More stories

  • in

    Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures

    1.Weishampel, D. B., Dodson, P. & Osmólska, H. The Dinosauria 2nd edn (University of California Press, 2004).2.Fastovsky, D. E. & Weishampel, D. B. The Evolution and Extinction of the Dinosaurs (Cambridge University Press, 2005).3.Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628–642 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Chiarenza, A. A. et al. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc. Natl Acad. Sci. USA 117, 17084–17093 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Russell, D. A. The gradual decline of the dinosaurs—fact or fallacy? Nature 307, 360–361 (1984).ADS 
    Article 

    Google Scholar 
    8.Sloan, R. E., Rigby, J. K., Van Valen, L. M. & Gabriel, D. Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science 232, 629–633 (1986).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Sheehan, P. M., Fastovsky, D. E., Hoffmann, R. G., Berghaus, C. B. & Gabriel, D. L. Sudden extinction of the dinosaurs: Latest Cretaceous, upper Great Plains, USA. Science 254, 835–839 (1991).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl Acad. Sci. USA 113, 5036–5040 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10, 1091 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Russell, L. S. Body temperature of dinosaurs and its relationships to their extinction. J. Paleontol. 39, 497–501 (1965).
    Google Scholar 
    13.Brusatte, S. L., Butler, R. J., Prieto-Márquez, A. & Norell, M. A. Dinosaur morphological diversity and the end-Cretaceous extinction. Nat. Commun. 3, 804 (2012).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Lloyd, G. T. et al. Dinosaurs and the Cretaceous Terrestrial Revolution. Proc. R. Soc. B Biol. Sci. 275, 2483–2490 (2008).Article 

    Google Scholar 
    17.Gates, T. A., Prieto-Márquez, A. & Zanno, L. E. Mountain building triggered Late Cretaceous North American megaherbivore dinosaur radiation. PLoS ONE 7, e42135 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Loewen, M. A., Irmis, R. B., Sertich, J. J. W., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of late Cretaceous oceans. PLoS ONE 8, e79420 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Archibald, J. D. et al. Cretaceous extinctions: Multiple causes. Science 328, 973 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mitchell, J. S., Roopnarine, P. D. & Angielczyk, K. D. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc. Natl Acad. Sci. USA 109, 18857–18861 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Longrich, N. R., Martill, D. M. & Andres, B. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. PLoS Biol. 16, e2001663 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Longrich, N. R., Bhullar, B.-A. S. & Gauthier, J. A. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 109, 21396–21401 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Fastovsky, D. E. et al. Shape of Mesozoic dinosaur richness. Geology 32, 877–880 (2004).ADS 
    Article 

    Google Scholar 
    29.Archibald, J. D. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds. Keller, G. & Kerr, A. C.) 213–224 (The Geological Society of America Special Paper 505, 2014).30.Wang, S. C. & Dodson, P. Estimating the diversity of dinosaurs. Proc. Natl Acad. Sci. USA 103, 13601–13605 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Starrfelt, J. & Liow, L. H. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150219 (2016).Article 
    CAS 

    Google Scholar 
    32.Bonsor, J. A., Barrett, P. M., Raven, T. J. & Cooper, N. Dinosaur diversification rates were not in decline prior to the K-Pg boundary. R. Soc. Open Sci. 7, 201195 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Benton, M. J., Wills, M. A. & Hitchin, R. Quality of the fossil record through time. Nature 403, 534–537 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Alroy, J. et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl Acad. Sci. USA 98, 6261–6266 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).Article 

    Google Scholar 
    37.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article 

    Google Scholar 
    38.Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Benton, M. J. Scientific methodologies in collision: The history of the study of the extinction of the dinosaurs. Evol. Biol. 24, 371–400 (1990).
    Google Scholar 
    40.Butler, R. J., Benson, R. B. J., Carrano, M. T., Mannion, P. D. & Upchurch, P. Sea level, dinosaur diversity and sampling biases: Investigating the ‘common cause’ hypothesis in the terrestrial realm. Proc. R. Soc. B Biol. Sci. 278, 1165–1170 (2011).Article 

    Google Scholar 
    41.Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653–5658 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Res. 79, 125–139 (2020).ADS 
    Article 

    Google Scholar 
    43.Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).CAS 
    Article 

    Google Scholar 
    44.Miller, K. G. et al. The Phanerozoic record of global sea level change. Science 310, 1293–1298 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Ray, D. C. et al. The magnitude and cause of short-term eustatic Cretaceous sea-level change: a synthesis. Earth Sci. Rev. 197, 102901 (2019).Article 

    Google Scholar 
    46.Coiffard, C., Gomez, B., Daviero-Gomez, V. & Dilcher, D. L. Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proc. Natl Acad. Sci. USA 109, 20955–20959 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Chaboureau, A.-C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl Acad. Sci. USA 111, 14066–14070 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).Article 

    Google Scholar 
    49.Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Grossnickle, D. M. & Newham, E. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proc. R. Soc. B Biol. Sci. 283, 20160256 (2016).Article 

    Google Scholar 
    52.Liu, L. et al. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proc. Natl Acad. Sci. USA 114, E7282–E7290 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Arbour, V. M., Zanno, L. E. & Gates, T. A. Ankylosaurian dinosaur palaeoenvironmental associations were influenced by extirpation, sea-level fluctuation, and geodispersal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 289–299 (2016).Article 

    Google Scholar 
    54.Tennant, J. P., Mannion, P. D. & Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 7, 12737 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Lehtonen, S. et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci. Rep. 7, 4831 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Condamine, F. L., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc. Natl Acad. Sci. USA 116, 20584–20590 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Signor, P. W. & Lipps, J. H. in Geological Implications of Impacts of Large Asteroids and Comets on The Earth (eds. Silver, L. T. & Schultz, P. H.) vol. 190, 291–296 (Geological Society of America Special Publication, 1982).60.Benson, R. B. J. Dinosaur macroevolution and macroecology. Annu. Rev. Ecol. Evol. Syst. 49, 379–408 (2018).Article 

    Google Scholar 
    61.Dean, C. D., Chiarenza, A. A. & Maidment, S. C. R. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881–901 (2020).Article 

    Google Scholar 
    62.Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Prieto-Márquez, A., Dalla Vecchia, F. M., Gaete, R. & Galobart, À. Diversity, relationships, and biogeography of the lambeosaurine dinosaurs from the European archipelago, with description of the new aralosaurin Canardia garonnensis. PLoS ONE 8, e69835 (2013).65.Prieto-Márquez, A., Fondevilla, V., Sellés, A. G., Wagner, J. R. & Galobart, À. Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European archipelago. Cretac. Res. 96, 19–37 (2019).Article 

    Google Scholar 
    66.Longrich, N. R., Suberbiola, X. P., Pyron, R. A. & Jalil, N.-E. The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography. Cretac. Res. 120, 104678 (2021).Article 

    Google Scholar 
    67.Kobayashi, Y., Takasaki, R., Kubota, K. & Fiorillo, A. R. A new basal hadrosaurid (Dinosauria: Ornithischia) from the latest Cretaceous Kita-ama Formation in Japan implies the origin of hadrosaurids. Sci. Rep. 11, 8547 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Stubbs, T. L., Benton, M. J., Elsler, A. & Prieto-Márquez, A. Morphological innovation and the evolution of hadrosaurid dinosaurs. Paleobiology 45, 347–362 (2019).Article 

    Google Scholar 
    69.Reest, A. J. van der & Currie, P. J. Troodontids (Theropoda) from the Dinosaur Park Formation, Alberta, with a description of a unique new taxon: Implications for deinonychosaur diversity in North America. Can. J. Earth Sci. 54, 919–935 (2017).70.Hartman, S. et al. A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight. PeerJ 7, e7247 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61 (1992).ADS 
    Article 

    Google Scholar 
    72.O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    73.Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the Cretaceous Hot Greenhouse climate. Glob. Planet. Change 167, 1–23 (2018).ADS 
    Article 

    Google Scholar 
    74.Mannion, P. D. et al. A temperate palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical partitioning. Glob. Ecol. Biogeogr. 21, 898–908 (2012).Article 

    Google Scholar 
    75.Forster, A., Schouten, S., Baas, M. & Damsté, J. S. S. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).ADS 
    Article 

    Google Scholar 
    76.O’Connor, L. K. et al. Late Cretaceous temperature evolution of the southern high latitudes: a TEX86 perspective. Paleoceanogr. Paleoclimatol. 34, 436–454 (2019).ADS 
    Article 

    Google Scholar 
    77.Linnert, C. et al. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 5, 4194 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. N. Phytol. 207, 425–436 (2015).Article 

    Google Scholar 
    82.Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113–133 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet. Sci. 42, 207–230 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    85.Grady, J. M., Enquist, B. J., Dettweiler-Robinson, E., Wright, N. A. & Smith, F. A. Evidence for mesothermy in dinosaurs. Science 344, 1268–1272 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Eagle, R. A. et al. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. Nat. Commun. 6, 8296 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Paladino, F. V., Dodson, P., Hammond, J. K. & Spotila, J. R. Temperature-dependent sex determination in dinosaurs? Implications for population dynamics and extinction. in Paleobiology of the Dinosaurs (ed. Farlow, J. O.) vol. 238, 63–70 (Geological Society of America Special Papers, 1989).88.Vavrek, M. J. & Larsson, H. C. E. Low beta diversity of Maastrichtian dinosaurs of North America. Proc. Natl Acad. Sci. USA 107, 8265–8268 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    90.Brodie, J. F. et al. Secondary extinctions of biodiversity. Trends Ecol. Evol. 29, 664–672 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Fraser, D. et al. Investigating biotic interactions in deep time. Trends Ecol. Evol. 36, 61–75 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Mallon, J. C. Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Sci. Rep. 9, 15447 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Benton, M. J. Progress and competition in macroevolution. Biol. Rev. 62, 305–338 (1987).Article 

    Google Scholar 
    94.Fricke, H. C. & Pearson, D. A. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota. Paleobiology 34, 534–552 (2008).Article 

    Google Scholar 
    95.Mallon, J. C. & Anderson, J. S. Skull ecomorphology of megaherbivorous dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada. PLoS ONE 8, e67182 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Nordén, K. K., Stubbs, T. L., Prieto-Márquez, A. & Benton, M. J. Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction. Paleobiology 44, 620–637 (2018).Article 

    Google Scholar 
    97.Lyson, T. R. & Longrich, N. R. Spatial niche partitioning in dinosaurs from the latest Cretaceous (Maastrichtian) of North America. Proc. R. Soc. B Biol. Sci. 278, 1158–1164 (2011).Article 

