in Kashgar (Kashgar Oasis and Yarkant River Oasis) were low. Notably, the sampling sites near Kashgar city had high total ecological risks due to the high ecological risks caused by PTEs from mixed sources (F1) and agricultural activity sources (F3). The total ecological risk at all sampling sites in the Hotan Oasis was moderate. In particular, the sampling sites near Hotan city had the highest total ecological risk generated by PTEs from agricultural activities and atmospheric dust sources (73.71).Figure 5Spatial distribution of the ecological risks of PTEs from different sources in the four oases. The graphs were generated by QGIS 3.26.3 (https://www.qgis.org) and the land use data are from the ESA global 30 m resolution land use cover dataset (https://viewer.esa-worldcover.org/worldcover). The combination of graphs (a–d) was accomplished with linkscape 1.2.1 (https://inkscape.org).Full size imageSource-specific human health risk assessmentAccording to the proportions of different sources of each PTE obtained from the PMF model, the source-specific health risks of PTEs in agricultural soil in the four oases to the human body were calculated, and the results are shown in Tables 4 and 5 and Fig. 6. Although the results of noncarcinogenic risk caused by different sources of PTEs in agricultural soil in each oasis showed that adults and children were not at risk, the total THI values of PTEs for children in the four regions were all greater than 1, indicating that soil PTEs in the study area posed significant noncarcinogenic risks for children. In terms of carcinogenic risk, the total TCR values of PTEs for adults and children were on the order of 1E−05, within the range of 1E−06 and 1E−04, indicating that the carcinogenic risk of soil PTEs for the human body is acceptable in the study area. In general, the noncarcinogenic and carcinogenic risks of PTEs from different sources in children were higher than those in adults, which can be explained by children having more opportunities PTE contamination through hand-to-mouth ingestion and dermal contact than adults due to the areas where they play and unhealthy eating habits (e.g., children are more likely to suck their fingers)79. Therefore, different parameters were set when employing the health risk assessment model.Table 4 Specific noncarcinogenic risks of PTEs from different sources.Full size tableTable 5 Specific carcinogenic risks of PTEs from different sources.Full size tableFigure 6Human health risk proportions of PTEs from different sources in the Aksu Oasis (a), Kashgar Oasis (b) and Yarkant River Oasis (c).Full size imageIn terms of the proportion of human health risks caused by PTEs from different sources (Fig. 6), those from mixed sources, which were considered to have the largest contribution to PTEs in the Aksu Oasis, Kashgar Oasis and Yarkant River Oasis, were not the largest. This might be explained by the presence of more toxic elements, such as As and Tl, in other sources of the three oases contributing the most (Fig. 3), while their low RfD may explain their greater noncarcinogenic risk. PTEs from agricultural activities and natural sources accounted for the largest proportion of carcinogenic risk in the Aksu Oasis, while mixed sources accounted for the largest proportion of carcinogenic risk in the Kashgar Oasis and Yarkant River Oasis. This was mainly because the presence of As, Cd, Co, Ni and Pb elements with carcinogenic risk in the above two sources accounted for a large proportion (Fig. 3), thus posing a large carcinogenic risk. The results of the proportion of health risks attributed to different sources of PTEs to the human body showed that the control of human health risks of PTEs cannot be determined based on their concentration alone. Therefore, in view of the obvious noncarcinogenic risk of soil PTEs in the four oases to children, from the results of the contribution of different sources of PTEs to the noncarcinogenic risk to children, agricultural activities and natural sources, industrial sources and atmospheric dust fall were the priority control sources in the Aksu Oasis, Kashgar Oasis and Yarkant River Oasis, respectively. More

  • in

    Author Correction: Prioritizing India’s landscapes for biodiversity, ecosystem services and human well-being

    These authors contributed equally: Arjun Srivathsa, Divya Vasudev, Tanaya Nair, Jagdish Krishnaswamy, Uma Ramakrishnan.National Centre for Biological Science, TIFR, Bengaluru, IndiaArjun Srivathsa, Tanaya Nair, Mahesh Sankaran & Uma RamakrishnanWildlife Conservation Society-India, Bengaluru, IndiaArjun SrivathsaConservation Initiatives, Guwahati, IndiaDivya Vasudev & Varun R. GoswamiDivision of Biosciences, University College London, London, UKTanaya NairDepartments of Biology and Environmental Studies, Macalester College, Saint Paul, MN, USAStotra ChakrabartiWorld Wildlife Fund, Delhi, IndiaPranav Chanchani, Arpit Deomurari, Dipankar Ghose & Prachi ThatteDepartment of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USARuth DeFriesAmity Institute of Forestry and Wildlife, Amity University, Noida, IndiaArpit DeomurariWildlife Institute of India, Dehradun, IndiaSutirtha DuttaFoundation for Ecological Research, Advocacy and Learning, Bengaluru, IndiaRajat Nayak & Srinivas VaidyanathanNetwork for Conserving Central India, Gurgaon, IndiaAmrita NeelakantanWorld Resources Institute, New Delhi, IndiaMadhu VermaSchool of Environment and Sustainability, Indian Institute for Human Settlements, Bengaluru, IndiaJagdish KrishnaswamyAshoka Trust for Research in Ecology and the Environment, Bengaluru, IndiaJagdish KrishnaswamyBiodiversity Collaborative, Bengaluru, IndiaJagdish Krishnaswamy, Mahesh Sankaran & Uma Ramakrishnan More

  • in

    Directional asymmetry in gonad length indicates moray eels (Teleostei, Anguilliformes, Muraenidae) are “right-gonadal”

    Graham, J. H., Raz, S., Hel-Or, H. & Nevo, E. Fluctuating asymmetry: Methods, theory, and applications. Symmetry 2(2), 466–540 (2010).ADS 
    MathSciNet 

    Google Scholar 
    Graham, J. H., Emlen, J. M., Freeman, D. C., Leamy, L. J. & Kieser, J. A. Directional asymmetry and the measurement of developmental instability. Biol. J. Lin. Soc. 64(1), 1–16 (1998).
    Google Scholar 
    Dongen, V., Lensm, L. & Molenberghs, G. Mixture analysis of asymmetry: Modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecol. Lett. 2(6), 387–396 (1999).
    Google Scholar 
    Palmer, A. R. Symmetry breaking and the evolution of development. Science 306(5697), 828–833 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Møller, A. P. Directional selection on directional asymmetry: Testes size and secondary sexual characters in birds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 258(1352), 147–151 (1994).ADS 

    Google Scholar 
    Allenbach, D. M. Fluctuating asymmetry and exogenous stress in fishes: A review. Rev. Fish Biol. Fish. 21(3), 355–376 (2011).
    Google Scholar 
    Werner, Y. L., Rothenstein, D. & Sivan, N. Directional asymmetry in reptiles (Sauria: Gekkonidae: Ptyodactylus) and its possible evolutionary role, with implications for biometrical methodology. J. Zool. 225(4), 647–658 (1991).
    Google Scholar 
    Loehr, J. et al. Asymmetry in threespine stickleback lateral plates. J. Zool. 289(4), 279–284 (2013).
    Google Scholar 
    Bell, M. A., Khalef, V. & Travis, M. P. Directional asymmetry of pelvic vestiges in threespine stickleback. J. Exp. Zool. B Mol. Dev. Evol. 308(2), 189–199 (2007).PubMed 

    Google Scholar 
    Somarakis, S., Kostikas, I. & Tsimenides, N. Fluctuating asymmetry in the otoliths of larval fish as an indicator of condition: Conceptual and methodological aspects. J. Fish Biol. 51, 30–38 (1997).
    Google Scholar 
    Ratty, F. J., Laurs, R. M. & Kelly, R. M. Gonad morphology, histology, and spermatogenesis in South Pacific albacore tuna Thunnus alalunga (Scombridae). Fish. Bull. 88, 207–216 (1989).
    Google Scholar 
    Harrod, C. & Griffiths, D. Parasitism, space constraints, and gonad asymmetry in the pollan (Coregonus autumnalis). Can. J. Fish. Aquat. Sci. 62(12), 2796–2801 (2005).
    Google Scholar 
    Park, I. S., Zhang, C. I., Kim, Y. J. & Bang, I. C. Directional asymmetry of gonadal development in Ayu (Plecoglossus altivelis). Fish. Aquat. Sci. 8(4), 207–212 (2005).
    Google Scholar 
    Bernet, D., Wahli, T., Kueng, C. & Segner, H. Frequent and unexplained gonadal abnormalities in whitefish (central alpine Coregonus sp.) from an alpine oligotrophic lake in Switzerland. Dis. Aquat. Org. 61(1–2), 137–148 (2004).CAS 

