More stories

  • in

    Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundwater

    Fennoscandian shield genomic database (FSGD)The Fennoscandian Shield bedrock contains an abundance of fracture zones with different groundwater characteristics that vary in water source, retention time, chemistry, and connectivity to surface-fed organic compounds (see Supplementary Data 1). The Äspö Hard Rock Laboratory (HRL) and Olkiluoto drillholes were sampled over time, covering a diversity of aquifers representing waters of differing ages and both planktonic and biofilm-associated communities. In order to provide a genome-resolved view of the Fennoscandian Shield bedrock Archaeal and bacterial communities, collected samples were used for an integrated analysis by combining metagenomes (n = 44), single-cell genomes (n = 564), and metatranscriptomes (n = 9) (see detailed statistics for the generated datasets in the Supplementary Data 1 and Supplementary Information). Assembly and binning of the 44 metagenomes (~1.3 TB sequenced data) resulted in the reconstruction of 1278 metagenome-assembled genomes (MAGs; ≥ 50% completeness and ≤ 5% contamination). By augmenting this dataset with 564 sequenced single-cell amplified genomes (SAGs; 114 of which were ≥ 50% complete with ≤ 5% contamination), we present a comprehensive genomic database for the archaeal and bacterial diversity of these oligotrophic deep groundwaters, hereafter referred to as the Fennoscandian Shield genomic database (FSGD; statistics in Fig. 1A & Supplementary Data 2). Phylogenomic reconstruction using reference genomes in the Genome Taxonomy Database (GTDB-TK; release 86) shows that the FSGD MAGs/SAGs span most branches on the prokaryotic tree of life (Fig. 2). Harboring representatives from 53 phyla (152 archaeal MAGs/SAGs in 7 phyla and 1240 bacterial MAGs/SAGs in 46 phyla), the FSGD highlights the remarkable diversity of these oligotrophic deep groundwaters. Apart from the exceptional case of a single-species ecosystem composed of ‘Candidatus Desulforudis audaxviator’ in the fracture fluids of an African gold mine17, other studies of deep groundwaters as well as aquifer sediments have also revealed a notable phylogenetic diversity of the Archaea and Bacteria10,11,18. For example, metagenomic and single-cell genomic analysis of the CO2-driven Crystal geyser (Colorado Plateau, Utah, USA) resulted in reconstructed genomes of 503 archaeal and bacterial species distributed across 104 different phylum-level lineages11.Fig. 1: Overview of the FSGD MAGs and SAGs.Statistics of the metagenome-assembled genomes (MAGs) and single-cell amplified genomes (SAGs) of the Fennoscandian Shield Genomic Database (a). The number of genome clusters present in borehole samples (centerline, median; hinge limits, 25 and 75% quartiles; whiskers, 1.5x interquartile range; points, outliers). Numbers on top of each box plot represent the number of metagenomes generated for borehole samples (b). NMDS plot of unweighted binary Jaccard beta-diversities of presence/absence of all FSGD reconstructed MAGs/SAGs (c) and MAG and SAG clusters belonging to the common core microbiome present in both Äspö HRL and Olkiluoto (d). Numbers in the parenthesis show the number of overlapping points. The data used to generate these plots are available in Supplementary Data 4 and the Source Data.Full size imageFig. 2: Phylogenetic diversity of reconstructed MAGs and SAGs of the fennoscandian shield genomic database (FSGD).Genomes present in genome taxonomy database (GTDB) release 86 were used as reference. Archaea and Bacteria phylogenies are represented separately in the top and bottom panels, respectively. MAGs and SAGs of the FSGD are highlighted in red. Legend in front of each number at the bottom of the figure shows the list of taxa in the tree that are marked with the same number.Full size imageClustering reconstructed FSGD MAGs/SAGs into operationally defined prokaryotic species (≥ 95% average nucleotide identity (ANI) and ≥ 70% coverage) produced 598 genome clusters. Based on the GTDB-TK affiliated taxonomy, a single FSGD cluster may represent a novel phylum, whereas at the lower taxonomic levels, the FSGD harbors genome clusters representing seven novel taxa at class, 58 at order, 123 at family, and 345 at the genus levels. In addition, more than 94% of the reconstructed MAGs/SAGs clusters (n = 568) represent novel species with no existing representative in public databases (Supplementary Data 2). Mapping metagenomic reads against genome clusters represented exclusively by SAGs (n = 38, Fig. 1A) revealed that 14 genome clusters (20 SAGs) were not detectable in the metagenomes, suggesting they might represent rare species in the microbial community of the investigated deep groundwaters (Supplementary Data 3).To explore the community composition of different groundwaters and their temporal dynamics, presence/absence patterns were computed by competitively mapping the metagenomics reads against all reconstructed MAGs/SAGs of the FSGD. Contigs were discarded from the mapping results if More

  • in

    The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts

    1.Jürgens, N., Oncken, I., Oldeland, J., Gunter, F. & Rudolph, B. Welwitschia: phylogeography of a living fossil, diversified within a desert refuge. Sci. Rep. 11, 2385 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Herre, H. The age of Welwitschia bainesii (Hook. f) Cearr.: C14 research. S. Afr. J. Bot. 27, 139–140 (1961).
    Google Scholar 
    3.Bornman, C. H. Welwitschia mirabilis: structural and functional anomalies. Madoqua 10, 21–31 (1977).
    Google Scholar 
    4.Talalaj, S., Talalaj, D. & Talalaj, J. The strangest plants in the world. (Hill of Content, 1991).5.Hooker, J. I. On Welwitschia, a new genus of Gnetaceæ. Trans. Linn. Soc. Lond. 24, 1–48 (1862).Article 

    Google Scholar 
    6.Friedman, W. E. Development and evolution of the female gametophyte and fertilization process in Welwitschia mirabilis (Welwitschiaceae). Am. J. Bot. 102, 312–324 (2015).PubMed 
    Article 

    Google Scholar 
    7.Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).Article 
    CAS 

    Google Scholar 
    8.Dilcher, D. L., Bernardes-De-Oliveira, M. E. & Pons, D. Welwitschiaceae from the lower Cretaceous of northeastern Brazil. Am. J. Bot. 92, 1294–1310 (2005).PubMed 
    Article 

    Google Scholar 
    9.Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Li, Z. et al. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol. Evol. 9, 1130–1147 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Doyle, J. A. Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet. Sci. 40, 301–326 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Bateman, R. Hunting the Snark: the flawed search for mythical Jurassic angiosperms. J. Exp. Bot. 71, 22–35 (2019).Article 
    CAS 

    Google Scholar 
    13.Wan, T. et al. A genome for gnetophytes and early evolution of seed plants. Nat. Plants 4, 82–89 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Leitch, I. J., Hanson, L., Winfield, M., Parker, J. & Bennett, M. D. Nuclear DNA C-values complete familial representation in gymnosperms. Ann. Bot. 88, 843–849 (2001).CAS 
    Article 

    Google Scholar 
    15.Khoshoo, T. N. & Ahuja, M. R. The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14, 522–533 (1963).Article 

    Google Scholar 
    16.Li, Z. et al. Early genome duplications in conifers and other seed plants. Sci. Adv. 1, e1501084 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Van de Peer, Y. Computational approaches to unveiling ancient genome duplications. Nat. Rev. Genet 5, 752–763 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    18.Zhang, Q.-J. et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons to drive genome size evolution. Mol. Plant 13, 935–938 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Zhang, Q. J. & Gao, L. Z. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3 (Bethesda, Md.) 7, 1875–1885 (2017).CAS 
    Article 

    Google Scholar 
    20.Cossu, R. M. et al. LTR retrotransposons show low levels of unequal recombination and high rates of intraelement gene conversion in large plant genomes. Genome Biol. Evol. 9, 3449–3462 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Roddy, A. et al. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. Int. J. Plant. Sci. https://doi.org/10.1101/619585 (2019).22.Ausin, I. et al. DNA methylome of the 20-gigabase Norway spruce genome. Proc. Natl Acad. Sci. USA 113, E8106–e8113 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Matzke, M. A., Kanno, T. & Matzke, A. J. M. RNA-Directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant Biol. 66, 243–267 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Johnsen, Ø. et al. Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ. 28, 1090–1102 (2005).CAS 
    Article 

    Google Scholar 
    28.Yakovlev, I. A., Carneros, E., Lee, Y., Olsen, J. E. & Fossdal, C. G. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237–1249 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Trávníček, P. et al. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. N. Phytol. 224, 1642–1656 (2019).Article 
    CAS 

    Google Scholar 
    30.Cacciò, S. et al. Methylation patterns in the isochores of vertebrate genomes. Gene 205, 119–124 (1997).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Serres-Giardi, L., Belkhir, K., David, J. & Glémin, S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24, 1379–1397 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Glémin, S. Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression. Genetics 185, 939–959 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Vinogradov, A. E. DNA helix: the importance of being GC-rich. Nucleic Acids Res. 31, 1838–1844 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Rocha, E. P. & Danchin, A. Base composition bias might result from competition for metabolic resources. Trends Genet. 18, 291–294 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Shenhav, L. & Zeevi, D. Resource conservation manifests in the genetic code. Science 370, 683–687 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Kelly, S. The amount of nitrogen used for photosynthesis modulates molecular evolution in plants. Mol. Biol. Evol. 35, 1616–1625 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Martens, P. Welwitschia mirabilis and neoteny. Am. J. Bot. 64, 916–920 (1977).Article 

    Google Scholar 
    39.Robert, J. R. Leaf anatomy of Welwitschia. i. Early development of the leaf. Am. J. Bot. 45, 90–95 (1958).Article 

