More stories

  • in

    Fire enhances forest degradation within forest edge zones in Africa

    1.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article 

    Google Scholar 
    2.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).Article 

    Google Scholar 
    3.Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 

    Google Scholar 
    4.Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).Article 

    Google Scholar 
    5.Aragao, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).Article 

    Google Scholar 
    6.Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).Article 

    Google Scholar 
    7.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).Article 

    Google Scholar 
    8.Kunert, N., Teophilo Aparecido, L. M., Higuchi, N., dos Santos, J. & Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 213, 183–192 (2015).Article 

    Google Scholar 
    9.Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).Article 

    Google Scholar 
    10.Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).Article 

    Google Scholar 
    11.Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article 

    Google Scholar 
    12.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e150005 (2015).Article 

    Google Scholar 
    13.Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).Article 

    Google Scholar 
    14.Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article 

    Google Scholar 
    15.FAOSTAT Database (FAO, 2020); http://www.fao.org/faostat/en/#data/FO16.World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).17.Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).Article 

    Google Scholar 
    18.Hufkens, K. et al. Historical aerial surveys map long-term changes of forest cover and structure in the central Congo basin. Remote Sens. 12, 638 (2020).Article 

    Google Scholar 
    19.van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).Article 

    Google Scholar 
    20.Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    21.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 

    Google Scholar 
    22.Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Preprint at Copernicus https://doi.org/10.5194/essd-2020-148 (2020).23.Santoro, M. & Cartus, O. GlobBiomass dataset of forest biomass, Africa (25 m). Zenodo https://doi.org/10.5281/zenodo.4725667 (2020).24.Chuvieco, E., Pettinari, L. M., Lizundia Loiola, J., Storm, T. & Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Grid Product Version 5.1 (Centre for Environmental Data Analysis, 2019).25.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.00626.Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008).Article 

    Google Scholar 
    27.Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).Article 

    Google Scholar 
    28.Kato, S. et al. Surface irradiances of edition 4.0 Clouds and the Earth’s radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Clim. 31, 4501–4527 (2018).Article 

    Google Scholar 
    29.Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2017); https://doi.org/10.5067/MODIS/MOD16A2.00630.Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).Article 

    Google Scholar 
    31.Gaviria, J., Turner, B. L. & Engelbrecht, B. M. J. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8, e01712 (2017).Article 

    Google Scholar 
    32.Alemayehu, T., van Griensven, A., Woldegiorgis, B. T. & Bauwens, W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 21, 4449–4467 (2017).Article 

    Google Scholar 
    33.Kotto-Same, J., Woomer, P. L., Appolinaire, M. & Louis, Z. Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agric. Ecosyst. Environ. 65, 245–256 (1997).Article 

    Google Scholar 
    34.Tyukavina, A. et al. Congo basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).Article 

    Google Scholar 
    35.Rejou-Mechain, M. et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11, 6827–6840 (2014).Article 

    Google Scholar 
    36.Tropek, R. et al. Comment on “high-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).Article 

    Google Scholar 
    37.Global Forest Watch (World Resources Institute, 2019); https://data.globalforestwatch.org/datasets/planted-forests38.Roteta, E., Bastarrika, A., Padilla, M., Storm, T. & Chuvieco, E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 222, 1–17 (2019).Article 

    Google Scholar 
    39.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    40.Laurance, S. G. W. Responses of understory rain forest birds to road edges in central Amazonia. Ecol. Appl. 14, 1344–1357 (2004).Article 

    Google Scholar 
    41.Cochrane, M. A. & Laurance, W. F. Synergisms among fire, land use, and climate change in the Amazon. AMBIO 37, 522–527 (2008).Article 

    Google Scholar 
    42.Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).Article 

    Google Scholar 
    43.Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article 

    Google Scholar  More

  • in

    Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions

    1.Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, et al. Global carbon budget 2015. Earth Syst Sci Data. 2015;7:349–96.Article 

    Google Scholar 
    2.Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318:1737–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bell JJ, Bennett HM, Rovellini A, Webster NS. Sponges to be winners under near-future climate scenarios. Bioscience. 2018;68:955–68.Article 

    Google Scholar 
    4.Bell JJ. The functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–53.Article 

    Google Scholar 
    5.Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Smith AM, Berman J, Key MM Jr, Winter DJ. Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;392:463–72.Article 

    Google Scholar 
    7.Webster NS, Thomas T. The sponge hologenome. MBio. 2016;7:e00135–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol. 2014;4:176.PubMed 
    PubMed Central 

    Google Scholar 
    10.Fan L, Liu M, Simister R, Webster NS, Thomas T. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 2013;7:991–1002.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Egan S, Gardiner M. Microbial dysbiosis: rethinking disease in marine ecosystems. Front Microbiol. 2016;7:991.PubMed 
    PubMed Central 

    Google Scholar 
    12.Voolstra CR, Ziegler M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays. 2020;42:e2000004.PubMed 
    Article 

    Google Scholar 
    13.Botte ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J. 2015;9:894–908.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Pollock FJ, Lamb JB, van de Water J, Smith HA, Schaffelke B, Willis BL, et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R Soc Open Sci. 2019;6:190355.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Pinzon JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci. 2015;2:140214.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Pita L, Hoeppner MP, Ribes M, Hentschel U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci Rep. 2018;8:16081.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Guzman C, Conaco C. Gene expression dynamics accompanying the sponge thermal stress response. PLoS ONE. 2016;11:e0165368.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol. 2014;31:1102–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Germer J, Cerveau N, Jackson DJ. The holo-transcriptome of a calcified early branching metazoan. Front Mar Sci. 2017;4:81.21.Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics. 2016;17:158.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Hooper JNA, Van Soest RWM. Systema Porifera. A guide to the classification of sponges. In: Hooper JNA, Van Soest RWM, editors. Systema Porifera. New York, NY: Springer; 2002. p. 1–7.23.Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.24.Pierrot DE, Lewis E, Wallace DWR. MS Excel program developed for CO2 system calculations. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, ORNL/CDIAC-IOS; 2006.25.Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    31.McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Asshauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D30.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Alexa A, Rahnenführer J. Gene set enrichment analysis with topGO. Bioconductor Improv. 2009;27:1–26.44.Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D13.CAS 
    Article 

    Google Scholar 
    45.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. Gigascience. 2017;6:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun. 2019;10:992.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Guzman C, Conaco C. Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges. Sci Rep. 2016;6:18774.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Fortunato SA, Adamski M, Ramos OM, Leininger S, Liu J, Ferrier DE, et al. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature. 2014;514:620–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Voigt O, Fradusco B, Gut C, Kevrekidis C, Vargas S, Wörheide G. Carbonic anhydrases: an ancient tool in calcareous sponge biomineralization. Front Genet. 2021;12:624533.52.Yuen B, Bayes JM, Degnan SM. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol. 2014;31:106–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.57.McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:262.58.Hori K, Matsumoto S. Bacterial adhesion: from mechanism to control. Biochem Eng J. 2010;48:424–34.CAS 
    Article 

    Google Scholar 
    59.Yao J, Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol. 2006;188:3697–708.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996;334:1717–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Hayden MS, Ghosh S. Regulation of NF-kappaB by TNF family cytokines. Semin Immunol. 2014;26:253–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5:a008672.64.Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, et al. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem. 2005;280:27949–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Muller WE, Muller IM. Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr Comp Biol. 2003;43:281–92.PubMed 
    Article 

    Google Scholar 
    66.Yuen B Deciphering the genomic toolkit underlying animal-bacteria interactions – insights through the demosponge Amphimedon queenslandica. Saint Lucia, QLD: School of Biological Sciences, The University of Queensland; 2016.67.Gauthier ME, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev. 2010;12:519–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Roue M, Quevrain E, Domart-Coulon I, Bourguet-Kondracki ML. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat Prod Rep. 2012;29:739–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Steinert G, Busch K, Bayer K, Kodami S, Arbizu PM, Kelly M, et al. Compositional and quantitative insights into bacterial and archaeal communities of South Pacific deep-sea sponges (Demospongiae and Hexactinellida). Front Microbiol. 2020;11:716.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Yap NV, Whelan FJ, Bowdish DM, Golding GB. The evolution of the scavenger receptor cysteine-rich domain of the class a scavenger receptors. Front Immunol. 2015;6:342.PubMed 
    PubMed Central 

    Google Scholar 
    72.Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18:374–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu Rev Immunol. 2013;31:73–106.Article 
    CAS 

    Google Scholar 
    74.Robertson SJ, Rubino SJ, Geddes K, Philpott DJ. Examining host-microbial interactions through the lens of NOD: from plants to mammals. Semin Immunol. 2012;24:9–16.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28:285–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Messier-Solek C, Buckley KM, Rast JP. Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol. 2010;22:39–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Bennett HM, Altenrath C, Woods L, Davy SK, Webster NS, Bell JJ. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Glob Chang Biol. 2017;23:2031–46.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Luter HM, Andersen M, Versteegen E, Laffy P, Uthicke S, Bell JJ, et al. Cross-generational effects of climate change on the microbiome of a photosynthetic sponge. Environ Microbiol. 2020;22:4732–44.79.Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol. 2005;7:301–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun. 2019;10:3092.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Ribes M, Calvo E, Movilla J, Logares R, Coma R, Pelejero C. Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environ Microbiol Rep. 2016;8:536–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11:2148–63.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.van de Water J, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, et al. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol. 2018;27:1065–80.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    84.Weisz JB, Lindquist N, Martens CS. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia. 2008;155:367–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Ludeman DA, Reidenbach MA, Leys SP. The energetic cost of filtration by demosponges and their behavioural response to ambient currents. J Exp Biol. 2017;220:995–1007.PubMed 
    Article 

    Google Scholar 
    86.Perea-Blazquez A, Davy SK, Bell JJ. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS ONE. 2012;7:e29569.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Morganti TM, Ribes M, Yahel G, Coma R. Size is the major determinant of pumping rates in marine sponges. Front Physiol. 2019;10:1474.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Peck LS, Clark MS, Power D, Reis J, Batista FM, Harper EM. Acidification effects on biofouling communities: winners and losers. Glob Chang Biol. 2015;21:1907–13.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Ribeiro B, Padua A, Barno A, Villela H, Duarte G, Rossi A, et al. Assessing skeleton and microbiome responses of a calcareous sponge under thermal and pH stresses. ICES J Mar Sci. 2020:fsaa231.90.Lanna E, Klautau M. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J Mar Biol Assoc UK. 2018;98:505–14.Article 

    Google Scholar 
    91.Pörtner HO, Langenbuch M, Michaelidis B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res. 2005;110:C09S10.92.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans

    1.Carpenter LJ. Biogeochemical cycles | iodine. Encyclopedia of Atmospheric Sciences: Elsevier; United States; 2015. p. 205–19.2.Chemburkar SR, Deming KC, Reddy RE. Chemistry of thyroxine: an historical perspective and recent progress on its synthesis. Tetrahedron. 2010;66:1955–62.CAS 
    Article 

    Google Scholar 
    3.Schweizer U, Steegborn C. Thyroid hormones—from crystal packing to activity to reactivity. Angew Chem. 2015;54:12856–8.CAS 
    Article 

    Google Scholar 
    4.Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, et al. Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem. 2011;50:11598–620.Article 
    CAS 

    Google Scholar 
    5.Manley SL, Dastoor MN. Methyl iodide (CH3I) production by kelp and associated microbes. Mar Biol. 1988;98:477–82.CAS 
    Article 

