More stories

  • in

    Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks

    1.Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 1997;61:262–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007;107:4206–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7:235–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta. 2011;75:5736–48.CAS 
    Article 

    Google Scholar 
    8.Reveillaud J, Reddington E, McDermott J, Algar C, Meyer JL, Sylva S, et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol. 2016;18:1970–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. Geobiology. 2013;11:340–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Schubotz F, Hays LE, Meyer-Dombard D, Gillespie A, Shock EL, Summons RE. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol. 2015;6:42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fortunato CS, Huber JA. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J. 2016;10:1925–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.McNichol J, Stryhanyuk H, Sylva SP, Thomas F, Musat N, Seewald JS, et al. Primary productivity below the seafloor at deep-sea hot springs. Proc Natl Acad Sci USA. 2018;115:6756–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Coskun ÖK, Pichler M, Vargas S, Gilder S, Orsi WD. Linking uncultivated microbial populations with benthic carbon turnover using quantitative stable isotope probing. Appl Environ Microbiol 2018;84:e01083–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Häggblom MM, et al. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 2014;8:139–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Maia M, Sichel S, Briais A, Brunelli D, Ligi M, Ferreira N, et al. Extreme mantle uplift and exhumation along a transpressive transform fault. Nat Geosci. 2016;9:619–23.CAS 
    Article 

    Google Scholar 
    17.Klein F, Tarnas JD, Bach W. Abiotic sources of molecular hydrogen on Earth. Elements. 2020;16:19–24.CAS 
    Article 

    Google Scholar 
    18.Seewald JS, Doherty KW, Hammar TR, Liberatore SP. A new gas-tight isobaric sampler for hydrothermal fluids. Deep Sea Res Part I. 2002;49:189–96.CAS 
    Article 

    Google Scholar 
    19.Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vuillemin A, Wankel SD, Coskun OK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv. 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Oremland RS, Miller LG, Whiticar MJ. Sources and flux of natural gases from Mono Lake, California. Geochim Cosmochim Acta. 1987;51:2915–29.CAS 
    Article 

    Google Scholar 
    22.Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 2010;74:941–52.CAS 
    Article 

    Google Scholar 
    23.Butler IB, Schoonen MA, Rickard DT. Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta. 1994;41:211–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Ortega-Arbulu AS, Pichler M, Vuillemin A, Orsi WD. Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. Environ Microbiol. 2019;21:374–88.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2016;18:1403–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Coskun ÖK, Özen V, SD Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.27.Pichler M, Coskun ÖK, Ortega-Arbulú A-S, Conci N, Wörheide G, Vargas S, et al. A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. Microbiologyopen 2018:7;e00611.28.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    Article 

    Google Scholar 
    29.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    Article 

    Google Scholar 
    30.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Phylogenetic organization of bacterial activity. ISME J. 2016;10:2336.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Youngblut ND, Barnett SE, Buckley DH. HTSSIP: an R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments. PLoS ONE. 2018;13:e0189616.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.R. Team. Others, RStudio: integrated development for R. vol. 42. Boston, MA: RStudio, Inc; 2015. P. 14.
    Google Scholar 
    36.Blomberg SP, Garland T Jr, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Orsi WD, Morard R, Vuillemin A, Eitel M, Worheide G, Milucka J, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME J. 2020;14:2580–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, et al. Measurement error and resolution in quantitative stable isotope probing: implications for experimental design. mSystems. 2020;5:e00151–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Youngblut ND, Barnett SE, Buckley DH. SIPSim: a modeling toolkit to predict accuracy and aid design of DNA-SIP experiments. Front Microbiol 2018;9:570.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–235.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Keck F, Rimet F, Bouchez A, Franc A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 2016;6:2774–80.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol. 2019;21:682–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Lecoeuvre A, Menez B, Cannat M, Chavagnac V, Gerard E. Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME J. 2021;15:818–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J. 2009;3:231–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lucker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, et al. Abundance and diversity of microbial life in ocean crust. Nature. 2008;453:653–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Schrenk MO, Brazelton WJ, Lang SQ. Serpentinization, carbon, and deep life. Rev Mineral Geochem 2013;75:575–606.CAS 
    Article 

    Google Scholar 
    57.Klein F, Bach W, Humphris SE, Kahl W-A, Jöns N, Moskowitz B, et al. Magnetite in seafloor serpentinite—some like it hot. Geology. 2014;42:135–8.CAS 
    Article 

    Google Scholar 
    58.Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science. 2005;307:1428–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.CAS 
    Article 

    Google Scholar 
    60.McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F. Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci USA. 2014;111:E3948–3956.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, et al. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J. 2021;15:1121–35.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Carr SA, Orcutt BN, Mandernack KW, Spear JR. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 2015;6:872.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J. 2016;10:273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Schuchmann K, Müller V. Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 2016;82:4056–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Vuillemin A, Vargas S, Coskun OK, Pockalny R, Murray RW, Smith DC, et al. Atribacteria reproducing over millions of years in the Atlantic Abyssal subseafloor. mBio. 2020;11:e01937–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Bryant FO, Adams MW. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 1989;264:5070–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Berney M, Greening C, Conrad R, Jacobs WR Jr, Cook GM. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci USA 2014;111:11479–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Kwan P, McIntosh CL, Jennings DP, Hopkins RC, Chandrayan SK, Wu C-H, et al. The [NiFe]-hydrogenase of Pyrococcus furiosus exhibits a new type of oxygen tolerance. J Am Chem Soc. 2015;137:13556–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, et al. Cultivation and genomic analysis of “Candidatus Nitrosocaldus islandicus,” an obligately thermophilic, ammonia-oxidizing Thaumarchaeon from a hot spring biofilm in Graendalur Valley, Iceland. Front Microbiol. 2018;9:193.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.W Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.Article 
    CAS 

    Google Scholar 
    72.Seyler LM, McGuinness LR, Gilbert JA, Biddle JF, Gong D, Kerkhof LJ. Discerning autotrophy, mixotrophy and heterotrophy in marine TACK archaea from the North Atlantic. FEMS Microbiol Ecol 2018;94:fiy014.73.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Diaz R, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural response of benthic macrofauna. Oceanogr Mar Biol. 1995;33:245–303.
    Google Scholar 
    75.Jenkins MC, Kemp WM. The coupling of nitrification and denitrification in two estuarine sediments. Limnol Oceanogr. 1984;29:609–19.CAS 
    Article 

    Google Scholar 
    76.Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, et al. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol. 2017;8:56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol. 2004;39:165–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S, Rempfert KR, et al. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME J. 2019;13:1750–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Morrill PL, Brazelton WJ, Kohl L, Rietze A, Miles SM, Kavanagh H, et al. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN. Front Microbiol. 2014;5:613.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Wilcoxen J, Zhang B, Hille R. Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochemistry. 2011;50:1910–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Seewald JS, Zolotov MY, McCollom T. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta. 2006;70:446–60.CAS 
    Article 

    Google Scholar 
    83.Can M, Armstrong FA, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev. 2014;114:4149–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. Temperature-controlled organic carbon mineralization in lake sediments. Nature. 2010;466:478–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Katayama T, Nobu MK, Kusada H, Meng XY, Hosogi N, Uematsu K, et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat Commun. 2020;11:6381.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Brisbarre N, Fardeau M-L, Cueff V, Cayol J-L, Barbier G, Cilia V, et al. Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol. 2003;53:1043–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Roslev P, Larsen MB, Jørgensen D, Hesselsoe M. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods. 2004;59:381–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Spona-Friedl M, Braun A, Huber C, Eisenreich W, Griebler C, Kappler A, et al. Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiol Ecol 2020;96:fiaa080.89.Jansen K, Thauer RK, Widdel F, Fuchs G. Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol. 1984;138:257–62.CAS 
    Article 

    Google Scholar 
    90.Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F, Reinthaler T, et al. Reviews and syntheses: heterotrophic fixation of inorganic carbon—significant but invisible flux in global carbon cycling. Biogeosciences 2020;18:3689–3700.91.Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology. 2010;8:355–71. https://doi.org/10.1111/j.1472-4669.2010.00249.x92.Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–14. 10.1038/nrmicro1991. More

  • in

    Geographically targeted surveillance of livestock could help prioritize intervention against antimicrobial resistance in China

