More stories

  • in

    Obligate cross-feeding expands the metabolic niche of bacteria

    1.Grinnell, J. The niche-relationships of the California thrasher. Auk 34, 427–433 (1917).Article 

    Google Scholar 
    2.Elton, C. S. Animal Ecology (Univ. Chicago Press, 2001).3.Hutchinson, G. E. Concluding remarks Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).4.Hutchinson, G. E. An Introduction to Population Ecology (Yale Univ. Press, 1978).5.Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Polechová, J. & Storch, D. in Encyclopedia of Ecology 2nd edn, Vol. 3 (ed Fath, B.) 72–80 (Elsevier, 2018).7.Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Hutchinson, G. E. Population studies: animal ecology and demography. Bull. Math. Biol. 53, 193–213 (1991).Article 

    Google Scholar 
    9.Odum, E. P. Fundamentals of Ecology (Saunders, 1959).10.Begon, M., Townsend, C. R. & JL., H. Ecology: From Individuals to Ecosystems (Wiley, 2006).11.Levin, S. & Carpenter, S. The Princeton Guide to Ecology (Princeton Univ. Press, 2009).12.Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    13.Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).Article 

    Google Scholar 
    14.Austin, M. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Modell. 157, 101–118 (2002).Article 

    Google Scholar 
    15.Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2, 1–10 (2005).Article 

    Google Scholar 
    16.Pires, M. M. & Guimarães, P. R. Interaction intimacy organizes networks of antagonistic interactions in different ways. J. R. Soc. Interface 10, 20120649 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ashby, B., Watkins, E., Lourenço, J., Gupta, S. & Foster, K. R. Competing species leave many potential niches unfilled. Nat. Ecol. Evol. 1, 1495–1501 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Pérez-Gutiérrez, R. A. et al. Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J. 7, 487–497 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    19.Russel, J., Røder, H. L., Madsen, J. S., Burmølle, M. & Sørensen, S. J. Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl Acad. Sci. USA 114, 10684–10688 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ricklefs, R. E. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proc. Natl Acad. Sci. USA 107, 1265–1272 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Stadler, B. & AFG, D. Ecology and evolution of aphid–ant interactions. Annu. Rev. Ecol. Evol. Syst. 107, 345–372 (2005).Article 

    Google Scholar 
    22.Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Hom, E. & Murray, A. Niche engineering demonstrates a latent capacity for fungal–algal mutualism. Science 345, 94–95 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    26.Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl Acad. Sci. USA 113, 6236–6241 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 109 (2017).PubMed 
    Article 

    Google Scholar 
    29.Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Hendry, A. Eco-evolutionary Dynamics (Princeton Univ. Press, 2017).34.Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Giri, S. et al. Metabolic dissimilarity determines the establishment of cross- feeding interactions in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2020.10.09.333336 (2020).36.Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580–3590.e7 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Stearns, S. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).Article 

    Google Scholar 
    38.Agrawal, A. A., Conner, J. K. & Rasmann, S. in Evolution Since Darwin (eds Bell, M. A. et al.) Ch. 10 (Sinauer Associates, 2010).39.González-Cabaleiro, R., Ofiţeru, I. D., Lema, J. M. & Rodríguez, J. Microbial catabolic activities are naturally selected by metabolic energy harvest rate. ISME J. 9, 2630–2641 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).Article 

    Google Scholar 
    41.Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).Article 

    Google Scholar 
    42.May, R. & Arthur, R. Niche overlap as a function of environmental variability. Proc. Natl Acad. Sci. USA 69, 1109–1113 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Bono, L. M., Draghi, J. A. & Turner, P. E. Evolvability costs of niche expansion. Trends Genet. 36, 14–23 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Treves, D. S., Manning, S. & Adams, J. Repeated evolution of an acetate-cross-feeding polymorphism in long-term populations of Escherichia coli. Mol. Biol. Evol. 15, 789–797 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Rozen, D. E., Schneider, D. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J. Mol. Evol. 61, 171–180 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).PubMed 
    Article 

    Google Scholar 
    53.Johnson, W. M. et al. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities? FEMS Microbiol. Ecol. 96, 1–14 (2020).Article 
    CAS 

    Google Scholar 
    54.Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Bernhardsson, S., Gerlee, P. & Lizana, L. Structural correlations in bacterial metabolic networks. BMC Evol. Biol. 11, 20 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Hester, E. R., Jetten, M. S. M., Welte, C. U. & Lücker, S. Metabolic overlap in environmentally diverse microbial communities. Front. Genet. https://doi.org/10.3389/fgene.2019.00989 (2019).58.Mitri, S. & Richard Foster, K. The genotypic view of social interactions in microbial communities. Annu. Rev. Genet. 47, 247–273 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 
    Article 

    Google Scholar 
    61.Vanstockem, M., Michiels, K., Vanderleyden, J. & van Gool, A. P. Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl. Environ. Microbiol. 53, 410–415 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Thomason, L. C., Costantino, N. & Court, D. L. E. coli genome manipulation by P1 transduction. Curr. Protoc. Mol. Biol. 79, 1.17.1–1.17.8 (2007).63.Pande, S. et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat. Commun. 6, 6238 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol. 195, 4085–4093 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Koo, B. M. et al. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst. 4, 291–305.e7 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Thompson, I., Lilley, A., Ellis, R., Bramwell, P. & Bailey, M. Survival, colonization and dispersal of genetically modified Pseudomonas fluorescens SBW25 in the phytosphere of field grown sugar beet. Nat. Biotechnol. 13, 1493–1497 (1995).CAS 
    Article 

    Google Scholar 
    68.Rainey, P. B. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1, 243–257 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Horton, R., Hunt, H., Ho, S., Pullen, J. & Pease, L. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl Acad. Sci. USA 77, 7347–7351 (1980).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Zhang, X. X. & Rainey, P. B. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25. Genetics 176, 2165–2176 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Lassak, J., Henche, A. L., Binnenkade, L. & Thormann, K. M. ArcS, the cognate sensor kinase in an atypical arc system of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 76, 3263–3274 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Bochner, B. R. Global phenotypic characterization of bacteria. FEMS Microbiol. Rev. 33, 191–205 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Climate and land-use changes drive biodiversity turnover in arthropod assemblages over 150 years

    1.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
    Google Scholar 
    4.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    6.Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252 (2012).Article 

    Google Scholar 
    8.Falaschi, M., Manenti, R., Thuiller, W. & Ficetola, G. F. Continental‐scale determinants of population trends in European amphibians and reptiles. Glob. Change Biol. 25, 3504–3515 (2019).Article 

    Google Scholar 
    9.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Jarzyna, M. A. & Jetz, W. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 31, 527–538 (2016).PubMed 
    Article 

    Google Scholar 
    12.Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).Article 

    Google Scholar 
    14.Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).PubMed 
    Article 

    Google Scholar 
    15.van Strien, A. J., van Swaay, C. A., van Strien-van Liempt, W. T., Poot, M. J. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234, 116–122 (2019).Article 

    Google Scholar 
    16.Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9, 2565 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Magurran, A. E., Dornelas, M., Moyes, F. & Henderson, P. A. Temporal β diversity—a macroecological perspective. Glob. Ecol. Biogeogr. 28, 1949–1960 (2019).Article 

    Google Scholar 
    18.Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    20.Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).Article 

    Google Scholar 
    21.Kondratyeva, A., Grandcolas, P. & Pavoine, S. Reconciling the concepts and measures of diversity, rarity and originality in ecology and evolution. Biol. Rev. 94, 1317–1337 (2019).PubMed 
    Article 

    Google Scholar 
    22.Auffret, A. G. & Thomas, C. D. Synergistic and antagonistic effects of land use and non‐native species on community responses to climate change. Glob. Change Biol. 25, 4303–4314 (2019).Article 

    Google Scholar 
    23.WallisDeVries, M. F. & van Swaay, C. A. A nitrogen index to track changes in butterfly species assemblages under nitrogen deposition. Biol. Conserv. 212, 448–453 (2017).Article 

    Google Scholar 
    24.Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Sgardeli, V., Zografou, K. & Halley, J. M. Climate change versus ecological drift: assessing 13 years of turnover in a butterfly community. Basic Appl. Ecol. 17, 283–290 (2016).Article 

    Google Scholar 
    26.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2019).Article 
    CAS 

    Google Scholar 
    27.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Marta, S. et al. ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna. Sci. Data 6, 195 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Koleff, P., Gaston, K. J. & Lennon, J. T. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    32.Legendre, P. A temporal beta‐diversity index to identify sites that have changed in exceptional ways in space–time surveys. Ecol. Evol. 9, 3500–3514 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Suggit, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article 