    Google Scholar 
    6.Lebel LS, Dickson RS, Glowa GA. Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. J Environ Radioact. 2016;151:82–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Luther GW, Wu J, Cullen JB. Redox chemistry of iodine in seawater. Aquatic chemistry. Advances in chemistry. 244: American Chemical Society; Washington, DC; 1995. p. 135–55.8.Gonzales J, Tymon T, Küpper FC, Edwards MS, Carrano CJ. The potential role of kelp forests on iodine speciation in coastal seawater. PloS ONE. 2017;12:e0180755.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Vedamati J, Goepfert T, Moffett JW. Iron speciation in the eastern tropical South Pacific oxygen minimum zone off Peru. Limnol Oceanogr. 2014;59:1945–57.Article 

    Google Scholar 
    10.Tsunogai S, Sase T. Formation of iodide-iodine in the ocean. Deep Sea Res Oceanogr Abstr. 1969;16:489–96.CAS 
    Article 

    Google Scholar 
    11.Councell TB, Landa ER, Lovley DR. Microbial reduction of iodate. Water Air Soil Pollut. 1997;100:99–106.CAS 
    Article 

    Google Scholar 
    12.Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Maglaqui AP, Gau-Pan PS, et al. Perchlorate reductase is distinguished by active site aromatic gate residues. J Biol Chem. 2016;291:9190–202.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Farrenkopf AM, Dollhopf ME, Chadhain SN, Luther GW, Nealson KH. Reduction of iodate in seawater during Arabian Sea incubations and in laboratory cultures of the marine Shewanella putrefaciens strain MR-4 shipboard bacterium. Mar Chem. 1997;57:347–54.CAS 
    Article 

    Google Scholar 
    14.Amachi S, Kawaguchi N, Muramatsu Y, Tsuchiya S, Watanabe Y, Shinoyama H, et al. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Appl Environ Microbiol. 2007;73:5725–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Yamazaki C, Kashiwa S, Horiuchi A, Kasahara Y, Yamamura S, Amachi S. A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT. Environ Microbiol. 2020;22:2196–212.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Youngblut MD, Wang O, Barnum TP, Coates JD. (Per)chlorate in biology on earth and beyond. Annu Rev Microbiol. 2016;70:435–57.17.Toporek YJ, Mok JK, Shin HD, Lee BD, Lee MH, DiChristina TJ. Metal reduction and protein secretion genes required for Iodate Reduction by Shewanella oneidensis. Appl Environ Microbiol. 2019;85:e02115–18.18.Carlström CI, Lucas LN, Rohde RA, Haratian A, Engelbrektson AL, Coates JD. Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Appl Microbiol Biotechnol. 2016;100:9719–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Yip KC-W, Gu J-D. A novel bacterium involved in the degradation of 2-methylindole isolated from sediment of Inner Deep Bay of Hong Kong. Appl Environ Biotechnol. 2015;1:52–63.Article 

    Google Scholar 
    20.Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, et al. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Micro Cell Fact. 2010;9:1–11.Article 
    CAS 

    Google Scholar 
    21.Loferer-Krössbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol. 1998;64:688–94.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.McInerney MJ, Beaty PS. Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can J Microbiol. 1988;34:487–93.CAS 
    Article 

    Google Scholar 
    23.Stern JH, Passchier AA. The heats of formation of triiodide and iodate ions. J Phys Chem. 1962;66:752–3.CAS 
    Article 

    Google Scholar 
    24.Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol. 2006;4:752–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: Old enzymes for new purposes. FEMS Microbiol Rev. 2016;40:1–18.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.McEwan AG, Ridge JP, McDevitt CA, Hugenholtz P. The DMSO reductase family of microbial molybdenum enzymes: Molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol J. 2002;19:3–21.CAS 
    Article 

    Google Scholar 
    27.Chaudhuri SK, O’Connor SM, Gustavson RL, Achenbach LA, Coates JD. Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol. 2002;68:4425–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Snel B, Bork P, Huynen MA. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 2002;12:17–25.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci USA. 2019;116:9925–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Dabir DV, Leverich EP, Kim SK, Tsai FD, Hirasawa M, Knaff DB, et al. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 2007;26:4801–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Martins D, Kathiresan M, English AM. Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med. 2013;65:541–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Berks BC. The twin-arginine protein translocation pathway. Annu Rev Biochem. 2015;84:843–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Toporek M, Michałowska-Kaczmarczyk AM, Michałowski T. Disproportionation reactions of HIO and NaIO in static and dynamic systems. Am J Anal Chem. 2014;5:1046.CAS 
    Article 

    Google Scholar 
    35.Ellis KV, Van Vree HBRJ. Iodine used as a water-disinfectant in turbid waters. Water Res. 1989;23:671–6.CAS 
    Article 

    Google Scholar 
    36.Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.37.Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM, Lomans BP. Archaeal (per)chlorate reduction at high temperature: An interplay of biotic and abiotic reactions. Science. 2013;340:85–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Dudley M, Salamone A, Nerenberg R. Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium. Water Res. 2008;42:2403–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Melnyk RA, Youngblut MD, Clark IC, Carlson HK, Wetmore KM, Price MN, et al. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase. MBio. 2015;6:e00233-15.40.Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ordoñez OF, Rasuk MC, Soria MN, Contreras M, Farías ME. Haloarchaea from the Andean Puna: biological role in the energy metabolism of arsenic. Microb Ecol. 2018;76:695–705.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    42.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.Article 
    CAS 

    Google Scholar 
    43.Becraft ED, Woyke T, Jarett J, Ivanova N, Godoy-Vitorino F, Poulton N, et al. Rokubacteria: genomic giants among the uncultured bacterial phyla. Front Microbiol. 2017;8:2264.44.He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MSM, et al. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep. 2016;6:1–10.Article 
    CAS 

    Google Scholar 
    45.Melnyk RA, Engelbrektson A, Clark IC, Carlson HK, Byrne-Bailey K, Coates JD. Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. Appl Environ Microbiol. 2011;77:7401–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Scornavacca C, Zickmann F, Huson DH. Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics. 2011;27:i248–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33:376–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Reiter WD, Palm P, Yeats S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 1989;17:1907–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Larbig KD, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, et al. Gene islands integrated into tRNAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol. 2002;184:6665–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Boyd E, Barkay T. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol. 2012;3:349.PubMed 
    PubMed Central 

    Google Scholar 
    51.Besaury L, Bodilis J, Delgas F, Andrade S, De la Iglesia R, Ouddane B, et al. Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Mar Pollut Bull. 2013;67:16–25.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Jin HM, Lee HJ, Kim JM, Park MS, Lee K, Jeon CO. Litorimicrobium taeanense gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol. 2011;61:1392–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Alex A, Antunes A. Comparative genomics reveals metabolic specificity of Endozoicomonas isolated from a marine sponge and the genomic repertoire for host-bacteria symbioses. Microorganisms. 2019;7:635.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    55.Kim Y-O, Park S, Nam B-H, Park J-M, Kim D-G, Yoon J-H. Litoreibacter ascidiaceicola sp. nov., isolated from the golden sea squirt Halocynthiaaurantium. Int J Syst Evol Microbiol. 2014;64:2545–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kupper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg EM, et al. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci USA. 2008;105:6954–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Jung HS, Jeong SE, Chun BH, Quan Z-X, Jeon CO. Rhodophyticola porphyridii gen. nov., sp. nov., isolated from a red alga, Porphyridium marinum. Int J Syst Evol Microbiol. 2019;69:1656–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Ribicic D, Netzer R, Hazen TC, Techtmann SM, Drabløs F, Brakstad OG. Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Mar Pollut Bull. 2018;129:370–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Lachkar Z, Lévy M, Smith KS. Strong intensification of the Arabian Sea oxygen minimum zone in response to Arabian Gulf warming. Geophys Res Lett. 2019;46:5420–9.CAS 
    Article 

    Google Scholar 
    61.Farrenkopf AM, Luther GW. Iodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ. Deep-Sea Res Pt II. 2002;49:2303–18.CAS 
    Article 

    Google Scholar 
    62.Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Cutter GA, Moffett JW, Nielsdóttir MC, Sanial V. Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Mar Chem. 2018;201:77–89.CAS 
    Article 

    Google Scholar 
    64.Karstensen J, Stramma L, Visbeck M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog Oceanogr. 2008;77:331–50.Article 

    Google Scholar 
    65.Farrenkopf AM, Luther GW, Truesdale VW, Van Der Weijden CH. Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon. Deep Sea Res Pt II. 1997;44:1391–409.CAS 
    Article 

    Google Scholar 
    66.Kalvelage T, Lavik G, Jensen MM, Revsbech NP, Löscher C, Schunck H, et al. Aerobic microbial respiration in oceanic oxygen minimum zones. PLoS ONE. 2015;10:e0133526.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Howarth RW. Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst. 1988;19:89–110.Article 

    Google Scholar 
    68.Shalel Levanon S, San K-Y, Bennett GN. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng. 2005;89:556–64.Article 
    CAS 

    Google Scholar 
    69.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Hardisty DS, Horner TJ, Evans N, Moriyasu R, Babbin AR, Wankel SD, et al. Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone. Earth Planet Sci Lett. 2021;554:116676.CAS 
    Article 

    Google Scholar 
    71.Li H-P, Yeager CM, Brinkmeyer R, Zhang S, Ho Y-F, Xu C, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation. Environ Sci Technol. 2012;46:4837–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Shiroyama K, Kawasaki Y, Unno Y, Amachi S. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2. Biosci Biotechnol Biochem. 2015;79:1898–905.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature. 2009;457:581–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Wadley MR, Stevens DP, Jickells T, Hughes C, Chance R, Hepach H, et al. Modelling iodine in the ocean. Earth Space Sci Open Access Arch. 2020:46. https://doi.org/10.1002/essoar.10502078.1.75.Waite TJ, Truesdale VW. Iodate reduction by Isochrysis galbana is relatively insensitive to de-activation of nitrate reductase activity—are phytoplankton really responsible for iodate reduction in seawater? Mar Chem. 2003;81:137–48.CAS 
    Article 

    Google Scholar 
    76.Coates JD, Achenbach LA. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol. 2004;2:569–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Jones DS, Bailey JV, Flood BE. Sedimenticola thiotaurini sp. nov., a sulfur-oxidizing bacterium isolated from salt marsh sediments, and emended descriptions of the genus Sedimenticola and Sedimenticola selenatireducens. Int J Syst Evol Microbiol. 2015;65:2522–30.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Brinkmann T, Specht CH, Frimmel FH. Non-linear calibration functions in ion chromatography with suppressed conductivity detection using hydroxide eluents. J Chromatogr. 2002;957:99–109.CAS 
    Article 

    Google Scholar 
    81.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015;31:3350–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Méheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun. 2019;10:4173.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Barnum TP, Figueroa IA, Carlström CI, Lucas LN, Engelbrektson AL, Coates JD. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J. 2018;12:1568–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Karsenti E. The making of Tara Oceans: Funding blue skies research for our Blue Planet. Mol Syst Biol. 2015;11:811.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:1–16.Article 
    CAS 

    Google Scholar 
    93.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    95.Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mac Learn Res. 2011;12:2825–30.
    Google Scholar 
    96.Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J methods Psychiatr Res. 2011;20:40–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Dissimilatory nitrate reduction by a freshwater cable bacterium

    1.Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491:218–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun. 2019;10:4120.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature. 2010;463:1071–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche EM, Hidalgo-Martinez S, et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. Isme J. 2014;8:1843–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche EM, et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.CAS 
    Article 

