More stories

  • in

    Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands

    1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    3.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Bessler, H. et al. Nitrogen uptake by grassland communities: contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).CAS 
    Article 

    Google Scholar 
    6.Karanika, E. D., Alifragis, D. A., Mamolos, A. P. & Veresoglou, D. S. Differentiation between responses of primary productivity and phosphorus exploitation to species richness. Plant Soil 297, 69–81 (2007).CAS 
    Article 

    Google Scholar 
    7.Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv. Ecol. Res. 61, 185–219 (2019).Article 

    Google Scholar 
    8.Oelmann, Y. et al. Does plant diversity influence phosphorus cycling in experimental grasslands? Geoderma 167-68, 178–187 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    9.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Leimer, S., Oelmann, Y., Wirth, C. & Wilcke, W. Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agric Ecosyst. Environ. 211, 155–163 (2015).CAS 
    Article 

    Google Scholar 
    11.Scherer-Lorenzen, M., Palmborg, C., Prinz, A. & Schulze, E.-D. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84, 1539–1552 (2003).Article 

    Google Scholar 
    12.Elser, J. & Bennett, E. A broken biogeochemical cycle. Nature 478, 29–31 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321, 83–115 (2009).CAS 
    Article 

    Google Scholar 
    14.Wassen, M. J., Olde Venterink, H., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change-Hum. Policy Dimens. 19, 292–305 (2009).Article 

    Google Scholar 
    16.van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).Article 
    CAS 

    Google Scholar 
    17.van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).ADS 
    Article 
    CAS 

    Google Scholar 
    18.Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156, 989–996 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Hacker, N. et al. Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18, 1356–1365 (2015).PubMed 
    Article 

    Google Scholar 
    20.Hacker, N., Wilcke, W. & Oelmann, Y. The oxygen isotope composition of bioavailable phosphate in soil reflects the oxygen isotope composition in soil water driven by plant diversity effects on evaporation. Geochim. Cosmochim. Acta 248, 387–399 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Craven, D. et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B 371, 8 (2016).Article 

    Google Scholar 
    22.Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    23.Weigelt, A., Weisser, W. W., Buchmann, N. & Scherer-Lorenzen, M. Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 6, 1695–1706 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Nyfeler, D. et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl Ecol. 46, 683–691 (2009).Article 

    Google Scholar 
    25.Oelmann, Y., Vogel, A., Wegener, F., Weigelt, A. & Scherer-Lorenzen, M. Management intensity modifies plant diversity effects on N yield and mineral N in soil. Soil Sci. Soc. Am. J. 79, 559–568 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Manning P., et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. In: Mechanisms Underlying the Relationship between Biodiversity and Ecosystem Function (ed^(eds Eisenhauer N., Bohan D. A., Dumbrell A. J.). Academic Press Ltd-Elsevier Science Ltd (2019).27.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    28.Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Collins, C. D. & Foster, B. L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology 90, 2567–2576 (2009).PubMed 
    Article 

    Google Scholar 
    30.Klironomos, J. N., McCune, J., Hart, M. & Neville, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3, 137–141 (2000).Article 

    Google Scholar 
    31.Busch, V. et al. Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems. J. Veg. Sci. 30, 674–686 (2019).Article 

    Google Scholar 
    32.Sorkau, E. et al. The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. J. Plant Nutr. Soil Sci. 181, 185–197 (2018).CAS 
    Article 

    Google Scholar 
    33.Wardle, D. A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc. 67, 321–358 (1992).Article 

    Google Scholar 
    34.Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Cleveland, C. C. & Liptzin, D. C. N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252 (2007).Article 

    Google Scholar 
    37.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Marquard, E. et al. Plant species richness and functional composition drive overyielding in a 6-year grassland experiment. Ecology 90, 3290–3302 (2009).PubMed 
    Article 

    Google Scholar 
    39.Liebisch, F. et al. Seasonal dynamics and turnover of microbial phosphorus in a permanent grassland. Biol. Fertil. Soils 50, 465–475 (2014).CAS 
    Article 

    Google Scholar 
    40.Boeddinghaus, R. S. et al. Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. J. Ecol. 107, 2197–2210 (2019).CAS 
    Article 

    Google Scholar 
    41.Soussana, J. F. et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 20, 219–230 (2004).Article 

    Google Scholar 
    42.Waldrop, M. P., Zak, D. R., Blackwood, C. B., Curtis, C. D. & Tilman, D. Resource availability controls fungal diversity across a plant diversity gradient. Ecol. Lett. 9, 1127–1135 (2006).PubMed 
    Article 

    Google Scholar 
    43.Kour, D. et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31, 43–75 (2021).Article 

    Google Scholar 
    44.Dijkstra, F. A., He, M. Z., Johansen, M. P., Harrison, J. J. & Keitel, C. Plant and microbial uptake of nitrogen and phosphorus affected by drought using N-15 and P-32 tracers. Soil Biol. Biochem. 82, 135–142 (2015).CAS 
    Article 

    Google Scholar 
    45.Hiiesalu, I. et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. N. Phytol. 203, 233–244 (2014).CAS 
    Article 

    Google Scholar 
    46.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Bas Appl. Ecol. 5, 107–121 (2004).Article 

    Google Scholar 
    48.Hoffmann K., Bivour W., Früh B., Koßmann M., Voß P.-H. Climate studies in Jena for adaption to climate change and ist expected consequences. (In German). Selbstverlag des Deutschen Wetterdienstes (2014).49.IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. FAO (2015).50.Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Bas Appl Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    51.Alt, F., Oelmann, Y., Herold, N., Schrumpf, M. & Wilcke, W. Phosphorus partitioning in grassland and forest soils of Germany as related to land-use type, management intensity, and land use-related pH. J. Plant Nutr. Soil Sci. 174, 195–209 (2011).CAS 
    Article 

    Google Scholar 
    52.Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodiver Data J. 7, 38 (2019).Article 

    Google Scholar 
    53.Alt, F., Oelmann, Y., Schöning, I. & Wilcke, W. Phosphate release kinetics at stable pH in calcareous grassland and forest soils. Soil Sci. Soc. Am. J. 77, 2060–2070 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Jones J. B., Wolf B., Mills H. A. Plant analysis handbook. Micro Macro Publishing (1991).55.Marina, M. A. & Lopez, M. C. B. Determination of phosphorus in raw materials for ceramics: comparison between X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta 432, 157–163 (2001).CAS 
    Article 

    Google Scholar 
    56.Hedley, M. J., Stewart, J. W. B. & Chauhan, B. S. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970–976 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Kuo S. Phosphorus. In: Methods of Soil Analysis – Part 3 Chemical Methods (eds Sparks D. L., et al.). SSSA (1996).58.Cross, A. F. & Schlesinger, W. H. A literature review and evaluation of the Hedley fractionation – applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64, 197–214 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Negassa, W. & Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J. Plant Nutr. Soil Sci. 172, 305–325 (2009).CAS 
    Article 