    Google Scholar 
    98.Li, Z. et al. Ultramicrostructural reductions in teeth: Implications for dietary transition from non-avian dinosaurs to birds. BMC Evol. Biol. 20, 46 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Cau, A. The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory. PeerJ 8, e8672 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Fowler, D. W., Freedman, E. A., Scannella, J. B. & Kambic, R. E. The predatory ecology of Deinonychus and the origin of flapping in birds. PLoS ONE 6, e28964 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Frederickson, J. A., Engel, M. H. & Cifelli, R. L. Ontogenetic dietary shifts in Deinonychus antirrhopus (Theropoda; Dromaeosauridae): Insights into the ecology and social behavior of raptorial dinosaurs through stable isotope analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 552, 109780 (2020).Article 

    Google Scholar 
    103.O’Connor, J. et al. Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29, 2423–2429 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    104.King, J. L., Sipla, J. S., Georgi, J. A., Balanoff, A. M. & Neenan, J. M. The endocranium and trophic ecology of Velociraptor mongoliensis. J. Anat. 237, 861–869 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Owocki, K., Kremer, B., Cotte, M. & Bocherens, H. Diet preferences and climate inferred from oxygen and carbon isotopes of tooth enamel of Tarbosaurus bataar (Nemegt Formation, Upper Cretaceous, Mongolia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 537, 109190 (2020).Article 

    Google Scholar 
    106.Dalman, S. & Lucas, S. New evidence for cannibalism in tyrannosaurid dinosaurs from the Late Cretaceous of New Mexico. N. Mex. Mus. Nat. Hist. Sci. Bull. 82, 39–56 (2021).
    Google Scholar 
    107.Frederickson, J. A., Engel, M. H. & Cifelli, R. L. Niche partitioning in theropod dinosaurs: Diet and habitat preference in predators from the uppermost Cedar Mountain Formation (Utah, U.S.A.). Sci. Rep. 8, 17872 (2018).108.Hassler, A. et al. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs. Proc. R. Soc. B Biol. Sci. 285, 20180197 (2018).109.Schroeder, K., Lyons, S. K. & Smith, F. A. The influence of juvenile dinosaurs on community structure and diversity. Science 371, 941–944 (2021).110.Currie, P. J., Badamgarav, D., Koppelhus, E. B., Sissons, R. & Vickaryous, M. K. Hands, feet, and behaviour in Pinacosaurus (Dinosauria: Ankylosauridae). Acta Palaeontol. Polon. 56, 489–504 (2011).Article 

    Google Scholar 
    111.Burns, M. E., Currie, P. J., Sissons, R. L. & Arbour, V. M. Juvenile specimens of Pinacosaurus grangeri Gilmore, 1933 (Ornithischia: Ankylosauria) from the Late Cretaceous of China, with comments on the specific taxonomy of Pinacosaurus. Cretac. Res. 32, 174–186 (2011).Article 

    Google Scholar 
    112.Burns, M. E., Tumanova, T. A. & Currie, P. J. Postcrania of juvenile Pinacosaurus grangeri (Ornithischia: Ankylosauria) from the Upper Cretaceous Alagteeg Formation, Alag Teeg, Mongolia: Implications for ontogenetic allometry in ankylosaurs. J. Paleontol. 89, 168–182 (2015).113.Botfalvai, G., Prondvai, E. & Ősi, A. Living alone or moving in herds? A holistic approach highlights complexity in the social lifestyle of Cretaceous ankylosaurs. Cretac. Res. 118, 104633 (2021).Article 

    Google Scholar 
    114.Arbour, V. M. & Zanno, L. E. The evolution of tail weaponization in amniotes. Proc. R. Soc. B Biol. Sci. 285, 20172299 (2018).Article 

    Google Scholar 
    115.Arbour, V. M. & Zanno, L. E. Tail weaponry in ankylosaurs and glyptodonts: An example of a rare but strongly convergent phenotype. Anat. Rec. 303, 988–998 (2020).Article 

    Google Scholar 
    116.Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).117.Hagen, O., Andermann, T., Quental, T. B., Antonelli, A. & Silvestro, D. Estimating age-dependent extinction: Contrasting evidence from fossils and phylogenies. Syst. Biol. 67, 458–474 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Finnegan, S., Payne, J. L. & Wang, S. C. The Red Queen revisited: Reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34, 318–341 (2008).Article 

    Google Scholar 
    119.Doran, N. A., Arnold, A. J., Parker, W. C. & Huffer, F. W. Is extinction age dependent? PALAIOS 21, 571–579 (2006).ADS 
    Article 

    Google Scholar 
    120.Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.Romano, M. Disparity versus diversity in ankylosaurid dinosaurs: Explored morphospace indicates two separate evolutive radiations. Rend. Online Soc. Geol. It. 53, 2–8 (2021).122.Turner, A. H., Montanari, S. & Norell, M. A. A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia. Am. Mus. Novitat. 2020, 1–48 (2021).123.Maryańska, T. & Osmólska, H. Pachycephalosauria, a new suborder of ornithischian dinosaurs. Palaeontol. Polon. 30, 45–102 (1974).
    Google Scholar 
    124.Sereno, P. C. National Geographic Research: Phylogeny of the bird-hipped dinosaurs (Order Ornithischia). Natl Geogr. Res. 2, 234–256 (1986). https://d3qi0qp55mx5f5.cloudfront.net/paulsereno/i/docs/86-NGRes-PhyloOrnithis_1.pdf?mtime=1591821557.125.Sullivan, R. M. A taxonomic review of the Pachycephalosauridae (Dinosauria: Ornithischia). N. Mex. Mus. Nat. Hist. Sci. Bull. 35, 347–365 (2006).
    Google Scholar 
    126.Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Morphological clocks in paleontology, and a mid-cretaceous origin of crown aves. Syst. Biol. 63, 442–449 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    127.Arbour, V. M. & Evans, D. C. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R. Soc. Open Sci. 4, 161086 (2017).128.McDonald, A. T., Wolfe, D. G. & Dooley, A. C. Jr A new tyrannosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Menefee Formation of New Mexico. PeerJ 6, e5749 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    129.Longrich, N. R. & Field, D. J. Torosaurus is not Triceratops: Ontogeny in chasmosaurine ceratopsids as a case study in dinosaur taxonomy. PLoS ONE 7, e32623 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Larson, P. L. in Tyrannosaurid Paleobiology (eds. Parrish, J. M., Molnar, R. A., Currie, P. J. & Koppelhus, E. B.) 15–54 (Indiana University Press, 2013).131.Yun, C. Evidence points out that ‘Nanotyrannus’ is a juvenile Tyrannosaurus rex. PeerJ 3, e1052 (2015).Article 

    Google Scholar 
    132.Brusatte, S. L. et al. Dentary groove morphology does not distinguish ‘Nanotyrannus’ as a valid taxon of tyrannosauroid dinosaur. Comment on: “Distribution of the dentary groove of theropod dinosaurs: Implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988. Cretac. Res. 65, 232–237 (2016).Article 

    Google Scholar 
    133.Schmerge, J. D. & Rothschild, B. M. When a groove is not a groove: Clarification of the appearance of the dentary groove in tyrannosauroid theropods and the distinction between Nanotyrannus and Tyrannosaurus. Reply to Comment on: “Distribution of the dentary groove of theropod dinosaurs: Implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988. Cretac. Res. 65, 238–243 (2016).Article 

    Google Scholar 
    134.Xu, X., Zhou, Z., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle-Late Jurassic Yanliao biota: Chronology, taphonomy, paleontology and paleoecology. Acta Geol. Sin. 90, 2229–2243 (2016).Article 

    Google Scholar 
    135.Cau, A., Brougham, T. & Naish, D. The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird? PeerJ 3, e1032 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    136.Agnolin, F. L. & Motta, M. J. Paravian phylogeny and the dinosaur-bird transition: An overview. Front. Earth Sci. 6, 252 (2019).ADS 
    Article 

    Google Scholar 
    137.Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed Its thresholds. Curr. Biol. 30, 4033–4046 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    138.Foth, C. & Rauhut, O. W. M. Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol. Biol. 17, 236 (2017).139.Rauhut, O. W., Tischlinger, H. & Foth, C. A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8, e43789 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    140.Lefèvre, U. et al. A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. Sci. Nat. 104, 74 (2017).Article 
    CAS 

    Google Scholar 
    141.Shen, C. et al. A new troodontid dinosaur from the Lower Cretaceous Yixian formation of Liaoning province. China Acta Geol. Sin. 91, 763–780 (2017).Article 

    Google Scholar 
    142.Arbour, V. M. & Currie, P. J. Euoplocephalus tutus and the diversity of ankylosaurid dinosaurs in the Late Cretaceous of Alberta, Canada, and Montana, USA. PLoS ONE 8, e62421 (2013).143.Arbour, V. M. & Currie, P. J. Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs. J. Syst. Palaeontol. 14, 385–444 (2016).Article 

    Google Scholar 
    144.Arbour, V. M., Currie, P. J. & Badamgarav, D. The ankylosaurid dinosaurs of the Upper Cretaceous Baruungoyot and Nemegt formations of Mongolia. Zool. J. Linn. Soc. 172, 631–652 (2014).
    Google Scholar 
    145.Arbour, V. M. et al. A new ankylosaurid dinosaur from the Upper Cretaceous (Kirtlandian) of New Mexico with implications for ankylosaurid diversity in the Upper Cretaceous of Western North America. PLoS ONE 9, e108804 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    146.Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier B.V., 2012).147.Brown, C. M. & Henderson, D. M. A new horned dinosaur reveals convergent evolution in cranial ornamentation in Ceratopsidae. Curr. Biol. 25, 1641–1648 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    148.Jerzykiewicz, T., Currie, P. J., Fanti, F. & Lefeld, J. Lithobiotopes of the Nemegt Gobi Basin. Can. J. Earth Sci. https://doi.org/10.1139/cjes-2020-0148 (2021).149.Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: A new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).Article 

    Google Scholar 
    150.Rambaut, A. R., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    151.Brusatte, S. L. et al. Tyrannosaur paleobiology: New research on ancient exemplar organisms. Science 329, 1481–1485 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    152.Ryan, M. J., Chinnery-Allgeier, B. J. & Eberth, D. A. New Perspectives on Horned Dinosaurs (Indiana University Press, 2010).153.Xu, X., Wang, K., Zhao, X. & Li, D. First ceratopsid dinosaur from China and its biogeographical implications. Chin. Sci. Bull. 55, 1631–1635 (2010).CAS 
    Article 

    Google Scholar 
    154.Hannisdal, B. & Peters, S. E. Phanerozoic Earth system evolution and marine biodiversity. Science 334, 1121–1124 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    155.Liow, L. H., Reitan, T. & Harnik, P. G. Ecological interactions on macroevolutionary time scales: Clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 18, 1030–1039 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    156.Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575–R583 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    157.Mayhew, P. J., Bell, M. A., Benton, T. G. & McGowan, A. J. Biodiversity tracks temperature over time. Proc. Natl Acad. Sci. USA 109, 15141–15145 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    158.Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rythms, and aberration in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    159.Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    160.Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the late cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, 1–14 (2009).Article 