    DataWe reviewed PPS reporting rates of AMR in healthy animals and animal food products in China between 2000 and 2019 (Supplementary Text S1). We focused on three common food animal species: chicken, pigs and cattle. Dairy cattle and meat cattle were pooled in this study, in consistency with the categorization adopted in the maps of livestock created by the Food and Agriculture Organization27. The review focused on four common foodborne bacteria: E. coli, non-typhoidal Salmonella, S. aureus and Campylobacter. We recorded resistance rates reported in PPSs, defined as the percentage of isolates tested resistant to an antimicrobial compound. In addition, we extracted the anatomical therapeutic chemical classification codes of the drugs tested, the year of publication, the guidelines used for susceptibility testing, the latitude and longitude of sampling sites, the number of samples collected and the host animals. We recorded sample types for each survey, including live animals, slaughtered animals, animal products and faecal samples. Each sample was taken from one animal or animal product. These sample types were pooled in the current analysis. In total, 10,747 rates of AMR were extracted from 446 surveys (Supplementary Fig. 8), including 318 surveys from China’s National Knowledge Infrastructure (CNKI), the leading Chinese-language academic search engine. All data extracted in the review are available at https://resistancebank.org.Two steps were taken to ensure comparability of the resistance rates extracted from the surveys. First, the panel of drug–bacteria combinations extracted from each survey was that recommended for susceptibility testing by the World Health Organization Advisory Group on Integrated Surveillance of Antimicrobial Resistance40. This resulted in the extraction of 6,295 resistance rates for 76 drug–bacteria combinations. Second, resistance rates were harmonized using a methodology4 accounting for potential variations in the clinical breakpoints used for antimicrobial susceptibility testing (Supplementary Text S1). There are two major families of methods used for susceptibility testing in this dataset: diffusion methods (for example, disc diffusion) and dilution methods (for example, broth dilution). Previous works have shown good agreement between the two approaches in measuring resistance in foodborne bacteria4,46. For each family of methods, variations of breakpoints may result from differences between laboratory guidelines systems (European Committee on Antimicrobial Susceptibility Testing vs Clinical and Laboratory Standards Institute), or from variations over time of clinical breakpoints within a laboratory guidelines system (Clinical and Laboratory Standards Institute or European Committee on Antimicrobial Susceptibility Testing). Here we accounted for both situations using distributions of minimum inhibitory concentrations and inhibition zones obtained from eucast.org (Supplementary Text S1).Trends in AMRWe defined a composite metric of AMR to summarize trends in resistance across multiple drugs and bacterial species. For each survey, we calculated the proportion of antimicrobial compounds with resistance higher than 50% (P50). For each animal–bacteria combination, we assessed the significance of the temporal trends of P50 between 2000 to 2019 using a logistic regression model, weighted by the log10-transformed number of samples in each survey.For each bacteria–drug (antimicrobial class) combination, we estimated prevalence of resistance by calculating a curve of the distribution of resistance rates across all surveys (Fig. 2). The analysis was conducted for surveys published between 2000 and 2009, and between 2010 and 2019, respectively. The distribution was estimated at 100 equally spaced intervals from resistance rates of 0% to 100%, using kernel density estimation. We used the centre of mass of the density distribution to estimate prevalence of resistance. The calculation was conducted for six animal–bacteria combinations. This included E. coli in chicken, pigs and cattle, Salmonella in chicken and pigs, and S. aureus in cattle. The remaining animal–bacteria combinations were excluded due to limited sample size, only represented in 32 out of 446 PPSs. The analysis was restricted to antimicrobial classes represented by at least 10 resistance rates. In addition, we estimated the association between resistance rates and the ease of obtaining antimicrobials from the market, using data from online stores (Supplementary Text S3).Geospatial modellingWe interpolated P50 values from the survey locations to create a map of P50 at a resolution of 10 × 10 km across China. The approach followed a two-step procedure47. In step 1, three ‘child models’ were trained using four-fold spatial cross-validation to quantify the relation between P50 and environmental and anthropogenic covariates (Supplementary Text S2 and Supplementary Table 1). In step 2, the predictions of the child models were stacked using universal kriging (Supplementary Text S2). This approach combined the ability of the child models to capture interactions and non-linear relationships between P50 and environmental and anthropogenic covariates, as well as the ability to account for spatial autocorrelation in the distribution of P50.The outputs of the two-step procedure were a map of P50 (Fig. 3) and a map of uncertainty on the P50 predictions (Supplementary Fig. 9 and Supplementary Text S2). The overall accuracy of the geospatial model was evaluated using the area under the AUC. The contribution of each covariate was evaluated by permuting sequentially all covariates, and calculating the reduction in AUC compared with a full model including all covariates (Supplementary Fig. 4). The administrative boundaries used in all maps were obtained from the Global Administrative Areas database (http://www.gadm.org).Identifying (optimal) locations for future surveys on AMRWe identified the locations of 50 hypothetical new surveys—the rounded average number of surveys conducted per year (54 surveys per year) between 2014 and 2019 in China. The location of each new survey was determined recursively such that it minimized the overall uncertainty levels on the geographical trends in AMR across the country. This process took into account the locations of existing surveys and the location of each additional hypothetical survey. The objective of this approach was to maximize gain in information about AMR given the resource invested in conducting surveys.The map of uncertainty consisted of the variance in the child model predictions Var(PBRT,PLASSO–GLM,PFFNN) (step 1) across 10 Monte Carlo simulations, where PBRT, PLASSO–GLM, and PFFNN were the predictions of P50 using boosted regression trees, logistic regression with LASSO regularization, and feed-forward neural network, and the kriging variance VarK (step 2):Vartotal = Var(PBRT,PLASSO–GLM,PFFNN) + VarKIn this study, the location of hypothetical surveys was solely based on VarK, instead of the sum of both terms. This approach was preferred because including both terms would have required to hypothesize P50 values associated with surveys to be conducted in the future, adding an additional source of uncertainty that cannot be quantified. In any case, the uncertainty attributable to VarK was 4.1 times the Var(PBRT,PLASSO–GLM,PFFNN) (Supplementary Text S2).The allocation of new surveys was based on a map of ‘necessity for additional surveillance’ (NS), defined as:NS = VarK × Wwhere VarK reflects the uncertainty of the spatial interpolation, and W is the log10-transformed population density of humans48, animals27 in total, and in chicken, pigs and cattle, separately, which reflected exposure (Supplementary Fig. 10). Animal population density was calculated here as the sum of population-corrected units of pigs, chicken and cattle, using methods described by Van Boeckel et al.7. We adjusted the values of W such that its density distribution equals that of VarK. Concretely, for each pixel i, we calculated the quantile of Wi on the map of W, and replaced the value by the corresponding value of VarK at the same quantile. VarK and W were both standardized to range [0,1], thus giving each term equal weight in the need for surveillance.Four approaches were used to distribute 50 surveys across China based on the map of NS. The reduction in uncertainty on AMR level associated with each of the four spatial configurations of the hypothetical surveys was evaluated by calculating the reduction in the mean values of NS across 7,857 possible pixels on the map of China.First, we used a ‘greedy’ approach where all possible locations for additional surveys were tested. Concretely, the first hypothetical survey was placed at each of the 7,857 possible pixel locations, and a revised map of NS(+1 survey) was calculated for each of the placements. The survey was eventually placed in the pixel that led to the largest reduction in NS(+1 survey). The map of NS was then revised to account for the reduction in uncertainty in the neighbourhood of the new survey. The process was repeated recursively for the next hypothetical surveys (2nd–50th). This approach, by definition, yields the optimal set of locations to reduce uncertainty, but it also bears a considerable computational burden, because every possible location is tested (Npixels = 7,857) by the geospatial model for each hypothetical survey.The second approach developed was a computational approximation to the greedy approach, hereafter referred to as the ‘overlap approach’. This approach exploits a key feature of the kriging procedure: the decrease of the kriging variance (VarK) with increasing proximity to existing survey locations. Each additional survey reduces the variance of the geospatial model at its own location, but also in its surrounding area (Supplementary Fig. 11). The ‘overlap approach’ selects an optimal set of locations that reflect a compromise between high local NS and distance to other surveys. It iteratively selects new locations based on the highest local NS penalized by the degree of overlap between the hypothetical new surveys and existing surveys (Supplementary Fig. 12). The first survey was placed at the location Xp,Yp with the highest local NS (Supplementary Fig. 12, part 1). Then the value of NS at each pixel location Xi,Yi was recalculated as ({mathrm{NS}}_{{(+1,{mathrm{survey}})}X_i,,Y_i}={mathrm{NS}}_{X_i,,Y_i}times(1-{mathrm{overlap}},{mathrm{area}}/{mathrm{neighborhood}},{mathrm{area}})) (Supplementary Fig. 12, Part 2), where the neighbourhood area was the circular area of decreased kriging variance around a new survey, and its radius was the distance until which NS decreased due to this new survey; the ‘overlap area’ is the shared area of the neighbourhoods of location Xp,Yp and of location Xi,Yi. The radius of the neighbourhood was determined using a sensitivity analysis, optimized by approximate Bayesian computation (sequential Monte Carlo)49 (Supplementary Text S5). The optimal neighbourhood radius was chosen such that it minimizes reduction in NS across all pixels. The procedure (Supplementary Fig. 12, parts 1 and 2) was repeated recursively for the hypothetical surveys (2nd–50th).The third approach tested consisted of distributing surveys equally between provinces to reflect a common approach to disease surveillance based on equal allocation of resources between administrative entities. Twenty-two provinces with the highest human population were assigned two surveys, and the remaining six provinces were assigned one survey per province. The exact location of each survey was randomly selected inside a province. Finally, all approaches were compared with the fourth approach (the random approach) as a ‘null model’, in which the 50 hypothetical surveys were located randomly across the country without any geographic weighting criteria. The reduction in NS associated with the third and fourth approaches, which was compared to the greedy approach and overlap approach, was the average over 50 simulations.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    1.Tang, X. et al. Scheme design and main result analysis of the fourth national survey on giant pandas. For. Resour. Manag. 1, 11–16 (2015).
    Google Scholar 
    2.Swaisgood, R. R., Wang, D. & Wei, F. Panda downlisted but not out of the woods. Conserv. Lett. 11, 1 (2018).Article 