    Google Scholar 
    6.Marzocchi U, Bonaglia S, van de Velde S, Hall POJ, Schramm A, Risgaard-Petersen N, et al. Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin. Environ Microbiol. 2018;20:3031–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al. Cable bacteria in freshwater sediments. Appl Environ Microbiol. 2015;81:6003–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim Cosmochim Acta. 2012;92:1–13.CAS 
    Article 

    Google Scholar 
    9.Seitaj D, Schauer R, Sulu-Gambari F, Hidalgo-Martinez S, Malkin SY, Burdorf LD, et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci USA. 2015;112:13278–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Sulu-Gambari F, Seitaj D, Meysman FJR, Schauer R, Polerecky L, Slomp CP. Cable bacteria control iron–phosphorus dynamics in sediments of a coastal hypoxic basin. Environ Sci Technol. 2016;50:1227–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Marzocchi U, Trojan D, Larsen S, Meyer RL, Revsbech NP, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Risgaard-Petersen N, Damgaard LR, Revil A, Nielsen LP. Mapping electron sources and sinks in a marine biogeobattery. J Geophys Res Biogeosci. 2014;119:1475–86.CAS 
    Article 

    Google Scholar 
    13.Kessler AJ, Wawryk M, Marzocchi U, Roberts KL, Wong WW, Risgaard‐Petersen N, et al. Cable bacteria promote DNRA through iron sulfide dissolution. Limnol Oceanogr. 2018;64:1228–38.Article 
    CAS 

    Google Scholar 
    14.Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.MacGregor BJ, Biddle JF, Siebert JR, Staunton E, Hegg EL, Matthysse AG, et al. Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol. 2013;79:1183–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Buckley A, MacGregor B, Teske A. Identification, expression and activity of candidate nitrite reductases from orange Beggiatoaceae, Guaymas Basin. Front Microbiol. 2019;10:644.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 2020;14:1233–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Damgaard LR, Risgaard‐Petersen N, Nielsen LP. Electric potential microelectrode for studies of electrobiogeophysics. J Geophys Res Biogeosci. 2014;119:1906–17.CAS 
    Article 

    Google Scholar 
    19.Archie GE. The electrical resistivity log as an aid in determining some reservoir characteristics. T Am I Min Met Eng. 1942;146:54–61.
    Google Scholar 
    20.Nielsen LP. Denitrification in sediment determined from nitrogen isotope pairing. Fems Microbiol Ecol. 1992;86:357–62.CAS 
    Article 

    Google Scholar 
    21.Risgaard-Petersen N, Rysgaard S. Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. In: Alef K, Nannipieri P, editors. Methods in applied soil microbiology and biochemistry. Academic Press; 1995. p. 287–95.22.Risgaard-Petersen N, Rysgaard S, Revsbech NP. Combined microdiffusion-hypobromite oxidation method for determining N-15 isotope in ammonium. Soil Sci Soc Am J. 1995;59:1077–80.CAS 
    Article 

    Google Scholar 
    23.Bower CE, Holmhansen T. A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci. 1980;37:794–8.CAS 
    Article 

    Google Scholar 
    24.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience. 2019; 8:giz100.26.Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Welsh A, Chee-Sanford JC, Connor LM, Löffler FE, Sanford RA. Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Micro. 2014;80:2110–9.Article 
    CAS 

    Google Scholar 
    29.Jepson BJN, Marietou A, Mohan S, Cole JA, Butler CS, Richardson DJ. Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Biochem Soc T. 2006;34:122–6.CAS 
    Article 

    Google Scholar 
    30.Haase D, Hermann B, Einsle O, Simon J. Epsilonproteobacterial hydroxylamine oxidoreductase (epsilon Hao): characterization of a ‘missing link’ in the multihaem cytochrome c family. Mol Microbiol. 2017;105:127–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Klotz MG, Schmid MC, Strous M, op den Camp HJ, Jetten MS, Hooper AB. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol. 2008;10:3150–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Betlach MR, Tiedje JM. Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification. Appl Environ Micro. 1981;42:1074–84.CAS 
    Article 

    Google Scholar 
    33.Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BBA Bioenerg. 2013;1827:114–35.CAS 
    Article 

    Google Scholar 
    34.Hermans M, Lenstra WK, Hidalgo-Martinez S, van Helmond N, Witbaard R, Meysman FJR, et al. Abundance and biogeochemical impact of cable bacteria in Baltic sea sediments. Environ Sci Technol. 2019;53:7494–503.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Marshall IPG, Starnawski P, Cupit C, Fernandez Caceres E, Ettema TJG, Schramm A, et al. The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Environ Microbiol Rep. 2017;9:397–403.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lefevre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol. 2011;13:538–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Trojan D, Schreiber L, Bjerg JT, Boggild A, Yang T, Kjeldsen KU, et al. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Syst Appl Microbiol. 2016;39:297–306.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Dam AS, Marshall IPG, Risgaard-Petersen N, Burdorf LDW, Marzocchi U. Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol. 2021;23:2605–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Jones CM, Stres B, Rosenquist M, Hallin S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol. 2008;25:1955–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Graf DR, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE. 2014;9:e114118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol. 2011;155:104–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Simon J, Sänger M, Schuster SC, Gross R. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol Microbiol. 2003;49:69–79.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA. 2018;115:5786–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Venceslau SS, Lino RR, Pereira IAC. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem. 2010;285:22774–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Meysman FJR, Risgaard-Petersen N, Malkin SY, Nielsen LP. The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochim Cosmochim Ac. 2015;152:122–42.CAS 
    Article 

    Google Scholar 
    47.Kern M, Simon J. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Biochim Biophys Acta. 2009;1787:646–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Chen Y, Wang F. Insights on nitrate respiration by Shewanella. Front Mar Sci. 2015; 1:80.49.Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, et al. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J. 2009;3:966–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Geerlings NMJ, Karman C, Trashin S, As KS, Kienhuis MVM, Hidalgo-Martinez S, et al. Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci USA. 2020;117:5478–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Scilipoti S, Koren K, Risgaard-Petersen N, Schramm A, Nielsen LP. Oxygen consumption of individual cable bacteria. Sci Adv. 2021; 7:eabe1870.52.Bjerg JT, Damgaard LR, Holm SA, Schramm A, Nielsen LP. Motility of electric cable bacteria. Appl Environ Microbiol. 2016;82:3816–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Dam A-S, Marshall IPG, Petersen NR, Burdorf LDW, Marzocchi U. Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol. 2021;23:2605–16.54.Westram R, Bader K, Pruesse E, Kumar Y, Meier H, Glöckner FO, et al. ARB: a software environment for sequence data. In: de Bruijn FJ, editor. Handbook of molecular microbial ecology I: metagenomics and complementary approaches. John Wiley & Sons, Inc.; Hoboken, New Jersey; 2011. p. 399–406. More

  • in

    Evaluation on soil fertility quality under biochar combined with nitrogen reduction

