More stories

  • in

    Early-life social experience affects offspring DNA methylation and later life stress phenotype

    1.Harlow, H. F., Dodsworth, R. O. & Harlow, M. K. Total social isolation in monkeys. Proc. Natl Acad. Sci. USA 54, 90–97 (1965).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Levine, S. Infantile experience and resistance to physiological stress. Science 126, 405 (1957).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Liu, D. et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277, 1659–1662 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Francis, D., Diorio, J., Liu, D. & Meaney, M. J. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286, 1155–1158 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Caldji, C. et al. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc. Natl Acad. Sci. USA 95, 5335–5340 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Vargas, J., Junco, M., Gomez, C. & Lajud, N. Early life stress increases metabolic risk, HPA axis reactivity, and depressive-like behavior when combined with postweaning social isolation in rats. PLoS ONE 11, 1–21 (2016).CAS 

    Google Scholar 
    7.Sánchez, M. M. et al. Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biol. Psychiatry 57, 373–381 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Fries, A. B. W., Shirtcliff, E. A. & Pollak, S. D. Neuroendocrine dysregulation following early social deprivation in children. Dev. Psychobiol. 50, 588–599 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Li, E. & Bird, A. In Epigenetics (eds Allis, C. D., Jenuwein, T., Reinberg, D. & Caparros, M.-L.), 343–356 (Cold Spring Harbor Laboratory Press, 2007).10.Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Anier, K. et al. Maternal separation is associated with DNA methylation and behavioural changes in adult rats. Eur. Neuropsychopharmacol. 24, 459–468 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Provencal, N. et al. The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J. Neurosci. 32, 15626–15642 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Unternaehrer, E. et al. Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress 18, 451–461 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Sánchez, M. M., Ladd, C. O. & Plotsky, P. M. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev. Psychopathol. 13, 419–449 (2001).PubMed 
    Article 

    Google Scholar 
    15.Van Bodegom, M., Homberg, J. R. & Henckens, M. J. A. G. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front. Cell. Neurosci. 11, 1–33 (2017).
    Google Scholar 
    16.Moore, S. R. et al. Epigenetic correlates of neonatal contact in humans. Dev. Psychopathol. 29, 1517–1538 (2017).PubMed 
    Article 

    Google Scholar 
    17.Sanchez, M. M. The impact of early adverse care on HPA axis development: nonhuman primate models. Horm. Behav. 50, 623–631 (2006).PubMed 
    Article 

    Google Scholar 
    18.Houtepen, L. C. et al. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat. Commun. 7, 10967 (2016).19.Coley, E. J. L. et al. Cross-generational transmission of early life stress effects on HPA regulators and bdnf are mediated by sex, lineage, and upbringing. Front. Behav. Neurosci. 13, 1–17 (2019).Article 
    CAS 

    Google Scholar 
    20.Kember, R. L. et al. Maternal separation is associated with strain-specific responses to stress and epigenetic alterations to Nr3c1, Avp, and Nr4a1 in mouse. Brain Behav. 2, 455–467 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Dunn, E. C. et al. Sensitive periods for the effect of childhood adversity on DNA methylation: results from a prospective, longitudinal study. Biol. Psychiatry 85, 838–849 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Hennessy, M. B., Hornschuh, G., Kaiser, S. & Sachser, N. Cortisol responses and social buffering: a study throughout the life span. Horm. Behav. 49, 383–390 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Kent, W. J. et al. The Human Genome Browser at UCSC. Genome Res. 12, 996–1006 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Kornienko, O., Clemans, K. H., Out, D. & Granger, D. A. Hormones, behavior, and social network analysis: exploring associations between cortisol, testosterone, and network structure. Horm. Behav. 66, 534–544 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Kornienko, O., Clemans, K. H., Out, D. & Granger, D. A. Friendship network position and salivary cortisol levels. Soc. Neurosci. 8, 385–396 (2013).PubMed 
    Article 

    Google Scholar 
    27.Ponzi, D., Muehlenbein, M. P., Geary, D. C. & Flinn, M. V. Cortisol, salivary alpha-amylase and children’s perceptions of their social networks. Soc. Neurosci. 11, 164–174 (2016).PubMed 
    Article 

    Google Scholar 
    28.Wittig, R. M. et al. Focused grooming networks and stress alleviation in wild female baboons. Horm. Behav. 54, 170–177 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Wey, T. W. & Blumstein, D. T. Social attributes and associated performance measures in marmots: bigger male bullies and weakly affiliating females have higher annual reproductive success. Behav. Ecol. Sociobiol. 66, 1075–1085 (2012).Article 

    Google Scholar 
    30.Priebe, K. et al. Maternal influences on adult stress and anxiety-like behavior in C57BL/6J and BALB/CJ mice: a cross-fostering study. Dev. Psychobiol. 47, 398–407 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.McLaughlin, K. A. et al. Causal effects of the early caregiving environment on development of stress response systems in children. Proc. Natl Acad. Sci. USA 112, 5637–5642 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Goymann, W. On the use of non-invasive hormone research in uncontrolled, natural environments: the problem with sex, diet, metabolic rate and the individual. Methods Ecol. Evol. 3, 757–765 (2012).Article 

    Google Scholar 
    34.Laubach, Z. M. et al. Early life social and ecological determinants of global DNA methylation in wild spotted hyenas. Mol. Ecol. 28, 3799–3812 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Greenberg, J. R. Developmental Flexibility in Spotted Hyneas (Crocuta crocuta): The Role of Maternal and Anthropogenic Effects (Michigan State University, 2017).36.Turner, J. W., Bills, P. S. & Holekamp, K. E. Ontogenetic change in determinants of social network position in the spotted hyena. Behav. Ecol. Sociobiol. 72, 1–5 (2018).37.Smolarek, I. et al. Global DNA methylation changes in blood of patients with essential hypertension. Med. Sci. Monit. 16, 149–155 (2010).
    Google Scholar 
    38.Zinellu, A. et al. Blood global DNA methylation is decreased in non-severe chronic obstructive pulmonary disease (COPD) patients. Pulm. Pharmacol. Ther. 46, 11–15 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Dong, Y. et al. Associations between global DNA methylation and telomere length in healthy adolescents. Sci. Rep. 7, 1–6 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    40.Wong, J. Y. Y. et al. The association between global DNA methylation and telomere length in a longitudinal study of boilermakers. Genet. Epidemiol. 38, 254–264 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Woo, H. D. & Kim, J. Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: A meta-analysis. PLoS ONE 7, e34615 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sharma, P. et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 27, 357–365 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Ono, H. et al. Association of dietary and genetic factors related to one-carbon metabolism with global methylation level of leukocyte DNA. Cancer Sci. 103, 2159–2164 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Basu, N. et al. Effects of methylmercury on epigenetic markers in three model species: mink, chicken and yellow perch Niladri. Comp. Biochem. Physiol. C 157, 322–327 (2013).CAS 

    Google Scholar 
    45.Laubach, Z. M. et al. Socioeconomic status and DNA methylation from birth through mid-childhood: a prospective study in Project Viva. Epigenomics https://doi.org/10.2217/epi-2019-0040 (2019).46.Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Brown, G. R. et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 43, D36–D42 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.National Library of Medicine (US), National Center for Biotechnology Information. Gene. https://www.ncbi.nlm.nih.gov/gene/ (2004).49.Binns, D. et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Huntley, R. P. et al. The GOA database: Gene Ontology annotation updates for 2015. Nucleic Acids Res. 43, D1057–D1063 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Chang, I. & Parrilla, M. Expression patterns of homeobox genes in the mouse vomeronasal organ at postnatal stages. Gene Expr. Patterns 21, 69–80 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Santos, J. S., Fonseca, N. A., Vieira, C. P., Vieira, J. & Casares, F. Phylogeny of the teashirt-related zinc finger (tshz) gene family and analysis of the developmental expression of tshz2 and tshz3b in the zebrafish. Dev. Dyn. 239, 1010–1018 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Zhou, T. et al. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis. PLoS ONE 7, 1–13 (2012).CAS 

    Google Scholar 
    54.Scheinfeldt, L. B. et al. Using the Coriell Personalized Medicine Collaborative Data to conduct a genome-wide association study of sleep duration. Am. J. Med. Genet. B 168, 697–705 (2015).Article 

    Google Scholar 
    55.Riku, M. et al. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis. Oncotarget 7, 5690–5701 (2016).PubMed 
    Article 

    Google Scholar 
    56.Tapia-Carrillo, D., Tovar, H., Velazquez-Caldelas, T. E. & Hernandez-Lemus, E. Master regulators of signaling pathways: an application to the analysis of gene regulation in breast cancer. Front. Genet. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    57.Yamamoto, M., Cid, E., Bru, S. & Yamamoto, F. Rare and frequent promoter methylation, respectively, of TSHZ2 and 3 genes that are both downregulated in expression in breast and prostate cancers. PLoS ONE 6, 1–10 (2011).Article 

    Google Scholar 
    58.Zhou, S. et al. Proteomic landscape of TGF-β1-induced fibrogenesis in renal fibroblasts. Sci. Rep. 10, 1–17 (2020).Article 
    CAS 

    Google Scholar 
    59.Seto, S., Tsujimura, K. & Koide, Y. Rab GTPases regulating phagosome maturation are differentially recruited to mycobacterial phagosomes. Traffic 12, 407–420 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Kretzer, N. M. et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8α+ dendritic cells. J. Exp. Med. 213, 2871–2883 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Huang, Z., Liang, H. & Chen, L. Rab43 promotes gastric cancer cell proliferation and metastasis via regulating the pi3k/akt signaling pathway. OncoTargets Ther. 13, 2193–2202 (2020).CAS 
    Article 