    Google Scholar 
    161.Barba-Montoya, J., Reis, M., Schneider, H., Donoghue, P. C. J. & Yang, Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. N. Phytol. 218, 819–834 (2018).Article 

    Google Scholar 
    162.Zhang, M., Dai, S., Du, B., Ji, L. & Hu, S. Mid-Cretaceous hothouse climate and the expansion of early angiosperms. Acta Geol. Sin. 92, 2004–2025 (2018).Article 

    Google Scholar  More

  • in

    Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling

    Filtering threshold for handling spurious sequencesWe first used bacterial communities of known composition (simplified communities) to assess the occurrence of spurious taxa and to determine at which relative abundances they begin to appear. To propose a cutoff that is potentially applicable to different 16S rRNA gene amplicon studies, we included reference data obtained with different variable regions and sequencing pipelines and originating from both in vitro an in vivo communities varying in number and type of species (max. 58) (Tables 1 and 2). To determine a filtering threshold that allowed exclusion of most spurious taxa, we recorded the relative abundance of the first spurious OTU occurring in each of the reference community datasets (Fig. 2a). Median values of approx. 0.12% relative abundance were observed (Fig. 2b). Besides one outlier in the mock communities (0.44% relative abundance), all values were below 0.25% relative abundance.Fig. 2: Determination of filtering thresholds using artificial communities of known composition in vitro (mock; n = 9 different types; 21 replicates in total) and in mice (gnotobiotes; n = 4 different communities; 28 mice in total).a Example of the occurrence of all molecular species detected without filtering in the gut of a gnotobiotic mouse [49]. The arrow indicates the position of the first spurious molecular species, all following taxa being considered as having a high risk of being spurious (light gray bars in the enlarged inset). b Distribution of the relative abundances of first occurring spurious molecular species (as shown in panel a) across all mock communities and samples from gnotobiotes. The orange dashes on the y-axis indicate the consensus threshold of 0.25% relative abundance, above which no spurious taxa occurred with the exception of one outlier in a mock community at a relative abundance of 0.44%. c Comparison of various standard filtering cutoffs (see explanations in the text) in terms of spurious taxa (i.e., those molecular species not matching sequences of the known species contained in the artificial communities). d Corresponding percentages of positive hits retained by the different filtering strategies, with positive hits being defined as the reference sequences found in the respective amplicon datasets. e Percentage of spurious taxa and positive hits in the same reference communities using the DADA2 pipeline for analysis based on amplicon sequence variants (ASVs) [6]. f Effect of filtering thresholds at increments of 0.05% relative abundance on the detection of spurious taxa and positive hits in all mock and gnotobiotic datasets for OTUs (upper panel) and ASVs (lower panel). Lines correspond to mean values; ribbons represent standard deviations.Full size imageWithout any filtering, sequence clustering generated an average of 508 ± 355 OTUs (min. 52; max. 1081) per mock community (10–58 target species in theory) and 105 ± 50 OTUs (min, 55; max. 215) per gnotobiotic community (4–12 target species in theory). Up to 87% of these OTUs were spurious (i.e., they did not match the expected classification of species contained in the corresponding artificial community) (Fig. 2c). On average, the proportion of spurious OTUs in both the mock communities and samples from gnotobiotic mice was slightly lower after removing singletons, although this did not reach statistical significance (50.8 vs. 64.3%, p = 0.227; 57.5% vs. 65.7%; p = 0.70, pairwise comparison by t-test, including Benjamini–Hochberg correction following ANOVA). Interestingly, the proportion of spurious molecular species was higher in gnotobiotic mice independent of filtering (p  0.50) (Fig. 2d). Note that the diversity of reference communities in the gnotobiotic mice was relatively low (4–12 members; Table 2), resulting in a marked drop in the percentage of positive hit (8–25%) when even just one true member is excluded after filtering because of its low relative abundance (which is an expectable event considering a classical, exponentially decreasing distribution of species occurrence in gut environments).We next employed the widely used ASV analysis approach to confirm the aforementioned results. Processing of the same simplified communities generated a total number of 42 ± 25 ASVs (min. 16; max. 98) for mock communities (10–58 target species) and 14 ± 8 ASVs (min. 4; max. 25) for gnotobiotes (4–12 target species). Altogether, a marked decrease in spurious taxa was observed compared with OTU clustering, with an average of 8.6 ± 11.8 and 4.4 ± 6.4% spurious sequences for mock and gnotobiotic communities, respectively (comparison of purple box plots in Fig. 2e, top panels, and Fig. 2c). Of note, the DADA2 pipeline used for the ASV approach does not infer sequence variants that are only supported by a single read (singletons) due to a lack of confidence in their existence relative to sequencing errors. Consequently, data corresponding to “no filtering” with the OTU-based approach were not generated. On average, the first spurious ASV occurred at a relative abundance of 0.10 ± 0.32%. By applying the cutoff of 0.25% relative abundance, spurious sequences were completely removed (except for three outlying samples), albeit with a slight drop in positive hits for both mock and gnotobiotic communities (Fig. 2e).To obtain a more comprehensive view on how filtering thresholds affect the detection of spurious taxa, all datasets (mock and gnotobiotic mice) were processed using a range of relative abundance filtering thresholds (from 0 to 0.5% at increments of 0.05%) after either OTU- or ASV-based processing of raw sequence reads (Fig. 2f). These data indicate that filtering thresholds between 0.1 and 0.3% are appropriate to reduce the occurrence of spurious taxa to 600 of the 678 spurious OTUs occurred in fewer than five of the ten sequencing runs tested, with approximately 450 of them occurring in only one run (Fig. 3c). This observation indicates that the majority of spurious taxa are sporadic cross-contaminations rather than generalist artifacts across sequencing runs, suggesting that fully independent technical replicates would improve data quality. Although most of the spurious taxa were characterized by relative abundances between 0.25 and 2% in the IMNGS-amplicon datasets tested, they represented very dominant populations in a few samples (Fig. 3d).Fig. 3: Origin and occurrence of spurious taxa.a Taxonomic profile and ecological distribution. Inner ring: SILVA-based classification of all non-redundant spurious molecular species at the phylum and family level. Outer colored ring: sample type characterized by the highest prevalence for the given taxon. Outer bars: corresponding highest prevalence values. Only samples with relative abundances >0.25% for any given OTU were counted as positive for prevalence calculation. The total numbers of samples considered were: human, 46,153; soil, 29,864; freshwater, 13,977; mouse, 10,409; marine, 8478. b Distribution of the spurious taxa across sample types. The exclusivity of each OTU for any given sample type was assessed using a Z-test: those assumed to be non-specific for any given sample type appear in red (p 0.25% in at least one replicate were kept). Richness was calculated using ampvis2 [29]. Applying the 0.25% cutoff decreased the number of observed ASVs from 408 ± 71 to 139 ± 5 and, more importantly, the IQR from 101 to 7 (Fig. 6b). Unweighted UniFrac distances within and between runs as calculated using ampvis2 were also compared before and after filtering. Sequences were aligned using MAFFT [30] and phylogeny was inferred using FastTree. Whilst the community makeup in the soil sample varied substantially between sequencing runs without additional filtering, the 0.25% cutoff reduced this variation to the level observed within runs without filtering (Fig. 6c). Replicates within a run were very similar after applying the 0.25% cutoff. Altogether, these data serve as an independent confirmation that stringent filtering delivers more stable values obtained for the exact same sample sequenced in replicates across several sequencing runs. More