    Google Scholar 
    3.Xu, W. et al. Reassessing the conservation status of the giant panda using remote sensing. Nat. Ecol. Evol. 1, 1635–1638 (2017).PubMed 
    Article 

    Google Scholar 
    4.Shen, G. et al. Climate change challenges the current conservation strategy for the giant panda. Biol. Conserv. 190, 43–50 (2015).Article 

    Google Scholar 
    5.Tian, Z. et al. The next widespread bamboo flowering poses a massive risk to the giant panda. Biol. Conserv. 234, 180–187 (2019).Article 

    Google Scholar 
    6.Lu, Z. et al. Patterns of genetic diversity in remaining giant panda populations. Conserv. Biol. 15, 1596–1607 (2001).Article 

    Google Scholar 
    7.Pimm, S. L. The Balance of Nature (Univ. Chicago Press, 1991).8.Pimm, S. L., Dollar, L. & Bass, O. L. Jr The genetic rescue of the Florida panther. Anim. Conserv. 9, 115–122 (2006).Article 

    Google Scholar 
    9.Qing, J. et al. The minimum area requirements (MAR) for giant panda: an empirical study. Sci. Rep. 6, 37715 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fahrig, L. Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 61, 603–610 (1997).Article 

    Google Scholar 
    12.Simberloff, D. Habitat fragmentation and population extinction of birds. IBIS 137, S105–S111 (1995).Article 

    Google Scholar 
    13.Viña, A. et al. Range-wide analysis of wildlife habitat: implications for conservation. Biol. Conserv. 143, 1960–1969 (2010).Article 

    Google Scholar 
    14.Wang, T., Ye, X., Skidmore, A. K. & Toxopeus, A. G. Characterising the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes. J. Biogeogr. 37, 865–878 (2010).CAS 
    Article 

    Google Scholar 
    15.Xu, W. et al. Conservation of giant panda habitat in South Minshan, China, after the May 2008 earthquake. Front. Ecol. Environ. 7, 353–358 (2009).Article 

    Google Scholar 
    16.Gong, M., Guan, T., Hou, M., Liu, G. & Zhou, T. Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecol. Evol. 7, 596–605 (2017).PubMed 
    Article 

    Google Scholar 
    17.Songer, M., Delion, M., Biggs, A. & Huang, Q. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012, 108752 (2012).Article 

    Google Scholar 
    18.Tuanmu, M. N. et al. Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nat. Clim. Change 3, 249–253 (2013).Article 

    Google Scholar 
    19.He, K. et al. Effects of roads on giant panda distribution: a mountain range scale evaluation. Sci. Rep. 9, 1110 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Li, H. et al. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake—case study of Wolong Nature Reserve in China. Ecol. Model. 221, 944–952 (2010).Article 

    Google Scholar 
    21.Qi, D. et al. Quantifying landscape linkages among giant panda subpopulations in regional scale conservation. Integr. Zool. 7, 165–174 (2012).PubMed 
    Article 

    Google Scholar 
    22.Shen, G. et al. Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conserv. Biol. 22, 1144–1153 (2008).PubMed 
    Article 

    Google Scholar 
    23.Kong, L. et al. Habitat conservation redlines for the giant pandas in China. Biol. Conserv. 210, 83–88 (2017).Article 

    Google Scholar 
    24.Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. Ecol. Manag. 319, 1–9 (2014).Article 

    Google Scholar 
    25.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    26.Possingham, H. in Conservation of Australia’s Forest Fauna (ed. Lunney, D.) Ch. 3, 35–40 (Royal Zoological Society of New South Wales, 1991).27.Lacy, R. C. VORTEX: a computer simulation model for population viability analysis. Wildl. Res. 20, 45–65 (1993).Article 

    Google Scholar 
    28.Wei, F., Fgeng, Z. & Hu, J. Population viability analysis computer model of giant panda population in Wuyipeng, Wolong Natural Reserve, China. Int. Conf. Bear. Res. Manag. 9, 19–23 (1997).
    Google Scholar 
    29.Guo, J., Chen, Y. & Hu, J. Population viability analysis of giant pandas in the Yele Nature Reserve. J. Nat. Conserv. 10, 35–40 (2002).Article 

    Google Scholar 
    30.Jiang, H. & Hu, J. Population viability analysis for the Giant Panda in Baoxing County, Sichuan. Sichuan J. Zool. 29, 161–165 (2010).
    Google Scholar 
    31.Li, X., Li, D., Yong, Y. & Zhang, J. A preliminary analysis on population viability analysis for Giant Panda in Foping. Acta Zool. Sin. 43, 285–293 (1997).
    Google Scholar 
    32.Yang, Z., Hu, J. & Liu, N. The influence of dispersal on the metapopulation viability of Giant Panda (Aliuropoda melanoleuca) in the Minshan Mountains. Acta Zool. Acad. Sci. Hung. 53, 169–184 (2007).
    Google Scholar 
    33.Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Carter, J., Ackleh, A. S., Leonard, B. P. & Wang, H. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecol. Model. 123, 207–223 (1999).Article 

    Google Scholar 
    35.Xia, W. & Hu, J. On the trend of population dynamics in giant panda based on age structure. Acta Theriologica Sin. 9, 87–93 (1989).
    Google Scholar 
    36.Zhu, L. et al. Conservation implications of drastic reductions in the smallest and most isolated populations of giant pandas. Conserv. Biol. 24, 1299–1306 (2010).PubMed 
    Article 

    Google Scholar 
    37.State Forestry Administration P. R. C. Report of the Third National Giant Panda Census (Science Publishing House, 2006).38.Zhu, L., Hu, Y., Zhang, Z. & Wei, F. Effect of China’s rapid development on its iconic giant panda. Chin. Sci. Bull. 58, 2134–2139 (2013).Article 

    Google Scholar 
    39.Hu, J. Research on the Giant Panda (Shanghai Science and Technology Education Press, 2001).40.Li, R. et al. Climate change threatens giant panda protection in the 21st century. Biol. Conserv. 182, 93–101 (2015).Article 

    Google Scholar 
    41.Yang, B. et al. China’s collective forest tenure reform and the future of the giant panda. Conserv. Lett. 8, 251–261 (2015).Article 

    Google Scholar 
    42.Linderman, M. et al. The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biol. Conserv. 121, 383–390 (2005).Article 

    Google Scholar 
    43.Yang, Z. et al. Reintroduction of the giant panda into the wild: a good start suggests a bright future. Biol. Conserv. 217, 181–186 (2018).CAS 
    Article 

    Google Scholar 
    44.Kaiser, H. The dynamics of populations as result of the properties of individual animals. Fortschr. D. Zool. 25, 109–136 (1979).
    Google Scholar 
    45.Huston, M., DeAngelis, D. & Post, W. New computer models unify ecological theory. BioScience 38, 682–691 (1988).Article 

    Google Scholar 
    46.DeAngelis, D. L. Individual-Based Models and Approaches In Ecology: Populations, Communities and Ecosystems (CRC Press, 2017)47.Uchmański, J. & Grimm, V. Individual-based modelling in ecology: what makes the difference? Trends Ecol. Evol. 11, 437–441 (1996).PubMed 
    Article 

    Google Scholar 
    48.Wei, F. et al. A study on the life table of wild giant pandas. Acta Theriologica Sin. 9, 81–86 (1989).
    Google Scholar 
    49.Hou, W. Revision of the giant panda life table and related data indicators. Zool. Res. 21, 361–366 (2000).
    Google Scholar  More

  • in

    Effects of eliminating interactions in multi-layer culture on survival, food utilization and growth of small sea urchins Strongylocentrotus intermedius at high temperatures