    Google Scholar 
    40.Bornman, C. H. Welwitschia mirabilis: paradox of the Namib Desert. Endeavour 31, 95–99 (1972).
    Google Scholar 
    41.Pham, T. & Sinha, N. Role of KNOX genes in shoot development of Welwitschia mirabilis. Int. J. Plant Sci. 164, 333–343 (2003).CAS 
    Article 

    Google Scholar 
    42.Nishii, K. et al. A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Dev. Genes Evol. 220, 25–40 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hacham, Y. et al. Brassinosteroid perception in the epidermis controls root meristem size. Dev. (Camb., Engl.) 138, 839–848 (2011).CAS 
    Article 

    Google Scholar 
    44.Sun, S. et al. Brassinosteroid signalling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev. Cell 34, 220–228 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Wei, Z. & Li, J. Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant 9, 86–100 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Jiang, C. K. & Rao, G. Y. Insights into the diversification and evolution of R2R3-MYB transcription factors in plants. Plant Physiol. 183, 637–655 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Pandey, A., Misra, P. & Trivedi, P. K. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Rep. 34, 1515–1528 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Petroni, K. et al. The AtMYB11 gene from Arabidopsis is expressed in meristematic cells and modulates growth in planta and organogenesis in vitro. J. Exp. Bot. 59, 1201–1213 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gugger, P. F., Peñaloza-Ramírez, J. M., Wright, J. W. & Sork, V. L. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata. Tree Physiol. 37, 632–644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Jaiwal, S. K. C. A., Mahajan, S., Kumar, S. & Sharma, V. K. The genome sequence of Aloe vera reveals adaptive evolution of drought tolerance mechanisms. iScience 24, 102078 (2021).ADS 
    Article 

    Google Scholar 
    53.Henschel, J. R. & Seely, M. K. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib desert (including a bibliography). Plant Ecol. 150, 7–26 (2000).Article 

    Google Scholar 
    54.Stortenbeker, N. & Bemer, M. The SAUR gene family: the plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 70, 17–27 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Wei, J. et al. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis. J. Exp. Bot. 66, 5809–5820 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Olinares, P. D., Kim, J., Davis, J. I. & van Wijk, K. J. Subunit stoichiometry, evolution, and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis. Plant Cell 23, 2348–2361 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Sjögren, L. L., Stanne, T. M., Zheng, B., Sutinen, S. & Clarke, A. K. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell 18, 2635–2649 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Dong, H. et al. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol. 162, 1867–1880 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Nakabayashi, K., Ito, M., Kiyosue, T., Shinozaki, K. & Watanabe, A. Identification of clp genes expressed in senescing Arabidopsis leaves. Plant cell Physiol. 40, 504–514 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Koussevitzky, S. et al. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol. Biol. 63, 85–96 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Vierling, E. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620 (1991).CAS 
    Article 

    Google Scholar 
    62.Guo, L. M., Li, J., He, J., Liu, H. & Zhang, H. M. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Sci. Rep. 10, 1383 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Waseem, M., Rong, X. & Li, Z. Dissecting the role of a basic helix-loop-helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front. Plant Sci. 10, 734 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.De La Torre, A. R., Lin, Y. C., Van de Peer, Y. & Ingvarsson, P. K. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families. Genome Biol. Evol. 7, 1002–1015 (2015).Article 
    CAS 

    Google Scholar 
    65.Neale, D. B., Martínez-García, P. J., De La Torre, A. R., Montanari, S. & Wei, X. X. Novel insights into tree biology and genome evolution as revealed through genomics. Annu. Rev. Plant Biol. 68, 457–483 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Jiang, F. et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic. Res. 6, 128 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Huo, H., Dahal, P., Kunusoth, K., McCallum, C. M. & Bradford, K. J. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance. Plant Cell 25, 884–900 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Wang, H. et al. CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proc. Natl Acad. Sci. USA 112, 13729–13734 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Xu, J. et al. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnol. J. 16, 672–687 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Friis, E. M., Pedersen, K. R. & Crane, P. R. Welwitschioid diversity in the early Cretaceous: evidence from fossil seeds with pollen from Portugal and eastern North America. Grana 53, 175–196 (2014).Article 

    Google Scholar 
    72.Damme, P. V. & Vernemmen, P. The natural environment of the Namib Desert. Afr. Focus 7, 355–400 (1992).
    Google Scholar 
    73.Siesser, W. G. Late Miocene origin of the Benguela upswelling system off northern Namibia. Science 4441, 283–285 (1980).ADS 
    Article 

    Google Scholar 
    74.Meyers, P. A., Brassell, S. C., Huc, A. Y., Barron, E. J. & Stradner, H. Organic geochemistry of sediments recovered by DSDP/IPOD Leg 75 from under the Benguela current. Volume 10, pp.14. (Plenum Press, 1983).75.Alzohairy, A. M., Yousef, M. A., Edris, S., Kerti, B. & Alzohairy, M. Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via RT-qPCR. Life Sci. J. 9, 5019–5026 (2012).
    Google Scholar 
    76.Morano, A. et al. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res. 42, 804–821 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Russo, G. et al. DNA damage and repair modify DNA methylation and chromatin domain of the targeted locus: mechanism of allele methylation polymorphism. Sci. Rep. 6, 33222 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Doerfler, W. The almost-forgotten fifth nucleotide in DNA: an introduction. Curr. Top. Microbiol. Immunol. 301, 3–18 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Guignard, M. et al. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Front. Ecol. Evol. 5, 70 (2017).Article 

    Google Scholar 
    81.Drake, P. L., Froend, R. H. & Franks, P. J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64, 495–505 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Massmann, U. Welwitschia: nach 90 jahren. Namib. und Meer 7, 45–46 (1976).
    Google Scholar 
    83.Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, 265–268 (2007).Article 

    Google Scholar 
    87.Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. Bioinformatics 21, 152–158 (2005).Article 

    Google Scholar 
    88.Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, 351–358 (2005).Article 

    Google Scholar 
    89.Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).CAS 
    Article 

    Google Scholar 
    93.Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, 89 (2016).Article 
    CAS 

    Google Scholar 
    94.Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, 7 (2008).Article 
    CAS 

    Google Scholar 
    97.Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, 351–360 (2019).Article 
    CAS 

    Google Scholar 
    98.Vanneste, K., Van de Peer, Y. & Maere, S. Inference of genome duplications from age distributions revisited. Mol. Biol. Evol. 30, 177–190 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994).CAS 
    PubMed 

    Google Scholar 
    102.Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evolution. 24, 1586–1591 (2007).CAS 
    Article 

    Google Scholar 
    103.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Proost, S. et al. i-ADHoRe 3.0–fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, 11 (2012).Article 
    CAS 

    Google Scholar 
    105.Fostier, J. et al. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists. Bioinformatics 27, 749–756 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    106.Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Moreno-Hagelsieb, G. & Latimer, K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24, 319–324 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Vanneste, K., Baele, G., Maere, S. & Van de Peer, Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 24, 1334–1347 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Ostlund, G. et al. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196–D203 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    112.D’Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    113.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Group, A. P. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article 

    Google Scholar 
    115.Gandolfo, M., Nixon, K. & Crepet, W. A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Ceapparales). Am. J. Bot. 85, 964 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Beilstein, M. A., Nagalingum, N. S., Clements, M. D., Manchester, S. R. & Mathews, S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 107, 18724–18728 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Crepet, W. & Nixon, K. Fossil Clusiaceae from the late Cretaceous (Turonian) of new Jersey and implications regarding the history of bee pollination. Am. J. Bot. 85, 1122 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Xi, Z. et al. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc. Natl Acad. Sci. USA 109, 17519–17524 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Friis, E. M. Spirematospermum chandlerae sp. nov., an extinct species of Zingiberaceae from the North American Cretaceous. Tert. Res. 9, 7–12 (1988).
    Google Scholar 
    120.Janssen, T. & Bremer, K. The age of major monocot groups inferred from 800+rbcL sequences. Bot. J. Linn. Soc. 146, 385–398 (2004).Article 

    Google Scholar 
    121.Doyle, J. A. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44, 227–251 (2005).Article 

    Google Scholar 
    122.Rydin, C., Pedersen, K. R. & Friis, E. M. On the evolutionary history of Ephedra: cretaceous fossils and extant molecules. Proc. Natl Acad. Sci. USA 101, 16571–16576 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Magallón, S. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst. Biol. 59, 384–399 (2010).PubMed 
    Article 

    Google Scholar 
    124.Clarke, J. T., Warnock, R. C. & Donoghue, P. C. Establishing a time-scale for plant evolution. N. phytologist 192, 266–301 (2011).Article 

    Google Scholar 
    125.Heled, J. & Drummond, A. J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61, 138–149 (2012).PubMed 
    Article 

    Google Scholar 
    126.Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    127.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    128.Yu, X. J., Zheng, H. K., Wang, J., Wang, W. & Su, B. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup. Genomics 88, 745–751 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Vilella, A. J. et al. EnsemblCompara geneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Seberg, O. & Petersen, G. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat. Rev. Genet. 10, 276 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Jühling, F. et al. Metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 26, 256–262 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    136.Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    137.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    139.Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    140.Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. CutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    141.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, 25 (2009).Article 
    CAS 

    Google Scholar 
    142.Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    143.Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–d162 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    144.Li, Z. & He, Y. Roles of brassinosteroids in plant reproduction. Int. J. Mol. Sci. 21, 872 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    145.Xin, P., Yan, J., Fan, J., Chu, J. & Yan, C. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol. 162, 2056–2066 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    146.Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    148.Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    149.Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    150.Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales)

    1.Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci Adv. 2017;3:e1602422.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Johnson PTJ, Preston DL, Hoverman JT, LaFonte BE. Host and parasite diversity jointly control disease risk in complex communities. Proc Natl Acad Sci USA. 2013;110:16916–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Dougherty ER, Carlson CJ, Bueno VM, Burgio KR, Cizauskas CA, Clements CF, et al. Paradigms for parasite conservation: parasite conservation. Conserv Biol. 2016;30:724–33.PubMed 
    Article 

