Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass
1.Baroiller, J. F., Cotta, H. & Saillant, E. Environmental effects on fish sex determination and differentiation. Sex. Develop. 3, 118–135 (2009).CAS
Article
Google Scholar
2.Conover, D. O. & Kynard, B. E. Environmental sex determination: interaction of temperature and genotype in a fish. Science 213, 577–579 (1981).ADS
CAS
PubMed
Article
Google Scholar
3.Ospina-Álvarez, N. & Piferrer, F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3, e2837 (2008).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
4.Geffroy, B. & Wedekind, C. Effects of global warming on sex ratios in fishes. J. Fish Biol. 97, 596–606 (2020).PubMed
Article
Google Scholar
5.Römer, U. & Beisenherz, W. Environmental determination of sex in Apistogrammai (Cichlidae) and two other freshwater fishes (Teleostei). J. Fish Biol. 48, 714–725 (1996).
Google Scholar
6.Geffroy, B. & Bardonnet, A. Sex differentiation and sex determination in eels: consequences for management. Fish Fish 17, 375–398 (2016).Article
Google Scholar
7.Ribas, L., Valdivieso, A., Díaz, N. & Piferrer, F. Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. J. Exp. Biol. 220, 1056–1064 (2017).PubMed
Article
Google Scholar
8.Hattori, R. S., Castañeda-Cortés, D. C., Arias Padilla, L. F., Strobl-Mazzulla, P. H. & Fernandino, J. I. Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-020-03532-9 (2020).Article
PubMed
Google Scholar
9.Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisheries 9, 211–268 (1999).Article
Google Scholar
10.Prunet, P., Sturm, A. & Milla, S. Multiple corticosteroid receptors in fish: From old ideas to new concepts. Gen. Comp. Endocrinol. 147, 17–23 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Manna, P. R., Dyson, M. T. & Stocco, D. M. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol. Hum. Reprod. 15, 321–333 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Nematollahi, M. A., van Pelt-Heerschap, H. & Komen, J. Transcript levels of five enzymes involved in cortisol synthesis and regulation during the stress response in common carp: relationship with cortisol. Gen. Comp. Endocrinol. 164, 85–90 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Wu, X. et al. Integration of ATAC-seq and RNA-seq unravels chromatin accessibility during sex reversal in orange-spotted grouper (Epinephelus coioides). Int. J. Mol. Sci. 21, 2800 (2020).CAS
PubMed Central
Article
Google Scholar
14.Blasco, M. et al. Molecular characterization of cyp11a1 and cyp11b1 and their gene expression profile in pejerrey (Odontesthes bonariensis) during early gonadal development. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 156, 110–118 (2010).Article
CAS
Google Scholar
15.Todd, E. V. et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006 (2019).16.Fernandino, J. I., Hattori, R. S., Moreno Acosta, O. D., Strüssmann, C. A. & Somoza, G. M. Environmental stress-induced testis differentiation: androgen as a by-product of cortisol inactivation. Gen. Comparat. Endocrinol. 192, 36–44 (2013).CAS
Article
Google Scholar
17.Geffroy, B. & Douhard, M. The adaptive sex in stressful environments. Trends Ecol. Evol. 34, 628–640 (2019).PubMed
Article
Google Scholar
18.Chiba, H., Iwata, M., Yakoh, K., Satoh, R.-I. & Yamada, H. Possible influence of social stress on sex differentiation in Japanese eel. Fish. Sci. 68, 413–414 (2002).Article
Google Scholar
19.Hoseini, S. M., Pérez-Jiménez, A., Costas, B., Azeredo, R. & Gesto, M. Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies. Rev. Aquac. 11, 3–24 (2019).Article
Google Scholar
20.Vandeputte, M., Gagnaire, P.-A. & Allal, F. The European sea bass: a key marine fish model in the wild and in aquaculture. Anim. Genet. https://doi.org/10.1111/age.12779 (2019).Article
PubMed
PubMed Central
Google Scholar