    Google Scholar 
    60.Murphy, J. & Riley, J. P. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 26, 31–36 (1962).Article 

    Google Scholar 
    61.McLaughlin, M. J., Alston, A. M. & Martin, J. K. Measurement of phosphorus in the soil microbial biomass – a modified procedure for field soils. Soil Biol. Biochem. 18, 437–443 (1986).CAS 
    Article 

    Google Scholar 
    62.Kouno, K., Tuchiya, Y. & Ando, T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol. Biochem. 27, 1353–1357 (1995).CAS 
    Article 

    Google Scholar 
    63.Bünemann, E. K., Marschner, P., Smernik, R. J., Conyers, M. & McNeill, A. M. Soil organic phosphorus and microbial community composition as affected by 26 years of different management strategies. Biol. Fertil. Soils 44, 717–726 (2008).Article 

    Google Scholar 
    64.Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem 14, 319–329 (1982).CAS 
    Article 

    Google Scholar 
    65.Eivazi, F. & Tabatabai, M. A. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).CAS 
    Article 

    Google Scholar 
    66.Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).CAS 
    Article 

    Google Scholar 
    67.Berner, D. et al. Land-use intensity modifies spatial distribution and function of soil microorganisms in grasslands. Pedobiologia 54, 341–351 (2011).ADS 
    Article 

    Google Scholar 
    68.White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 51–62 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278 (2006).CAS 
    Article 

    Google Scholar 
    71.Frostegard, A. & Baath, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).Article 

    Google Scholar 
    72.Zelles, L. Identification of single cultured micro-organisms based on their whole-community fatty acid profiles, using an extended extraction procedure. Chemosphere 39, 665–682 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Kuramae, E. E. et al. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PLoS ONE 8, 8 (2013).Article 
    CAS 

    Google Scholar 
    75.Wubet, T., Weiss, M., Kottke, I. & Oberwinkler, F. Two threatened coexisting indigenous conifer species in the dry Afromontane forests of Ethiopia are associated with distinct arbuscular mycorrhizal fungal communities. Can. J. Bot.-Rev. Canadienne De. Botanique 84, 1617–1627 (2006).CAS 

    Google Scholar 
    76.Lee, J., Lee, S. & Young, J. P. W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 65, 339–349 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Simon, L., Lalonde, M. & Bruns, T. D. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Lefcheck, J. S. PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    79.van der Heijden, M. G. A. et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. N. Phytol. 172, 739–752 (2006).Article 

    Google Scholar 
    80.Frew, A. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C-3 and C-4 crop plants. Soil Biol. Biochem. 135, 248–250 (2019).CAS 
    Article 

    Google Scholar 
    81.Hedlund, K. et al. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103, 45–58 (2003).Article 

    Google Scholar 
    82.Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).CAS 
    Article 

    Google Scholar 
    83.Köhl, L., Oehl, F. & van der Heijden, M. G. A. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol. Appl. 24, 1842–1853 (2014).PubMed 
    Article 

    Google Scholar 
    84.Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).CAS 
    Article 

    Google Scholar 
    85.Steinbeiss, S. et al. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Change Biol. 14, 2937–2949 (2008).ADS 
    Article 

    Google Scholar 
    86.Hacker N. Phosphorus Release Mechanisms in an Experimental Grassland of Varying Biodiversity. Doctoral thesis, University of Tübingen, Germany (2017). More

  • in

    Risky business

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Fair future fisheries

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Seasonal niche differentiation among closely related marine bacteria

    1.Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Falkowski P. Ocean science: the power of plankton. Nature. 2012;483:S17–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Bunse C, Pinhassi J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25:1–12.Article 
    CAS 

    Google Scholar 
    4.Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.PubMed 
    Article 

    Google Scholar 
    5.Eiler A, Hayakawa DH, Rappé MS. Non-random assembly of bacterioplankton communities in the subtropical North Pacific Ocean. Front Microbiol. 2011;2.6.Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 
    Article 

    Google Scholar 
    8.Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, et al. Quantifying long‐term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35.PubMed 
    Article 

    Google Scholar 
    9.Alonso-Sáez L, Díaz-Pérez L, Morán XAG. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol. 2015;17:3766–80.PubMed 
    Article 

    Google Scholar 
    10.Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401.PubMed 
    Article 

    Google Scholar 
    11.Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, et al. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun. 2018;9:266.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.PubMed 
    Article 

    Google Scholar 
    15.Lemonnier C, Perennou M, Eveillard D, Fernandez-Guerra A, Leynaert A, Marié L, et al. Linking spatial and temporal dynamic of bacterioplankton communities with ecological strategies across a coastal frontal area. Front Mar Sci. 2020;7:376.Article 

    Google Scholar 
    16.Lambert S, Lozano J-C, Bouget F-Y, Galand PE. Seasonal marine microorganisms change neighbours under contrasting environmental conditions. Environ Microbiol. 2021;23:2592–604.PubMed 
    Article 

    Google Scholar 
    17.Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Hutchinson GE. Concluding remarks. Cold Spring Harb Sym. 1957;22:415–27.Article 

    Google Scholar 
    19.Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol. 2014;12:263–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Hammarlund SP, Gedeon T, Carlson RP, Harcombe WR. Limitation by a shared mutualist promotes coexistence of multiple competing partners. Nat Commun. 2021;12:619.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Schloss PD. Reintroducing mothur: 10 years later. Appl Environ Microbiol. 2020;86:13.
    Google Scholar 
    22.Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.VanInsberghe D, Arevalo P, Chien D, Polz MF. How can microbial population genomics inform community ecology? Philos Trans R Soc B. 2020;375:20190253.Article 

    Google Scholar 
    24.Tromas N, Taranu ZE, Martin BD, Willis A, Fortin N, Greer CW, et al. Niche separation increases with genetic distance among bloom-forming Cyanobacteria. Front Microbiol. 2018;9:438.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8:523–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323.PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Ladau J, Eloe-Fadrosh EA. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 2019;27:662–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Gasol JM, Cardelús C, Morán XAG, Balagué V, Forn I, Marrasé C, et al. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site. Sci Mar. 2016;80S1:63–77.Article 

    Google Scholar 
    29.Yentsch CS, Menzel DW. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res Oceanogr Abstr. 1963;10:221–31.CAS 
    Article 

    Google Scholar 
    30.Grasshoff K, Ehrhardt M, Kremling K. Methods of seawater analysis. 2nd ed. Weinheim: Verlag Chemie; 1983.31.Gasol JM, Morán XAG. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In: McGenity TJ, Timmis KN, Nogales B, editors. Hydrocarbon and lipid microbiology protocols: single-cell and single-molecule methods. Berlin, Heidelberg: Springer; 2016. p. 159–87.32.Massana R, Murray AE, Preston CM, Delong EF. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol. 1997;63:50–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    35.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.Article 

