Resistance to permethrin alters the gut microbiota of Aedes aegypti
1.WHO Pesticides and their application for the control of vectors and pests of public health importance. In WHO/CDS/NTD/WHOPES/GCDPP/2006.1 (2006).2.Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 101, 207–216 (2007).CAS
PubMed
Article
Google Scholar
3.N’Guessan, R., Corbel, V., Akogbeto, M. & Rowland, M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg. Infect. Dis. 13, 199–206 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
4.Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2010).PubMed
Article
Google Scholar
5.Chareonviriyaphap, T. et al. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit. Vectors 6, 280 (2013).PubMed
PubMed Central
Article
Google Scholar
6.Liu, N. insecticide resistance in mosquitoes: Impact, mechanisms and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).CAS
PubMed
Article
Google Scholar
7.Dada, N. et al. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus. ISME J. 10, 2447–2464 (2019).Article
Google Scholar
8.Dada, N., Sheth, M., Liebman, K., Pinto, J. & Lenhart, A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 8, 2084 (2018).ADS
PubMed
PubMed Central
Article
Google Scholar
9.Soltani, A., Vatandoost, H., Oshaghi, M. A., Enayati, A. A. & Chavshin, A. R. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog. Glob. Health 111, 289–296 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
10.Pietri, J.E., Tiffany, C. & Liang, D. Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest. PLoS One 13, e0207985 (2018).11.Cheng, D. et al. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5, 13 (2017).PubMed
PubMed Central
Article
Google Scholar
12.Xia, X. et al. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8, e68852 (2013).13.Xia, X. et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol. 9, 25 (2018).14.Kontsedalov, S. et al. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag. Sci. 64, 789–792 (2008).CAS
PubMed
Article
Google Scholar
15.Ghanim, M. & Kontsedalov, S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag. Sci. 65, 939–942 (2009).CAS
PubMed
Article
Google Scholar
16.Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 8618–8622 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
17.Badolo, A. et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou, Burkina Faso. PLoS Negl. Trop. Dis. 13, e0007439 (2019).18.Kandel, Y. et al. Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A. PLoS One 14, e0212693 (2019).19.Amelia-Yap, Z. H., Chen, C. D., Sofian-Azirun, M. & Low, V. L. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasit. Vectors 11, 332 (2018).PubMed
PubMed Central
Article
Google Scholar
20.Li, W., Jin, D., Shi, C. & Li, F. Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci. Rep. 7, 1947 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
21.Barnard, K., Jeanrenaud, A., Brooke, B. D. & Oliver, S. V. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci. Rep. 9, 9117 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
22.Tetreau, G. et al. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasit. Vectors 11, 121 (2018).PubMed
PubMed Central
Article
Google Scholar
23.Aislabie, J. & Lloyd-Jones, G. A review of bacterial degradation of pesticides. Aust. J. Soil Res. 33, 925–942 (1995).CAS
Article
Google Scholar
24.Lien, N. T. K. et al. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the dengue mosquito (Aedes aegypti) in Vietnam. Am. J. Trop. Med. Hyg. 100, 1240–1248 (2019).PubMed
PubMed Central
Article
Google Scholar
25.Berticat, C., Rousset, F., Raymond, M., Berthomieu, A. & Weill, M. High Wolbachia density in insecticide-resistant mosquitoes. Proc. R. Soc. Lond. Ser. B-Biol.l Sci. 269, 1413–1416 (2002).26.Hamada, M., Matar, A. & Bashir, A. Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip. Braz. J. Microbiol. 46, 1087–1091 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
27.Akbar, S., Sultan, S. & Kertesz, M. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Curr. Microbiol. 70, 75–84 (2015).CAS
PubMed
Article
Google Scholar
28.Durand, C., Ruban, V., Ambles, A., Clozel, B. & Achard, L. Characterisation of road sediments near Bordeaux with emphasis on phosphorus. J. Environ. Monit. 5, 463–467 (2003).CAS
PubMed
Article
Google Scholar
29.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132 (2009).ADS
CAS
Article
Google Scholar
30.Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds—From one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).CAS
PubMed
Article
Google Scholar
31.Zhu, K. Y., Merzendorfer, H., Zhang, W., Zhang, J. & Muthukrishnan, S. Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol. 61, 177–196 (2016).CAS
PubMed
Article
Google Scholar
32.Czaplicka, M. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21–39 (2004).ADS
CAS
PubMed
Article
Google Scholar
33.Igbinosa, E.O. et al. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 460215 (2013).34.Li, N., Chen, J. M., Zhang, Y. F., He, Y. P. & Chen, L. Z. Comparison for activities of detoxifying enzymes between in resistant-strains and susceptible-imidacloprid endosymbiotic strains of rice brown planthopper, Nilaparvata lugens. Acta Agric. Univ. Zhejiangensis 22, 653–659 (2010).
Google Scholar
35.Dowd, P. F. & Shen, S. K. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol. Exp. Appl. 56, 241–248 (1990).CAS
Article
Google Scholar
36.Brogdon, W. G. & McAllister, J. C. Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J. Am. Mosq. Control Assoc. 14, 159–164 (1998).CAS
PubMed
Google Scholar
37.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).ADS
CAS
PubMed
Article
Google Scholar
38.Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
39.Muturi, E. J., Njoroge, T. M., Dunlap, C. & Caceres, C. E. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasit. Vectors 14, 83 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
Article
Google Scholar
41.Arndt, D. et al. METAGENassist: A comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40, W88–W95 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 4, 4–9 (2001).
Google Scholar
43.Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS
PubMed
Article
Google Scholar
44.Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.3–5. https://CRAN.R-project.org/package=vegan (2016).45.Quinn, G. & Keough, M. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).Book
Google Scholar More