    Research areaThe study was conducted in the Yunyang Experimental Station (108° 54′ E, 30° 55′ N; altitude of 700 m), Southwest University, Chongqing, China. The study area has a subtropical monsoon humid climate with an average annual sunshine duration of 1500 h, average annual temperature of 18.4 °C average annual rainfall of 1100.1 mm, and the rain period predominantly prolongs from June to September. Local soil type is clay loam in texture and Dystric Purple-Udic Cambosols according to the Chinese Soil Taxonomy (CRGCST 2001). Basic properties of 0–20 cm soil layer were as follows: pH 7.29, total N 0.94 g kg−1, total C 7.14 g kg−1, available N 37.45 mg kg−1, available P 2.36 mg kg−1, and available K 72.58 mg kg−1, respectively.The tested biochar was purchased from the Nanjing Qinfeng Straw Technology Co., Ltd. (Nanjing, China), which was made by pyrolysis of the rice (Oryza sativa L.) straw with limited oxygen supply at 500 °C for 2 h. Its properties were as follows: total N 0.61 g kg−1, total P 1.99 g kg−1, total K 27.15 g kg−1, total C 537.97 g kg−1 and pH 8.70.Experimental designA two-year filed experiment (2017–2019) was performed in a completely randomized design with twelve treatments in triplicates including two factors. The first factor was the application of biochar including B0 (0 t ha−1), B10 (10 t ha−1), B20 (20 t ha−1) and B40 (40 t ha−1); and the second factor is the application level N fertilizer including conventional rate (application amount by local farmers)-180 kg N ha−1 (N100), 80% of conventional rate-144 kg N ha−1 (N80) and 60% of conventional rate-108 kg N ha−1 (N60). The plot size was 3 m × 6 m with a border (0.5 m wide) between plots. Biochar was applied to soil only in the first year before the sowing of rapeseed. Each treatment plot received the same amount of potassium (90 kg K2O ha−1) and phosphorus (90 kg P2O5 ha−1). Further details of fertilizer application have been reported by Tian et al.24, being the same for the two-year experiment. Weed, pesticide, and pest management kept the same with the local farmers’ rapeseed management practices. Winter rapeseed (Sanxiayou No.5) was used in the experiment, which was sowed on 21 October 2017 and on 16 October 2018, respectively, and was harvested on 1 May in both years (2018 and 2019).Sampling and analysis of soil and cropCrop yieldRapeseed was hand-harvested when 70–80% of total seeds changed their color from green to black on 1 May 2019, and each plot was separately harvested for seed yield. Seed yield was calculated using 6% as standard seed moisture content.Soil indicesAfter the rapeseed harvest, soil samples were collected from all plots. Five sampling points were randomly selected within each plot. At each point, twenty soil cores of 2.5 cm diameter and 20.0 cm depth were taken in a 1 m radius of the point. All soil cores from each point were put in a plastic bag and thoroughly bulked, crumbled and mixed for physical, chemical and biological analyses. By dividing each soil sample into two subsamples, one subsample was ground, passed through a 2-mm sieve and was air-dried for the analyses of soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzale nitrogen (AN), available phosphorus (AP), available potassium (AK)25, particulate organic carbon (POC), water-soluble organic carbon (DOC), easily oxidized organic carbon (AOC)26, sucrase (SUC) and urease (URE)27, and another one was ground, passed through a 2-mm sieve and was stored in a refrigerator at − 20 °C for the analyses of structural and functional characteristics of soil microbial community28. At the same time, mixed soil samples (0–20 cm) from five points in each plot were taken using a shovel for soil aggregates analyses24.Drying method was used to determine soil water content (SWC); soil temperature (ST) was measured by temperature probe on the LI6400–09 (LI-COR Inc., Lincoln, NE); potassium dichromate oxidation method was used to determine SOM and DOC content; TN was measured by the Kjeldahl method; TP was determined by Mo-Sb colorimetric method; TK was determined by NaOH melting and analyzed using an atomic spectrophotometry; AN was determined by diffusion-absorption method; AP was quantified by colorimetric analysis following extraction of soil with 0.5 mol L−1 NaHCO3; AK was measured using 1.0 mol L−1 CH3COONH4 extraction; POC was determined by sodium hexametaphosphate dispersion method; AOC was measured by potassium permanganate oxidation method; SUC was measured by 3,5-dinitrosalicylic acid colorimetric determination method; URE was measured by phenol-sodium hypochlorite indophenol colorimetry method; amount of bacteria (B), fungi (F), actinomycetes (A), gram-positive bacteria (GP), gram-negative bacteria (GN) was measured by the Bligh–Dyer method; utilization of sugars (S), amino acids (AA), phenolic acids (PA), carboxylic acids (CA), amines (AM) and polymers (P) by microorganism was measured using commercial Biolog EcoPlate (Biolog Inc., CA, USA).Shannon index (H), Simpson index (D), and evenness index (E) were calculated by the following equations:$$ {text{AWCD}} = sum {(C_{i} – R_{i} )} /n $$$$ {text{H}} = – sum {P_{i} } (ln P_{i} )quad P_{i} = (C_{i} – R_{i} )/sum {(C_{i} – R_{i} } ) $$$$ {text{D}} = 1 – sum P _{i}^{2} $$$$ {text{E}} = {text{H}}/ln {text{S}} $$where n is the 31 carbon sources on the ECO board; Ci and Ri and are the optical density values of the microwell and the control well respectively; Pi is the ratio of the absorbance of a particular well i to the sums of absorbance of all 31well at 120 h; S is the number of color change holes, which represents the number of carbon source used by the microbial community; Average well color development (AWCD), representing the overall carbon substrate utilization potential of cultural microbial communities across all wells per plate.In order to investigate the aggregate structure, all bulk clod samples from each plot were carefully mixed and then gently sieved to pass through a 10-mm sieve. According to the wet-sieving and dry-sieving protocol, the tested soil was fractionated into  > 5, 2 ~ 5, 1 ~ 2, 0.25 ~ 1 and  0.25} right)} }}{{sumnolimits_{{i = 1}}^{n} {(w_{i} )} }} times 100% $$$$ {text{D – MWD}}left( {{text{W – MWD}}} right) = sumlimits_{{i = 1}}^{n} {(bar{d}_{i} w_{i} )} $$$$ {text{D – GMD}}left( {{text{W – GMD}}} right) = exp left[ {frac{{sumlimits_{{i = 1}}^{n} {m_{i} ln bar{d}_{i} } }}{{sumlimits_{{i = 1}}^{n} {m_{i} } }}} right] $$where DR0.25 and WR0.25 are the proportion of  > 0.25 mm soil mechanical-stable aggregates and water-stable aggregates, respectively; D-MWD and W-MWD are the mean weight diameter of mechanical-stable aggregates and water-stable aggregates (mm), respectively; D-GMD and W-GMD are the mean geometric diameter of mechanical-stable aggregates and water-stable aggregates (mm), respectively; mi is mass in size fraction i; and wi is the proportion (%) of the total sample mass in size fraction i and di is mean diameter of size fraction i.Evaluation of soil fertilityGrey correlation analysisGrey correlation analysis refers to a method of quantitative description and comparison of a system’s development and change. The basic idea is to determine whether they are closely connected by determining the geometric similarity of the reference data column and several comparison data columns, which reflects the degree of correlation between the curves29. The grey relational coefficient ξi (k) can be expressed as follows:$$ xi (k) = frac{{mathop {min }limits_{i} mathop {min }limits_{k} left| {x_{0} (k) – x_{i} (k)} right| + rho mathop {max }limits_{i} mathop {max }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|}}{{left| {x_{0} (k) – x_{i} (k)} right| + rho mathop {max }limits_{i} max left| {mathop {x_{0} (k)}limits_{k} – x_{i} (k)} right|}} $$$$ x_{i}^{k} = frac{{x_{i}^{k} }}{{mathop {max }limits_{i} x_{i}^{k} }} $$$$ gamma _{i} = frac{1}{n}sumlimits_{{k = i}}^{n} {xi _{i} } (k) $$$$ omega _{{i(gamma )}} = frac{1}{n}sumlimits_{{i = 1}}^{n} {gamma _{i} } $$$$ G_{i}^{k} = sumlimits_{{i = 1}}^{n} {left( {xi _{i} times omega _{{i(gamma )}} } right),quad k = 1,2,3, ldots ,n;quad i = 1,2,3, ldots ,n} $$where (x_{i}^{k}) The i trait observation value of treatment k; (mathop {max }limits_{i} x_{i}^{k}) The maximum value of the i trait in all treatments; (mathop {min }limits_{i} x_{i}^{k}) The minimum value of the i trait in all treatments; (mathop {min }limits_{i} mathop {min }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|) Second level minimum difference; (mathop {max }limits_{i} mathop {max }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|) Second level maximum difference; (rho) Resolution coefficient (0.5).Principal component analysisPrincipal component analysis refers to a multivariate statistical method that converts multiple indicators into several comprehensive indicators by the idea of dimensionality under the premise of losing little information. It simplifies the complexity in high-dimensional data while retaining trends and patterns30.Cluster analysisCluster analysis comprises a range of methods for classifying multivariate data into subgroups. Using the euclidean distance as a measure of the difference in the fertility of each treatment, the shortest distance method was used to systematically cluster according to the degree of intimacy and similarity of soil fertility levels. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present31.Statistical analysisCorrelation analysis was performed to assess the relationships between rapeseed yield and soil attributes. Grey correlation analysis and principal component analysis were performed to establish comprehensive score for soil fertility and the main soil factors affecting rapeseed yield. Cluster analysis was used to cluster the soil fertility of each treatment. All the statistical analyses were performed using Excel 2018 (Office Software, Inc., Beijing, China) and SPSS 17.0 (SPSS Inc., Chicago, Illinois, USA). The comparisons of treatment means were based on LSD test at the P  More

  • in

    Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles

    The cell modelGrowth rate of a cellThe growth rate of a bacteria cell depends on the acquisition of C (from the particle) and N (from the particle and through ({{rm{N}}}_{2}) fixation), as well as on metabolic expenses in terms of C.Uptake of C and NBacteria get C from glucose and both C and N from amino acids. The total amount of C available for the cell from monomers is (units of C per time)$${J}_{{rm{DOC}}}={f}_{{rm{G,C}}}J_{G}+{f}_{{rm{A}},{rm{C}}}{J}_{{rm{A}}},$$
    (8)
    and the amount of N available from monomer is (N per time)$${J}_{{rm{DON}}}={f}_{{rm{A}},{rm{N}}}{J}_{{rm{A}}},$$
    (9)
    where ({J}_{rm{G}}) and ({J}_{rm{A}}) are uptake rates of glucose and amino acids, ({f}_{rm{G,C}}) is the fraction of C in glucose, and ({f}_{rm{A,C}}) and ({f}_{rm{A,N}}) are fractions of C and N in amino acids.The rate of obtaining N through ({{rm{N}}}_{2}) fixation is:$${J}_{{{rm{N}}}_{2}}({{psi }})={{psi }}{M}_{{{rm{N}}}_{2}},$$
    (10)
    where ({psi },(0 < {{psi }} < 1)) regulates ({{rm{N}}}_{2}) fixation rate and fixation can happen at a maximum rate ({M}_{{{rm{N}}}_{2}}). ({{rm{N}}}_{2}) fixation is only limited by the maximum ({{rm{N}}}_{2}) fixation rate as dissolved dinitrogen (({{rm{N}}}_{2})) gas in seawater is assumed to be unlimited70.The total uptake of C and N from different sources becomes$${J}_{{rm{C}}}={J}_{{rm{DOC}}}$$ (11) $${J}_{{rm{N}}}({{psi }})={J}_{{rm{DON}}}+{J}_{{{rm{N}}}_{2}}({{psi }})$$ (12) CostsRespiratory costs of cellular processes together with ({{rm{N}}}_{2}) fixation and its associated ({{rm{O}}}_{2}) removal cost depend on the cellular ({{rm{O}}}_{2}) concentration. Two possible scenarios can be observed: Case 1: When ({O}_{2}) concentration is sufficient to maintain aerobic respiration Respiratory costs for bacterial cellular maintenance can be divided into two parts: one dependent on limiting substrates and the other one is independent of substrate concentration71. Here we consider only the basal respiratory cost ({R}_{rm{B}}{x}_{rm{B}}), which is independent of the limiting substrates and is assumed as proportional to the mass of the cell ({x}_{B}) (μg C). In order to solubilize particles, particle-attached bacteria produce ectoenzymes that cleave bonds to make molecules small enough to be transported across the bacterial cell membrane. Cleavage is represented by a biomass-specific ectoenzyme production cost ({R}_{rm{E}})72. The metabolic costs associated with the uptake of hydrolysis products and intracellular processing are assumed to be proportional to the uptake (({J}_{i})): ({R}_{{rm{G}}}{J}_{{rm{G}}}) and ({R}_{{rm{A}}}{J}_{{rm{A}}}) where the ({R}_{i})’s are costs per unit of resource uptake. In a similar way, the metabolic cost of ({{rm{N}}}_{2}) fixation is assumed as proportional to the ({{rm{N}}}_{2}) fixation rate: ({R}_{{{rm{N}}}_{2}}{rho }_{{rm{CN}},{rm{B}}}{J}_{{{rm{N}}}_{2}}), where ({rho }_{{rm{CN}},{rm{B}}}) is the bacterial C:N ratio. If we define all the above costs as direct costs, then the total direct respiratory cost becomes$${R}_{{rm{D}}}({{psi }})={R}_{{rm{B}}}{x}_{{rm{B}}}+{R}_{{rm{E}}}{x}_{{rm{B}}}+{R}_{{rm{G}}}{J}_{{rm{G}}}+{R}_{{rm{A}}}{J}_{{rm{A}}}+{R}_{{{rm{N}}}_{2}}{rho }_{{rm{CN}},{rm{B}}}{J}_{{{rm{N}}}_{2}}({{psi }}).$$ (13) Indirect costs related to ({{rm{N}}}_{2}) fixation arises from the removal of ({{rm{O}}}_{2}) from the cell and the production/replenishment of nitrogenase as the enzyme is damaged by ({{rm{O}}}_{2}). The cell can remove ({{rm{O}}}_{2}) either by increasing respiration73 or by increasing the production of nitrogenase enzyme itself74. Here we consider only the process of ({{rm{O}}}_{2}) removal by increasing respiration. To calculate this indirect cost, the concentration of ({{rm{O}}}_{2}) present in the cell needs to be estimated.Since the time scale of ({{rm{O}}}_{2}) concentration inside a cell is short, we have assumed a pseudo steady state inside the cell; the ({{rm{O}}}_{2}) diffusion rate inside a cell is always balanced by the respiration rate14, which can be expressed as$${rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2}}={R}_{{rm{D}}}left({{psi }}right).$$ (14) Here ({rho }_{{rm{CO}}}) is the conversion factor of respiratory ({{rm{O}}}_{2}) to C equivalents and ({F}_{{{rm{O}}}_{2}}) is the actual ({{rm{O}}}_{2}) diffusion rate into a cell from the particle and can be calculated as$${F}_{{{rm{O}}}_{2}}=4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}left({X}_{{{rm{O}}}_{2}}-{X}_{{{rm{O}}}_{2},{rm{C}}}right),$$ (15) where ({r}_{{rm{B}}}) is the cell radius, ({X}_{{{rm{O}}}_{2}}) is the local ({{rm{O}}}_{2}) concentration inside the particle, ({X}_{rm{{O}}_{2},{rm{C}}}) is the cellular ({{rm{O}}}_{2}) concentration, and ({K}_{{{rm{O}}}_{2}}) is the effective diffusion coefficient of ({{rm{O}}}_{2}) over cell membrane layers. The effective diffusion coefficient can be calculated according to Inomura et al.14 in terms of diffusion coefficient inside particles (({bar{D}}_{{{rm{O}}}_{2}})), the diffusivity of cell membrane layers relative to water (({varepsilon }_{{rm{m}}})), the radius of cellular cytoplasm (({r}_{{rm{C}}})), and the thickness of cell membrane layers (({L}_{{rm{m}}})) as$${K}_{{{rm{O}}}_{2}}={bar{D}}_{{{rm{O}}}_{2}}frac{{varepsilon }_{{rm{m}}}({r}_{{rm{C}}}+{L}_{{rm{m}}})}{{varepsilon }_{{rm{m}}}{r}_{{rm{C}}}+{L}_{{rm{m}}}}.$$ (16) The apparent diffusivity inside particles (({bar{D}}_{{{rm{O}}}_{2}})) is considered as a fraction ({f}_{{{rm{O}}}_{2}}) of the diffusion coefficient in seawater (({D}_{{{rm{O}}}_{2}}))$${bar{D}}_{{{rm{O}}}_{2}}={f}_{{{rm{O}}}_{2}}{D}_{{{rm{O}}}_{2}}.$$ (17) Combining (14) and (15) gives the cellular ({{rm{O}}}_{2}) concentration ({X}_{{rm{O}}_{2},{rm{C}}}) as$${X}_{{{rm{O}}}_{2},{rm{C}}}={{max }}left[0,{X}_{{{rm{O}}}_{2}}-frac{{R}_{{rm{D}}}left({{psi }}right)}{4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}{rho }_{{rm{CO}}}}right].$$ (18) If there is excess ({{rm{O}}}_{2}) present in the cell after respiration (({X}_{{rm{O}}_{2},{rm{C}}} , > , 0)), then the indirect cost of removing the excess ({{rm{O}}}_{2}) to be able to perform ({{rm{N}}}_{2}) fixation can be written as$${R}_{{{rm{O}}}_{2}}left({{psi }}right)=Hleft({{psi }}right){rho }_{{rm{CO}}}4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}{X}_{rm{{O}}_{2},{rm{C}}},$$
    (19)
    where (H({{psi }})) is the Heaviside function:$$Hleft({{psi }}right)=left{begin{array}{cc}0,&{rm{if}}{,}{{psi }}=0\ 1, &{rm{if}}{,}{{psi }} , > , 0end{array}right..$$
    (20)
    Therefore, the total aerobic respiratory cost becomes:$${R}_{{rm{tot}},{rm{A}}}left({{psi }}right)={R}_{{rm{D}}}left({{psi }}right)+{R}_{{{rm{O}}}_{2}}left({{psi }}right).$$
    (21)