    Google Scholar 
    34.Baselga, A., Bonthoux, S. & Balent, G. Temporal beta diversity of bird assemblages in agricultural landscapes: land cover change vs. stochastic processes. PLoS ONE 10, e0127913 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).
    Google Scholar 
    36.Mason, N. W., de Bello, F., Mouillot, D., Pavoine, S. & Dray, S. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J. Veg. Sci. 24, 794–806 (2013).Article 

    Google Scholar 
    37.Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).38.Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).Article 

    Google Scholar 
    39.Brunetti, M., Maugeri, M., Monti, F. & Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 26, 345–381 (2006).Article 

    Google Scholar 
    40.Terzago, S., von Hardenberg, J., Palazzi, E. & Provenzale, A. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models. Cryosphere 11, 1625–1645 (2017).Article 

    Google Scholar 
    41.Beniston, M. et al. The European mountain cryosphere: a review of its current state, trends and future challenges. Cryosphere 12, 759–794 (2018).Article 

    Google Scholar 
    42.Wang, J. et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11, 528 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with nonstationary climate–fire models. Nat. Commun. 9, 3821 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Jacobson, A. R., Provenzale, A., von Hardenberg, A., Bassano, B. & Festa-Bianchet, M. Climate forcing and density dependence in a mountain ungulate population. Ecology 85, 1598–1610 (2004).Article 

    Google Scholar 
    45.Imperio, S., Bionda, R., Viterbi, R. & Provenzale, A. Climate change and human disturbance can lead to local extinction of Alpine rock ptarmigan: new insight from the Western Italian Alps. PLoS ONE 8, e81598 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Hoffmann, S., Beierkuhnlein, C., Field, R., Provenzale, A. & Chiarucci, A. Uniqueness of protected areas for conservation strategies in the European Union. Sci. Rep. 8, 6445 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).Article 

    Google Scholar 
    48.Queiroz, C., Beilin, R., Folke, C. & Lindborg, R. Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ. 12, 288–296 (2014).Article 

    Google Scholar 
    49.Falcucci, A., Maiorano, L. & Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 22, 617–631 (2007).Article 

    Google Scholar 
    50.Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Ranganathan, S., Swain, R. B. & Sumpter, D. J. T. The demographic transition and economic growth: implications for development policy. Palgrave Commun. 1, 15033 (2015).Article 

    Google Scholar 
    52.Weltzin, J. F. et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53, 941–952 (2003).Article 

    Google Scholar 
    53.Lacasella, F. et al. From pest data to abundance-based risk maps combining eco-physiological knowledge, weather, and habitat variability. Ecol. Appl. 27, 575–588 (2017).PubMed 
    Article 

    Google Scholar 
    54.Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693 (2016).PubMed 
    Article 

    Google Scholar 
    55.Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl Acad. Sci. USA 106, 7063–7066 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed 
    Article 

    Google Scholar 
    59.Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2017).Article 

    Google Scholar 
    60.Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).PubMed 
    Article 

    Google Scholar 
    61.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    62.Galland, T. et al. Colonization resistance and establishment success along gradients of functional and phylogenetic diversity in experimental plant communities. J. Ecol. 107, 2090–2104 (2019).Article 

    Google Scholar 
    63.Lister, A. M. et al. Natural history collections as sources of long-term datasets. Trends Ecol. Evol. 26, 153–154 (2011).PubMed 
    Article 

    Google Scholar 
    64.Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. Lond. B 345, 101–118 (1994).CAS 
    Article 

    Google Scholar 
    65.Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).Article 

    Google Scholar 
    66.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 (2019).67.Chazdon, R. L., Colwell, R. K., Denslow, J. S. & Guariguata, M.R. in Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies (eds. Dallmeir, F. & Cominsky, J. A.) 285–309 (Parthenon, 1998).68.Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).Article 

    Google Scholar 
    69.van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).Article 

    Google Scholar 
    70.Osborn, T. J. & Jones, P. The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data 6, 61–68 (2014).Article 

    Google Scholar 
    71.New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 13, 2217–2238 (2000).Article 

    Google Scholar 
    72.Brunetti, M. et al. Projecting north eastern Italy temperature and precipitation secular records onto a high resolution grid. Phys. Chem. Earth. 40, 9–22 (2012).Article 

    Google Scholar 
    73.Brunetti, M., Maugeri, M., Nanni, T., Simolo, C. & Spinoni, J. High-resolution temperature climatology for Italy: interpolation method intercomparison. Int. J. Climatol. 34, 1278–1296 (2014).Article 

    Google Scholar 
    74.Crespi, A., Brunetti, M., Lentini, G. & Maugeri, M. 1961–1990 high-resolution monthly precipitation climatologies for Italy. Int. J. Climatol. 38, 878–895 (2018).Article 

    Google Scholar 
    75.Peterson, T. C. et al. Homogeneity adjustments of in situ atmospheric climate data: a review. Int. J. Climatol. 18, 1493–1517 (1998).Article 

    Google Scholar 
    76.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    77.Burnham, K. & Anderson, D. Model Selection and Multi-model Inference (Springer, 2002).78.Blonder, B & Harris, D. J. hypervolume: High dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R package version 2.0.12 (2019).79.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n‐dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    80.Barros, C., Thuiller, W., Georges, D., Boulangeat, I. & Münkemüller, T. N‐dimensional hypervolumes to study stability of complex ecosystems. Ecol. Lett. 19, 729–742 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    82.Botta-Dukát, Z. Cautionary note on calculating standardized effect size (SES) in randomization test. Community Ecol. 19, 77–83 (2018).Article 

    Google Scholar 
    83.Signorell, A. et al. DescTools: Tools for descriptive statistics. R package version 0.99.40 (2021).84.Maclean, I. M. D., Suggitt, A. J., Wilson, R. J., Duffy, J. P. & Bennie, J. J. Fine-scale climate change: modelling fine-scale spatial variation in biologically meaningful rates of warming. Glob. Change Biol. 23, 256–268 (2017).Article 

    Google Scholar 
    85.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    86.Besag, J., York, J. & Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–59 (1991).Article 

    Google Scholar 
    87.Bivand, R. S. & Wong, D. W. Comparing implementations of global and local indicators of spatial association. Test 27, 716–748 (2018).Article 

    Google Scholar 
    88.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).Article 

    Google Scholar 
    89.Bivand, R. S., Gómez-Rubio, V. & Rue, H. Spatial data analysis with R-INLA with some extensions. J. Stat. Softw. 63, 1–31 (2015).
    Google Scholar 
    90.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).PubMed 
    Article 

    Google Scholar 
    91.R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).92.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar  More