  • in

    Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics

    2,809 draft MAGs from the rumen ecosystemWe amassed 3.2 terabase pairs (Tbp) of data from 346 publicly available and 66 new rumen metagenome datasets (Supplementary Table 1). The metagenomes were from cattle (312 samples, 2.1 Tbp), sheep (75 samples, 888.4 gigabase pairs (Gbp)), moose (9 samples, 108.8 Gbp), deer (8 samples, 62.9 Gbp), and bison (8 samples, 52.3 Gbp). Metagenomes were assembled independently to reduce the influence of strain variation and improve the recovery of closely related genomes18,19. Following refinement, dereplication, and filtering of resulting population genomes, we identified 2,809 nonredundant MAGs satisfying the following criteria: dRep20 genome quality score ≥60, ≥75% complete, ≤10% contamination, N50 ≥5 kbp, and ≤500 contigs.The median estimated completeness and contamination of the MAGs were 89.7% and 0.9%, respectively (Fig. 1a and Supplementary Data 1). Further, recovered MAGs had a median genome size of 2.2 Mbp, a median of 131 contigs, and a median N50 of 28.3 kbp (Fig. 1b). The proposed minimum information about a MAG (MIMAG) specifies high-quality draft genomes to have an estimated ≥90% completeness, ≤5% contamination, at least 18 tRNAs, and contain 23S, 16S, and 5S rRNA genes21. It remains challenging to reconstruct rRNA genes from short metagenomic reads due to the high sequence similarity of rRNA genes in closely related species. As a result, despite high estimated completeness and low contamination rates, only 20 MAGs meet the MIMAG standards for a high-quality draft genome. We identified a 16S rRNA gene in 197 of the MAGs. The remaining MAGs are characterized as medium-quality MAGs under the MIMAG standards.Fig. 1: Genomic properties of 2,809 rumen MAGs.a CheckM completeness and contamination estimates for the 2,809 population genomes recovered from rumen metagenomes. The size of the point on the scatter plot corresponds to the dRep genome quality score, where Quality = Completeness − (5 ⋅ Contamination) + (Contamination ⋅ (Strain Heterogeneity/100)) + 0.5 ⋅ (({mathrm{log}},)(N50). The reported MAGs meet the following minimum criteria: genome quality score ≥60, ≥75% complete, ≤10% contamination, N50 ≥5 kbp, and ≥500 contigs. b The frequency distribution of the number of contigs and genome sizes of reconstructed MAGs.Full size imageThe majority of bacterial MAGs belonged to phyla Firmicutes or Bacteroidota (2,326; Fig. 2a and Supplementary Data 1). Additionally, we assembled 12 bacterial genomes from the superphylum Patescibacteria. At lower taxonomic ranks, Lachnospiraceae (415) and Prevotella (398) were the dominant family and genus identified among the assembled bacterial genomes. The most prevalent archaeal family and genus were Methanobacteriaceae (45) and Methanobrevibacter (35), respectively (Fig. 2b). The recovered MAGs represent several new taxonomic lineages, as four genomes could not be classified at the rank of order, 16 at the rank of family, and 243 at the genus rank.Fig. 2: Phylogenetic relationships and coverage patterns of near-complete MAGs.a Phylogenomic analysis of 1,163 near-complete (≥90% complete, ≤5% contamination, and N50 ≥15 kbp) bacterial MAGs and (b) 20 near-complete archaeal MAGs inferred from the concatenation of phylogenetically informative proteins. Layers below the genomic trees designate bacterial phylum or archaeal genus based on GTDB taxonomic assignments, genomic size (0–5 Mbp), and the mean number of bases with ≥1× coverage in a rumen metagenomic dataset (layer color indicates the ruminant the data was collected from). The mean number of bases with ≥1× coverage was used as input for hierarchical clustering of rumen metagenomic datasets based on Euclidean distance and Ward linkage. The bacterial and archaeal phylogenetic trees are provided as Supplementary Data 6 and Supplementary Data 7, respectively.Full size imageSpecies-level overlap between reference genomes, the Hungate1000 Collection, and rumen MAGsTo further characterize the assembled genomes, we compared the MAGs to other rumen-specific genome collections, specifically genomes generated from the Hungate1000 project3 and MAGs identified from the Stewart et al. studies4,5. We clustered genomes based on approximate species-level thresholds (≥95% ANI) and calculated the intersection between MAGs in the current study and the Hungate1000 Collection (410 genomes)3, MAGs from Stewart et al. (4,941 genomes)4,5, and a dereplicated genome collection from the GTDB (22,441 genomes, see Methods)22, which includes reference isolate genomes and some environmental MAGs23. It should be noted that we used the raw data from the first of the Stewart et al. studies4 (Supplementary Table 1), but with different assembly and binning approaches. Approximately one-third of the MAGs (1,007) did not exhibit ≥95% ANI with a genome in the GTDB, Stewart et al. MAGs, or the Hungate1000 isolates (Fig. 3a). When considering the pairwise intersections between the datasets, 98 (3.5%), 933 (33.2%), and 1,438 (51.2%) of the MAGs in the current study had ≥95% ANI with a genome in the Hungate1000 Collection3, GTDB22, and Stewart et al.4,5, respectively. One hundred twenty-one (29.5%), 552 (2.5%), and 3,125 (63.2%) of the genomes from the Hungate1000 Collection3, GTDB22, and Stewart et al.4,5 displayed ≥95% ANI with a MAG from the current study. Together, these results indicate that we recovered a majority of previous rumen genomic diversity with additional lineages not previously identified in other major rumen genomic collections.Fig. 3: Genomes sharing ≥95% ANI between databases and the characterization of rumen-specific 95% ANI clusters.a The approximate number of species overlapping amongst rumen-specific and reference genomic datasets. Genomes demonstrating ≥95% ANI were considered to be shared between two datasets. Presented are a subset of intersections in which a MAG from the current study was the query genome. b The number of genomes comprising each of the 3,541 95% ANI clusters generated from 8,160 rumen microbial genomes in the current study, the Hungate1000 Collection3, and Stewart et al. studies4, 5. c Rarefaction analysis based on subsampling 95% ANI clusters at steps of 500 genomes indicates the 8,160 genomes from recently published rumen genomic collections still only represent a fraction of expected microbial species diversity in the rumen ecosystem. Phylogenomic relationships of the 1,781 near-complete bacterial (d) and 35 near-complete archaeal (e) representative genomes with the highest dRep genome quality score from the 3,541 95% ANI clusters generated from 8,160 rumen-specific genomes. Near-complete genomes were defined as being ≥90% complete, having ≤5% contamination, and contig N50 ≥15 kbp. Layers surrounding the genomic trees indicate the bacterial phyla or archaeal genera and the log normalized number of genomes from each rumen genomic collection belonging to the same 95% ANI cluster. The bacterial and archaeal phylogenetic trees are provided as Supplementary Data 8 and Supplementary Data 9, respectively.Full size imageWe applied an additional clustering approach to identify the approximate number of species represented by the rumen-specific genomes assembled in this study, in the Hungate1000 Collection3, and Stewart et al.4,5. A 95% ANI threshold yielded 3,541 clusters from the combination of the datasets (Supplementary Data 2). Of the 3,541 clusters, 2,024 contained a MAG from the current study, and 1,135 were composed exclusively of MAGs from the current study. In comparison, 2,175 and 286 clusters were comprised of genomes from Stewart et al.4,5 and the Hungate1000 Collection3, respectively. The majority of 95% ANI clusters (2,166) are only comprised of a single genome (Fig. 3b). Furthermore, a rarefaction curve suggests the 8,160 genomes from the genomic collections analyzed here only represent a fraction of the estimated microbial species diversity in the rumen (Fig. 3c). The genome with the best dRep score from each cluster was used to generate a phylogenetic tree highlighting the species diversity within each rumen genomic collection and represents the vast diversity of rumen bacterial (Fig. 3d) and archaeal (Fig. 3e) genomes published to date.As stated previously, the median genome size of reconstructed MAGs was 2.2 Mbp, smaller than the median size of genomes from the Hungate1000 project (3.1 Mbp)3. To provide an assessment at a finer resolution, genome sizes of MAGs and Hungate1000 genomes3 belonging to the same 95% ANI cluster were compared (Supplementary Fig. 1). Adjusted sizes of MAGs and Hungate1000 genomes that are ≥95% complete displayed a regression coefficient of 0.96 with a slope of 0.86, indicating the binning process likely did not lead to extensive losses and systematic biases in the reconstructed genomes. Instead, it further highlights that current culturing approaches have not brought large portions of rumen microbial diversity into culture and putatively supports previous findings from the human gut that revealed genome-reduction in uncultured bacteria24.Rumen metagenome classification rates using reference and rumen-specific genomesUtilizing an approach similar to Stewart et al.4,5, we investigated the influence of MAGs on rates of metagenomic read classification. The baseline for read classification was the standard Kraken database containing bacterial, archaeal, fungal, and protozoal RefSeq genomes25. Each rumen-specific dataset was incrementally added to the Kraken RefSeq genomic database in the following order to build new databases: the Hungate1000 Collection3, MAGs from Stewart et al.4,5, and MAGs from the current study. Each individual and collective database was used for classification of sample reads that underpinned metagenomic binning and from a rumen metagenomic dataset not used in the reconstruction of MAGs26. MAGs from the current work classified more reads from deer, moose, and sheep metagenomes, while the more numerous MAGs from Stewart et al.4,5 classified more reads from bison and cattle metagenomes (Supplementary Fig. 2a). The addition of MAGs improves classification relative to databases primarily based on cultured isolates, like the Hungate1000 Collection3 (Supplementary Fig. 2b). Using the combination of all reference and rumen-specific genomes, the median classification rate on an independent set of cattle metagenomes was 62.6%.Phylogenetic characterization of biosynthetic gene clustersMicrobial genome mining is a powerful tool for natural product discovery. We sought to explore the extent of secondary metabolite diversity coded by the MAGs in the current study, the Hungate1000 Collection3, and Stewart et al. MAGs4,5. We identified 14,814 BGCs encoded by the 8,160 rumen-specific genomes using antiSMASH27 (Fig. 4a and Supplementary Data 3). The majority of BGCs were NRPS (5,346), followed by aryl polyenes (2,800), sactipeptides (2,126), and bacteriocins (1,943). Only a few PKS were identified (75). Firmicutes harbored the vast majority of clusters for NRPS, sactipeptide, lantipeptide, lassopeptide, and bacteriocin synthesis (Fig. 4b). At lower taxonomic ranks, DTU089 (979), Bacteroidaceae (934), and Lachnospiraceae (923) coded for the bulk of NRPS gene clusters. Moreover, Acidaminococcaceae genomes contained 21.2% of identified bacteriocins and Ruminococcus spp. possessed the bulk of sactipeptides and lantipeptides. Archaea were predicted to code 737 BGCs, including an average of 3.8 NRPS gene clusters per genome (Fig. 4a).Fig. 4: Characterization of BGCs from 8,160 rumen genomes and MAGs.a Number and types of BGCs identified from select phyla in genomes from the Hungate1000 Collection3, Stewart et al. studies4, 5, and the current study. b Phylogenomic analysis of 1,766 near-complete Firmicutes genomes inferred from the concatenation of phylogenetically informative proteins. The inner layer surrounding the genomic tree designates taxonomic annotations, while the remaining layers depict the log normalized number of BGCs in the genome with the ascribed function. Bacterial class and order labels are displayed for those lineages in which more than 50 genomes were identified. Near-complete genomes were defined as being ≥90% complete, having ≤5% contamination, and contig N50 ≥15 kbp. The phylogenetic tree is provided as Supplementary Data 10. c A relational network of NRPS gene clusters in Firmicutes, Bacteroidota, and Euryarchaeota highlights the similarity of NRPS BGCs from Euryarchaeota and Firmicutes. Edge weight represents the similarity of two BGCs, as determined by BiG-SCAPE (i.e. darker edges demonstrate more similarity between two BGCs). Edges are only shown for BGCs with ≥0.3 BiG-SCAPE similarity. Nodes from each phylum are duplicated to illustrate intra-phylum relationships and nodes along a given axis are ordered alphabetically by taxonomic family. d The association between genome phylogeny and the similarity of NRPS gene clusters coded by near-complete Euryarchaeota genomes. BGCs designated as NRPS were clustered with BiG-SCAPE. The relationship between NRPS clusters was portrayed through the hierarchical clustering of pairwise inter-cluster similarities. The number of NRPS clusters coded by each genome (range of 0–3) is presented alongside the assigned genus. A group of Methanobrevibacter genomes, likely of the same species (≥95% ANI), possessed very similar NRPS clusters (highlighted in blue). Yet, phylogenetically closely related genomes, belonging to two different 95% ANI clusters, did not code for any identified NRPS gene clusters (highlighted in red). The phylogenetic tree is based on the concatenation of 122 phylogenetically informative archaeal proteins and is available as Supplementary Data 11.Full size imageNRPS exhibit high molecular and structural diversity resulting in a wide array of biological activities. The diversity of NRPS, combined with their proteolytic stability and selective bioactivity, has resulted in the development of many NRPS as antimicrobials and other therapeutic agents28. Given the prevalence of NRPS among the recovered MAGs (Fig. 4a), the peptides appear to be important bioactive metabolites in the rumen. To gain fundamental insight into the phylogenetic diversity of rumen NRPS, we built a network based on BGC similarity using BiG-SCAPE29. BiG-SCAPE uses protein domain content, order, copy number, and sequence identity to calculate a distance metric. We assessed the similarity of NRPS gene clusters identified in Firmicutes, Bacteroidota, and Euryarchaeota, as these three phyla coded for 96.4% of assembled NRPS gene clusters from rumen genomes. With a BiG-SCAPE similarity threshold of 0.3, the resulting network consisted of 3,436 nodes (NRPS BGCs on contigs ≥10 kbp) and 79,112 edges (Fig. 4c and Supplementary Data 4). As expected, the network analysis depicted high inter- and intra-phylum genetic diversity among the NRPS gene clusters. The median intra-phylum, -family, and -genus similarity was 0.40, 0.44, and 0.46, respectively, while the median inter-phylum, -family, and -genus similarity was 0.32, 0.34, and 0.34, respectively. Further, only 2.6% of edges were inter-phylum and 69.0% were intra-family. Of the 6,594 Euryarchaeota edges, 8.1% were Euryarchaeota-Firmicutes (median similarity of 0.32) and 2.0% of edges were Euryarchaeota-Bacteroidota (median similarity of 0.31). To further examine the phylogenetic relationships of rumen Euryarchaeota NRPS, we clustered 265 NRPS gene clusters (≥10 kbp) from 85 near-complete Euryarchaeota genomes at a higher similarity threshold of 0.75, yielding 57 NRPS clusters (Fig. 4d). The distribution of NRPS clusters amongst the genomes suggests there exists a strong relationship between methanogen phylogeny and NRPS similarity. Only Methanobrevibacter genomes contain NRPS gene clusters, and genomes of the same species often possessed many of the same NRPS clusters (see genomes highlighted in blue in Fig. 4d). However, there are instances in which closely related methanogens code for a contrasting pattern of NRPS clusters or no NRPS clusters at all (see genomes highlighted in red in Fig. 4d).Bacteriocins likely serve as regulatory elements in complex microbial communities such as the rumen. Consequently, bacteriocins have been studied and characterized for their bactericidal activity and as agents that modulate the microbiota structure and function30. In particular, lanthipeptides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) with thioether cross-linked amino acids31, are of pharmaceutical, preservative, and agricultural interest due to their strong antimicrobial properties against gram-positive pathogens31,32,33, low levels of antimicrobial resistance34, and stability35. We identified 195 rumen lanthipeptide BGCs from the Hungate1000 genomes and MAGs from Stewart et al. and the current study. Rumen lanthipeptide BGCs were clustered with 22,870 lanthipeptide BGCs from RefSeq genomes36,37 into gene cluster families (GCFs; groups of BGCs that may generate highly similar products). Clustering with BiG-SCAPE29 yielded 4,565 GCFs, 120 of which contained a rumen lanthipeptide. The 120 GCFs were composed of 519 lanthipeptide BGCs, where 324 were from RefSeq isolates and 195 from rumen genomes (Fig. 5a). The 324 RefSeq BGCs fell into only 18 GCFs. Lanthipeptides from the Hungate1000 isolates clustered into 36 GCFs, while rumen MAG lanthipeptides belonged to 92 GCFs, 82 of which were exclusively composed of MAG lanthipeptides. Together, this evidence suggests rumen MAGs code for diverse and novel lanthipeptides not represented in cultured isolates, including the Hungate Collection.Fig. 5: Phylogenetic diversity of 195 lanthipeptide BGCs coded by rumen genomes.a Network depicting the similarity between lanthipeptide BGCs identified from complete and draft isolate genomes in RefSeq and rumen genomes of the Hungate1000 collection, Stewart et al. MAGs, and MAGs from the current study. The BGCs were clustered into gene cluster families (GCFs) with BiG-SCAPE29. Only the GCFs containing a rumen genome and at least two BGCs were visualized. Nodes in the network represent BGCs and edges connect BGCs with BiG-SCAPE defined similarity ≥0.3. b Phylogenetic relationships of 120 near-complete rumen bacterial genomes coding for lanthipeptide BGCs. Near-complete genomes were defined as being ≥90% complete, having ≤5% contamination, and contig N50 ≥15 kbp. Layers surrounding the genomic trees indicate the bacterial phyla and family, if the genome is a MAG or Hungate Collection isolate, and the class of lanthipeptide, as predicted by antiSMASH27. Genomes without an indicated lanthipeptide class were not classified by antiSMASH. The phylogenetic tree is based on the concatenation of 120 phylogenetically informative bacterial proteins and is available as Supplementary Data 12.Full size imageWe sought to further examine the differences in rumen MAG lanthipeptides relative to isolates and the taxonomic diversity of rumen microbes coding for lanthipeptides. The 195 rumen lanthipeptides were mainly found in Firmicutes genomes, with a subset from Bacteroidota and Actinobacteriota (Fig. 5b). Fifty-two of the 55 lanthipeptides from the Hungate Collection isolates were from Firmicutes (94.5%). At the family-level, these 52 Firmicutes BGCs were distributed evenly between Lachnospiraceae and Streptococcaceae. In contrast, 19.2% and 8.6% of lanthipeptides from rumen MAGs belonged to Bacteroidota and Actinobacteriota, respectively. Lanthipeptides from MAGs were also found in Muribaculaceae and Oscillospiraceae. Moreover, 26.4% of rumen MAG lanthipeptides, compared to 3.6% of Hungate Collection isolates, were found in Eubacterium genomes. The majority of Eubacterium MAG lanthipeptides (62.1%) belonged to a single GCF, suggesting they code for very similar products. Lastly, antiSMASH predicted the bulk of the rumen lanthipeptides were Class II lanthipeptides, with fewer Class I and Class III types (Fig. 5b). Nearly all of the Class I lanthipeptides were from Hungate isolates. The above analysis of lanthipeptide diversity further supports that rumen MAGs code for novel secondary metabolites not represented in cultured isolates.We aligned previously published rumen metatranscriptome data from steers characterized as having high and low feed efficiency to the BGCs to demonstrate if the identified BGCs are active and to explore potential ecological roles of secondary metabolites. Despite data from the metatranscriptome study not being applied to reconstruct genomes in the current study, we identified the expression of 554 gene clusters from rumen-specific genomes in the 20 metatranscriptomes (≥100 aligned reads). Metatranscriptome read count data were normalized independently for each genome to better account for the variation in taxonomic composition across samples38. Genome-specific normalization resulted in the identification of 17 differentially expressed gene clusters between steers with high and low feed efficiency (DESeq239 false discovery rate adjusted P  More