    Google Scholar 
    37.Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352.Article 

    Google Scholar 
    38.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 

    Google Scholar 
    39.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    Article 

    Google Scholar 
    40.Garczarek L, Guyet U, Doré H, Farrant GK, Hoebeke M, Brillet-Guéguen L, et al. Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Res 2020;49:gkaa958.
    Google Scholar 
    41.R Core Team. R: A language and environment for statistical computing. 2014. R Foundation for Statistical Computing, Vienna, Austria.42.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.Article 

    Google Scholar 
    44.Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.45.Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:1–9.Article 
    CAS 

    Google Scholar 
    47.Willis A, Bunge J, Whitman T.Improved detection of changes in species richness in high diversity microbial communities.J R Stat Soc Ser C-App Stat. 2017;66:963–77.Article 

    Google Scholar 
    48.Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics 2020;kxaa015.49.Ruf T. The Lomb-Scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biol Rhythm Res. 1999;30:178–201.Article 

    Google Scholar 
    50.Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser C-Appl Stat. 2001;63:411–23.Article 

    Google Scholar 
    51.Hastie T, Tibshirani R. Generalized additive models. Stat Sci. 1986;1:297–310.
    Google Scholar 
    52.Pedersen EJ, Miller DL, Simpson GL, Ross N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ. 2019;7:e6876.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: an R-package for Identifying proportionally abundant features using compositional data analysis. Sci Rep. 2017;7:1–9.Article 
    CAS 

    Google Scholar 
    54.Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Heiberger RM. HH: statistical analysis and data display: Heiberger and Holland. 2020.56.Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci USA. 2016;113:E3365–E3374.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Alonso-Sáez L, Balagué V, Sà EL, Sánchez O, González JM, Pinhassi J, et al. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol. 2007;60:98–112.PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Mestre M, Höfer J, Sala MM, Gasol JM. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front Microbiol. 2020;11:1590.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Nunes S, Latasa M, Gasol JM, Estrada M. Seasonal and interannual variability of phytoplankton community structure in a Mediterranean coastal site. Mar Ecol Prog Ser. 2018;592:57–75.CAS 
    Article 

    Google Scholar 
    61.Lindh MV, Sjöstedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling: High-resolution temporal dynamics of marine bacteria. Environ Microbiol. 2015;17:2459–76.PubMed 
    Article 

    Google Scholar 
    62.Viklund J, Martijn J, Ettema TJG, Andersson SGE. Comparative and phylogenomic evidence that the Alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade. PLoS One. 2013;8:e78858.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature. 2018;557:101–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 2015;9:347–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Guizien K, Charles F, Lantoine F, Naudin J-J. Nearshore dynamics of nutrients and chlorophyll during Mediterranean-type flash-floods. Aquat Living Resour. 2007;20:3–14.CAS 
    Article 

    Google Scholar 
    66.Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sci. 2017;9:231–55.Article 

    Google Scholar 
    67.Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    68.Cadotte MW, Tucker CM. Should environmental filtering be abandoned? Trends Ecol Evol. 2017;32:429–37.PubMed 
    Article 

    Google Scholar 
    69.Tromas N, Taranu ZE, Castelli M, Pimentel JSM, Pereira DA, Marcoz R, et al. The evolution of realized niches within freshwater Synechococcus. Environ Microbiol. 2020;22:1238–50.PubMed 
    Article 

    Google Scholar 
    70.Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa: the ecological function of microdiversity. Env Microbiol Rep. 2017;9:55–70.CAS 
    Article 

    Google Scholar 
    72.Mestre M, Borrull E, Sala MM, Gasol JM. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 2017;11:999–1010.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016;10:596–608.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Faust K, Lahti L, Gonze D, de Vos WM, Raes J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol. 2015;25:56–66.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Lee J, Kwon KK, Lim S-I, Song J, Choi AR, Yang S-H, et al. Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322. J Microbiol. 2019;57:676–87.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Effects of nitrogen fertilization on protein and carbohydrate fractions of Marandu palisadegrass

    In our studies with Marandu palisadegrass, a grazing management strategy with continuous stocking where 95% of the light is intercepted by the canopy resulted in forage at a height of 25 cm, a high green leaf proportion, and low amounts of dead material during the growing season23,24. The use of N fertilization4, different stocking rates, and supplementation25,26,27 are crucial for obtaining forage with a high nutritional value, resulting in a high weight gain per animal and area, and a reduction in slaughter age and greenhouse gas emissions. In the present study we did not find any interection N doses with years. Therefore, only the significative effects of N fertilization or variation within year are presented and discussed.Total and non-fibrous carbohydrates and total digestible nutrientsTotal carbohydrate concentrations decreased linearly with increasing N levels (P  More

  • in

    Landscape transformations produce favorable roosting conditions for turkey vultures and black vultures

    1.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Meyer, W. B. & Turner, B. L. Human population growth and global land-use/cover change. Annu. Rev. Ecol. Syst. 23, 39–61 (1992).Article 

    Google Scholar 
    3.Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934–941 (2014).Article 

    Google Scholar 
    4.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    5.Maitima, J. M. et al. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 3, 2 (2009).
    Google Scholar 
    6.Gaston, K. J., Blackburn, T. M. & Goldewijk, K. K. Habitat conversion and global avian biodiversity loss. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 1293–1300 (2003).Article 

    Google Scholar 
    7.Cereghetti, E., Scherler, P., Fattebert, J. & Grüebler, M. U. Quantification of anthropogenic food subsidies to an avian facultative scavenger in urban and rural habitats. Landsc. Urban Plann. 190, 103606 (2019).Article 

    Google Scholar 
    8.Clergeau, P. & Quenot, F. Roost selection flexibility of European starlings aids invasion of urban landscape. Landsc. Urban Plann. 80, 56–62 (2007).Article 

    Google Scholar 
    9.Wolff, A., Paul, J. P., Martin, J. L. & Bretagnolle, V. The benefits of extensive agriculture to birds: The case of the little bustard. J. Appl. Ecol. 38, 963–975 (2001).Article 

    Google Scholar 
    10.Howell, C. A., Dijak, W. D. & Thompson, F. R. Landscape context and selection for forest edge by breeding Brown-headed Cowbirds. Landsc. Ecol. 22, 273–284 (2007).Article 

    Google Scholar 
    11.Sauer, J. et al. The North American Breeding Bird Survey, results and analysis 2015–2017. (US Geological Survey Patuxent Wildlife Research Center, Laurel, Maryland USA, 2017).12.Kiff, L. F. The current status of North American vultures. Raptors at risk. Surrey: World Working Group on Birds of Prey and Owls, Berlin, and Hancock House Publishers (2000).13.Zimmerman, G. S. et al. Allowable take of black vultures in the eastern United States. J. Wildl. Manag. 83, 272–282 (2019).Article 

