1.Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems: Ecological impacts of invasive alien plants. Ecol. Lett. 14, 702–708 (2011).PubMed
Article
Google Scholar
2.Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737 (2012).ADS
Article
Google Scholar
3.Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed
Article
Google Scholar
4.Gordon, D. R. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida. Ecol. Appl. 8, 975–989 (1998).Article
Google Scholar
5.Vieites-Blanco, C. & González-Prieto, S. J. Effects of Carpobrotus edulis invasion on soil gross N fluxes in rocky coastal habitats. Sci. Total Environ. 619–620, 966–976 (2018).ADS
PubMed
Article
CAS
Google Scholar
6.Loiola, P. P. et al. Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).Article
Google Scholar
7.de la Riva, E. G., Godoy, O., Castro-Díez, P., Gutiérrez-Cánovas, C. & Vilà, M. Functional and phylogenetic consequences of plant invasion for coastal native communities. J. Veg. Sci. 30, 510–520 (2019).Article
Google Scholar
8.Ordonez, A. Functional and phylogenetic similarity of alien plants to co-occurring natives. Ecology 95, 1191–1202 (2014).PubMed
Article
Google Scholar
9.Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & der Bank, M. V. Revisiting Darwin’s naturalization conundrum: Explaining invasion success of non-native trees and shrubs in southern Africa. J. Ecol. 103, 871–879 (2015).Article
Google Scholar
10.Li, S. et al. The effects of phylogenetic relatedness on invasion success and impact: Deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).PubMed
Article
Google Scholar
11.Carboni, M. et al. What it takes to invade grassland ecosystems: Traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016).PubMed
Article
Google Scholar
12.Cadotte, M. W., Campbell, S. E., Li, S., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 69, 661–684 (2018).CAS
PubMed
Article
Google Scholar
13.Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: Dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008).PubMed
Article
Google Scholar
14.Ma, C. et al. Different effects of invader–native phylogenetic relatedness on invasion success and impact: A meta-analysis of Darwin’s naturalization hypothesis. Proc. R. Society B: Biological Sciences 283, 20160663 (2016).Article
Google Scholar
15.Bennett, J. A. Similarities between invaders and native species: Moving past Darwin’s naturalization conundrum. J. Veg. Sci. 30, 1027–1034 (2019).Article
Google Scholar
16.Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75–83 (2016).PubMed
Article
Google Scholar
17.Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).CAS
PubMed
Article
Google Scholar
18.Duncan, R. P. & Williams, P. A. Ecology: Darwin’s naturalization hypothesis challenged. Nature 417, 608 (2002).ADS
CAS
PubMed
Article
Google Scholar
19.Ferreira, R. B., Beard, K. H., Peterson, S. L., Poessel, S. A. & Callahan, C. M. Establishment of introduced reptiles increases with the presence and richness of native congeners. Amphibia-Reptilia 33, 387–392 (2012).Article
Google Scholar
20.Allen, C. R. et al. Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Glob. Ecol. Biogeogr. 22, 889–899 (2013).Article
Google Scholar
21.Maitner, B. S., Rudgers, J. A., Dunham, A. E. & Whitney, K. D. Patterns of bird invasion are consistent with environmental filtering. Ecography 35, 614–623 (2012).Article
Google Scholar
22.Park, D. S. & Potter, D. Why close relatives make bad neighbours: Phylogenetic conservatism in niche preferences and dispersal disproves Darwin’s naturalization hypothesis in the thistle tribe. Mol. Ecol. 24, 3181–3193 (2015).PubMed
Article
Google Scholar
23.Park, D. S. & Potter, D. A reciprocal test of Darwin’s naturalization hypothesis in two mediterranean-climate regions. Glob. Ecol. Biogeogr. 24, 1049–1058 (2015).Article
Google Scholar
24.Kembel, S. W. & Hubbell, S. P. The phylogenetic structure of a neotropical forest tree community. Ecology 87, S86–S99 (2006).PubMed
Article
Google Scholar
25.Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article