  • in

    Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature

    1.Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, et al. Cryptic biodiversity loss linked to global climate change. Nat Clim Chang. 2011;1:313–8.Article 

    Google Scholar 
    2.Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. Climate change and the past, present, and future of biotic interactions. Science. 2013;341:499–504.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Haines A, Ebi K. The imperative for climate action to protect health. N. Engl J Med. 2019;380:263–73.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, et al. Increase in crop losses to insect pests in a warming climate. Science. 2018;361:916–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Kattwinkel M, Jan-Valentin K, Foit K, Liess M. Climate change, agricultural insecticide exposure, and risk for freshwater communities. Ecol Appl. 2011;21:2068–81.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem. 2013;32:49–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345–53.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Moran EV, Alexander JM. Evolutionary responses to global change: Lessons from invasive species. Ecol Lett. 2014;17:637–49.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Harwood AD, You J, Lydy MJ. Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem. 2009;28:1051–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Guo L, Su M, Liang P, Li S, Chu D. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. Pestic Biochem Physiol. 2018;150:97–104.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Mao K, Jin R, Li W, Ren Z, Qin X, He S, et al. The influence of temperature on the toxicity of insecticides to Nilaparvata lugens (Stål). Pestic Biochem Physiol. 2019;156:80–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Verheyen J, Delnat V, Stoks R. Increased daily temperature fluctuations overrule the ability of gradual thermal evolution to offset the increased pesticide toxicity under global warming. Environ Sci Technol. 2019;53:4600–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104:8627–3863.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA. 2012;109:8618–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, et al. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep. 2015;12:1217–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome. 2017;5:13.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Pang R, Chen M, Yue L, Xing K, Li T, Kang K, et al. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genet. 2018;14:e1007725.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. mBio. 2016;7:e01578–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Corbin C, Heyworth ER, Ferrari J, Hurst GDD. Heritable symbionts in a world of varying temperature. Heredity. 2017;118:10–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Jia FX, Yang MS, Yang WJ, Wang JJ. Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environ Entomol. 2009;38:1365–72.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Burke G, Fiehn O, Moran N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J. 2010;4:242–52.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Fan Y, Wernegreen JJ. Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Micro Ecol. 2013;66:727–33.Article 

    Google Scholar 
    24.Hussain M, Akutse KS, Ravindran K, Lin Y, Bamisile BS, Qasim M, et al. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities. Environ Microbiol. 2017;19:3439–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Engl T, Eberl N, Gorse C, Krüger T, Schmidt THP, Plarre R, et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol Ecol. 2018;27:2095–108.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Zhang XJ, Yu XP, Chen JM. High Temperature effects on yeast-like endosymbiotes and pesticide resistance of the small brown planthopper, Laodelphax striatellus. Rice Sci. 2008;15:326–30.CAS 
    Article 

    Google Scholar 
    27.Zhang B, Zuo TQ, Li HG, Sun LJ, Wang SF, Zhang CY, et al. Effect of heat shock on the susceptibility of Frankliniella occidentalis (Thysanoptera: Thripidae) to insecticides. J Integr Agric. 2016;15:2309–18.CAS 
    Article 

    Google Scholar 
    28.Karimzadeh R, Javanshir M, Hejazi MJ. Individual and combined effects of insecticides, inert dusts and high temperatures on Callosobruchus maculatus (Coleoptera: Chrysomelidae). J Stored Prod Res. 2020;89:10693.Article 

    Google Scholar 
    29.Michigan State University. Arthropod Pesticide Resistance Database (APRD). East Lansing: Michigan State University; 2020. http://www.pesticideresistance.com/.30.Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:676–87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Zhang Y, Tang T, Li W, Cai T, Li J, Wan H. Functional profiling of the gut microbiomes in two different populations of the brown planthopper. Nilaparvata lugens J Asia Pac Entomol. 2018;21:1309–14.Article 

    Google Scholar 
    32.Ye YH, Seleznev A, Flores HA, Woolfit M, McGraw EA. Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia-mediated antiviral protection. J Invertebr Pathol. 2017;143:18–25.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Yamada R, Floate KD, Riegler M, O’Neill SL. Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics. 2007;177:801–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Wari D, Kabir MA, Mujiono K, Hojo Y, Shinya T, Tani A, et al. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J Exp Bot. 2019;70:1683–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Miller ALE, Tindall K, Leonard BR. Bioassays for monitoring insecticide resistance. J Vis Exp. 2010;46:2129.
    Google Scholar 
    36.Zhang J, Zhang Y, Wang Y, Yang Y, Cang X, Liu Z. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: a genome-scale analysis. Pestic Biochem Physiol. 2016;132:59–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Noda H, Koizumi Y, Zhang Q, Deng K. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol. 2001;31:727–37.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011. https://doi.org/10.14806/ej.17.1.20040.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Liu S, Ding Z, Zhang C, Yang B, Liu Z. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol. 2010;40:666–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Tai V, James ER, Nalep CA, Scheffrahn RH, Perlman SJ, Keelinga PJ. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol. 2015;81:1059–70.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Bale JS, Hayward SAL. Insect overwintering in a changing climate. J Exp Biol. 2010;213:980–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, et al. Recent climate observations compared to projections. Science. 2007;316:709.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A, Hassall C, et al. Adaptive responses of animals to climate change are most likely insufficient. Nat Commun. 2019;10:3019.Article 
    CAS 