    Google Scholar 
    62.Han, M. Z. et al. High expression of RAB43 predicts poor prognosis and is associated with epithelial-mesenchymal transition in gliomas. Oncol. Rep. 37, 903–912 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Blackburn, M. R., Datta, S. K., Wakamiya, M., Vartabedian, B. S. & Kellems, R. E. Metabolic and immunologic consequences of limited adenosine deaminase expression in mice. J. Biol. Chem. 271, 15203–15210 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Bradford, K. L., Moretti, F. A., Carbonaro-Sarracino, D. A., Gaspar, H. B. & Kohn, D. B. Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID): molecular pathogenesis and clinical manifestations. J. Clin. Immunol. 37, 626–637 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Parish, S. T. et al. Adenosine deaminase modulation of telomerase activity and replicative senescence in human CD8 T lymphocytes. J. Immunol. 184, 2847–2854 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Sánchez-Melgar, A., Albasanz, J. L., Pallàs, M. & Martín, M. Adenosine metabolism in the cerebral cortex from several mice models during aging. Int. J. Mol. Sci. 21, 1–20 (2020).Article 
    CAS 

    Google Scholar 
    67.Geiger, J. D. & Nagy, J. I. Ontogenesis of adenosine deaminase activity in rat brain. J. Neurochem. 48, 147–153 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Vasudha, K. C., Nirmal Kumar, A. & Venkatesh, T. Studies on the age dependent changes in serum adenosine deaminase activity and its changes in hepatitis. Indian J. Clin. Biochem. 21, 116–120 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Sims, B., Powers, R. E., Sabina, R. L. & Theibert, A. B. Elevated adenosine monophosphate deaminase activity in Alzheimer’s disease brain. Neurobiol. Aging 19, 385–391 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Singh, L. S. & Sharma, R. Developmental expression and corticosterone inhibition of adenosine deaminase activity in different tissues of mice. Mech. Ageing Dev. 80, 85–92 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.McGowan, P. O. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Pan, P., Fleming, A. S., Lawson, D., Jenkins, J. M. & McGowan, P. O. Within- and between-litter maternal care alter behavior and gene regulation in female offspring. Behav. Neurosci. 128, 736–748 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Romero, L. M., Dickens, M. J. & Cyr, N. E. The Reactive Scope Model – a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 55, 375–389 (2009).PubMed 
    Article 

    Google Scholar 
    74.Kamin, H. S. & Kertes, D. A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 89, 69–85 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Engler, H., Bailey, M. T., Engler, A. & Sheridan, J. F. Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. J. Neuroimmunol. 148, 106–115 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Kruuk, H. The Spotted Hyena: A Study of Predation and Social Behavior (University of Chicago Press, 1972).77.Holekamp, K., Smale, L. & Szykman, M. Rank and reproduction in the female spotted hyaena. J. Reprod. Fertil. 108, 229–237 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Holekamp, K. E. & Smale, L. Behavioral development in the spotted hyena. Bioscience 48, 997–1005 (1998).Article 

    Google Scholar 
    79.Holekamp, K. E. et al. Patterns of association among female spotted hyenas (Crocuta crocuta). J. Mammal. 78, 55–64 (1997).Article 

    Google Scholar 
    80.Turner, J. W., Robitaille, A. L., Bills, P. S. & Holekamp, K. E. Early-life relationships matter: social position during early life predicts fitness among female spotted hyenas. J. Anim. Ecol. 90, 183–196 (2021).PubMed 
    Article 

    Google Scholar 
    81.Altmann, J. Observational study of behavior: sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Karimi, M., Johansson, S. & Ekström, T. J. Using LUMA. A luminometric-based assay for global DNA methylation. Epigenetics 1, 45–48 (2006).PubMed 

    Google Scholar 
    83.Coluccio, A. et al. Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naïve embryonic stem cells. Epigenet. Chromatin 11, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    84.Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Lev Maor, G., Yearim, A. & Ast, G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 31, 274–280 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Doherty, T. S., Forster, A. & Roth, T. L. Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment. Behav. Brain Res. 298, 55–61 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Noguera, J. C. & Velando, A. Bird embryos perceive vibratory cues of predation risk from clutch mates. Nat. Ecol. Evol. 3, 1225–1232 (2019).PubMed 
    Article 

    Google Scholar 
    88.Crudo, A. et al. Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 153, 3269–3283 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Garrett-Bakelman, F. E. et al. Enhanced reduced representation bisulfite sequencing for assessment of DNA nethylation at base pair resolution. J. Vis. Exp. https://doi.org/10.3791/52246, 1–15 (2015).90.Yang, C. et al. A draft genome assembly of spotted hyena, Crocuta crocuta. Sci. Data 7, 1–10 (2020).CAS 
    Article 

    Google Scholar 
    91.Mccormick, J. A. et al. 5’-Heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events. Mol. Endocrinol. 14, 506–517 (2000).CAS 
    PubMed 

    Google Scholar 
    92.Szyf, M., Weaver, I. C. G., Champagne, F. A., Diorio, J. & Meaney, M. J. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front. Neuroendocrinol. 26, 139–162 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Van Meter, P. E. et al. Fecal glucocorticoids reflect socio-ecological and anthropogenic stressors in the lives of wild spotted hyenas. Horm. Behav. 55, 329–337 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    94.Dloniak, S. M. et al. Non-invasive monitoring of fecal androgens in spotted hyenas (Crocuta crocuta). Gen. Comp. Endocrinol. 135, 51–61 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Laubach, Z. M., Murray, E. J., Hoke, K. L., Safran, R. J. & Perng, W. A biologist’s guide to model selection and causal inference. Proc. R. Soc. Ser. B https://doi.org/10.1098/rspb.2020.2815 (2021).96.Engh, A. L., Esch, K., Smale, L. & Holekamp, K. E. Mechanisms of maternal rank ‘inheritance’ in the spotted hyaena, Crocuta crocuta. Anim. Behav. 60, 323–332 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Baron, R. M. & Kenny, D. A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Chadeau-Hyam, M. et al. Meeting-in-the-middle using metabolic profiling-a strategy for the identification of intermediate biomarkers in cohort studies. Biomarkers 16, 83–88 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Lea, A. J., Altmann, J., Alberts, S. C. & Tung, J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol. Ecol. 25, 1681–1696 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Lea, A. J., Tung, J. & Zhou, X. A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulfite sequencing data. PLoS Genet. 11, 1–31 (2015).Article 
    CAS 

    Google Scholar 
    101.van Iterson, M. et al. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol. 18, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    102.Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple statistical significance testing. Stat. Med. 9, 811–818 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Laubach, Z. M. et al. Early-life social experience affects offspring DNA methylation and later life stress phenotype. https://doi.org/10.5281/zenodo.4967924 (2021). More

  • in

    Response to substrate limitation by a marine sulfate-reducing bacterium

    1.Jørgensen BB. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature. 1982;296:643–5.Article 

    Google Scholar 
    2.Kasten S, Jørgensen BB. Sulfate reduction in marine sediments. In: Schulz H, Zabel M, editors. Marine geochemistry. Berlin: Springer; 2000. pp. 263–81.3.Pellerin A, Antler G, Røy H, Findlay A, Beulig F, Scholze C, et al. The sulfur cycle below the sulfate-methane transition of marine sediments. Geochim Cosmochim Acta. 2018;239:74–89.CAS 
    Article 

    Google Scholar 
    4.Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev. 2007;107:486–513.CAS 
    Article 

    Google Scholar 
    5.Holmkvist L, Ferdelman TG, Jørgensen BB. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta. 2011;75:3581–99.CAS 
    Article 

    Google Scholar 
    6.Starnawski P, Bataillon T, Ettema TJ, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017;114:2940–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Jørgensen BB, Marshall IP. Slow microbial life in the seabed. Annu Rev Mar Sci. 2016;8:311–32.Article 

    Google Scholar 
    9.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Button DK. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985;49:270–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.De Mattos MT, Neijssel OM. Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol. 1997;59:117–26.Article 

    Google Scholar 
    12.Egli T. How to live at very low substrate concentration. Water Res. 2010;44:4826–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature. 2020;579:250–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Zinke LA, Mullis MM, Bird JT, Marshall IP, Jørgensen BB, Lloyd KG, et al. Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. Environ Microbiol Rep. 2017;9:528–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Orsi WD, Jørgensen BB, Biddle JF. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor. Environ Microbiol Rep. 2016;8:452–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Orsi WD, Edgcomb VP, Christman GD, Biddle JF. Gene expression in the deep biosphere. Nature. 2013;499:205–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Cappenberg TE. A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria. Microb Ecol. 1975;2:60–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Middleton AC, Lawrence AW. Kinetics of microbial sulfate reduction. J Water Pollut Control Fed. 1977;49:1659–70.CAS 

    Google Scholar 
    19.Nethe-Jaenchen R, Thauer RK. Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Arch Microbiol. 1984;137:236–40.CAS 
    Article 

    Google Scholar 
    20.Ingvorsen K, Zehnder AJ, Jørgensen BB. Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl Environ Microbiol. 1984;47:403–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cypionka H, Pfennig N. Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol. 1986;143:396–9.CAS 
    Article 

    Google Scholar 
    22.Okabe S, Characklis WG. Effects of temperature and phosphorous concentration on microbial sulfate reduction by Desulfovibrio desulfuricans. Biotechnol Bioeng. 1992;39:1031–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Okabe S, Nielsen PH, Characklis WG. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol Bioeng. 1992;40:725–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Habicht KS, Salling L, Thamdrup B, Canfield DE. Effect of low sulfate concentrations on lactate oxidation and isotope fractionation during sulfate reduction by Archaeoglobus fulgidus strain Z. Appl Environ Microbiol. 2005;71:3770–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Davidson MM, Bisher ME, Pratt LM, Fong J, Southam G, Pfiffner SM, et al. Sulfur isotope enrichment during maintenance metabolism in the thermophilic sulfate-reducing bacterium Desulfotomaculum putei. Appl Environ Microbiol. 2009;75:5621–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Brysch K, Schneider C, Fuchs G, Widdel F. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol. 1987;148:264–74.CAS 
    Article 