    Google Scholar 
    4.Paseka RE, White LA, Van de Waal DB, Strauss AT, González AL, Everett RA, et al. Disease-mediated ecosystem services: pathogens, plants, and people. Trends Ecol Evolut. 2020;35:731–43.Article 

    Google Scholar 
    5.Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073.PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R. The planktonic protist interactome: where do we stand after a century of research? ISME J. 2020;14:544–59.PubMed 
    Article 

    Google Scholar 
    7.Brussaard CPD. Viral control of phytoplankton populations-a review. J Eukaryot Microbiol. 2004;51:125–38.PubMed 
    Article 

    Google Scholar 
    8.Chambouvet A, Morin P, Marie D, Guillou L. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science. 2008;322:1254–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Vardi A, Van Mooy BA, Fredricks HF, Popendorf KJ, Ossolinski JE, Haramaty L, et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science. 2009;326:861–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Siano R, Alves-de-Souza C, Foulon E, Bendif EM, Simon N, Guillou L, et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78.Article 

    Google Scholar 
    13.Park M, Cooney S, Yih W, Coats D. Effects of two strains of the parasitic dinoflagellate Amoebophrya on growth, photosynthesis, light absorption, and quantum yield of bloom-forming dinoflagellates. Mar Ecol Prog Ser. 2002;227:281–92.Article 

    Google Scholar 
    14.Velo-Suárez L, Brosnahan ML, Anderson DM, McGillicuddy DJ. A Quantitative assessment of the role of the parasite Amoebophrya in the termination of Alexandrium fundyense blooms within a small coastal embayment. PLoS ONE. 2013;8:e81150.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Li C, Song S, Liu Y, Chen T. Occurrence of Amoebophrya spp. infection in planktonic dinoflagellates in Changjiang (Yangtze River) Estuary, China. Harmful Algae. 2014;37:117–24.Article 

    Google Scholar 
    16.Choi CJ, Brosnahan ML, Sehein TR, Anderson DM, Erdner DL. Insights into the loss factors of phytoplankton blooms: the role of cell mortality in the decline of two inshore Alexandrium blooms. Limnol Oceanogr. 2017;62:1742–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Coats DW, Park MG. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta); parasite survival, infectivity, generation time, and host specificity. J Phycol. 2002;38:520–8.Article 

    Google Scholar 
    18.Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:2531.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Anderson SR, Harvey EL. Temporal variability and ecological interactions of parasitic marine Syndiniales in coastal protist communities. mSphere. 2020;5:e00209–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Alves-de-Souza C, Pecqueur D, Le Floc’h E, Mas S, Roques C, Mostajir B, et al. Significance of plankton community structure and nutrient availability for the control of dinoflagellate blooms by parasites: a modeling approach. PLoS ONE. 2015;10:e0127623.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Alacid E, Park MG, Turon M, Petrou K, Garcés E. A game of russian roulette for a generalist dinoflagellate parasitoid: host susceptibility is the key to success. Front Microbiol. 2016;7:769.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Vincent F, Sheyn U, Porat Z, Schatz D, Vardi A. Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc Natl Acad Sci USA. 2021;118:e2021586118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Chambouvet A, Alves-de-Souza C, Cueff V, Marie D, Karpov S, Guillou L. Interplay between the parasite Amoebophrya sp. (Alveolata) and the cyst formation of the red tide dinoflagellate Scrippsiella trochoidea. Protist. 2011;162:637–49.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Pelusi A, De Luca P, Manfellotto F, Thamatrakoln K, Bidle KD, Montresor M. Virus‐induced spore formation as a defense mechanism in marine diatoms. New Phytol. 2020;229:16951–2259.
    Google Scholar 
    25.Pouneva ID. Effect of abscisic acid and ontogenic phases of the host alga on the infection process in the pathosystem Scenedesmus acutus—Phlyctidium scenenedesmi. Acta Physiol Plant. 2006;28:395–400.CAS 
    Article 

    Google Scholar 
    26.Bai X, Adolf JE, Bachvaroff T, Place AR, Coats DW. The interplay between host toxins and parasitism by Amoebophrya. Harmful Algae. 2007;6:670–8.CAS 
    Article 

    Google Scholar 
    27.Place AR, Bai X, Kim S, Sengco MR, Wayne, Coats D. Dinoflagellate host-parasite sterol profiles dictate karlotoxin sensitivity. J Phycol. 2009;45:375–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Rohrlack T, Christiansen G, Kurmayer R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in Cyanobacteria of the Genus Planktothrix. Appl Environ Microbiol. 2013;79:2642–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Scholz B, Küpper F, Vyverman W, Ólafsson H, Karsten U. Chytridiomycosis of marine diatoms—the role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Marine Drugs. 2017;15:26.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Granéli E, Hansen PJ. Allelopathy in harmful algae: a mechanism to compete for resources? In: Granéli E, Turner JT, editors. Ecology of harmful algae. Springer Berlin Heidelberg; 2006. p. 189–201.31.Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Chapelle A, Le Bec C, Amzil Z, Dreanno C, Klouch KZ, Labry C, et al. Etude sur la proliferation de la micro algue Alexandrium minutum en rade de Brest (2014).33.Chapelle A, Le Gac M, Labry C, Siano R, Quere J, Caradec F, et al. The Bay of Brest (France), a new risky site for toxic Alexandrium minutum blooms and PSP shellfish contamination. Harmful Algal News. 2015;51:4–5.34.Klouch KZ, Schmidt S, Andrieux-Loyer F, Le Gac M, Hervio-Heath D, Qui-Minet ZN. et al. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France). FEMS Microbiol Ecol. 2016;92:fiw101PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Long M, Tallec K, Soudant P, Le Grand F, Donval A, Lambert C, et al. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Res. 2018;35:508–18.Article 

    Google Scholar 
    36.Long M, Peltekis A, González-Fernández C, Bailleul B, Hégaret H. Allelochemicals of Alexandrium minutum: kinetics of membrane disruption and photosynthesis inhibition in a co-occurring diatom. Harmful Algae. 2021;103:101997.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Starr RC, Zeikus JA. Utex—The culture collection of algae at the university of Texas at Austin 1993 List of cultures. J Phycol. 1993;29:1–106.Article 

    Google Scholar 
    38.Keller M, Selvin R, Claus W, Guillard RRL. Media for the culture of oceanic ultraphytoplankton 1, 2. J Phycol. 1987;23:633–8.39.Bigeard. Collect of Amoebophrya parasite (free-living stage) for genomic and transcriptomic analyses. 2019. Protocols.io.40.Kim S, Gil Park M, Yih W, Coats DW. Infection of the bloom-forming thecate dinoflagellates Alexandrium affina and Gonyaulax spinifera by two strains of Amoebophrya (Dinophyta). J Phycol. 2004;40:815–22.Article 

    Google Scholar 
    41.Kim S. Patterns in host range for two strains of Amoebophrya (Dinophyta) infecting thecate dinoflagellates: Amoebophrya spp. ex Alexandrium affine and ex Gonyaulax polygramma. J Phycol. 2006;42:1170–3.Article 

    Google Scholar 
    42.Kayal E, Alves-de-Souza C, Farhat S, Velo-Suarez L, Monjol J, Szymczak J, et al. Dinoflagellate host chloroplasts and mitochondria remain functional during Amoebophrya Infection. Front Microbiol. 2020;11:600823.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.44.John U, Tillmann U, Hülskötter J, Alpermann TJ, Wohlrab S, Van de Waal DB. Intraspecific facilitation by allelochemical mediated grazing protection within a toxigenic dinoflagellate population. Proc R Soc B. 2015;282:20141268.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Lelong A, Haberkorn H, Le Goïc N, Hégaret H, Soudant P. A new insight into allelopathic effects of Alexandrium minutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microb Ecol. 2011;62:919–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Tillmann U, Alpermann T, John U, Cembella A. Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists. Harmful Algae. 2008;7:52–64.Article 

    Google Scholar 
    47.Durham WM, Stocker R. Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu Rev Mar Sci. 2012;4:177–207.Article 

    Google Scholar 
    48.Breier RE, Lalescu CC, Waas D, Wilczek M, Mazza MG. Emergence of phytoplankton patchiness at small scales in mild turbulence. Proc Natl Acad Sci USA. 2018;115:12112–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Wheeler JD, Secchi E, Rusconi R, Stocker R. Not just going with the flow: the effects of fluid flow on bacteria and plankton. Annu Rev Cell Dev Biol. 2019;35:213–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Basterretxea G, Font-Muñoz JS, Tuval I. Phytoplankton orientation in a turbulent ocean: a microscale perspective. Front Mar Sci. 2020;7:185.Article 

    Google Scholar 
    51.Blossom HE, Markussen B, Daugbjerg N, Krock B, Norlin A, Hansen PJ. The cost of toxicity in microalgae: direct evidence from the dinoflagellate Alexandrium. Front Microbiol. 2019;10:1065.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Martens H, Van de Waal DB, Brandenburg KM, Krock B, Tillmann U. Salinity effects on growth and toxin production in an Alexandrium ostenfeldii (Dinophyceae) isolate from The Netherlands. J Plankton Res. 2016;38:1302–16.CAS 
    Article 

    Google Scholar 
    53.Long M, Holland A, Planquette H, González Santana D, Whitby H, Soudant P, et al. Effects of copper on the dinoflagellate Alexandrium minutum and its allelochemical potency. Aquat Toxicol. 2019;210:251–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Brown ER, Kubanek J. Harmful alga trades off growth and toxicity in response to cues from dead phytoplankton. Limnol Oceanogr. 2020;65:1723–33.CAS 
    Article 