21.Vandeputte, M., Dupont-Nivet, M., Chavanne, H. & Chatain, B. B. A polygenic hypothesis for sex determination in the European Sea Bass Dicentrarchus labrax. Genetics 176, 1049–1057 (2007).PubMed
PubMed Central
Article
Google Scholar
22.Piferrer, F., Blazquez, M., Navarro, L. & Gonzalez, A. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen. Comparat. Endocrinol. 142, 102–110 (2005).CAS
Article
Google Scholar
23.Vandeputte, M. & Piferrer, F. Genetic and environmental components of sex determination in the European sea bass (Dicentrarchus labrax). In Sex Control in Aquaculture Vol. I (eds. Wang, H. P., Piferrer, F. & Chen, S. L.) 307–325 (John Wiley and Sons, 2019).24.Bláquez, M., Zanuy, S., Carillo, M. & Piferrer, F. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 281, 207–216 (1998).Article
Google Scholar
25.Saillant, E. et al. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 292, 494–505 (2002).PubMed
Article
PubMed Central
Google Scholar
26.Vandeputte, M. et al. Low temperature has opposite effects on sex determination in a marine fish at the larval/postlarval and juvenile stages. Ecol. Evol. 10, 13825 (2020).PubMed
PubMed Central
Article
Google Scholar
27.Saillant, E. et al. Effects of rearing density, size grading and parental factors on sex ratios of the sea bass (Dicentrarchus labrax L) in intensive aquaculture. Aquaculture 221, 183–206 (2003).Article
Google Scholar
28.Faggion, S. et al. Sex dimorphism in European sea bass (Dicentrarchus labrax L.): new insights into sex-related growth patterns during very early life stages. PLoS ONE 16, e0239791 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Ferrari, S. et al. Early individual electronic identification of sea bass using RFID microtags: a first example of early phenotyping of sex-related growth. Aquaculture 426–427, 165–171 (2014).Article
Google Scholar
30.Besson, M. et al. Influence of water temperature on the economic value of growth rate in fish farming: the case of sea bass (Dicentrarchus labrax) cage farming in the Mediterranean. Aquaculture 462, 47–55 (2016).Article
Google Scholar
31.Blázquez, M., González, A., Papadaki, M., Mylonas, C. & Piferrer, F. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 158, 95–101 (2008).PubMed
Article
CAS
Google Scholar
32.Ribas, L. et al. Characterization of the European Sea Bass (Dicentrarchus labrax) gonadal transcriptome during sexual development. Mar Biotechnol 21, 359–373 (2019).CAS
Article
Google Scholar
33.Pavlidis, M. et al. Onset of the primary stress in European sea bass Dicentrarhus labrax, as indicated by whole body cortisol in relation to glucocorticoid receptor during early development. Aquaculture 315, 125–130 (2011).CAS
Article
Google Scholar
34.Tsalafouta, A. et al. Ontogenesis of the HPI axis and molecular regulation of the cortisol stress response during early development in Dicentrarchus labrax. Sci. Rep. 4, (2014).35.Alfonso, S., Gesto, M. & Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. https://doi.org/10.1111/jfb.14599 (2020).Article
PubMed
Google Scholar
36.Goikoetxea, A. et al. Genetic pathways underpinning hormonal stress responses in fish exposed to short- and long-term warm ocean temperatures. Ecol. Indic. 120, 106937 (2021).Article
Google Scholar
37.Bertotto, D. et al. Alternative matrices for cortisol measurement in fish. Aquac. Res. 41, 1261–1267 (2010).CAS
Google Scholar
38.Sadoul, B., Leguen, I., Colson, V., Friggens, N. C. & Prunet, P. A multivariate analysis using physiology and behavior to characterize robustness in two isogenic lines of rainbow trout exposed to a confinement stress. Physiol. Behav. 140, 139–147 (2015).CAS
PubMed
Article
Google Scholar
39.Simontacchi, C. et al. Alternative stress indicators in sea bass Dicentrarchus labrax L. J. Fish Biol. 72, 747–752 (2008).Article
Google Scholar
