More stories

  • in

    Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences

    Data sourcesNo single comprehensive dataset of planktonic foraminiferal distributional records currently exists. Instead, these data are available from a wide range of sources in many different structures. Some of these sources are compilations of existing data (e.g., Neptune14,15,16, ForCenS21), and others derive from individual sampling sites (e.g. ocean drilling expeditions). Triton combines these disparate sources (Fig. 1) to produce a single spatio-temporal dataset of Cenozoic planktonic foraminifera with updated and consistent taxonomy, age models, and paleo-coordinates.Neptune is currently the most comprehensive database of fossil plankton data, with records exclusively from the DSDP, ODP and IODP representing planktonic foraminifera, calcareous nannofossils, diatoms, radiolaria and dinoflagellates14,15,16. A subset of these sites is included in Neptune, representing those with the most continuous sampling through time. The raw data from Neptune form the core of our dataset. All foraminiferal occurrences for the Cenozoic (i.e. last 66 Ma) were downloaded using the GTS 2012 timescale. In the download options, all questionable identifications and invalid taxa were removed, as were records that had been identified as reworked.In addition to Neptune, three other compilation datasets were included in Triton: ForCenS21, which consists of global core-top samples; the Eocene data from Fenton, et al.8 created based on literature searches for planktonic foraminiferal data in the Eocene; and the land-based records from Lloyd, et al.22 that were created from literature searches. The marine records in Lloyd, et al.22 were not included, as they were obtained from Neptune.Following preliminary compilation of existing datasets, we identified all legacy DSDP, ODP and IODP cores missing from Triton. The online DESCLogik (http://web.iodp.tamu.edu/DESCReport/) and Pangaea17 databases were then mined for .csv files containing planktonic foraminiferal species count data for the missing cores, supplemented with data from AWI_Paleo (URI: http://www.awi.de/en/science/geosciences/marine-geology.html), GIK/IFG (URI: http://www.ifg.uni-kiel.de/), MARUM (URI: https://www.marum.de/index.html), and QUEEN (URI: http://ipt.vliz.be/eurobis/resource?r=pangaea_2747). All additional cores were assessed individually by inspecting the scientific drilling proceedings to determine whether sites were suitable to contribute to our dataset. The primary assessment criterion was identification of continuous sedimentary sections, wherein two or more confidently assigned consecutive chronostratigraphic tie points existed to allow for construction of age models.In addition to these longer cores, many sediment sampling projects have produced planktonic foraminiferal distribution data from shorter cores that tend to correspond in age to the last few million years. The website PANGAEA17 (www.pangaea.de) has been used as a repository for most of these occurrence data. This website was searched using the terms “plank* AND foram”, with resulting datasets downloaded using the R package ‘pangaear’23. These datasets were filtered to exclude records collected using multinets, sediment traps or box cores, as these methods produce samples not easily correlated to sediment cores. Column names allowed for further filtering to exclude records with no species-level data, records that had only isotopic data (rather than abundance data), or records with no age controls.Data processingThe data sources underpinning Triton serve their records in different formats. Therefore, processing was necessary to convert records into a unified framework, with one species per row for each sample and associated metadata (see below for details). Some metadata could be used without modification when available (e.g. water depth, data source), whereas other data needed processing to ensure consistency (e.g. abundance, paleo-coordinates, age). Without this processing, samples from different sources were not directly comparable. Where data were not available, they were set to NA. Those records with missing data in crucial columns (species name, abundance, age, and paleo-coordinates) were removed from the final dataset. All data processing was performed using R v. 3.6.124.Taxonomic consistency is essential to enable comparison of datasets created at different times. The species and synonymy lists used in Triton are based on the Paleogene Atlases20,25,26, with additional information from mikrotax27 (http://www.mikrotax.org/pforams/). These sources were supplemented, when necessary with more up to date literature including Poole and Wade28 and Lam and Leckie29. (A full list of the taxonomic sources can be found in the PFdata.xlsx file18.) A synonymy list was generated to convert species names to the senior synonym. At the same time, typographic errors were corrected. For example, Globototalia flexuosa should be Globorotalia flexuosa. Exclusively Mesozoic taxa were omitted, as were all instances when species names were unclear or imprecise (i.e. not at the species level). Junior synonyms were merged with their senior synonyms and their abundances summed, although the original names and abundances are also retained in the processed dataset. For presence/absence samples, these numerical merged abundances were set to one (i.e. present). The full species list and list of synonyms can be found in the accompanying data.Abundance data for planktonic foraminifera are provided in different formats: presence/absence, binned abundance, relative abundance, species counts, and number of specimens per gram. These metrics were converted into numeric relative abundance to make comparisons easier, although both the original abundance value and its numeric version are retained, as is a record of the abundance type. Presence/absence data were converted to a binary format (one for present; zero for absent). Species counts were converted to relative percent abundances based on the total number of specimens in the sample (this was calculated where it was not already recorded). When full counts were not performed, binned abundances were frequently used. These binned abundances were converted into numeric abundances based on the sequence. So, for example, the categorical labels of N, P, R, F, C, A, D (indicating none, present, rare, few, common, abundant, dominant) were converted to a numerical sequence of 0 to 6. As the meaning of letters can depend on the context (e.g. ‘A’ could be absent or abundant), conversion was done in a semi-automated fashion on a sample-by-sample basis. A value of 0.01 was assigned to records where an inconsistent abundance was recorded (e.g. samples with mostly numeric counts but a few species were designated ‘P’, indicating presence). Samples with zero abundance were retained in the full dataset to provide an indication of sampling.The age of samples were recorded in multiple ways. For some samples, age models provide precise numerical estimates of the age (e.g., those in Neptune). Other samples are dated relative to stratigraphic events such as biostratigraphic zones (including benthic and planktonic foraminifera, diatoms, radiolarians and nannofossils) or magnetic reversals. In this case, ages sometimes needed to be converted to reflect revised age estimates. The start and end dates of biostratigraphic zones are defined in relation to events in marker species, e.g. their speciation, extinction or acme events. All such marker events were updated to their most recent estimates and tuned to the GTS 2020 timescale19. The process of updating included correction of synonymies. Additional care was taken to ensure the correct interpretation of abbreviations (e.g. determining whether LO meant lowest occurrence or last occurrence) based on the entire list of events for a study. Where up-to-date ages were not available or events were ambiguous, they were removed from the age models.The marker events defining a zone can depend on the zonal scheme used. For example, Berggren30 defined the base of the planktonic foraminifera zone M8 as the first occurrence of Fohsella fohsi. Wade et al.31 used this same event to define the base of M9. Therefore, the zonal scheme was recorded when collecting age models, to accurately convert ages to the GTS 2020 time scale. Some marker events have different ages depending on the ocean basin or latitude, and these differences are not necessarily well studied31,32. Where these differences in marker events have been recorded, the coordinates of a site were used to determine whether sites were in the Atlantic or Indo-Pacific Ocean, and whether they were tropical or temperate (with the division at 23.5° latitude). However, this is an area where more research is needed to improve the accuracy of higher-latitude dating32. Magnetostratigraphic ages were also tuned to the GTS 2020 timescale.We constructed new age models for samples not already assigned a numeric age. Where the depths of biostratigraphic events were already recorded, these were converted directly to GTS 2020. Where samples were not given any ages, often the case for the cores collected in the early days of ocean drilling, ages were reconstructed from the shipboard and post-cruise biostratigraphic data available in DESCLogik, Pangaea, and drilling publications. For holes where no tie point data were retrievable, biostratigraphic count data were extracted directly from drilling publications, and biostratigraphic events were assigned via GTS 2020. The first and last occurrences in raw shipboard biostratigraphic data often do not represent true datums, and careful assessment of the shipboard, and post-cruise literature was a prerequisite to confidently assigning chronostratigraphic datums. Tie point depths were assigned as the midpoint depth between the core sample before and after an event. For example, for an extinction event, the recorded depth was the midway point between the last recorded occurrence of a species and the first sample from which the species is absent. All sites were assessed individually to determine the age of the seafloor. Where IODP reports or sample-based publications strictly stated that the sediment surface (i.e. 0.00 meters below seafloor (mbsf)) was deemed to be “Holocene”, “Recent” or “Modern” in age, an additional 0 Ma tie point was assigned appropriately. All samples present outside the maximum/minimum age tie points for that site were removed, as they could not be confidently assigned an age. During assessment, individual drilling reports were investigated for geological structures. Where features such as unconformities, reverse faults, stratigraphic inversions, décollements, and major slips and slumps were identified, separate age models were generated for individual intact stratal intervals to account for potential externally emplaced or repeated strata (see “Age models” and “Triton working” in the figshare data repository18). Similarly, age gaps of greater than 10% of the age range of the core were classified as hiatuses, leading to separate age models (see Fig. 4). Cores of denser sediments that have been sampled using rotary drilling will often have only ~50–60% recovery in a core (9.5 m)33. As it is not possible to determine where the recovered core material came from within this length, all intact core pieces are grouped together as a continuous section from the section top, regardless of where the pieces were sourced (e.g. 4.5 m of recovered material will be recorded as 0–4.5 m of cored interval even if some came from 9–9.5 m). Consequently, age estimates within cores where recovery was low, typically the samples collected longer ago, will necessarily be less certain.Fig. 4Different age model estimates applied to core material from IODP Site U1499A in the South China Sea. Mag – mean age based only on the magnetostratigraphic marker events. Zones – mean age based on all the marker events. Int Mag – interpolation of the points between the magnetostratigraphic marker events. Interp – interpolation between the full set of marker events. Model – the model of age as a function of depth. Note the hiatus between 50 and 100 m. For the shallower section of the dataset, with only three data points, a simple linear model was used. For the deeper section, a GAM smooth was fitted. For this site, the model predictions were chosen as the best fit.Full size imageUsing the updated marker event ages, we created age-depth plots and modelled the best fit to the data. There are different ways of creating these models, and multiple methods were applied to each core. The one that provided the best fit to the original data was chosen (the different age models are available in “Age models” in the figshare data repository18). These choices were confirmed manually (see Fig. 4). The simplest age model used interpolation of the marker events to create ‘zones’ and assign estimated ages assuming a continuous sedimentation rate between the start and end of each of these zones. Where the events do not provide a continuous sequence (e.g. gaps in the zonal markers), age estimates were assigned as the mean of that zone with error estimates of the width of the zone. Where magnetostratigraphic events were present they were given preference. This method leads to different estimates of sedimentation rate for each zone. The more complex age model estimates a smoother sedimentation rate. When there were fewer than 5 marker events, a linear model of age as a function of depth was fitted for the entire core. For larger datasets, generalised additive models (GAMs) for the same variables were used, to allow for variation in sedimentation rates through time. GAMs were run using the mgcv R library, with a gamma value of 1.134. The type of age model used in the analysis was recorded. Where appropriate, the number of points and the r2 of the model are recorded to give an indication of the accuracy of the age model.The latitude and longitude coordinates of samples were recorded in decimal degrees. For all samples except modern ones, plate tectonic reconstructions were necessary to determine the coordinates at which the sample was originally deposited. Reconstructions were performed using the Matthews, et al.35 plate motion model, which is an updated version of the Seton, et al.36 model used by Neptune. Comparisons of age models35,36,37,38,39 suggest this model is most appropriate for the deep sea environment where most of the samples occur, and is able to assign coordinates to significantly more sites than the Scotese39 GPlates model. This test was performed with a subset of the data (10633 unique sites); the Matthews, et al.35 model provided paleocoordinates for 95% of the data, whilst the GPlates model only provided coordinates for 17% of the data. The calculation of paleocoordinates was automated using an adaptation of https://github.com/macroecology/mapast.When sediment samples are derived from multiple sources, duplication will inevitably occur. All such duplicated records, identified based on the combination of species, abundance, sample depth, and coordinate values, were removed. Additionally, working on an individual record level, species that occurred significantly outside their known ranges were flagged (following updated age models) on the assumption these records were misidentifications, contamination or re-working. Records were classified as falling significantly outside their known range if they were more than 5 Ma outside the species’ range in the Palaeogene (66-23 Ma) and more than 2 Ma in the Neogene (23-0 Ma). These values were chosen based on the tradeoff between removing reworked specimens and allowing for some errors in the age estimates. Age estimates for older samples tend to be less precise. Ages were obtained from Lamyman et al. (in prep) and are available in “PFdata” in the figshare data repository18. In total, 10,990 suspect records were flagged (~2% of all records). More