    Google Scholar 
    55.Selander E, Thor P, Toth G, Pavia H. Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc R Soc B. 2006;273:1673–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Lu Y, Wohlrab S, Groth M, Glöckner G, Guillou L, John U. Transcriptomic profiling of Alexandrium fundyense during physical interaction with or exposure to chemical signals from the parasite Amoebophrya. Mol Ecol. 2016;25:1294–307.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Place A, Harvey H, Bai X, Coats D. Sneaking under the toxin surveillance radar: parasitism and sterol content. Afr J Mar Sci. 2006;28:347–51.Article 

    Google Scholar 
    59.Ma H, Krock B, Tillmann U, Bickmeyer U, Graeve M, Cembella A. Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense. Toxicon. 2011;58:247–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Deeds J, Place A. Sterol-specific membrane interactions with the toxins from Karlodinium micrum (Dinophyceae) — a strategy for self-protection? Afr J Mar Sci. 2006;28:421–5.Article 

    Google Scholar 
    61.Leblond JD, Sengco MR, Sickman JO, Dahmen JL, Anderson DM. Sterols of the Syndinian dinoflagellate Amoebophrya sp., a parasite of the dinoflagellate Alexandrium tamarense (Dinophyceae). J Eukaryotic Microbiol. 2006;53:211–6.CAS 
    Article 

    Google Scholar 
    62.Long M, Tallec K, Soudant P, Lambert C, Le Grand F, Sarthou G, et al. A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum. Environ Pollut. 2018;242:1598–605.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Borcier E, Morvezen R, Boudry P, Miner P, Charrier G, Laroche J, et al. Effects of bioactive extracellular compounds and paralytic shellfish toxins produced by Alexandrium minutum on growth and behaviour of juvenile great scallops Pecten maximus. Aquatic Toxicol. 2017;184:142–54.CAS 
    Article 

    Google Scholar 
    64.Castrec J, Soudant P, Payton L, Tran D, Miner P, Lambert C, et al. Bioactive extracellular compounds produced by the dinoflagellate Alexandrium minutum are highly detrimental for oysters. Aquat Toxicol. 2018;199:188–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Wang Y, Tang X. Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III under laboratory culture. Harmful Algae. 2008;7:65–75.Article 

    Google Scholar 
    66.Tang YZ, Gobler CJ. Lethal effects of Northwest Atlantic Ocean isolates of the dinoflagellate, Scrippsiella trochoidea, on Eastern oyster (Crassostrea virginica) and Northern quahog (Mercenaria mercenaria) larvae. Mar Biol. 2012;159:199–210.Article 

    Google Scholar 
    67.Felpeto AB, Roy S, Vasconcelos VM. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos. 2018;127:85–98.Article 

    Google Scholar 
    68.Driscoll WW, Hackett JD, Ferrière R. Eco-evolutionary feedbacks between private and public goods: evidence from toxic algal blooms. Ecol Lett. 2016;19:81–97.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Driscoll WW, Espinosa NJ, Eldakar OT, Hackett JD. Allelopathy as an emergent, exploitable public good in the bloom-forming microalga Prymnesium parvum. Evolution. 2013;67:1582–90.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Rodríguez F, Figueroa RI. Confirmation of the wide host range of Parvilucifera corolla (Alveolata, Perkinsozoa). Eur J Protistol. 2020;74:125690.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Chambouvet A, Laabir M, Sengco M, Vaquer A, Guillou L. Genetic diversity of Amoebophryidae (Syndiniales) during Alexandrium catenella/tamarense (Dinophyceae) blooms in the Thau lagoon (Mediterranean Sea, France). Res Microbiol. 2011;162:959–68.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Cosgrove S. Monitoring methods and bloom dynamic studies of the toxic dinoflagellate genus Alexandrium. 2014. Doctoral dissertation, National University of Ireland, Galway.73.Hutchinson GE. The Paradox of the plankton. Am Nat. 1961;95:137–45.Article 

    Google Scholar 
    74.Czaran TL, Hoekstra RF, Pagie L. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA. 2002;99:786–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Garcés E, Alacid E, Reñé A, Petrou K, Simó R. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J. 2013;7:1065–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D. et al. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:annurev-micro-022620-014327Article 
    CAS 

    Google Scholar 
    77.Carney LT, Lane TW. Parasites in algae mass culture. Front Microbiol. 2014;5:278. More

  • in

    Evolutionary loss of thermal acclimation accompanied by periodic monocarpic mass flowering in Strobilanthes flexicaulis

    1.Gunderson, C. A., O’Hara, K. H., Campion, C. M., Waler, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).ADS 
    Article 

    Google Scholar 
    2.Sage, R. F., Way, D. A. & Kubien, D. S. Rubisco, Rubisco activase, and global climate change. J. Exp. Bot. 59, 1581–1595 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Sendall, K. M. et al. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Glob. Change Biol. 21, 1342–1357 (2015).ADS 
    Article 

    Google Scholar 
    4.IPCC AR5. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report to the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    5.Atkin, O. K. et al. 2008 Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Glob. Change Biol. 14, 2709–2726 (2008).ADS 
    Article 

    Google Scholar 
    6.Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Hikosaka, H., Ishikawa, K., Borjigidai, A., Muller, O. & Onoda, Y. Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 57, 291–302 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Ow, L. F., Griffin, K. L., Whitehead, D., Walcroft, A. S. & Turnbull, M. H. Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides × nigra. New Phytol. 178, 123–134 (2008).PubMed 
    Article 

    Google Scholar 
    9.Way, D. A. & Yamori, W. Thermal acclimation of photosynthesis: On the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth. Res. 119, 89–100 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl. Acad. Sci. USA 113, 3832–3837 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Sage, R. F. & Kubien, D. S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Scafaro, A. P. et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. Glob. Change Biol. 23, 2783–2800 (2017).ADS 
    Article 

    Google Scholar 
    13.Higgins, S. I. & Richardson, D. M. Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am. Nat. 153, 464–475 (1999).PubMed 
    Article 

    Google Scholar 
    14.Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trend. Plant Sci. 8, 343–351 (2003).CAS 
    Article 

    Google Scholar 
    15.Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Slot, M. & Kitajima, K. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177, 885–900 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    18.Atkinson, L. J., Hellicar, M. A., Fitter, A. H. & Atkin, O. K. Impact of temperature on the relationship between respiration and nitrogen concentration in roots: An analysis of scaling relationships, Q10 values and thermal acclimation ratios. New Phytol. 173, 110–120 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Wei, X. et al. Consistent leaf respiratory response to experimental warming of three North American deciduous trees: A comparison across seasons, years, habitats and sites. Tree Physiol. 37, 285–300 (2017).CAS 
    PubMed 

    Google Scholar 
    20.Kruse, J., Hopmans, P. & Adams, M. A. Temperature responses are a window to the physiology of dark respiration: Differences between CO2 release and O2 reduction shed light on energy conservation. Plant Cell Environ. 31, 901–914 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Kruse, J., Rennenberg, H. & Adams, M. A. Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol. 189, 659–677 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Kakishima, S., Yoshimura, J., Murata, H. & Murata, J. 6-year periodicity and variable synchronicity in a mass-flowering plant. PLoS ONE 6, e28140. https://doi.org/10.1371/journal.pone.002814 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Kakishima, S. et al. Evolutionary origin of a periodical mass-flowering plant. Ecol. Evol. 9, 4373–4381 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Björkman, O. & Denning, B. Photon field of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170, 489–504 (1987).PubMed 
    Article 

    Google Scholar 
    25.Stirling, C. M., Aguilera, C., Baker, N. R. & Long, S. P. Changes in the photosynthetic light response curve during leaf development of field-grown maize with implications for modeling canopy photosynthesis. Photosynth. Res. 42, 217–225 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Ishida, A., Uemura, A., Koike, N., Matsumoto, Y. & Ang, L. H. Interactive effects of leaf age and self-shading on leaf structure, photosynthetic capacity and chlorophyll fluorescence in the rain forest tree, Dryobalanops aromatic. Tree Physiol. 19, 741–747 (1999).PubMed 
    Article 

    Google Scholar 
    27.Bouma, T. J. et al. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol. Plant. 92, 585–594 (1994).CAS 
    Article 

    Google Scholar 
    28.Noguchi, K. et al. Costs of protein turnover and carbohydrate export in leaves of sun and shade species. Aust. J. Plant Physiol. 28, 37–47 (2001).CAS 

    Google Scholar 
    29.Stephanie, S. Y. et al. Respiratory alternative oxidase responds to both low- and high-temperature stress in Quercus rubra leaves along an urban-rural gradient in New York. Funct. Ecol. 25, 1007–1017 (2011).Article 

    Google Scholar 
    30.Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–13734 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ishida, A. et al. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologica 156, 193–202 (2008).ADS 
    Article 

    Google Scholar 
    33.He, P. et al. Leaf mechanical strength and photosynthetic capacity wary independently across 57 subtropical forest species with contrasting light requirements. New Phytol. 223, 607–618 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Yamashita, N., Koike, N. & Ishida, A. Leaf ontogenetic dependence of light acclimation in invasive and native subtropical trees of different successional status. Plant Cell Environ. 25, 1341–1356 (2002).Article 

    Google Scholar 
    35.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Change 4, 710–714 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    38.Saiki, S.-T., Ishida, A., Yoshimura, K. & Yazaki, K. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant. Sci. Rep. 7, 2995. https://doi.org/10.1038/s41598-017-03162-5 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2, 8. https://doi.org/10.1038/s42003-018-0256-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Ebbert, V., Adams, W. W. III., Mattoo, A. K., Sokolenko, A. & Demming-Adams, B. Up-regulation of a photosystem II core protein phosphatase inhibitor and sustained D1 phosphorylation in zeaxanthin-retaining, photoinhibited needles of overwintering Douglas fir. Plant Cell Environ. 28, 232–240 (2005).CAS 
    Article 