40.Zuberi, A., Brown, C. & Ali, S. Effect of confinement on water-borne and whole body cortisol in wild and captive-reared rainbowfish (Melanoteania duboulayi). Int. J. Agric. Biol. 16, 183–188 (2014).41.Cortés, D. C. C., Padilla, L. F. A., Langlois, V. S., Somoza, G. M. & Fernandino, J. I. The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B. Development 146, (2019).42.Faught, E. & Vijayan, M. M. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Sci. Rep. 8, 18081 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
43.Kiilerich, P., Geffroy, B., Valotaire, C. & Prunet, P. Endogenous regulation of 11-deoxycorticosterone (DOC) and corticosteroid receptors (CRs) during rainbow trout early development and the effects of corticosteroids on hatching. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2018.05.031 (2018).Article
PubMed
Google Scholar
44.Rosengren, M., Thörnqvist, P.-O., Winberg, S. & Sundell, K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen. Comp. Endocrinol. 257, 235–245 (2018).CAS
PubMed
Article
Google Scholar
45.Kiilerich, P. et al. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress. Gen. Comp. Endocrinol. 258, 184–193 (2018).CAS
PubMed
Article
Google Scholar
46.Stolte, E. H. et al. Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio. J. Endocrinol. 198, 403–417 (2008).CAS
PubMed
Article
Google Scholar
47.Madaro, A. et al. Stress in Atlantic salmon: response to unpredictable chronic stress. J. Exp. Biol. 218, 2538–2550 (2015).PubMed
Google Scholar
48.Aerts, J. et al. Scales tell a story on the stress history of fish. PLOS ONE 10, e0123411 (2015).49.Moltesen, M. et al. Effects of acute and chronic stress on telencephalic neurochemistry and gene expression in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 219, 3907–3914 (2016).PubMed
Google Scholar
50.Smith, B. R. Sea lampreys in the Great Lakes of North America. 207–247 (1971).51.García-Cruz, E. L. et al. Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination. Comparat. Biochem. Physiol. A: Mol. Integrat. Physiol. 245, 110701 (2020).Article
CAS
Google Scholar
52.Vandeputte, M. & Piferrer, F. Genetic and Environmental Components of Sex Determination in the European Sea Bass. In Sex Control in Aquaculture 305–325 (John Wiley & Sons, Ltd, 2018). https://doi.org/10.1002/9781119127291.ch14.53.Díaz, N., Ribas, L. & Piferrer, F. The relationship between growth and sex differentiation in the European sea bass (Dicentrarchus labrax). Aquaculture 408–409, 191–202 (2013).Article
Google Scholar
54.Papadaki, M. et al. Growth, sex differentiation and gonad and plasma levels of sex steroids in male- and female-dominant populations of Dicentrarchus labrax obtained through repeated size grading. J. Fish Biol. 66, 938–956 (2005).CAS
Article
Google Scholar
55.Sadoul, B. & Vijayan, M. M. 5 – Stress and Growth. In Fish Physiology Vol. 35 (eds. Schreck, C. B., Tort, L., Farrell, A. P. & Brauner, C. J.) 167–205 (Academic Press, 2016).56.Sakae, Y. et al. Starvation causes female-to-male sex reversal through lipid metabolism in the teleost fish, medaka (Olyzias latipes). Biology Open 9, (2020).57.Höglund, E., Øverli, Ø. & Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front. Endocrinol. 10, (2019).58.Amri, A. et al. Effect of melatonin and folic acid supplementation on the growth performance, antioxidant status, and liver histology of the farmed gilthead sea bream (Sparus aurata L.) under standard rearing conditions. Fish Physiol. Biochem. 46, 2265–2280 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
59.de Pedro, N., Pinillos, M. L., Valenciano, A. I., Alonso-Bedate, M. & Delgado, M. J. Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19, 505–511 (1998).PubMed
Article
Google Scholar
60.Papoutsoglou, S. E., Karakatsouli, N. & Chiras, G. Dietary l-tryptophan and tank colour effects on growth performance of rainbow trout (Oncorhynchus mykiss) juveniles reared in a recirculating water system. Aquacult. Eng. 32, 277–284 (2005).Article