  • in

    Revealing the widespread potential of forests to increase low level cloud cover

    Assumptions for the space-for-time substitutionThe main methodological concept in this study is the notion of a space-for-time substitution. Such approach has previously been used in various studies to estimate the effect of land cover change on temperature20,22 or on the surface energy balance22,72. The overarching assumption behind the method is that the difference in properties of neighbouring patches of land can serve as a surrogate for changes in time. While this main assumption largely holds for land surface properties, such as skin temperature, it requires a more detailed articulation into several underlying assumptions in order to apply the approach to atmospheric properties such as cloud cover. This is because atmospheric properties are prone to lateral movements, partially decoupling them from the land cover directly below them, and thus adding considerable complexity to the analysis.The first underlying assumption is that the method will be mostly sensitive to low-level convective clouds generated in the boundary layer (i.e. cumulus clouds). These are typically formed under stable conditions of high pressure and low wind, and are thus expected to have a higher spatial correlation with the underlying landscape elements. Other types of low-level clouds, such as stratus clouds, are typically much more uniformly spread across the landscape, which would result in no difference in CFrC when comparing two distinct and neighbouring vegetation classes. For medium- or high-level clouds, their position will be determined mostly by the state of the atmosphere rather than by the land surface, resulting in a very low correlation with vegetation spatial patterns. The space-for-time substitution approach would thus similarly result in white noise.The second assumption is that the boundary layer cumulus clouds will see very limited lateral advection between the moment of their formation and the satellite observation. Cumulus clouds over land show a very stable climatology where the peak formation is largely confined to the early afternoon (around 14:00), timing which remains very stable across space and season43. Therefore this assumption should largely hold if the observations are made at this time.The third assumption is that if we consider topographically flat terrain that is away from a coastline, general weather conditions are essentially the same at a local scale (i.e. a region of radius circa 25 km around a given point). Within such an area, we then assume that variations in low cloud cover are mostly determined by local differences in surface properties, themselves determined by the type and condition of the present land cover.Preparation of input datasetsThis study requires gridded geospatial datasets for two variables: cloud fractional cover and land fractional cover. Both datasets used here have been prepared in the frame of the European Space Agency’s (ESA) Climate Change Initiative (CCI)73.The Cloud CCI55 provides a series of cloud properties derived from distinct satellite Earth observation platforms in a harmonized way. Here we use their cloud fractional cover variable (henceforth CFrC), which describes the fraction of a 0.05° × 0.05° pixel covered by clouds based on observations made at a finer spatial resolution at the given time of the satellite overpass. We chose to use Cloud CCI dataset based on the MODIS instrument on-board of the Aqua platform for two reasons. First, the timing of overpass of the Aqua platform (circa 13:30 local time at the Equator) coincides very well with the timing of peak of cumulus cloud formation43, thus greatly limiting the extent of possible cloud advection between the moment of cloud formation and observation. Second, native spatial resolution of the MODIS instrument is superior to the alternative (AVHRR), and should result in a better sensitivity to the presence of small cumulus clouds. More specifically, out of the 5 spectral bands of the MODIS instrument used by the Cloud CCI to characterize cloud properties (bands 1, 2, 20, 31 and 32), two of them (bands 1 and 2) have a native spatial resolution of 250 m. While these are aggregated to 1 km (the spatial resolution of the other MODIS bands) prior to their ingestion in the cloud retrieval algorithm, their finer native granularity and quality should prove to be an asset for small cumulus cloud detection. The CCI MODIS-AQUA CFrC data is available for the period 2004–2014. The values are first averaged from daily to monthly scale, and then a single monthly value is calculated for every pixel over the period 2004–2014. The results are 12 layers each representing the multi-annual average CFrC for a given month.The second type of data needed for the analysis is the fraction of the 0.05° × 0.05° pixels that are covered by distinct vegetation types (essentially trees and grasses) and by other land cover classes (urban areas, bare soil, etc.). These are derived from the Land Cover CCI54, a set of consistent annual maps describing, with a spatial resolution of 300 m, how the terrestrial surface is covered based on The United Nations Land Cover Classification Scheme74. This information is aggregated both spatially and thematically using a specifically designed framework75 to produce maps of general land fractional cover with a spatial resolution of 0.05° to match that of the cloud fractional cover data. The procedure is very similar to that done in a previous study22. For the context of this study, which has a focus on afforestation, the interest lies on transitions among three main vegetated classes, namely: deciduous forest, evergreen forests and herbaceous vegetation. Herbaceous vegetation is composed of both grasses and crops, irrespective of management practice such as irrigation. While irrigation has a clear biophysical effect of its own60, we deemed the land cover product was not consistent enough for this specific class. For reasons that are explained in the respective methodological section below, the full compositional description of the landscape is necessary (i.e. beyond the classes of interest), and therefore land cover fractions of the following classes are also generated: shrublands, savannas, wetlands, water, bare or sparsely vegetated, snow or ice, and urban.Retrieving potential cloud fractional cover changeUnder the above-mentioned assumptions, we apply a space-for-time substitution algorithm developed in a previous study22 to the cloud fractional cover and land fractional cover datasets. We summarize the main aspects of the methodology, along with the few necessary adaptations, but the reader requiring more detail is redirected to the original papers22,76. The approach consists in applying an un-mixing operation over a spatially moving window containing n pixels. Over each window we apply a linear regression based on a matrix X containing the explanatory variables, in which each column of X represents the fractional cover of a given land cover type for each of the n pixels. The response variable is a vector y containing the n values of CFrC for the n pixels, while the vector β represents the regression coefficients:$${bf{y}}={bf{X}}beta$$
    (1)
    This is equivalent to solving the following system of equations:$$left{begin{array}{ll}{y}_{1}=&{beta }_{1}{x}_{11}+{beta }_{2}{x}_{12}+…+{beta }_{m}{x}_{1m}\ {y}_{2}=&{beta }_{1}{x}_{21}+{beta }_{2}{x}_{22}+…+{beta }_{m}{x}_{2m}\ vdots &\ {y}_{n}=&{beta }_{1}{x}_{n1}+{beta }_{2}{x}_{n2}+…+{beta }_{m}{x}_{nm}end{array}right.$$
    (2)
    in which the digits of the subscript of x, e.g. xij, represent the land cover fraction j in pixel i, for the n pixels in the moving window and the m classes that are considered. Once identified, we can use the β coefficients to predict the local y value corresponding to a given composition x, including that composed of a single land cover j by setting xj = 1 and all other x values to zero. However, applying a regression directly on X carries a risk due to the compositional nature of the data (i.e. the sum of each row adds up to one), as the analysis of any given subset of compositional components can lead to very different patterns, results and conclusions77. To avoid this, we reduce the dimensionality of X through singular value decomposition (SVD) after removing the mean of each column:$$({bf{X}}-{bf{M}})={bf{U}}{bf{D}}{{bf{V}}}^{t}$$
    (3)
    where M is the appropriate matrix of column means, U and V are the matrices containing, respectively, the left-hand and right-hand singular vectors, and D is a diagonal matrix containing the singular values representing the standard deviations of the ensuing dimensions. The squared values of D represent the variance explained by each dimension, and can thus serve to define z, a reduced subset of dimensions that conserves 100% of the original matrix’s variation. The corresponding z right-hand singular vectors, Vz, can then be used to find the appropriately transformed predictor matrix of reduced dimension Z as follows:$${bf{Z}}=({bf{X}}-{bf{M}}){{bf{V}}}_{z}$$
    (4)
    which can now be regressed onto the CFrC y:$$y={bf{Z}}{beta }_{z}+varepsilon$$
    (5)
    where Z has been augmented with a leading column of 1s to accommodate an intercept term in the regression. We then use the standard method to obtain an estimate of βz:$${beta }_{z}={left({{bf{Z}}}^{t}{bf{Z}}right)}^{-1}{{bf{Z}}}^{t}y$$
    (6)
    However, because of the matrix transformation from X to Z, the regression coefficients βz do not provide direct information on the relationship between land fractional cover and cloud fractional cover (as in a normal regression). To identify the z values associated with a particular vegetation or land cover type (within the local analysis defined by the moving window), we define a ‘dummy pixel’ whose composition contains only a single class, with all other classes in its composition set to zero. This pixel’s composition is then transformed, and its y value predicted. This is the y associated with that vegetation type. To generalize this for all compositional components of interest, we define a matrix P with as many rows as these compositional components that we wish to predict. P is centred on the same column means as above (M, specific to each local analysis), and then multiplied by the correct number of transposed right-hand singular vectors (Vz, again, specific to each local analysis).$${{bf{Z}}}_{{rm{p}}}=({bf{P}}-{bf{M}}){{bf{V}}}_{z}$$
    (7)
    Predicted yp values for each vegetation or land cover type (identified by predicting the appropriately transformed ‘dummy pixels’) are then calculated as:$${y}_{{rm{p}}}={{bf{Z}}}_{{rm{p}}}{beta }_{z}$$
    (8)
    The expected change in variable y associated with a transition from vegetation type A (e.g. herbaceous vegetation) to vegetation type B (e.g. deciduous forest) at the centre of the local window is then the difference between the yp predicted for each ‘pure’ vegetation type:$${{Delta }}{y}_{{rm{A}}to {rm{B}}}={y}_{rm{B}}-{y}_{rm{A}}$$
    (9)
    The uncertainty in the estimation of ΔyA→B can be expressed as a standard deviation using the following expression:$${sigma }_{{rm{A}}to {rm{B}}}=sqrt{{sigma }_{rm{A}}^{2}+{sigma }_{rm{B}}^{2}-2{sigma }_{rm{AB}}}$$
    (10)
    where ({sigma }_{rm{A}}^{2}) and ({sigma }_{rm{B}}^{2}) are the variances in the estimates of yA and yB, and σAB is their covariance. These variances and covariances are in turn obtained from the covariance matrix, defined from the regression as:$${mathbf{Sigma }}={{bf{Z}}}_{{rm{p}}}{rm{Var}}[beta ]{{bf{Z}}}_{{rm{p}}}^{t}$$
    (11)
    The diagonal terms in Σ are the variances of individual predictions of (individual) classes. The off-diagonal parts of Σ hold the covariances between these predictions. As a reminder, the uncertainty σA→B calculated in this way is related to the methodological uncertainty and does not include the uncertainty in the input variables of land cover or cloud fractional cover.In the default set-up for this study, we concentrate on two transitions: herbaceous vegetation to deciduous forest and herbaceous vegetation to evergreen forest. These are calculated using a spatial window of 7 × 7 pixels, each pixel being of 0.05°, resulting in a squared spatial window of circa 35 km in size. To ensure there are enough values to do the un-mixing over each window, we established that there must be a minimum of 60% of valid values in each window, and that at least 40% must have distinct compositions. The operation is applied to all 12 monthly layers of CFrC, resulting in 12 maps of Δy with a 0.05° spatial resolution for each of the two vegetation cover transitions.Post-processingA series of post-processing steps are required to ensure the results of the Δy maps can be used to evaluate the effect of land on cloud cover. The first step is to mask all pixels in which there is insufficient co-occurrence of the two vegetation classes involved in the transition. This co-occurrence is quantified by an index of vegetation co-occurrence76, Ic, calculated from the land fractional cover layers using the same spatial moving window of 7 × 7 pixels as used before. This index is calculated pairwise, i.e. for 2 vegetation classes of interest A and B, using two vectors pA and pB, describing the presence of these two vegetation classes in each of the i pixels in the moving window. It also requires the definition of another i point evenly distributed along a hypothetical line B = 1 − A in the two-dimensional space describing the presences of vegetation class A and vegetation class B. These points, whose position in the 2-D space are labelled qA and qB, represent an ideal situation of maximum co-occurrence that serves as a reference to establish the index. The formal definition of the index is thus:$${I}_{{rm{c}}}=1-frac{{sum }_{i}min {sqrt{{left({q}_{A}-{p}_{A}right)}^{2}+{left({q}_{B}-{p}_{B}right)}^{2}}}}{{sum }_{i}sqrt{{q}_{A}^{2}+{q}_{B}^{2}}}$$
    (12)
    The minimum operator in the numerator selects the smallest distance that a given point p can have to any of the q points. The sum relates to the sum of this distance for all i points in the spatial moving window. The denominator characterizes the maximum distance that the point p can encounter. Ic will range from 0 to 1 corresponding to a gradient of ‘no presence of either class’ to ‘full and evenly balanced presence of both classes’. As in76, we retain only pixels with Ic ≥ 0.5 where we consider that there is sufficient information at local scale concerning both vegetation types to derive meaningful information about the target land cover transition.The second step is to remove the potential orographical effects, which can be especially problematic given that forests are more likely to be located over mountainous areas due to human action56. Here we mask the areas where considerable topographical variation occurs within the 7 × 7 pixel moving window of interest using the same implementation described in76. This involves using 3 different indicators, v1, v2 and v3, calculated over the moving window based on μh and σh, which are, respectively, the mean and the standard deviation of elevation over each grid cell of the input cloud dataset. These are defined as follows:$${v}_{1}=frac{1}{n}mathop{sum }limits_{i=1}^{n}{sigma }_{h,i}$$
    (13)
    $${v}_{2}=| {mu }_{h}-frac{1}{n}mathop{sum }limits_{i=1}^{n}{mu }_{h,i}|$$
    (14)
    $${v}_{3}=| {sigma }_{h}-{v}_{1}|$$
    (15)
    For an interpretation of these metrics, readers are invited to read76. These three indicators are combined together in a single layer depicting all pixels satisfying all of the following conditions: v1  More