  • in

    The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change

    Based on the present-day distribution of photosynthetic bacteria31, we assume a competitive advantage for anoxygenic photosynthetic bacteria in early environments where electron donors such as Fe2+, H2S, or H2 were present. We also assume the contemporaneous existence of environments where cyanobacterial populations could thrive, providing a seedbed for migration. Non-marine waters provide an example of the latter, supported by the branching of non-marine taxa from basal nodes in cyanobacterial phylogenies44,45 and also by the presence of stromatolites in Archean lacustrine successions46, despite the likelihood that many Archean lakes and rivers had low levels of potential electron donors such as Fe2+ and H2S47.Following Jones et al.40 and Ozaki et al.42, we use Fe (iron) and P (phosphorus) to represent the environment, which is similar to the H2 and P employed in other studies48,49. The logic of this choice is that in Archean oceans, Fe2+ is thought to have been the principal electron donor for anoxygenic photosynthesis50,51, whereas P governed total rates of photosynthesis. (Kasting14 argued that H2 was key to photosynthesis on the early Earth, a view supported by low iron concentrations in some early Archean stromatolites52.). In any event, under the conditions of low P availability thought to have characterized early oceans25,40,49,53,54,55, anoxygenic photosynthesis would have depleted limiting nutrients before alternative electron donors were exhausted. In consequence, rates of photosynthetic oxygen production would be low. As iron availability declined and/or P availability increased, the biosphere would inevitably reach a point where P would remain after Fe2+ had been depleted, expanding the range of environments where cyanobacteria are favored by natural selection42.Our model keeps track of the abundances of anoxygenic photosynthetic bacteria (APB), x1, cyanobacteria, x2, and three crucial chemicals: iron(II) (Fe2+), y1, phosphate (PO43−), y2, and dioxygen (O2), z. Both types of bacteria require phosphate for reproduction. APB needs iron(II) (or some other suitable reductant) as an electron donor in photosynthesis. The following five equations describe the reproduction and death of APB and of cyanobacteria as well as the dynamics of iron(II), phosphate, and dioxygen:$${rm{APB}}: {dot{x}}_{1} ={x}_{1}{y}_{1}{y}_{2}-{x}_{1}+{u}_{1}\ {rm{Cyano}}: {dot{x}}_{2} =c{x}_{2}{y}_{2}-{x}_{2}+{u}_{2}\ {{rm{Fe}}}^{2+}: {dot{y}}_{1} ={f}_{1}-{y}_{1}-{x}_{1}{y}_{1}{y}_{2}-{y}_{1}z\ {{rm{PO}}_{4}}^{3-}: {dot{y}}_{2} ={f}_{2}-{y}_{2}-{x}_{1}{y}_{1}{y}_{2}-{x}_{2}{y}_{2}\ {{rm{O}}}_{2}: dot{z} =a{x}_{2}{y}_{2}-bz-{y}_{1}z$$
    (1)
    Here, we have omitted to write symbols for those rate constants that, for understanding the GOE, can be set to one without loss of generality (Supplementary Note 1). Each remaining rate constant is a free parameter. Equations (1) thus satisfy redox balance by construction. We are left with a system that has five main parameters: c specifies the rate of reproduction of cyanobacteria; f1 and f2 denote the rates of supply of iron(II) and phosphate, respectively; a denotes biogenic production of oxygen; b denotes geochemical consumption of oxygen. Note that iron(II) and phosphate are also removed by geochemical processes at a rate proportional to their abundance. In addition, iron(II) is used up during anoxygenic photosynthesis, and iron(II) reacts with oxygen and is thereby removed from the system. Phosphate is used up during the growth of APB and cyanobacteria. (We investigate extensions of the model that incorporate bounded bacterial growth rates and organic carbon in Supplementary Note 2 and Supplementary Note 3, respectively.)We posit iron(II) as the primary electron donor for anoxygenic photosynthesis, and for simplicity of presentation, we refer to y1 and f1 in this context. However, as noted above, y1 and f1 can similarly represent the abundances and influxes of other alternative electron donors, especially dihydrogen (H2)56,57 and hydrogen sulfide (H2S)58. Our model, its analytical solution, and the conclusions that follow hold equally well by considering any of these electron donors or all together.We also include small migration rates, u1 and u2, which allow for the possibility that APB and cyanobacteria persist in privileged sites from which they can migrate into the main arena of competition. On the Archean Earth, these parameters could have been affected by the flow of water and by surface winds. For the mathematical analysis presented in the main text, we assume that these rates are negligibly small.The GOE represents the transition from a world dominated by APB (Equilibrium E1) to one that is dominated by cyanobacteria (Equilibrium E2) (Figs. S1, S2). On a slowly changing planet, the abundances of APB and cyanobacteria and of the three chemicals are approximately in steady state. Therefore, we consider the fixed points of Eqs. (1).Pure equilibriaIn the absence of APB and cyanobacteria, the abiotic equilibrium abundances of iron(II) and of phosphate are given by f1 and f2, respectively, and there is no oxygen in the system. If f1f2  > 1, then APB can emerge. Subsequently, the system settles to Equilibrium E1, where only APB are present and there is still no oxygen. E1 is stable against invasion of cyanobacteria if$${f}_{1}-{f}_{2}, > ,frac{(c+1)(c-1)}{c}.$$
    (2)
    This condition can be fulfilled if the influx of iron, f1, is large enough, or if the influx of phosphate, f2, is small enough. The term on the right-hand side of the inequality is an increasing function of the reproductive rate, c, of cyanobacteria.If cf2  > 1, then the system admits another equilibrium, E2, where only cyanobacteria are present and oxygen is abundant. Equilibrium E2 is stable against invasion of APB if$$a(c{f}_{2}-1), > ,(b+c)({f}_{1}-c).$$
    (3)
    The left-hand side of the inequality is positive. If the right-hand side is negative (that is, if f1  ,c(a-1).$$
    (4)
    Condition (4) is understood as follows. If b is sufficiently large, then there is not enough atmospheric oxygen for rusting to render E2 stable against invasion of APB before E1 loses stability; the result is stable coexistence. But if b is sufficiently small, then rusting causes E2 to become stable before E1 becomes unstable. The critical value of b therefore depends on the input of atmospheric oxygen for Equilibrium E2; it is an increasing function of the reproductive rate of cyanobacteria and of their rate of production of oxygen.If a  c(a − 1). Figure 3 shows gradual oxygenation due to decreasing f1. In this case, the transition occurs via the mixed equilibrium, (hat{E}), where both types of bacteria coexist (Fig. 4). A subsequent increase in f1 can cause APB to regain dominance (Fig. S3a).Fig. 3: The GOE can be triggered by a decline in the influx of iron(II) and is gradual if b  > c(a − 1).Equilibrium E1 (APB dominate) loses stability and Equilibrium E2 (cyanobacteria dominate) gains stability when f1 drops below ({f}_{1}^{* }) and (f_1^{prime}), respectively. We set f2 = 80, c = 10, a = 10, b = 100, and u1 = u2 = 10−3. a We simulate Eqs. (8) from Supplementary Note 1 with α1 = α2 = β1 = β2 = 1, and we set f1 = 100 − 40(t/105). t* denotes the time at which Equilibrium E1 loses stability. b There is stable coexistence of both types of bacteria for (f_1^{prime} , More