    Google Scholar 
    14.Carrete, M. et al. Winners and losers in human-made habitats: interspecific competition outcomes in two Neotropical vultures. Anim. Conserv. 13, 390–398 (2010).Article 

    Google Scholar 
    15.Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).Article 

    Google Scholar 
    16.Sweeney, T. M. & Fraser, J. D. Vulture roost dynamics and monitoring techniques in southwest Virginia. Wildl. Soc. Bull. 1973–2006(14), 49–54 (1986).
    Google Scholar 
    17.Kc, K. B. et al. Factors influencing the presence of the endangered Egyptian vulture Neophron percnopterus in Rukum Nepal. Glob. Ecol. Conserv. 20, e00727 (2019).Article 

    Google Scholar 
    18.Thompson, W. L., Yahner, R. H. & Storm, G. L. Winter use and habitat characteristics of vulture communal roosts. J. Wildl. Manag. 54, 77–83 (1990).Article 

    Google Scholar 
    19.Evans, B. A. Dynamics of a problematic vulture roost in southwest Florida and responses of vultures to roost-dispersal management efforts, Florida Gulf Coast University, (2013).20.Novaes, W. G. & Cintra, R. Factors influencing the selection of communal roost sites by the Black Vulture Coragyps atratus (Aves: Cathartidae) in an urban area in Central Amazon. Zoologia (Curitiba) 30, 607–614 (2013).Article 

    Google Scholar 
    21.Coleman, J. S. & Fraser, J. D. Habitat use and home ranges of black and turkey vultures. J. Wildl. Manag. 53, 782–792 (1989).Article 

    Google Scholar 
    22.Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Roads do not increase carrion use by a vertebrate scavenging community. Sci. Rep. 8, 16331 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Novoselova, N. S., Novoselov, A. A., Macarrão, A., Gallo-Ortiz, G. & Silva, W. R. Remote sensing applications for abating aircraft–bird strike risks in southeast Brazil. Hum.-Wildl. Interact. 14, 8 (2020).
    Google Scholar 
    24.Novaes, W. G. & Cintra, R. Anthropogenic features influencing occurrence of Black Vultures (Coragyps atratus) and Turkey Vultures (Cathartes aura) in an urban area in central Amazonian Brazil. Condor 117, 650–659 (2015).Article 

    Google Scholar 
    25.Campbell, M. O. N. The impact of urbanization and agricultural development on vultures in El Salvador. Vulture News 66, 16–28 (2014).
    Google Scholar 
    26.Cone, C. D. The soaring flight of birds. Sci. Am. 206, 130–142 (1962).Article 

    Google Scholar 
    27.Mallon, J. M., Bildstein, K. L. & Katzner, T. E. In-flight turbulence benefits soaring birds. Auk 133, 79–85 (2016).Article 

    Google Scholar 
    28.Holland, A. E. et al. Evidence of niche differentiation for two sympatric vulture species in the Southeastern United States. Mov. Ecol. 7, 31 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Avery, M. L. et al. Vulture flight behavior and implications for aircraft safety. J. Wildl. Manag. 75, 1581–1587 (2011).Article 

    Google Scholar 
    30.Lowney, M. S. Damage by black and turkey vultures in Virginia, 1990–1996. Wildl. Soc. Bull. 27, 715–719 (1999).
    Google Scholar 
    31.Tillman, E. A., Humphrey, J. S. & Avery, M. L. Use of vulture carcasses and effigies to reduce vulture damage to property and agriculture in Proceedings of the Vertebrate Pest Conference. (eds RM Timm & RH Schmidt) 123–128 (University of California, Davis).32.Holland, A. E. et al. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and turkey vultures (Cathartes aura). PLoS ONE 12, e0179819 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Avery, M. L., Humphrey, J. S., Tillman, E. A. & Milleson, M. P. Responses of black vultures to roost dispersal in Radford, Virginia in Proceedings of the Vertebrate Pest Conference. (eds RM Timm & JM O’Brien) 239–243 (University of California, Davis).34.Avery, M. L., Humphrey, J. S., Tillman, E. A., Phares, K. O. & Hatcher, J. E. Dispersing vulture roosts on communication towers. J. Rapt. Res. 36, 45–50 (2002).
    Google Scholar 
    35.Walter, W. D. et al. Using three-dimensional flight patterns at airfields to identify hotspots for avian–aircraft collisions. Appl. Geogr. 35, 53–59 (2012).Article 

    Google Scholar 
    36.NOAA. Climate Data Online, (2021).37.Humphrey, J. S., Avery, M. L. & McGrane, A. P. Evaluating relocation as a vulture management tool in north Florida in Proceedings of the Vertebrate Pest Conference. (eds TP Salmon & AC Crabb) 49–53 (University of California, Davis).38.Wallace, M. P., Parker, P. G. & Temple, S. A. An evaluation of patagial markers for cathartid vultures. J. Field Ornithol. 51, 309–314 (1980).
    Google Scholar 
    39.Sweeney, T. M., Fraser, J. D. & Coleman, J. S. Further evaluation of marking methods for black and turkey vultures. J. Field Ornithol. 56, 251–257 (1985).
    Google Scholar 
    40.Humphrey, J. S. & Avery, M. L. Improved satellite transmitter harness attachment technique. J. Rapt. Res. 48, 289–291 (2014).Article 

    Google Scholar 
    41.McVey, K. J., Skrade, P. D. & Sordahl, T. A. Use of a communal roost by Turkey Vultures in northeastern Iowa. J. Field Ornithol. 79, 170–175 (2008).Article 

    Google Scholar 
    42.Tabor, S. P. & McAllister, C. T. Nocturnal flight by Turkey Vultures (Cathartes aura) in southcentral Texas. J. Rapt. Res. 22, 91 (1988).
    Google Scholar 
    43.Yang, L. et al. A new generation of the United States national land cover database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote. Sens. 146, 108–123 (2018).ADS 
    Article 

    Google Scholar 
    44.Elías, E. E. I. Feeding habits and ingestion of synthetic products in a Black Vulture population from Chiapas, Mexico. Acta Zool. Mex. 19, 1–15 (1987).
    Google Scholar 
    45.Amazon. Terrain Tiles on AWS. https://registry.opendata.aws/terrain-tiles (2017).46.US Census Bureau. TIGER/Line Shapefiles. https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html (2019).47.Lehman, C. P. et al. Elk resource selection at parturition sites, Black Hills, South Dakota. J. Wildl. Manag. 80, 465–478 (2016).Article 