Google Scholar
26.Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article
Google Scholar
27.Funk, J. L., Cleland, E. E., Suding, K. N. & Zavaleta, E. S. Restoration through reassembly: Plant traits and invasion resistance. Trends Ecol. Evol. 23, 695–703 (2008).PubMed
Article
Google Scholar
28.Lapiedra, O., Sol, D., Traveset, A. & Vilà, M. Random processes and phylogenetic loss caused by plant invasions. Glob. Ecol. Biogeogr. 24, 774–785 (2015).Article
Google Scholar
29.Castro-Díez, P., Pauchard, A., Traveset, A. & Vilà, M. Linking the impacts of plant invasion on community functional structure and ecosystem properties. J. Veg. Sci. 27, 1233–1242 (2016).Article
Google Scholar
30.Hulme, P. E. & Bernard-Verdier, M. Evaluating differences in the shape of native and alien plant trait distributions will bring new insights into invasions of plant communities. J. Veg. Sci. 29, 348–355 (2018).Article
Google Scholar
31.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence. Ecol. Lett. 13, 1085–1093 (2010).PubMed
Article
Google Scholar
32.de Bello, F. et al. Functional species pool framework to test for biotic effects on community assembly. Ecology 93, 2263–2273 (2012).PubMed
Article
Google Scholar
33.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article
Google Scholar
34.Kunstler, G. et al. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecol. Lett. 15, 831–840 (2012).PubMed
PubMed Central
Article
Google Scholar
35.Gallien, L. et al. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biol. Invasions 17, 1407–1423 (2015).PubMed
PubMed Central
Article
Google Scholar
36.Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).Article
Google Scholar
37.Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19 (1999).Article
Google Scholar
38.Byers, J. E. et al. Directing research to reduce the impacts of nonindigenous species. Conserv. Biol. 16, 630–640 (2002).Article
Google Scholar
39.Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article
Google Scholar
40.Pyšek, P. & Pyšek, A. Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J. Veg. Sci. 6, 711–718 (1995).Article
Google Scholar
41.Hejda, M. & Pyšek, P. What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation?. Biol. Conserv. 132, 143–152 (2006).Article
Google Scholar
42.Chmura, D. et al. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland). Acta Soc. Bot. Pol. 84, 23–33 (2015).Article
Google Scholar
43.MacDougall, A. S., Gilbert, B. & Levine, J. M. Plant invasions and the niche. J. Ecol. 97, 609–615 (2009).Article
Google Scholar
44.Li, S. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015).CAS
Article
Google Scholar
45.Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article
Google Scholar
46.Abrams, P. The theory of limiting similarity. Annu. Rev. Ecol. Syst. 14, 359–376 (1983).Article
Google Scholar
47.Davies, T. J. Evolutionary ecology: When relatives cannot live together. Evol. Ecol. 16, R645–R647 (2006).ADS
CAS
Google Scholar
48.Omar Kariem, A. Eco-geographical analysis on mountain plants—Kariem Omar—Livres spécialisés. Africa Vivre. https://www.laboutiqueafricavivre.com/livres-specialises/156599-eco-geographical-analysis-on-mountain-plants-9783847331537.html (2012).49.Omar Karim A. Extinction—Towards Plant Conservation. (Lap Lambert Academic Publ, 2014).50.Klute, A. Water retention: Laboratory methods. In: (ed. Klute, A.) Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, ASA and SSSA, Madison, 635–662. https://doi.org/10.2136/sssabookser5.1.2ed. (1986)Chapter
Google Scholar
51.Allen, S. E., Grimshaw, H. M., Parkinson, J. A. & Quarmby, C. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1974).52.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Pérez-Harguindeguy, N. et al. New handbook for stand-ardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article
Google Scholar
54.Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 33, D34-38 (2005).CAS
PubMed
Article
Google Scholar
55.Kück, P. & Meusemann, K. FASconCAT: Convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).PubMed