    Google Scholar 
    Bittner, D. et al. How normal is abnormal? Discrimination between deformations and natural variation in gonad morphology of European whitefish Coregonus lavaretus. J. Fish Biol. 74(7), 1594–1614 (2009).CAS 
    PubMed 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & R. van der Laan (eds) 2022. Eschmeyer’s Catalog of Fishes: Genera, Species, References. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic version Accessed 31 12 2022).Chen, H. M., Shao, K. T. & Chen, C. T. A review of the muraenid eels (Family Muraenidae) from Taiwan with descriptions of twelve new records. Zool. Stud. 33(1), 44–64 (1994).
    Google Scholar 
    Chen, H. M., Loh, K. H. & Shao, K. T. A new species of moray eel, Gymnothorax taiwanensis (Anguilliformes: Muraenidae) from eastern Taiwan. Raffles Bull. Zool. 19, 131–134 (2008).
    Google Scholar 
    Loh, K. H., Shao, K. T. & Chen, H. M. Gymnothorax melanosomatus, a new moray eel (Teleostei: Anguilliformes: Muraenidae) from southeastern Taiwan. Zootaxa 3134(1), 43–52 (2011).
    Google Scholar 
    Loh, K. H., Shao, K. T., Ho, H. C., Lim, P. E. & Chen, H. M. A new species of moray eel (Anguilliformes: Muraenidae) from Taiwan, with comments on related elongate unpatterned species. Zootaxa 4060(1), 30–40 (2015).PubMed 

    Google Scholar 
    Huang, W. C., Mohapatra, A., Thu, P. T., Chen, H. M. & Liao, T. Y. A review of the genus Strophidon (Anguilliformes: Muraenidae), with description of a new species. J. Fish Biol. 97(5), 1462–1480 (2020).PubMed 

    Google Scholar 
    Huang, W. C., Smith, D. G., Loh, K. H. & Liao, T. Y. Two New Moray Eels of Genera Diaphenchelys and Gymnothorax (Anguilliformes: Muraenidae) from Taiwan and the Philippines. Zool. Stud. 60, e24 (2021).Matić-Skoko, S. et al. Mediterranean moray eel Muraena helena (Pisces: Muraenidae): biological indices for life history. Aquat. Biol. 13(3), 275–284 (2011).
    Google Scholar 
    Fishelson, L. Comparative gonad morphology and sexuality of the Muraenidae (Pisces, Teleostei). Copeia 1992, 197–209 (1992).Froese, R. & D. Pauly. Editors. 2022.FishBase. World Wide Web electronic publication. www.fishbase.org. Accessed March 2022.Almany, G. R. Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141(1), 105–113 (2004).ADS 
    PubMed 

    Google Scholar 
    Hixon, M. A. & Beets, J. P. Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol. Monogr. 63(1), 77–101 (1993).
    Google Scholar 
    Muñoz, R. C. Evidence of natural predation on invasive lionfish, Pterois s, by the spotted moray eel, Gymnothorax moringa. Bull. Marine Sci. 93(3), 789–790 (2017).
    Google Scholar 
    Bos, A. R., Sanad, A. M. & Elsayed, K. Gymnothorax spp. (Muraenidae) as natural predators of the lionfish Pterois miles in its native biogeographical range. Environ. Biol. Fish. 100(6), 745–748 (2017).
    Google Scholar 
    Bshary, R., Hohner, A., Ait-el-Djoudi, K. & Fricke, H. Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol. 4(12), e431 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Hedrick, B. P., Antalek-Schrag, P., Conith, A. J., Natanson, L. J. & Brennan, P. L. Variability and asymmetry in the shape of the spiny dogfish vagina revealed by 2D and 3D geometric morphometrics. J. Zool. 308(1), 16–27 (2019).
    Google Scholar 
    Winters, G. H. Fecundity of the left and right ovaries of Grand Bank capelin (Mallotus villosus). J. Fish. Board Can. 28(7), 1029–1033 (1971).
    Google Scholar 
    Huang, L.Y. Reproductive biology of Gymnothorax reticularis from the waters off northeastern Taiwan. Master Thesis, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan (2008).Loh, K.H. Molecular phylogeny and reproductive biology of moray eels (Muraenidae) around Taiwan. Ph.D. Thesis, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan (2009).Calhim, S. & Birkhead, T. R. Intraspecific variation in testis asymmetry in birds: evidence for naturally occurring compensation. Proc. R. Soc. B Biol. Sci. 276(1665), 2279–2284 (2009).
    Google Scholar 
    Palmer, A. R. What determines direction of asymmetry: Genes, environment or chance?. Philos. Trans. R. Soc. B Biol. Sci. 371(1710), 20150417 (2016).
    Google Scholar 
    Calhim, S. & Montgomerie, R. Testis asymmetry in birds: The influences of sexual and natural selection. J. Avian Biol. 46(2), 175–185 (2015).
    Google Scholar 
    Johnson, G. D. Revisions of anatomical descriptions of the pharyngeal jaw apparatus in moray eels of the family Muraenidae (Teleostei: Anguilliformes). Copeia 107(2), 341–357 (2019).MathSciNet 

    Google Scholar 
    Blackburn, D. G. Structure, function, and evolution of the oviducts of squamate reptiles, with special reference to viviparity and placentation. J. Exp. Zool. 282(4–5), 560–617 (1998).CAS 
    PubMed 

    Google Scholar 
    Guioli, S. et al. Gonadal asymmetry and sex determination in birds. Sex. Dev. 8(5), 227–242 (2014).CAS 
    PubMed 

    Google Scholar 
    Witschi, E. Origin of asymmetry in the reproductive system of birds. Am. J. Anat. 56(1), 119–141 (1935).
    Google Scholar 
    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7(9), 2851–2899 (2010).ADS 

    Google Scholar 
    Calhim, S., Pruett-Jones, S., Webster, M. S. & Rowe, M. Asymmetries in reproductive anatomy: insights from promiscuous songbirds. Biol. J. Lin. Soc. 128(3), 569–582 (2019).
    Google Scholar 
    Quillet, E., Labbe, L. & Queau, I. Asymmetry in sexual development of gonads in intersex rainbow trout. J. Fish Biol. 64(4), 1147–1151 (2004).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Lin, Y. J., Qurban, M. A., Shen, K. N. & Chao, N. L. Delimitation of Tiger-tooth croaker Otolithes species (Teleostei: Sciaenidae) from the Western Arabian Gulf using an integrative approach, with a description of Otolithes arabicus sp. nov. Zool. Stud. 58, 10 (2019).
    Google Scholar 
    Bodenhofer, U., Bonatesta, E., Horejs-Kainrath, C. & Hochreiter, S. msa: An R package for multiple sequence alignment. Bioinformatics 31(24), 3997–9999 (2015).CAS 
    PubMed 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs E. & Wagner, H. vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35(4), 523–531 (1998).
    Google Scholar 
    Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?. J. Classif. 31(3), 274–295 (2014).MathSciNet 
    MATH 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar  More

  • in

    Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam.

    Bibi, S. et al. Exogenous Ca/Mg quotient reduces the inhibitory effects of PEG induced osmotic stress on Avena sativa L. Braz. J. Biol. 84, 264642 (2022).Article 

    Google Scholar 
    Yasmeen, S. et al. Melatonin as a foliar application and adaptation in lentil (Lens culinaris Medik.) crops under drought stress. Sustainability 14, 16345 (2022).Article 
    CAS 

    Google Scholar 
    Ali, S. et al. The effects of osmosis and thermo-priming on salinity stress tolerance in Vigna radiata L. Sustain. 14, 12924 (2022).Article 
    CAS 

    Google Scholar 
    Umar, U. D. et al. Micronutrients foliar and drench application mitigate mango sudden decline disorder and impact fruit yield. Agronomy 12, 2449 (2022).Article 
    CAS 

    Google Scholar 
    Raymond, M. J. & Smirnoff, N. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89, 813–823 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Afridi, M. S. et al. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front. Plant Sci. 13, 1–22 (2022).Article 

    Google Scholar 
    Salam, A. et al. Nano-priming against abiotic stress: A way forward towards sustainable agriculture. Sustainability 14, 14880 (2022).Article 
    CAS 

    Google Scholar 
    Yuan, F., Guo, J., Shabala, S. & Wang, B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 9, 1954 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flowers, T. J. & Colmer, T. D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 115, 327–331 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roy, S. & Chakraborty, U. Cross-generic studies with rice indicate that ion homeostasis and antioxidant defense is associated with superior salinity tolerance in Cynodon dactylon (L.) Pers. Indian J. Plant Physiol. 20, 14–22 (2015).Article 