    Google Scholar 
    48.Pan, W. Akaike’s information criterion in generalized estimating equations. Biometrics 57, 120–125 (2001).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Survival: survival analyses. R package version 3–2–3 (2020).51.R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna, Austria, 2020).52.Fieberg, J. R. et al. Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models. Ecography 41, 737–752 (2018).Article 

    Google Scholar 
    53.Harrell, F. E. Jr., Lee, K. L. & Mark, D. B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387 (1996).Article 

    Google Scholar 
    54.Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    56.Lambertucci, S. A., Speziale, K. L., Rogers, T. E. & Morales, J. M. How do roads affect the habitat use of an assemblage of scavenging raptors?. Biodivers. Conserv. 18, 2063–2074 (2009).Article 

    Google Scholar 
    57.DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernández-Juricic, E. Effects of vehicle speed on flight initiation by turkey vultures: implications for bird-vehicle collisions. PLoS ONE 9, e87944 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Bautista, L. M. et al. Effect of weekend road traffic on the use of space by raptors. Conserv. Biol. 18, 726–732 (2004).Article 

    Google Scholar 
    59.Wallace, M. P. & Temple, S. A. Competitive interactions within and between species in a guild of avian scavengers. Auk 104, 290–295 (1987).Article 

    Google Scholar 
    60.de Araujo, G. M., Peres, C. A., Baccaro, F. B. & Guerta, R. S. Urban waste disposal explains the distribution of Black Vultures (Coragyps atratus) in an Amazonian metropolis: management implications for birdstrikes and urban planning. PeerJ 6, e5491 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Hill, J. R. III. & Neto, P. S. Black Vultures Nesting on Skyscrapers in Southern Brazil (Buitres Anidando en Rascacielos en el Sur de Brasil). J. Field Ornithol. 62, 173–176 (1991).
    Google Scholar 
    62.U.S Fish and Wildlife Service. Communication Tower and Antenna Consultation in New Jersey. (U.S. Fish and Wildlife Service, New Jersey Field Office, Pleasantville, New Jersey, 2001).63.Bohrer, G. et al. Estimating updraft velocity components over large spatial scales: Contrasting migration strategies of golden eagles and turkey vultures. Ecol. Lett. 15, 96–103 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Coleman, J. S. & Fraser, J. D. Food habits of black and turkey vultures in Pennsylvania and Maryland. J. Wildl. Manag. 51, 733–739 (1987).Article 

    Google Scholar 
    65.Turner, K., Abernethy, E., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Grigg, N. P. et al. Anatomical evidence for scent guided foraging in the turkey vulture. Sci. Rep. 7, 17408 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rabenold, P. P. Recruitment to food in black vultures: evidence for following from communal roosts. Anim. Behav. 35, 1775–1785 (1987).Article 

    Google Scholar 
    68.Buckley, N. J. Food finding and the influence of information, local enhancement, and communal roosting on foraging success of North American vultures. Auk 113, 473–488 (1996).Article 

    Google Scholar 
    69.Buckley, N. J. Experimental tests of the information-center hypothesis with black vultures (Coragypsatratus) and turkey vultures (Cathartesaura). Behav. Ecol. Sociobiol. 41, 267–279 (1997).Article 

    Google Scholar 
    70.Rodríguez-Estrella, R., Donázar, J. A. & Hiraldo, F. Raptors as indicators of environmental change in the scrub habitat of Baja California Sur, Mexico. Conserv. Biol. 12, 921–925 (1998).Article 

    Google Scholar 
    71.DeVault, T. L. et al. Estimating interspecific economic risk of bird strikes with aircraft. Wildl. Soc. Bull. 42, 94–101 (2018).Article 

    Google Scholar 
    72.Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    73.Pebesma, E. J. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).Article 

    Google Scholar  More

  • in

    Social familiarity improves fast-start escape performance in schooling fish

    1.Ward, A. J. W. & Hart, P. J. B. The effects of kin and familiarity on interactions between fish. Fish Fish 4, 348–358 (2003).Article 

    Google Scholar 
    2.Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, 2016).3.Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).4.Kohn, G. M. Friends give benefits: autumn social familiarity preferences predict reproductive output. Anim. Behav. 132, 201–208 (2017).Article 

    Google Scholar 
    5.Seppä, T., Laurila, A., Peuhkuri, N., Piironen, J. & Lower, N. Early familiarity has fitness consequences for Arctic char (Salvelinus alpinus) juveniles. Can. J. Fish. Aquat. Sci. 58, 1380–1385 (2001).Article 

    Google Scholar 
    6.Oesch, N. & Dunbar, R. I. M. Group size, communication, and familiarity effects in foraging human teams. Ethology 124, 483–495 (2018).Article 

    Google Scholar 
    7.Edenbrow, M. & Croft, D. P. Kin and familiarity influence association preferences and aggression in the mangrove killifish Kryptolebias marmoratus. J. Fish. Biol. 80, 503–518 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kavaliers, M. & Choleris, E. Out-Group threat responses, in-group bias, and nonapeptide involvement are conserved across vertebrates: (A comment on Bruintjes et al., “out-group threat promotes within-group affiliation in a cooperative fish”). Am. Nat. 189, 453–458 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.McCarter, M. W. & Sheremeta, R. M. You can’t put old wine in new bottles: the effect of newcomers on coordination in groups. PLoS ONE 8, e55058 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Silk, J. B. in Sociality, Hierarchy, Health: Comparative Biodemography (eds Weinstein, M. & Lane, M. A.) 121–144 (National Academies Press, 2014).11.Thompson, A. B. & Hare, J. F. Neighbourhood watch: multiple alarm callers communicate directional predator movement in Richardson’s ground squirrels, Spermophilus richardsonii. Anim. Behav. 80, 269–275 (2010).Article 

    Google Scholar 
    12.Micheletta, J. et al. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra. Proc. R. Soc. Lond. B Biol. Sci. 279, 4042–4050 (2012).
    Google Scholar 
    13.Strodl, M. & Schausberger, P. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation. PLoS ONE 7, e43590 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Versace, E., Damini, S., Caffini, M. & Stancher, G. Born to be asocial: Newly hatched tortoises avoid unfamiliar individuals. Anim. Behav. 138, 187–192 (2018).Article 

    Google Scholar 
    15.Strodl, M. A. & Schausberger, P. Social familiarity modulates group living and foraging behaviour of juvenile predatory mites. Die Naturwissenschaften 99, 303–311 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Gutmann, A. K., Špinka, M. & Winckler, C. Long-term familiarity creates preferred social partners in dairy cows. Appl. Anim. Behav. Sci. 169, 1–8 (2015).Article 

    Google Scholar 
    17.Engelmann, J. M. & Herrmann, E. Chimpanzees trust their friends. Curr. Biol. 26, 252–256 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Ward, A. J. W., Axford, S. & Krause, J. Mixed-species shoaling in fish: The sensory mechanisms and costs of shoal choice. Behav. Ecol. Sociobiol. 52, 182–187 (2002).Article 