    Google Scholar 
    27.Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, et al. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol. 2009;11:1038–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Dörries M, Wöhlbrand L, Rabus R. Differential proteomic analysis of the metabolic network of the marine sulfate-reducer Desulfobacterium autotrophicum HRM2. Proteomics. 2016;16:2878–93.PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front Microbiol. 2019;10:758.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Jochum LM, Chen X, Lever MA, Loy A, Jørgensen BB, Schramm A, et al. Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of Aarhus Bay. Appl Environ Microbiol. 2017;83:e01547–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol. 2007;9:131–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Tarpgaard IH, Jørgensen BB, Kjeldsen KU, Røy H. The marine sulfate reducer Desulfobacterium autotrophicum HRM2 can switch between low and high apparent half-saturation constants for dissimilatory sulfate reduction. FEMS Microbiol Ecol. 2017;93:fix012.Article 
    CAS 

    Google Scholar 
    33.Marietou A, Røy H, Jørgensen BB, Kjeldsen KU. Sulfate transporters in dissimilatory sulfate reducing microorganisms: a comparative genomics analysis. Front Microbiol. 2018;9:309.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Tarpgaard IH, Røy H, Jørgensen BB. Concurrent low-and high-affinity sulfate reduction kinetics in marine sediment. Geochim Cosmochim Acta. 2011;75:2997–3010.CAS 
    Article 

    Google Scholar 
    35.Volpi M, Lomstein BA, Sichert A, Røy H, Jørgensen BB, Kjeldsen KU. Identity, abundance, and reactivation kinetics of thermophilic fermentative endospores in cold marine sediment and seawater. Front Microbiol. 2017;8:131.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Glombitza C, Pedersen J, Røy H, Jørgensen BB. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry. Limnol Oceanogr Methods. 2014;12:455–68.CAS 
    Article 

    Google Scholar 
    37.Glombitza C, Jaussi M, Røy H, Seidenkrantz MS, Lomstein BA, Jørgensen BB. Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland. Front Microbiol. 2015;6:846.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Reese BK, Finneran DW, Mills HJ, Zhu MX, Morse JW. Examination and refinement of the determination of aqueous hydrogen sulfide by the methylene blue method. Aquat Geochem. 2011;17:567.CAS 
    Article 

    Google Scholar 
    39.Beulig F, Røy H, McGlynn SE, Jørgensen BB. Cryptic CH 4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME J. 2019;13:250–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. MBio 2017;8:e00671–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012;40:D115–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Rabus R, Venceslau SS, Wöhlbrand L, Voordouw G, Wall JD, Pereira IAC. Chapter two—a post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv Micro Physiol. 2015;66:55–321.CAS 
    Article 

    Google Scholar 
    43.Finke N, Vandieken V, Jørgensen BB. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol. 2007;59:10–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Sonne-Hansen J, Westermann P, Ahring BK. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3. Appl Environ Microbiol. 1999;65:1304–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Keller KL, Wall JD. Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front Microbiol. 2011;2:135.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Molenaar D, Van Berlo R, De Ridder D, Teusink B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol. 2009;5:323.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol. 2006;72:3653–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Meyer B, Kuehl JV, Price MN, Ray J, Deutschbauer AM, Arkin AP, et al. The energy-conserving electron transfer system used by Desulfovibrio alaskensis strain G 20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membrane-bound complexes, Hdr-Flox and Rnf. Environ Microbiol. 2014;16:3463–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Noguera DR, Brusseau GA, Rittmann BE, Stahl DA. A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechn Bioengin. 1998;59:732–46.CAS 
    Article 

    Google Scholar 
    50.Odom JM, Peck HD Jr. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett. 1981;12:47–50.CAS 
    Article 

    Google Scholar 
    51.Lupton FS, Conrad R, Zeikus JG. Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol. 1984;159:843–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Jin Q, Bethke CM. Cellular energy conservation and the rate of microbial sulfate reduction. Geology. 2009;37:1027–30.CAS 
    Article 

    Google Scholar 
    53.Hoskisson PA, Hobbs G. Continuous culture-making a comeback? Microbiology. 2005;151:3153–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci. 1999;96:2896–901.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Hocking WP, Stokke R, Roalkvam I, Steen IH. Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses. Front Microbiol. 2014;5:95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Pereira IA, Ramos AR, Grein F, Marques MC, Da Silva SM, Venceslau SS. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol. 2011;2:69.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Noji H, Yoshida M. The rotary machine in the cell, ATP synthase. J Biol Chem. 2001;276:1665–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Plugge CM, Scholten JC, Culley DE, Nie L, Brockman FJ, Zhang W. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism. Microbiol. 2010;156:2746–56.CAS 
    Article 

    Google Scholar 
    59.Phadtare S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 2004;6:125–36.CAS 
    PubMed 

    Google Scholar 
    60.Rabus R, Brüchert V, Amann J, Könneke M. Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol. 2002;42:409–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Barker HA. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem. 1981;50:23–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Zinser ER, Kolter R. Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol. 1999;181:5800–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Wick LM, Quadroni M, Egli T. Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol. 2001;3:588–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Vollmer AC, Bark SJ. Twenty-five years of investigating the universal stress protein: function, structure, and applications. In: Advances in applied microbiology. Academic Press; 2018. pp. 1–36.65.Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan XF, et al. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol. 2006;72:5578–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Schauder R, Preuß A, Jetten M, Fuchs G. Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol. 1988;151:84–9.Article 

    Google Scholar 
    67.Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, et al. Regulation of acetyl coenzyme A synthetase in. Escherichia coli J Bacteriol. 2000;182:4173–9.CAS 
    PubMed 

    Google Scholar 
    68.Wang Q, Ou MS, Kim Y, Ingram LO, Shanmugam KT. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase. Appl Environ Microbiol. 2010;76:2107–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol Adv. 2019;37:284–305.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Verhagen MF, O’Rourke T, Adams MW. The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta. 1999;1412:212–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Rabus RA, Hansen TA, Widdel FR. Dissimilatory sulfate-and sulfur-reducing prokaryotes. Prokaryotes. 2006;2:659–768.Article 

    Google Scholar 
    72.Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C, Johnston DT, et al. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science. 2015;350:1541–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Buckel W, Thauer RK. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front Microbiol. 2018;9:401.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Venceslau SS, Stockdreher Y, Dahl C, Pereira IAC. The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. BBA Bioenerg. 2014;1837:1148–64.CAS 
    Article 

    Google Scholar 
    75.Grein F, Ramos AR, Venceslau SS, Pereira IA. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. BBA Bioenerg. 2013;1827:145–60.CAS 
    Article 

    Google Scholar 
    76.Stahlmann J, Warthmann R, Cypionka H. Na+-dependent accumulation of sulfate and thiosulfate in marine sulfate-reducing bacteria. Arch Microbiol. 1991;155:554–8.CAS 
    Article 

    Google Scholar 
    77.Wöhlbrand L, Ruppersberg H, Feenders C, Blasius B, Braun HP, Rabus R. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. Proteomics. 2016;16:973–88.PubMed 
    Article 
    CAS 

    Google Scholar 
    78.Marietou A, Lund MB, Marshall IP, Schreiber L, Jørgensen BB. Complete genome sequence of Desulfobacter hydrogenophilus AcRS1. Mar Genom. 2020;50:100691.Article 

    Google Scholar 
    79.Zhang W, Culley DE, Wu G, Brockman FJ. Two-component signal transduction systems of Desulfovibrio vulgaris: structural and phylogenetic analysis and deduction of putative cognate pairs. J Mol Evol. 2006;62:473–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Rajeev L, Luning EG, Dehal PS, Price MN, Arkin AP, Mukhopadhyay A. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium. Genome Biol. 2011;12:R99.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Taher R, de Rosny E. A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra. Biochim Biophys Acta. 2020;1865:129810.Article 
    CAS 

    Google Scholar 
    82.Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science. 2014;345:676–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Yoon S, Cruz-García C, Sanford R, Ritalahti KM, Löffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3−/NO2− reduction pathways in Shewanella loihica strain PV-4. ISME J. 2015;9:1093–104.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate‐reducing bacteria prevents their inhibition by nitrate‐reducing, sulphide‐oxidizing bacteria. Environ Microbiol. 2003;5:607–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Ingvorsen K, Jørgensen BB. Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol. 1984;139:61–6.CAS 
    Article 

    Google Scholar  More

  • in

    Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea

    1.Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev. 2007;107:486–513.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci USA. 2016;113:E4069–E4078.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio. 2017;8:e00530–e00517.PubMed 
    PubMed Central 

    Google Scholar 
    5.Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA. 2002;99:7663–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front Microbiol. 2016;7:869.Article 

    Google Scholar 
    7.Metcalfe KS, Murali R, Mullin SW, Connon SA, Orphan VJ. Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy. ISME J. 2020;15:1–20.8.Krukenberg V, Riedel D, Gruber Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol. 2018;20:1651–6.9.Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature. 2012;491:541–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol. 2010;12:2327–40.CAS 
    PubMed 

    Google Scholar 
    11.Yu H, Susanti D, McGlynn SE, Skennerton CT, Chourey K, Iyer R, et al. Comparative genomics and proteomic analysis of assimilatory sulfate reduction pathways in anaerobic methanotrophic archaea. Front Microbiol. 2018;9:2917.12.Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016;351:703–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Liu Y, Beer LL, Whitman WB. Sulfur metabolism in archaea reveals novel processes. Environ Microbiol. 2012;14:2632–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Perona JJ, Rauch BJ, Driggers CM. Sulfur assimilation and trafficking in methanogens. In: Rampelotto PH, editor. Molecular Mechanisms of Microbial Evolution. Cham: Springer International Publishing; 2018. p. 371–408.17.White RH, Allen KD, Wegener G. Identification of a redox active thioquinoxalinol sulfate compound produced by an anaerobic methane-oxidizing microbial consortium. ACS Omega. 2019;4:22613–22.18.Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr. 1969;14:454–8.CAS 
    Article 