    Sea urchins and experimental designSeven hundred small S. intermedius (31.9 ± 0.4 mm of test diameter, mean ± SD) were chosen from an aquaculture farm in Changhai County, Dalian (122° 63′ N, 39° 25′ E) on 23 July 2020. They were subsequently transported to the Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs at Dalian Ocean University (121° 56′ N, 38° 87′ E) and maintained in a fiberglass tank (a closed culture system, length × width × height: 150 × 100 × 60 cm) with aeration for 7 days to acclimatize to laboratory conditions. The kelp Saccharina japonica, which is the most common food used for S. intermedius culture58, was fed ad libitum under the neutral photoperiod (12 h light:12 h dark). One-half of the seawater was changed daily. Water temperature, pH and salinity were 22.6 ± 0.2 °C, 7.7 ± 0.3 and 30.7 ± 0.1 ‰ (Mean ± SD) according to the daily measurement using a portable water quality monitor (YSI Incorporated, OH, USA), respectively.The rearing space was defined as the ratio of culture volume to the number of sea urchins (cm3 ind−1). Rearing assemblage is the main factor being tested in this study. To simulate the currently used rearing assemblage in longline culture, 24 individuals were placed at plastic devices without layer divisions (length × width × height: 24.5 × 16.8 × 6 cm for culture volume; 25 holes of 0.5 cm diameter/100 cm2) as group A (the control group, 102.9 cm3 ind−1 of initial rearing space, Fig. 7a). To investigate whether multi-layer rearing assemblage improves the survival, food utilization and growth, 24 sea urchins were equally put into the cages where were evenly divided into three layers (8 sea urchins in each layer and length × width × height: 24.5 × 16.8 × 6 cm for each layer, 308.7 cm3 ind−1 of initial rearing space; 25 holes of 0.5 cm diameter/100 cm2; group B; Fig. 7b). Further, to evaluate whether eliminating interaction further contributes to the improvement of these commercially important traits of sea urchins in multi-layer rearing assemblage, 8 sea urchins were divided into eight divisions for each layer in the cages as group C (length × width × height: 8.3 × 5.9 × 6 cm for each division, 297.36 cm3 ind−1 of initial rearing space; 25 holes of 0.5 cm diameter/100 cm2; Fig. 7c). Each treatment had 8 replicates. All devices were placed in a fiberglass tank (length × width × height: 150 × 100 × 60 cm) and immersed in water for ~ 30 cm with aeration. They were easily disassembled for the experimental management.Figure 7Diagrams of the experimental cages used for the groups A (a), B (b) and C (c), the sea urchin with the spotting disease (d) and without the disease (e) and the devices used for measuring the Aristotle’s lantern reflex (f).Full size imageThe experimental period was about ~ 7 weeks (from 31 July 2020 to 20 September 2020) under the neutral photoperiod (12 h light: 12 h dark). The kelp, which was regularly collected in the intertidal waters at Heishijiao, Dalian (121° 58′ E, 38° 87′ N), was daily provided to sea urchins in abundance for all the groups. The remained kelp, feces and dead sea urchins were removed daily. One-half of the seawater was replaced daily by the fresh and filtered seawater which was pumped from the coast of Heishijiao, Dalian. Water temperature was not controlled, ranging from 22.2 to 24.5 °C (the natural seasonal cycle of increasing temperature during summer in the region). Water quality parameters were measured weekly as salinity 29.3 ± 0.6 ‰, pH 7.8 ± 0.2 (mean ± SD) using a portable water quality monitor (YSI Incorporated, OH, USA).To ensure the random sampling, sea urchins were taken out from the experimental device and placed in 24 plastic boxes (labeled from number 1 to number 24, length × width × height: 6 × 6 × 4 cm for each box). Individuals were chosen corresponding to the number (within 24) generated by the “sample” function in R studio (1.1.463). Sampling was re-conducted if the number corresponds to empty, dead or diseased sea urchins.Mortality and morbiditySpotting disease, which appears as spotting lesions with red, purple or blackish color on the test (Fig. 7d), is the most common lethal disease in S. intermedius aquaculture12. Sea urchin without disease is shown in Fig. 7e. Dead sea urchins were removed daily and the number of survivor and diseased sea urchins was recorded weekly for each cage during the experiment (N = 8).Food consumptionThe measurement of food consumption (g dry weight) was conducted once a week (24 h from Tuesday to Wednesday) (N = 8). The total supplied and remained diets were weighted wet by an electric balance (G & G Co., San Diego, USA) after the removal of the surface moisture. The dried weights of feces and samples of supplied and uneaten kelp were determined after 4 days at 80 °C in a convection oven (Yiheng Co., Shanghai, China).Food consumption was calculated as follows (revised from Hu et al.9 for being more concise):$${text{F}} = frac{{{text{A}}_{0} times frac{{{text{A}}_{1} }}{{{text{A}}_{2} }} – {text{B}}_{0} times frac{{{text{B}}_{1} }}{{{text{B}}_{2} }}}}{{text{N}}}$$F = dry food intake per sea urchin (g ind−1 day−1), A0 = wet weight of total supplied diets (g), B0 = wet weight of total uneaten diets (g), A1 = dried weight of sample supplied diets (g), A2 = wet weight of sample supplied diets (g), B1 = dry weight of sample uneaten diets (g), B2 = wet weight of sample uneaten diets (g), N = the number of sea urchins.GrowthTest diameter and lantern length were measured using a digital vernier caliper (Mahr Co., Ruhr, Germany). Body, lantern and gut were weighted wet using an electric balance (G & G Co., San Diego, USA). Test diameter and body weight were evaluated every Wednesday. The average value of the three individuals was considered as the trait value for each replicate (N = 8). Lantern length, wet lantern weight and wet gut weight were recorded in week 4 (29 August 2020) and week 7 (20 September 2020) (N = 8).Aristotle’s lantern reflexAristotle’s lantern reflex, which refers to one cycle from the opening to the closing of the teeth59, was measured using a simple device according to the method of Ding et al.38. There were small compartments (length × width × height: 4.8 × 5.6 × 4.5 cm) with a film (made by 3 g agar and 2 g kelp powder) on the bottom of the device38 (Fig. 7f). The frequency of Aristotle’s lantern reflex was counted within 5 min using a digital camera (Canon Co., Shenzhen, China) under the device in week 4 (29 August 2020) and week 7 (20 September 2020). The average value of all the 5 individuals was considered as Aristotle’s lantern reflex for each replicate (N = 8).5-HT concentrationThe 5-HT is a signaling molecule, playing an important role in regulating feeding behavior52. To evaluate whether 5-HT is involved in Aristotle’s lantern reflex, 5-HT concentration of muscle in lantern was measured for each treatment in week 4 and week 7. 5-HT concentration was considered as the average value of all the 3 healthy individuals for each replicate (N = 8).The concentration of 5-HT was measured using ELISA kits (Nanjing Jiancheng Bio-engineering Institute, Nanjing, China) according to the instructions of the manufacturer. After adding the enzyme-labeled antibody, the substrate became a colored product that was directly related to the amount of the substance tested. The concentrations of 5-HT were calculated by comparing the optical density (O.D.) value of the samples to the standard curve and calculated according to the following formula (according to the kit’s instructions):$${text{Y}} = frac{1}{{({text{a }} + {text{bx}}^{{text{c}}} )}}$$Y = the concentration of 5-HT (ng mL−1), x = the O.D. value of the samples, a = 0.00027, b = 0.12086, c = 1.36806.Pepsin activityPepsin is important for sea urchins to digest protein-rich algae40,60. Pepsin activity was analyzed using the pepsin kits (Nanjing Jiancheng Bio-engineering Institute, Nanjing, China) in week 4 and week 7, following the instructions of the manufacturer. The average value of all the 3 individuals was considered as the pepsin activity for each replicate (N = 8). The procedures include enzyme reaction and color development reaction39. The temperature of reaction was 37 °C and pepsin activities were counted as U mg protein−1. The formula of pepsin activity is shown as follows (according to the kit’s instructions):$${text{P}} = frac{{{text{M}}_{0} – {text{M}}_{1} }}{{{text{M}}_{2} – {text{M}}_{3} }} times frac{{{text{S}}_{0} }}{{{text{S}}_{1} }} times frac{{{text{V}}_{1} times {text{V}}_{2} }}{{{text{V}}_{3} }}$$P = pepsin activity (U/mg prot), M0 = the O.D. value of the sample, M1 = the O.D. value of comparison, M2 = the standard O.D. value, M3 = blank O.D. value, S0 = the standard concentration (50 μg mL−1), S1 = reaction time (10 min), V1 = total volume of reaction solution (0.64 mL), V2 = sample protein concentration (0.04 mL), V3 = sampling volume (mg prot/mL).Gut morphological examinationAfter sea urchins were dissected on week 4 and week 7, all gut tissue samples (~ 1 g for each sample) were fixed in Bouin’s solution (glacial acetic acid: formaldehyde: saturated picric acid solution = 1:5:15) according to the method of Wu et al.61. They were subsequently transferred for gradient dehydration, embedding, cutting, staining and observation62 (N = 24).Statistical analysisKolmogorov–Smirnov test and Levene test were used to analyze the normal distribution and homogeneity of the data, respectively. Rearing assemblage was set as the main factor in the one-way ANOVA with three levels: the control system without layer divisions (group A), a second system with divisions in the cages to simulate the three layers cages (group B) and a third system with individual divisions for each sea urchin (group C). One-way ANOVA was used to analyze the mortality (in weeks 3, 4, 5, 6, 7), morbidity (in weeks 3, 6, 7), food consumption (in weeks 2, 5, 7), test diameter (in weeks 1, 2, 3, 4, 5, 6), body weight (in weeks 1, 4, 5, 7), 5-HT, pepsin activity, lantern length, lantern weight and gut weight. Duncan multiple comparison analysis was performed when significant differences were found in the one-way ANOVA. Kruskal–Wallis test was carried out to compare the differences of mortality (weeks 1, 2), morbidity (weeks 1, 2, 4, 5), food consumption (weeks 1, 3, 4, 6), test diameter (week 7), body weight (weeks 2, 3, 6) and Aristotle’s lantern reflex, because of non-normal distribution and/or heterogeneity of variance. A non-parametric post-hoc test was carried out when significant differences were found in the Kruskal–Wallis test. All data analyses were performed using SPSS 19.0 statistical software. A probability level of P  More