    Google Scholar 
    19.Vickruck, J. L. & Richards, M. H. Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees. Behav. Proc. 145, 73–80 (2017).CAS 
    Article 

    Google Scholar 
    20.Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11–20 (2017).Article 

    Google Scholar 
    21.Domenici, P. & Blake, R. W. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Eaton, R. C., Lavender, W. A. & Wieland, C. M. Identification of Mauthner-initiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology. J. Comp. Phys. A 144, 521–531 (1981).Article 

    Google Scholar 
    23.Gerlotto, F., Bertrand, S., Bez, N. & Gutierrez, M. Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J. Mar. Sci. 63, 1405–1417 (2006).Article 

    Google Scholar 
    24.Domenici, P. & Batty, R. S. Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar. Biol. 128, 29–38 (1997).Article 

    Google Scholar 
    25.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690–4695 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Korn, H. & Faber, D. S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47, 13–28 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Domenici, P. & Hale, M. E. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J. Exp. Biol. 222, jeb166009 (2019).PubMed 
    Article 

    Google Scholar 
    28.Kohashi, T. & Oda, Y. Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J. Neurosci. 28, 10641–10653 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Hecker, A., Schulze, W., Oster, J., Richter, D. O. & Schuster, S. Removing a single neuron in a vertebrate brain forever abolishes an essential behavior. Proc. Natl Acad. Sci. USA 117, 3254–3260 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. & Reznick, D. N. Do faster starts increase the probability of evading predators? Funct. Ecol. 19, 808–815 (2005).Article 

    Google Scholar 
    31.McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958–969 (2018).Article 

    Google Scholar 
    32.Chivers, D. P., Brown, G. E. & Smith, J. F. R. Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): Implications for antipredator behavior. Can. J. Zool. 73, 955–960 (1995).Article 

    Google Scholar 
    33.Griffiths, S. W., Brockmark, S., Hojesjo, J. & Johnsson, J. I. Coping with divided attention: the advantage of familiarity. Proc. R. Soc. B Biol. Sci. 271, 695–699 (2004).CAS 
    Article 

    Google Scholar 
    34.Clément, R. J. G., Wolf, M., Snijders, L., Krause, J. & Kurvers, R. H. J. M. Information transmission via movement behaviour improves decision accuracy in human groups. Anim. Behav. 105, 85–93 (2015).Article 

    Google Scholar 
    35.Beauchamp, G. & Ruxton, G. D. False alarms and the evolution of antipredator vigilance. Anim. Behav. 74, 1199–1206 (2007).Article 

    Google Scholar 
    36.Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but can improve decision accuracy. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180378 (2019).Article 

    Google Scholar 
    37.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl Acad. Sci. USA 116, 20556–20561 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bohorquez-Herrera, J., Kawano, S. M. & Domenici, P. Foraging behavior delays mechanically-stimulated escape responses in fish. Integr. Comp. Biol. 53, 780–786 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Furtbauer, I. & Heistermann, M. Cortisol coregulation in fish. Sci. Rep. 6, 30334 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.DeVries, A. C., Glasper, E. R. & Detillion, C. E. Social modulation of stress responses. Phys. Behav. 79, 399–407 (2003).CAS 
    Article 

    Google Scholar 
    41.McEwen, B. S. Brain on stress: How the social environment gets under the skin. Proc. Natl Acad. Sci. USA 109, 17180–17185 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Furukawa, T. & Furshpan, E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophys. 26, 140–176 (1963).CAS 
    Article 

    Google Scholar 
    43.Pratchett, M. S., Coker, D. J., Jones, G. P. & Munday, P. L. Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol. Evol. 2, 2168–2180 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Nadler, L. E., McNeill, D. C., Alwany, M. A. & Bailey, D. M. Effect of habitat characteristics on the distribution and abundance of damselfish within a Red Sea reef. Environ. Biol. Fishes 97, 1265–1277 (2014).Article 

    Google Scholar 
    45.Ohman, M. C., Munday, P. L., Jones, G. P. & Caley, M. J. Settlement strategies and distribution patterns of coral-reef fishes. J. Exp. Mar. Biol. Ecol. 225, 219–238 (1998).Article 

    Google Scholar 
    46.Killen, S. S., Marras, S., Nadler, L. & Domenici, P. The role of physiological traits in assortment among and within fish shoals. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160233 (2017).47.Lassig, B. R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 9, 55–63 (1983).Article 

    Google Scholar 
    48.Yoon, J.-D., Jang, M.-H. & Joo, G.-J. Effect of flooding on fish assemblages in small streams in South Korea. Limnol 12, 197–203 (2011).Article 

    Google Scholar 
    49.Taborsky, M., Frommen, J. G. & Riehl, C. Correlated pay-offs are key to cooperation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Johansen, J. L. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia. PLoS ONE 9, e83240 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Griffiths, S. W. & Magurran, A. E. Familiarity in schooling fish: how long does it take to acquire? Anim. Behav. 53, 945–949 (1997).Article 

    Google Scholar 
    52.Eaton, R. & Emberley, D. How stimulus direction determines the trajectory of the mauthner-initiated escape response in a teleost fish. J. Exp. Biol. 161, 469–487 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Domenici, P. et al. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale. Biol. Open 4, 79–85 (2015).Article 

    Google Scholar 
    54.Nadler, L. E., Killen, S. S., Domenici, P. & McCormick, M. I. Role of water flow regime in the swimming behaviour and escape performance of a schooling fish. Biol. Open 7, bio031997 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Nissanov, J. & Eaton, R. C. Reticulospinal control of rapid escape turning maneuvers in fishes. Am. Zool. 29, 103–121 (1989).Article 

    Google Scholar 
    56.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adap. Behav. 20, 44–56 (2012).Article 

    Google Scholar 
    57.Vila Pouca, C. & Brown, C. Contemporary topics in fish cognition and behaviour. Curr. Opin. Behav. Sci. 16, 46–52 (2017).Article 

    Google Scholar 
    58.Eaton, R., Lee, R. & Foreman, M. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63, 467–485 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Nakayama, H. & Oda, Y. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.DiDomenico, R., Nissanov, J. & Eaton, R. C. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron. Brain Res. 473, 15–28 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Medan, V. & Preuss, T. The Mauthner-cell circuit of fish as a model system for startle plasticity. J. Physiol. Paris 108, 129–140 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dukas, R. Behavioural and ecological consequences of limited attention. Philos. Trans. R. Soc. B. Biol. Sci. 357, 1539–1547 (2002).Article 

    Google Scholar 
    63.Yue, S., Duncan, I. J. H. & Moccia, R. D. Do differences in conspecific body size induce social stress in domestic rainbow trout? Environ. Biol. Fishes 76, 425–431 (2006).Article 