    Google Scholar 
    41.Harayama, H., Ikeda, T., Ishida, A. & Yamamoto, S. I. Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening. Tree Physiol. 26, 1025–1033 (2006).PubMed 
    Article 

    Google Scholar 
    42.Yasumura, Y. & Ishida, A. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia. J. Plant Res. 124, 115–123 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Fowler, S. & Thomashow, M. F. Arabidopsis trancriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition in to the CBF cold response pathway. Plant Cell 14, 1675–1690 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Oono, Y. et al. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct. Integr. Genom. 6, 212–234 (2006).CAS 
    Article 

    Google Scholar 
    45.Nakaminami, K. et al. Analysis of differential expression patterns of mRNA and protein during acclimation and de-acclimation in Arabidopsis. Mol. Cell. Proteom. 13, 3602–3611 (2014).CAS 
    Article 

    Google Scholar 
    46.Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob. Chang Biol. 26, 2573–2583 (2020).ADS 
    Article 

    Google Scholar 
    47.Maseyk, K., Grünzweig, J. M., Rotenberg, E. & Yakir, D. Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest. Glob. Change Biol. 14, 1553–1567 (2008).ADS 
    Article 

    Google Scholar 
    48.Jarvi, M. P. & Burton, A. J. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil. Tree Physiol. 33, 949–959 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Smith, N. G., Li, G. & Dukes, J. S. Short-term thermal acclimation of dark respiration is greater non-photosynthetic than in photosynthetic tissues. AoBP Plants 11, 1–9 (2019).CAS 

    Google Scholar 
    50.Bennett, J. R. & Scotland, R. E. A revision of Strobilanthes (Acanthaceae) in Java. Kew. Bull. 58, 1–82 (2003).Article 

    Google Scholar 
    51.Wood, J. R. I. & Scotland, R. W. New and little-known species of Strobitlanthes (Acanthaceae) from India and South East Asia. Kew. Bull. 64, 3–47 (2009).Article 

    Google Scholar 
    52.Vongkamjan, S. & Sampson, F. B. Phenology, seed germination and some vegetative features of Strobilanthes fragrans (Acanthaceae), a recently described unusual species, found only in a single Forest Park in Thailand. Thai Forest Bull. Bot. 44, 6–10 (2016).Article 

    Google Scholar 
    53.Tsukaya, H., Kakishima, S., Hidayat, A., Murata, J. & Okada, H. Flowering phenology of the nine-year plant, Strobilanthes cernua (Acanthaceae). Tropics 20, 79–85 (2011).Article 

    Google Scholar 
    54.Sharma, M. V., Kuriakose, G. & Shivanna, K. R. Reproductive strategies of Strobilanthes kunthianus, an endemic, semelparous species in southern Western Ghats, India. Bot. J. Linn. Soc. 157, 155–163 (2008).Article 

    Google Scholar  More

  • in

    Tracking Chernobyl’s effects on wildlife

    Download PDF

    Thirty-five years after the explosion and meltdown at the Chernobyl Nuclear Power Plant in Ukraine, I study how amphibians in the region have changed, physically and genetically. In 2016, I joined an international research team to do this; since then, I have obtained various grants to continue the work. Chernobyl is a phenomenal place to study rapid evolution. I typically spend two to three weeks in the forests during the frogs’ spring breeding season.When I work in the ‘exclusion zone’, the 4,700 square kilometres around the reactor, I stay in a hostel in Chernobyl (20 kilometres from the reactor site), where we have a field laboratory inside an abandoned building. The radiation in the exclusion zone is roughly 1,000 times lower than at the time of the accident, and there are now two hostels, a bar, a couple of restaurants and a cash machine. In this image, I’m running a blood analysis on one of the tree frogs we have collected. The contamination maps on the wall behind me show that some hotspots of radiation persist.Around 8 p.m., we listen for male tree frogs calling in the field. Wearing chest waders and head lamps, we enter the ponds to gather frogs until 1 or 2 a.m.. Frogs in the exclusion zone are darker than those outside it, thanks to higher levels of melanin, which might be an adaptation that protects them from ionizing radiation. We analyse how much radiation their bodies contain, and tend to find damage to some, often to the liver.Once expected to become a wasteland, the Chernobyl area is now a nature reserve. New species have arrived, including European bison (Bison bonasus) and the wild Przewalski’s horse (Equus ferus przewalskii). We’re beginning to monitor these horses, originally from the Asian steppes: the effects on their health could be a proxy for what happens when humans return. The first 31 horses were released here in 1998, 12 years after the disaster, and it is one of the few places where they continue to live freely.

    Nature 595, 464 (2021)
    doi: https://doi.org/10.1038/d41586-021-01883-2

    Related Articles

    The zoologist tracking an island’s rebirth

    Extreme research

    Collection: Fieldwork

    Subjects

    Careers

    Ecology

    Evolution

    Latest on:

    Careers

    How a holistic research retreat can help our science
    Career Column 08 JUL 21

    Research managers are essential to a healthy research culture
    Editorial 07 JUL 21

    What polar researchers have learnt from the pandemic
    Career Feature 06 JUL 21

    Ecology

    Newfound ‘fairy lantern’ could soon be snuffed out forever
    Research Highlight 07 JUL 21

    Caution over the use of ecological big data for conservation
    Matters Arising 07 JUL 21

    How to buffer against an urban food shortage
    News & Views 07 JUL 21

    Evolution

    From the archive
    News & Views 06 JUL 21

    A piece of Triassic poo yields a beautifully preserved beetle
    Research Highlight 30 JUN 21

    Beyond coronavirus: the virus discoveries transforming biology
    News Feature 30 JUN 21

    Jobs

    Higher Scientific Officer – Cancer Organoids Facility

    Institute of Cancer Research (ICR)
    London, United Kingdom

    Research Fellow in Characterisation of Bioseparation Materials

    University College London (UCL)
    London, United Kingdom

    University of Surrey – Academic AI roles.

    University of Surrey
    Guildford, United Kingdom

    Research Assistant/Associate

    University of Glasgow
    Glasgow, United Kingdom

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    The energy allocation trade-offs underlying life history traits in hypometabolic strepsirhines and other primates

    1.van Schaik, C. P. & Isler, K. Life-history evolution. In The Evolution of Primate Societies (eds Mitani, J., Call, J., Kappeler, P. M. et al.) 220–244 (Chicago University Press, 2012).
    Google Scholar 
    2.Pontzer, H. et al. Primate energetics and life history. Proc. Natl. Acad. Sci. USA 111, 1433–1437. https://doi.org/10.1073/pnas.1316940111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Burger, J. R., Hou, C. & Brown, J. H. Toward a metabolic theory of life history. Proc. Natl. Acad. Sci. USA 116, 26653–26661. https://doi.org/10.1073/pnas.1907702116 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    4.Charnov, E. L. & Berrigan, D. Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evol. Anthropol. 1, 191–194. https://doi.org/10.1002/evan.1360010604 (1993).Article 

    Google Scholar 
    5.Jones, J. H. Primates and the evolution of long, slow life histories. Curr. Biol. 21, R708–R717. https://doi.org/10.1016/j.cub.2011.08.025 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Speakman, J. R. Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730. https://doi.org/10.1242/jeb.01556 (2005).Article 
    PubMed 

    Google Scholar 
    7.Martin, R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60. https://doi.org/10.1038/293057a0 (1981).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Read, A. F. & Harvey, P. H. Life history differences among the eutherian radiations. J. Zool. 219, 329–353. https://doi.org/10.1111/j.1469-7998.1989.tb02584.x (1989).Article 

    Google Scholar 
    9.Harvey, P. H., Pagel, M. D. & Rees, J. A. Mammalian metabolism and life histories. Am. Nat. 137, 556–566 (1991).Article 

    Google Scholar 
    10.Kappeler, P. Causes and consequences of life-history variation among strepsirhine primates. Am. Nat. 148, 868–891 (1996).Article 

    Google Scholar 
    11.Dausmann, K.H. Flexible patterns in energy savings: heterothermy in primates. J. Zool. 292, 101–111, https://doi.org/10.1111/jzo.12104 (2014)12.Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Mass change, environmental variability and female fertility in wild Propithecus verreauxi. J. Hum. Evol. 39, 381–391. https://doi.org/10.1006/jhev.2000.0427 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). J. Zool. (London) 256, 421–436. https://doi.org/10.1017/S0952836902000468 (2002).Article 

    Google Scholar 
    14.Kappeler, P. K. & Fichtel, C. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation? Front. Zool. 12, S15. https://doi.org/10.1186/1742-9994-12-S1-S15 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Dewar, R. E. & Richard, A. F. Evolution in the hypervariable environment of Madagascar. Proc. Natl. Acad. Sci. USA 104, 13723–13727. https://doi.org/10.1073/pnas.0704346104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wright, P. C. Lemur traits and Madagascar ecology: coping with an island environment. Yearb. Phys. Anthropol. 42, 31–72. (1999).Article 