  • in

    Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon

    1.Renvoize, S., Clayton, W. D. & Kabuye C. H. S. In Brachiaria: Biology, Agronomy, and Improvement 1–15 (CIAT and Embrapa, 1996).2.Keller-Grein, G., Maass, B. L. & Hanson, J. In Brachiaria: Biology, Agronomy, and Improvement 16–42 (CIAT and Embrapa, 1996).3.Barnard, C. Herbage Plant Species 154 (Australian Herbage Plant Registration Authority, Canberra, Australia, 1969).4.Roberts, O. T. A review of pasture species in Fiji 1. Grasses. Trop. Grassl. 4, 129–137 (1970).
    Google Scholar 
    5.Serrão, E. A. S. & Simão Neto, M. Informaçõessobreduasespécies de gramíneasforrageiras do gênero Brachiaria na Amazônia: B. decumbens Stapf, B. ruziziensis Germain et Everard. Estudossobreforrageirasna Amazônia (IPEAN, 1971)6.Parsons, J. J. Spread of African pasture grasses to the American tropics. J. Range. Manag. 25, 12–17 (1972).Article 

    Google Scholar 
    7.Sendulsky, T. Brachiaria: Taxonomy of cultivated and native species in Brazil. Hoehnea 7, 99–139 (1978).
    Google Scholar 
    8.Oram, R. N. Register of Australian herbage plant cultivars. In Australian Herbage Plant Registration Authority, 304 (East Melbourne, Australia, 1990).9.Argel, P. J. & Keller-Grein, G. In Brachiaria: Biology, Agronomy, and Improvement 205–224 (CIAT and Embrapa, 1996).10.Pizarro, E. A., do Valle, C. B., Keller-Grein, G., Schultze-Kraft. R. & Zimmer, A. H. In Brachiaria: Biology, Agronomy, and Improvement 225–246 (CIAT and Embrapa, 1996).11.Jank, L., Barrios, S. C., Valle, C. B., Simeão, R. M. & Alves, G. F. The value of improved pastures to Brazilian beef production. Crop. Pasture Sci. 65, 1132–1137. https://doi.org/10.1071/CP13319 (2014).Article 

    Google Scholar 
    12.Rueda, Thaiana et al. Yield component responses of the Brachiaria brizantha forage grass to soil water availability in the Brazilian Cerrado. Agriculture 10(1), 13 (2020).Article 

    Google Scholar 
    13.Stür, W. W., Hopkinson, J. M. & Chen, C.P. In Brachiaria: Biology, Agronomy, and Improvement 258–271 (CIAT and Embrapa, 1996).14.Ndikumana, J. & de Leeuw, P. N. In Brachiaria: Biology, Agronomy, and Improvement 247–257(CIAT and Embrapa, 1996).15.Maass, B. L. et al. Home coming of Brachiaria: Improved hybrids prove useful for African animal agricultural. E. Afr. Agric. For. J. 81, 71–78 (2015).Article 

    Google Scholar 
    16.Mutimura, M. & Everson, T. M. On-farm evaluation of improved Brachiaria grasses in low rainfall and aluminum toxicity prone areas of Rwanda. Int. J. Biodivers. Conserv. 4, 137–154 (2012).Article 

    Google Scholar 
    17.Njarui, D. M. G., Gatheru, M. & Ghimire, S. R. In African Handbook of Climate Change Adaptation 1–21 https://doi.org/10.1007/978-3-030-42091-8_146-1 (2020).18.Ghimire, S. et al. In Proceedings of 23rd International Grassland Congress 361–370 (Range Management Society of India, 2015).19.Njarui, D. M. G., Gichangi, E. M., Ghimire, S. R. & Muinga, R. W. Climate smart Brachiaria Grass for Improving Livestock Production in East Africa—Kenya Experiences (KALRO, 2016).20.Mutimura, M., Ebong, C., Rao, I. M. & Nsahlai, I. V. Change in growth performance of crossbred (Ankole × Jersey) dairy heifers fed on forage grass diets supplemented with commercial concentrates. Trop. Anim. Health. Prod. 48, 741–746 (2016).Article 

    Google Scholar 
    21.Boonman, J. G. Experimental studies on seed production of tropical grasses in Kenya. 2. Tillering and heading in seed crops of eight grasses. Neth. J. Agric. Sci. 19, 237–249 (1971).
    Google Scholar 
    22.Pamo, E. T., Yonkeu, S. & Onana, J. Evaluation des plantesfourragèresintroduites dans l’AdamaouaCamerounais. Cahiers d’Agric. 6, 203–207 (1997).
    Google Scholar 
    23.Borget, M. Les recherchesfourragères à l’IRAT/Cameroun (Bilan à la mi-1968). L’AgronomieTropicale Série 2, Agronomie Générale. Etudes Techniques 23, 1231–1241 (1968).
    Google Scholar 
    24.Husson, O. et al. Brachiaria sp., B. ruziziensis, B. brizantha, B. decumbens, B. humidicola. Manuel pratique du semis direct à Madagascar (CIRAD, 2008).25.Ministry of Agriculture and Rural Development. The State of Biodiversity for Food and Agriculture in the Republic of Cameroon (MINADER, 2015), http://www.fao.org/3/CA3431EN/ca3431en.pdf26.Institute of Agricultural Research for Development. Annual report. Regional Agricultural Research Centre (Wakwa, Ngaoundéré, Cameroon, 2015).27.Addinsoft. XLSTAT Statistical and Data Analysis Solution. New York, USA. https://www.xlstat.com (2021).28.Botwright, T. L., Condon, A. G., Rebetzke, G. J. & Richards, R. A. Field evaluation of early vigour for genic improvement of grain yield in wheat. Aust. J. Agric. Res. 53, 1137–1145 (2002).Article 

    Google Scholar 
    29.Dholakia, B. B. et al. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed. 122, 392–395 (2003).CAS 
    Article 

    Google Scholar 
    30.Wu, W. et al. A measurement system of thousand kernel weight based on the Android Platform. Agronomy 8(9), 178 (2018).Article 

    Google Scholar 
    31.Heimbach, U. Variability of thousand grain weights of seed batches of important arable and some horticultural crops. J. für Kulturpflanzen 70, 250–254 (2018).
    Google Scholar 
    32.Parihar, S. S. & Pathak, P. S. Flowering phenology and seed biology of selected tropical perennial grasses. Trop. Ecol. 47, 81–87 (2006).
    Google Scholar 
    33.Hare, M., Tatsapong, P. P. & Phengphet, S. Effect of storage duration, storage room and bag type on seed germination of Brachiaria hybrid cv.. Mulato. Trop. Grassl. 42, 224–228 (2008).
    Google Scholar 
    34.de Andrade, R. P., Thomas, D. & Ferguson, J. E. Seed production of pasture species in a tropical savanna region of Brazil. II Grasses. Trop. Grassl. 17, 59–64 (1983).
    Google Scholar 
    35.Nakamanee, G. & Phaikaew, C. In Proceedings of the third regional meeting of the Forages for Smallholders Project 155–162 (CIAT, 1998).36.Song, L. & Kalms, I. Improving germination of tropical grasses with new seed-coating technologies. Trop. Grassl. 41, 242 (2007).
    Google Scholar 
    37.Adkins, S. W., Bellairs, S. M. & Loch, D. S. Seed dormancy mechanisms in warm season grass species. Euphytica 126, 13–20 (2002).CAS 
    Article 

    Google Scholar 
    38.Simpson, G. M. Seed Dormancy in Grasses (Cambridge University Press, Cambridge, 1990).Book 

    Google Scholar 
    39.Hopkinson, J. M., de Souza, F. H. D., Diulgheroff, S., Ortiz, A. & Sanchez, M. In Brachiaria: Biology, Agronomy, and Improvement 124–140 (CIAT, 1996)40.Food and Agriculture Organization. Genebank Standards for Plant Genetic Resources for Food and Agriculture (FAO, 2013).41.Hare, M. D., Sutin, N., Phengphet, S. & Songsiri, T. Germination of tropical forage seeds stored for six years in ambient and controlled temperature and humidity conditions in Thailand. Trop. Grassl. Forrajes Trop. 6, 26–33 (2018).Article 