    Google Scholar 
    19.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Mason OU, Case DH, Naehr TH, Lee RW, Thomas RB, Bailey JV, et al. Comparison of archaeal and bacterial diversity in methane seep carbonate nodules and host sediments, Eel River Basin and Hydrate Ridge, USA. Microb Ecol. 2015;70:766–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Laczny CC, Sternal T, Plugaru V, Gawron P, Atashpendar A, Margossian HH, et al. VizBin – an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome. 2015;3:1.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    26.Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D677.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–D13.Article 
    CAS 

    Google Scholar 
    28.Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–D379.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Knittel K, Losekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005;71:467–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Manz W, Eisenbrecher M, Neu TR, Szewzyk U. Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol. 1998;25:43–61.CAS 
    Article 

    Google Scholar 
    32.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    Article 

    Google Scholar 
    35.Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14:687–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    37.McGee WA, Pimentel H, Pachter L, Wu JY. Compositional Data Analysis is necessary for simulating and analyzing RNA-Seq data. bioRxiv 2019;564955.38.Rocha DJP, Santos CS, Pacheco LGC. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie van Leeuwenhoek. 2015;108:685–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Waite DW, Whitman WB, et al. A rank-normalized archaeal taxonomy based on genome phylogeny resolves widespread incomplete and uneven classifications. bioRxiv. 2020. https://doi.org/10.1101/2020.03.01.972265.42.Orphan VJ, Turk KA, Green AM, House CH. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environ Microbiol. 2009;11:1777–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Girguis PR, Cozen AE, DeLong EF. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol. 2005;71:3725–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol. 2007;9:187–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Meulepas RJW, Jagersma CG, Khadem AF, Buisman CJN, Stams AJM, Lens PNL. Effect of environmental conditions on sulfate reduction with methane as electron donor by an Eckernförde Bay enrichment. Environ Sci Technol. 2009;43:6553–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.McGlynn SE. Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ. 2017;32:5–13.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Wang F-P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K-U, et al. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 2014;8:1069–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, et al. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol. 2010;12:422–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Cai C, Leu AO, Xie G-J, Guo J, Feng Y, Zhao J-X, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 2018;1:285.
    Google Scholar 
    50.Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020;14:1030–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Yanagawa K, Sunamura M, Lever MA, Morono Y, Hiruta A, Ishizaki O, et al. Niche separation of methanotrophic archaea (ANME-1 and-2) in methane-seep sediments of the eastern Japan Sea offshore Joetsu. Geomicrobiol J. 2011;28:118–29.CAS 
    Article 

    Google Scholar 
    52.Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, et al. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J. 2012;6:1018–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 2011;5:1946–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Roalkvam I, Jørgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP, et al. New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol. 2011;78:233–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Timmers PHA, Widjaja-Greefkes HCA, Ramiro-Garcia J, Plugge CM, Stams AJM. Growth and activity of ANME clades with different sulfate and sulfide concentrations in the presence of methane. Front Microbiol. 2015;6:988.56.Nauhaus K, Treude T, Boetius A, Krüger M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol. 2005;7:98–106.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME J. 2014;8:150–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol. 2008;10:2287–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Scherer P, Lippert H, Wolff G. Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol Trace Elem Res. 1983;5:149–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 2008;105:3968–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Kotloski NJ, Gralnick JA. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 2013;4:e00553–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Mevers E, Su L, Pishchany G, Baruch M, Cornejo J, Hobert E, et al. An elusive electron shuttle from a facultative anaerobe. eLife. 2019;8:e48054.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Anderson AG, Iii FBC, Odom JM, Weimer PJ. Anthraquinones as inhibitors of sulfide production from sulfate-reducing bacteria. 1991.64.Wang X, Cheng X, Ren Y, Xu G, Tang J. Humic analog AQDS can act as a selective inhibitor to enable anoxygenic photosynthetic bacteria to outcompete sulfate-reducing bacteria under microaerobic conditions. J Chem Technol Biotechnol. 2016;91:2103–10.CAS 
    Article 

    Google Scholar 
    65.Lee YH, Pavlostathis SG. Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res. 2004;38:1838–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Wu Y-W, Ouyang J, Xiao X-H, Gao W-Y, Liu Y. Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin J Chem. 2006;24:45–50.CAS 
    Article 

    Google Scholar 
    67.Novotný Č, Dias N, Kapanen A, Malachová K, Vándrovcová M, Itävaara M, et al. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere. 2006;63:1436–42.PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Shyu JBH, Lies DP, Newman DK. Protective role of tolC in efflux of the electron shuttle anthraquinone-2,6-disulfonate. J Bacteriol. 2002;184:1806–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature. 1996;382:445–8.CAS 
    Article 

    Google Scholar 
    70.Newman DK, Kolter R. A role for excreted quinones in extracellular electron transfer. Nature. 2000;405:94–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Holmes DE, Ueki T, Tang H-Y, Zhou J, Smith JA, Chaput G, et al. A membrane-bound cytochrome enables Methanosarcina acetivorans to conserve energy from extracellular electron transfer. mBio. 2019;10:e00789–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol. 2018;169:401–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Crow A, Greene NP, Kaplan E, Koronakis V. Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proc Natl Acad Sci USA. 2017;114:12572–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Jiménez-Otero F, Chan CH, Bond DR. Identification of different putative outer membrane electron conduits necessary for Fe (III) citrate, Fe (III) oxide, Mn (IV) oxide, or electrode reduction by Geobacter sulfurreducens. J Bacteriol. 2018;200:3061.Article 

    Google Scholar 
    75.Plugge CM, Scholten JCM, Culley DE, Nie L, Brockman FJ, Zhang W. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism. Microbiology. 2010;156:2746–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Walker CB, He Z, Yang ZK, Ringbauer JAJ, He Q, Zhou J, et al. The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J Bacteriol. 2009;191:5793–801.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Wenter R, Hütz K, Dibbern D, Li T, Reisinger V, Plöscher M, et al. Expression-based identification of genetic determinants of the bacterial symbiosis ‘Chlorochromatium aggregatum’. Environ Microbiol. 2010;12:2259–76.CAS 
    PubMed 

    Google Scholar  More

  • in

    The role of ascorbic acid combined exposure on Imidacloprid-induced oxidative stress and genotoxicity in Nile tilapia

    1.El-Sayed, Y. S., Saad, T. T. & El-Bahr, S. M. Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ. Toxicol. Pharmacol. 24, 212–217 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Suman, B., Nilanjan, C. H., Lopamudra, G., Sayan, M. & Ganguly, P. M. K. Modulation of blood profile of juvenile Cyprinus carpio exposed to imidacloprid. Int. J. Life Sci. 5, 627–630 (2017).
    Google Scholar 
    3.Santos, E. L., WINTERLE, Waleska de Melo Costa, Ludke, Maria do Carmo M. M.; Barbosa, J. M. Digestibilidade de ingredientes alternativos para tilápia-do-nilo (Oreochromis niloticus): Revisão. Rev. Bras. Eng. Pesca 3, 135–149 (2008).4.Américo-Pinheiro, J.H.P., da Cruz, C., Aguiar, M.M. et al. Sublethal effects of imidacloprid in hematological parameters of tilapia (Oreochromis niloticus). Water. Air. Soil Pollut. 230 (2019).5.Omar, R. H., Hagras, A. A., El-naggar, A. M. & Mashaly, M. I. Ecological, hematological and parasitological studies on Oreochromis niloticus Linnaeus 1757 in the Nile Delta Region, Egypt. . Egypt. J. Aquat. Biol. Fish. 25, 795–819 (2021).Article 

    Google Scholar 
    6.Tomlin. the pesticide manual 12 edition. Farnham, Surrey, UK: British Crop Protection Council (2000).7.Vieira, C. E. D., Pérez, M. R., Acayaba, R. D. A., Raimundo, C. C. M. & dos Reis Martinez, C. B. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere https://doi.org/10.1016/j.chemosphere.2017.12.077 (2018).Article 
    PubMed 

    Google Scholar 
    8.Mason, R. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J. Enviromental Immunol. Toxicol. 1, 3 (2013).ADS 
    Article 

    Google Scholar 
    9.Berheim, E. H. et al. Effects of neonicotinoid insecticides on physiology and reproductive characteristics of captive female and fawn white-tailed deer. Sci. Rep. 9, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    10.Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. https://doi.org/10.1021/jf101303g (2011).Article 
    PubMed 

    Google Scholar 
    11.Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article 

    Google Scholar 
    12.Valavanidis, A., Vlahogianni, T., Dassenakis, M. & Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64, 178–189 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Özkan, F., Gündüz, S. G., Berköz, M., Hunt, A. Ö. & Yalın, S. The protective role of ascorbic acid (vitamin C) against chlorpyrifos-induced oxidative stress in Oreochromis niloticus. Fish Physiol. Biochem. 38, 635–643 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Saeed, M., Amen, A., Fahmi, A., Garawani, I. E. & Sayed, S. The possible protective effect of Coriandrum sativum seeds methanolic extract on hepato-renal toxicity induced by sodium arsenite in albino rats. J. Appl. Pharm. Sci. 4, 044–051 (2014).Article 

    Google Scholar 
    15.Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 22, 103–118 (2015).CAS 
    Article 