    Google Scholar 
    Ali, B. et al. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Front. Plant Sci. 13, 921668 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ali, B. et al. Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. S. Afr. J. Bot. 151, 33–46 (2022).Article 
    CAS 

    Google Scholar 
    Ali, B. et al. Bacillus mycoides PM35 reinforces photosynthetic efficiency, antioxidant defense, expression of stress-responsive genes, and ameliorates the effects of salinity stress in maize. Life 12, 219 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ali, B. et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11, 345 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yildiz, M. & Terzi, H. Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. Biologia (Bratisl). 63, 521–525 (2008).Article 
    CAS 

    Google Scholar 
    Shao, T., Zhang, L., Shimojo, M. & Masuda, Y. Fermentation quality of Italian ryegrass (Lolium multiflorum Lam.) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian Australas. J. Anim. Sci. 20, 1699–1704 (2007).Article 
    CAS 

    Google Scholar 
    Ashraf, M. & Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190 (2013).Article 
    CAS 

    Google Scholar 
    Ma, J. et al. Short-term responses of Spinach (Spinacia oleracea L.) to the individual and combinatorial effects of Nitrogen, Phosphorus and Potassium and silicon in the soil contaminated by boron. Front. Plant Sci. 13, 983156 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, J. et al. Impact of foliar application of syringic acid on tomato (Solanum lycopersicum L.) under heavy metal stress-insights into nutrient uptake, redox homeostasis, oxidative stress, and antioxidant defense. Front. Plant Sci. 13, 950120 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, J. et al. Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Front. Plant Sci. 13, 973740 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A. & Harmon, J. Soil salinity: A threat to global food security. Agron. J. 108, 2189–2200 (2016).Article 
    CAS 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 55, 373 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Triantaphylides, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amna et al. Bio-fabricated silver nanoparticles: A sustainable approach for augmentation of plant growth and pathogen control. In Sustainable Agriculture Reviews, Vol. 53 345–371 (Springer, 2021).Faryal, S. et al. Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic pigments, Osmolytes Biosynthesis and Antioxidant Biosystems. Molecules 27, 5744 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuteja, N. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2, 135–138 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saleem, K. et al. Chrysotile-asbestos-induced damage in Panicum virgatum and Phleum pretense species and its alleviation by organic-soil amendment. Sustainability 14, 10824 (2022).Article 

    Google Scholar 
    Wahab, A. et al. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11, 1620 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCord, J. M. The evolution of free radicals and oxidative stress. Am. J. Med. 108, 652–659 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farooq, T. H. et al. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species towards Cr and Pb stress. Front. Plant Sci. 13, 997120 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dola, D. B. et al. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front. Plant Sci. 13, 992535 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jaleel, C. A., Gopi, R., Alagu Lakshmanan, G. M. & Panneerselvam, R. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci. 171, 271–276 (2006).Article 
    CAS 

    Google Scholar 
    Zainab, N. et al. Pgpr-mediated plant growth attributes and metal extraction ability of sesbania sesban l. In industrially contaminated soils. Agronomy 11, 11 (2021).Article 

    Google Scholar 
    Nawaz, H. et al. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of Ni contaminated soil by using canola (Brassica napus). Braz. J. Biol. 82, 261785 (2022).Article 

    Google Scholar 
    Hasanuzzaman, M. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dixon, D. P., Cummins, I., Cole, D. J. & Edwards, R. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1, 258–266 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kangasjärvi, S. et al. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem. J. 412, 275–285 (2008).Article 
    PubMed 

    Google Scholar 
    Cai, Y., Luo, Q., Sun, M. & Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gengmao, Z., Quanmei, S., Yu, H., Shihui, L. & Changhai, W. The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLoS ONE 9, e89624 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schroeter, H. et al. MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol. Aging 23, 861–880 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Horemans, N., Foyer, C. H. & Asard, H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 5, 263–267 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Miller, N. J., Diplock, A. T. & Rice-Evans, C. A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. J. Agric. Food Chem. 43, 1794–1801 (1995).Article 
    CAS 

    Google Scholar 
    Elkhlifi, Z. et al. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability 15, 2527. https://doi.org/10.3390/su15032527 (2023).Article 

    Google Scholar 
    Mahmood, K. T., Mugal, T. & Haq, I. U. Moringa oleifera: A natural gift-a review. J. Pharm. Sci. Res. 2, 775 (2010).
    Google Scholar 
    Anwar, F., Hussein, A. I., Ashraf, M., Jamail, A. & Iqbal, S. Effect of salinity on yield and quality of Moringa oleifera seed oil. Grasas y Aceites 57, 394–401 (2006).Article 
    CAS 

    Google Scholar 
    Barrs, H. D. & Weatherley, P. E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).Article 

    Google Scholar 
    Kirk, J. T. O. & Allen, R. L. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun. 21, 523–530 (1965).Article 
    CAS 
    PubMed 

    Google Scholar 
    Callister, A. N., Arndt, S. K. & Adams, M. A. Comparison of four methods for measuring osmotic potential of tree leaves. Physiol. Plant. 127, 383–392 (2006).Article 
    CAS 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).Article 
    CAS 

    Google Scholar 
    Yemm, E. W. & Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508 (1954).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Velikova, V., Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000).Article 
    CAS 

    Google Scholar 
    Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dionisio-Sese, M. L. & Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9 (1998).Article 
    CAS 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fridovich, I. Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aebi, H. Catalase in vitro. In Methods in enzymology 105, 121–126 (Elsevier, 1984).Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific. Anal. Antioxid. Enzym. Act. lipid peroxidation proline content Agropyron desertorum under drought Stress (1981).Polle, A., Otter, T. & Seifert, F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106, 53–60 (1994).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guri, A. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 63, 733–737 (1983).Article 
    CAS 

    Google Scholar 
    Brand-Williams, W., Cuvelier, M.-E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30 (1995).Article 
    CAS 

    Google Scholar 
    Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benzie, I. F. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239, 70–76 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Prieto, P., Pineda, M. & Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).CAS 

    Google Scholar 
    Chang, C.-C., Yang, M.-H., Wen, H.-M. & Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. food drug Anal. 10, 3 (2002).
    Google Scholar 
    Saeed, S. et al. Validating the impact of water potential and temperature on seed germination of wheat (Triticum aestivum L.) via hydrothermal time model. Life 12, 983 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fatima, N. et al. Germination, growth and ions uptake of moringa (Moringa oleifera L.) grown under saline condition. J. Plant Nutr. 41, 1555–1565 (2018).Article 
    CAS 

    Google Scholar 
    Bashir, S. et al. Structural and functional stability of photosystem-II in Moringa oleifera under salt stress. Aust. J. Crop Sci. 15, 676–682 (2021).Article 
    CAS 

    Google Scholar 
    Farooq, F. et al. Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS ONE 17, e0263978 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bekka, S., Tayeb-Hammani, K., Boucekkine, I., Aissiou, M.Y.E.-A. & Djazouli, Z. E. Adaptation strategies of Moringa oleifera under drought and salinity stresses. Ukr. J. Ecol. 12, 8–16 (2022).
    Google Scholar 
    Uematsu, K., Suzuki, N., Iwamae, T., Inui, M. & Yukawa, H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 63, 3001–3009 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Khan, M. A. An ecological overview of halophytes from Pakistan. In Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science Vol. 38 (eds Lieth, H., Mochtchenko, M.) 167–187 (Springer, Dordrecht, 2003). https://doi.org/10.1007/978-94-017-0211-9_20.Chapter 

    Google Scholar 
    Chapin, F. S., Bloom, A. J., Field, C. B. & Waring, R. H. Plant responses to multiple environmental factors. Bioscience 37, 49–57 (1987).Article 

    Google Scholar 
    Ma, T. et al. Shoot and root biomass allocation of sunflower varying with soil salinity and nitrogen applications. Agron. J. 109, 2545–2555 (2017).Article 
    CAS 

    Google Scholar 
    Moud, A. & Maghsoudi, K. Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J. Agric. 4, 351–358 (2008).
    Google Scholar 
    Meloni, D. A., Oliva, M. A., Ruiz, H. A. & Martinez, C. A. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr. 24, 599–612 (2001).Article 
    CAS 

    Google Scholar 
    Geissler, N., Hussin, S. & Koyro, H. W. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ. Exp. Bot. 65, 220–231 (2009).Article 
    CAS 