Article
CAS
Google Scholar
56.Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).CAS
PubMed
Article
Google Scholar
57.Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).PubMed
Article
Google Scholar
58.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed
Article
Google Scholar
59.Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002).CAS
PubMed
Article
Google Scholar
60.Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS
PubMed
Article
Google Scholar
61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).Article
Google Scholar
62.Veron, S., Davies, T. J., Cadotte, M. W., Clergeau, P. & Pavoine, S. Predicting loss of evolutionary history: Where are we?. Biol. Rev. 92, 271–291 (2017).PubMed
Article
Google Scholar
63.Swenson, N. Functional and Phylogenetic Ecology in R. (Springer, 2014). https://doi.org/10.1007/978-1-4614-9542-0.64.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article
Google Scholar
65.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS
PubMed
Article
Google Scholar
66.Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed
Article
Google Scholar
67.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article
Google Scholar
68.Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).Article
Google Scholar
69.Carboni, M. et al. Functional traits modulate the response of alien plants along abiotic and biotic gradients. Glob. Ecol. Biogeogr. 27, 1173–1185 (2018).Article
Google Scholar
70.Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).MathSciNet
MATH
Article
Google Scholar
71.Oksanen, J. et al. Vegan: community ecology package. R Package version 2.4-1. https://cran.r-project.org (2016).72.Vila, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2006).Article
Google Scholar
73.Dong, L.-J., Yu, H.-W. & He, W.-M. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness? Sci Rep. 5(1), 1–9 (2015).CAS
Google Scholar
74.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed
Article
Google Scholar
75.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet
MATH
Article
Google Scholar
76.Jucker, T., Carboni, M. & Acosta, A. T. R. Going beyond taxonomic diversity: deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Divers. Distrib. 19, 1566–1577 (2013).Article
Google Scholar
77.Prinzing, A. et al. Less lineages—More trait variation: Phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819 (2008).PubMed
Article
Google Scholar
78.Blonder, B. Do hypervolumes have holes?. Am. Nat. 187, E93–E105 (2016).PubMed
Article
Google Scholar
79.Levine, J. M. & D’Antonio, C. M. Elton revisited: A review of evidence linking diversity and invasibility. Oikos 87, 15–26 (1999).Article
Google Scholar
80.Fargione, J., Brown, C. S. & Tilman, D. Community assembly and invasion: An experimental test of neutral versus niche processes. PNAS 100, 8916–8920 (2003).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
81.Zavaleta, E. S. & Hulvey, K. B. Realistic variation in species composition affects grassland production, resource use and invasion resistance. Plant Ecol 188, 39–51 (2007).Article
Google Scholar
82.Case, T. J. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl. Acad. Sci. 87, 9610–9614 (1990).ADS
CAS
PubMed
PubMed Central
MATH
Article
Google Scholar
83.Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636 (2002).ADS
CAS
PubMed
Article
Google Scholar
84.Gerhold, P. et al. Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives. Am. Nat. 177, 668–680 (2011).PubMed
Article
Google Scholar
85.de Bello, F. et al. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods Ecol. Evol. 8, 1200–1211 (2017).ADS
Article
Google Scholar
86.Cadotte, M. W., Carboni, M., Si, X. & Tatsumi, S. Do traits and phylogeny support congruent community diversity patterns and assembly inferences?. J. Ecol. 107, 2065–2077 (2019).Article
Google Scholar
87.Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).Article
Google Scholar
88.Hulme, P. E. & Bernard-Verdier, M. Comparing traits of native and alien plants: Can we do better?. Funct. Ecol. 32, 117–125 (2018).Article