    Google Scholar 
    17.Ganzhorn, J. U. et al. Possible fruit protein effects on primate communities in Madagascar and the Neotropics. PLoS ONE 4, e8253. https://doi.org/10.1371/journal.pone.0008253 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Pontzer, H., Raichlen, D. A., Shumaker, R. W., Ocobock, C. & Wich, S. A. Metabolic adaptation for low energy throughput in orangutans. Proc. Natl. Acad. Sci. USA 107, 14048–14052. https://doi.org/10.1073/pnas.1001031107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Simmen, B., Darlu, P., Hladik, C. M. & Pasquet, P. Scaling of free-ranging primate energetics with body mass predicts low energy expenditure in humans. Physiol. Behav. 138, 193–199. https://doi.org/10.1016/j.physbeh.2014.10.018 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Pontzer, H. et al. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392. https://doi.org/10.1038/nature17654 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Chevillard, M.-C. Capacités thermorégulatrices d’un lémurien malgache, Microcebus murinus. Ph.D. Thesis, University Paris VII, Paris (1976).22.Genoud, M., Martin, R. D. & Glaser, D. Rate of metabolism in the smallest simian primate, the pygmy marmoset (Cebuella pygmaea). Am. J. Primatol. 41, 229–245. (1997).CAS 
    Article 

    Google Scholar 
    23.Snodgrass, J. J., Leonard, W. R. & Robertson, M. L. Primate bioenergetics: An evolutionary perspective. In Primate Origins: Adaptations and Evolution (eds Ravosa, M. J. & Dagosto, M.) 703–737 (Springer, Boston, 2007). https://doi.org/10.1007/978-0-387-33507-0_20.24.Kurland, J. A. & Pearson, J. D. Ecological significance of hypometabolism in nonhuman primates: allometry, adaptation, and deviant diets. Am. J. Phys. Anthropol. 71, 445–457. https://doi.org/10.1002/ajpa.1330710408 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Harvey, P. H., Martin, R. D. & Clutton- Brock, T. H. Life histories in a comparative perspective. In Primate Societies (eds Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W. & Struhsaker, T. T.) 181– 196 (University of Chicago Press, Chicago, 1987).26.Isler, K. et al. Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55, 967–978. https://doi.org/10.1016/j.jhevol.2008.08.004 (2008).Article 
    PubMed 

    Google Scholar 
    27.Simmen, B., Tarnaud, L., Marez, A. & Hladik, A. Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: A case study in a folivorous lemur (Propithecus verreauxi). Am. J. Primatol. 76, 563–575. https://doi.org/10.1002/ajp.22249 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Lewis, R. J. & Kappeler, P. M. Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi. Am. J. Primatol. 66, 1–18. https://doi.org/10.1002/ajp.20187 (2005).Article 

    Google Scholar 
    29.Donati, D., Ricci, E., Baldi, N., Morelli, V. & Borgognini-Tarli, S. M. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthrop. 144, 355–364. https://doi.org/10.1002/ajpa.21415 (2011).Article 
    PubMed 

    Google Scholar 
    30.Simmen, B. & Rasamimanana, H. Energy (im-)balance in frugivorous lemurs in southern Madagascar: a preliminary study in Lemur catta and Eulemur rufifrons x collaris. Folia Primatol. 89, 382–396. https://hal.archives-ouvertes.fr/hal-02349627/(2018).31.Simmen, B. et al. Total energy expenditure and body composition in two free-living sympatric lemurs. PLoS ONE 5, e9860. https://doi.org/10.1371/journal.pone.0009860 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Rasamimanana, H. R., Andrianome, V. N., Rambeloarivony, H. & Pasquet, P. Male and female ringtailed lemurs’ energetic strategy does not explain female dominance. In Ringtailed Lemur Biology: Lemur catta in Madagascar (eds Jolly, A., Sussman, R. W., Koyama, N. & Rasamimanana, H.) 271–95 (Springer, Chicago, 2006). https://doi.org/10.1007/978-0-387-34126-2_1633.Irwin, M. T. Ecologically enigmatic lemurs: The sifakas of the eastern forests (Propithecus candidus, P. diadema, P. edwardsi, P. perrieri, and P. tattersalli). In Lemurs: Ecology and Adaptation (eds Gould, L. & Sauther, M.L.) 305–326 (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-34586-4_1434.Vuarin, P. et al. When to initiate torpor use? Food availability times the transition to winter phenotype in a tropical heterotherm. Oecologia 179, 43–53. https://doi.org/10.1007/s00442-015-3328-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    35.Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277. https://doi.org/10.1146/annurev.nutr.19.1.247 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Pontzer, H. Energy expenditure in humans and other primates: A new synthesis. Annu. Rev. Anthropol. 44, 169–187. https://doi.org/10.1146/annurev-anthro-102214-013925 (2015).Article 

    Google Scholar 
    37.Schmid, J. & Speakman, J. R. Daily energy expenditure of the grey mouse lemur (Microcebus murinus): A small primate that uses torpor. J. Comp. Physiol. B 170, 633–641. https://doi.org/10.1007/s003600000146 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Stalenberg E. Biophysical ecology of the white-footed sportive lemur (Lepilemur leucopus) of southern Madagascar, Ph.D. Thesis, The Australian National University, Canberra (2019).39.Schmid, J. & Speakman, J. Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): A comparison of dry and wet forests. Naturwissenschaften 96, 609–620. https://doi.org/10.1007/s00114-009-0515-z (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Westerterp, K. & Speakman, J. R. Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int. J. Obes. (London) 32, 1256–1263. https://doi.org/10.1038/ijo.2008.74 (2008).CAS 
    Article 

    Google Scholar 
    41.Muchlinski, M. N., Snodgrass, J. J. & Terranova, C. J. Muscle mass scaling in primates: An energetic and ecological perspective. Am. J. Primatol. 74, 395–407. https://doi.org/10.1002/ajp.21990 (2012).Article 
    PubMed 

    Google Scholar 
    42.Thompson, S. D., MacMillen, R. E., Burke, E. M. & Taylor, C. R. The energetic cost of bipedal hopping in small mammals. Nature 287, 223–224. https://doi.org/10.1038/287223a0 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Demes, B., Jungers, W. L., Gross, T. S. & Fleagle, J. G. Kinetics of leaping primates: Influence of substrate orientation and compliance. Am. J. Phys. Anthropol. 96, 419–429. https://doi.org/10.1002/ajpa.1330960407 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Webster, K. N. & Dawson, T. J. Locomotion energetics and gait characteristics of a rat-kangaroo, Bettongia penicillata, have some kangaroo-like features. J. Comp. Physiol. B 173, 549–557. https://doi.org/10.1007/s00360-003-0364-6 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Pontzer, H., Raichlen, D. A. & Sockol, M. D. From treadmill to tropics: Calculating ranging cost in chimpanzees. In Primate Locomotion: Linking Field and Laboratory Research, Developments in Primatology: Progress and Prospects (eds D’Août, K., Vereecke & E. E.) 289–309 (Springer, New York, 2011). https://doi.org/10.1007/978-1-4419-1420-0_1546.Hladik, C. M. Diet and the evolution of feeding strategies among forest primates. In Omnivorous Primates. Gathering and Hunting in Human Evolution (eds Harding, R. S. O. & Teleki, G.) 215–254 (Columbia University Press, New York, 1981). https://hal.archives-ouvertes.fr/hal-0057868747.Oates, J. F. (1987) Food distribution and foraging behavior. In Primate Societies (eds Smuts, B. B. et al.) 197–209 (University of Chicago Press, 1987).
    Google Scholar 
    48.Clutton-Brock, T. H. & Harvey, P. H. Primate ecology and social organization. J. Zool., (London) 183, 1–39, https://doi.org/10.1111/j.1469-7998.1977.tb04171.x (1977).49.Harvey, P. & Bennett, P. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315. https://doi.org/10.1038/306314a0 (1983).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Milton, K. & May, M. L. Body weight, diet and home range area in primates. Nature 259, 459–462. https://doi.org/10.1038/259459a0 (1976).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Snaith, T. V. & Chapman, C. A. Primate group size and interpreting socioecological models: Do folivores really play by different rules?. Evol. Anthropol. 16, 94–106. https://doi.org/10.1002/evan.20132 (2007).Article 

    Google Scholar 
    52.Tecot, S. R. It’s all in the timing: Birth seasonality and infant survival in Eulemur rubriventer. Int. J. Primatol. 31, 715–735. https://doi.org/10.1007/s10764-010-9423-5 (2010).Article 

    Google Scholar 
    53.van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: Evidence from strepsirhine primates. Am. Nat. 176, 758–776. https://doi.org/10.1086/657045 (2010).Article 
    PubMed 

    Google Scholar 
    54.Edwards, W., Lonsdorf, E. V. & Pontzer, H. Total energy expenditure in captive capuchins (Sapajus apella). Am. J. Primatol. 79, e22638. https://doi.org/10.1002/ajp.22638 (2017).CAS 
    Article 

    Google Scholar 
    55.Dugas, L. R. et al. Energy expenditure in adults living in developing compared with industrialized countries: A meta-analysis of doubly labeled water studies. Am. J. Clin. Nutr. 93, 427–441. https://doi.org/10.3945/ajcn.110.007278 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Barrickman, N. L. & Lin, M. J. Encephalization, expensive tissues, and energetics: An examination of the relative costs of brain size in strepsirhines added with new data. Am. J. Phys. Anthropol. 143, 579–590. https://doi.org/10.1002/ajpa.21354 (2010).Article 
    PubMed 

    Google Scholar 
    57.Benedict, F. G. Vital Energetics: A Study in Comparative Basal Metabolism, Carnegie Institution, Washington, 1938), Publication No 503.58.Schoeller, D. A. et al. Energy expenditure by the doubly labeled water: validation in humans and proposed calculations. Am. J. Physiol. 250, R823–R830. https://doi.org/10.1152/ajpregu.1986.250.5.R823 (1986).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Speakman, J. R. Doubly Labelled Water: Theory and Practice (Chapman, Hall, London, 1997). https://doi.org/10.1046/j.1365-2656.2001.00515-4.x60.Chery, I., Zahariev, A., Simon, C. & Blanc, S. Analytical aspects of measuring (2)H/(1)H and (18)O/(16)O ratios in urine from doubly labelled water studies by high-temperature conversion elemental analyser-isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 29, 562–572. https://doi.org/10.1002/rcm.7135 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Drack, S. et al. Field metabolic rate and the cost of ranging of the red-tailed sportive lemur (Lepilemur ruficaudatus). In New Directions in Lemur Studies (eds Rakotosamimanana B. et al) 83–91 (Kluwer Academic/Plenum Publishers, 1999). https://doi.org/10.1007/978-1-4615-4705-1_562.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684. https://doi.org/10.1080/10635150490522232 (2004).Article 
    PubMed 