    Google Scholar 
    16.Özdemir, S., Altun, S. & Arslan, H. Imidacloprid exposure cause the histopathological changes, activation of TNF-α iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L.). Toxicol. Rep. 5, 125–133 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Iturburu, F. G., Simoniello, M. F., Medici, S., Panzeri, A. M. & Menone, M. L. Imidacloprid causes DNA damage in fish: Clastogenesis as a mechanism of genotoxicity. Bull. Environ. Contam. Toxicol. 100, 760–764 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Shan, Y., Yan, S., Hong, X., Zha, J. & Qin, J. Effect of imidacloprid on the behavior, antioxidant system, multixenobiotic resistance, and histopathology of Asian freshwater clams (Corbicula fluminea). Aquat. Toxicol. 218, 105333 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Anderson, S. et al. Genetic and molecular ecotoxicology: A research framework. Environ. Health Perspect. 102, 3–8 (1994).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Bolognesi, C., Perrone, E., Roggieri, P., Pampanin, D. M. & Sciutto, A. Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquat. Toxicol. 78, S93–S98 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Guilherme, S., Santos, M. A., Barroso, C., Gaivão, I. & Pacheco, M. Differential genotoxicity of Roundup® formulation and its constituents in blood cells of fish (Anguilla anguilla): Considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology 21, 1381–1390 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Hoshina, M. M. & Marin-Morales, M. A. Evaluation of the genotoxicity of petroleum refinery effluents using the comet assay in Oreochromis niloticus (Nile tilapia). J. Brazilian Soc. Ecotoxicol. 5, 75–79 (2010).Article 

    Google Scholar 
    23.Poletta, G. L. et al. Comet assay in gill cells of Prochilodus lineatus exposed in vivo to cypermethrin. Pestic. Biochem. Physiol. 107, 385–390 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Cheng, C. H. et al. Effect of nitrite exposure on oxidative stress, DNA damage and apoptosis in mud crab (Scylla paramamosain). Chemosphere 239, 124668 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Alvim, T. T. & dos Martinez, C. B. R. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 842, 85–93 (2019).CAS 
    Article 

    Google Scholar 
    26.El-Garawani, I. M., El-Nabi, S. H., El-Shafey, S., Elfiky, M. & Nafie, E. Coffea arabica bean extracts and vitamin C: A novel combination unleashes MCF-7 cell death. Curr. Pharm. Biotechnol. https://doi.org/10.2174/1389201020666190822161337 (2019).Article 

    Google Scholar 
    27.Garg, M. C. & Bansal, D. D. Protective antioxidant effect of vitamins C and E in streptozotocin induced diabetic rats. Indian J. Exp. Biol. 38, 101–104 (2000).CAS 
    PubMed 

    Google Scholar 
    28.Al-Anazi, M. S., Virk, P., Elobeid, M. & Siddiqui, M. I. Ameliorative effects of Rosmarry on cadmium. J. Environ. Biol. 36, 1401–1408 (2015).CAS 
    PubMed 

    Google Scholar 
    29.Erdman, J. W., MacDonald, I. A. & Zeisel, S. H. Present Knowledge in Nutrition: Tenth Edition. (2012). https://doi.org/10.1002/978111994604530.Bruno, R. S. et al. Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic. Biol. Med. 40, 689–697 (2006).CAS 
    Article 

    Google Scholar 
    31.Bebe, F. N. & Panemangalore, M. Exposure to low doses of endosulfan and chlorpyrifos modifies endogenous antioxidants in tissues of rats. J. Environ. Sci. Heal. Part B Pestic Food Contam. Agric. Wastes 38, 349–363 (2003).Article 
    CAS 

    Google Scholar 
    32.Yen, G. C., Duh, P. D. & Tsai, H. L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79, 307–313 (2002).CAS 
    Article 

    Google Scholar 
    33.Fathima, P. S., Priyatha, C. V & Chitra, K. C. Ameliorating effect of vitamin c on acid orange 7 induced oxidative stress in the gill of the fish, Anabas testudineus (Bloch, 1792). Res. Rev.: J. Toxicol 8, 15–27 (2018).34.Ghazanfar, M., Shahid, S. & Qureshi, I. Z. Vitamin C attenuates biochemical and genotoxic damage in common carp (Cyprinus carpio) upon joint exposure to combined toxic doses of fipronil and buprofezin insecticides. Aquat. Toxicol 196, 43-52 (2018).35.Verlhac, V., Obach, A., Gabaudan, J., Schüep, W. & Hole, R. Immunomodulation by dietary vitamin C and glucan in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 8, 409–424 (1998).Article 

    Google Scholar 
    36.Ge, W. et al. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J. Agric. Food Chem. https://doi.org/10.1021/jf504895h (2015).Article 
    PubMed 

    Google Scholar 
    37.Zhang, T. et al. Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea). Fish Shellfish Immunol. 99, 514–525 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Burk, R., Hill, K. & Nutrition, A.M.-T.J. Selenoprotein metabolism and function: Evidence for more than one function for selenoprotein P. J. Nutr. 133(5 Suppl 1), 1517S–20S (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Atencio, L. et al. Effects of dietary selenium on the oxidative stress and pathological changes in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Toxicon https://doi.org/10.1016/j.toxicon.2008.11.011 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Pacini, N., Abete, M. C., Dörr, A. J. M., Prearo, M., Natali, M., & Elia, A. C. Detoxifying response in juvenile tench fed by selenium diet. Environ. Toxicol. Pharmacol. 33(1), 46-52 (2011). 41.Neamat-Allah, A. N. F., Mahmoud, E. A. & Abd El Hakim, Y. Efficacy of dietary Nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection. Fish Shellfish Immunol. 94, 280–287 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Saddick, S., Afifi, M. & Abu Zinada, O. A. Effect of Zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J. Biol. Sci. 24, 1672–1678 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Gatta, P. P., Pirini, M., Testi, S., Vignola, G. & Monetti, P. G. The influence of different levels of dietary vitamin E on sea bass Dicentrarchus labrax flesh quality. Aquac. Nutr. 6, 47–52 (2000).CAS 
    Article 

    Google Scholar 
    44.Neamat-Allah, A. N. F., Mahmoud, E. A., Abd, Y. & Hakim, E. Efficacy of dietary Nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection. Fish Shellfish Immunol. 94, 280–287 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Nikinmaa, M. & Rytkönen, K. T. Functional genomics in aquatic toxicology-Do not forget the function. Aquat. Toxicol. 105, 16–24 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.El-Garawani, I. M. et al. A newly isolated strain of Halomonas sp. (HA1) exerts anticancer potential via induction of apoptosis and G2/M arrest in hepatocellular carcinoma (HepG2) cell line. Sci. Rep. https://doi.org/10.1038/s41598-020-70945-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish australoheros facetus. Wiley Online Libr. 36, 699–708 (2017).CAS 

    Google Scholar 
    48.Paravani, E., Simoniello, M. F., Poletta, G. L. & Casco, V. H. Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicol. Environ. Saf. 30, 1–7 (2019).Article 
    CAS 

    Google Scholar 
    49.Saxena, K. B., Kumar, R. V., Srivastava, N. & Shiying, B. A cytoplasmic-nuclear male-sterility system derived from a cross between Cajanus cajanifolius and Cajanus cajan. Euphytica 145, 289–294 (2005).Article 

    Google Scholar 
    50.Bolognesi, C. & Cirillo, S. Genotoxicity biomarkers in aquatic bioindicators. Curr. Zool. 60, 273–284 (2014).CAS 
    Article 

    Google Scholar 
    51.Grummt, T., Grummt, H. J. & Schott, G. Chromosomal aberrations in peripheral lymphocytes of nurses and physicians handling antineoplastic drugs. Mutat. Res. Lett. 302, 19–24 (1993).CAS 
    Article 

    Google Scholar 
    52.Alimba, C. G., Ajiboye, R. D. & Fagbenro, O. S. Dietary ascorbic acid reduced micronucleus and nuclear abnormalities in Clarias gariepinus (Burchell 1822) exposed to hospital effluent. Fish Physiol. Biochem. 43, 1325–1335 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Moore, P. D., Patlolla, A. K. & Tchounwou, P. B. Cytogenetic evaluation of malathion-induced toxicity in Sprague–Dawley rats. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 725, 78–82 (2011).CAS 
    Article 

    Google Scholar 
    54.Mužinić, V., Ramić, S. & Želježić, D. Chromosome missegregation and aneuploidy induction in human peripheral blood lymphocytes in vitro by low concentrations of chlorpyrifos, imidacloprid and α-cypermethrin. . Environ. Mol. Mutagen. https://doi.org/10.1002/em.22235 (2019).Article 
    PubMed 

    Google Scholar 
    55.Ali, D. et al. Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2008.12.021 (2009).Article 
    PubMed 

    Google Scholar 
    56.El-Garawani, I., Hassab, S., Nabi, E. & El-Ghandour, E. The protective effect of (Foeniculum vulgare) oil on etoposide-induced genotoxicity on male albino rats. Eur. J. Pharm. Med. Res. 4, 180–194 (2017).
    Google Scholar 
    57.El-Garawani, I. et al. In vitro antigenotoxic, antihelminthic and antioxidant potentials based on the extracted metabolites from lichen, candelariella vitellina. Pharmaceutics https://doi.org/10.3390/pharmaceutics12050477 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Ojha, A. & Srivastava, N. In vitro studies on organophosphate pesticides induced oxidative DNA damage in rat lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. https://doi.org/10.1016/j.mrgentox.2014.01.007 (2010).Article 

    Google Scholar 
    59.Wang, J. et al. The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology https://doi.org/10.1007/s10646-014-1321-8 (2014).Article 
    PubMed 

    Google Scholar 
    60.Rosenfeld, L. Vitamine—vitamin. The early years of discovery‏. Clin. Chem. 680–685 (1997).61.Bigard, A. X. Lésions musculaires induites par l’exercice et surentraînement. Sci. Sports https://doi.org/10.1016/S0765-1597(00)00037-X (2001).Article 