    Case 2: Anaerobic respiration
    When available ({{rm{O}}}_{2}) is insufficient to maintain aerobic respiration (({R}_{{rm{tot}}}left({{psi }}right) , > , {rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2},{{max }}})), cells use ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) for respiration. The potential ({{{rm{NO}}}_{3}}^{-}) uptake, ({J}_{{{rm{NO}}}_{3},{rm{pot}}}), is$${J}_{{{rm{NO}}}_{3},{rm{pot}}}={M}_{{{rm{NO}}}_{3}}frac{{A}_{{{rm{NO}}}_{3}}{X}_{{{rm{NO}}}_{3}}}{{A}_{{{rm{NO}}}_{3}}{X}_{{{rm{NO}}}_{3}}+{M}_{{{rm{NO}}}_{3}}},$$
    (22)
    where ({M}_{{{rm{NO}}}_{3}}) and ({A}_{{{rm{NO}}}_{3}}) are maximum uptake rate and affinity for ({{{rm{NO}}}_{3}}^{-}) uptake, respectively. However, the actual rate of ({{{rm{NO}}}_{3}}^{-}) uptake, ({J}_{{{rm{NO}}}_{3}}), is determined by cellular respiration and can be written as$${J}_{{{rm{NO}}}_{3}}={{min }}left({J}_{{{rm{NO}}}_{3},{rm{pot}}},{{max }}left(0,frac{{R}_{{rm{tot}},{rm{A}}}left({{psi }}right)-{rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2},{{max }}}}{{rho }_{{rm{C}}{{rm{NO}}}_{3}}}right)right),$$
    (23)
    where ({rho }_{{rm{C}}{{rm{NO}}}_{3}}) is the conversion factor of respiratory ({{{rm{NO}}}_{3}}^{-}) to C equivalents and the maximum ({{rm{O}}}_{2}) diffusion rate into a cell ({F}_{{{rm{O}}}_{2},{{max }}}) can be obtained by making cellular ({{rm{O}}}_{2}) concentration ({X}_{{{rm{O}}}_{2},{rm{c}}}) zero in (15) as$${F}_{{{rm{O}}}_{2},{{max }}}=4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}{X}_{{{rm{O}}}_{2}},$$
    (24)
    Further, in the absence of sufficient ({{{rm{NO}}}_{3}}^{-}), the cell uses ({{{rm{SO}}}_{4}}^{2-}) as an electron acceptor for respiration. Since the average concentration of ({{{rm{SO}}}_{4}}^{2-}) in seawater is 29 mmol L−1 75, ({{{rm{SO}}}_{4}}^{2-}) is a nonlimiting nutrient for cell growth and the potential uptake rate of ({{{rm{SO}}}_{4}}^{2-}) is mainly governed by the maximum uptake rate as$${J}_{{{rm{SO}}}_{4},{rm{pot}}}={M}_{{{rm{SO}}}_{4}},$$
    (25)
    where ({M}_{{{rm{SO}}}_{4}}) is the maximum uptake rate for ({{{rm{SO}}}_{4}}^{2-}) uptake. The actual rate of ({{{rm{SO}}}_{4}}^{2-}) uptake, ({J}_{{{rm{SO}}}_{4}}), can be written as$${J}_{{{rm{SO}}}_{4}}={{min }}left({J}_{{{rm{SO}}}_{4},{rm{pot}}},{{max }}left(0,frac{{R}_{{rm{tot}},{rm{A}}}left({{psi }}right)-{rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2},{{max }}}-{rho }_{{rm{CN}}{{rm{O}}}_{3}}{F}_{{{rm{NO}}}_{3},{rm{pot}}}}{{rho }_{{rm{C}}{{rm{SO}}}_{4}}}right)right),$$
    (26)
    where ({rho }_{{rm{C}}{{rm{SO}}}_{4}}) is the conversion factor of respiratory ({{{rm{SO}}}_{4}}^{2-}) to C equivalents.According to formulations (23) and (26), ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) uptake occurs only when the diffusive flux of ({{rm{O}}}_{2}), and both ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) are insufficient to maintain respiration(.) Moreover, the uptake rates of ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) are regulated according to the cells’ requirements.Uptakes of ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) incur extra metabolic costs ({R}_{{{rm{NO}}}_{3}}{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}) and ({R}_{{{rm{SO}}}_{4}}{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}), where ({R}_{{{rm{NO}}}_{3}}) and ({R}_{{{rm{SO}}}_{4}}) are costs per unit of ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) uptake. The total respiratory cost can be written as$${R}_{{rm{tot}}}left({{psi }}right)={R}_{{rm{tot}},{rm{A}}}left({{psi }}right)+{R}_{{{rm{NO}}}_{3}}{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}+{R}_{{{rm{SO}}}_{4}}{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}.$$
    (27)
    Synthesis and growth rateThe assimilated C and N are combined to synthesize new structure. The synthesis rate is constrained by the limiting resource (Liebig’s law of the minimum) and by available electron acceptors such that the total flux of C available for growth ({J}_{{rm{tot}}}) (μg C d−1) is:$${J}_{{rm{tot}}}left({{psi }}right)={{min }}left[{J}_{{rm{C}}}-{R}_{{rm{tot}}}left({{psi }}right),{rho }_{{rm{CN,B}}}{J}_{{rm{N}}}left({{psi }}right),{rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2}}+{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}+{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}right].$$
    (28)
    Here, the total available C for growth is ({J}_{{rm{C}}}-{R}_{{rm{tot}}}({{psi }})), the C required to synthesize biomass from N source is ({rho }_{{rm{CN}},B}{J}_{rm{N}}), and the C equivalent inflow rate of electron acceptors to the cell is ({rho }_{{rm{CO}}}{F}_{{rm{O}}_{2}}+{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}+{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}). We assume that excess C or N is released from the cell instantaneously.Synthesis is not explicitly limited by a maximum synthesis capacity; synthesis is constrained by the C and N uptake in the functional responses (Eqs. 34 and 35). The division rate (mu) of the cell (d−1) is the total flux of C available for growth divided by the C mass of the cell (({x}_{rm{B}})):$$mu ({{psi }})={J}_{{rm{tot}}}({{psi }})/{x}_{rm{B}}.$$
    (29)
    The resulting division rate, (mu), is a measure of the bacterial fitness and we assume that the cell regulates its ({{rm{N}}}_{2}) fixation rate depending on the environmental conditions to gain additional N while maximizing its growth rate. The optimal value of the parameter regulating ({{rm{N}}}_{2}) fixation ({{psi }}) ((0le {{psi }}le 1)) then becomes:$${{{psi }}}^{ast }={{arg }}mathop{{{max }}}limits_{{{psi }}}{mu ({{psi }})},$$
    (30)
    and the corresponding optimal division rate becomes$${mu }^{ast }=mu left({{{psi }}}^{ast }right).$$
    (31)
    The particle modelWe consider a sinking particle of radius ({r}_{{rm{P}}}) (cm) and volume ({V}_{{rm{P}}}) (cm3) (Supplementary Fig. S1). The particle contains facultative nitrogen-fixing bacterial population (B(r)) (cells L−1), polysaccharides ({C}_{{rm{P}}}(r)) (μg G L−1), and polypeptides ({P}_{{rm{P}}}(r)) (μg A L−1) at a radial distance (r) (cm) from the center of the particle, where G and A stand for glucose and amino acids. We assume that only fractions ({f}_{{rm{C}}}) and ({f}_{{rm{P}}}) of these polymers are labile (({C}_{{rm{L}}}(r)={f}_{{rm{C}}}{C}_{{rm{P}}}(r),) ({P}_{{rm{L}}}(r)={f}_{{rm{P}}}{P}_{{rm{P}}}(r))), i.e., accessible by bacteria. Bacterial enzymatic hydrolysis converts the labile polysaccharides and polypeptides into monosaccharides (glucose) ((G) μg G L−1) and amino acids ((A) μg A L−1) that are efficiently taken up by bacteria. Moreover, the particle contains ({{rm{O}}}_{2}), ({{{rm{NO}}}_{3}}^{-}), and ({{{rm{SO}}}_{4}}^{2-}) with concentrations ({X}_{{{rm{O}}}_{2}}(r)) (μmol O2 L−1), ({X}_{{{rm{NO}}}_{3}}(r)) (μmol NO3 L−1), and ({X}_{{{rm{SO}}}_{4}}(r)) (μmol SO4 L−1). Glucose and amino acids diffuse out of the particle whereas ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) diffuse into the particle from the surrounding environment. Due to the high concentration of ({{{rm{SO}}}_{4}}^{2-}) in ocean waters, we assume that ({{{rm{SO}}}_{4}}^{2-}) is not diffusion limited inside particles, its uptake is limited by the maximum uptake capacity due to physical constraint. The interactions between particle, cells, and the surrounding environment are explained in Supplementary Fig. S1 and equations are provided in Table 1 of the main text.We assume that labile polysaccharide (({C}_{{rm{L}}})) and polypeptide (({P}_{{rm{L}}})) are hydrolyzed into glucose and amino acids at rates ({J}_{{rm{C}}}) and ({J}_{{rm{P}}}) with the following functional form$${J}_{{rm{C}}}={h}_{{rm{C}}}frac{{A}_{{rm{C}}}{C}_{{rm{L}}}}{{h}_{{rm{C}}}+{A}_{{rm{C}}}{C}_{{rm{L}}}}$$
    (32)
    $${J}_{{rm{P}}}={h}_{{rm{P}}}frac{{A}_{{rm{P}}}{P}_{{rm{L}}}}{{h}_{{rm{P}}}+{A}_{{rm{P}}}{P}_{{rm{L}}}}$$
    (33)
    where ({h}_{{rm{C}}}) and ({h}_{{rm{P}}}) are maximum hydrolysis rates of the carbohydrate and peptide pool, and ({A}_{{rm{C}}}) and ({A}_{{rm{P}}}) are respective affinities. ({J}_{{rm{G}}}) and ({J}_{{rm{A}}}) represent uptake of glucose and amino acids:$${J}_{{rm{G}}}={M}_{{rm{G}}}frac{{A}_{{rm{G}}}G}{{A}_{{rm{G}}}G+{M}_{{rm{G}}}}$$
    (34)
    $${J}_{{rm{A}}}={M}_{{rm{A}}}frac{{A}_{{rm{A}}}A}{{A}_{{rm{A}}}A+{M}_{{rm{A}}}}$$
    (35)
    where ({M}_{{rm{G}}}) and ({M}_{{rm{A}}}) are maximum uptake rates of glucose and amino acids, whereas ({A}_{{rm{G}}}) and ({A}_{{rm{A}}}) are corresponding affinities. Hydrolyzed monomers diffuse out of the particle at a rate ({D}_{{rm{M}}}).({mu }^{ast }) is the optimal division rate of cells (Eq. 31) and ({m}_{rm{B}}) represents the mortality rate (including predation) of bacteria. ({F}_{{{rm{O}}}_{2}}) and ({J}_{{{rm{NO}}}_{3}}) represent the diffusive flux of ({{rm{O}}}_{2}) and the consumption rate of ({{{rm{NO}}}_{3}}^{-}), respectively, through the bacterial cell membrane. ({bar{D}}_{{{rm{O}}}_{2}}) and ({bar{D}}_{{{rm{NO}}}_{3}}) are diffusion coefficients of ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) inside the particle.At the center of the particle ((r=0)) the gradient of all quantities vanishes:$${left.frac{partial G}{partial r}right|}_{r=0}={left.frac{partial A}{partial r}right|}_{r=0}={left.frac{partial {X}_{{{rm{O}}}_{2}}}{partial r}right|}_{r=0}={left.frac{partial {X}_{{rm{N}}{{rm{O}}}_{3}}}{partial r}right|}_{r=0}=0$$
    (36)
    At the surface of the particle ((r={r}_{{rm{P}}})) concentrations are determined by the surrounding environment:$${left.Gright|}_{r={r}_{{rm{P}}}}={G}_{infty },{left.Aright|}_{r={r}_{{rm{P}}}}={A}_{infty },{left.{X}_{{{rm{O}}}_{2}}right|}_{r={r}_{{rm{P}}}}={X}_{{{rm{O}}}_{2},infty },{left.{X}_{{{rm{NO}}}_{3}}right|}_{r={r}_{{rm{P}}}}={X}_{{{rm{NO}}}_{3},infty }$$
    (37)
    where ({G}_{infty },) ({A}_{infty ,}) ({X}_{{{rm{O}}}_{2},infty }) and ({X}_{{{rm{NO}}}_{3},infty }) are concentrations of glucose, amino acids, ({{rm{O}}}_{2}), and ({{{rm{NO}}}_{3}}^{-}) in the environment.Calculation of total N2 fixation rateThe total amount of fixed ({{rm{N}}}_{2}) in a specific size class of particle, ({{rm{N}}}_{{rm{fix}},{rm{P}}}) (({rm{mu }})g N particle−1), is calculated as$${{rm{N}}}_{{rm{fix}},{rm{P}}}=int int 4pi {{r}_{{rm{B}}}}^{2}B{J}_{{{rm{N}}}_{2}}{rm{d}}{r}_{{rm{P}}}{rm{dz}},$$
    (38)
    where ({r}_{{rm{P}}}) (cm) is the particle radius and z (m) represents the water column depth.({{rm{N}}}_{2}) fixation rate per unit volume of water, ({{rm{N}}}_{{rm{fix}},{rm{V}}}left(tright)) (({rm{mu }}{rm{mol}}) N m−3 d−1), is calculated as$${{rm{N}}}_{{rm{fix}},{rm{V}}}=int int 4pi {{r}_{{rm{B}}}}^{2}rho B{J}_{{{rm{N}}}_{2}}n(x){rm{d}}{r}_{{rm{P}}}{rm{d}}x,$$
    (39)
    Here (x) (cm) represents the size range (radius) of particles, (rho) is the fraction of diazotrophs of the total heterotrophic bacteria, and (n(x)) (number of particles per unit volume of water per size increment) is the size spectrum of particles that is most commonly approximated by a power law distribution of the form$$n(x)={n}_{0}{(2x)}^{xi }$$
    (40)
    where ({n}_{0}) is a constant that controls total particle abundance and the slope (xi) represents the relative concentration of small to large particles: the steeper the slope, the greater the proportion of smaller particles and the flatter the slope, and the greater the proportion of larger particles34.Depth-integrated ({{rm{N}}}_{2}) fixation rate, ({{rm{N}}}_{{rm{fix}},{rm{D}}}) (({rm{mu }}{rm{mol}}) N m−2 d−1), can be obtained by$${{rm{N}}}_{{rm{fix}},{rm{D}}}left(tright)=int {{rm{N}}}_{{rm{fix}},{rm{V}}}{rm{d}}z.$$
    (41)
    Assumptions and simplification in the modeling approachAccording to our current model formulation, the particle size remains constant while sinking. However, in nature, particle size is dynamic due to processes like bacterial remineralization, aggregation, and disaggregation. We neglect these complications to keep the model simple and to focus on revealing the coupling between particle-associated environmental conditions and ({{rm{N}}}_{2}) fixation by heterotrophic bacteria. These factors can, however, possibly be incorporated by using in situ data or by using the relationship between carbon content and the diameter of particles48 and including terms for aggregation and disaggregation55.Our model represents a population of facultative heterotrophic diazotrophs that grow at a rate similar to other heterotrophic bacteria but the whole community initiates ({{rm{N}}}_{2}) fixation when conditions become suitable. However, under natural conditions, diazotrophs may only constitute a fraction of the bacterial community, and their proliferation may be gradual21, presumably affected by multiple factors. In such case, our approach will overestimate diazotroph cell concentration and consequently the ({{rm{N}}}_{2}) fixation rate.For simplicity, our approach includes only aerobic respiration, ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) respiration, although many additional aerobic and anaerobic processes likely occur on particles (e.g Klawonn et al.19). To our knowledge, a complete picture of such processes, their interactions and effects on particle biochemistry is unavailable. For example, we have assumed that when ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) are insufficient to maintain respiration, heterotrophic bacteria start reducing ({{{rm{SO}}}_{4}}^{2-}). However, ({{{rm{SO}}}_{4}}^{2-}) reduction has been detected only with a significant lag after the occurrence of anaerobic conditions, suggesting it as a slow adapted process76, whereas we assume it to be instantaneous. On the other hand, the lag may not be real but due to a so called cryptic sulfur cycle, where ({{{rm{SO}}}_{4}}^{2-}) reduction is accompanied by concurrent sulfide oxidation effectively masking sulfide production77. Hopefully, future insights into interactions between diverse aerobic and anaerobic microbial processes can refine our modelling approach and fine-tune predictions of biochemistry in marine particles.Procedure of numerically obtaining optimal N2 fixation rateTo avoid making the optimization in Eq. (30) at every time step during the simulation, a lookup table of ({mu }^{ast }) (Eq. 31) over realistic ranges of the four resources (glucose, amino acids, ({{rm{O}}}_{2}), and ({{{rm{NO}}}_{3}}^{-})) and the parameter determining ({{rm{N}}}_{2}) fixation rate (({{psi }})) was created at the beginning of the simulation.The effects of temperature on N2 fixation rateTo examine the role of temperature variation on ({{rm{N}}}_{2}) fixation rate in sinking particles, we consider hydrolysis of polysaccharide and polypeptide, uptake of glucose and amino acids, uptake of ({{{rm{NO}}}_{3}}^{-}), respiration, and diffusion dependent on temperature. Apart from diffusion, all other processes are multiplied by a factor ({Q}_{10}) that represents the factorial increase in rates with ({10}^{0})C temperature increase. The rate (R) at a given temperature (T) is then$$R={R}_{{rm{ref}}}{{Q}_{10}}^{(T-{T}_{{rm{ref}}})/10}.$$
    (42)
    Here the reference rate ({R}_{{rm{ref}}}) is defined as the rate at the reference temperature ({T}_{{rm{ref}}}.) We set the reference temperature ({T}_{{rm{ref}}}) at room temperature of 20 °C. The effect of temperature on the diffusion coefficient D for glucose, amino acids, ({{rm{O}}}_{2}), and ({{{rm{NO}}}_{3}}^{-}) is described by Walden’s rule:$$D={D}_{{rm{ref}}}{eta }_{{rm{ref}}}T/(eta {T}_{{rm{ref}}})$$
    (43)
    where (eta) is the viscosity of water at the given temperature (T), and ({D}_{{rm{ref}}}) and ({eta }_{{rm{ref}}}) are diffusion coefficient and viscosity at ({T}_{{rm{ref}}}).({Q}_{10}) values for different enzyme classes responsible for hydrolysis (({Q}_{10,{rm{h}}})) lie within the range 1.1–2.978. Here, we have chosen ({Q}_{10,{rm{h}}}=2) for hydrolysis from the middle of the prescribed range. The ({Q}_{10}) values for uptake affinities (({Q}_{10,{rm{A}}})) are taken as 1.579. ({Q}_{10,{rm{R}}}=2) is chosen for all parameters related to respiration (({R}_{{rm{B}}}), ({R}_{{rm{E}}}), ({R}_{{rm{G}}}), ({R}_{{rm{A}}}), ({R}_{{{rm{N}}}_{2}}), ({R}_{{{rm{NO}}}_{3}}), ({R}_{{{rm{SO}}}_{4}}))80. ({R}_{{rm{ref}}}) and ({D}_{{rm{ref}}}) are the values of (R)’s and (D)’s provided in Table S1. The reference viscosity (({eta }_{{rm{ref}}})) and viscosities ((eta)) at different temperatures are taken from Jumars et al.80. More