  • in

    Plant-soil feedbacks help explain biodiversity-productivity relationships

    1.Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    2.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Van Ruijven, J. & Berendse, F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Jing, J., Bezemer, T. M. & van der Putten, W. H. Complementarity and selection effects in early and mid-successional plant communities are differentially affected by plant-soil feedback. J. Ecol. 103, 641–647 (2015).Article 

    Google Scholar 
    6.Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).Article 

    Google Scholar 
    8.Hector, A., Bazeley-White, E., Loreau, M., Otway, S. & Schmid, B. Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecol. Lett. 5, 502–511 (2002).Article 

    Google Scholar 
    9.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kulmatiski, A., Beard, K. H. & Heavilin, J. Plant-soil feedbacks provide an additional explanation for diversity-productivity relationships. Proc. R. Soc. B Biol. Sci. 279, 3020–3026 (2012).Article 

    Google Scholar 
    11.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, 6480 (2020).Article 
    CAS 

    Google Scholar 
    13.Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Wang, G. et al. Soil microbiome mediates positive plant diversity‐productivity relationships in late successional grassland species. Ecol. Lett. 22, 13273 (2019).Article 

    Google Scholar 
    15.Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Bauer, J. T., Koziol, L. & Bever, J. D. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia 192, 735–744 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bever, J. D. Feeback between plants and their soil communities in an old field community. Ecology 75, 1965–1977 (1994).Article 

    Google Scholar 
    19.Hendriks, M. et al. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding. J. Ecol. 101, 287–297 (2013).Article 

    Google Scholar 
    20.Zuppinger-Dingley, D. L., Flynn, D. F. B., De Deyn, G. B., Petermann, J. S. & Schmid, B. Plant selection and soil legacy enhance long-term biodiversity effects. Ecology 97, 15–0599.1 (2015).
    Google Scholar 
    21.Mommer, L. et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. N. Phytol. 218, 542–553 (2018).Article 

    Google Scholar 
    22.Guerrero‐Ramírez, N. R., Reich, P. B., Wagg, C., Ciobanu, M. & Eisenhauer, N. Diversity‐dependent plant–soil feedbacks underlie long‐term plant diversity effects on primary productivity. Ecosphere 10, e02704 (2019).Article 

    Google Scholar 
    23.van Ruijven, J., Ampt, E., Francioli, D. & Mommer, L. Do soil-borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J. Ecol. 108, 1810–1821 (2020).Article 

    Google Scholar 
    24.Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92, 296–303 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Lekberg, Y. et al. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Cowles, J. Mechanisms of Coexistence: Implications for Biodiversity-Ecosystem Functioning Relationships in a Changing World. Dissertation, The University of Minnesota (2015).27.Forero, L. E., Grenzer, J., Heinze, J., Schittko, C. & Kulmatiski, A. Greenhouse- and field-measured plant-soil feedbacks are not correlated. Front. Environ. Sci. 7, 184 (2019).Article 

    Google Scholar 
    28.Kulmatiski, A. & Kardol, P. in Getting Plant—Soil Feedbacks out of the Greenhouse: Experimental and Conceptual Approaches 449–472 (Springer, 2008).29.Pernilla Brinkman, E., Van der Putten, W. H., Bakker, E. J. & Verhoeven, K. J. F. Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).Article 

    Google Scholar 
    30.van der Putten, W. H. et al. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    31.Rinella, M. J. & Reinhart, K. O. Toward more robust plant-soil feedback research. Ecology 99, 550–556 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Crawford, K. M. et al. When and where plant‐soil feedback may promote plant coexistence: a meta‐analysis. Ecol. Lett. 22, 13278 (2019).Article 

    Google Scholar 
    33.Clark, A. T. et al. How to estimate complementarity and selection effects from an incomplete sample of species. Methods Ecol. Evol. 10, 2141–2152 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Anacker, B. L., Klironomos, J. N., Maherali, H., Reinhart, K. O. & Strauss, S. Y. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol. Lett. 17, 1613–1621 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Mehrabi, Z. & Tuck, S. L. Relatedness is a poor predictor of negative plant–soil feedbacks. N. Phytol. 205, 1071–1075 (2015).Article 

    Google Scholar 
    36.Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Beals, K. K. et al. Predicting plant-soil feedback in the field: meta-analysis reveals that competition and environmental stress differentially influence psf. Front. Ecol. Evol. 8, 191 (2020).Article 

    Google Scholar 
    38.Kos, M., Tuijl, M. A. B., de Roo, J., Mulder, P. P. J. & Bezemer, T. M. Species-specific plant-soil feedback effects on above-ground plant-insect interactions. J. Ecol. 103, 904–914 (2015).CAS 
    Article 

    Google Scholar 
    39.Bukowski, A. R. & Petermann, J. S. Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana. Ecol. Evol. 4, 2533–2545 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).CAS 
    Article 

    Google Scholar 
    41.Fornara, D. A. & Tilman, D. Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90, 408–418 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Laughlin, D. C. et al. The hierarchy of predictability in ecological restoration: are vegetation structure and functional diversity more predictable than community composition? J. Appl. Ecol. 54, 1058–1069 (2017).Article 

    Google Scholar 
    43.Metcalfe, H., Milne, A. E., Deledalle, F. & Storkey, J. Using functional traits to model annual plant community dynamics. Ecology 101, e03167 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Moulin, T., Perasso, A., Calanca, P. & Gillet, F. DynaGraM: a process-based model to simulate multi-species plant community dynamics in managed grasslands. Ecol. Modell. 439, 109345 (2021).Article 

    Google Scholar 
    45.Putten, W. H., Bradford, M. A., Pernilla Brinkman, E., Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).Article 

    Google Scholar 
    46.Eisenhauer, N., Reich, P. B. & Scheu, S. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl. Ecol. 13, 571–578 (2012).Article 

    Google Scholar 
    47.Hawkes, C. V., Kivlin, S. N., Du, J. & Eviner, V. T. The temporal development and additivity of plant-soil feedback in perennial grasses. Plant Soil 369, 141–150 (2013).CAS 
    Article 

    Google Scholar 
    48.Latz, E., Eisenhauer, N., Rall, B. C., Scheu, S. & Jousset, A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Sci. Rep. 6, 1–10 (2016).Article 
    CAS 

    Google Scholar 
    49.Chung, Y. A. & Rudgers, J. A. Plant–soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses. Proc. R. Soc. B Biol. Sci. 283 (2016).50.Mahaut, L., Fort, F., Violle, C. & Freschet, G. T. Multiple facets of diversity effects on plant productivity: species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 34, 287–298 (2020).Article 

    Google Scholar 
    51.Barry, K. E. et al. Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology 101, 2905 (2020).Article 

    Google Scholar 
    52.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    53.Pillai, P. & Gouhier, T. C. Not even wrong: the spurious measurement of biodiversity’s effects on ecosystem functioning. Ecology 100, e02645 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).Article 

    Google Scholar 
    55.Fargione, J. et al. From selection to complementarity: Shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B Biol. Sci. 274, 871–876 (2007).Article 

    Google Scholar 
    56.Helander, M. et al. Decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 642, 285–291 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4, e5695 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Kulmatiski, A., Heavilin, J. & Beard, K. H. Testing predictions of a three-species plant-soil feedback model. J. Ecol. 99, 542–550 (2011).
    Google Scholar 
    60.Kulmatiski, A., Beard, K. H., Grenzer, J., Forero, L. & Heavilin, J. Using plant-soil feedbacks to predict plant biomass in diverse communities. Ecology 97, 2064–2073 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance

    1.Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Reinhold-Hurek, B. & Hurek, T. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ. Exp. Bot. 97, 30–39 (2014).CAS 
    Article 

    Google Scholar 
    4.Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Ali, S., Charles, T. C. & Glick, B. R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80, 160–167 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Weyens, N., van der Lelie, D., Taghavi, S. & Vangronsveld, J. Phytoremediation: plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20, 248–254 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Card, S. D. et al. Beneficial endophytic microorganisms of Brassica—A review. Biol. Control 90, 102–112 (2015).Article 

    Google Scholar 
    9.Shahzad, R., Khan, A. L., Bilal, S., Asaf, S. & Lee, I. J. What Is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci. 9, 24. https://doi.org/10.3389/fpls.2018.00024 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).Article 

    Google Scholar 
    11.Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article 

    Google Scholar 
    12.van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Coats, V. C. & Rumpho, M. E. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5, 368. https://doi.org/10.3389/fmicb.2014.00368 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Richardson, D. M., Allsopp, N., D’antonio, C. M., Milton, S. J. & Rejmánek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75, 65–93 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 40, 699–715 (2009).Article 

    Google Scholar 
    16.Sun, Z.-K. & He, W.-M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5, e15418. https://doi.org/10.1371/journal.pone.0015418 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Kowalski, K. P. et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front. Microbiol. 6, 95. https://doi.org/10.3389/fmicb.2015.00095 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Dai, Z. C. et al. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 7, 706. https://doi.org/10.3389/fpls.2016.00706 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Rout, M. E. et al. Bacterial endophytes enhance competition by invasive plants. Am. J. Bot. 100, 1726–1737 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Soares, M. A. et al. Functional role of bacteria from invasive Phragmites australis in promotion of host growth. Microb. Ecol. 72, 407–417 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kim, Y.-H., Kil, J.-H., Hwang, S.-M. & Lee, C.-W. Spreading and distribution of Lactuca scariola, invasive alien plant, by habitat types in Korea. Weed Turfgrass Sci. 2, 138–151 (2013).Article 

    Google Scholar 
    22.Moon, S.-I. et al. Isolation and characterization of bio-active materials from prickly lettuce (Lactuca serriola). J. Life Sci. 19, 206–212 (2009).Article 

    Google Scholar 
    23.Lebeda, A. et al. Acquisition and ecological characterization of Lactuca serriola L germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genet. Resour. Crop Evol. 54, 555–562 (2007).Article 

    Google Scholar 
    24.Mallory-Smith, C. A., Thill, D. C. & Dial, M. J. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4, 163–168 (1990).Article 

    Google Scholar 
    25.Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. https://doi.org/10.6064/2012/963401 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636. https://doi.org/10.3389/fmicb.2018.01636 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobiums strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Sandhya, V., Grover, M., Reddy, G. & Venkateswarlu, B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertility Soils 46, 17–26 (2009).CAS 
    Article 

    Google Scholar 
    29.Vardharajula, S. Exopolysaccharide production by drought tolerant Bacillus spp and effect on soil aggregation under drought stress. J. Microbiol. Biotechnol. Food Sci. 9, 51–57 (2020).
    Google Scholar 
    30.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kang, S. H. et al. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L). J. Microbiol. Biotechnol. 17, 96–103 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Panwar, M., Tewari, R. & Nayyar, H. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L) under soil salinity by reducing sodium uptake and stress injury. Physiol. Mol. Biol. Plants 22, 445–459 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Selvakumar, G. et al. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24, 955–960 (2008).CAS 
    Article 

    Google Scholar 
    34.Egamberdieva, D. et al. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10, 1–9 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Pereira, S., Castro, P. & Research, P. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ. Sci. Pollut. Res. 21, 14110–14123 (2014).CAS 
    Article 

    Google Scholar 
    36.Sun, Z. et al. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    37.Pierik, R., Tholen, D., Poorter, H., Visser, E. J. W. & Voesenek, L. A. C. J. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 11, 176–183 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J. & Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Yu, Y.-C., Yum, S.-J., Jeon, D.-Y. & Jeong, H.-G. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28, 1318–1331 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Brady, C. et al. Isolation of Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett. Appl. Microbiol. 49, 461–465 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, fiw083. https://doi.org/10.1093/femsec/fiw083 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Gao, H. et al. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int. J. Biol. Macromol. 150, 955–964 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Wang, L. et al. Development of sugarcane resource for efficient fermentation of exopolysaccharide by using a novel strain of Kosakonia cowanii LT-1. Bioresour. Technol. 280, 247–254 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Borlee, B. R. et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75, 827–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Huang, X.-F. et al. Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419, 523–539 (2017).CAS 
    Article 

    Google Scholar 
    47.Marulanda, A., Barea, J.-M. & Azcón, R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28, 115–124 (2009).CAS 
    Article 

    Google Scholar 
    48.Niu, X., Song, L., Xiao, Y. & Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8, 2580. https://doi.org/10.3389/fmicb.2017.02580 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sandhya, V., Ali, S. Z., Grover, M., Reddy, G. & Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulat. 62, 21–30 (2010).CAS 
    Article 

    Google Scholar 
    50.Chen, C. et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 7, 41564. https://doi.org/10.1038/srep41564 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    52.Zhang, N. et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374, 689–700 (2014).CAS 
    Article 

    Google Scholar 
    53.Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE 6, e20396. https://doi.org/10.1371/journal.pone.0020396 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Coombs, J. T. & Franco, C. M. M. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608. https://doi.org/10.1128/aem.69.9.5603-5608.2003 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Mehta, S. & Nautiyal, C. S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43, 51–56 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Milagres, A. M., Machuca, A. & Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1–6 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Dworkin, M. & Foster, J. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592–603 (1958).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Singh, J. K., Adams, F. G. & Brown, M. H. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front. Microbiol. 9, 3301 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Polak-Berecka, M., Waśko, A., Skrzypek, H. & Kreft, A. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: biosynthesis and purification methods. Acta Aliment. 42, 220–228 (2013).CAS 
    Article 

    Google Scholar 
    62.Tschaplinski, T. J. et al. The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Ann. Bot. 124, 617–626 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Michel, B. E. & Kaufmann, M. R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51, 914–916 (1973).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Hanna, A., Berg, M., Stout, V. & Razatos, A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl. Environ. Microbiol. 69, 4474–4481 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Liu, S.-B. et al. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl. Environ. Microbiol. 79, 224–230 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. & Smith, F. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).CAS 
    Article 

    Google Scholar 
    67.Yahaghi, Z., Shirvani, M., Nourbakhsh, F. & Pueyo, J. J. Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. S. Afr. J. Bot. 124, 573–582 (2019).CAS 
    Article 

    Google Scholar 
    68.Zhang, Z. & Huang, R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protoc. 3, e817 (2013).
    Google Scholar 
    69.Türkan, I., Bor, M., Özdemir, F. & Koca, H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231 (2005).Article 
    CAS 

    Google Scholar  More

  • in

    SPX-related genes regulate phosphorus homeostasis in the marine phytoplankton, Phaeodactylum tricornutum

    SPX gene and CRISPR/Cas9 knockoutUsing the SPX domain as a query to search in the P. tricornutum genome, we found a total of six genes that harbor an SPX domain (Supplementary Table 1), including Vpt1 and Vtc4 that were recently described by Dell’Aquila et al.21. Pfam analysis of the six identified sequences in P. tricornutum resulted in the identification of the SPX domain in these proteins, which shared several conserved sites with land plants’ SPX domains (Fig. 1a, b). Phylogenetic analyses further verified the high similarity of these sequences with other known SPX domain proteins (Supplementary Fig. 1). One of these genes possesses a SPX domain as the sole functional domain (named SPX, and its encoding gene named SPX gene, from here on) while the other five (including Vpt1 and Vtc4) contain at least one other domain. From our recently published transcriptome dataset27, we found that SPX, Vpt1, and Vtc4 genes were differentially expressed (log2 Fold Change > 1 and adjusted p value  More

  • in

    Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming

    1.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    2.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    3.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).Article 

    Google Scholar 
    4.LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’ s coral reefs. Ove Hoegh-Guldberg (1998).6.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014).PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Muller, E. M., Rogers, C. S., Spitzack, A. S. & Van Woesik, R. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27, 191–195 (2008).Article 
    ADS 

    Google Scholar 
    9.Cróquer, A. & Weil, E. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis. Aquat. Organ. 87, 33–43 (2009).PubMed 
    Article 

    Google Scholar 
    10.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).PubMed 
    Article 
    ADS 

    Google Scholar 
    11.Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).Article 
    CAS 

    Google Scholar 
    12.Neal, B. P. et al. Caribbean massive corals not recovering from repeated thermal stress events during 2005–2013. Ecol. Evol. 7, 1339–1353 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).Article 

    Google Scholar 
    14.Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).Article 

    Google Scholar 
    15.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).Article 

    Google Scholar 
    16.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
    Article 

    Google Scholar 
    17.Kleypas, J. A., McManu, J. W. & Mene, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    18.Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Chang. Biol. 21, 2479–2487 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    19.Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).Article 

    Google Scholar 
    20.Mies, M. et al. South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 1–13 (2020).Article 
    ADS 