    Google Scholar 
    42.Mobli, A., Mollaee, M., Manalil, S. & Chauhan, B. S. Germination ecology of Brachiaria eruciformis in Australia and its implications for weed management. Agronomy 10, 30. https://doi.org/10.3390/agronomy10010030 (2020).CAS 
    Article 

    Google Scholar 
    43.Romani, F., Inacio, R. & de Carvalho, R. I. N. Break dormancy, germination and vigour of Brachiaria brizantha cv. Brs Piatã seeds. R. Eletr. Cient Uergs. Porto Alegre 2, 235–239 (2016).Article 

    Google Scholar 
    44.Pizarro, E. A., Hare, M. D., Mutimura, M. & Changjun, B. Brachiaria hybrids: potential, forage use and seed yield. Trop. Grassl. Forrajes. Trop. 1, 31–35 (2013).Article 

    Google Scholar 
    45.Herrera, J. Efecto de alguns tratamentos para interromper o resto em sementes de grama. II. Urochloa decumbens. Agron. Costarric 18, 75–85 (1994).
    Google Scholar 
    46.Whiteman, P. C. & Mendra, K. Effects of storage and seed treatments on germination of Brachiaria decumbens. Seed Sci. Technol. 10, 233–242 (1982).
    Google Scholar 
    47.Bakhtavar, M. A. & Afzal, I. Preserving wheat grain quality and preventing aflatoxin accumulation during storage without pesticides using dry chain technology. Environ. Sci. Pollut. Res. Int. 27, 42064–42071 (2020).CAS 
    Article 

    Google Scholar 
    48.Batista, T. B., da Silva Binotti, F. F., Cardoso, E. D., Costa, E. & do Nascimento, D. M. Appropriate hydration period and chemical agent improve priming in Brachiaria seeds. Pesqui. Agropecu. Trop. 46, 350–356 (2016).Article 

    Google Scholar 
    49.Pereira, S. R., da Lima, A. E. S., Contreiras-Rodrigues, A. P. D., de Oliveira, D. R. & Laura, V. A. Priming of Urochloa brizantha cv. Xaraes seeds. Afr. J. Agric. Res. 13, 2804–2807 (2018).CAS 
    Article 

    Google Scholar 
    50.Ferguson, J. E., Thomas, D., de Andrade, R. P., Costa, N. S. & Jutzi, S. In Proceedings of XIV International Grassland Congress 275–278 (Westview Press, 1983)51.Boonman, J. G. East Africa’s Grasses and Fodders: Their Ecology and Husbandry (Kluwer Academic Publishers, The Netherlands, 1993).Book 

    Google Scholar  More

  • in

    Response of deep soil moisture to different vegetation types in the Loess Plateau of northern Shannxi, China

    1.Feng, Q., Zhao, W. W., Zhao, M. Y. & Zhong, L. N. Spatial heterogeneity of soil moisture and the scale variability of its influencing factors: A case study in the Loess Plateau of China. Water 5, 1228 (2013).ADS 
    Article 

    Google Scholar 
    2.Hu, W., Shao, M. A., Wang, Q. J. & Reichardt, K. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. CATENA 79(1), 72–82 (2009).CAS 
    Article 

    Google Scholar 
    3.Legates, D. R. et al. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr. 35(1), 65–86 (2010).Article 

    Google Scholar 
    4.Hou, G. R. et al. Response of soil moisture to single-rainfall events under three vegetation types in the gully region of the Loess Plateau. Sustainability 10, 3793 (2018).CAS 
    Article 

    Google Scholar 
    5.Chen, L. D., Huang, Z. L., Gong, J., Fu, B. J. & Huang, Y. L. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. CATENA 70(2), 200–208 (2007).Article 

    Google Scholar 
    6.Li, Y. S. The properties of water cycle in soil and their effect on water cycle for land in the Loess Region. Acta Ecol Sin 3(2), 91–101 (1983) (in Chinese).7.Li, Y. Y. & Shao, M. A. Climatic change, vegetation evolution and low moisture layer of soil on the Loess Plateau. J. Arid Land Resour. Environ. 15(1), 72–77 (2001) (in Chinese).8.Mu, X. M., Xu, X. X., Wang, W. L., Wen, Z. M. & Du, F. Impact of artificial forest on soil moisture of the deep soil layer on Loess Platea. Acta Pedo. Sin. 2, 210–217 (2003) ((in Chinese)).
    Google Scholar 
    9.Yang, L., Wei, W., Chen, L. D. & Mo, B. R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 475, 111–122 (2012).ADS 
    Article 

    Google Scholar 
    10.Zhao, X. K., Li, Z. Y., Zhu, D. H., Zhu, Q. K. & Robeson, M. Revegetation using the deep planting of container seedings to overcome the limitations associated with topsoil desiccation on exposed steep earthy road slopes in the semiarid loess region of China. Land Degrad. Dev. 2018(29), 2797–2807 (2018).Article 

    Google Scholar 
    11.Jia, Y. H. & Shao, M. A. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China. J. Hydrol. 519, 523–531 (2014).ADS 
    Article 

    Google Scholar 
    12.Deng, L., Shangguan, Z. P. & Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment. Res. 27(1), 120–127 (2012).Article 

    Google Scholar 
    13.Zhou, P., Wen, A. B., Zhang, X. B. & He, X. B. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environ. Earth Sci. 2013(68), 633–639 (2013).
    Google Scholar 
    14.Chen, Y. P. et al. Balancing green and grain trade. Nat. Geosci. 10(8), 739–741 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Liu, Y. X., Lu, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Wang, K. B. et al. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China. J. Arid Land 8(2), 207–220 (2016).Article 

    Google Scholar 
    17.Su, B. Q. & Shangguan, Z. P. Decline in soil moisture due to vegetation restoration on the Loess Plateau of China. Land Degrad. Dev. 30, 290–299 (2019).Article 

    Google Scholar 
    18.Wang, Y. Q., Shao, M. A., Zhu, Y. J. & Liu, Z. P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. Forest Meteorol. 151(4), 437–448 (2011).ADS 
    Article 

    Google Scholar 
    19.Wang, Y. Q., Shao, M. A., Liu, Z. P. & Warrington, D. N. Regional spatial pattern of deep soil water content and its influencing factors. Hydrol. Sci. J. 57(2), 265–281 (2012).Article 

    Google Scholar 
    20.Wang, Y. Q., Shao, M. A. & Liu, Z. P. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma 193, 300–310 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    21.Nosetto, M. D., Jobbagy, E. G., Toth, T. & Di Bella, C. M. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia 152(4), 695–705 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Deng, X. Z., Shi, Q. L., Zhang, Q., Shi, C. C. & Yin, F. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. 79–82, 2–10 (2015).ADS 

    Google Scholar 
    23.Sun, Z. X., Wu, F., Shi, C. C. & Zhan, J. Y. The impact of land use change on water balance in Zhangye city, China. Phys. Chem. Earth 96, 64–73 (2016).Article 

    Google Scholar 
    24.Porporato, A., D’Odorico, P., Laio, F. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25(8–12), 1335–1348 (2002).ADS 
    Article 

    Google Scholar 
    25.Chen, H. S., Shao, M. A. & Li, Y. S. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).ADS 
    Article 

    Google Scholar 
    26.Shen, M. S. et al. Seasonal variations in the influence of vegetation cover on soil water on the loess hillslope. J. Mt. Sci. 17(9), 2148–2160 (2020).Article 

    Google Scholar 
    27.Wang, S., Fu, B. J., Gao, G. Y., Liu, Y. & Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. CATENA 101(2), 122–128 (2013).Article 

    Google Scholar 
    28.Fu, B. J., Wang, J., Chen, L. D. & Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. CATENA 54, 197–213 (2003).Article 

    Google Scholar 
    29.Gao, X. D. et al. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. CATENA 87(3), 357–367 (2011).Article 

    Google Scholar 
    30.Mei, X. M. et al. The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes. CATENA 162, 333–344 (2018).Article 

    Google Scholar 
    31.Liu, B. X. & Shao, M. A. Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China. J. Arid Land 8(1), 47–59 (2016).Article 

    Google Scholar 
    32.Longobardi, A. Observing soil moisture temporal variability under fluctuating climatic conditions. Hydrol. Earth Syst. Sci. 5, 935–969 (2008).
    Google Scholar 
    33.Shao, M. A., Wang, Y. Q., Xia, Y. Q. & Jia, X. X. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: A review. Vadose Zone J. 17(1), 170017 (2018).34.Vörösmarty, C. J., Green, P. J., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289(5477), 284–288 (2000).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Wang, L., Wang, Q. J., Wei, S. P., Shao, M. A. & Yi, L. Soil desiccation for Loess soils on natural and regrown areas. Forest Ecol. Manag. 255(7), 2467–2477 (2008).Article 