  • in

    Ecological and evolutionary approaches to improving crop variety mixtures

    1.Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).Article 

    Google Scholar 
    2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Weiner, J. Applying plant ecological knowledge to increase agricultural sustainability. J. Ecol. 105, 865–870 (2017).Article 

    Google Scholar 
    5.Sadras, V. et al. Making science more effective for agriculture. Adv. Agron. 163, 153–177 (2020).Article 

    Google Scholar 
    6.Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 4, 229–240 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. N. Phytol. 206, 107–117 (2015).Article 

    Google Scholar 
    9.Bullock, D. G. Crop rotation. Crit. Rev. Plant Sci. 11, 309–326 (1992).Article 

    Google Scholar 
    10.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).CAS 
    Article 

    Google Scholar 
    15.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Blüthgen, N. et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Chacón-Labella, J., García Palacios, P., Matesanz, S., Schöb, C. & Milla, R. Plant domestication disrupts biodiversity effects across major crop types. Ecol. Lett. 22, 1472–1482 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Finckh, M. R. et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20, 813–837 (2000).Article 

    Google Scholar 
    22.Newton, A. C. Exploitation of diversity within crops—the key to disease tolerance? Front. Plant Sci. 7, 665 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Newton, A. C., Begg, G. S. & Swanston, J. S. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).Article 

    Google Scholar 
    24.Frankel, O. H. Analytical yield investigations on New Zealand wheat: IV. Blending varieties of wheat. J. Agric. Sci. 29, 249–261 (1939).Article 