    Google Scholar 
    Sun, Y. L. et al. The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica 48, 400–408 (2010).Article 
    CAS 

    Google Scholar 
    Takamiya, K. I., Tsuchiya, T. & Ohta, H. Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends Plant Sci. 5, 426–431 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Adnan, M. Y. et al. Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora Morphol. Distrib. Funct. Ecol. Plants 225, 1–9 (2016).Article 

    Google Scholar 
    Pinheiro, H. A. et al. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind. Crops Prod. 27, 385–392 (2008).Article 
    CAS 

    Google Scholar 
    Zhou, Y. et al. Production of betacyanins in transgenic Nicotiana tabacum increases tolerance to salinity. Front. Plant Sci. 12, 653147 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ribeiro, V. P. et al. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz. J. Microbiol. 49, 40–46 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elhag, A. Z. & Abdalla, M. H. Investigation of sodium chloride tolerance of moringa (Moringa Oleifera Lam.) Transplants. Univers. J. Agric. Res. 2, 45–49 (2014).Article 

    Google Scholar 
    Nouman, W. et al. Drought affects size, nutritional quality, antioxidant activities and phenolic acids pattern of Moringa oleifera Lam. J. Appl. Bot. Food Qual. 91, 79–87 (2018).CAS 

    Google Scholar 
    Carballo-Méndez, F. D. J. et al. Silicon improves seedling production of Moringa oleifera Lam. Under saline stress. Pak. J. Bot. 54, 751–757 (2022).Article 

    Google Scholar 
    Gorai, M., Ennajeh, M., Khemira, H. & Neffati, M. Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiol. Plant. 33, 963–971 (2011).Article 
    CAS 

    Google Scholar 
    Pagter, M., Bragato, C., Malagoli, M. & Brix, H. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat. Bot. 90, 43–51 (2009).Article 

    Google Scholar 
    Abideen, Z. et al. Antioxidant activity and polyphenolic content of phragmites karka under saline conditions. Pakistan J. Bot. 47, 813–818 (2015).CAS 

    Google Scholar 
    Teakle, N. L. et al. Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: The importance of K+ retention in roots. Environ. Exp. Bot. 87, 69–78 (2013).Article 
    CAS 

    Google Scholar 
    Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. & Muscolo, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6, plu047. https://doi.org/10.1093/aobpla/plu047 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wege, S., Gilliham, M. & Henderson, S. W. Chloride: Not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J. Exp. Bot. 68, 3057–3069 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aziz, I., Gulzar, S., Noor, M. & Khan, M. A. Seasonal variation in water relations of Halopyrum mucronatum (L.) Stapf. growing near Sandspit, Karachi. Pak. J. Bot. 37, 141–148 (2005).
    Google Scholar 
    Teixeira Lins, C. M. et al. Pressure–volume (P–V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions. Plant Physiol. Biochem. 124, 155–159 (2018).Article 
    PubMed 

    Google Scholar 
    Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. & Zhu, J. K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shoukat, E., Aziz, I., Ahmed, M. Z., Abideen, Z. & Khan, M. A. Growth patterns of Phragmites karka under saline conditions depend on the bulk elastic modulus. Crop Pasture Sci. 69, 535–545 (2018).Article 
    CAS 

    Google Scholar 
    Rozema, J. & Schat, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 92, 83–95 (2013).Article 
    CAS 

    Google Scholar 
    Hameed, A. & Khan, M. A. Halophytes: Biology and economic potentials. Karachi Univ. J. Sci. 39, 40–44 (2011).
    Google Scholar 
    Katschnig, D., Broekman, R. & Rozema, J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environ. Exp. Bot. 92, 32–42 (2013).Article 
    CAS 

    Google Scholar 
    Salehi, M., Majnun Hoseini, N., Naghdi Badi, H. & Mazaheri, D. Biochemical and growth responses of Moringa peregrina (Forssk.) fiori to different sources and levels of salinity. J. Med. Plants 11, 54–61 (2012).CAS 

    Google Scholar 
    Soliman, A. S., El-Feky, S. A. & Darwish, E. Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J. Hortic. For. 7, 36–47 (2015).Article 
    CAS 

    Google Scholar 
    Azeem, M. et al. Salicylic acid seed priming modulates some biochemical parametrs to improve germination and seedling growth of salt stressed wheat (Triticum aestivum L.). Pakistan J. Bot. 51, 385–391 (2019).MathSciNet 
    CAS 

    Google Scholar 
    Sultana, R. et al. Coumarin-Mediated growth regulations, antioxidant enzyme activities, and photosynthetic efficiency of sorghum bicolor under saline conditions. Front. Plant Sci. 13, 799404 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coêlho, M. R. V. et al. Salt tolerance of Calotropis procera begins with immediate regulation of aquaporin activity in the root system. Physiol. Mol. Biol. Plants 27, 457–468 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouassaba, K. & Chougui, S. Effet Du Stress Salin Sur Le Comportement Biochimique Et Anatomique Chez Deux Variétés De Piment (Capsicum Annuum L.) À Mila /Algérie. Eur. Sci. J. ESJ 14, 159 (2018).
    Google Scholar 
    El Moukhtari, A., Cabassa-Hourton, C., Farissi, M. & Savouré, A. How does proline treatment promote salt stress tolerance during crop plant development? Front. Plant Sci. 11, 1127 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Afridi, M. S. et al. Plant microbiome engineering: Hopes or hypes. Biology 11, 1782. https://doi.org/10.3390/biology11121782 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Saleem, A. et al. Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability 14, 16845. https://doi.org/10.3390/su142416845 (2022).Article 
    CAS 

    Google Scholar 
    Mehmood, S. et al. Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2021.1971654 (2021).Article 

    Google Scholar 
    Benzarti, M., Rejeb, K. B., Debez, A., Messedi, D. & Abdelly, C. Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol. Plant. 34, 1679–1688 (2012).Article 
    CAS 

    Google Scholar 
    Duarte, B., Santos, D., Marques, J. C. & Caçador, I. Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback—implications for resilience in climate change. Plant Physiol. Biochem. 67, 178–188 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Foyer, C. H. & Noctor, G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11, 861–905 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Abogadallah, G. M. Insights into the significance of antioxidative defense under salt stress. Plant Signal. Behav. 5, 369–374 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Subudhi, P. K. & Baisakh, N. Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cell. Dev. Biol. Plant 47, 441–457 (2011).Article 
    CAS 

    Google Scholar 
    De Abreu, I. N. & Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 43, 241–248 (2005).Article 

    Google Scholar 
    Askarzadeh, A. & Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012).Article 
    ADS 

    Google Scholar 
    Parida, A. K. & Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees Struct. Funct. 24, 199–217 (2010).Article 

    Google Scholar 
    Niknam, V. & Ebrahimzadeh, H. Phenolics content in Astragalus species. Pak. J. Bot. 34, 283–289 (2002).
    Google Scholar 
    Agati, G., Matteini, P., Goti, A. & Tattini, M. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174, 77–89 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rai, S. N. & Proctor, J. Ecological studies on four rainforests in Karnataka, India: II. Litterfall. J. Ecol. 74, 439–454 (1986).Article 

    Google Scholar 
    Thakur, A. et al. Nutritional evaluation, phytochemical makeup, and antibacterial and antioxidant properties of wild plants utilized as food by the Gaddis, a tribe in the Western Himalayas. Front. Agron. 4, 1010309. https://doi.org/10.3389/fagro.2022.1010309 (2022).Article 

    Google Scholar 
    Boumenjel, A., Pantera, A., Papadopoulos, A. & Ammari, Y. Tolerance and adaptation mechanisms developed by Moringa oleifera (L.) seeds under oxidative stress induced by salt stress during in vitro germination. Glob. Nest J. 23, 1–10 (2021).
    Google Scholar 
    Wong, S. P., Leong, L. P. & William Koh, J. H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99, 775–783 (2006).Article 
    CAS 

    Google Scholar 
    Djeridane, A. et al. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97, 654–660 (2006).Article 
    CAS 

    Google Scholar 
    Meireles, D., Gomes, J., Lopes, L., Hinzmann, M. & Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 20, 495–515 (2020).Article 

    Google Scholar 
    Ichoku, C. et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 29, 1616 (2002).Article 

    Google Scholar 
    Shahidi, F. & Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—a review. J. Funct. Foods 18, 820–897 (2015).Article 
    CAS 

    Google Scholar 
    Qasim, M. et al. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot. 110, 240–250 (2017).Article 
    CAS 