Google Scholar
61.Lam, D. D., Garfield, A. S., Marston, O. J., Shaw, J. & Heisler, L. K. Brain serotonin system in the coordination of food intake and body weight. Pharmacol. Biochem. Behav. 97, 84–91 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Tsai, C.-L., Wang, L.-H., Chang, C.-F. & Kao, C.-C. Effects of gonadal steroids on brain serotonergic and aromatase activity during the critical period of sexual differentiation in Tilapia, Oreochromis mossambicus. J. Neuroendocrinol. 12, 894–898 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Raghuveer, K. et al. Gender differences in tryptophan hydroxylase-2 mRNA, serotonin, and 5-hydroxytryptophan levels in the brain of catfish, Clarias gariepinus, during sex differentiation. Gen. Comp. Endocrinol. 171, 94–104 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
64.Sudhakumari, C. C. et al. Dimorphic expression of tryptophan hydroxylase in the brain of XX and XY Nile tilapia during early development. Gen. Comp. Endocrinol. 166, 320–329 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Senthilkumaran, B. et al. “Brain sex differentiation” in teleosts: emerging concepts with potential biomarkers. Gen. Comp. Endocrinol. 220, 33–40 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Carpenter, R. E. et al. Corticotropin releasing factor induces anxiogenic locomotion in trout and alters serotonergic and dopaminergic activity. Horm. Behav. 52, 600–611 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Clements, S. haun, Moore, F. L. & Schreck, C. B. Evidence that acute serotonergic activation potentiates the locomotor-stimulating effects of corticotropin-releasing hormone in juvenile chinook salmon (Oncorhynchus tshawytscha). Horm. Behav. 43, 214–221 (2003).68.Grima, L. et al. In search for indirect criteria to improve feed utilization efficiency in sea bass (Dicentrarchus labrax). Aquaculture 302, 169–174 (2010).Article
Google Scholar
69.Geffroy, B. et al. Nature-based tourism elicits a phenotypic shift in the coping abilities of fish. Front. Physiol. 9, (2018).70.Sadoul, B. & Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish Biol. 94, 540–555 (2019).CAS
PubMed
Article
Google Scholar
71.Sadoul, B. et al. Enhanced brain expression of genes related to cell proliferation and neural differentiation is associated with cortisol receptor expression in fishes. Gen. Comp. Endocrinol. 267, 76–81 (2018).CAS
PubMed
Article
Google Scholar
72.Alfonso, S. et al. Coping styles in European sea bass: the link between boldness, stress response and neurogenesis. Physiol. Behav. 207, 76–85 (2019).CAS
PubMed
Article
Google Scholar
73.Samaras, A. & Pavlidis, M. Regulation of divergent cortisol responsiveness in European sea bass, Dicentrarchus labrax L. PLoS ONE 13, e0202195 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
74.Tine, M. et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5, 5770 (2014).ADS
CAS
PubMed
Article
Google Scholar
75.Gesto, M., Skov, P. V. & Jokumsen, A. Emergence time and skin melanin spot patterns do not correlate with growth performance, social competitive ability or stress response in farmed rainbow trout. Front. Neurosci. 11, (2017).76.Menu, B., Peruzzi, S., Vergnet, A., Vidal, M.-O.O. & Chatain, B. A shortcut method for sexing juvenile European sea bass, Dicentrarchus labrax L. Aquacult. Res. 36, 41–44 (2005).Article
Google Scholar
77.Griot, R. et al. Genome-wide association studies for resistance to viral nervous necrosis in three populations of European sea bass (Dicentrarchus labrax) using a novel 57k SNP array DlabChip. Aquaculture 530, 735930 (2021).78.Griot, R. et al. APIS: An auto-adaptive parentage inference software that tolerates missing parents. Mol. Ecol. Resour. 20, 579–590 (2020).PubMed
Article
Google Scholar More