    Google Scholar 
    21.Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).Article 

    Google Scholar 
    22.Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Beger, M., Sommer, B., Harrison, P. L., Smith, S. D. A. & Pandolfi, J. M. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 20, 245–257 (2014).Article 

    Google Scholar 
    24.Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).Article 
    ADS 

    Google Scholar 
    25.Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).Article 
    ADS 

    Google Scholar 
    26.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science (8-.) 361, 281–284 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    27.Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 1–11 (2019).CAS 
    Article 

    Google Scholar 
    28.Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    30.Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9, e02281 (2018).Article 

    Google Scholar 
    31.Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. https://doi.org/10.1038/nclimate3374 (2017).Article 

    Google Scholar 
    32.Danielle, C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun. 11(1), https://doi.org/10.1038/s41467-020-19169-y. (2020)33.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article 

    Google Scholar 
    34.Donovan, M.K.et al. Local conditions magnify coral loss after marine heatwaves. Science 372(6545), 977–980. https://doi.org/10.1126/science.abd9464. (2021)CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Hughes, T. et al. Climate change, Human impacts, and the resilience of coral reefs. Laser Induced Damage Opt. Mater. 2009 7504, 75041H (2003).36.Carilli, J. E., Norris, R. D., Black, B. A., Walsh, S. M. & McField, M. Local stressors reduce coral resilience to bleaching. PLoS ONE 4, 1–5 (2009).Article 
    CAS 

    Google Scholar 
    37.Donner, S. D., Heron, S. F. & Skirving, W. J. Future scenarios: A review of modelling efforts to predict the future of coral reefs in an era of climate change. 159–173. https://doi.org/10.1007/978-3-540-69775-6_10 (2018).38.McLeod, E. et al. Warming seas in the coral triangle: Coral reef vulnerability and management implications. Coast. Manag. 38, 518–539 (2010).Article 

    Google Scholar 
    39.Maynard, J. A. et al. Vulnerability to coral reefs. 1–8 (2019).40.Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. Latin Am. Coral Reefs https://doi.org/10.1016/B978-044451388-5/50003-5 (2003).Article 

    Google Scholar 
    41.Leão, Z. M. A. N. & Kikuchi, R. K. P. A relic coral fauna threatened by global changes and human activities, Eastern Brazil. Mar. Pollut. Bull. 51, 599–611 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Francini-Filho, R. B. & De Moura, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1166–1179 (2008).Article 

    Google Scholar 
    43.Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).Article 
    ADS 

    Google Scholar 
    44.Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).Article 

    Google Scholar 
    45.Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, (2011).46.Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307 (2004).Article 

    Google Scholar 
    47.Aued, A. W. et al. Large-scale patterns of benthic marine communities in the brazilian province. PLoS ONE 13, 1–15 (2018).Article 
    CAS 

    Google Scholar 
    48.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    49.Phillips, N. A Companion to the e-Book “YaRrr!: The Pirate’s Guide to R”. (2017).50.R Core Team. R: A Language and Environment for Statistical Computing. (2020).51.Banha, T. N. S. et al. Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs https://doi.org/10.1007/s00338-019-01856-y (2019).Article 

    Google Scholar 
    52.Oliveira, U. D. R., Gomes, P. B., Cordeiro, R. T. S., De Lima, G. V. & Pérez, C. D. Modeling impacts of climate change on the potential habitat of an endangered Brazilian endemic coral: Discussion about deep sea refugia. PLoS ONE 14, 1–24 (2019).
    Google Scholar 
    53.Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 
    Article 

    Google Scholar 
    54.Price, N. N. et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 621, 1–17 (2019).Article 
    ADS 

    Google Scholar 
    55.Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Chang. Biol. 21, 2272–2282 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    56.Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018).Article 
    ADS 

    Google Scholar 
    57.Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010).Article 

    Google Scholar 
    58.Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 2018, 1–24 (2018).
    Google Scholar 
    59.Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, 1–10 (2017).Article 

    Google Scholar 
    60.Wooldridge, S., Done, T., Berkelmans, R., Jones, R. & Marshall, P. Precursors for resilience in coral communities in a warming climate: A belief network approach. Mar. Ecol. Prog. Ser. 295, 157–169 (2005).Article 
    ADS 

    Google Scholar 
    61.Mazzei, E. F. et al. Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar. Pollut. Bull. 114, 123–133 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).Article 

    Google Scholar 
    63.Ferreira L.C. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168(5), https://doi.org/10.1007/s00227-021-03863-6. (2021)64.Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs https://doi.org/10.1007/s00338-019-01789-6 (2019).Article 

    Google Scholar 
    65.França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190116 (2020).Article 

    Google Scholar 
    66.Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5, 1–7 (2010).Article 
    CAS 

    Google Scholar 
    67.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-16 (2020).68.Jokiel, P. L. Evaluating the assumptions involved. ICES J. Mar. Sci. 73, 550–557 (2015).Article 

    Google Scholar 
    69.Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020).PubMed 
    Article 
    ADS 

    Google Scholar 
    70.Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).Article 

    Google Scholar 
    71.Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    72.Sbrocco, E. J. & Barber, P. H. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94, 979–979 (2013).Article 

    Google Scholar 
    73.Hijmans, J. R. et al. Package ‘ raster ’ R topics documented (2016).74.Sappington, J. M., Longshore, K. M. & Thompson, D. B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave desert. J. Wildl. Manag. 71, 1419–1426 (2007).Article 

    Google Scholar 
    75.IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).76.Fox, J. & Weisberg, S. Multivariate Linear Models in R. An R Companion to Appl. Regres. 1–31 (2011).77.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Required Pre-knowledge : A Linear Regression. Mixed Effects Models and Extensions in Ecology with R 1, (2009).78.Martins, T. G., Simpson, D., Lindgren, F. & Rue, H. Bayesian computing with INLA: New features. (2012).79.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    80.Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian MARKOV random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    81.Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A. & Bellido, J. M. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess. 27, 1171–1180 (2013).Article 

    Google Scholar 
    82.Held, L., Schrödle, B. & Rue, H. Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA. Stat. Model. Regres. Struct. Festschrift Honour Ludwig Fahrmeir 1–20 (2010). https://doi.org/10.1007/978-3-7908-2413-183.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).MathSciNet 
    MATH 

    Google Scholar 
    84.Roos, M. & Held, L. Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal. 6, 259–278 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    85.Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Pennino, M. G., Vilela, R., Bellido, J. M. & Velasco, F. Balancing resource protection and fishing activity: The case of the European hake in the northern Iberian Peninsula. Fish. Oceanogr. 28, 54–65 (2019).Article 

    Google Scholar 
    87.Martínez-Minaya, J. et al. A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Mol. Ecol. Resour. 19, 929–943 (2019).PubMed 
    Article 