    Google Scholar 
    63.Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: A new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).Article 

    Google Scholar 
    64.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (2020).65.RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL https://www.rstudio.com/. More

  • in

    Metabolic flexibility of aerobic methanotrophs under anoxic conditions in Arctic lake sediments

    1.Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000-2017. Earth Syst Sci Data. 2020;12:1561–623.Article 

    Google Scholar 
    2.Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev. 2007;107:486–513.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Weber T, Wiseman NA, Kock A. Global ocean methane emissions dominated by shallow coastal waters. Nat Commun. 2019;10:4584.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB. Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes. Appl Environ Microb. 2012;78:4715–23.CAS 
    Article 

    Google Scholar 
    5.Phelps AR, Peterson KM, Jeffries MO. Methane efflux from high-latitude lakes during spring ice melt. J Geophys Res Atmos. 1998;103:29029–36.CAS 
    Article 

    Google Scholar 
    6.Walter KM, Smith LC, Chapin FS. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans A Math Phys Eng Sci. 2007;365:1657–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci. 2016;9:99–105.CAS 
    Article 

    Google Scholar 
    8.Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea. 2017;2017:1654237.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Shen LD, Ouyang L, Zhu Y, Trimmer M. Active pathways of anaerobic methane oxidation across contrasting riverbeds. ISME J. 2019;13:752–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Valenzuela EI, Cervantes FJ. The role of humic substances in mitigating greenhouse gases emissions: Current knowledge and research gaps. Sci Total Environ. 2021;750:141677.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA. 2002;99:7663–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Cai C, Leu AO, Xie GJ, Guo JH, Feng YX, Zhao JX, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 2018;12:1929–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA. 2016;113:12792–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Leu AO, Cai C, Mcllroy SJ, Southam G, Orphan VJ, Yuan ZG, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020;14:1030–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 2010;464:543–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ. 2017;607:23–31.PubMed 
    Article 
    CAS 

    Google Scholar 
    20.He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J. 2012;6:1937–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol. 1993;43:735–53.Article 

    Google Scholar 
    22.Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr. 2016;61:S101–18.Article 

    Google Scholar 
    23.Cabrol L, Thalasso F, Gandois L, Sepulveda-Jauregui A, Martinez-Cruz K, Teisserenc R, et al. Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. Sci Total Environ. 2020;736:139588.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, et al. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J. 2015;9:1991–2002.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun. 2013;4:2785.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol. 2015;17:3219–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Eberl DD. Quantitative mineralogy of the Yukon River system: variations with reach and season, and determining sediment provenance. Am Mineral. 2004;89:1784–94.CAS 
    Article 

    Google Scholar 
    28.Lipson DA, Raab TK, Goria D, Zlamal J. The contribution of Fe(III) and humic acid reduction to ecosystem respiration in drained thaw lake basins of the Arctic Coastal Plain. Glob Biogeochem Cycles 2013;27:399–409.CAS 
    Article 

    Google Scholar 
    29.Li WB, Yao J, Tao PP, Guo MT, Feng XY, He YN, et al. A comparative study on two extraction procedures in speciation of iron in municipal solid waste. J Hazard Mater. 2010;182:640–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Oremland RS, Taylor BF. Sulfate reduction and methanogenesis in marine sediments. Geochim Cosmochim Acta. 1978;42:209–14.CAS 
    Article 

    Google Scholar 
    31.Glassburn CL, Potter BA, Clark JL, Reuther JD, Bruning DL, Wooller MJ. Strontium and oxygen isotope profiles of sequentially sampled modern bison (bison bison bison) teeth from interior Alaska as proxies of seasonal mobility. Arctic. 2018;71:183–200.Article 

    Google Scholar 
    32.He R, Wooller MJ, Pohlman JW, Catranis C, Quensen J, Tiedje JM, et al. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ Microbiol. 2012;14:1403–19.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 2007;1:134–48.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the salton sea. Appl Environ Microb. 2010;76:757–68.CAS 
    Article 

    Google Scholar 
    35.Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, et al. Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol. 2000;50:955–69.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, et al. Methyloferula stellata gen. nov. sp. nov. an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol. 2011;61:2456–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Kolb S, Knief C, Stubner S, Conrad R. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol. 2003;69:2423–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Fierer N, Schimel JP, Holden PA. Influence of drying–rewetting frequency on soil bacterial community structure. Micro Ecol. 2003;45:63–71.CAS 
    Article 

    Google Scholar 
    39.Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Huang XQ, Madan A. CAP3: a DNA sequence assembly program. Genome Res. 1999;9:868–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Ma RC, Chu YX, Wang J, Wang C, Leigh MB, Chen Y, et al. Stable-isotopic and metagenomic analyses reveal metabolic and microbial link of aerobic methane oxidation coupled to denitrification at different O2 levels. Sci Total Environ. 2020;764:142901.PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1:18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.You MS, Yue Z, He WY, Yang XH, Yang G, Xie M, et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet. 2013;45:220–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Zhu WH, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38:e132.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Guo JH, Peng YZ, Fan L, Zhang L, Ni BJ, Kartal B, et al. Metagenomic analysis of anammox communities in three different microbial aggregates. Environ Microbiol. 2016;18:2979–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Li WZ, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Liu SP, Chen QL, Zou HJ, Yu YJ, Zhou ZL, Mao J, et al. A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. Int J Food Microbiol. 2019;303:9–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Francis OE, Bendall M, Manimaran S, Hong CJ, Clement NL, Castro-Nallar E, et al. Pathoscope: Species identification and strain attribution with unassembled sequencing data. Genome Res. 2013;23:1721–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.He Y, Feng XY, Fang J, Zhang Y, Xiao X. Metagenome and metatranscriptome revealed a highly active and intensive sulfur cycle in an oil-immersed hydrothermal chimney in Guaymas basin. Front Microbiol. 2015;6:1236.PubMed 
    PubMed Central 

    Google Scholar 
    50.Schubert CJ, Vazquez F, Losekann-Behrens T, Knittel K, Tonolla M, Boetius A. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol. 2011;76:26–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.He R, Wooller MJ, Pohlman JW, Tiedje JM, Leigh MB. Methane-derived carbon flow through microbial communities in arctic lake sediments. Environ Microbiol. 2015;17:3233–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Vorholt JA. Cofactor-dependent formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol. 2002;178:239–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Barco A, Emerson D, Sylvan JB, Orcutt BN, Meyers MEJ, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph roman. Appl Environ Microbiol. 2015;81:5927–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.De Beer D, Sauter E, Niemann H, Kaul N, Foucher JP, Witte U, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Hakon Mosby Mud Volcano. Limnol Oceanogr. 2006;51:1315–31.Article 

    Google Scholar 
    56.Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microb. 2007;73:3348–62.Article 
    CAS 

    Google Scholar 
    57.Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Kirf MK, et al. Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr. 2014;59:311–24.CAS 
    Article 

    Google Scholar 
    58.Reid T, Chaganti SR, Droppo IG, Weisener CG. Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: opening the black box. Water Res. 2018;136:1–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol. 2006;4:752–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, et al. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol. 2004;2:1616–28.CAS 

    Google Scholar 
    61.Versantvoort W, Pol A, Jetten MSM, van Niftrik L, Reimann J, Kartal B, et al. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Prot Natl Acad Sci USA. 2020;117:24459–63.CAS 
    Article 

    Google Scholar 
    62.Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci. 2001;58:165–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ, Collet C, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Front Microbiol. 2019;10:1873.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Hanczár T, Csáki R, Bodrossy L, Murrell JC, Kovács KL. Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Arch Microbiol. 2002;177:167–72.PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Shah NN, Hanna ML, Jackson KJ, Taylor RT. Batch cultivation of Methylosinus trichosporium OB3b. 4: production of hydrogen-driven soluble or particulate methane monooxygenase activity. Biotechnol Bioeng. 1995;45:229–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, et al. Mixotrophy drives niche expansion of Verrucomicrobial methanotrophs. ISME J. 2017;11:2599–610.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic analysis of the Gammaproteobacterial methanotrophs (Order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol. 2018;9:3162.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Kucera J, Sedo O, Potesil D, Janiczek O, Zdrahal Z, Mandl M. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction. Res Microbiol. 2016;167:587–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Kucera J, Zeman J, Mandl M, Cerna H. Stoichiometry of bacterial anaerobic oxidation of elemental sulfur by ferric iron. Antonie van Leeuwenhoek. 2012;101:919–22.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.He QX, Yu LP, Li JB, He D, Cai XX, Zhou SG. Electron shuttles enhance anaerobic oxidation of methane coupled to iron (III) reduction. Sci Total Environ. 2019;688:664–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Jing XX, Wu YC, Shi L, Peacock CL, Ashry NM, Gao CH, et al. Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite. Appl Environ Microbiol. 2020;86:e01941–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Tanaka K, Vokoe S, Igarashi K, Takashino M, Ishikawa M, Hori K, et al. Extracellular electron transfer via outer membrane cytochromes in a methanotrophic bacterium Methylococcus capsulatus (Bath). Front Microbiol. 2018;9:2905.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Kamalanathan M, Dao LHT, Chaisutyakorna P, Gleadow R, Beardall J. Photosynthetic physiology of Scenedesmus sp (Chlorophyceae) under photoautotrophic and molasses-based heterotrophic and mixotrophic conditions. Phycologia. 2017;56:666–74.CAS 
    Article 