Google Scholar
89.Luo, Y.-H. et al. Trait-based community assembly along an elevational gradient in subalpine forests: Quantifying the roles of environmental factors in inter- and intraspecific variability. PLoS One 11, e0155749 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
90.Luo, Y.-H. et al. Forest community assembly is driven by different strata-dependent mechanisms along an elevational gradient. J. Biogeogr. 46, 2174–2187 (2019).Article
Google Scholar
91.Jakobs, G., Weber, E. & Edwards, P. J. Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Divers. Distrib. 10, 11–19 (2004).Article
Google Scholar
92.Chmura, D. & Sierka, E. The invasibility of deciduous forest communities after disturbance: A case study of Carex brizoides and Impatiens parviflora invasion. For. Ecol. Manag. 242, 487–495 (2007).Article
Google Scholar
93.Szymura, M. & Szymura, T. H. The dynamics of growth and flowering of invasive Solidago species. Steciana 19, 143–152 (2015).MATH
Article
Google Scholar
94.Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
95.Czarniecka-Wiera, M., Kącki, Z., Chytrý, M. & Palpurina, S. Diversity loss in grasslands due to the increasing dominance of alien and native competitive herbs. Biodivers. Conserv. https://doi.org/10.1007/s10531-019-01794-9 (2019).Article
Google Scholar
96.Tilman, D. Species richness of experimental productivity gradients: How important is colonization limitation?. Ecology 74, 2179–2191 (1993).Article
Google Scholar
97.Burke, M. J. W. & Grime, J. P. An experimental study of plant community invasibility. Ecology 77, 776–790 (1996).Article
Google Scholar
98.Naeem, S. et al. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91, 97–108 (2000).Article
Google Scholar
99.Berger, S., Söhlke, G., Walther, G.-R. & Pott, R. Bioclimatic limits and range shifts of cold-hardy evergreen broad-leaved species at their northern distributional limit in Europe. Phytocoenologia 37, 523–539 (2007).Article
Google Scholar
100.El-Barougy, R. F. et al. Functional similarity and dissimilarity facilitate alien plant invasiveness along biotic and abiotic gradients in an arid protected area. Biol. Invasions 22, 1997–2016 (2020).Article
Google Scholar
101.Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: A global-scale comparison: Functional differences of native and alien plants. Funct. Ecol. 24, 1353–1361 (2010).Article
Google Scholar
102.Godoy, O. & Levine, J. M. Phenology effects on invasion success: Insights from coupling field experiments to coexistence theory. Ecology 95, 726–736 (2014).PubMed
Article
Google Scholar
103.Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian Oak Communities. Am. Nat. 163, 823–843 (2004).CAS
PubMed
Article
Google Scholar
104.Richardson, D. M. & Pyšek, P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431 (2006).Article
Google Scholar
105.Pyšek, P., Prach, K. & Smilauer, P. Relating invasion success to plant traits: An analysis of the Czech alien flora. Plant Invasions Gen. Aspects Spec. Probl. 39–60 (1995).
106.Pyšek, P. et al. Alien plants in temperate weed communities: Prehistoric and recent invaders occupy different habitats. Ecology 86, 772–785 (2005).Article
Google Scholar
107.Prinzing, A., Durka, W., Klotz, S. & Brandl, R. Which species become aliens?. Evol. Ecol. Res. 4, 385–405 (2002).
Google Scholar
108.van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).PubMed
Article
Google Scholar
109.Jauni, M. & Hyvönen, T. Interactions between alien plant species traits and habitat characteristics in agricultural landscapes in Finland. Biol. Invasions 14, 47–63 (2012).Article
Google Scholar
110.Nentwig, W., Kühnel, E. & Bacher, S. A generic impact-scoring system applied to alien mammals in Europe. Conserv. Biol. 24, 302–311 (2010).PubMed
Article
Google Scholar
111.Liu, P. et al. Urbanization increases biotic homogenization of zooplankton communities in tropical reservoirs. Ecol. Indic. 110, 105899 (2020).Article
Google Scholar More