Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants
1.Pontier, D. et al. Postnatal growth rate and adult body weight in mammals: A new approach. Oecologia 80, 390–394 (1989).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
2.Dmitriew, C. M. The evolution of growth trajectories: What limits growth rate?. Biol. Rev. 86, 97–116 (2011).PubMed
Article
PubMed Central
Google Scholar
3.Gotthard, K., Nylin, S. & Wiklund, C. Adaptive variation in growth rate: Life history costs and consequences in the speckled wood butterfly, Pararge aegeria. Oecologia 99, 281–289 (1994).ADS
PubMed
Article
PubMed Central
Google Scholar
4.Arendt, J. D. Adaptive intrinsic growth rates: An integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).Article
Google Scholar
5.Gaillard, J. M. et al. Variation in growth form and precocity at birth in eutherian mammals. Proc. R. Soc. B Biol. Sci. 264, 859–868 (1997).ADS
CAS
Article
Google Scholar
6.Gillooly, J. F., Charnov, E. L., Geoffrey, B. W., Savage, V. M. & James, H. B. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.Brown, J. H., Gillooly, J. F., Allen, P. A., Savage, V. M. & Geoffrey, B. W. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article
Google Scholar
8.Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Sinauer Associates, 1992).9.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).10.Ferré, P., Decaux, J. F., Issad, T. & Girard, J. Changes in energy metabolism during the suckling and weaning period in the newborn. Reprod. Nutr. Dev. 26, 619–631 (1986).PubMed
Article
PubMed Central
Google Scholar
11.Gadgil, M. & Bossert, W. H. Life history consequences of natural selection. Am. Nat. 104, 1–24 (1970).Article
Google Scholar
12.Lee, A. H., Huttenlocker, A. K., Padian, K. & Woodward, H. N. Analysis of growth rates. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 217–264 (University of California Press, 2013).13.Amprino, R. L. structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroisement. Arch. Biol. (Liege) 58, 315–330 (1947).
Google Scholar
14.Nacarino-Meneses, C. & Köhler, M. Limb bone histology records birth in mammals. PLoS One 13, 20 (2018).
Google Scholar
15.Morris, P. A. A method for determining absolute age in the hedgehog. Notes Mammal Soc. 20, 277–280 (1970).
Google Scholar
16.Castanet, et al. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39 (2004).Article
Google Scholar
17.Klevezal, G. A. & Kleinenberg, S. E. Age determination of mammals by layered structures of teeth and bones. (1967).18.Barker, J. M., Boonstra, R. & Schulte-Hostedde, A. I. Age determination in yellow-pine chipmunks (Tamias amoenus): A comparison of eye lens masses and bone sections. Can. J. Zool. 81, 1774–1779 (2003).Article
Google Scholar
19.Amson, E., Kolb, C., Scheyer, T. M. & Sánchez-Villagra, M. R. Growth and life history of Middle Miocene deer (Mammalia, Cervidae) based on bone histology. C.R. Palevol 14, 637–645 (2015).Article
Google Scholar
20.Kolb, C. et al. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 15, 19 (2015).PubMed
PubMed Central
Article
Google Scholar
21.de Buffrénil, V. & Pascal, M. Croissance et morphogénèse postnatales de la mandibule du vison (Mustela vison Schreiber): Données sur la dynamique et l’interprétation fonctionnelle des dépôts osseux mandibulaires. Can. J. Zool. 62, 2026–2037 (1984).Article
Google Scholar
22.Castanet, J., CurryRogers, K., Cubo, J. & Jacques-Boisard, J. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. Comptes Rendus Acad. Sci. Ser. III Sci. Vie 323, 543–550 (2000).CAS
Google Scholar
23.Starck, J. M. & Chinsamy, A. Bone microstructure and developmental plasticity in birds and other dinosaurs. J. Morphol. 254, 232–246 (2002).PubMed
Article
PubMed Central
Google Scholar
24.de Margerie, E., Cubo, J. & Castanet, J. Bone typology and growth rate: Testing and quantifying ‘Amprino’s rule’ in the mallard (Anas platyrhynchos). Comptes Rendus Biol. 325, 221–230 (2002).Article
Google Scholar
25.de Margerie, E. et al. Assessing a relationship between bone microstructure and growth rate: A fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J. Exp. Biol. 207, 869–879 (2004).PubMed
Article
PubMed Central
Google Scholar
26.Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J. Anat. https://doi.org/10.1111/joa.13404 (2021).Article
PubMed
PubMed Central
Google Scholar
27.Smith, T. M. Experimental determination of the periodicity of incremental features in enamel. J. Anat. 208, 99–113 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
28.Kierdorf, H., Kierdorf, U., Frölich, K. & Witzel, C. Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS One 8, 20 (2013).