    Google Scholar 
    Benabderrahim, M. A., Yahia, Y., Bettaieb, I., Elfalleh, W. & Nagaz, K. Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Ind. Crops Prod. 138, 111427 (2019).Article 
    CAS 

    Google Scholar 
    Singh, B. N. et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 47, 1109–1116 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jaiswal, D. et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac. J. Trop. Med. 6, 426–432 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sreelatha, S., Jeyachitra, A. & Padma, P. R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 49, 1270–1275 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sreelatha, S. & Padma, P. R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 64, 303–311 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rani, N. Z. A., Husain, K. & Kumolosasi, E. Moringa genus: A review of phytochemistry and pharmacology. Front. Pharmacol. 9, 108 (2018).Article 

    Google Scholar  More

  • in

    Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber

    Sawyer, S. J. & Bloch, C. P. Effects of carrion decomposition on litter arthropod assemblages. Ecol. Entomol. 45, 1499–1503. https://doi.org/10.1111/een.12910 (2020).Article 

    Google Scholar 
    Galante, E. & Marcos-Garcia, M. A. Decomposer insects. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1158–1168 (Kluwer Academic Publisher, 2008).
    Google Scholar 
    Byrd, J. H. & Castner, J. L. Insects of forensic importance. In Forensic Entomology: The Utility of Arthropods in Legal Investigations (ed. Byrd, J. H.) 39–126 (CRC Press, 2009).Chapter 

    Google Scholar 
    Cruzado-Caballero, P. et al. Bioerosion and palaeoecological association of osteophagous insects in the Maastrichtian dinosaur Arenysaurus ardevoli. Lethaia 54, 957–968 (2021).
    Google Scholar 
    Paes Neto, V. D. et al. Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 453, 30–41 (2016).Article 

    Google Scholar 
    Grimaldi, D. A. Amber: Window to the Past (AMNH, 1996).
    Google Scholar 
    Holden, A. R., Harris, J. M. & Timm, R. M. Paleoecological and taphonomic implications of insect-damaged Pleistocene vertebrate remains from Rancho La Brea, Southern California. PLoS ONE 8(7), e67119. https://doi.org/10.1371/journal.pone.0067119 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zherikhin, V. V. Chapter 3.2. Ecological history of the terrestrial insects. In History of Insects (eds Rasnitsyn, A. P. & Quicke, D. L. J.) 331–388 (Kluwer Academic Publisher, 2002).
    Google Scholar 
    Boucot, A. J. Evolutionary Paleobiology of Behavior and Coevolution (Elsevier, 1990).
    Google Scholar 
    Boucot, A. J. & Poinar, G. O. Jr. Fossil Behavior Compendium (CRC Press, 2010).Book 

    Google Scholar 
    Martı́nez-Delclòs, X., Briggs, D. E. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203(1–2), 19–64 (2004).Article 

    Google Scholar 
    Solórzano Kraemer, M. M. et al. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proc. Natl. Acad. Sci. USA 115(26), 6739–6744. https://doi.org/10.1073/pnas.1802138115 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Álvarez-Parra, S., Delclòs, X., Solórzano-Kraemer, M. M., Alcalá, L. & Peñalver, E. Cretaceous amniote integuments recorded through a taphonomic process unique to resins. Sci. Rep. 10(1), 19840. https://doi.org/10.1038/s41598-020-76830-8 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jordan, F. Keystone species and food webs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1524), 1733–1741 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baranov, V. et al. Synchrotron-radiation computed tomography uncovers ecosystem functions of fly larvae in an Eocene forest. Palaeontol. Electron. 24(1), a07. https://doi.org/10.26879/1129 (2021).Article 

    Google Scholar 
    Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 6(1), 51–63 (1974).Article 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171(4), 761–772 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kneidel, K. A. Influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am. Midl. Nat. 111(1), 57–63 (1984).Article 

    Google Scholar 
    Lewis, A. The ecology of carrion decomposition: Necrophagous invertebrate assembly and microbial community metabolic activity during decomposition of Sus scrofa carcasses in a temperate mid-west forest (Master Thesis, University of Dayton, 2011).Vasconcelos, S. D. & Araujo, M. Necrophagous species of Diptera and Coleoptera in northeastern Brazil: State of the art and challenges for the Forensic Entomologist. Rev. Bras. Entomol. 56(1), 7–14 (2012).Article 

    Google Scholar 
    Vasconcelos, S. D., Cruz, T. M., Salgado, R. L. & Thyssen, P. J. Dipterans associated with a decomposing animal carcass in a rainforest fragment in Brazil: Notes on the early arrival and colonization by necrophagous species. J. Insect Sci. 13(145), 1–11. https://doi.org/10.1673/031.013.14501 (2013).Article 

    Google Scholar 
    Solórzano Kraemer, M. M., Kraemer, A. S., Stebner, F., Bickel, D. J. & Rust, J. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PLoS ONE 10(3), e0118820. https://doi.org/10.1371/journal.pone.0118820 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Solórzano Kraemer, M. M. & Brown, B. V. Dohrniphora (Diptera: Phoridae) from the Miocene Mexican and Dominican ambers with a paleobiological reconstruction. Insect Syst. Evol. 49(3), 299–327 (2018).Article 

    Google Scholar 
    Perrichot, V. & Girard, V. A unique piece of amber and the complexity of ancient forest ecosystems. Palaios 24(3), 137–139 (2009).Article 
    ADS 

    Google Scholar 
    Wichard, W. Taphozönosen im Baltischen Bernstein. Denisia 26, 257–266 (2009).
    Google Scholar 
    Penney, D. & Langan, A. M. Comparing amber fossil assemblages across the Cenozoic. Biol. Lett. 2(2), 266–270 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koteja, J. Report of the IInd Paleoentomological Meeting, Cracow, March 21–22, 1986 (in Polish). Incl.-Wrostek 4, 1–6 (1986).
    Google Scholar 
    Koteja, J. Stellate hairs—Index fossils of ambers. Incl.-Wrostek 5, 4–8 (1986).
    Google Scholar 
    Koteja, J. Syninclusions. Incl.-Wrostek 22, 10–12 (1996).
    Google Scholar 
    Lozano, R. P. et al. Phloem sap in Cretaceous ambers as abundant double emulsions preserving organic and inorganic residues. Sci. Rep. 10, 9751. https://doi.org/10.1038/s41598-020-66631-4 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).Article 

    Google Scholar 
    Peñalver, E. et al. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 8(1), 1924. https://doi.org/10.1038/s41467-017-01550-z (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-García, A., Peñalver, E., Delclòs, X. & Engel, M. S. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous. PLoS ONE 13(2), e0191669. https://doi.org/10.1371/journal.pone.0191669 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2(1), 408. https://doi.org/10.1038/s42003-019-0652-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-de la Fuente, R., Engel, M. S., Azar, D. & Peñalver, E. The hatching mechanism of 130-million-year-old insects: An association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology 62(4), 547–559 (2019).Article 

    Google Scholar 
    Robin, N., D’haese, C. & Barden, P. Fossil amber reveals springtails’ longstanding dispersal by social insects. BMC Evol. Biol. 19(1), 213. https://doi.org/10.1186/s12862-019-1529-6 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coty, D. et al. The first ant-termite syninclusion in amber with CT-Scan analysis of taphonomy. PLoS ONE 9(8), e104410. https://doi.org/10.1371/journal.pone.0104410 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peñalver, E. & Grimaldi, D. Assemblages of mammalian hair and blood-feeding midges (Insecta: Diptera: Psychodidae: Phlebotominae) in Miocene amber. Trans. R. Soc. Edinb. Earth Sci. 96, 177–195 (2006).Article 

    Google Scholar 
    Bolet, A. et al. Unusual morphology in the mid-Cretaceous lizard Oculudentavis. Curr. Biol. 31, 3303–3314. https://doi.org/10.1016/j.cub.2021.05.040 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kundrata, R., Packova, G., Prosvirov, A. S. & Hoffmannova, J. The fossil record of elateridae (Coleoptera: Elateroidea): Described species. Curr. Probl. Future Prospects Insects 12(4), 286. https://doi.org/10.3390/insects12040286 (2021).Article 

    Google Scholar 
    Wagner, P., Stanley, E. L., Daza, J. D. & Bauer, A. M. A new agamid lizard in mid-Cretaceous amber from northern Myanmar. Cretac. Res. 124, 104813. https://doi.org/10.1016/j.cretres.2021.104813 (2021).Article 