    Google Scholar 
    64.Korn, H., Triller, A. & Faber, D. S. Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell. Proc. R. Soc. B Biol. Sci. 202, 533–538 (1978).CAS 

    Google Scholar 
    65.Whitaker, K. W. et al. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J. Neurophys. 106, 127–137 (2011).CAS 
    Article 

    Google Scholar 
    66.Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T. & Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. Proc. Natl Acad. Sci. USA 108, 2312–2315 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl Acad. Sci. USA 108, 18726–18731 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Conradt, L. & Roper, T. J. Activity synchrony and social cohesion: a fission-fusion model. Proc. R. Soc. B, Biol. Sci. 267, 2213–2218 (2000).CAS 
    Article 

    Google Scholar 
    69.Sogard, S. M. & Olla, B. L. The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environ. Biol. Fishes 50, 405–413 (1997).Article 

    Google Scholar 
    70.Domenici, P. Spacing of wild schooling herring while encircled by killer whales. J. Fish. Biol. 57, 831–836 (2000).Article 

    Google Scholar 
    71.Miller, N., Garnier, S., Hartnett, A. T. & Couzin, I. D. Both information and social cohesion determine collective decisions in animal groups. Proc. Natl Acad. Sci. USA 110, 5263–5268 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Granroth-Wilding, H. M. & Magurran, A. E. Asymmetry in pay-off predicts how familiar individuals respond to one another. Biol. Lett. 9, 20130025 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380 (1986).Article 

    Google Scholar 
    74.Ruxton, G. D., Jackson, A. L. & Tosh, C. R. Confusion of predators does not rely on specialist coordinated behavior. Behav. Ecol. 18, 590–596 (2007).Article 

    Google Scholar 
    75.Wolcott, H. L., Ojanguren, A. F. & Barbosa, M. The effects of familiarity on escape responses in the Trinidadian guppy (Poecilia reticulata). PeerJ 5, e3899 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Guayasamin, O. L., Couzin, I. D. & Miller, N. Y. Behavioural plasticity across social contexts is regulated by the directionality of inter-individual differences. Behav. Proc. 141, 196–204 (2016).Article 

    Google Scholar 
    77.Jacoby, D. M. P., Sims, D. W. & Croft, D. P. The effect of familiarity on aggregation and social behaviour in juvenile small spotted catsharks Scyliorhinus canicula. J. Fish. Biol. 81, 1596–1610 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. R. Soc. B. Biol. Sci. 284, 20171126 (2017).Article 

    Google Scholar 
    80.Romenskyy, M. et al. Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions. Behav. Ecol. 31, 311–321 (2020).Article 

    Google Scholar 
    81.Couzin, I. D. Collective cognition in animal groups. Trends Cog. Sci. 13, 36–43 (2009).Article 

    Google Scholar 
    82.Bshary, R., Gingins, S. & Vail, A. L. Social cognition in fishes. Trends Cogn. Sci. 18, 465–471 (2014).PubMed 
    Article 

    Google Scholar 
    83.Gil, M. A., Emberts, Z., Jones, H. & St Mary, C. M. Social Information on fear and food drives animal grouping and fitness. Am. Nat. 189, 227–241 (2017).PubMed 
    Article 

    Google Scholar 
    84.May, R. M. The evolution of cooperation. Nature 292, 291–292 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Munday, P. L. & Wilson, S. K. Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. J. Fish. Biol. 51, 931–938 (1997).CAS 

    Google Scholar 
    86.Domenici, P., Turesson, H., Brodersen, J. & Bronmark, C. Predator-induced morphology enhances escape locomotion in crucian carp. Proc. R. Soc. B. Biol. Sci. 275, 195–201 (2008).Article 

    Google Scholar 
    87.Turesson, H. & Domenici, P. Escape latency is size independent in grey mullet. J. Fish. Biol. 71, 253–259 (2007).Article 

    Google Scholar 
    88.Webb, P. W. Fast-start performance and body form in seven species of teleost fish. J. Exp. Biol. 74, 211–226 (1978).Article 

    Google Scholar 
    89.Marras, S. & Domenici, P. Schooling fish under attack are not all equal: some lead, others follow. PLoS ONE 8, e65784 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Bachelet, E. Circular Statistics in Biology (Academic Press, 1981).91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016). More