    Google Scholar  More

  • in

    Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations

    Our framework to predict unknown associations between known viruses and potential mammalian hosts or susceptible species comprised three distinct perspectives: viral, mammalian and network. Each perspective produced predictions from a unique vantage point (that of each virus, each mammal, and the network connecting them respectively). Subsequently, their results were consolidated via majority voting. This approach suggested that 20,832 (median, 90% CI = [2,736, 97,062], hereafter values in square brackets represent 90% CI) unknown associations potentially exist between our mammals and their known viruses, (18,920 [2,440, 91,517] in wild or semi-domesticated mammals). Number of unknown associations predicted by each perspective individually were as follows: mammalian only = 41,537 [4,275, 23,8971], viral only = 21,352 [2,536, 95,630], and network only = 76,081 [27,738, 20,5814]. Our results indicated a ~4.29-fold increase ([~1.43, ~16.33]) in virus-mammal associations (~4.89 [~1.5, ~19.81] in wild and semi-domesticated mammals).Additionally, we trained an independent pipeline including only the 3534 supported by evidence extracted from meta-data accompanying nucleotide sequences, as indexed in EID2 (55.82% of all associations – see Methods section and Supplementary Results 8). Our sequence-evidence pipeline indicated that 15,721 (median, 90% CI = [1,603, 88,553]) unknown associations could potentially exist (13,930 [1,298, 83,043] in wild or semi-domesticated mammals).In the following subsections we first illustrate the mechanism of our framework via an example, then further explore the predictive power of our approach for viruses and mammals.ExampleOur multi-perspective framework generates predictions for each known or unknown virus-mammal association (2,722,656 possible associations between 1,896 viruses and 1,436 terrestrial mammals). We highlight this functionality using two examples (Fig. 1). West Nile virus (WNV) a flavivirus with wide host range, and the bat Rousettus leschenaultia (order: Chiroptera). We first consider each of our perspectives separately, and then showcase how these perspectives are consolidated to produce final predictions.Fig. 1: Example showcasing final and intermediate predictions of West Nile Virus (WNV), and Rousettus leschenaultii.Panel A Top 60 predicted mammalian species susceptible to WNV. Mammals were ordered by mean probability of predictions derived from mammalian (all models), viral (WNV models) and network perspectives, and top 60 were selected. Circles represent the following information in order: 1) whether the association is known (documented in our sources) or not (potential or undocumented). Hosts are omitted for known associations. 2) Mean probability of the three perspectives (per association). 3) Median mammalian perspective probabilities of predicted associations. These probabilities are obtained from 3000 models (50 replicate models for each mammal), trained with viral features – SMOTE class balancing. 4) Median viral perspective probabilities of predicted associations (50 WNV replicate models trained with mammalian features – SMOTE class balancing). 5) Median network perspective probabilities of predicted associations (100 replicate models, balanced under-sampling). 6) Taxonomic order of predicted susceptible species. Orders are shortened as follows: Artiodactyla (Art), Carnivora (Crn), Chiroptera (Chp), primates (Prm), Rodentia (Rod), and Others (Oth). Panel B Top 50 predicted viruses of R. leschenaultii. Viruses were ordered by mean probability of predictions derived from mammalian (R. leschenaultii models), viral (all models) and network perspectives. Circles as per Panel A. Baltimore represents Baltimore classification. Panel C Median probability of predicted WNV-mammal associations in each of the three perspectives per mammalian order. Points represent susceptible species predicted by voting (at least two of the three perspectives – n = 137). Median ensemble probability is computed in each perspective (50 replicate models for each virus/mammal, 100 replicate network models). Predictions derived from each perspective at 0.5 probability cut-off. Supplementary Data 1 presents full WNV results. Panel D Median probability of virus-R. leschenaultii associations in the three perspectives per Baltimore group. Points represent susceptible species predicted by voting (at least two of the three perspectives – n = 64), predictions are derived as per panel C. Supplementary Data 2 lists full results for R. leschenaultii. Supplementary Fig. 7 illustrate the results when research effort into viruses and mammals is included in mammalian and viral perspectives, respectively.Full size image1) The mammalian perspective: our mammalian perspective models, trained with features expressing viral traits (Table 1), suggested a median of 90 [17, 410] unknown associations between WNV and terrestrial mammals could form when predicting virus-mammal associations based on viral features alone – a ~2.61-fold increase [~1.3, ~8.32]. Similarly, our results indicated that 64 [4, 331] new associations could form between our selected mammal (R. leschenaultia) and our viruses – a ~4.37-fold increase [~1.21, ~18.42] (Supplementary Results 4).Table 1 Viral traits & features used to build our mammalian models.Full size table(2) The viral perspective: our viral models, trained with features expressing mammalian traits (Table 2), indicated a median of 48 [0, 214] new hosts of WNV (~1.86- fold increase [~1, 4.82]). Results for our example mammal (R. leschenaultia) suggested 18 [3, 76], existing viruses could be found in this host (~1.95-fold increase [~1.16, ~5.00]) – Supplementary Results 5).Table 2 mammalian traits & features used to build our viral models.Full size table(3) The network perspective: Our network models indicated a median of 721 [448, 1,317] (~13.88 [9, 24.52] fold increase) unknown associations between WNV and terrestrial mammals, and that 246 [91, 336] existing viruses could be found in our selected host (R. leschenaultia), equivalent to a ~13.95 [~5.79, ~18.68] fold increase (Supplementary Results 6).Considering that each of the above perspectives approached the problem of predicting virus-mammal associations from a different angle, the agreement between these perspectives varied. In the case of WNV: mammalian and viral perspectives achieved 92.3% agreement [72.6%–98.5%]; mammals and network perspectives had 55.3% agreement [33.4%–69.5%]; and viruses and network had 52.9% agreement [19.8%–68.7%]. In the case of R. leschenaultia these numbers were as follows: 96.15% [82.44%, 99.58%], 87.24% [76.37%, 95.04%], and 87.61% [75.90%, 95.25%], respectively. The agreements between our perspectives across the 2,722,656 possible associations were as follows: 98.04% [90.36%, 99.73%] between mammalian and viral perspectives, 96.71% [88.62%, 98.92%] between mammalian and network perspectives, and 97.11% [91.57%, 98.95%] between viral and network perspectives.After voting, our framework suggested that a median of 117 [15, 509] new or undetected associations could be missing between WNV and terrestrial mammals (~3.45-fold increase [~1.3, ~12.2]). Similarly, our results indicated that R. leschenaultia could be susceptible to an additional 45 [5, 235] viruses that were not captured in our input (~1.37-fold increase [~1.26, ~13.37]). Figure 1 illustrates top predicted and detected associations for WNV (Supplementary Data 1) and R. leschenaultia (Supplementary Data 2). Supplementary Results 1 illustrate results with research effort into viruses, and mammals included as a predictor in our mammalian and viral perspective models, respectively. Predictions with and without research effort incorporated into models trained in these perspectives broadly agreed.Relative importance of viral featuresOur multi-perspective approach trained a suite of models for each mammalian species with two or more known viruses (n = 699, response variable = 1 if the virus is known to associate with the focal mammalian species, 0 otherwise). This enabled us to assess the relative importance (influence) of viral traits (Table 1) to each of our mammalian models. This in turn showcased variations of how these viral traits contribute to the models at the level of individual species (e.g. humans), and at an aggregated level (e.g. by order or domestication status). The results, highlighted in Fig. 2A, indicate that mean phylogenetic (median = 95.4% [75.6%, 100%]) and mean ecological (90.90% [43.50%, 100%]) distances between potential and known hosts of each virus were the top predictors of associations between the focal host and each of the input viruses. Maximum phylogenetic breadth was also important (74.7 0%, [16.60%, 100%]).Fig. 2: Results (viruses).Panel A Variable importance (relative contribution) of viral traits to mammalian perspective models. Variable importance is calculated for each constituent ensemble (n = 699) of our mammalian perspective (median of a suite of 50 replicate models, trained with viral features, with SMOTE sampling), and then aggregated (mean) per each reported group (columns). Panel B – Number of known and new mammalian species associated with each virus. Rabies lyssavirus was excluded from panel B to allow for better visualisation. Top 40 (by number of new hosts) are labelled. Species in bold have over 150 predicted hosts (Supplementary Data 3 lists details of these viruses including CI). Panel C Predicted number of viruses per species of wild and semi-domesticated mammals (group by mammalian order). Following orders (clockwise) are presented: Artiodactyla, Carnivora, Chiroptera, Perissodactyla, Primates, and Rodentia. Source of the silhouette graphics is PhyloPic.org. (Supplementary Data 4 lists aggregated results per mammalian order). Circles represent each mammalian species (with predicted viruses > 0), coloured by number of known viruses previously not associated with this species. Boxplots indicate median (centre), the 25th and 75th percentiles (bounds of box) and inter quantile range (whiskers) and are aggregated at the order level. Large red circles with error bars (90% CI) illustrate the median number of known viruses per species in each order. Number of species presented (n) is as follows: All = 1293 (Artiodactyla = 104, Carnivora = 177, Chiroptera = 548, Perissodactyla = 11, Primates = 171, and Rodentia = 282); Group I = 666 (94, 109, 156, 10, 160, 137); Group II = 371 (32, 120, 111, 1, 54, 53); Group III = 410 (87,62,123,9,51,78); Group IV = 739 (98, 102, 221, 9, 148, 161); Group V = 1129 (87, 173, 528, 8, 107, 226); Group VI = 358 (55, 64, 30, 6, 139, 64); and Group VII = 110 (3,2,53,1,43,8). Supplementary Fig. 8 presents results derived with research effort into mammalian hosts and viruses included in the constituent models trained in the viral and mammalian perspectives, respectively.Full size imageMammalian host rangeOur results suggested that the average mammalian host range of our viruses is 14.33 [4.78, 54.53] (average