    Google Scholar 
    75.Qu LR, Wang C, Bai E. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biol Biochem. 2020;145:107802.CAS 
    Article 

    Google Scholar 
    76.Kapiluto Y, Yakir D, Tans P, Berkowitz B. Experimental and numerical studies of the 18O exchange between CO2 and water in the atmosphere–soil invasion flux. Geochim Cosmochim Acta. 2007;71:2657–71.CAS 
    Article 

    Google Scholar 
    77.Zeebe RE. Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide. Geochim Cosmochim Acta. 2014;139:540–52.CAS 
    Article 

    Google Scholar  More

  • in

    Stratigraphy of stable isotope ratios and leaf structure within an African rainforest canopy with implications for primate isotope ecology

    1.Vogel, J. Recyling of carbon in a forest environment. Oecol. Plant. 13, 89–94 (1978).
    Google Scholar 
    2.Medina, E. & Minchin, P. Stratification of δ 13C values of leaves in Amazonian rain forests. Oecologia 45, 377–378 (1980).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Ehleringer, J. R., Field, C. B., Lin, Z. & Kuo, C. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70, 520–526 (1986).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Medina, E., Sternberg, L. & Cuevas, E. Vertical stratification of δ13C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87, 369–372 (1991).ADS 
    PubMed 
    Article 

    Google Scholar 
    5.Graham, H. V. et al. Isotopic characteristics of canopies in simulated leaf assemblages. Geochim. Cosmochim. Acta 144, 82–95 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Buchmann, N., Kao, W.-Y. & Ehleringer, J. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110, 109–119 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Sternberg, L. D. S. L., Mulkey, S. S. & Wright, S. J. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).CAS 
    Article 

    Google Scholar 
    9.van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    10.Houle, A. & Wrangham, R. W. Contest competition for fruit and space among wild chimpanzees in relation to the vertical stratification of metabolizable energy. Anim. Behav. 175, 231–246 (2021).Article 

    Google Scholar 
    11.Roberts, P., Blumenthal, S. A., Dittus, W., Wedage, O. & Lee-Thorp, J. A. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology. Am. J. Primatol. 79, e22656 (2017).Article 
    CAS 

    Google Scholar 
    12.Barbour, M. M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 34, 83–94 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Cernusak, L. A. et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 39, 1087–1102 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ometto, J. P. H., Flanagan, L. B., Martinelli, L. A. & Ehleringer, J. R. Oxygen isotope ratios of waters and respired CO2 in Amazonian forest and pasture ecosystems. Ecol. Appl. 15, 58–70 (2005).Article 

    Google Scholar 
    15.Yakir, D. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15, 1005–1020 (1992).CAS 
    Article 

    Google Scholar 
    16.Wania, R., Hietz, P. & Wanek, W. Natural 15N abundance of epiphytes depends on the position within the forest canopy: Source signals and isotope fractionation. Plant Cell Environ. 25, 581–589 (2002).CAS 
    Article 

    Google Scholar 
    17.Blumenthal, S. A., Rothman, J. M., Chritz, K. L. & Cerling, T. E. Stable isotopic variation in tropical forest plants for applications in primatology. Am. J. Primatol. 78, 1041–1054 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Schleser, G. H. & Jayasekera, R. 13C-variations of leaves in forests as an indication of reassimilated CO2 from the soil. Oecologia 65, 536–542 (1985).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.van der Merwe, N. J. & Medina, E. Photosynthesis and 13C12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).ADS 
    Article 

    Google Scholar 
    20.Chazdon, R. L. & Pearcy, R. W. The importance of sunflecks for forest understory plants. Bioscience 41, 760–766 (1991).Article 

    Google Scholar 
    21.Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer New York, 2008) https://doi.org/10.1007/978-0-387-78341-3.Book 

    Google Scholar 
    22.Hellkvist, J., Richards, G. P. & Jarvis, P. G. Vertical gradients of water potential and tissue water relations in sitka spruce trees measured with the pressure chamber. J. Appl. Ecol. 11, 637–667 (1974).Article 

    Google Scholar 
    23.Ambrose, A. R., Sillett, S. C. & Dawson, T. E. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ. 32, 743–757 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Peltoniemi, M. S., Duursma, R. A. & Medlyn, B. E. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiol. 32, 510–519 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Araguás-Araguás, L., Froehlich, K. & Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 14, 1341–1355 (2000).ADS 
    Article 

    Google Scholar 
    26.Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C. & Zuppi, G. M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 181, 147–167 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Guenni, O., Romero, E., Guédez, Y., Bravo de Guenni, L. & Pittermann, J. Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass Forage Sci. 73, 967–978 (2018).CAS 
    Article 

    Google Scholar 
    29.Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242 (1997).Article 

    Google Scholar 
    30.Dunham, N. T. & Lambert, A. L. The role of leaf toughness on foraging efficiency in Angola black and white colobus monkeys (Colobus angolensis palliatus). Am. J. Phys. Anthropol. 161, 343–354 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Poorter, L., van de Plassche, M., Willems, S. & Boot, R. G. A. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol. 6, 746–754 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Sponheimer, M. et al. Using carbon isotopes to track dietary change in modern, historical, and ancient primates. Am. J. Phys. Anthropol. 140, 661–670 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B 280, 20132324 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Taï Forest, Côte d’Ivoire. Biol. Lett. 9, 20130466 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Oelze, V. M., Head, J. S., Robbins, M. M., Richards, M. & Boesch, C. Niche differentiation and dietary seasonality among sympatric gorillas and chimpanzees in Loango National Park (Gabon) revealed by stable isotope analysis. J. Hum. Evol. 66, 95–106 (2014).PubMed 
    Article 

    Google Scholar 
    36.McGraw, W. S. Positional behavior of Cercopithecus petaurista. Int. J. Primatol. 21, 157–182 (2000).Article 

    Google Scholar 
    37.McGraw, W. S. Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast. Am. J. Primatol. 105, 493–510 (1998).CAS 

    Google Scholar 
    38.Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Sharma, N. et al. Watering holes: The use of arboreal sources of drinking water by Old World monkeys and apes. Behav. Proc. 129, 18–26 (2016).Article 

    Google Scholar 
    41.Wittig, R. M. Taï chimpanzees. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–7 (Springer International Publishing, 2017) https://doi.org/10.1007/978-3-319-47829-6_1564-1.Chapter 

    Google Scholar 
    42.Nelson, S. V. & Rook, L. Isotopic reconstructions of habitat change surrounding the extinction of Oreopithecus, the last European ape. Am. J. Phys. Anthropol. 160, 254–271 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367–381 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bachofen, C., D’Odorico, P. & Buchmann, N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chazdon, R. L., Williams, K. & Field, C. B. Interactions between crown structure and light environment in five rain forest piper species. Am. J. Bot. 75, 1459–1471 (1988).Article 

    Google Scholar 
    46.Ambrose, A. R. et al. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees. Oecologia 182, 713–730 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    47.Voigt, C. C. Insights into strata use of forest animals using the ‘canopy effect’. Biotropica 42, 634–637 (2010).Article 

    Google Scholar 
    48.Ometto, J. P. H. B. et al. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin. Brazil. Glob. Biogeochem. Cycles 16, 56-1-56–10 (2002).
    Google Scholar 
    49.Loudon, J. E. et al. Stable isotope data from bonobo (Pan paniscus) faecal samples from the Lomako Forest Reserve, Democratic Republic of the Congo. Afr. J. Ecol. 57, 437–442 (2019).Article 

    Google Scholar 
    50.Medina, E., Klinge, H., Jordan, C. & Herrera, R. Soil respiration in Amazonian rain forests in the Rio Negro Basin. Flora 170, 240–250 (1980).Article 

    Google Scholar 
    51.Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    52.Niinemets, Ü. & Tenhunen, J. D. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20, 845–866 (1997).Article 

    Google Scholar 
    53.Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).Article 

    Google Scholar 
    54.Onoda, Y., Schieving, F. & Anten, N. P. R. Effects of light and nutrient availability on leaf mechanical properties of plantago major: A conceptual approach. Ann. Bot. 101, 727–736 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Dasilva, G. L. Diet of Colobus polykomos on Tiwai Island: Selection of food in relation to its seasonal abundance and nutritional quality. Int. J. Primatol. 15, 655–680 (1994).Article 

    Google Scholar 
    56.Rothman, J. M., Chapman, C. A. & Pell, A. N. Fiber-bound nitrogen in gorilla diets: Implications for estimating dietary protein intake of primates. Am. J. Primatol. 70, 690–694 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Ganzhorn, J. U. et al. The importance of protein in leaf selection of folivorous primates. Am. J. Primatol. 79, e22550 (2017).Article 
    CAS 

    Google Scholar 
    58.Tejada, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. USA 117, 26263–26272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Cernusak, L. A. et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct. Plant Biol. 36, 199–213 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. 91, 219–227 (2020).Article 

    Google Scholar 
    61.Crowley, B. E., Melin, A. D., Yeakel, J. D. & Dominy, N. J. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?. Front. Ecol. Evol. 3, 127 (2015).Article 

    Google Scholar 
    62.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Lemoine, R. et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Anderson, D. L., Koomjian, W., French, B., Altenhoff, S. R. & Luce, J. Review of rope-based access methods for the forest canopy: Safe and unsafe practices in published information sources and a summary of current methods. Methods Ecol. Evol. 6, 865–872 (2015).Article 

    Google Scholar  More