  • in

    Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history

    1.Reddin, C. J., Kocsis, Á. T., Aberhan, M. & Kiessling, W. Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Glob. Chang. Biol. 27, 868–878 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Marine invertebrate migrations trace climate change over 450 million years. Glob. Ecol. Biogeogr. 27, 704–713 (2018).Article 

    Google Scholar 
    3.Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Bio. Ecol. 400, 218–226 (2011).Article 

    Google Scholar 
    4.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).Article 

    Google Scholar 
    5.Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519 (1993).Article 

    Google Scholar 
    6.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 1, 401–406 (2011).ADS 
    Article 

    Google Scholar 
    7.Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U. S. A. 109, 19310–19314 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).Article 

    Google Scholar 
    9.Garilli, V. et al. Physiological advantages of dwarfing in surviving extinctions in high-CO 2 oceans. Nat. Clim. Chang. 5, 678–682 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0902080106 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Angilletta, M. J., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hoving, H. J. T. et al. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Chang. Biol. 19, 2089–2103 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Vinarski, M. V. On the applicability of Bergmann’s rule to ectotherms: the state of the art. Biol. Bull. Rev. 4, 232–242 (2014).Article 

    Google Scholar 
    16.Atkinson, D. Temperature and organism size: a biological law for organisms?. Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    17.Atkinson, D. Effects of temperature on the size of aquatic ectotherms: Exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).Article 

    Google Scholar 
    18.Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).Article 

    Google Scholar 
    19.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Riemer, K., Anderson-Teixeira, K. J., Smith, F. A., Harris, D. J. & Ernest, S. K. M. Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Glob. Ecol. Biogeogr. 27, 958–967 (2018).Article 

    Google Scholar 
    23.Rosa, R. et al. Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS ONE 7, e38282 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Pecl, G. T. & Jackson, G. D. The potential impacts of climate change on inshore squid: Biology, ecology and fisheries. Rev. Fish Biol. Fish. 18, 373–385 (2008).Article 

    Google Scholar 
    25.Twitchett, R. J. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007).Article 

    Google Scholar 
    26.Harries, P. J. & Knorr, P. O. What does the ‘Lilliput Effect’ mean?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4–10 (2009).Article 

    Google Scholar 
    27.Metcalfe, B., Twitchett, R. J. & Price-Lloyd, N. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 171–180 (2011).Article 

    Google Scholar 
    28.Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).Article 

    Google Scholar 
    29.Urbanek, A. Biotic crises in the history of upper silurian graptoloids: a palaeobiological model. Hist. Biol. https://doi.org/10.1080/10292389309380442 (1993).Article 

    Google Scholar 
    30.Urlichs, M. Stunting in invertebrates from the type area of the Cassian Formation (Early Carnian) of the dolomites (Italy). GeoAlp 8, 164–169 (2011).
    Google Scholar 
    31.Morten, S. D. & Twitchett, R. J. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2009.08.023 (2009).Article 

    Google Scholar 
    32.Piazza, V., Ullmann, C. V. & Aberhan, M. Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event. Sci. Rep. 10, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    33.Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Ann. Rev. Mar. Sci. 11, 369–390 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Gerber, S. Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37, 369–382 (2011).Article 

    Google Scholar 
    35.Pálfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).ADS 
    Article 

    Google Scholar 
    36.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).Article 

    Google Scholar 
    37.Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Percival, L. M. E. et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province. Earth Planet. Sci. Lett. 428, 267–280 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Foster, G. L., Hull, P., Lunt, D. J. & Zachos, J. C. Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Phil. Trans. R. Soc. A 376, 20170086 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Suan, G. et al. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. Lett. 290, 448–458 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth Sci. Rev. 198, 102932 (2019).CAS 
    Article 

    Google Scholar 
    42.Müller, T. et al. Ocean acidification during the early Toarcian extinction event: Evidence from Boron isotopes in brachiopods. Geology 48, 1184–1188 (2020).ADS 
    Article 

    Google Scholar 
    43.Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin Portugal. Paleoceanography 23, A1202 (2008).ADS 
    Article 

    Google Scholar 
    44.Dera, G. et al. High-resolution dynamics of early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites (Cephalopoda). J. Geol. Soc. London 167, 21–33 (2010).CAS 
    Article 

    Google Scholar 
    45.Dera, G. et al. Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215–218 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Miguez-Salas, O., Rodríguez-Tovar, F. J. & Duarte, L. V. Selective incidence of the Toarcian oceanic anoxic event on macroinvertebrate marine communities: a case from the Lusitanian basin Portugal. Lethaia 50, 548–560 (2017).Article 

    Google Scholar 
    47.Correia, V. F., Riding, J. B., Duarte, L. V., Fernandes, P. & Pereira, Z. The palynological response to the Toarcian Oceanic Anoxic Event (Early Jurassic) at Peniche, Lusitanian Basin, western Portugal. Mar. Micropaleontol. 137, 46–63. https://doi.org/10.1016/j.marmicro.2017.10.004 (2017).ADS 
    Article 

    Google Scholar 
    48.Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian-Toarcian crisis. R. Soc. Open Sci. 6, 190494 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Caswell, B. A. & Coe, A. L. The impact of anoxia on pelagic macrofauna during the Toarcian Oceanic Anoxic Event (Early Jurassic). Proc. Geol. Assoc. 125(4), 383–391. https://doi.org/10.1016/j.pgeola.2014.06.001 (2014).Article 

    Google Scholar 
    50.Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl. Acad. Sci. U. S. A. 111, 10073–10076 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Dera, G., Toumoulin, A. & de Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).Article 