fold increase of ~3.18 [~1.23, ~9.86] in number of hosts detected per virus). Overall, RNA viruses had the average host range of 21.65 [7.01, 82.96] hosts (~4.00- fold increase [~1.34, ~14.15]). DNA viruses, on the other hand, had 7.85 [2.81, 29.47] hosts on average (~2.43 [~1.14, ~6.89] fold increase). Table 3 lists the results of our framework at Baltimore group level and selected family and transmission routes of our viruses. Figure 2 illustrates predicted mammalian host range of our viruses (Fig. 2B, Supplementary Data 3), and the increase in predicted number of viruses per species in species-rich mammalian orders of interest (Fig. 2C, Supplementary Data 4).Table 3 Predicted range of susceptible mammalian species of viruses per Baltimore group, family (top 15 families, ranked by fold increase) and transmission route.Full size tableRelative importance of mammalian featuresWe trained a suite of models for each virus species with two or more known mammalian hosts (n = 556, response variable = 1 if the mammal is known to associate with the focal virus species, 0 otherwise). This allowed us to calculate relative importance of mammalian traits (Table 2) to our viral models. We were also able to capture variations in how these features contribute to our viral models at various levels (e.g. Baltimore classification, or transmission route) as highlighted in Fig. 3A. Our results indicated that distances to known hosts of viruses were the top predictor of associations between the focal virus and our terrestrial mammals. The breakdown was: 1) mean phylogenetic distance – all viruses = 98.75% [93.01%, 100%], DNA = 99.48% [96.03%, 100%], RNA = [91.93%, 100%]; 2) mean ecological distance all viruses = 94.39% [71.86%, 100%], DNA = 96.36% [80.99%, 100%], RNA = [69.48%, 100%]. In addition, life-history traits significantly improved our models, in particular: longevity (all viruses = 60.9% [12.12%, 98.88%], DNA = 68.03% [11.22%, 99.69%], RNA = [13.55%, 96.37%]); body mass (all viruses = 62.92% [5.4%, 97.65%], DNA = 72.75% [18.49%, 100%], RNA = 57.45% [4.32%, 95.5%]); and reproductive traits (all viruses = 53.37% [5.67%, 95.99%]%, DNA = 59.46% [8.27%, 99.32%], RNA = 50.17% [4.85%, 92.17%]).Fig. 3: Results (Mammals).Panel A Variable importance (relative contribution) of mammalian traits to viral perspective models. Variable importance is calculated for each constituent model (n = 556) of our viral perspective (trained with mammalian features), and then aggregated (median) per each reported group (columns). Panel B Number of known and new viruses associated with each mammal. Labelled mammals are as follows: top 4 (by number of new viruses) for each of Artiodactyla, Carnivora, Chiroptera, Primates, Rodentia, and other orders. Species in bold have 100 or more predicted viruses (Supplementary Data 5). Panel C Top 18 genera (by number of predicted wild or semi-domesticated mammalian host species) in selected orders (Other indicated results for all orders not included in the first five circles). Each order figure comprises the following circles (from outside to inside): 1) Number of hosts predicted to have an association with viruses within the viral genus. 2) Number of hosts detected to have association. 3) Number of hosts predicted to harbour viral zoonoses (i.e. known or predicted to share at least one virus species with humans). 4) Number of hosts predicted to share viruses with domesticated mammals of economic significance (domesticated mammals in orders: Artiodactyla, Carnivora, Lagomorpha and Perissodactyla). 5) Baltimore classification of the selected genera (Supplementary Data 6). Supplementary Fig. 9 presents results derived with research effort into mammalian hosts and viruses included in the constituent models trained in the viral and mammalian perspectives, respectively.Full size imageWild and semi-domesticated susceptible mammalian hosts of virusesour framework indicated ~4.28 -fold increase [~1.2, ~14.64] of the number of virus species in wild and or semi-domesticated mammalian hosts (16.86 [4.95, 68.5] viruses on average per mammalian species). These results indicated an average of 13.45 [1.73, 65.04] unobserved virus species for each wild or semi-domesticated mammalian host (known viruses that are yet to be associated with these mammals). Our framework highlighted differences in the number of viruses predicted per order (Table 4). Figure 3 illustrates the predicted number of viruses in wild or semi-domesticated mammal by mammalian host range (Fig. 3B, Supplementary Data 5), and the top 18 virus genera (per number of host-virus associations) in selected orders (Fig. 3C, Supplementary Data 6). Supplementary Results 1 lists the results with the inclusion of research effort into mammalian species in our viral perspective models.Table 4 Predicted number of viruses per top 15 orders by fold increase in number of viruses predicted in wild or semi-domesticated mammalian hosts (per species).Full size tableNetwork perspective – Potential motifs
    We quantified the topology of the network linking virus and mammal species by means of counts of potential motifs21. Figure 4 illustrates how potential motifs are captured in our network. Briefly, for each virus-mammal association for which we want to make predictions (n = 2,722,656, of which 6,331 are supported by our evidence, see methods section), we “force insert” this focal association into our network (Fig. 4A, B) and enumerate all instances of 3 (n = 2), 4 (n = 6), and 5-node (n = 20) potential motifs in which this association might feature if it actually existed21 (Fig. 4C visualises these different motifs). Following this process, a features-set is generated comprising the counts potential motifs for all included associations. Figure 4D illustrates the count of motifs (logged) grouped by mammalian order and virus Baltimore classification.Fig. 4: The network perspective – potential motifs (subgraphs) in our virus-host bipartite network.A The concept of potential motif. The association TBEV-P. leo is a forced insertion into the network prior to calculating motifs for the association. B Motifs space: networks represent 2 steps and 3 steps ego networks (union) of host (here P. leo) and virus (TBEV). 1, 2 and 3 step ego networks comprise the counting space for TBEV-P. leo potential motifs. Dark grey nodes represent viruses, light grey nodes represent hosts. Size of nodes is adjusted to represent overall number of hosts or viruses with known associations to the node. Red edges represent nodes reachable from the mammal (P. leo) in 1 or 2 steps (links). Blue edges represent nodes reachable from the virus (TBEV) with 1 or 2 steps (links). Humans and rabies virus were excluded from these networks. C 3, 4 and 5-node potential motifs in our virus-host bipartite network. Circles represent viruses and squares represent mammals. Red circles represent the focal virus (v), and blue squares represent the focal mammal (m) of the association v-m for which the motifs are being counted (dashed yellow line). This association has two states: either already known (documented in EID2), or unknown. Grey lines illustrate existing associations in our network. D Motifs counts. Heatmap illustrating distribution of motif-features (counts of potential motifs per each focal association) in our bipartite network, grouped by mammalian order and Baltimore classification. The counts are logged to allow for better visualisation. E Variable importance (relative contribution) of motif-features (variables) to our network perspective models (SVM-RW). Motifs (subgraphs) are coloured by the number of nodes (K = 3, 4, 5). Boxplots indicate median (centre), the 25th and 75th percentiles (bounds of box) and inter quantile range (whiskers). Points represent variable importance in individual runs (n = 100). Research effort into both viruses and mammals is included as independent variables in our network models (coloured in yellow).Full size imageRelative importance of network (motif) featuresFigure 4E illustrates that M4.1 was the most important feature in our network models: median = 100% [90.19%, 100%]. Followed by: M5.1 = 97.84% [89.19%, 99.93%], M5.7 = 98.8 97.22% [87.7%, 98.77%] and M4.6 = 96.75% [86.13%, 100%]. Research effort of viruses and mammals had relative importance = 90.26% [82.94%, 95.36%], 88.42% [78.38%, 94.87%] respectively. Overall, 5-node motif-features had median relative influence = 75.06% [1.21%, 98.14%]; whereas 3 and 4-node motif-features had relative influence = 71.69% [55.76%, 85.34%], and 61.06% [27.14%, 100%], respectively. Supplementary Fig. 29 illustrate the partial dependence of network perspective models on each of our network features.ValidationWe validated our framework in three ways: 1) against a held-out test set; 2) by systematically removing selected known viral-mammalian associations and attempting to predict them; and 3) against external data source, comprising viral-mammalian associations extracted using an exhaustive literature search targeting wild mammals and their viruses4,30.Our held-out test set comprised 15% of all data (randomly selected, n = 407,265; 954 known virus-mammal associations, see methods below). We removed this set from our network, computed network features (motifs), and trained constituent models in each perspective with the remainder data. We then estimated our framework performance metrics against the held-out test set. Our framework achieved overall AUC = 0.938 [0.862–0.959], F1-Score = 0.284 [0.464–0.124], and TSS = 0.876 [0.724–0.918], when trained without including research effort in its mammalian and viral perspectives. When research effort was included in these perspectives, performance metrics were as follows: AUC = 0.920 [0.823, 0.944], F1-Score = 0.272 [0.526, 0.093], and TSS = 0.840 [0.646, 0.888].The performance of our voting approach was better than any individual perspective, or combination of perspectives (Supplementary Tables 8–11). The most significant improvement was in F1-score, where individual perspectives scores were as follows: network = 0.104 [0.210–0.051], mammalian = 0.115 [0.009–0.064] (0.131 [0.284–0.035] with research effort), and viral = 0.181 [0.374–0.074] (0.196 [0.373–0.067]).Additionally, we conducted a systematic test to predict removed virus-mammal associations. In this test, we systematically removed one known virus-mammal association at a time from our framework, recalculated all inputs (including from network) and attempted to predict these removed associations. Our framework succeeded in predicting 90% of removed associations (90.70% for associations removed for viruses, 89.92% for associations removed from mammals, Supplementary Results 3).Finally, our framework predicted 84.02% [77.69%, 89.60%] of the externally obtained viral-mammalian associations (with detection quality  > 0) where both host and virus were included in our pipeline, and 77.82% [68.46%, 86.51%] (any detection quality). When including research effort in our mammalian and viral perspectives, these results were: 84.47% [78.15%, 89.60%], and 78.41% [68.83%, 86.37%], respectively. More