Google Scholar
29.Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. The pay-off of hypsodonty—timing and dynamics of crown growth and wear in molars of Soay sheep. BMC Evol. Biol. 18, 1–14 (2018).Article
Google Scholar
30.Kahle, P., Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. Mineral apposition rates in coronal dentine of mandibular first molars in Soay sheep: Results of a fluorochrome labeling study. Anat. Rec. 301, 902–912 (2018).CAS
Article
Google Scholar
31.van Gaalen, S. M. et al. Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng. Part B. Rev. 16, 209–217 (2010).PubMed
Article
PubMed Central
Google Scholar
32.Shim, M.-J. Bone changes in femoral bone of mice using calcein labeling. Korean J. Clin. Lab. Sci. 48, 114–117 (2016).Article
Google Scholar
33.Klevezal, G. A. Recording Structures of Mammals (Balkema Publishers, 1996).34.Klevezal, G. A. & Mina, M. V. Tetracycline labelling as a method of field studies of individual growth and population structure in rodents. Lynx (Praha) 22, 67–78 (1984).
Google Scholar
35.Smith, T. M., Reid, D. J. & Sirianni, J. E. The accuracy of histological assessments of dental development and age at death. J. Anat. 208, 125–138 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Curtin, A. J. et al. Noninvasive histological comparison of bone growth patterns among fossil and extant neonatal elephantids using synchrotron radiation X-ray microtomography. J. Vertebr. Paleontol. 32, 939–955 (2012).Article
Google Scholar
37.Hugi, J. & Snchez-Villagra, M. R. Life history and skeletal adaptations in the galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological dataa comparative study of iguanines. J. Herpetol. 46, 312–324 (2012).Article
Google Scholar
38.Chinsamy, A. & Hurum, J. H. Bone microstructure and growth patterns of early mammals. Acta Palaeontol. Pol. 51, 325–338 (2006).
Google Scholar
39.Teagasc. Development of the Calf Digestive System. Teagasc Calf Rearing Manual: Best Practice from Birth to Three Months 59–76 (2017).40.Warren, L. K., Lawrence, L. M., Parker, A. L., Barnes, T. & Griffin, A. S. The effect of weaning age on foal growth and radiographic bone density. J. Equine Vet. Sci. 18, 335–340 (1998).Article
Google Scholar
41.Holland, J. L. et al. Weaning stress is affected by nutrition and weaning methods. Pferdeheilkunde 12, 257–260 (1996).Article
Google Scholar
42.Enríquez, D., Hötzel, M. J. & Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta Vet. Scand. 53, 1–8 (2011).Article
Google Scholar
43.Pollard, J. C., Asher, G. W. & Littlejohn, R. P. Weaning date affects calf growth rates and hind conception dates in farmed red deer (Cervus elaphus). Anim. Sci. 74, 111–116 (2002).Article
Google Scholar
44.Wolter, B. F. & Ellis, M. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. J. Anim. Sci. 81, 363–369 (2001).Article
Google Scholar
45.Pluske, J. R., Dividich, J. L. & Verstegen, M. W. A. Weaning the pig. Concepts and Consequences Weaning the Pig (Wageningen Academic Publishers, 2003). https://doi.org/10.3920/978-90-8686-513-0.46.Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. The online version of this article, along with updated information and services, is located on the World Wide Web at: Milk production. J. Anim. Sci. 78, 2771–2777 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Wang, Y., Bekhit, A. E. D. A., Morton, J. D. & Mason, S. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications for Health and Disease 363–375 (2017). https://doi.org/10.1016/B978-0-12-809762-5.00028-048.Stein, K. & Prondvai, E. Rethinking the nature of fibrolamellar bone: An integrative biological revision of sauropod plexiform bone formation. Biol. Rev. 89, 24–47 (2014).PubMed
Article
PubMed Central
Google Scholar
49.Clutton-Brock, T. H., Guiness, F. E. & Albon, S. D. Red Deer: Behaviour and Ecology of Two Sexes (The University of Chicago Press, 1982). https://doi.org/10.1016/0006-3207(83)90010-1.50.Festa-bianchet, M., Jorgenson, J. T. & Réale, D. Early development, adult mass, and reproductive success in bighorn sheep. Behav. Ecol. 11, 633–639 (2000).Article
Google Scholar
51.Cook, J. G. et al. Effects of summer–autumn nutrition and parturition date on reproduction and survival of elk. Wildl. Monogr. 20, 1–61 (2004).