    Google Scholar 
    52.Neige, P., Weis, R. & Fara, E. Ups and downs of belemnite diversity in the Early Jurassic of Western Tethys. Palaeontology 64, 263–283 (2021).Article 

    Google Scholar 
    53.Rita, P., De Baets, K. & Schlott, M. Rostrum size differences between Toarcian belemnite battlefields. Foss. Rec. 21, 171–182 (2018).Article 

    Google Scholar 
    54.Rita, P. et al. Biogeographic patterns of belemnite body size responses to episodes of environmental crisis. PeerJ Prepr. (2019).55.Hoffmann, R. & Stevens, K. The palaeobiology of belemnites – foundation for the interpretation of rostrum geochemistry. Biol. Rev. 95, 94–123 (2020).Article 

    Google Scholar 
    56.Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    57.Schlegelmilch, R. Die Belemniten des süddeutschen Jura. Die Belemniten des süddeutschen Jura https://doi.org/10.1007/978-3-8274-3083-0 (1998).Article 

    Google Scholar 
    58.McArthur, J. M. et al. Sr-isotope stratigraphy (87Sr/86Sr) of the lowermost Toarcian of Peniche, Portugal, and its relation to ammonite zonations. Newsletters Stratigr. 53, 297–312 (2020).Article 

    Google Scholar 
    59.Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Klug, C., Schweigert, G., Fuchs, D., Kruta, I. & Tischlinger, H. Adaptations to squid-style high-speed swimming in Jurassic belemnitids. Biol. Lett. 12, 20150877 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Seibel, B. A., Thuesen, E. V., Childress, J. J. & Gorodezky, L. A. Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull. 192, 262–278 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Mattioli, E., Pittet, B., Petitpierre, L. & Mailliot, S. Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Glob. Planet. Change 65, 134–145 (2009).ADS 
    Article 

    Google Scholar 
    63.Chamberlain, J. A. Locomotion in ancient seas: Constraint and opportunity in Cephalopod adaptive design. Geobios 15, 49–61 (1993).Article 

    Google Scholar 
    64.Rexfort, A. & Mutterlose, J. The role of biogeography and ecology on the isotope signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 153–163 (2009).Article 

    Google Scholar 
    65.Holland, S. M. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26, 148–168 (2000).Article 

    Google Scholar 
    66.Holland, S. M. The non-uniformity of fossil preservation. Philos. Trans. R. Soc. B Biol. Sci. 371, 2 (2016).
    Google Scholar 
    67.Korn, D. Impact of enviornmental perturbations o heterochronic develpments in Palaeozoic ammonoids. Evol. Chang. Heterochrony 245–260 (1995).68.Yacobucci, M. M. Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids. in Advancing research on living and fossil cephalopods 59–76 (Springer, Boston, MA, 1999).69.Landman, N. H. & Gyssant, J. R. Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 26, 247–255 (1993).Article 

    Google Scholar 
    70.McNamara, K. J. Heterochrony: the evolution of development. Evol. Educ. Outreach 5, 203–218 (2012).Article 

    Google Scholar 
    71.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Pörtner, H. O. & Farrell, A. P. Ecology: Physiology and climate change. Science https://doi.org/10.1126/science.1163156 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Pimentel, M. S. et al. Impact of ocean warming on the early ontogeny of cephalopods: A metabolic approach. Mar. Biol. 159, 2051–2059 (2012).Article 

    Google Scholar 
    74.Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, 1–13 (2014).Article 
    CAS 

    Google Scholar 
    75.Pörtner, H. O., Bock, C. & Mark, F. C. Oxygen- & capacity-limited thermal tolerance: Bridging ecology & physiology. J. Exp. Biol. 220, 2685–2696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. B Biol. Sci. 279, 4969–4976 (2012).Article 

    Google Scholar 
    77.Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).Article 

    Google Scholar 
    78.Dorey, N. et al. Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Mar. Biol. 160, 2007–2022 (2013).CAS 
    Article 

    Google Scholar 
    79.Sigwart, J. D. et al. Elevated pCO2 drives lower growth and yet increased calcification in the early life history of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) Julia. ICES J. Mar. Sci. 73, 970–980 (2016).Article 

    Google Scholar 
    80.Gutowska, M. A., Melzner, F., Pörtner, H. O. & Meier, S. Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar. Biol. 157, 1653–1663 (2010).CAS 
    Article 

    Google Scholar 
    81.Kaplan, M. B., Mooney, T. A., McCorkle, D. C. & Cohen, A. L. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS ONE 8, e63714 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Otjacques, E. et al. Cuttlefish buoyancy in response to food availability and ocean acidification. Biology (Basel). https://doi.org/10.3390/biology9070147 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Neige, P. & Boletzky, S. Morphometrics of the shell of three Sepia species (Mollusca: Cephalopoda): Intra- and interspecific variation. Zool. Beitraege. 38, 137–156 (1997).
    Google Scholar 
    84.Rita, P., Weis, R., Duarte, L. V. & De Baets, K. Taxonomical diversity and palaeobiogeographical affinity of belemnites from the Pliensbachian-Toarcian GSSP (Lusitanian Basin, Portugal). Pap. Palaeontol. https://doi.org/10.1002/spp2.1343 (2020).Article 

    Google Scholar 
    85.MacArthur, R. H. Geographical ecology: patterns in the distribution of species. (Princeton University Press, 1972).86.Gaston, K. J. The structure and dynamics of geographic ranges. (Oxford University Press on Demand, 2003).87.Duarte, L. Sequence stratigraphy and depositional setting of the Pliensbachian and Toarcian marly limestones in the Lusitanian Basin Portugal. Ciências da Terra 16, 17–23 (2007).
    Google Scholar 
    88.Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H.-O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Chang. 10, 249–253 (2020).ADS 
    Article 

    Google Scholar 
    89.Doyle, P. & Kelly, R. A. The Jurassic and Cretaceous belemnites of Kong Karls Land, Svalbard. (Norsk Polarinstitutt Oslo, 1988).90.Doyle, P. New records of dimitobelid belemnites from the cretaceous of james ross island Antarctica. Alcheringa 14, 159–175 (1990).Article 

    Google Scholar 
    91.Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging https://doi.org/10.1016/j.mri.2012.05.001 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Rohatgi, A., Rehberg, S. & Stanojevic, Z. Webplotdigitizer: Version 4.1 of Webplotdigitizer. (2018).https://doi.org/10.5281/zenodo.1137880.93.Plate, T. & Heiberger, R. Package ‘ abind ’. (2016).94.Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).Article 

    Google Scholar 
    95.Sherratt, E. Quick Guide to Geomorph v. 2.0. public.iastate.edu (2014).96.Torchiano, M. Package ‘ effsize ’. (2020).97.Gotelli, N. J., Dorazio, R. M., Ellison, A. M. & Grossman, G. D. Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models. Philos. Trans. 365, 3621–3631 (2010).Article 

    Google Scholar 
    98.Hervé, M. Package ‘ RVAideMemoire ’. (2021).99.Mangiafico, S. Package ‘ rcompanion ’. (2021).100.Oksanen, J. et al. Package ‘vegan’ title community ecology package. Commun. Ecol. Packag. 2, 1–297 (2019).MathSciNet 

    Google Scholar 
    101.Pinheiro, J. et al. Package ‘nlme’. (2021).102.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).Article 

    Google Scholar 
    103.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria (2019).104.Garnier, S., Ross, N., Rudis, B. & Sciaini, M. Package ‘viridis’. (2021). More

  • in

    Author Correction: Determinants of genetic variation across eco-evolutionary scales in pinnipeds

    These authors contributed equally: Claire R. Peart, Sergio Tusso, Saurabh D. Pophaly.Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, SwedenClaire R. Peart, Sergio Tusso, Chi-Chih Wu, Aaron B. A. Shafer & Jochen B. W. WolfDivision of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, GermanyClaire R. Peart, Sergio Tusso, Saurabh D. Pophaly, Fidel Botero-Castro & Jochen B. W. WolfMax Planck Institute for Plant Breeding Research, Cologne, GermanySaurabh D. PophalyLaboratorio de Ecología de Pinnípedos ‘Burney J. Le Boeuf’, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Baja California Sur, MéxicoDavid Aurioles-GamboaDepartment of Natural Sciences, University of Houston-Downtown, Houston, TX, USAAmy B. BairdDepartment of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USAJohn W. BickhamBritish Antarctic Survey, Natural Environment Research Council, Cambridge, UKJaume Forcada & Joseph I. HoffmanElephant Seal Research Group, Sea Lion Island, Falkland IslandsFilippo Galimberti & Simona SanvitoDepartment of Anatomy, University of Otago, Dunedin, New ZealandNeil J. GemmellDepartment of Animal Behaviour, Bielefeld University, Bielefeld, GermanyJoseph I. HoffmanNorwegian Polar Institute, Fram Centre, Tromsø, NorwayKit M. Kovacs & Christian LydersenDepartment of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, FinlandMervi Kunnasranta & Tommi NymanNatural Resources Institute Finland (Luke), Joensuu, FinlandMervi KunnasrantaDepartment of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanhovd Research Station, Svanvik, NorwayTommi NymanLaboratory of Mammal Ecology, Universidade do Vale do Rio dos Sinos, São Leopoldo, BrazilLarissa Rosa de OliveiraNational Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Marine Mammal Laboratory, Seattle, WA, USAAnthony J. OrrThe Saimaa Ringed Seal Genome Project, Institute of Biotechnology, University of Helsinki, Helsinki, FinlandMia ValtonenForensic Science & Environmental Life Sciences, Trent University, Peterborough, Ontario, CanadaAaron B. A. Shafer More