    Google Scholar 
    36.Yang, L., Wei, W., Mo, B. R. & Chen, L. D. Soil water deficit under different artificial vegetation restoration in the semi-arid hilly region of the Loess Plateau. Acta Ecol. Sin. 31(11), 3060–3068 (2011) ((in Chinese)).
    Google Scholar 
    37.Cao, R. X. et al. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 8(1), 12346 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Fang, X. N. et al. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrol. Earth Syst. Sci. 20(8), 3309–3323 (2016).ADS 
    Article 

    Google Scholar 
    39.Yang, L., Chen, L. D., Wei, W., Yu, Yang. & Zhang, H. D. Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions. J. Hydrol. 513, 314–321 (2014).40.Xiao, L., Xue, S., Liu, G. B. & Zhang, C. Soil moisture variability under different land uses in the Zhifanggou catchment of the Loess Plateau, China. Arid Land Res. Manag. 28(3), 274–290 (2014).Article 

    Google Scholar 
    41.Mei, X. M. et al. The variability in soil water storage on the loess hillslopes in China and its estimation. CATENA 172, 807–818 (2019).Article 

    Google Scholar 
    42.Guo, Z. S. Estimating method of maximum infiltration depth and soil water supply. Sci. Rep. 10(1), 9726 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Guo, Z. S. & Shao, M. A. Dynamics of soil water supply and consumption inartificial caragana shrub land. J. Soil Water Conserv. 2007(02), 119–123 (2007) ((in Chinese)).
    Google Scholar 
    44.Wang, Z. Q., Liu, B. Y. & Zhang, Y. Soil moisture of different vegetation types on the Loess Plateau. J. Geogr. Sci. 19(6), 707–718 (2009).Article 

    Google Scholar 
    45.Cheng, L. P. & Liu, W. Z. Long term effects of farming system on soil water content and dry soil layer in deep loess profile of Loess Tableland in China. J. Integr. Agric. 13(6), 1382–1392 (2014).Article 

    Google Scholar 
    46.Sun, C. F. & Ma, Y. Y. Effects of non-linear temperature and precipitation trends on Loess Plateau droughts. Quatern. Int. 372, 175–179 (2015).Article 

    Google Scholar 
    47.Mei, X. M. et al. Responses of soil moisture to vegetation restoration type and slope length on the loess hillslope. J. Mt. Sci. 15(3), 548–562 (2018).Article 

    Google Scholar  More

  • in

    Cascading effects of moth outbreaks on subarctic soil food webs

    1.Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985).
    Google Scholar 
    2.IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
    Google Scholar 
    3.Brun, P. et al. Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Glob. Change Biol. 00, 1–15 (2020).CAS 

    Google Scholar 
    4.Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    5.Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U.S.A. 110, 19456–19459 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).
    Google Scholar 
    7.Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190112 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests: Disturbance impacts on biodiversity and services. Biol. Rev. 91, 760–781 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.van der Putten, W. H. et al. Trophic interactions in a changing world. Basic Appl. Ecol. 5, 487–494 (2004).Article 

    Google Scholar 
    11.Lafferty, K. D. & Suchanek, T. H. Revisiting Paine’s 1966 sea star removal experiment, the most-cited empirical article in the American Naturalist. Am. Nat. 188, 365–378 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mancinelli, G. & Mulder, C. Chapter three—detrital dynamics and cascading effects on supporting ecosystem services. In Advances in ecological research Vol. 53 (eds Woodward, G. & Bohan, D. A.) 97–160 (Academic Press, 2015).
    Google Scholar 
    16.Mulder, C., Vonk, J. A., Hollander, H. A. D., Hendriks, A. J. & Breure, A. M. How allometric scaling relates to soil abiotics. Oikos 120, 529–536 (2011).Article 

    Google Scholar 
    17.Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12, 369–384 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).Book 

    Google Scholar 
    21.Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150268 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Elton, C. S. Animal Ecology 1–256 (Macmillan Co., 1927). https://doi.org/10.5962/bhl.title.7435.Book 

    Google Scholar 
    24.Bohan, D. A. et al. Next-generation global biomonitoring: Large-scale, automated reconstruction of ecological networks. Trends Ecol. Evol. 32, 477–487 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Roslin, T. & Majaneva, S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!. Genome 59, 603–628 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).Article 

    Google Scholar 
    27.Buzhdygan, O. Y. et al. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat. Ecol. Evol. 4, 393–405 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Martinez, N. D. Effects of resolution on food web structure. Oikos 66, 403 (1993).Article 

    Google Scholar 
    29.Thompson, R. M. et al. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kardol, P., Throop, H. L., Adkins, J. & de Graaff, M.-A. A hierarchical framework for studying the role of biodiversity in soil food web processes and ecosystem services. Soil Biol. Biochem. 102, 33–36 (2016).CAS 
    Article 

    Google Scholar 
    31.Ohlmann, M. et al. Diversity indices for ecological networks: A unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Jepsen, J. U. et al. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16, 561–575 (2013).Article 

    Google Scholar 
    34.Karlsen, S. R., Jepsen, J. U., Odland, A., Ims, R. A. & Elvebakk, A. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia 173, 859–870 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).PubMed 
    Article 

    Google Scholar 
    36.Vindstad, O. P. L., Jepsen, J. U., Ek, M., Pepi, A. & Ims, R. A. Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest?. J. Ecol. 107, 1141–1153 (2019).Article 

    Google Scholar 
    37.Sandén, H. et al. Moth outbreaks reduce decomposition in subarctic forest soils. Ecosystems 23, 151–163 (2019).Article 
    CAS 

    Google Scholar 
    38.Vindstad, O. P. L. et al. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest. PLoS ONE 9, e99624 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Nilsson, M.-C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3, 421–428 (2005).Article 

    Google Scholar 
    40.Bråthen, K. A. & Ravolainen, V. T. Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients. J. Ecol. 103, 701–713 (2015).Article 

    Google Scholar 
    41.Bråthen, K. A., Gonzalez, V. T. & Yoccoz, N. G. Gatekeepers to the effects of climate warming? Niche construction restricts plant community changes along a temperature gradient. Perspect. Plant Ecol. Evol. Syst. 30, 71–81 (2018).Article 

    Google Scholar 
    42.Vindstad, O. P. L., Jepsen, J. U. & Ims, R. A. Resistance of a sub-arctic bird community to severe forest damage caused by geometrid moth outbreaks. Eur. J. For. Res. 134, 725–736 (2015).Article 

    Google Scholar 
    43.Parker, T. C. et al. Slowed biogeochemical cycling in sub-arctic birch forest linked to reduced mycorrhizal growth and community change after a defoliation event. Ecosystems 20, 316–330 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Saravesi, K. et al. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb. Ecol. 69, 788–797 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Dunne, J. A. The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).
    Google Scholar 
    46.Rodriguez-Ramos, J. C. et al. Changes in soil fungal community composition depend on functional group and forest disturbance type. New Phytol. 00, 1–13 (2020).
    Google Scholar 
    47.Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    48.Bardgett, R. D., Yeates, G. W. & Anderson, J. M. Patterns and determinants of soil biological diversity. In Biological Diversity and Function in Soils (eds Hopkins, D. et al.) 100–118 (Cambridge University Press, 2005).Chapter 

    Google Scholar 
    49.Worm, B. & Duffy, J. E. Biodiversity, productivity and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).Article 

    Google Scholar 
    50.Ponsard, S., Arditi, R. & Jost, C. Assessing top-down and bottom-up control in a litter-based soil macroinvertebrate food chain. Oikos 89, 524–540 (2000).Article 

    Google Scholar 
    51.Kristensen, J. Å., Rousk, J. & Metcalfe, D. B. Below-ground responses to insect herbivory in ecosystems with woody plant canopies: A meta-analysis. J. Ecol. 108, 917–930 (2020).Article 

    Google Scholar 
    52.González, V. T. et al. Batatasin-III and the allelopathic capacity of Empetrum nigrum. Nord. J. Bot. 33, 225–231 (2015).ADS 
    Article 

    Google Scholar 
    53.Veen, G. F. et al. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 7, 168 (2019).Article 

    Google Scholar 
    54.Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Antiqueira, P. A. P., Petchey, O. L., dos Santos, V. P., de Oliveira, V. M. & Romero, G. Q. Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms. Glob. Change Biol. 24, 3715–3728 (2018).ADS 
    Article 

    Google Scholar 
    56.Hedlund, K. et al. Trophic interactions in changing landscapes: Responses of soil food webs. Basic Appl. Ecol. 5, 495–503 (2004).Article 

    Google Scholar 
    57.Ettema, C. H. & Wardle, D. A. Spatial soil ecology. Trends Ecol. Evol. 17, 177–183 (2002).Article 

    Google Scholar 
    58.O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jiménez, J. J., Decaëns, T., Lavelle, P. & Rossi, J.-P. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecol. 14, 26 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 96, 16–19 (2016).CAS 
    Article 