    Google Scholar 
    25.Kristoffersen, R., Jørgensen, L. N., Eriksen, L. B., Nielsen, G. C. & Kiær, L. P. Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials. Field Crops Res. 249, 107696 (2020).Article 

    Google Scholar 
    26.Mundt, C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Wolfe, M. S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23, 251–273 (1985).Article 

    Google Scholar 
    28.Finckh, M. R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 121, 399–409 (2008).Article 

    Google Scholar 
    29.Reiss, E. R. & Drinkwater, L. E. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 28, 62–77 (2018).PubMed 
    Article 

    Google Scholar 
    30.Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).Article 

    Google Scholar 
    31.McDonald, B. A., Allard, R. W. & Webster, R. K. Responses of two-, three-, and four-component barley mixtures to a variable pathogen population. Crop Sci. 28, 447–452 (1988).Article 

    Google Scholar 
    32.Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kiær, L. P., Skovgaard, I. M. & Østergård, H. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 185, 123–138 (2012).Article 

    Google Scholar 
    34.Creissen, H. E., Jorgensen, T. H. & Brown, J. K. M. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes. Crop Prot. 85, 1–8 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Borg, J. et al. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 221, 298–313 (2018).Article 

    Google Scholar 
    36.Kiær, L. P., Skovgaard, I. M. & Østergård, H. Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res. 114, 361–373 (2009).Article 

    Google Scholar 
    37.Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 37, 13 (2017).Article 

    Google Scholar 
    38.Chateil, C. et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric. Ecosyst. Environ. 171, 25–32 (2013).Article 

    Google Scholar 
    39.Litrico, I. & Violle, C. Diversity in plant breeding: a new conceptual framework. Trends Plant Sci. 20, 604–613 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Van Der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 87–202 (2018).Article 
    CAS 

    Google Scholar 
    42.Montazeaud, G. et al. Multifaceted functional diversity for multifaceted crop yield: towards ecological assembly rules for varietal mixtures. J. Appl. Ecol. 57, 2285–2295 (2020).Article 

    Google Scholar 
    43.Von Felten, S., Niklaus, P. A., Scherer-Lorenzen, M., Hector, A. & Buchmann, N. Do grassland plant communities profit from N partitioning by soil depth? Ecology 93, 2386–2396 (2012).Article 

    Google Scholar 
    44.Zhang, W. P. et al. Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct. Ecol. 31, 469–479 (2017).Article 

    Google Scholar 
    45.Spehn, E. M. et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98, 205–218 (2002).Article 

    Google Scholar 
    46.Griffiths, M. & York, L. M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiol. 182, 1854–1868 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Mikaberidze, A., Mcdonald, B. A. & Bonhoeffer, S. Developing smarter host mixtures to control plant disease. Plant Pathol. 64, 996–1004 (2015).Article 

    Google Scholar 
    49.Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    51.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    52.Zhang, C., Postma, J. A., York, L. M. & Lynch, J. P. Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann. Bot. 110, 521–534 (2014).
    Google Scholar 
    53.Erktan, A., McCormack, M. L. & Roumet, C. Frontiers in root ecology: recent advances and future challenges. Plant Soil 424, 1–9 (2018).CAS 
    Article 

    Google Scholar 
    54.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    55.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).Article 

    Google Scholar 
    57.Morris, G. P. et al. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems. Glob. Change Biol. Bioenergy 8, 1000–1014 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wuest, S. E. & Niklaus, P. A. A plant biodiversity effect resolved to a single chromosomal region. Nat. Ecol. Evol. 2, 1933–1939 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9, 463–493 (1956).Article 

    Google Scholar 
    61.Lopez, C. G. & Mundt, C. C. Using mixing ability analysis from two-way cultivar mixtures to predict the performance of cultivars in complex mixtures. Field Crops Res. 68, 121–132 (2000).Article 

    Google Scholar 
    62.Forst, E. et al. A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat. Field Crops Res. 242, 107571 (2019).Article 

    Google Scholar 
    63.Harlan, H. V. & Martini, M. L. A composite hybrid mixture. Agron. J. 21, 487–490 (1929).Article 

    Google Scholar 
    64.Suneson, C. A. Evolutionary plant breeding. Crop Sci. 9, 119–121 (1969).Article 

    Google Scholar 
    65.Allard, R. W. & Adams, J. Populations studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barley and wheat. Am. Nat. 103, 621–645 (1969).Article 

    Google Scholar 
    66.Allard, R. W. & Jain, S. K. Population studies in predominantly self-pollinated species. II. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution 16, 90–101 (1962).
    Google Scholar 
    67.Döring, T. F., Knapp, S., Kovacs, G., Murphy, K. & Wolfe, M. S. Evolutionary plant breeding in cereals—into a new era. Sustainability 3, 1944–1971 (2011).Article 

    Google Scholar 
    68.Dawson, J. C. & Goldringer, I. in Organic Crop Breeding (eds Lammerts van Bueren, E. T. & Myers, J. R.) 77–98 (Wiley, 2011).69.Goldringer, I. et al. Agronomic evaluation of bread wheat varieties from participatory breeding: a combination of performance and robustness. Sustainability 12, 128 (2020).Article 

    Google Scholar 
    70.Andrew, I. K. S., Storkey, J. & Sparkes, D. L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 55, 239–248 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Bertholdsson, N. O., Weedon, O., Brumlop, S. & Finckh, M. R. Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Eur. J. Agron. 79, 23–30 (2016).Article 

    Google Scholar 
    72.Weiner, J., Du, Y. L., Zhang, C., Qin, X. L. & Li, F. M. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 98, 2261–2266 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Weiner, J. Looking in the wrong direction for higher-yielding crop genotypes. Trends Plant Sci. 19, S1360–S1385 (2019).
    Google Scholar 
    74.Denison, R. F., Kiers, E. T. & West, S. A. Darwinian agriculture: When can humans find solutions beyond the reach of natural selection? Q. Rev. Biol. 78, 145–168 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).Article 

    Google Scholar 
    76.Donald, C. M. in Wheat Science—Today and Tomorrow (eds Evans, L. T. & Peacock, W. J.) 223–247 (Cambridge Univ. Press, 1981).77.Knapp, S. et al. Natural selection towards wild-type in composite cross populations of winter wheat. Front. Plant Sci. 10, 1757 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Gersani, M., Brown, J. S., O’Brien, E. E., Maina, G. M. & Abramsky, Z. Tragedy of the commons as a result of root competition. J. Ecol. 89, 660–669 (2001).Article 

    Google Scholar 
    79.Rankin, D. J., Bargum, K. & Kokko, H. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22, 643–651 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Zhang, D. Y., Sun, G. J. & Jiang, X. H. Donald’s ideotype and growth redundancy: a game theoretical analysis. Field Crops Res. 61, 179–187 (1999).Article 

    Google Scholar 
    81.Duvick, D. N., Smith, J. S. C. & Cooper, M. in Plant Breeding Reviews. Part 2. Long Term Selection: Crops, Animals and Bacteria Vol. 24 (ed. Janick, J.) 109–151 (Wiley, 2004); https://doi.org/10.1002/9780470650288.ch482.Tian, J. et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658–664 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Zhu, Y. H., Weiner, J., Yu, M. X. & Li, F. M. Evolutionary agroecology: trends in root architecture during wheat breeding. Evol. Appl. 12, 733–743 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Tsunoda, S. A developmental aanlysis of yielding ability in varieties of field crops: II. The assimilation-system of plants as affected by the form, direction and arrangement of single leaves. Jpn. J. Breed. 9, 237–244 (1959).Article 

    Google Scholar 
    85.Jennings, P. R. Plant type as a rice breeding objective. Crop Sci. 4, 13–15 (1964).Article 

    Google Scholar 
    86.Zhu, L. & Zhang, D. Y. Donald’s ideotype and growth redundancy: a pot experimental test using an old and a modern spring wheat cultivar. PLoS ONE 8, e70006 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Jennings, P. R. & De Jesus, J. J. Studies on competition in rice I. Competition in mixtures of varieties. Evolution 22, 119–124 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Jennings, P. R. & Herrera, R. M. Studies on competition in rice II. Competition in segregating populations. Evolution 22, 332–336 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Borlaug, N. E. Wheat breeding and its impact on world food supply. In Third International Wheat Genetics Symposium 1–36 (1968).90.Vogel, O. A., Craddock, J. C., Muir, C. E., Everson, E. H. & Rohde, C. R. Semidwarf growth habit in winter wheat improvement for the Pacific Northwest. Agron. J. 48, 76–78 (1956).Article 

    Google Scholar 
    91.Reynolds, M. P., Acevedo, E., Sayre, K. D. & Fischer, R. A. Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crops Res. 37, 149–160 (1994).Article 

    Google Scholar 
    92.Murphy, G. P., Swanton, C. J., Van Acker, R. C. & Dudley, S. A. Kin recognition, multilevel selection and altruism in crop sustainability. J. Ecol. 105, 930–934 (2017).Article 

    Google Scholar 
    93.Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Maynard Smith, J. Group selection and kin selection. Nature 201, 1145–1147 (1964).Article 

    Google Scholar 
    96.Montazeaud, G. et al. Farming plant cooperation in crops. Proc. Biol. Sci. 287, 20191290 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    97.Brown, J. K. M. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53, 513–539 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Laine, A. L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Karasov, T. L., Shirsekar, G., Schwab, R. & Weigel, D. What natural variation can teach us about resistance durability. Curr. Opin. Plant Biol. 56, 89–98 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Zhan, J., Thrall, P. H., Papaïx, J., Xie, L. & Burdon, J. J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53, 19–43 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Smithson, J. B. & Lenné, J. M. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 128, 127–158 (1996).Article 

    Google Scholar 
    102.Huang, C., Sun, Z., Wang, H., Luo, Y. & Ma, Z. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Prot. 33, 52–58 (2012).Article 

    Google Scholar 
    103.Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Mundt, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infect. Genet. Evol. 27, 446–455 (2014).PubMed 
    Article 

    Google Scholar 
    105.Finckh, M. R. Stripe rust, yield, and plant competition in wheat cultivar mixtures. Phytopathology 85, 905–913 (1992).Article 

    Google Scholar 
    106.McGrann, G. R. D. et al. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65, 1025–1037 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Rimbaud, L., Papaïx, J., Barrett, L. G., Burdon, J. J. & Thrall, P. H. Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance? Evol. Appl. 11, 1791–1810 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Zeller, S. L., Kalinina, O., Flynn, D. F. B. & Schmid, B. Mixtures of genetically modified wheat lines outperform monocultures. Ecol. Appl. 22, 1817–1826 (2012).PubMed 
    Article 

    Google Scholar 
    109.Kellerhals, M., Mouron, P., Graf, B., Bousset, L. & Gessler, C. Mischpflanzung von Apfelsorten: Einfluss auf krankheiten, schädlinge und wirtschaftlichkeit. Schweiz. Z. Obs. 13, 10–13 (2003).
    Google Scholar 
    110.Burdon, J. J., Barrett, L. G., Rebetzke, G. & Thrall, P. H. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 7, 609–624 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Mundt, C. C. Pyramiding for resistance durability: theory and practice. Phytopathology 108, 792–802 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).Article 

    Google Scholar 
    113.Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    114.Friedli, C. N., Abiven, S., Fossati, D. & Hund, A. Modern wheat semi-dwarfs root deep on demand: response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica 215, 85 (2019).Article 
    CAS 

    Google Scholar 
    115.DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article 