  • in

    The first mitochondrial genome of the genus Exhippolysmata (Decapoda: Caridea: Lysmatidae), with gene rearrangements and phylogenetic associations in Caridea

    1.De Grave, S. & Fransen, C. H. J. M. Carideorum Catalogus: The recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool. Med. Leiden 85(9), 195–588 (2011).
    Google Scholar 
    2.Shen, H., Braband, A. & Scholtz, G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol. 66(3), 776–789 (2013).PubMed 
    Article 

    Google Scholar 
    3.Chace, F. A. Jr. & Kensley, B. The cardiac notch in decapods. J. Crustacean Biol. 12(3), 442–447 (1992).Article 

    Google Scholar 
    4.Holthuis, L.B., Fransen, C.H.J.M. & Van Achterberg, C. The recent genera of the Caridean and Stenopodidean shrimps (Crustacea, Decapoda): with an appendix on the order Amphionidacea. Nationaal Natuurhistorisch Museum, Leiden, pp. 6–328 (1993).5.Martin, J. W. & Davis, G. E. An updated classification of the recent Crustacea. Los Angeles: Natural History Museum of County. Contrib. Sci. 39, 1–124 (2001).
    Google Scholar 
    6.De Grave, S. et al. A classification of living and fossil genera of decapod crustaceans. Raffles Bull. Zool. Suppl. 21, 1–109 (2009).
    Google Scholar 
    7.Bracken, H. D., De Grave, S. & Felder, D. L. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). Decapod Crustacean Phylogenet. 18, 274–298 (2009).
    Google Scholar 
    8.Li, C. P., De Grave, S., Lei, H. C., Chan, T. Y. & Chu, K. H. Molecular systematics of caridean shrimps based on five nuclear genes: Implications for superfamily classification. Zool. Anz. 250, 270–279 (2011).Article 

    Google Scholar 
    9.De Grave, S., Li, C. P., Tsang, L. M., Chu, K. H. & Chan, T. Y. Unweaving hippolytoid systematics (Crustacea, Decapoda, Hippolytidae): Resurrection of several families. Zool. Scr. 43(5), 496–507 (2014).Article 

    Google Scholar 
    10.Baeza, J. A. Protandric simultaneous hermaphroditism in the shrimps Lysmata bahia and Lysmata intermedia. Invertebr. Biol. 127(2), 181–188 (2008).Article 

    Google Scholar 
    11.Baeza, J. A. & Bauer, R. T. Experimental test of social mediation of sex change in a protandric sequential hermaphrodite; the marine shrimp Lysmata wurdemanni (Crustacea: Caridea). Behav. Ecol. Sociobiol. 55, 544–550 (2004).Article 

    Google Scholar 
    12.Xu, Y., Song, L. S. & Li, X. Z. The molecular phylogeny of Caridea based on 16S rDNA sequences. Mar. Sci. 29(9), 36–41 (2005).CAS 

    Google Scholar 
    13.Baeza, J. A. Testing three models on the adaptive significance of protandric simultaneous hermaphroditism in a marine shrimp. Evolution 60, 1840–1850 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Baeza, J. A. Molecular systematics of peppermint and cleaner shrimps: phylogeny and taxonomy of the genera Lysmata and Exhippolysmata (Crustacea: Caridea: Hippolytidae). Zool. J. Linn. Soc. Lond. 160, 254–265 (2010).Article 

    Google Scholar 
    15.Baeza, J. A. Molecular phylogeny of broken-back shrimps (genus Lysmata and allies): A test of the ‘Tomlinson-Ghiselin’ hypothesis explaining the evolution of hermaphroditism. Mol. Phylogenet. Evol. 69, 46–62 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Baeza, J. A. & Prakash, S. An integrative taxonomic and phylogenetic approach reveals a complex of cryptic species in the ‘peppermint’ shrimp Lysmata wurdemanni sensu stricto. Zool. J. Linn. Soc. Lond. 185(4), 1018–1038 (2019).Article 

    Google Scholar 
    17.Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27(8), 1767–1780 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Liu, Q. N., Zhu, B. J., Dai, L. S., Wei, G. Q. & Liu, C. L. The complete mitochondrial genome of the wild silkworm moth, Actias selene. Gene 505(2), 291–299 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tan, M. H. et al. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci. Rep. 9, 10756 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Gissi, C., Iannelli, F. & Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101(4), 301–320 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Rich, A. & Rajbhandary, U. L. Transfer RNA: Molecular structure, sequence, and properties. Annu. Rev. Biochem. 45(1), 805–860 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Staton, J. L., Daehler, L. L. & Brown, W. M. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: Conservation of major features among arthropod classes. Mol. Biol. Evol. 14(8), 867–874 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Miller, A. D., Murphy, N. P., Burridge, C. P. & Austin, C. M. Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae). Mar. Biotechnol. 7(4), 339–349 (2005).CAS 
    Article 

    Google Scholar 
    24.Ivey, J. L. & Santos, S. R. The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae). Gene 394(1–2), 35–44 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Wang, Z. et al. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. Int. J. Biol. Macromol. 118, 31–40 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Lü, Z. M. et al. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int. J. Biol. Macromol. 135, 609–618 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Shen, X., Li, X., Sha, Z., Yan, B. & Xu, Q. Complete mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus (Crustacea: Decapoda: Caridea): Gene rearrangement and phylogeny within Caridea. Sci. China Life Sci. 55(7), 591–598 (2012).PubMed 
    Article 

    Google Scholar 
    28.Wang, Q. et al. Characterization and comparison of the mitochondrial genomes from two Alpheidae species and insights into the phylogeny of Caridea. Genomics 112(1), 65–70 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Shen, X. et al. The complete mitochondrial genome of the ridgetail white prawn Exopalaemon carinicauda Holthuis, 1950 (Crustacean: Decapoda: Palaemonidae) revealed a novel rearrangement of tRNA genes. Gene 437(1–2), 1–8 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Moritz, C. & Brown, W. M. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. 84(20), 7183–7187 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Lavrov, D. V., Boore, J. L. & Brown, W. M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss. Mol. Biol. Evol. 19(2), 163–169 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Lunt, D. H. & Hyman, B. C. Animal mitochondrial DNA recombination. Nature 387(6630), 247 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Dowton, M. & Campbell, N. J. H. Intramitochondrial recombination-is it why some mitochondrial genes sleep around?. Trends Ecol. Evol. 16(6), 269–271 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Sun, S., Cheng, J., Sun, S. & Sha, Z. Complete mitochondrial genomes of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis: Insights into the phylogenetic position of Pandalidae (Decapoda:Caridea). J. Oceanol. Limnol. 38(3), 816–825 (2020).CAS 
    Article 

    Google Scholar 
    35.Tan, M. H., Gan, H. M., Lee, Y. P., Poore, G. C. & Austin, C. M. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda). Peer J. 5, e2982 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4), e18 (2017).PubMed 

    Google Scholar 
    38.Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).Article 

    Google Scholar 
    39.Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Grant, J. R. & Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 36, 181–184 (2008).Article 
    CAS 

    Google Scholar 
    43.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    Article 

    Google Scholar 
    44.Nielsen, R. Statistical tests of selective neutrality in the age of genomics. Heredity 86, 641–647 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17(4), 540–552 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Xia, X. & Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92(4), 371–373 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Nylander, J. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53(1), 47–67 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases

    Case dataMedically attended influenza B cases in New Zealand were identified from samples taken from patients with influenza-like illness (ILI) attended by a network of general practitioners recruited for surveillance (2430 cases with an identified influenza B lineage) and from non-surveillance hospital samples (1606 cases with an identified lineage) analyzed by regional diagnostic laboratories and by the World Health Organization (WHO) National Influenza Centre at the Institute for Environmental Science and Research (ESR). Briefly, general practice surveillance operates from May to September, with participating practices collecting nasopharyngeal or throat swabs from the first ILI patient examined on each Monday, Tuesday, and Wednesday. ILI is defined as an “acute respiratory tract infection characterized by an abrupt onset of at least two of the following: fever, chills, headache, and myalgia”38. A subset of the New Zealand data (cases from 2002 to 2013) was previously compiled by Vijaykrishna et al.28 along with cases from Australia reported to the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne.Statistical model of influenza B susceptibility based on infection historyFor lineage V (B/Victoria), we modeled the number of cases in people born in birth year b observed in season y as a multinomial draw with probabilities given by:$${theta }_{V}(b,y)=D(b,y)beta (b,y){Z}_{V}(b,y)rho (b,y)$$
    (1)
    with an analogous equation defining the multinomial distribution θY(b, y) for lineage Y (B/Yamagata). D(b, y) is the fraction of the population that was born in year b as of observation season y. Z(b, y) is the susceptibility to lineage V during season y of a person born in year b relative to that of an unexposed person. β(b, y) is a baseline probability of infection with influenza B that captures differences in transmission associated with age (thus depending on b and y) and is equal to β1 if people born in year b are in preschool during season y (0–5 years old), β2 if they are school-age children or teenagers (6–17 years old), or β3 if they are 18 or older. ρ(b,y) is an age-specific factor equal to a parameter ρ if people are  0. Letting α1 and α2 be the instantaneous attack rates for preschoolers and school-age children:$${P}_{mathrm{N}}(A)=left{begin{array}{ll}{e}^{-{alpha }_{1}(A-m)}frac{(1-{e}^{-{alpha }_{1}})}{{alpha }_{1}},hfill&,{text{if}},A; le; {A}_{mathrm{s}}\ {e}^{-{alpha }_{1}({A}_{mathrm{s}}-m)}{e}^{-{alpha }_{2}(A-{A}_{mathrm{s}})}frac{(1-{e}^{-{alpha }_{2}})}{{alpha }_{2}},&,{text{if}},A; > ; {A}_{mathrm{s}}end{array}right.$$
    (26)
    where As is the age at which children start going to school (4 years old in the Netherlands69). It is noteworthy that for school-age children (the equation for A  > As on the bottom), the correction term for uncertainty in sampling is not necessary for the time spent in preschool (assumed to be exactly As years), only for the time after preschool (A − As).Handling cases with missing lineage informationWe assumed cases with missing lineage information in 2002 (n = 61), 2011 (n = 312), and 2019 (n = 206) belonged to B/Victoria, as 99% or more of identified cases in those seasons were B/Victoria (86/87 cases in 2002, 276/280 cases in 2011, and 552/552 cases in 2019) as were 94%, 92%, and 92%, respectively, of isolates from sequence databases (for Australia and New Zealand combined). We assumed cases with missing lineage information belonged to B/Yamagata in 2013 (n = 37), 2014 (n = 77), and 2017 (n = 87), when the majority of identified cases were B/Yamagata (268/272, 131/138, and 473/489, respectively), as were 99%, 94%, and 84%, respectively, of isolates in sequence databases. Unidentified cases in other seasons were disregarded, because both lineages were present at higher frequencies among identified cases. Removing unidentified cases altogether in all seasons led to similar parameter estimates.Sequence divergence analysisTo estimate the amount of evolution within and between lineages, we analyzed all complete HA and NA sequences from human influenza B isolates available on GISAID in July 2019. The set of isolates used in this analysis differs from the set used to estimate lineage frequencies, because we required isolates to have complete sequences (although not all sequences listed as complete on GISAID were in fact complete). Two isolates collected in 2000 (B/Hong Kong/548/2000 and B/Victoria/504/2000) were deposited as B/Victoria but our BLAST assignment indicated they were in fact B/Yamagata (their low divergence from B/Yamagata strains was a clear outlier). NA sequences from isolates B/Kanagawa/73 and B/Ann Arbor/1994 were only small fragments (99 and 100 amino acids long) poorly aligned with other sequences and were thus excluded. We also excluded NA sequences from B/Yamagata isolates B/Catalonia/NSVH100773835/2018 and B/Catalonia/NSVH100750997/2018, because they were extremely diverged (60% and 38%) from the reference strain B/Yamagata/16/88 and aligned poorly with other sequences.To compare sequence diversity within and between lineages over time, we aligned sequences using MAFFT v. 7.31070 and calculated percent amino acid differences in pairs of sequences from the same lineage and in pairs with one sequence from each. For each year, we sampled 100 sequences from each lineage (or used all sequences if 100 or fewer were available) to limit the number of pairwise calculations. To estimate how much B/Yamagata and B/Victoria evolved since the late 1980s, we calculated percent amino acid differences between each B/Yamagata and B/Victoria sequence, and the corresponding HA and NA sequences of reference strains B/Yamagata/16/88 and B/Victoria/2/87. Unlike in the analysis of pairwise divergence within each time point, we used all sequences from each lineage in each year. We excluded sites in which one or both sequences had gaps or ambiguous amino acids.To compare HA and NA divergence between influenza B lineages with divergence between influenza A subtypes, we downloaded complete HA and NA sequences from H3N2 and H1N1 isolated since 1977 and available on GISAID in August 2019. Homologous sites in the HA of H3N2 and H1N1 are difficult to identify by conventional sequence alignment, and instead we used the algorithm by Burke and Smith71 implemented on the Influenza Research Database website72. Both H3N2 and H1N1 sequences were aligned with the reference H3N2 sequence A/Aichi/2/68. We verified that this method matched sites on the stalk and head of the H1N1 HA with sites on the stalk and head of H3N2 HA by comparing the resulting alignment with the alignment in Supplementary Fig. S2 of Kirkpatrick et al.73. To limit the total number of influenza A sequences analyzed, we randomly selected 100 H3N2 and 100 H1N1 sequences for years in which more than 100 sequences were available, and used all available sequences for the remaining years. Isolates A/Canterbury/58/2000, A/Canterbury/87/2000, and A/Canterbury/55/2000 were excluded, because both H1N1-like and H3N2-like sequences were available under the same isolate name on GISAID.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Environmental DNA reveals the fine-grained and hierarchical spatial structure of kelp forest fish communities

    1.IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES Secretariat, 2019).2.Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis ed Ma (World Resources Institute, 2005). http://www.loc.gov/catdir/toc/ecip0512/2005013229.html. Accessed June 2019.3.Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401), 105 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95(3), 565–573. https://doi.org/10.1111/j.1365-2745.2007.01233.x (2007).Article 

    Google Scholar 
    5.Karp, D. S. et al. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15(9), 963–970. https://doi.org/10.1111/j.1461-0248.2012.01815.x (2012).Article 
    PubMed 

    Google Scholar 
    6.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14(1), 19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    7.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31(1), 67–80. https://doi.org/10.1016/j.tree.2015.11.005 (2016).Article 
    PubMed 

    Google Scholar 
    8.Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33(7), 549–564 (2018).Article 

    Google Scholar 
    9.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85(2), 183–206 (2010).Article 

    Google Scholar 
    10.Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography (Cop) 42(6), 1200–1211. https://doi.org/10.1111/ecog.04290 (2019).Article 

    Google Scholar 
    11.Olden, J. D. Biotic homogenization: A new research agenda for conservation biogeography. J. Biogeogr. 33(12), 2027–2039. https://doi.org/10.1111/j.1365-2699.2006.01572.x (2006).Article 

    Google Scholar 
    12.Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100(22), 12765–12770 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Harrison, S. Species Diversity, Spatial Scale, and Global Change (Sinauer Sunderland, 1993).
    Google Scholar 
    14.Sax, D. F. & Gaines, S. D. Species diversity: From global decreases to local increases. Trends Ecol. Evol. 18(11), 561–566 (2003).Article 

    Google Scholar 
    15.Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: Consolidation and progress in functional biodiversity research. Ecol. Lett. 12(12), 1405–1419 (2009).Article 