    Google Scholar 
    62.Padayatty, S. J. et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 22, 18–35 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Sarma, K. et al. Dietary high protein and vitamin C mitigates endosulfan toxicity in the spotted murrel, Channa punctatus (Bloch, 1793). Sci. Total Environ. 407(12), 3668–3673 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Mirvaghefi, A., Mohsen, A. & Hadi Poorbagher, A. Effects of vitamin C on oxidative stress parameters in rainbow trout exposed to diazinon. Ege J. Fish. Aquat. Sci. 33, 113–120 (2016).
    Google Scholar 
    65.Narra, M. R., Rajender, K., Rudra Reddy, R., Rao, J. V., & Begum, G. The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere 132, 172-178 (2015). 66.Zhou, Q. et al. Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia (Rachycentron canadum). Fish Shellfish Immunol. 32(6), 969–975 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Kc, S., Càrcamo, J. M. & Golde, D. W. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Gluti) and confers mitochondrial protection against oxidative injury. FASEB J. 19, 1657–1667 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Lee, Y. C., Huang, H. Y., Chang, C. J., Cheng, C. H. & Chen, Y. T. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: Mechanistic insight into arterial tortuosity syndrome. Hum. Mol. Genet. 19, 3721–3733 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Banerjee, T. K. Estimation of acute toxicity of ammonium sulphate to the fresh water catfish, Heteropneustes fossilis I. Analysis of LC50 values determined by various methods. Biomed. Environ. Sci. 6, 31–36 (1993).CAS 
    PubMed 

    Google Scholar 
    70.Hamilton, M. A., Russo, R. C. & Thurston, R. V. Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11, 714–719 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Redlich, D., Shahin, N., Ekici, P., Friess, A. & Parlar, H. Kinetical study of the photoinduced degradation of imidacloprid in aquatic media. CLEAN Soil Air Water 35, 452–458 (2007).CAS 
    Article 

    Google Scholar 
    72.Çakmakçi, S. & Turgut, T. Influence of different light sources, illumination intensities and storage times on the vitamin C content in pasteurized milk. Turkish J. Vet. Anim. Sci. 29, 1097–1100 (2005).
    Google Scholar 
    73.Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72,248-254 (1976).74.Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351-358 (1979).75.Nishikimi, M., Appaji Rao, N., & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen‏. Biochem. Biophys. Res. Commun. 46(2), 849–54 (1972).76.Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Aglia, D. & Valentine, W. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70(1), 158–69 (1967).
    Google Scholar 
    78.Abdelazim, A. M., Saadeldin, I. M., Swelum, A. A.-A., Afifi, M. M., & Alkaladi, A Oxidative stress in the muscles of the fish Nile tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxid. Med. Cell. Longev. 6926712 (2018).79.Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Chen, T. & Ebeling, A. Karyological evidence of female heterogamety in the mosquitofish, Gambusia affinis. Copeia 1, 70–75 (1968).Article 

    Google Scholar 
    81.Nanda, I. et al. Chromosomal evidence for laboratory synthesis of a triploid hybrid between the gynogenetic teleost Poecilia formosa and its host species. J. Fish Biol. 47, 619–623 (1995).
    Google Scholar  More

  • in

    Complex causes of insect declines

    1.Vidal, O. & Rendon-Salinas, E. Biol. Conserv. 180, 165–175 (2014).Article 

    Google Scholar 
    2.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Biol. Conserv. 214, 343–346 (2017).Article 

    Google Scholar 
    3.Semmens, B. X. et al. Sci. Rep. 6, 23265 (2016).CAS 
    Article 

    Google Scholar 
    4.Zylstra, E. R. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01504-1 (2021).5.Warren, M. S. et al. Proc. Natl Acad. Sci. USA 118, e2002551117 (2021).CAS 
    Article 

    Google Scholar 
    6.van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W., Poot, M. J. M. & WallisDeVriesb, M. F. Biol. Conserv. 234, 116–122 (2019).Article 

    Google Scholar 
    7.Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. PLoS ONE 14, e0216270 (2019).CAS 
    Article 

    Google Scholar 
    8.van Klink, R. et al. Science 368, 417–420 (2020).Article 

    Google Scholar 
    9.Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Nat. Ecol. Evol. 4, 384–392 (2020).Article 

    Google Scholar 
    10.Pleasants, J. M. & Oberhauser, K. S. Insect Conserv. Diversity 6, 135–144 (2013).Article 

    Google Scholar 
    11.Agrawal, A. A. & Inamine, H. Science 360, 1294–1296 (2018).CAS 
    Article 

    Google Scholar 
    12.Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Oikos 125, 1081–1091 (2016).Article 

    Google Scholar 
    13.Thogmartin, W. E. et al. R. Soc. Open Sci. 4, 170760 (2017).Article 

    Google Scholar 
    14.Flockhart, D. T. T., Pichancourt, J. B., Norris, D. R. & Martin, T. G. J. Anim. Ecol. 84, 155–165 (2015).Article 

    Google Scholar 
    15.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).CAS 
    Article 

    Google Scholar 
    16.Raven, P. H. & Wagner, D. L. Proc. Natl Acad. Sci. USA 118, e2002548117 (2021).CAS 
    Article 

    Google Scholar 
    17.Montgomery, G. A. et al. Biol. Conserv. 241, 108327 (2020).Article 

    Google Scholar 
    18.Hallmann, C. A. et al. PLoS ONE 12, e0185809 (2017).Article 

    Google Scholar 
    19.Hallmann, C. A. et al. Insect Conserv. Diversity 13, 127–139 (2020).Article 

    Google Scholar 
    20.Miller, D. A. W., Pacifici, K., Sanderlin, J. S. & Reich, B. J. Methods Ecol. Evol. 10, 22–37 (2019).Article 

    Google Scholar 
    21.Isaac, N. J. B. et al. Trends Ecol. Evol. 35, 56–67 (2020).Article 

    Google Scholar 
    22.Pagel, J. et al. Methods Ecol. Evol. 5, 751–760 (2014).Article 

    Google Scholar 
    23.Schaub, M. & Abadi, F. J. Ornithol. 152, 227–237 (2011).Article 

    Google Scholar 
    24.Dennis, E. B. et al. Ecol. Modell. 441, 109408 (2021).Article 

    Google Scholar 
    25.Zipkin, E. F. & Saunders, S. P. Biol. Conserv. 217, 240–250 (2018).Article 

    Google Scholar  More

  • in

    Characterization of resistance and fitness cost of Descurainia sophia L. populations from Henan and Xinjiang, China