    Google Scholar 
    48.Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun. 2020;11:2130.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Li J, Mao T, Wang H, Lu Z, Qu J, Fang Y, et al. The CncC/keap1 pathway is activated in high temperature-induced metamorphosis and mediates the expression of Cyp450 genes in silkworm, Bombyx mori. Biochem Biophys Res Commun. 2019;541:1045–50.Article 
    CAS 

    Google Scholar 
    50.Kalsi M, Palli SR. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol. 2017;83:1–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Kalsi M, Palli SR. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum. Insect Biochem Mol Biol. 2015;65:47–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Misra JR, Lam G, Thummel CS. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochem Mol Biol. 2013;43:1116–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Tang B, Cheng Y, Li Y, Li W, Ma Y, Zhou Q, et al. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Chemosphere. 2020;259:127490.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Cheng Y, Li Y, Li W, Song Y, Zeng R, Lu K. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes. Chemosphere. 2021;263:128269.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Li Y, Liu X, Wang N, Zhang Y, Hoffmann AA, Guo H. Background-dependent Wolbachia-mediated insecticide resistance in Laodelphax striatellus. Environ Microbiol. 2020;22:2653–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M. High Wolbachia density in insecticide-resistant mosquitoes. Proc R Soc B Biol Sci. 2002;269:1413–6.Article 

    Google Scholar 
    57.Zhang G, Hussain M, O’Neill SL, Asgari S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc Natl Acad Sci USA. 2013;110:10276–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Bi J, Sehgal A, Williams JA, Wang YF. Wolbachia affects sleep behavior in Drosophila melanogaster. J Insect Physiol. 2018;107:81–88.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory. 2018;13:44–65.Article 

    Google Scholar 
    60.Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:E23–31.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Gong JT, Li Y, Li TP, Liang Y, Hu L, Zhang D, et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Curr Biol. 2020;30:4837–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Elzaki MEA, Li ZF, Wang J, Xu L, Liu N, Zeng RS, et al. Activiation of the nitric oxide cycle by citrulline and arginine restores susceptibility of resistant brown planthoppers to the insecticide imidacloprid. J Hazard Mater. 2020;396:122755.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Werren JH. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Kokou F, Sasson G, Nitzan T, Doron-Faigenboim A, Harpaz S, Cnaani A, et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. Elife. 2018;77:e36398.Article 

    Google Scholar  More

  • in

    Annual climatic fluctuations and short-term genetic variation in the eastern spadefoot toad

    1.Hoffman, E. A., Schueler, F. W. & Blouin, M. S. Effective population sizes and temporal stability of genetic structure in Rana pipiens, the northern leopard frog. Evolution 58, 2536–2545. https://doi.org/10.1111/j.0014-3820.2004.tb00882.x (2004).Article 
    PubMed 

    Google Scholar 
    2.Hoeck, P. E. A., Bollmer, J. L., Parker, P. G. & Keller, L. F. Differentiation with drift: A spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.). Philos. Trans. R. Soc. B 365, 1127–1138. https://doi.org/10.1098/rstb.2009.0311 (2010).Article 

    Google Scholar 
    3.Maebe, K. et al. A century of temporal stability of genetic diversity in wild bumblebees. Sci. Rep. 6, 38289. https://doi.org/10.1038/srep38289 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Schmid, S. et al. Spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus revealed by museum genomics. Ecol. Evol. 8, 1480–1495. https://doi.org/10.1002/ece3.3699 (2018).Article 
    PubMed 

    Google Scholar 
    5.Garant, D., Dodson, J. J. & Bernatchez, L. Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar). Mol. Ecol. 9, 615–628. https://doi.org/10.1046/j.1365-294X.2000.00909.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Jonsdottir, O. D. B., Danielsdottir, A. K. & Naevdal, G. Genetic differentiation among Atlantic cod (Gadus morhua) in Icelandic waters: Temporal stability. ICES J. Mar. Sci. 58, 114–122. https://doi.org/10.1006/jmsc.2000.0995 (2001).Article 

    Google Scholar 
    7.Rojas-Hernandez, N., Veliz, D., Riveros, M. P., Fuentes, J. P. & Pardo, L. M. Highly connected populations and temporal stability in allelic frequencies of a harvested crab from the Southern Pacific coast. PLoS ONE 11, 1–18. https://doi.org/10.1371/journal.pone.0166029 (2016).CAS 
    Article 

    Google Scholar 
    8.Vera, M. et al. Current genetic status, temporal stability and structure of the remnant wild European flat oyster populations: Conservation and restoring implications. Mar. Biol. 163, 1–17. https://doi.org/10.1007/s00227-016-3012-x (2016).Article 

    Google Scholar 
    9.Richards, C. M., Emery, S. N. & McCauley, D. E. Genetic and demographic dynamics of small populations of Silene latifolia. Heredity 90, 181–186. https://doi.org/10.1038/sj.hdy.6800214 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Mhemmed, G., Kamel, H. & Chedly, A. Does habitat fragmentation reduce genetic diversity and subpopulation connectivity?. Ecography 31, 751–756. https://doi.org/10.1111/j.1600-0587.2008.05622.x (2008).Article 

    Google Scholar 
    11.Gomaa, N. H., Montesinos-Navarro, A., Alonso-Blanco, C. & Picó, F. X. Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol. Ecol. 20, 3540–3554. https://doi.org/10.1111/j.1365-294X.2011.05193.x (2011).Article 
    PubMed 

    Google Scholar 
    12.Hinkson, K. M. & Richter, S. C. Temporal trends in genetic data and effective population size support efficacy of management practices in critically endangered dusky gopher frogs (Lithobates sevosus). Ecol. Evol. 6, 2667–2678. https://doi.org/10.1002/ece3.2084 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Savage, W. K., Fremier, A. K. & Shaffer, H. B. Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Mol. Ecol. 19, 3301–3314. https://doi.org/10.1111/j.1365-294X.2010.04718.x (2010).Article 
    PubMed 

    Google Scholar 
    14.Ficetola, G. F., Garner, T. W. J., Wang, J. & De Bernardi, F. Rapid selection against inbreeding in a wild population of a rare frog. Evol. Appl. 4, 30–38. https://doi.org/10.1111/j.1752-4571.2010.00130.x (2011).Article 
    PubMed 

    Google Scholar 
    15.Richter, S. C. & Nunziata, S. O. Survival to metamorphosis is positively related to genetic variability in a critically endangered amphibian species. Anim. Conserv. 17, 265–274. https://doi.org/10.1111/acv.12088 (2014).Article 

    Google Scholar 
    16.Holmes, I. & Crawford, A. Temporal population genetic instability in range-edge western toads, anaxyrus boreas. J. Hered. 106, 45–56. https://doi.org/10.1093/jhered/esu068 (2015).Article 
    PubMed 

    Google Scholar 
    17.Munwes, I. et al. The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol. Ecol. 19, 2675–2689. https://doi.org/10.1111/j.1365-294X.2010.04712.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Agasyan, A., Tuniyev, B., Isailovic, J. C., Lymberakis, P., Andrén, C., Cogalniceanu, D. et al. Pelobates syriacus. The IUCN Red List of Threatened Species. www.iucnredlist.org (2009).19.Gafny, S. The biology and ecology of the Syrian spadefoot toad Pelobates syriacus in Israel (MSc thesis). Tel Aviv University (1986).20.Hollar, A. R., Choi, J., Grimm, A. T. & Buchholz, D. R. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate. Gen. Comp. Endocrinol. 173, 190–198. https://doi.org/10.1016/j.ygcen.2011.05.013 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Székely, P., Tudor, M. & Cogalniceanu, D. Effect of habitat drying on the development of the Eastern spadefoot toad (Pelobates syriacus) tadpoles. Amphib. Reptil. 31, 425–434. https://doi.org/10.1163/156853810791769536 (2010).Article 

    Google Scholar 
    22.Storz, B. L. & Travis, J. Temporally dissociated, trait-specific modifications underlie phenotypic polyphenism in Spea multiplicata tadpoles, which suggests modularity. Sci. World J. 7, 715–726. https://doi.org/10.1100/tsw.2007.159 (2007).Article 

    Google Scholar 
    23.Mahlstein, I., Portmann, R. W., Daniel, J. S., Solomon, S. & Knutti, R. Perceptible changes in regional precipitation in a future climate. Geophys. Res. Lett. 39, 1–5. https://doi.org/10.1029/2011GL050738 (2012).Article 

    Google Scholar 
    24.Fisher, R. The Genetical Theory of Natural Selection (Oxford University Press, 1930).Book 

    Google Scholar 
    25.Bürger, R. The maintenance of genetic variation: A functional analytic approach to quantitative genetic models. In Population Genetics and Evolution (ed. de Jong, G.) 63–72 (Springer, 1988).Chapter 

    Google Scholar 
    26.Parsons, P. A. Evolutionary rates: Stress and species boundaries. Ann. Rev. Ecol. Syst. 22, 1–18. https://doi.org/10.1146/annurev.es.22.110191.000245 (1991).Article 

    Google Scholar 
    27.Safriel, U. N., Volis, S. & Kark, S. Core and peripheral populations and global climate change. Isr. J. Plant Sci. 42, 331–345. https://doi.org/10.1080/07929978.1994.10676584 (1994).Article 

    Google Scholar 
    28.Wan, Q. H., Wu, H., Fujihara, T. & Fang, S. G. Which genetic marker for which conservation genetics issue?. Electrophoresis 25, 2165–2176. https://doi.org/10.1002/elps.200305922 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Gafny, S. & Gasith, A. Rainpools in Israel. Internal report, the Nature and Parks Authority of Israel (2005).31.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(67)90048-3 (1966).Article 

    Google Scholar 
    32.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    34.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    35.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. U.S.A. 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269 (1979).ADS 
    CAS 
    Article 
    MATH 

    Google Scholar 
    36.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–656. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    37.Saltelli, A. Making best use of model valuations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1 (2002).ADS 
    CAS 
    Article 
    MATH 

    Google Scholar 
    38.Robinson, M. R. et al. The Impact of environmental heterogeneity on genetic architecture in a wild population of soay sheep. Genetics 181, 1639–1648. https://doi.org/10.1534/genetics.108.086801 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Charmantier, A. & Garant, D. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B 272, 1415–1425. https://doi.org/10.1098/rspb.2005.3117 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Stanescu, F., Iosif, R., Szkely, P., Szkely, D. & Cogalniceanu, D. Mass migration of Pelobates syriacus (Boettger, 1889) metamorphs. Herpetozoa 29, 87–89 (2016).
    Google Scholar 
    41.Levin, N., Elron, E. & Gasith, A. Decline of wetland ecosystems in the coastal plain of Israel during the 20th century: Implications for wetland conservation and management. Landsc. Urban Plan. 92, 220–232. https://doi.org/10.1016/j.landurbplan.2009.05.009 (2009).Article 