Google Scholar
52.Moore, G. H., Littlejohn, R. P. & Cowie, G. M. Liveweights, growth rates, and mortality of farmed red deer at Invermay. N. Z. J. Agric. Res. 31, 293–300 (1988).Article
Google Scholar
53.Ozanne, S. E. & Hales, C. N. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech. Ageing Dev. 126, 852–854 (2005).PubMed
Article
PubMed Central
Google Scholar
54.Van Eetvelde, M. & Opsomer, G. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance. Reprod. Domest. Anim. 52, 30–36 (2017).PubMed
Article
PubMed Central
Google Scholar
55.Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. 20, 205–216. https://doi.org/10.1111/joa.13016 (2019).Article
Google Scholar
56.Horner, J. R., De Ricqlès, A. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20, 115–129 (2000).Article
Google Scholar
57.Padian, K., De Ricqlès, A. J. & Horner, J. R. Dinosaurian growth rates and bird-origins. Nature 412, 405–408 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
58.Woodward, H. N., Padian, K. & Lee, A. H. Skeletochronology. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 195–216 (University of California Press, 2013).59.Pratt, I. V. & Cooper, D. M. L. The effect of growth rate on the three-dimensional orientation of vascular canals in the cortical bone of broiler chickens. J. Anat. 233, 531–541 (2018).PubMed
PubMed Central
Article
Google Scholar
60.Enlow, D. H. A study of the post-natal growth and remodelling of bone. Am. J. Anat. 110, 79–101 (1962).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Chinsamy-Turan, A. The Microstructure of Dinosaur Bone (The Johns Hopkins University Press, 2005).62.de Buffrénil, V. & Quilhac, A. Bone tissue types: A brief account of currently used categories. in Vertebrate Skeletal Histology and Paleohistology (eds. de Buffrénil, V., de Riclès, J. A., Zylbeberg, L. & Padian, K.) 148–192 (CRC Press, 2021).63.Padian, K., Lamm, E.-T. & Werning, S. Selection of specimens. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 35–54 (University of California Press, 2013).64.Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. J. Anat. https://doi.org/10.1111/joa.13381 (2020).Article
PubMed
PubMed Central
Google Scholar
65.Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. https://doi.org/10.1111/joa.13016 (2019).Article
PubMed
PubMed Central
Google Scholar
66.Prondvai, E., Stein, K. H. W., de Ricqlès, A. & Cubo, J. Development-based revision of bone tissue classification: The importance of semantics for science. Biol. J. Linn. Soc. 112, 799–816 (2014).Article
Google Scholar
67.Francillon-Vieillot, H. et al. Microstructural and mineralization of vertebral skeletal tissues. In Skeletal Biommineralization: Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) (Van Nostrand Reinhold, 1990).68.Montes, L. et al. Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: A phylogenetic approach. Biol. J. Linn. Soc. 92, 63–76 (2007).Article
Google Scholar
69.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
70.Team, Rs. RStudio: Integrated Development for R. (2019).71.Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).MathSciNet
MATH
Article
Google Scholar More