    Plant materialA total of 42 D. sophia populations were collected from winter wheat fields of Henan (H1-11) and Xinjiang (X1-31) in China during 2015–2017. The geographical origin and collection year of D. sophia populations were provided in Table S1 and Fig. S1. A tribenuron-methyl susceptible population of D. sophia (X13) was collected from Urumqi, Xingjiang.Seeds were soaked with 15% H2O2 for 30 min to break dormancy and rinsed thoroughly by water. The treated seeds were placed in moist petri dishes and then transferred to artificial climate chamber at 15 ℃, light/dark, 16/8 h for germination. After a week, the seedlings were transplanted to 10-cm diameter plastic pots containing loam soil (12 plants per pot) and then cultured in artificial climate chamber at 25/15 ℃, light/dark, 16/8 h with light intensity of 15,000 Lux. The seedlings were used in the following procedures.Single dose resistance assayThe discriminating dose of tribenuron-methyl at 18 g ai ha−1 was sprayed to the plants at 4-leaf stage using a potter precision laboratory spray tower (Burkard Scientific, UK) delivering 600 L ha−1 water at the pressure of 0.3 MPa. The fresh weight of aboveground of the plants were determined after tribenuron-methyl application for 21 days and the fresh weight reduction rate were calculated. The susceptibility of D. Sophia populations to tribenuron-methy was identified according to Moss et al.23 and populations classified as high resistance (RRR) were selected for further mutation type determination.Detection of ALS isozymes mutationGenomic DNA of RRR D. sophia populations were extracted from the survived plant using Wizard® Genomic DNA Purification Kit (Promega, Madison, WI). Primer pairs, PCR reaction and program cycle in Xu et al.1 were used to detect the eight resistance mutation sites in ALS isozymes. PCR products were purified with Wizard® SV Gel and PCR Clean-Up System (Promega) and inserted to pLB vector using Lethal Based Fast Cloning Kit (Tiangen, Beijing, China). The mixture was transformed to TOP10 competent E. coli (Tiangen) and finally sequenced by Shanghai Sangon Biological Engineering and Technology Service Co. (Shanghai, China). Ten individual plants and three clones of each were selected for ALS mutation detection.Generation of RRR homozygous subpopulationsPlants of RRR population with same mutation type in ALS isozymes were cultured to generate seeds. Homozygous subpopulation of susceptible population X13 with wild type of ALS isozymes were also obtained by inbred. In this way, six purified subpopulations (SX13, SX30, SX31, SH5, SH6, SH7) homozygous for wild type, Pro197Ser, Pro197His, Pro197Ala, Pro197Thr mutations, were obtained and used for the following experiments.Dose response of RRR D. sophia subpopulations to tribenuron-methylWhole-plant dose response experiment was employed to identify the GR50 of the RRR homozygous subpopulations. Seeds of subpopulation were cultured as mentioned previously. Tribenuron-methyl was applied to SX13 (0, 0.08, 0.16, 0.33, 0.66, 1.32, 2.64, 5.28, 10.56, 21.12 g ai ha−1), SH7 (0, 5, 10, 20, 40, 80, 160, 320 g ai ha−1) and SH5, SH6, SX30, SX31 (0, 50, 100, 200, 400, 800, 1600, 3200, 6400, 12,800, 25,600 g ai ha−1) subpopulations at 4-leaf stage using a potter precision laboratory spray tower delivering 600 L ha−1 water at the pressure of 0.3 MPa. The aboveground of the plants were harvested after treated for 21 days and the fresh weight was recorded. Each herbicide dose was conducted with three replications and repeated twice. GR50 was calculated by log-logistic equation24:$${text{y}} = {text{C}} + {{left( {{text{D}} – {text{C}}} right)} mathord{left/ {vphantom {{left( {{text{D}} – {text{C}}} right)} {left[ {1 + left( {{text{x}}/{text{GR}}_{50} } right)^{{text{b}}} } right]}}} right. kern-nulldelimiterspace} {left[ {1 + left( {{text{x}}/{text{GR}}_{50} } right)^{{text{b}}} } right]}}$$where C and D are the lower limit and upper limit, b is the slope, x is the herbicide dose, and y represents plant fresh weight as percentage of the control. RI, the ratio of GR50 of resistant populations to that of the susceptible population, was used to represent the resistance level.Cross-resistance patterns of RRR D. sophia subpopulations to other ALS-inhibiting herbicidesOther ALS-inhibiting herbicides, including flucarbazone-sodium (SCT), bensulfuron-methyl (SU), flumetsulam (TP), florasulam (TP), pyroxsulam (TP), imazapic (IMI) and bispyribac-sodium (PTB) were applied to D. sophia at 4-leaf stage with 1×, 5× and 10× fold of the recommendation doses. The herbicides and recommendation doses were listed in Table S2. The survival plant was recorded after treated for 21 days and each dose was replicated with three plastic pots containing 36 plants. Cross-resistance was confirmed as more than 50% individuals survived in the resistant population and less than 10% plants survived in the susceptible population6,25.Determination of RGR, LAR, NAR and RCC in susceptible and RRR subpopulationsRGR, LAR and NAR were used to indicate the nutritional growth level of susceptible and resistant homozygous subpopulations of D. sophia. RCC was used to evaluate their relative competition ability. RGR, LAR, NAR and RCC were determined according to Zhang et al. with a little modification17.Under monoculture condition, seeds of each subpopulation were planted separately with three replications and repeat twice. The aboveground tissues of D. sophia without herbicide treatment were sampled at 28, 35 and 42 days after transplant (DAT) to compare the nutritional growth between susceptible and resistant subpopulations. All leaves of the harvested plant were placed on A4 paper drawing with 1 cm2 square and photoed to calculate the leaf area by Photoshop CS3 extended (Adobe Systems Inc., USA). The dry weight was measured after the sample oven dried 96 h at the temperature of 60 ℃. RGR was estimated by the formula RGR = (ln W2 − ln W1)/(t2 − t1)26. LAR and NAR were calculated by the formula LAR = [(ln W2 − ln W1)(LA2 − LA1)]/[(W2 − W1)(ln LA2 − ln LA1)] and NAR = [(W2 − W1) (ln W2 − ln W1)]/[(LA2 − LA1)(t2 − t1)]27. W1 and W2 indicated dry weight per plant at times t1 and t2, respectively. LA1 and LA2 means leaf area per plant at t1 and t2, respectively.Under admixture condition, plants of susceptible and resistant subpopulations were cultured at a series ratio of S:R = 1:0, 3:1, 1:1, 1:3, 0:1 at a constant density of 644 plants m−2 (24 plants per tray, 23.3 cm × 16.0 cm × 6.0 cm) according to Reboud et al.28. The experiment was conducted with three replications and repeat twice. The aboveground shoots of each plant were harvested at 50 DAT and the leaf area and the dry weight were measured. RCC was calculated according to the formula: RCC = ({(DBS1:3/DBR1:3) + (DBS1:1/DBR1:1) + (DBS3:1/DBR3:1)}/N)/(DBS1:0/DBR1:0)29,30. DBSn:n and DBRn:n means the dry weight or the leaf area of each plant in susceptible and resistant subpopulations planted at ratio of n:n. N is the number of mixed ratio; here N = 3. RCC value greater than 1.0 suggested a superior competition ability of susceptible population. While RCC value less than 1.0 indicated lower competition ability of susceptible population.Statistical analysisThe data of bioassay was analyzed with SigmaPlot 12.0 (Systat Software, San Jose, CA). The statistical difference of the leaf area, dry weight, RGR, LAR, NAR of D. sophia populations with different ALS mutation were subjected to one-way analysis of variation (ANOVA) followed by Tukey’s multiple comparisons test using SPSS 16.0 (SPSS, Chicago, IL, USA). The criterion for statistical significance was P  More

  • in

    Effects of different straw biochar combined with microbial inoculants on soil environment in pot experiment

    1.Briskin, D. P. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol. 124, 507–514. https://doi.org/10.1104/pp.124.2.507 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Shibata, S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16, 28–37. https://doi.org/10.3346/jkms.2001.16.S.S28 (2001).Article 

    Google Scholar 
    3.Yuan, H. D. et al. Ginseng and diabetes: The evidences from in vitro, animal and human studies. J. Ginseng Res. 36, 27–39. https://doi.org/10.5142/jgr.2012.36.1.27 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Li, C. et al. Research and implementation of good agricultural practice for traditional Chinese medicinal materials in Jilin Province, China. J. Ginseng Res. 38, 227–232. https://doi.org/10.1016/j.jgr.2014.05.007 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Liu, M., Li, S., Xing, Y. & Ma, F. Identification of ginseng rust Rot fungus. J. Plant Pathol. 3, 183–185. https://doi.org/10.13926/j.cnki.apps.1984.03.012 (1984).Article 

    Google Scholar 
    6.Liu, Z., Chen, X. & Han, Y. Research on Ginseng rust rot pathogen under natural overwintering conditions. Northern Horticult. 3, 160–163. https://doi.org/10.11937/bfyy.201703037 (2017).Article 

    Google Scholar 
    7.Wang, Q. et al. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appl. Soil. Ecol. 138, 245–252. https://doi.org/10.1016/j.apsoil.2019.03.012 (2019).Article 

    Google Scholar 
    8.Rafael, L.-C., Juan Arturo, R.-S. & Montserrat, C.-S. Microencapsulation of Meyerozyma guilliermondii by spray drying using sodium alginate and soy protein isolate as wall materials: A biocontrol formulation for anthracnose disease of mango. Biocontrol Sci. Technol. 30, 1116–1132. https://doi.org/10.1080/09583157.2020.1793910 (2020).Article 

    Google Scholar 
    9.Moparthi, S. & Bradshaw, M. Fungicide efficacy trials for the control of powdery mildew (Podosphaera cerasi) on sweet cherry trees (Prunus avium). Biocontrol Sci. Tech. 30, 659–670. https://doi.org/10.1080/09583157.2020.1755616 (2020).Article 

    Google Scholar 
    10.Zhou, C. Y. et al. Identification and optimization of fermentation conditions of antagonistic endophytic fungi in a single plant of Panax ginseng. Henan Agricult. Sci. 49, 104–110. https://doi.org/10.15933/j.cnki.1004-3268.2020.02.013 (2020).Article 

    Google Scholar 
    11.Sun, Z. et al. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biol. Control 138, 104048. https://doi.org/10.1016/j.biocontrol.2019.104048 (2019).CAS 
    Article 

    Google Scholar 
    12.Kambo, H. S. & Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050 (2015).CAS 
    Article 

    Google Scholar 
    13.Lehmann, J., Gaunt, J. & Rondon, M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strat. Glob. Change 11, 403–427. https://doi.org/10.1007/s11027-005-9006-5 (2006).Article 

    Google Scholar 
    14.Uzoma, K. C. et al. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. https://doi.org/10.1111/j.1475-2743.2011.00340.x (2011).Article 

    Google Scholar 
    15.Baiamonte, G. et al. Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0960-y (2015).Article 

    Google Scholar 
    16.Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 5, 381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 (2007).Article 

    Google Scholar 
    17.Ding, Y., Liu, J. & Wang, Y. Effects of biochar on soil microbial ecology. Chin. J. Appl. Ecol. 24, 3311–3317 (2013).CAS 

    Google Scholar 
    18.Solaiman, Z. M. et al. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 48, 546–554. https://doi.org/10.1071/SR10002 (2010).CAS 
    Article 

    Google Scholar 
    19.Zheng, J. et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci. Total Environ. 571, 206–217. https://doi.org/10.1016/j.scitotenv.2016.07.135 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Gul, S. et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agr. Ecosyst. Environ. 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015 (2015).CAS 
    Article 

    Google Scholar 
    21.Zhang, W. et al. Utilization potential, industrial model and development strategy of straw biochar in Northeast China. Sci. Agric. Sin. 52, 2406–2424. https://doi.org/10.3864/j.issn.0578-1752.2019.14.003 (2019).Article 

    Google Scholar 
    22.Mao, H. et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresour. Technol. 258, 195–202. https://doi.org/10.1016/j.biortech.2018.02.082 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Yumin, D. et al. Positive impact of biochar alone and combined with bacterial consortium amendment on improvement of bacterial community during cow manure composting. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2019.02.026 (2019).Article 

    Google Scholar 
    24.Ghodhbane-Gtari, F. et al. Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod-) Ineffective (Fix-) Isolate from Coriaria nepalensis. Genome Announc. 1, e0008513. https://doi.org/10.1128/genomeA.00085-13 (2013).Article 
    PubMed 

    Google Scholar 
    25.Jung-Tai, L. & Sung-Ming, T. The nitrogen-fixing Frankia significantly increases growth, uprooting resistance and root tensile strength of Alnus formosana. Afr. J. Biotech. 17, 213–225. https://doi.org/10.5897/AJB2017.16289 (2018).Article 

    Google Scholar 
    26.Du, D., Yuan, F., Li, R., Wang, Y. & Cui, G. A study on the classification and identification of a Frankia strain. Acta Microbiol. Sin. 25, 197–203. https://doi.org/10.13343/j.cnki.wsxb.1985.03.003 (1985).Article 

    Google Scholar 
    27.Kang, L. et al. Field study on inoculation of Casuarina casuarina with Franklinella calcium alginate. Forest Res. 01, 42–46. https://doi.org/10.13275/j.cnki.lykxyj.2000.01.006 (2000).Article 