    Google Scholar 
    42.Waples, R. S. & Teel, D. J. Conservation genetics of pacific salmon I. Temporal changes in allele frequency. Conser. Biol. 4, 144–156. https://doi.org/10.1111/j.1523-1739.1990.tb00103.x (1990).Article 

    Google Scholar 
    43.Chen, N. et al. Allele frequency dynamics in a pedigreed natural population. Proc. Nat. Acad. Sci. U.S.A. 116, 2158–2164. https://doi.org/10.1073/pnas.1813852116 (2019).CAS 
    Article 

    Google Scholar 
    44.Ballon, Y. The effects of different light regimes on activity rhythms of the eastern spadefoot toad (Pelobates syriacus). M.Sc. thesis. Department of Zoology. Tel-Aviv University (2015).45.Cogalniceanu, D. et al. Age and body size in populations of two syntopic spadefoot toads (genus Pelobates) at the limit of their ranges. J. Herpetol. 48, 537–545. https://doi.org/10.1670/13-101 (2014).Article 

    Google Scholar 
    46.Dimmitt, M. Environmental correlates of emergence in spadefoot toads (Scaphiopus). J. Herpetol. 14, 21–29. https://doi.org/10.2307/1563871 (1980).Article 

    Google Scholar 
    47.Crispo, E. & Chapman, L. J. Population genetic structure across dissolved oxygen regimes in an African cichlid fish. Mol. Ecol. 17, 2134–2148. https://doi.org/10.1111/j.1365-294X.2008.03729.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Crispo, E. & Chapman, L. J. Temporal variation in population genetic structure of a riverine African cichlid fish. J. Hered. 101, 97–106. https://doi.org/10.1093/jhered/esp078 (2010).Article 
    PubMed 

    Google Scholar 
    49.Kitanishi, S., Ikeda, T. & Yamamoto, T. Short-term temporal instability in fine-scale genetic structure of masu salmon. Freshw. Biol. 62, 1655–1664. https://doi.org/10.1111/fwb.12978 (2017).Article 

    Google Scholar  More

  • in

    Determining future aflatoxin contamination risk scenarios for corn in Southern Georgia, USA using spatio-temporal modelling and future climate simulations

    1.Reynolds, M. P. & Ortiz, R. Climate change and crop production, Chap. Adapting Crops to Climate Change: A Summary. 1–8 (CABI, 2010).2.Lal, R. et al. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 66, 276–285 (2011).Article 

    Google Scholar 
    3.FAO. A Framework for Land Evaluation. Food and Agriculture Organization of the United Nations, Soils Bulletin No.32. (FAO, Rome, 1976).4.FAO. Land Evaluation. Towards a Revised Framework, Food and Agriculture Organization of the United Nations, Land and Water Discussion Paper No.6. (FAO, Rome, 2007).5.Abbas, H., Shier, W. & Cartwright, R. Effect of temperature, rainfall and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas. Phytoprotection 88, 41–50 (2007).CAS 
    Article 

    Google Scholar 
    6.Brenneman, T. B., Wilson, D. M. & Beaver, R. W. Effects of diniconazole on Aspergillus populations and aflatoxin formation in peanut under irrigated and nonirrigated conditions. Plant Dis. 77, 608–612 (1993).CAS 
    Article 

    Google Scholar 
    7.Wang, T., Zhang, E., Chen, X., Li, L. & Liang, X. Identification of seed proteins associated with resistance to preharvested aflatoxin contamination in peanut (Arachis hypogaea). BMC Plant Biol. 10, 267 (2010).CAS 
    Article 

    Google Scholar 
    8.Gasperini, A. M. et al. Resilience of biocontrol for aflatoxin minimization strategies: Climate change abiotic factors may affect control in non-GM and GM-maize cultivars. Front. Microbiol. 10, 2525 (2019).Article 

    Google Scholar 
    9.Barrett, J. R. Liver cancer and aflatoxin. Environ. Heal. Perspect. 113, 837–838 (2005).
    Google Scholar 
    10.US Food and Drug Administration. Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd edn. (Center for Food Safety Applied Nutrition, 2004).11.Marchese, S. et al. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 10, 214 (2018).Article 

    Google Scholar 
    12.Guo, B., Chen, Z.-Y., Lee, R. D. & Scully, B. T. Drought stress and preharvest aflatoxin contamination in agricultural commodity: Genetics, genomics and proteomics. J. Integr. Plant Biol. 50, 1281–1291 (2008).CAS 
    Article 

    Google Scholar 
    13.Horn, B. W. et al. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn. Phytopathology 104, 75–85 (2014).Article 

    Google Scholar 
    14.Payne, G. A. & Widstrom, N. W. Aflatoxin in maize. Critical Rev. Plant Sci. 10, 423–440 (1992).CAS 
    Article 

    Google Scholar 
    15.Kerry, R., Ortiz, B. V., Ingram, B. R. & Scully, B. T. A spatio-temporal investigation of risk factors for aflatoxin contamination of corn in southern Georgia, USA using geostatistical methods. Crop. Prot. 94, 144–158 (2017).CAS 
    Article 

    Google Scholar 
    16.Yoo, E., Kerry, R., Ingram, B., Ortiz, B. & Scully, B. Defining and characterizing Aflatoxin contamination risk areas for corn in Georgia, USA: Adjusting for collinearity and spatial correlation. Spatial Stat. 28, 84–104 (2018).MathSciNet 
    Article 

    Google Scholar 
    17.FAO (Food and Agriculture Organization). Worldwide regulations for mycotoxins in food and feed in 2003. in FAO Food and Nutrition Paper 81 (2004).18.Mazumder, P. M. & Sasmal, D. Mycotoxins—Limits and regulations. Anc. Sci. Life 20, 1 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.US Food and Drug Administration. CPG Sec. 683.100 Action Levels for Aflatoxins in Animal Feeds. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-683100-action-levels-aflatoxinsanimal-feeds (2019).20.European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 364 (2006).21.Commission, E. Commission Regulation (EC) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union 50, 8–12 (2010).
    Google Scholar 
    22.Medina, A., Rodriguez, A. & Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 5, 348 (2014).Article 

    Google Scholar 
    23.Medina, A., Rodríguez, A., Sultan, Y. & Magan, N. Climate change factors and Aspergillus flavus: Effects on gene expression, growth and aflatoxin production. World Mycotoxin J. 8, 171–179 (2015).Article 

    Google Scholar 
    24.Garcia-Cela, E. et al. Unveiling the effect of interacting forecasted abiotic factors on growth and Aflatoxin B1 production kinetics by Aspergillus flavus. Fungal Biol. (2020).25.Widstrom, N. W., Forster, M. J., Martin, W. K. & Wilson, D. M. Agronomic performance in the southeastern United States of maize hybrids containing tropical germplasm. Maydica 41, 59–63 (1996).
    Google Scholar 
    26.Damianidis, D. et al. Evaluating a generic drought index as a predictive tool for aflatoxin contamination of corn: From plot to regional level. Crop Prot. 113, 64–74 (2018).CAS 
    Article 

    Google Scholar 
    27.Salvacion, A. et al. Effect of rainfall and maximum temperature on corn aflatoxin in the southeastern U. S coastal plain. in Proceedings of the Climate Information for Managing Risks. Orlando, Florida (2011).28.Damianidis, D. et al. Minimum temperature, rainfall, and agronomic management impacts on corn grain aflatoxin contamination. Agron. J 110(5), 1697–1708 (2018).Article 

    Google Scholar 
    29.Navarro, F., Ingram, B., Kerry, R., Ortiz, B. V. & Scully, B. T. A web-based GIS decision support tool for determining corn aflatoxin risk: A case study data from Southern Georgia, USA. Adv. Anim. Biosci. 8, 718 (2017).Article 

    Google Scholar 
    30.Battilani, P. et al. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Nat. Sci. Rep. 6, 24328 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109(1), 77–94 (2011).32.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. PNAS USA 117(33), 19656–19657 (2012).33.Stocker, T. F. et al. Climate change 2013: The physical science basis. in Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).34.Wacoo, A. P., Wendiro, D., Vuzi, P. C. & Hawumba, J. F. Methods for detection of aflatoxins in agricultural food crops. J. Appl. Chem. 2014, 706291 (2014).35.Kerry, R. & Oliver, M. A. Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry. Comput. Geosci. 33, 1212–1232 (2007).ADS 
    Article 

    Google Scholar 
    36.Webster, R. & Oliver, M. A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 43(1), 177–192 (1992).Article 

    Google Scholar 
    37.Monestiez, P., Dubroca, L., Bonnin, E., Durbec, J. P. & Guinet, C. Geostatistical modelling of spatial distribution of Balaenoptera physalus in the Northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts. Ecol. Model. 193, 615–628 (2006).Article 

    Google Scholar 
    38.Hegewisch, K. C. & Abatzoglou, J. T. ‘Future Time Series’ Web Tool. NW Climate Toolbox. https://climatetoolbox.org/. Accessed June 2019.39.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar  More

  • in

    Variability, heritability and condition-dependence of the multidimensional male colour phenotype in a passerine bird

    Andersson M (2006) Condition-dependent indicators in sexual selection: development of theory and tests. In: Lucas JR, Simmons LW (eds) Essays in Animal Behaviour: Celebrating 50 Years of Animal Behaviour. Elsevier Academic Press, p 255–269.Badyaev AV, Hill GE (2000) Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based colouration. Biol J Linn Soc 69:153–172Article 

    Google Scholar 
    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Article 

    Google Scholar 
    Bednekoff PA, Houston AI (1994) Avian daily foraging patterns: effects of digestive constraints and variability. Evol Ecol 8:36–52Article 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300.Bonduriansky R, Rowe L (2005) Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59:138–151PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Brooks R, Kemp DJ (2001) Can older males deliver the good genes? TREE 16:308–313CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butler D (2009) ASReml R package version 3.0. VSN International Ltd, Hemel Hempstead, UK
    Google Scholar 
    Cassey P, Ewen J, Blackburn T, Hauber M, Vorobyev M, Marshall N (2008) Eggshell colour does not predict measures of maternal investment in eggs of Turdus thrushes. Naturwissenschaften 95:713–721CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Charmantier A, Wolak ME, Grégoire A, Fargevieille A, Doutrelant C (2017) Colour ornamentation in the blue tit: quantitative genetic (co) variances across sexes. Heredity 118:125CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Class B, Kluen E, Brommer JE (2019) Tail colour signals performance in blue tit nestlings. J Evol Biol 32:913–920PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Cotton S, Fowler K, Pomiankowski A (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc R Soc Lond B Biol Sci 271:771–783Article 