  • in

    Microfluidic chips provide visual access to in situ soil ecology

    Chip designWe used our micro-engineered silicone chip termed the “Obstacle chip”26, representing a proxy of a soil pore space system containing different sets of microstructures. The chip consists of an artificial pore system open on one side for inoculum, and it is designed to investigate the growth and dispersal behaviour of soil microbes (Supplementary Fig. 1a, b). The chip’s pore-space dimensions are optimized to match the dimensions of fungal hyphae, with structure widths ranging between 4 and 100 µm, and a uniform height of ~7 µm to aid microscopy, since cells are located in the same focal plane and rarely overlay. It contains five different geometric sections accessible by soil microbes via a common entry area (Supplementary Fig. 1a). The entry area consists of an open area with round pillars of 100 µm diameter at a separation of 100 µm, holding up the chip’s ceiling. It was cut open longitudinally with a scalpel prior to bonding (see below, section ‘Chip fabrication’), ensuring direct contact of the soil with the chip’s interior. The inner section comprises a combination of differently shaped channels and obstacles constituting five experimental sections, of which two were systematically examined in this study: (1) Section C: A set of channels with sharp corners of three different types (n = 12, randomly distributed): zigzag channels (90° turns with all channel sections at ±45° angle from the main growth direction), meandering square channels (90° turns with each section oriented in either the main growth direction or perpendicular to it), ‘z’-shaped channels (sharp corners diverting 135° from the previous growth direction, with channel sections in the main growth direction and at angles of 45° and 135° from it); (2) Section D: So-called ‘diamond channels,’ with a repeated combination of 10 µm wide and 400 µm long straight channels alternating with 140 µm wide diamond-shaped widenings. This channel type is replicated in 36 channels, each containing 33 diamond widenings. The widenings were used as quantification units to count bacteria and protist cell numbers, and for determination of liquid ingression, for the experiments on dispersal via fungal hyphae. Section A of the chip contains systems of hexagonal pillars of different diameters, Section B consists of straight channels with different widths, and Section E contains two types of obstacle courses comprised of complex structures. Those and the entrance system provided space for general observations. The design was constructed in AutoCad 2015 (Autodesk), in which patterns within experimental Sections A and C were randomized using a custom script from UrbanLISP (http://www.urbanlisp.com).Chip fabricationThe microfluidic chips were moulded in PDMS on a photoresist master defined by UV lithography and bonded to glass slides, according to Aleklett et al.26. The master was made by spin coating a thick negative photoresist (SU-8 5, MicroChem Corp, USA) on a glass plate for 60 s at 1250 rpm. This generated a photoresist layer of ~7 µm. The photoresist was soft baked for 5 min at 90 °C on a hot plate, patterned by UV exposure (Karl-Suss MA4 mask aligner) and post-exposure baked. It was then developed for 3 min in mr-Dev 600 (MicroChem) and finally rinsed with isopropanol (VWR International). The PDMS slabs were produced by thoroughly mixing a PDMS base and a curing agent (both Sylgard 184, Dow Corning, USA) in a 10:1 ratio, followed by pouring the mix onto the master in a 4-mm-thick layer, and degassing it in a vacuum chamber at −25 kPa for 45 min. Then the PDMS was cured in an oven for 2.5 h at 60 °C. Once cooled, the PDMS was cut slightly larger than the designed pattern, covering an area of about 40 × 65 mm, and cut though the entry system, creating a lateral opening to the chip along the pillar system.The PDMS slabs were bonded to glass slides. Glass slides, 55 × 75 mm and 1 mm thick (Thermo Scientific), were first cleaned with acetone, 75% ethanol and deionized water, and then dried under an air-blower. The pieces of PDMS and the glass slides were treated separately in an oxygen plasma chamber (Diener Electronic Zepto). For each chip, a glass slide was exposed to oxygen plasma under UV light for 1 min, followed by exposure of the PDMS piece for 10 s. Once both samples were plasma-treated, they were immediately brought in contact with their activated surfaces facing each other, and gently pressed to each other in the centre parts of the chip. To avoid collapse of the ceiling of the entrance, none of the chip edges were pressed. The chips were heated on a heating plate for ~15 s at 100 °C to ensure a proper bonding. After another 15 s, the chips with liquid treatments were filled with the different media using a micropipette, taking advantage of the PDMS’s temporary hydrophilia following plasma treatment so that liquids were readily drawn into its structures. The chips were filled with one of the following three treatments: (1) deionized water, (2) liquid malt medium, a complex medium to provide a nutrient-rich environment including reduced sugars such as disaccharide maltose and in lower proportion nitrogenous components such as peptides, amino acids purines and vitamins (malt extract for microbiology, Merck KGaA), or (3) chips were left empty, i.e., air-filled. The eight chips filled with liquid were then placed in a vacuum chamber for 30 min at −25 kPa to remove any bubbles. Finally, the chips were kept in sterile Petri dishes, sealed with Parafilm and stored overnight in a cold room before being dug down into or inoculated with soil.Expt. 1: in situ incubation of chipsTo evaluate the effect of different nutritional conditions on colonization of the soil chips by microbes, we evaluated three pore space filling treatments: (1) deionized water, (2) malt extract medium, or (3) air; n = 3 chips per treatment. The experimental site was a small grove of deciduous trees in the city of Lund, Sweden (55° 42′ 49.5′′ N, 13° 12′ 32.5′′ E; Supplementary Fig. 1c). The season chosen for burial of the chips was early autumn (October 2017) to guarantee a moist soil during the experiment. Groups of replicates of all three chip treatments were buried randomly within the inner parts of the grove (n = 3 chips per filling treatment). The litter layer was removed, and 20 × 20 cm holes were carefully dug into the ground with a spade. The chips were placed horizontally in the soil at a depth of 10 cm in which the PDMS chip was facing up and the glass slide down. Horizontal placement was chosen to probe a single stratum of the soil, serving as a comparable inoculum to the whole of the entry system, and to aid nondestructive recovery. The soil was carefully placed back in its original orientation, and the litter layer was placed back. A string attached to each chip was placed with its opposite end above the soil surface and attached to a pin, to guide future retrieval. There was a minimum distance of one meter between each chip replicate.Preliminary experiments had shown that a 2-month incubation period would grant the colonization of different types of soil microorganisms and minerals, and a stabilization of the inner environmental conditions between the soil chip and the surrounding soil. Thus, after 64 days (December 2017), the chips were collected by carefully removing soil around the string leading to each chip. We carefully kept the adjacent soil atop the glass slide along the opening of the chip, to keep our artificial pore system connected to the real soil pore system, and to avoid such disturbances as hyphal tearing or evaporation of the liquid inside the chips (Supplementary Fig. 1d). We cleaned the chip windows by softly wiping them with a clean wipe and deionized water. Samples were carefully transported to the microscopy facilities, located adjacent to the burial site. The chips were harvested one at a time and analysed under the microscope immediately after collection and cleaning.We recorded the presence or absence of the main soil microbial groups in the entry systems and in the different channels, including their furthest extent into the chips, with help of the internal rulers.To analyse the effect of fungal hyphae on bacterial abundance, we recorded real-time videos slowly scanning along the whole length of the diamond-shaped opening channels (each 33 diamonds, Section D in Supplementary Fig. 1a; Fig. 3). The rather sparse hyphal colonization allowed us to select pairs of channels where in the first channel a hypha had proliferated far into the channel, combined with a directly adjacent channel without hyphae, n = 4. In each diamond-shaped widening we counted the number of bacterial cells, the presence or absence of fungal hyphae, and the presence or absence of liquid. After completion of all measurements, the chips were left uncovered at room temperature for 60 min to initiate air drying in the adjacent soil, in order to observe the real-time effects of drying on organisms and particles in the pore space system of the chips. The adjacent soil was re-wetted by adding 400 µl of water. The water inside the chips corresponded to the adjacent soil pore water, regressed upon evaporation, and refilled the chip structures upon rewetting of the adjacent soil.Expt. 2–3: laboratory incubation of soil on chipsIn a complementary approach, we collected soil from a lawn in Lund, Sweden, at 10 cm depth, and placed 5 g of this soil in front of the entry system of the chip. Chips received the three nutrient condition treatments as described above, air, water or malt medium (n = 2, Expt. 2). An additional set of air-filled chips was studied to quantify fungal highways (n = 3, Expt. 3). Chips were monitored under the microscope after inoculation, observation was documented with images and videos. Chips were kept in sealed Petri dishes with wet cotton cloths to maintain high humidity and were taken out for analysis only. The soil inoculum on the chips and the interior of the chips were kept moist with 500 µl of water added to the soil once a week. The artificial waterlogging event in the chips of Expt. 3 (‘fungal highways’) was achieved by adding a total of 2 ml of water to the inoculum soil over the course of a week, and the drying event was achieved by discontinuing the watering.During Expt. 2, we recorded the abundance and the furthest extent of bacteria, protists (including the morpho-groups ciliates, flagellated, and amoeboids), and the extent of hyphal colonization into the diamond section over time. After 2 months of incubation, we measured the furthest extent of colonization into the angled channels for the organism groups bacteria, fungi, and protists. During Expt. 3, we recorded the presence and the furthest extent of hyphae, liquid, bacteria, and protists in the diamond channels over time. We also recorded the number of protists, bacteria (in categories 0, More