    Google Scholar 
    Barthel, H. J., Fougerouse, D., Geisler, T. & Rust, J. Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PLoS ONE 15(2), e0228843 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arillo, A. Paleoethology: fossilized behaviours in amber. Geol. Acta 5(2), 159–166 (2007).
    Google Scholar 
    Xing, L. et al. A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Res. 49, 264–277 (2017).Article 
    ADS 

    Google Scholar 
    Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A. M. & Grimaldi, D. A. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Sci. Adv. 2(3), e1501080. https://doi.org/10.1126/sciadv.1501080 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. & Xing, L. A brief review of lizard inclusions in amber. Biol. Syst. 1(01), 39–53 (2020).CAS 

    Google Scholar 
    Perrichot, V. Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. Geol. Acta 2(1), 9–22 (2004).
    Google Scholar 
    De Baets, K., Huntley, J. W., Klompmaker, A. A., Schiffbauer, J. D. & Muscente, A. D. The fossil record of parasitism: its extent and taphonomic constraints. In The Evolution and Fossil Record of Parasitism (eds De Baets, K. & Huntley, J. W.) 1–50 (Springer, 2021).
    Google Scholar 
    Martín-Perea, D. M. et al. Recurring taphonomic processes in the carnivoran-dominated Late Miocene assemblages of Batallones-3, Madrid Basin. Spain. Lethaia 54, 871–890 (2021).
    Google Scholar 
    Delventhal, R. et al. The taste response to ammonia in Drosophila. Sci. Rep. 7(1), 43754. https://doi.org/10.1038/srep43754 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCoy, V. E., Soriano, C. & Gabbott, S. E. A review of preservational variation of fossil inclusions in amber of different chemical groups. Earth Environ. Sci. Trans. R. Soc. Edinb. 107(2–3), 203–211 (2016).
    Google Scholar 
    McCoy, V. E. et al. Unlocking preservation bias in the amber insect fossil record through experimental decay. PLoS ONE 13(4), e0195482. https://doi.org/10.1371/journal.pone.0195482 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weihrauch, D., Donini, A. & O’Donnell, M. J. Ammonia transport by terrestrial and aquatic insects. J. Insect Physiol. 58(4), 473–487 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60(1), 1–14 (2017).Article 

    Google Scholar 
    Grimaldi, D. & Engel, M. S. Evolution of the Insects (University Press, 2005).
    Google Scholar 
    Boehme, P., Amendt, J., Disney, R. H. L. & Zehner, R. Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. Int. J. Legal Med. 124(6), 577–581 (2010).Article 
    PubMed 

    Google Scholar 
    Disney, R. H. L. Scuttle Flies—The Phoridae (Chapman & Hall, 1994).Book 

    Google Scholar 
    Hong, Y. C. Eocene Fossil Diptera Insecta in Amber of Fushun Coalfield (Geological Publishing House, 1981).
    Google Scholar 
    Brues, C. T. Fossil Phoridae in Baltic amber. Bull. Mus. Comp. Zool 85, 413–436 (1939).
    Google Scholar 
    Brown, B. V. Re-evaluation of the fossil Phoridae. J. Nat. Hist. 33, 1561–1573 (1999).Article 

    Google Scholar 
    Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).Article 
    PubMed 

    Google Scholar 
    Downes, J. A. & Smith, S. M. New or little known feeding habits in Empididae (Diptera). Can. Entomol. 101(4), 404–408 (1969).Article 

    Google Scholar 
    Daugeron, C. Evolution of feeding and mating behaviors in the Empidoidea (Diptera: Eremoneura). In The Origin of Biodiversity in INSECTS: TEsts of Evolutionary Scenarios (ed. Grandcolas, P.) 163–182 (Mémoires du Muséum National d’Histoire Naturelle, Zoologie, 1997).
    Google Scholar 
    Sherratt, E. et al. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proc. Natl. Acad. Sci. USA 112(32), 9961–9966 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Queiroz, K., Chu, L. R. & Losos, J. B. A second Anolis lizard in Dominican amber and the systematics and ecological morphology of Dominican amber anoles. Am. Mus. Novit. 3249, 1–23 (1998).
    Google Scholar 
    Castañeda, M. D. R., Sherratt, E. & Losos, J. The Mexican amber anole, Anolis electrum, within a phylogenetic context: Implications for the origins of Caribbean anoles. Zool. J. Linn. Soc. 172(1), 133–144 (2014).Article 

    Google Scholar 
    Sun, Q., Haynes, K. F. & Zhou, X. Managing the risks and rewards of death in eusocial insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1754), 20170258 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).
    Google Scholar 
    Barden, P. & Grimaldi, D. A. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Curr. Biol. 26(4), 515–521 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schultheiss, P. et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl. Acad. Sci. USA 119(40), e2201550119 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grimaldi, D. A., Engel, M. S. & Nascimbene, P. C. Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 2002(3361), 1–71 (2002).Article 

    Google Scholar 
    Barden, P. & Grimaldi, D. A diverse ant fauna from the mid-Cretaceous of Myanmar (Hymenoptera: Formicidae). PLoS ONE 9(4), e93627. https://doi.org/10.1371/journal.pone.0093627 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, G. et al. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).Article 

    Google Scholar 
    Xing, L. & Qiu, L. Zircon UPb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).Article 

    Google Scholar 
    Musa, M., Kaye, T. G., Bieri, W. & Peretti, A. Burmese amber compared using micro-attenuated total reflection infrared spectroscopy and ultraviolet imaging. Appl. Spectrosc. 75(7), 839–845. https://doi.org/10.1177/0003702820986880 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peretti, A. & Bieri, W. PMF collection data depository of analysis by FTIR, PL, CT-and UV imaging of amber containing holotype Yaksha perettii and Oculudentavis naga and comparative amber samples, and associated invertebrate inclusions. J. Appl. Ethic. Min. Nat. Resour. Paleontol. 2, 1–37 (2021).
    Google Scholar 
    Peretti, A. An alternative perspective for acquisitions of amber from Myanmar including recommendations of the United Nations Human Rights Council. J. Int. Humanit. Action 6(1), 1–6 (2021).Article 

    Google Scholar  More

  • in

    Efficacy of cholecalciferol rodenticide to control wood rat, Rattus tiomanicus and its secondary poisoning impact towards barn owl, Tyto javanica javanica

    Bentley, E. W. A review of anticoagulant rodenticides in current use. Bull. Wid Htlh Org. 47, 275–280 (1972).CAS 

    Google Scholar 
    Ravindran, S., Mohd Noor, H. & Salim, H. Anticoagulant rodenticide use in oil palm plantations in Southeast Asia and hazard assessment to non-target animals. Ecotoxicology https://doi.org/10.1007/s10646-022-02559-x (2022).Article 
    PubMed 

    Google Scholar 
    Wood, B. J. & Chung, G. F. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot. 22, 445–454 (2003).Article 

    Google Scholar 
    Wood, B. J. & Chung, G. F. Warfarin resistance of Rattus tiomanicus in oil palms in Malaysia and the associated increase of Rattus diardii. In Proceedings of the Fourteenth Vertebrate Pest Conference 1990. vol. 81, 129–134 (1990).Buckle, A. Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Manag Sci. 69(3), 334−341 (2012).Article 
    PubMed 

    Google Scholar 
    Greaves, J. H. & Cullen-Ayres, P. B. Genetics of difenacoum resistance in the rat. In Current Advances in Vitamin K Research. 17th Steenbock Symposium (ed. Suttie, J. W.) 387–397 (Elsevier, 1988).
    Google Scholar 
    Marsh, R. E. Bromadiolone, a new anticoagulant rodenticide. EPPO. 7(2), 495–502 (1977).Article 
    CAS 

    Google Scholar 
    Ishizuka, M. et al. Pesticide resistance in wild mammals-mechanisms of anticoagulant resistance in wild rodents. J. Toxicol. Sci. 33, 283–291 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kohn, M. H., Pelz, H.-J. & Wayne, R. K. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations. Genet. Soc. Am. 164, 1055–1070 (2003).CAS 

    Google Scholar 
    Vein, J., Grandemange, A., Cosson, J. F., Benoit, E. & Berny, P. J. Are water vole resistant to anticoagulant rodenticides following field treatments?. Ecotoxicology 20, 1432–1441 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Salim, H. et al. Secondary poisoning of captive barn owls, Tyto alba javanica through feeding with rats poisoned with chlorophacinone and bromadiolone. J. Oil Palm Res. 26(1), 62–72 (2014).CAS 