    Google Scholar 
    16.Magurran, A. E. & McGill, B. J. Biological Diversity: Frontiers in Measurement and Assessment (Oxford University Press, 2010).
    Google Scholar 
    17.Usseglio, P. Quantifying reef fishes: Bias in observational approaches. In Ecology of Fishes on Coral Reefs (ed Mora, C.) 270–273 (Cambridge University Press, 2015). https://www.cambridge.org/core/books/ecology-of-fishes-on-coral-reefs/quantifying-reef-fishes-bias-in-observational-approaches/660760F9E62CC61DEB48C8124AD44CDC. Accessed June 2019.18.Caldwell, Z. R., Zgliczynski, B. J., Williams, G. J. & Sandin, S. A. Reef Fish survey techniques: Assessing the potential for standardizing methodologies. PLoS One 11(4), e0153066. https://doi.org/10.1371/journal.pone.0153066 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800), 787–790 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Barbier, E. B. Marine ecosystem services. Curr. Biol. 27(11), R507–R510 (2017).CAS 
    Article 

    Google Scholar 
    21.Goodwin, K. D. et al. DNA sequencing as a tool to monitor marine ecological status. Front. Mar. Sci. 4, 107. https://doi.org/10.3389/fmars.2017.00107 (2017).Article 

    Google Scholar 
    22.Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895. https://doi.org/10.1111/mec.14350 (2017).Article 
    PubMed 

    Google Scholar 
    23.Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21(8), 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7(9), 1008–1018. https://doi.org/10.1111/2041-210X.12574 (2016).Article 

    Google Scholar 
    25.Stat, M. et al. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7(1), 12240. https://doi.org/10.1038/s41598-017-12501-5 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Bakker, J. et al. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci. Rep. 7(1), 16886. https://doi.org/10.1038/s41598-017-17150-2 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25(2), 527–541. https://doi.org/10.1111/mec.13481 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One 12(4), e0176343. https://doi.org/10.1371/journal.pone.0176343 (2017).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368. https://doi.org/10.1038/srep40368 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.O’Donnell, J. L. et al. Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ 5, e3044. https://doi.org/10.7717/peerj.3044 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19(2), 426–438. https://doi.org/10.1111/1755-0998.12982 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Stat, M. et al. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33(1), 196–205 (2019).Article 

    Google Scholar 
    33.West, K. M. et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 29(6), 1069–1086. https://doi.org/10.1111/mec.15382 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Graham, H. M. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7(4), 341–357. https://doi.org/10.1007/s10021-003-0245-6 (2004).Article 

    Google Scholar 
    35.Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc R Soc B Biol Sci 285(1874), 20172571 (2018).Article 

    Google Scholar 
    36.Lamy, T. et al. Scale-specific drivers of kelp forest communities. Oecologia 186(1), 217–233 (2018).ADS 
    Article 

    Google Scholar 
    37.Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796 (2016).Article 

    Google Scholar 
    38.Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29(04), 436–459 (2003).Article 

    Google Scholar 
    39.Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26(4), 867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x (1999).Article 

    Google Scholar 
    40.Claisse, J. T. et al. Biogeographic patterns of communities across diverse marine ecosystems in southern California. Mar. Ecol. 39(S1), e12453. https://doi.org/10.1111/maec.12453 (2018).MathSciNet 
    Article 

    Google Scholar 
    41.Jerde, C. L., Wilson, E. A. & Dressler, T. L. Measuring global fish species richness with eDNA metabarcoding. Mol. Ecol. Resour. 19(1), 19–22. https://doi.org/10.1111/1755-0998.12929 (2019).Article 
    PubMed 

    Google Scholar 
    42.Sigsgaard, E. E. et al. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar. Biol. 164(6), 128. https://doi.org/10.1007/s00227-017-3147-4 (2017).CAS 
    Article 

    Google Scholar 
    43.Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185(2), 196–211. https://doi.org/10.1086/679503 (2015).Article 
    PubMed 

    Google Scholar 
    44.Nickols, K. J., Gaylord, B. & Largier, J. L. The coastal boundary layer: Predictable current structure decreases alongshore transport and alters scales of dispersal. Mar. Ecol. Prog. Ser. 464, 17–35 (2012).ADS 
    Article 

    Google Scholar 
    45.Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50(19), 10456–10464. https://doi.org/10.1021/acs.est.6b03114 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. 1(1), 185. https://doi.org/10.1038/s42003-018-0192-6 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Andruszkiewicz Allan, E., Zhang, W. G., Lavery, C. A. & Govindarajan, F. A. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3(2), 492–514. https://doi.org/10.1002/edn3.141 (2021).Article 

    Google Scholar 
    48.Hansen, B. K., Bekkevold, D., Clausen, L. W. & Nielsen, E. E. The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries. Fish Fish. 19(5), 751–768. https://doi.org/10.1111/faf.12286 (2018).Article 

    Google Scholar 
    49.Weltz, K. et al. Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS One 12(6), e0178124. https://doi.org/10.1371/journal.pone.0178124 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Fram, J. P. et al. Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnol. Oceanogr. 53(4), 1589–1603. https://doi.org/10.4319/lo.2008.53.4.1589 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Jackson, G. A. & Winant, C. D. Effect of a kelp forest on coastal currents. Cont. Shelf. Res. 2(1), 75–80 (1983).ADS 
    Article 

    Google Scholar 
    52.Grant, W. D. & Madsen, O. S. The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18(1), 265–305. https://doi.org/10.1146/annurev.fl.18.010186.001405 (1986).ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar 
    53.Leary, P. R. et al. “Internal tide pools” prolong kelp forest hypoxic events. Limnol. Oceanogr. 62(6), 2864–2878. https://doi.org/10.1002/lno.10716 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Gaylord, B. et al. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol. Oceanogr. 52(5), 1838–1852 (2007).ADS 
    Article 

    Google Scholar 
    55.Lafferty, K. D., Benesh, K. C., Mahon, A. R., Jerde, C. L. & Lowe, C. G. Detecting Southern California’s white sharks with environmental DNA. Front. Mar. Sci. 5, 355. https://doi.org/10.3389/fmars.2018.00355 (2018).Article 

    Google Scholar 
    56.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2(7), 150088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Hyde, J. R. & Vetter, R. D. The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier). Mol. Phylogenet. Evol. 44(2), 790–811 (2007).CAS 
    Article 

    Google Scholar 
    58.Min, M. A., Barber, P. H. & Gold, Z. MiSebastes: An eDNA metabarcoding primer set for rockfishes (genus Sebastes). bioRxiv. (2020). http://biorxiv.org/content/early/2020/10/30/2020.10.29.360859.abstract. Accessed January 2021.59.Gold, Z., Sprague, J., Kushner, D. J., Zerecero Marin, E. & Barber, P. H. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS One 16(2), e0238557. https://doi.org/10.1371/journal.pone.0238557 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS One 11(6), e0157366 (2016).Article 

    Google Scholar 
    61.Berry, T. E. et al. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLoS Genet. 15(2), e1007943. https://doi.org/10.1371/journal.pgen.1007943 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Ausubel, J. H., Stoeckle, M. Y. & Gaffney, P. Final Report of the 1st US National Conference on Marine Environmental DNA (eDNA). (2019).
    63.Reed, D. C. SBC LTER: Reef: Annual time series of biomass for kelp forest species, ongoing since 2000. Environ. Data Initiat. https://doi.org/10.6073/pasta/23965abf42954f345cfd6642fe3c4810 (2018).64.O’Donnell, J. L., Kelly, R. P., Lowell, N. C. & Port, J. A. Indexed PCR primers induce template-specific bias in large-scale DNA sequencing studies. PLoS One 11(3), e0148698 (2016).Article 

    Google Scholar 
    65.Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5), 614–620 (2014).CAS 
    Article 

    Google Scholar 
    66.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Article 

    Google Scholar 
    67.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12 (2011).Article 

    Google Scholar 
    68.Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).Article 

    Google Scholar 
    69.Huson, D. H. et al. MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), 1–12 (2016).Article 

    Google Scholar 
    70.McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Crist, T. O., Veech, J. A., Gering, J. C. & Summerville, K. S. Partitioning species diversity across landscapes and regions: A hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat. 162(6), 734–743 (2003).Article 

    Google Scholar 
    72.Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22(19), 3055–3071 (2003).Article 

    Google Scholar 
    73.Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93(5), 1234–1240. https://doi.org/10.1890/11-2028.1 (2012).Article 
    PubMed 

    Google Scholar 
    74.Silva, A. R., Dias, C. T. S., Cecon, P. R. & Rêgo, E. R. An alternative procedure for performing a power analysis of Mantel’s test. J. Appl. Stat. 42(9), 1984–1992. https://doi.org/10.1080/02664763.2015.1014894 (2015).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    75.Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymetrical approach. Ecol. Monogr. 67(3), 345–366 (1997).
    Google Scholar 
    76.Team, R. C. R: A language and environment for statistical computing. (2018). https://www.r-project.org/. Accessed June 2018.77.Oksanen, J. et al. Package ‘vegan.’ Community Ecol Packag version:2. (2015). More