  • in

    Human encroachment into wildlife gut microbiomes

    1.Cunningham, A. A., Daszak, P. & Wood, J. L. N. One health, emerging infectious diseases and wildlife: two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160167 (2017).2.Suzan, G., Esponda, F., Carrasco-Hernández, R. & Aguirre, A. A. in New Directions in Conservation Medicine: Applied Cases of Ecological Health (eds. Aguirre, A. A., Ostfeld, R. & Daszak, P.). 135–150 (Oxford University Press USA, 2012).3.Hussain, S., Ram, M. S., Kumar, A., Shivaji, S. & Umapathy, G. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS ONE 8, 1–8 (2013).
    Google Scholar 
    4.Junge, R. E., Barrett, M. A. & Yoder, A. D. Effects of anthropogenic disturbance on indri (Indri indri) health in Madagascar. Am. J. Primatol. 73, 632–642 (2011).PubMed 
    Article 

    Google Scholar 
    5.Friggens, M. M. & Beier, P. Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164, 809–820 (2010).PubMed 
    Article 

    Google Scholar 
    6.Woodroffe, R. et al. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7, e30099 (2012).7.Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G. & Lugo, A. E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6, 238–246 (2008).Article 

    Google Scholar 
    8.Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).10.Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Shapira, M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Brugman, S. et al. A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front. Nutr. 5, 1–15 (2018).Article 
    CAS 

    Google Scholar 
    14.Wasimuddin et al. Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME J. 12, 2883–2893 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Wasimuddin et al. Adenovirus infection is associated with altered gut microbial communities in a non-human primate. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    16.Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    17.Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13, 423–434 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B Biol. Sci. 285, 20182047 (2018).19.Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ingala, M. R., Becker, D. J., Bak Holm, J., Kristiansen, K. & Simmons, N. B. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol. Evol. https://doi.org/10.1002/ece3.5228 (2019)21.Juan, P. A. S., Hendershot, J. N., Daily, G. C. & Fukami, T. Land-use change has host-specificinfluenc on avian gut microbiomes. ISME J. https://doi.org/10.1038/s41396-019-0535-4 (2019)22.Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.de Juan, S., Thrush, S. F. & Hewitt, J. E. Counting on β-diversity to safeguard the resilience of estuaries. PLoS ONE 8, 1–11 (2013).
    Google Scholar 
    24.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).25.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5. https://github.com/vegandevs/vegan (2019).26.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, 1988).28.Gillingham, M. A. F. et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. 10, 35 (2019).29.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Heal. Dis. 26, 1–7 (2015).
    Google Scholar 
    31.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 669–673 (2020).Article 
    CAS 

    Google Scholar 
    32.Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).PubMed 
    Article 

    Google Scholar 
    34.Czech, L., Barbera, P. & Stamatakis, A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics 36, 3263–3265 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Nyhus, P. J. Human—wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article 

    Google Scholar 
    36.Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Chang. 10, 1–36 (2019).Article 

    Google Scholar 
    37.Beck, J. M. et al. Multicenter comparison of lung and oral microbiomes of HIV-infected and HIV-uninfected individuals. Am. J. Respir. Crit. Care Med. 192, 1335–1344 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Wang, L. et al. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front. Mar. Sci. 5, 1–16 (2018).Article 

    Google Scholar 
    41.Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).42.Rocca, J. D. et al. The Microbiome Stress Project: toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol. 10, 3272 (2019).43.Gillingham, M. A. F. et al. Bioaccumulation of trace elements affects chick body condition and gut microbiome in greater flamingos. Sci. Total Environ. 761, 143250 (2020).44.Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1392 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Jiménez, R. R., Alvarado, G., Estrella, J. & Sommer, S. Moving beyond the host: unraveling the skin microbiome of endangered Costa Rican amphibians. Front. Microbiol. 10, 1–18 (2019).Article 

    Google Scholar 
    46.Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B Biol. Sci. 366, 2351–2363 (2011).Article 

    Google Scholar 
    48.Pound, K. L., Lawrence, G. B. & Passy, S. I. Beta diversity response to stress severity and heterogeneity in sensitive versus tolerant stream diatoms. Divers. Distrib. 25, 374–384 (2019).Article 

    Google Scholar 
    49.Zhou, J. & Ning, D. Stochastic Community Assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).Article 

    Google Scholar 
    50.Nicholas, R. A. J. & Ayling, R. D. Mycoplasma bovis: disease, diagnosis, and control. Res. Vet. Sci. 74, 105–112 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Ley, D. H. in Diseases of Poultry (eds. et al.) (Blackwell Publishing, 2008).52.Groebel, K., Hoelzle, K., Wittenbrink, M. M., Ziegler, U. & Hoelzle, L. E. Mycoplasma suis invades porcine erythrocytes. Infect. Immun. 77, 576–584 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.do Nascimento, N. C., Santos, A. P., Guimaraes, A. M. S., Sanmiguel, P. J. & Messick, J. B. Mycoplasma haemocanis—the canine hemoplasma and its feline counterpart in the genomic era. Vet. Res. 43, 66 (2012).54.Hardham, J. M. et al. Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. Int. J. Syst. Evol. Microbiol. 58, 103–109 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kaakoush, N. O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5, 1–4 (2015).Article 
    CAS 

    Google Scholar 
    56.Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).Article 

    Google Scholar 
    57.Herrmann, E. et al. RNA-based stable isotope probing suggests Allobaculum spp. as particularly active glucose assimilators in a complex murine microbiota cultured in vitro. Biomed Res. Int. 2017, 1829685 (2017).58.Greetham, H. L. et al. Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. Anaerobe 10, 301–307 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 11, 1–14 (2020).60.Wiegel, J., Tanner, R. & Rainey, F. A. in The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria (eds. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 654–678 (Springer US, 2006).61.Tamanai-Shacoori, Z. et al. Roseburia spp.: a marker of health? Future Microbiol 12, 157–170 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Freier, T. A., Beitz, D. C., Li, L. & Hartman, P. A. Characterization of Eubacterium coprostanoligenes sp. nov., a Cholesterol-Reducing Anaerobe. Int. J. Syst. Bacteriol. 44, 137–142 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Venegas, D. P. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).64.MetaCyc. MetaCyc Pathway: pyrimidine deoxyribonucleotides biosynthesis from CTP. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-7210&show-citations=T (2020).65.Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.MetaCyc. MetaCyc Pathway: poly(glycerol phosphate) wall teichoic acid biosynthesis. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=TEICHOICACID-PWY (2020).67.Brown, S., Santa Maria, J. P. & Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.MetaCyc. MetaCyc Pathway: L-lysine biosynthesis II. https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-2941 (2020).69.Hutton, C. A., Perugini, M. A. & Gerrard, J. A. Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol. Biosyst. 3, 458–465 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Wanner, S. et al. Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nat. Microbiol. 2, 1–12 (2017).
    Google Scholar 
    71.MetaCyc. MetaCyc Pathway: formaldehyde assimilation II (assimilatory RuMP Cycle). https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-1861 (2020).72.Chen, N. H., Djoko, K. Y., Veyrier, F. J. & McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 7, 1–17 (2016).
    Google Scholar 
    73.Tauseef, S. M., Premalatha, M., Abbasi, T. & Abbasi, S. A. Methane capture from livestock manure. J. Environ. Manag. 117, 187–207 (2013).CAS 
    Article 

    Google Scholar 
    74.Dale, V. H., Brown, S., Calderón, M. O., Montoya, A. S. & Martínez, R. E. Estimating baseline carbon emissions for the eastern Panama Canal watershed. Mitig. Adapt. Strateg. Glob. Chang 8, 323–348 (2003).Article 

    Google Scholar 
    75.Schmid, J. et al. Ecological drivers of Hepacivirus infection in a neotropical rodent inhabiting landscapes with various degrees of human environmental change. Oecologia https://doi.org/10.1007/s00442-018-4210-7 (2018)76.Adler, G. H. & Beatty, R. P. Changing reproductive rates in a neotropical forest rodent, Proechimys semispinosus. J. Anim. Ecol. 66, 472 (1997).Article 

    Google Scholar 
    77.Adler, G. H. Fruit and seed exploitation by Central American spiny rats, Proechimys semispinosus. Stud. Neotrop. Fauna Environ. 30, 237–244 (1995).78.Hoch, G. A. & Adler, G. H. Removal of black palm (Astrocaryum standleyanum) seeds by spiny rats (Proechimys semispinosus). J. Trop. Ecol. 13, 51–58 (1997).Article 

    Google Scholar 
    79.Endries, M. J. & Adler, G. H. Spacing patterns of a tropical forest rodent, the spiny rat (Proechimys semispinosus), in Panama. J. Zool. 265, 147–155 (2005).Article 

    Google Scholar 
    80.Adler, G. H. The island syndrome in isolated populations of a tropical forest rodent. Oecologia 108, 694–700 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Menke, S. et al. Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level. Front. Microbiol. 5, 526 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Callahan, B. J., Mcmurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    88.Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).Article 
    CAS 

    Google Scholar 
    89.Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    90.Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).91.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—āpproximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).92.Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/index.html (2017).94.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).95.Davis, N. M., Proctor, Di. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    96.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    97.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    98.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).99.Mcmurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).100.Kim, Y. S., Unno, T., Kim, B.-Y. & Park, M. Sex differences in gut microbiota. World J. Mens. Health 38, 48–60 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. USA 116, 23588–23593 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).104.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    105.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article 

    Google Scholar 
    106.Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). https://doi.org/10.1002/9781118445112.stat07841. (2017)109.Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).Article 

    Google Scholar 
    110.Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 1–9 (2016).
    Google Scholar 
    111.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).Article 

    Google Scholar 
    112.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    Google Scholar 
    113.Fackelmann, G. gfackelmann/human-encroachment-into-wildlife-gut-microbiomes: Release 1.0.0. https://doi.org/10.5281/zenodo.4725220. (2021) More