    Google Scholar 
    Thomas, P. J. et al. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterization of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37(5), 914–920 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, E. F. Cholecalciferol: A unique toxicant for rodent control. In Proceedings, Eleventh Vertebrate Pest Conference (ed. Clark, D. O.) 95–98 (University of California, 1984).
    Google Scholar 
    Tobin, M. E., Matschke, C. H., Sugihara, R. T., McCann, C. R., Koehler, A. E. & Andrews, K. T. Laboratory efficacy of cholecalciferol against field rodents. DWRC Research Report No. 11–55–002. (U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 1993).Bull, J. O. Urban pest management, the past, the present, the future. Pest Manag. 2(3), 8–12 (1983).
    Google Scholar 
    Eason, C. T., Frampton, C. M., Henderson, R., Thomas, M. D. & Morgan, D. R. Sodium monofluoroacetate and alternative toxins for possum control. N. Z. J. Zool. 20, 329–334 (1993).Article 

    Google Scholar 
    Eason, C. T. et al. Toxicity of cholecalciferol to rats in a multi-species bait. N. Z. J. Ecol. 34(2), 233–236 (2010).
    Google Scholar 
    Pospischil, R. & Schnorbach, H. J. Racumin plus, a new promising rodenticide against rats and mice. In Proceedings of the 16th Vertebrate Pest Conference University of Nebraska, Lincoln, 180–187 (1994.Baldwin, R. A., Meinerz, R. & Witmer, G. W. Cholecalciferol plus diphacinone baits for vole control: A novel approach to a historic problem. J. Pestic. Sci. 89, 129–135 (2016).Article 

    Google Scholar 
    Eason, C. T., Wickstrom, M., Henderson, R., Milne, L. & Arthur, D. Non-target and secondary poisoning risks associated with cholecalciferol. N. Z. Plant Prot. 53, 299–304 (2000).CAS 

    Google Scholar 
    Baldwin, R. A., Meinerz, R. & Witmer, G. W. Are cholecalciferol plus anticoagulant rodenticides a viable option for field rodents? In Proceeding of 27th Vertebrate Pest Conference, 407–410 (University of California Davis, 2016).British Pest Control Association. BASF introduces new Cholecalciferol-based rodenticide bait in Europe. https://bpca.org.uk/News-and-Blog/basf-introduces-new-cholecalciferol-based-rodenticide (2020).Horst, R. L., Napoli, J. L. & Littledike, E. T. Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem. J. 204, 185–189 (1982).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beasley, V. R., Dorman, D. C., Fikes, J. D., Diana, S. G. & Woshner, V. Cholecalciferol-based rodenticides and other vitamin d-containing products. In A Systems Affected Approach to Veterinary Toxicology 445–450 (University of Illinois Press, 1997).
    Google Scholar 
    Jolly, S. E., Eason, C. T. & Frampton, C. Serum calcium levels in response to cholecalciferol and calcium carbonate in the Australian brush-tailed possum. Pestic. Biochem. Physiol. 47, 159–164 (1993).Article 
    CAS 

    Google Scholar 
    Marsh, R. & Tunberg, A. Characteristics of cholecalciferol. Rodent control: Other options. Pest Control Technol. 14, 43–45 (1986).
    Google Scholar 
    Morgan, D. R. & Rhodes, A. T. Feracol® paste bait for possum control—a cage trial. N. Z. Plant Prot. 53, 305–309 (2000).CAS 

    Google Scholar 
    Zainal Abidin, C. M. R. et al. Comparison of effectiveness of introduced barn owls, Tyto javanica javanica, and rodenticide treatments on rat control in oil palm plantations. J. Pest. Sci. 95, 1009–1022. https://doi.org/10.1007/s10340-021-01423-x (2022).Article 
    CAS 

    Google Scholar 
    Erickson, W. & Urban, D. Potential risks of nine rodenticides to birds and nontarget mammals: a comparative approach (United States Environmental Protection Agency, Office of Pesticides Programs Environmental Fate and Effects Division, 2004).Khoo, K. C., Peter, A. C. O. & Ho, C. T. Crop Pests and Their Management in Malaysia (Tropical Press Sdn. Bhd, 1991).
    Google Scholar 
    Fisher, P., Eason, C., O’Connor, C., Lee, C. H. & Endepols, S. Coumatetralyl residues in rats and hazards to barn owls. In Rats, Mice and People: Rodent Biology and Management (eds Singleton, G. R. et al.) 457–461 (Australia Centre for International Agricultural Research, 2003).
    Google Scholar 
    Lee, C. H. Secondary Toxicity of Some Rodenticides to Barn Owls. In 4th International Conference of Plant Protection in the Tropics, 28–31 March, Kuala Lumpur, Malaysia 161–163 (1994).Mendenhall, V. M. & Pank, L. F. Secondary poisoning of owls by anticoagulant rodenticides. Wildl. Soc. Bull. 8, 311–315 (1980).
    Google Scholar 
    Saravanan, K. & Kanakasabai, R. Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to Barn owl, Tyto alba Hartert under captivity. Indian J. Exp. Biol. 42, 1013–1016 (2004).CAS 
    PubMed 

    Google Scholar 
    Eason, C. T., Wright, G. R., Meikle, L. & Elder, P. The persistence and secondary poisoning risks of sodium monofluoroacetate (1080), brodifacoum, and cholecalciferol in possum. In Proc. 17th Vertebr. Pest Conf. 54–58 (1996).Malaysia Standard: MS1256. Household Insecticide Products-Rat Bait-Chemical, Physical and Biological Efficacy Requirements. (Department of Standard Malaysia, 2007).Swenson, J. & Bradley, G. A. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J. Avian Med. Surg. 27(2), 136–147 (2013).Article 
    PubMed 

    Google Scholar 
    PMEP (Pesticide Management Education Program). Chlorophacinone (Rozol) chemical profile 1/85. Pesticide Management Education Program, Cornell University. http://pmep.cce.cornell.edu/profiles/rodent/chlorophacinone/rodprofchlorophacinone.html (2001).Kaukeinen, D. E., Spragins, C. W. & Hobson, J. F. Risk-benefit considerations in evaluating commensal anticoagulant rodenticide impacts to wildlife. In Proceedings of the Nineteenth Vertebrate Pest Conference, USA (eds Salmon, T. P. & Crabb, A. C.) 245–256 (University of California, 2000).
    Google Scholar 
    Lund, M. The toxicity of chlorophacinone and warfarin to house mice (Mus musculus). J. Hyg. Camb. 69, 69 (1971).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hix, H. The Effectiveness of a Low Dose Cholecalciferol Bait at Killing Rats and Mice (2009).Wood, B. J. & Liau, S. S. Preliminary studies on the toxicity of anti-coagulants to rats of oil palms, with special reference to the prospect of resistance. In International Development in Oil Palm. The Proceedings of the Malaysian International Agricultural of Oil Palm Conference (eds. Earp, DA & Newall, Z). Kuala Lumpur, 14–17 June 1995. The Incorporated Society of Planters, 641–659 (1977).Lee, C. H. & Mustafa, M. D. D. Laboratory evaluation of 0.025% warfarin against Rattus tiomanicus. MARDI Res. 11(2), 132–135 (1983).
    Google Scholar 
    Hagan, E. C. & Radomski, J. L. The toxicity of 3-(acetonylbenzyl)-4-hydroxycoumarin (warfarin) to laboratory animals. J. Am. Pharm. Assoc. 42(379), 382 (1953).
    Google Scholar 
    Hafidzi, M. N; Zulkifli, A. & Kamaruddin, A. A. Barn owl as a biological control agent of rats in paddy fields. In Symposium on Biological Control in the Tropics, 85–88 (Mardi Training Centre, 1999).Lenton, G. M. The feeding and breeding ecology of Barn Owls Tyto alba in Peninsular Malaysia. Int. J. Avian Sci. 126(4), 551–575 (1984).
    Google Scholar 
    Eason, C. T. & Ogilvie, S. A re-evaluation of potential rodenticides for aerial control of rodents. Department of Conservation Research and Development Series 312, Wellington, New Zealand (2009).Gunther, R., Felice, L. J. & Nelson, R. K. Cholecalciferol rodenticide toxicity. J. Am. Vet. Med. Assoc. 193, 211–214 (1988).CAS 
    PubMed 

    Google Scholar 
    Gray, A., Eadsforth, C. V., Dutton, A. J. & Vaughan, J. A. Toxicity of three second generation rodenticides to barn owls. Pestic. Sci. 42, 179–184 (1994).Article 
    CAS 