    Google Scholar 
    62.Binladen, J. et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2, e197 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Valentini, A. et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. Mol. Ecol. Resour. 9, 51–60 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. in Programs and Abstracts of the SeqBio 2013 workshop. Abstract 27–29 (Citeseer, 2013).66.Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zinger, L. et al. metabaR : an R package for the evaluation and improvement of DNA metabarcoding data quality. https://doi.org/10.1101/2020.08.28.271817 (2020).68.R Core Team. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).69.Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    70.Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Fiore-Donno, A. M. et al. Functional traits and spatio-temporal structure of a major group of soil protists (Rhizaria: Cercozoa) in a temperate grassland. Front. Microbiol. 10, 1332 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 93, 6 (2017).
    Google Scholar 
    74.Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47, 193–206 (2020).Article 

    Google Scholar 
    75.Antunes, P. M. & Koyama, A. Chapter 9 – Mycorrhizas as Nutrient and Energy Pumps of Soil Food Webs: Multitrophic Interactions and Feedbacks. in Mycorrhizal Mediation of Soil Fertility, Structure, and Carbon Storage (eds. Johnson, N. C., Gehring, C. & Jansa, J.) 149–173 (Elsevier, 2017).76.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. (R package version 2.21.1, 2020).77.McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077 (2017).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Kinship networks of seed exchange shape spatial patterns of plant virus diversity

    1.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).Article 

    Google Scholar 
    2.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Secur. 8, 179–195 (2016).Article 

    Google Scholar 
    4.Almekinders, C. J., Louwaars, N. P. & De Bruijn, G. H. Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78, 207–216 (1994).Article 

    Google Scholar 
    5.McGuire, S. & Sperling, L. Making seed systems more resilient to stress. Global Environ. Chang. 23, 644–653 (2013).Article 

    Google Scholar 
    6.Legg, J. et al. Community phytosanitation to manage Cassava Brown Streak Disease. Virus Res. 241, 236–253 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13, e1005654 (2017a).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Chernela, J. M. Os cultivares de mandioca na área do Uaupés (Tukâno). In Suma Etnológica Brasileira (ed Ribeiro, D.) 151–158 (Finep, Petrópolis, 1986).9.Emperaire, L., Pinton, F. & Second, G. Gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nat. Sci. Soc. 6, 27–42 (1998).Article 

    Google Scholar 
    10.Sirbanchongkran, A., Yimyam, N., Boonma, W. & Rerkasem, K. Varietal turnover and seed exchange: implications for conservation of rice genetic diversity on farm. Int. Rice Res. Notes 29, 12–14 (2004).
    Google Scholar 
    11.Delêtre, M., McKey, D. B. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl Acad. Sci. USA 108, 18249–18254 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Labeyrie, V., Thomas, M., Muthamia, Z. K. & Leclerc, C. Seed exchange networks, ethnicity, and sorghum diversity. Proc. Natl Acad. Sci. USA 113, 98–103 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Brown, J. K. et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160, 1593–1619 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Legg, J. P. et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak pandemics in Africa. Virus Res. 159, 161–170 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Harrison, B. D., Zhou, X., Otim‐Nape, G. W., Liu, Y. & Robinson, D. J. Role of a novel type of double infection in the geminivirus‐induced epidemic of severe cassava mosaic in Uganda. Ann. Appl. Biol. 131, 437–448 (1997).Article 

    Google Scholar 
    17.Consultative Group for International Agricultural Research. CGIAR Research Program 3.4: Roots, tubers, and bananas for food security and income. Final revised proposal. September 2011. https://hdl.handle.net/10947/5314.18.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fauquet, C. & Fargette, D. African cassava mosaic virus: etiology, epidemiology and control. Plant Dis. 74, 404–411 (1990).Article 

    Google Scholar 
    22.Zhou, X. et al. Evidence that DNA A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Pita, J. S. et al. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lefeuvre, P. & Moriones, E. Recombination as a motor of host switches and virus emergences: geminiviruses as case studies. Curr. Opin. Virol. 10, 14–19 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Tiendrébéogo, F. et al. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virol. J. 9, 67 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Syrjala, S. E. A statistical test for a difference between the spatial distributions of two populations. Ecology 77, 75–80 (1996).Article 

    Google Scholar 
    27.Chevenet, F., Jung, M., Peeters, M., de Oliveira, T. & Gascuel, O. Searching for virus phylotypes. Bioinformatics 29, 561–570 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    29.Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user‐defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. 56, 585–599 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Legg, J. P., Ndjelassili, F. & Okao-Okuja, G. First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathol. 53, 232 (2004).Article 

    Google Scholar 
    33.Legg, J. P. Bemisia tabaci: the whitefly vector of cassava mosaic geminiviruses in Africa: an ecological perspective. Afr. Crop Sci. J. 2, 437–448 (1994).
    Google Scholar 
    34.Fargette, D. & Thresh, J. M. The ecology of African cassava mosaic geminivirus. In Ecology of Plant Pathogens (eds Blakeman, J. P. & Williamson, B.) 269–282 (CAB International, Oxford, 1994).35.Anderson, P. K. & Morales, F. Whitefly and whitefly borne viruses in the tropics: building a knowledge base for global action (International Center for Tropical Agriculture, Cali, 2005).36.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. 44, 6–12 (2013).Article 

    Google Scholar 
    37.Delêtre, M. The ins and outs of manioc diversity in Gabon, Central Africa: a pluridisciplinary approach to the dynamics of genetic diversity of Manihot esculenta Crantz (Euphorbiaceae) (Trinity College Dublin, 2010).38.Messe Mbega, C. Y. Les régions transfrontalières: un exemple d’intégration sociospatiale de la population en Afrique centrale? Éthique publique 17, http://ethiquepublique.revues.org/1724 (2015).39.Akinbade, S. A. et al. First report of the East African cassava mosaic virus-Uganda (EACMV-UG) infecting cassava (Manihot esculenta) in Cameroon. N. Dis. Rep. 22, 2044–0588 (2010).
    Google Scholar 
    40.Valam-Zango, A. et al. First report of cassava mosaic geminiviruses and the Uganda strain of East African cassava mosaic virus (EACMV-UG) associated with cassava mosaic disease in Equatorial Guinea. N. Dis. Rep. 32, 29 (2015).Article 

    Google Scholar 
    41.Trovão, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. 1, vev016 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sallinen, S. et al. Intraspecific host variation plays a key role in virus community assembly. Nat. Commun. 11, 5610 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Patil, B. L., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: a threat to food security in Africa. J. Gen. Virol. 96, 956–968 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Maruthi, M. N., Jeremiah, S. C., Mohammed, I. U. & Legg, J. P. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 165, 707–717 (2017).CAS 
    Article 

    Google Scholar 
    45.McQuaid, C. F., Gilligan, C. A. & van den Bosch, F. Considering behaviour to ensure the success of a disease control strategy. R. Soc. Open Sci. 4, 170721 (2017b).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Almekinders, C. J. et al. Understanding the relations between farmers’ seed demand and research methods: the challenge to do better. Outlook Agric. 48, 16–21 (2019a).Article 

    Google Scholar 
    47.Almekinders, C. J. et al. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Secur. 11, 23–42 (2019b).Article 

    Google Scholar 
    48.R Foundation for Statistical Computing. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2018).49.Zeileis, A. ineq: Measuring inequality, concentration, and poverty. R package version 0.2-13. https://CRAN.R-project.org/package=ineq (2014).50.Alabi, O. J., Kumar, P. L. & Naidu, R. A. Multiplex PCR method for the detection of African cassava mosaic virus and East African cassava mosaic Cameroon virus in cassava. J. Virol. Methods 154, 111–120 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).PubMed 
    Article 

    Google Scholar 
    55.Rambaut, A., Lam, T. T., de Carvalho, L. M. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst. Virus Evol. 2, vew007 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ragonnet-Cronin, M. et al. Automated analysis of phylogenetic clusters. BMC Bioinforma. 14, 317 (2013).Article 

    Google Scholar 
    57.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    58.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    59.Scherer, R. & Pallmann, P. Simboot: simultaneous inference for diversity indices. R package version 0.2-6. https://CRAN.R-project.org/package=simboot (2017).60.Oksanen J. et al. vegan: Community Ecology Package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan (2016).61.Prost, S. & Anderson, C. N. K. TempNet: a method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article 

    Google Scholar 
    62.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. TRENDS Ecol. Evol. 16, 37–45 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinforma. 9, 539 (2008).Article 
    CAS 

    Google Scholar 
    64.Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.De la Cruz, M. Métodos para analizar datos puntuales. In Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones (eds Maestre, F. T., Escudero, A. & Bonet, A.) 76–127. (Asociación Española de Ecología Terrestre, Universidad Rey Juan Carlos y Caja de Ahorros del Mediterráneo, Madrid, 2008).66.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    67.Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land‐cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).Article 

    Google Scholar 
    68.Guthrie, M. The Classification of the Bantu Languages (Oxford Univ. Press for the International African Institute, London, 1948).69.Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19, 153–170 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Rogers, J. S. Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Biol. 35, 297–310 (1986).Article 

    Google Scholar  More