    Google Scholar 
    28.Larkin, R. P. Characterization of soil microbial communi- ties under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35, 1451–1466. https://doi.org/10.1016/S0038-0717(03)00240-2 (2003).CAS 
    Article 

    Google Scholar 
    29.Shi, L. et al. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci. Rep. 7, 41234. https://doi.org/10.1038/srep41234 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Shen, Z. et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertil. Soils 51, 1–10. https://doi.org/10.1007/s00374-015-1002-7 (2015).CAS 
    Article 

    Google Scholar 
    31.Atandi, J. G. et al. Organic farming provides improved management of plant parasitic nematodes in maize and bean cropping systems. Agricult. Ecosyst. Environ. 247, 265–272. https://doi.org/10.1016/j.agee.2017.07.002 (2017).Article 

    Google Scholar 
    32.Wang, T., Qiao, W., Li, Y. & Ao, Y. Effects of crop rotation and microbial fertilizer on soil physical and chemical properties and biological activity of cucumber continuous cropping. Chin. J. Soil Sci. 42, 578–583. https://doi.org/10.19336/j.cnki.trtb.2011.03.013 (2011).CAS 
    Article 

    Google Scholar 
    33.Daquan, S. J. et al. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0996-z (2015).Article 

    Google Scholar 
    34.Warnock, D. D. et al. Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300, 9–20. https://doi.org/10.1007/s11104-007-9391-5 (2007).CAS 
    Article 

    Google Scholar 
    35.Luo, Y., Tian, G., Zhang, D., Hao, R. & Wang, C. Effects of microbial agents on soil nutrients and nitrate nitrogen accumulation in terracotta greenhouse. Chin. Agric. Sci. Bull. 31, 224–228 (2015).
    Google Scholar 
    36.Yin, S. et al. Effects of complex ecological microbial agents on the number and enzyme activity of cucumber rhizosphere soil. Chin. J. Microbiol. 32, 23–27. https://doi.org/10.3969/j.issn.1005-7021.2012.01.005 (2012).CAS 
    Article 

    Google Scholar 
    37.Dedysh, S. N., Ricke, P. & Liesack, W. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150, 1301. https://doi.org/10.1016/j.jcp.2003.11.016 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Michael, P. C., Madigan, T., Martinko, J. M. & Parker, J. Getting the bug for microorganisms. In Brock biology of microorganisms, 8th edn. 375–376 https://doi.org/10.1016/s0962-8924(97)83479-4 (Prentice Hall, 1997).39.Lv, X. et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci. World J. https://doi.org/10.1155/2014/437684 (2014).Article 

    Google Scholar 
    40.Zhao, Y. et al. Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Can. J. Microbiol. 62, 1. https://doi.org/10.1139/cjm-2015-0448 (2015).CAS 
    Article 

    Google Scholar 
    41.Jin, Xu., Wang, R., Deng, F., Cao, G. & Wang, G. Effects of biochar application on soil physical and chemical properties and enzyme activities of poplar plantation in Dongtai coastal area. J. Fujian Agric. For. Univ. 49, 348–353. https://doi.org/10.13323/j.cnki.j.fafu(nat.sci.).2020.03.010 (2020).Article 

    Google Scholar 
    42.Lehmann, J. et al. Biochar effects on soil biota—A review. Soil Biol. Biochem. 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022 (2011).CAS 
    Article 

    Google Scholar 
    43.Nugroho, S. G. et al. Three-year measurement of methane emission from an Indonesian paddy field. Plant Soil 181, 287–293. https://doi.org/10.1007/BF00012063 (1996).CAS 
    Article 

    Google Scholar 
    44.Sauze, J. et al. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange. Soil Biol. Biochem. 115, 371–382. https://doi.org/10.1016/j.soilbio.2017.09.009 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Long, J., Liao, H., Li, J. & Chen, C. Research on the relationship between soil and rocky desertification in typical karst mountain area based on redundancy analysis. Environ. Sci. 33, 2131–2138 (2012).
    Google Scholar 
    46.Zeng, J. et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of tianshan mountain, China. Front. Microbiol. 7, 1353. https://doi.org/10.3389/fmicb.2016.01353 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Sui, Y. et al. Study on the relationship between soil organic matter content and soil microbial biomass and soil enzyme activity. Chin. J. Soil Sci. 40, 1036–1039 (2009).CAS 

    Google Scholar 
    48.Jiao, X., Gao, C., Sui, Y., Zhang, X. & Ding, G. Sci. Agric. Sin. 44, 3759–3767. https://doi.org/10.3864/j.issn.0578-1752.2011.18.007 (2011).CAS 
    Article 

    Google Scholar 
    49.Yao, L., Cheng, G., Wang, L., Chen, H. & Lou, L. Effects of biochar application on soil microorganisms. Environ. Chem. 34, 697–704. https://doi.org/10.7524/j.issn.0254-6108.2015.04.2014072802 (2015).CAS 
    Article 

    Google Scholar 
    50.Rui, J. et al. Effects of biochar on soil properties, cadmium uptake and physiological characteristics of Chinese cabbage. J. Southern Agric. 47, 1480–1487. https://doi.org/10.3969/jissn.2095-1191.2016.09.1480 (2016).Article 

    Google Scholar 
    51.Zheng, H., Honghui, Wu., Wengi, B., Ye, J. & Zeng, Y. Soil Fertil. Sci. 2, 68–74. https://doi.org/10.11838/sfsc.1673-6257.18244 (2019).Article 

    Google Scholar 
    52.Shan, W., Li, J. & Liu, M. Inhibition of Verticillium wilt in cotton by filter paper method. Chin. Agric. Sci. Bull. 26, 285–289. https://doi.org/10.3969/j.issn.1000-632X.2010.08.007 (2010).Article 

    Google Scholar 
    53.Kızılkaya, R., Aşkın, T., Bayraklı, B. & Sağlam, M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 40, 95–102. https://doi.org/10.1016/j.ejsobi.2004.10.002 (2004).CAS 
    Article 

    Google Scholar 
    54.Lee, S. H. et al. Degradation characteristics of waste lubricants under different nutrient conditions. J. Hazard. Mater. 143, 65–72. https://doi.org/10.1016/J.JHAZMAT.2006.08.059 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Zhang, Y. M. Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl. Soil. Ecol. 30, 215–225. https://doi.org/10.1016/J.APSOIL.2005.01.005 (2005).Article 

    Google Scholar 
    56.Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145. https://doi.org/10.1093/nar/gkn879 (2009).CAS 
    Article 

    Google Scholar 
    57.Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264. https://doi.org/10.1128/AEM.01821-12 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Jiang, X. T. et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66, 96–104. https://doi.org/10.1007/s00248-013-0238-8 (2013).Article 
    PubMed 

    Google Scholar 
    59.Jami, E. et al. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7, 1069–1079. https://doi.org/10.1038/ismej.2013.2 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Nicola, S. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Article 

    Google Scholar  More

  • in

    A monkey researcher fights to protect threatened and endangered primates

    Download PDF

    I was a ten-year-old in Singapore when I received a vervet monkey (Chlorocebus pygerythrus) as a pet. By the time I was 15, I knew that my family did not have the necessary international permit to own it legally. With help from local agencies, we sent the monkey to a rehabilitation sanctuary in Zambia, which ultimately released it into the wild. That experience got me interested in learning more about wild monkeys and how to help them.I research threatened and endangered leaf-eating primates known as Asian colobinae. They have specialized, multi-chambered stomachs, as do cows, and need a long rest after meals. They are shy and hard to find, so there has been less research on them than on orangutans or the great apes.One species I study is the critically endangered Raffles’ banded langur (Presbytis femoralis). Globally, there are just 320 individuals: 70 in Singapore and 250 in Malaysia. I work with national agencies, educational and non-governmental organizations and local communities to help protect these and other monkeys — especially those living between forest and urban areas. For example, in an area prone to roadkill, we installed a rope bridge to let langurs and other animals cross the road safely.One of the biggest threats to these and other monkeys is inbreeding as their numbers shrink. We hope to exchange animals between Singapore and Malaysia to boost their population’s genetic health.In this picture from 2017, I was monitoring primate populations in a reserve in central Singapore when I saw these long-tailed macaques (Macaca fascicularis). Here, we are observing one another — and respecting each other’s space.I’ve started a website called Primate Watching to help observers learn about these primates and where to see them. People think monkeys are aggressive, but really they are just naturally curious. Still, the public should always keep a safe distance, not put a camera in their faces.

    Nature 595, 618 (2021)
    doi: https://doi.org/10.1038/d41586-021-01995-9

    Related Articles

    Shell shock: A biologist’s quest to save the endangered painted snail

    Mission marmoset

    Subjects

    Careers

    Conservation biology

    Ecology

    Latest on:

    Careers

    Why science needs a new reward and recognition system
    Career Column 15 JUL 21

    Embrace and celebrate diverse names in science
    Career Column 14 JUL 21

    How a holistic research retreat can help our science
    Career Column 08 JUL 21

    Ecology

    Italy: Forest harvesting is the opposite of green growth
    Correspondence 13 JUL 21

    Destructive fires serve as pest control for lizards
    Research Highlight 13 JUL 21

    Newfound ‘fairy lantern’ could soon be snuffed out forever
    Research Highlight 07 JUL 21

    Jobs

    Research Associate / PhD Student

    Technische Universität Dresden (TU Dresden)
    Dresden, Germany

    Head of Human Resources

    Research Center for Molecular Medicine (CeMM), ÖAW
    Vienna, Austria

    M.Sc. or Ph.D. in Physical Oceanography: Glacier-ocean interactions in the Canadian Arctic Archipelago

    The University of British Columbia (UBC)
    Vancouver, Canada

    58971: Student in Aerospace Engineering, Communication Engineering, Electronic Engineering, Physics (f/m/x) – Space Radiation and Shielding Analysis for VHTS Optical Communications Payload

    German Aerospace Center (DLR)
    Oberpfaffenhofen, Germany

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More