    Google Scholar 
    Lutz, W. Study on the possible secondary-poisoning hazard to buzzards (Buteo buteo) by the rodenticide bromadiolone. Unpubl. Report for BBA, Forschungsstelle für Jagdkunde und Wildschadenverhütung. Bonn (DE) (in German) (1986).Grolleau, G., Lorgue, G. & Nahas, K. Toxicitd secondaire, en laboratoire, d’un rodenticide anticoagulant (bromadiolone) pour des pr6dateurs de rongeurs champétres: Buse variable (Buteo buteo) et hermine (Mustela erminea). OEPP/EPPO. 19, 633–648 (1989).Article 

    Google Scholar 
    Riedel, M., Riedel, B. & Schlegelmilch, H. Risk of secondary intoxication for birds of prey and owls following use of chlorophacinone baits against common voles. Unpubl. Report (in German) (1991.).Radvanyi, A., Weaver, P., Massari, C., Bird, D. & Broughton, E. Effects of chlorophacinone on captive kestrels. Environ. Contam. Toxicol. 41, 441–448 (1988).Article 
    CAS 

    Google Scholar 
    Rattner, B. A. et al. Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors. Ecotoxicology 24, 720–734. https://doi.org/10.1007/s10646-015-1418-8 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. & Johnston, J. J. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33(1), 8 (2014).Article 

    Google Scholar 
    Sánchez-Barbudo, I. S., Camarero, P. R. & Mateo, R. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420, 280–288 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Evans, J. & Ward, A. L. Secondary poisoning associated with anticoagulant-killed nutria. JAVMA 151, 856–861 (1967).CAS 
    PubMed 

    Google Scholar 
    Prier, M. S. & Derse, P. H. Evaluation of the hazard of secondary poisoning by warfarin poisoned rodents. JAVMA 140, 351–354 (1962).CAS 
    PubMed 

    Google Scholar 
    Townsend, M. G., Bunyan, P. J., Odam, E. M., Stanley, P. I. & Wardall, H. P. Assessment of secondary poisoning hazard of warfarin to least weasels. J. Wildl. Manag. 48, 628–632 (1984).Article 
    CAS 

    Google Scholar  More

  • in

    Identifying ways of producing pigs more sustainably: tradeoffs and co-benefits in land and antimicrobial use

    Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111–120 (2009).Article 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gerber, P. J. et al. Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities. Food Agric. Organ. U. N. (FAO) Rome https://doi.org/10.1016/j.anifeedsci.2011.04.074 (2013).Article 

    Google Scholar 
    Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2, 724–732 (2021).Article 
    CAS 

    Google Scholar 
    Landers, T. F., Cohen, B., Wittum, T. E. & Larson, E. L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 127, 4–22 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Science (80-) 357, 1350–1352 (2017).Article 
    ADS 

    Google Scholar 
    Henchion, M., Moloney, A. P., Hyland, J., Zimmermann, J. & McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 15, 100287 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lassaletta, L. et al. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 665, 739–751 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mehrabi, Z., Gill, M., van Wijk, M., Herrero, M. & Ramankutty, N. Livestock policy for sustainable development. Nat. Food 1(3), 160–165 (2020).Article 

    Google Scholar 
    Godfray, C. J. H. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 
    PubMed 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science (80-) 360, 987–992 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Resare Sahlin, K., Röös, E. & Gordon, L. J. ‘Less but better’ meat is a sustainability message in need of clarity. Nat. Food 1(9), 520–522 (2020).Article 

    Google Scholar 
    van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).Article 

    Google Scholar 
    Roos, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. Policy Dimens. 47, 1–12 (2017).Article 

    Google Scholar 
    Lipsitch, M., Singer, R. S. & Levin, B. R. Antibiotics in agriculture: When is it time to close the barn door?. Proc. Natl. Acad. Sci. USA 99, 5752–5754 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balmford, A. Concentrating versus spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).Article 

    Google Scholar 
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ye, X. et al. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).Article 
    PubMed 

    Google Scholar 
    Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655 (2022).Article 
    CAS 

    Google Scholar 
    Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 99, 6434–6439 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albernaz-Gonçalves, R., Antillón, G. O. & Hötzel, M. J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 12, 1–21 (2022).Article 

    Google Scholar 
    Elliott, K. A., Kenny, C. & Madan, J. A global treaty to reduce antimicrobial use in livestock. Cent. Glob. Dev. 102, 27 (2017).
    Google Scholar 
    Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. 112, 5649–5654 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalmar, L. et al. HAM-ART: An optimised culture-free Hi–C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS Genet. 18, e1009776 (2021).Article 

    Google Scholar 
    Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 110, 3435–3440 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 1–14 (2020).Article 

    Google Scholar 
    Rushton, J. et al. Antimicrobial resistance the use of antimicrobials in the livestock sector. https://doi.org/10.1787/5jxvl3dwk3f0-en (2014)Gonzalez-Mejia, A., Styles, D., Wilson, P. & Gibbons, J. Metrics and methods for characterizing dairy farm intensification using farm survey data. Plus One https://doi.org/10.1371/journal.pone.0195286 (2018).Article 

    Google Scholar 
    Struik, P. C. & Kuyper, T. W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 37, 1–15 (2017).Article 

    Google Scholar 
    Vissers, L. S. M., Saatkamp, H. W. & Oude Lansink, A. G. J. M. Analysis of synergies and trade-offs between animal welfare, ammonia emission, particulate matter emission and antibiotic use in Dutch broiler production systems. Agric. Syst. 189, 103070 (2021).Article 

    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science (81-) 341, 33–34 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Bright-Ponte, S. J. Antimicrobial use data collection in animal agriculture. Zoonoses Public Health 67, 1–5 (2020).Article 
    PubMed 

    Google Scholar 
    Price, L. B., Koch, B. J. & Hungate, B. A. Ominous projections for global antibiotic use in food-animal production. Proc. Natl. Acad. Sci. USA 112, 5554–5555 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    EMA. Categorisation of antibiotics in the European Union. Eur. Med. Agency 31, 73 (2019).
    Google Scholar 
    Vellinga, T. V et al. in Title Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of feed production and utilization. http://www.livestockresearch.wur.nl (2013).Benjamins, D. in Oxford Sandy & Black pigs as a method of weed control. When do they stop being an asset and start becoming a problem? (2002).Henney, J. in An evaluation of the use of pigs as a method of bracken control Dissertation. (2012).Espinosa, R., Tago, D. & Treich, N. Infectious diseases and meat production. Environ. Resour. Econ. 76, 1019–1044 (2020).Article 

    Google Scholar 
    Gilbert, W., Thomas, L. F., Coyne, L. & Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 15, 100123 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    DEFRA. Monthly UK statistics on cattle, sheep and pig slaughter and meat production—Statistics notice (data to March 2022)—GOV.UK. 2022 https://www.gov.uk/government/statistics/cattle-sheep-and-pig-slaughter/monthly-uk-statistics-on-cattle-sheep-and-pig-slaughter-and-meat-production-statistics-notice-data-to-february-2022.Driver, A. Highlighting the differences—How UK welfare standards compare with our competitors. PIGWORLD (2017).DEFRA. in Code of practice for the welfare of PIGS © National Pig Association. www.gov.uk/defra (2020).Red Tractor. Pigs Standards. 17–19 (2017).QMS. 2020 Pig Standards. www.gov.uk/animal-welfare-in-severe-weather%0A. https://assurance.redtractor.org.uk/contentfiles/Farmers-6801.pdf?_=636504999253492650 (2019).RSPCA. RSPCA Welfare Standards for Pigs. (2016).Soil Association. Soil Association organic standards farming and growing. Farming and Growing Organic Standards www.soilassociation.org/organicstandards (2016).Organic Food Federation. Organic food federation production standards. (2016).Moakes, S., Lampkin, N. & Gerrard, C. L. Organic farm incomes in England and Wales 2010/11 (OF 0373). (2012).Hossard, L. et al. A meta-analysis of maize and wheat yields in low-input vs. conventional and organic systems. Agron. J. 108, 1155–1167 (2016).Article 
    CAS 

    Google Scholar 
    De Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    FAOSTAT. http://www.fao.org/faostat/en/#home (2022).EMA. Principles on assignment of defined daily dose for animals (DDDvet) and defined course dose for animals (DCDvet). 44, 68 (2015).Ogle, D., Doll, J., Wheeler, P. & Dinno, A. Package ‘FSA’. (2022).Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. (2021).Mangiafico, S. Package ‘ rcompanion ’. (2022).Arnold, J. B. Package ‘ ggthemes ’. (2021).Pedersen, T. L. Patchwork: The Composer of Plots. Cran (2020).Wickham, H. et al. Package ‘ggplot2’. (2021). More