    Google Scholar 
    117.Schweiger, A. K. et al. Spectral niches reveal taxonomic identity and complementarity in plant communities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.24.060483 (2020).118.Pianka, E. R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4, 53–74 (1973).Article 

    Google Scholar 
    119.MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).Article 

    Google Scholar 
    120.Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Phylogeography of Prunus armeniaca L. revealed by chloroplast DNA and nuclear ribosomal sequences

    1.Meng, H. H. & Zhang, M. L. Diversification of plant species in arid Northwest China: species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Mol. Phylogenet. Evol. 68, 398–409. https://doi.org/10.1111/jse.12088 (2015).Article 

    Google Scholar 
    2.Pennington, R. T. et al. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc. Natl. Acad. Sci. USA 107, 13783–13787. https://doi.org/10.1073/pnas.1001317107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334–10339. https://doi.org/10.1073/pnas.0601928103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Johansson, U. S. et al. Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution 61, 324–333. https://doi.org/10.1111/j.1558-5646.2007.00024.x (2007).Article 
    PubMed 

    Google Scholar 
    5.Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 207, 275–282. https://doi.org/10.1111/nph.13230 (2015).Article 
    PubMed 

    Google Scholar 
    6.Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442. https://doi.org/10.1111/nph.13920 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910. https://doi.org/10.1111/jbi.12899 (2017).Article 

    Google Scholar 
    8.Zhang, J. Y. & Zhang, Z. In Flora of Chinese Fruit Trees 61–62 (China Forestry Press, 2003).9.Su, Z., Zhang, M. & Sanderson, S. C. Chloroplast phylogeography of Helianthemum songaricum (Cistaceae) from northwestern China: implications for preservation of genetic diversity. Conserv. Genet. 12, 1525–1537. https://doi.org/10.1007/s10592-011-0250-9 (2011).Article 

    Google Scholar 
    10.Xie, K. Q. & Zhang, M. L. The effect of Quaternary climatic oscillations on Ribes meyeri (Saxifragaceae) in northwestern China. Biochem. Syst. Ecol. 50, 39–47. https://doi.org/10.1016/j.bse.2013.03.031 (2013).CAS 
    Article 

    Google Scholar 
    11.Salvi, D., Schembri, P., Sciberras, A. & Harris, D. Evolutionary history of the maltese wall lizard Podarcis filfolensis: insights on the ‘Expansion–Contraction’ model of Pleistocene biogeography. Mol. Ecol. 23, 1167–1187. https://doi.org/10.1111/mec.12668 (2014).Article 
    PubMed 

    Google Scholar 
    12.Liu, J. Q., Sun, Y. S., Ge, X. J., Gao, L. M. & Qiu, Y. X. Phylogeographic studies of plants in China: advances in the past and directions in the future. J. Syst. Evol. 50, 267–275. https://doi.org/10.1111/j.1759-6831.2012.00214.x (2012).Article 

    Google Scholar 
    13.Hewitt, G. The genetic legacy of the quaternary ice ages. Nature 405, 907–913. https://doi.org/10.1038/35016000 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Hewitt, G. M. The structure of biodiversity-insights from molecular phylogeography. Front. Zool. 1, 1–16. https://doi.org/10.1186/1742-9994-1-4 (2004).Article 

    Google Scholar 
    15.Willis, K. J. & Niklas, K. J. The role of quaternary environmental change in plant macroevolution: the exception or the rule?. Philos. Trans. R. Soc. Lond. B 359, 159–172. https://doi.org/10.1098/rstb.2003.1387 (2004).Article 

    Google Scholar 
    16.Schmitt, T. Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front. Zool. 4, 11. https://doi.org/10.1186/1742-9994-4-11 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Shen, L., Chen, X. Y. & Li, Y. Y. Glacial refugia and postglacial recolonization patterns of organisms. Acta Ecol. Sin. 22, 1983–1990. https://doi.org/10.1088/1009-1963/11/5/313 (2002).Article 

    Google Scholar 
    18.Schonswetter, P., Popp, M. & Brochmann, C. Rare arctic-alpine plants of the European Alps have different immigration histories: the snow bed species Minuartia biflora and Ranunculus pygmaeus. Mol. Ecol. 15, 709–720. https://doi.org/10.1111/j.1365-294X.2006.02821.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Guo, Y. P., Zhang, R., Chen, C. Y., Zhou, D. W. & Liu, J. Q. Allopatric divergence and regional range expansion of Juniperus sabina in China. J. Syst. Evol. 48, 153–160. https://doi.org/10.1111/j.1759-6831.2010.00073.x (2010).Article 

    Google Scholar 
    20.Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747. https://doi.org/10.1111/j.1365-294X.2004.02258.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Afzal-Rafii, Z. & Dodd, R. S. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol. Ecol. 16, 723–736. https://doi.org/10.1111/j.1365-294X.2006.03183.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Anderson, L., Hu, F., Nelson, D., Petit, R. & Paige, K. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proc. Natl. Acad. Sci. USA 103, 12447–12450. https://doi.org/10.1073/pnas.0605310103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Volkova, P. A., Burlakov, Y. A. & Schanzer, I. A. Genetic variability of Prunus padus (Rosaceae) elaborates “a new Eurasian phylogeographical paradigm”. Plant Syst. Evol. 306, 1–9. https://doi.org/10.1007/s00606-020-01644-0 (2020).CAS 
    Article 

    Google Scholar 
    24.Xu, Z. & Zhang, M. L. Phylogeography of the arid shrub Atraphaxis frutescens (Polygonaceae) in northwestern China: evidence from cpDNA sequences. J. Hered. 106, 184–195. https://doi.org/10.1093/jhered/esu078 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America, Exclusive of the Subtropical and Warmer Temperate Regions 345–346 (Macmillan, 1927).26.Zhebentyayeva, T. N., Ledbetter, C., Burgos, L., & Llácer, G. Fruit Breeding 415–458 (Springer, 2012).27.Zhebentyayeva, T. N., Reighard, G. L., Gorina, V. M. & Abbott, A. G. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. Appl. Genet. 106, 435–444. https://doi.org/10.1007/s00122-002-1069-z (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T. & Smith, W. A. Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7, 465–474. https://doi.org/10.1046/j.1365-294x.1998.00318.x (1998).Article 

    Google Scholar 
    29.Avise, J. C. Phylogeography: retrospect and prospect. J. Biogeogr. 36, 3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x (2009).Article 

    Google Scholar 
    30.Poudel, R. C., Möller, M., Li, D. Z., Shah, A. & Gao, L. M. Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet. Genom. 10, 653–665. https://doi.org/10.1007/s11295-014-0711-7 (2014).Article 

    Google Scholar 
    31.Dutech, C., Maggia, L. & Joly, H. Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol. Ecol. 9, 1427–1432. https://doi.org/10.1046/j.1365-294x.2000.01027.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Li, Y. et al. Rapid intraspecific diversification of the Alpine species Saxifraga sinomontana (Saxifragaceae) in the Qinghai-Tibetan Plateau and Himalayas. Front. Genet. 9, 381. https://doi.org/10.3389/fgene.2018.00381 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, Q. P. & Liu, W. S. Advances of the apricot resources collection, evaluation and germplasm enhancement. Acta Hortic. Sin. 45, 1642–1660. https://doi.org/10.16420/j.issn.0513-353x.2017-0654 (2018).Article 

    Google Scholar 
    34.Hu, Z. B. et al. Population genomics of pearl millet (Pennisetum glaucum (L). R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16, 1048. https://doi.org/10.1186/s12864-015-2255-0 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 18, 315–322 (1990).
    Google Scholar 
    36.Dong, W. et al. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 5, 8348. https://doi.org/10.1038/srep08348 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Bortiri, E. et al. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26, 797–807. https://doi.org/10.1043/0363-6445-26.4.797 (2001).Article 

    Google Scholar 
    38.Zhang, Q. Y. et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci. 9, 1876. https://doi.org/10.3389/fpls.2018.01876 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sumo. Ser. 41, 95–98. https://doi.org/10.1021/bk-1999-0734.ch008 (1999).CAS 
    Article 

    Google Scholar 
    40.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381. https://doi.org/10.1080/10635159950173889 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Pons, O. & Petit, R. J. Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144, 1237–1245. https://doi.org/10.1016/S1050-3862(96)00162-3 (1996).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 

    Google Scholar 
    47.Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS 
    PubMed 

    Google Scholar 
    48.Wolfe, K. H., Li, W. H. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84, 9054–9058. https://doi.org/10.1073/pnas.84.24.9054 (1987).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wang, Z. et al. Phylogeography study of the Siberian apricot (Prunus sibirica L.) in Northern China assessed by chloroplast microsatellite and DNA makers. Front. Plant Sci. 8, 1989. https://doi.org/10.3389/fpls.2017.01989 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Chin, S. W., Shaw, J., Haberle, R., Wen, J. & Potter, D. Diversification of almonds, peaches, plums and cherries-Molecular systematics and biogeographic history of Prunus (Rosaceae). Mol. Phylogenet. Evol. 76, 34–48. https://doi.org/10.1016/j.ympev.2014.02.024 (2014).Article 
    PubMed 

    Google Scholar 
    51.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Yang, J., Vazquez, L., Feng, L., Liu, Z. & Zhao, G. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 9, 1534. https://doi.org/10.3389/fpls.2018.01534 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Zhang, X., Shen, S., Wu, F. & Wang, Y. Inferring genetic variation and demographic history of Michelia yunnanensis Franch (Magnoliaceae) from chloroplast DNA sequences and microsatellite markers. Front. Plant Sci. 8, 583. https://doi.org/10.3389/fpls.2017.00583 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Li, M., Zhao, Z. & Miao, X. J. Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet. Resour. Crop Evol. 60, 2293–2302. https://doi.org/10.1007/s10722-013-9996-x (2013).CAS 
    Article 

    Google Scholar 
    55.Li, M., Hu, X., Miao, X. J., Xu, Z. & Zhao, Z. Genetic diversity analysis of wild apricot (Prunus armeniaca) populations in the lli Valley as revealed by SRAP markers. Acta Hortic. Sin. 43, 1980–1988. https://doi.org/10.16420/j.issn.0513-353x.2016-0156 (2016).Article 

    Google Scholar 
    56.Hu, X., Zheng, P., Ni, B., Miao, X. & Li, M. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by SSR markers in the Tien-Shan mountains of China. Pak. J. Bot. 50, 609–615 (2018).
    Google Scholar 
    57.Decroocq, S. et al. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol. Ecol. 25, 4712–4729. https://doi.org/10.1111/mec.13772 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Liu, S. et al. The complex evolutionary history of apricots: species divergence, gene flow and multiple domestication events. Mol. Ecol. Notes 28, 5299–5314. https://doi.org/10.1111/mec.15296 (2019).Article 

    Google Scholar 
    59.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. 16, 37–45. https://doi.org/10.1016/S0169-5347(00)02026-7 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Boulnois, L. Silk Road: Monks, Warriors & Merchants on the Silk Road 115–165 (WW Norton & Co Inc, 2004).61.Zhao, C., Wang, C. B., Ma, X. G., Liang, Q. L. & He, X. J. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol. Phylogen. Evol. 68, 628–643. https://doi.org/10.1016/j.ympev.2013.04.007 (2013).Article 

    Google Scholar 
    62.Ebersbach, J., Schnitzler, J., Favre, A. & Muellner-Riehl, A. N. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol. Biol. https://doi.org/10.1186/s12862-017-0967-2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Favre, A. et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253. https://doi.org/10.1111/brv.12107 (2015).Article 
    PubMed 

    Google Scholar  More