    Google Scholar 
    Cuthill IC (2006) Color perception. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press, p 3–40.D’Alba L, Van Hemert C, Spencer KA, Heidinger BJ, Gill L, Evans NP et al. (2014) Melanin-based color of plumage: role of condition and of feathers’ microstructure. Integr Comp Biol 54:633–644PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Dale J, Dey CJ, Delhey K, Kempenaers B, Valcu M (2015) The effects of life history and sexual selection on male and female plumage colouration. Nature 527:367–370CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Darwin C (1871) The Descent of Man and Selection in Relation to Sex. Princeton University Press.Delhey K, Burger C, Fiedler W, Peters A (2010) Seasonal changes in colour: a comparison of structural, melanin-and carotenoid-based plumage colours. PLoS ONE 5:e11582PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Delhey K, Delhey V, Kempenaers B, Peters A (2015) A practical framework to analyze variation in animal colors using visual models. Behav Ecol 26:367–375Article 

    Google Scholar 
    Delhey K, Hall ML, Kingma SA, Peters A (2013) Increased conspicuousness can explain the match between visual sensitivities and blue plumage colours in fairy-wrens. Proc R Soc Lond B Biol Sci 284:20121771
    Google Scholar 
    Delhey K, Peters A (2008) Quantifying variability of avian colours: Are signalling traits more variable? PLoS ONE 3:e1689.Delhey K, Szecsenyi B, Nakagawa S, Peters A (2017) Conspicuous plumage colours are highly variable. Proc R Soc Lond B Biol Sci 284:20162593
    Google Scholar 
    Dobson AE, Schmidt DJ, Hughes JM (2019) Heritability of plumage colour morph variation in a wild population of promiscuous, long-lived Australian magpies. Heredity 123:349–358PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dunn PO, Whittingham LA, Pitcher TE (2001) Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55:161–175CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Endler JA, Mielke PW (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405–431Article 

    Google Scholar 
    Endler JA, Westcott DA, Madden JR, Robson T (2005) Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59:1795–1818PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Evans MR, Barnard P (1995) Variable sexual ornaments in scarlet-tufted malachite sunbirds (Nectarinia johnstoni) on Mount Kenya. Biol J Linn Soc 54:371–381Article 

    Google Scholar 
    Evans SR, Sheldon BC (2012) Quantitative genetics of a carotenoid-based color: heritability and persistent natal environmental effects in the great tit. Am Nat 179:79–94PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fan M, D’Alba L, Shawkey MD, Peters A, Delhey K (2019) Multiple components of feather microstructure contribute to structural plumage colour diversity in fairy-wrens. Biol J Linn Soc 128:550–568Article 

    Google Scholar 
    Fan M, Hall ML, Kingma SA, Mandeltort LM, Hidalgo Aranzamendi N, Delhey K et al. (2017) No fitness benefits of early molt in a fairy-wren: relaxed sexual selection under genetic monogamy? Behav Ecol 28:1055–1067Article 

    Google Scholar 
    Fan M, Teunissen N, Hall ML, Hidalgo Aranzamendi N, Kingma SA, Roast M et al. (2018) From ornament to armament or loss of function? Breeding plumage acquisition in a genetically monogamous bird. J Anim Ecol 87:1274–1285PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Garant D, Sheldon BC, Gustafsson L (2004) Climatic and temporal effects on the expression of secondary sexual characters: genetic and environmental components. Evolution 58:634–644PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gosden TP, Chenoweth SF (2011) On the evolution of heightened condition dependence of male sexual displays. J Evol Biol 24:685–692CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1–14Article 

    Google Scholar 
    Guindre‐Parker S, Love OP (2014) Revisiting the condition‐dependence of melanin‐based plumage. J Avian Biol 45:29–33Article 

    Google Scholar 
    Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22Article 

    Google Scholar 
    Hadfield JD, Burgess MD, Lord A, Phillimore AB, Clegg SM, Owens IP (2006) Direct versus indirect sexual selection: genetic basis of colour, size and recruitment in a wild bird. Proc R Soc Lond B Biol Sci 273:1347–1353
    Google Scholar 
    Hadfield JD, Nutall A, Osorio D, Owens IPF (2007) Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. J Evol Biol 20:549–557CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hall ML, Kingma SA, Peters A (2013) Male songbird indicates body size with low-pitched advertising songs. PLoS ONE 8:e56717CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall ML, Peters A (2009) Do male paternity guards ensure female fidelity in a duetting fairy-wren? Behav Ecol 20:222–228Article 

    Google Scholar 
    Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hart NS (2001) Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol A 187:685–697CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hart NS, Hunt DM (2007) Avian visual pigments: characteristics, spectral tuning, and evolution. Am Nat 169(S1):S7–S26PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hawkins GL, Hill GE, Mercadante A (2012) Delayed plumage maturation and delayed reproductive investment in birds. Biol Rev 87:257–274PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hegyi G, Szigeti B, Török J, Eens M (2007) Melanin, carotenoid and structural plumage ornaments: information content and role in great tits Parus major. J Avian Biol 38:698–708Article 

    Google Scholar 
    Hidalgo Aranzamendi N (2017) Life-history variation in a tropical cooperative bird: ecological and social effects on productivity. PhD Thesis, Monash University.Hidalgo Aranzamendi N, Hall ML, Kingma SA, Sunnucks P, Peters A (2016) Incest avoidance, extrapair paternity, and territory quality drive divorce in a year-round territorial bird. Behav Ecol 27:1808–1819.Hidalgo Aranzamendi N, Hall ML, Kingma SA, van de Pol M, Peters A (2019) Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. J Anim Ecol 88:1799–1811PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hill GE (2006) Environmental regulation of ornamental coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press. p 507–560.Hill GE, Brawner WR (1998) Melanin-based plumage colouration in the house finch is unaffected by coccidial infection. Proc R Soc Lond B Biol Sci 265:1105–1109Article 

    Google Scholar 
    Johnstone RA, Rands SA, Evans MR (2009) Sexual selection and condition‐dependence. J Evol Biol 22:2387–2394CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kappers EF, de Vries C, Alberda A, Forstmeier W, Both C, Kempenaers B (2018) Inheritance patterns of plumage coloration in common buzzards Buteo buteo do not support a one-locus two-allele model. Biol Lett 14:20180007PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kemp DJ, Rutowski RL (2007) Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution 61:168–183PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kendeigh SC, Kontogiannis JE, Mazac A, Roth RR (1969) Environmental regulation of food intake by birds. Comp Biochem Physiol 31:941–957Article 

    Google Scholar 
    Keyser AJ, Hill GE (2000) Structurally based plumage coloration is an honest signal of quality in male blue grosbeaks. Behav Ecol 11:202–209Article 

    Google Scholar 
    Kingma SA, Hall ML, Arriero E, Peters A (2010) Multiple benefits of cooperative breeding in purple-crowned fairy-wrens: a consequence of fidelity? J Anim Ecol 79:757–768PubMed 
    PubMed Central 

    Google Scholar 
    Kingma SA, Hall ML, Peters A (2011) No evidence for offspring sex-ratio adjustment to social or environmental conditions in cooperatively breeding purple-crowned fairy-wrens. Behav Ecol Sociobiol 65:1203–1213Article 

    Google Scholar 
    Kingma SA, Hall ML, Segelbacher G, Peters A (2009) Radical loss of an extreme extra-pair mating system. BMC Ecol 9:15PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kokko H (1997) Evolutionarily stable strategies of age-dependent sexual advertisement. Behav Ecol Sociobiol 41:99–107Article 

    Google Scholar 
    Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package ‘lmerTest’ R version 20–33.Lantz SM, Karubian J (2016) Male Red-backed Fairywrens appear to enhance a plumage-based signal via adventitious molt. The Auk 133:338–346Article 

    Google Scholar 
    Lind O, Chavez J, Kelber A (2014) The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions. J Comp Physiol A 200:197–207Article 

    Google Scholar 
    Lind O, Henze MJ, Kelber A, Osorio D (2017) Coevolution of coloration and colour vision? Philos Trans R Soc Lond B Biol Sci 372:20160338PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lindström Å, Visser GH, Daan S (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol Zool 66:490–510Article 

    Google Scholar 
    Manning JT (1985) Choosy females and correlates of male age. J Theor Biol 116:349–354Article 

    Google Scholar 
    Masello JF, Lubjuhn T, Quillfeldt P (2008) Is the structural and psittacofulvin-based coloration of wild burrowing parrots Cyanoliseus patagonus condition dependent? J Avian Biol 39:653–662Article 

    Google Scholar 
    McGraw KJ (2006) Mechanics of melanin coloration in birds. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press. p 243–294.McGraw KJ, Mackillop EA, Dale J, Hauber ME (2002) Different colors reveal different information: how nutritional stress affects the expression of melanin- and structurally based ornamental plumage. J Exp Biol 205:3747–3755PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McGraw KJ, Safran RJ, Wakamatsu K (2005) How feather colour reflects its melanin content. Funct Ecol 19:816–821Article 

    Google Scholar 
    McQueen A, Delhey K, Barzan FR, Naimo AC, Peters A (2021) Male fairy-wrens produce and maintain vibrant breeding colors irrespective of individual quality. Behav Ecol 32:178–187Article 

    Google Scholar 
    Merilä J, Sheldon BC (1999) Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity 83:103–109PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Meunier J, Pinto SF, Burri R, Roulin A (2011) Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav Ecol Sociobiol 65:559–567Article 

    Google Scholar 
    Ödeen A, Pruett-Jones S, Driskell AC, Armenta JK, Håstad O (2012) Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc R Soc Lond B Biol Sci 279:1269–1276
    Google Scholar 
    Olsson P, Lind O, Kelber A (2017) Chromatic and achromatic vision: parameter choice and limitations for reliable model predictions. Behav Ecol 29:273–282Article 

    Google Scholar 
    Owens IPF, Hartley IR (1998) Sexual dimorphism in birds: why are there so many different forms of dimorphism? Proc R Soc Lond B Biol Sci 265:397–407Article 

    Google Scholar 
    Peters A, Delhey K, Andersson S, Van Noordwijk H, Förschler MI (2008) Condition‐dependence of multiple carotenoid‐based plumage traits: an experimental study. Funct Ecol 22:831–839Article 

    Google Scholar 
    Peters A, Kingma SA, Delhey K (2013) Seasonal male plumage as a multi-component sexual signal: Insights and opportunities. Emu 113:232–247Article 

    Google Scholar 
    Peters A, Kurvers RHJM, Roberts ML, Delhey K (2011) No evidence for general condition-dependence of structural plumage colour in blue tits: an experiment. J Evol Biol 24:976–987CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pomiankowski A, Møller AP (1995) A resolution of the lek paradox. Proc R Soc Lond B Biol Sci 260:21–29Article 

    Google Scholar 
    Price T, Schluter D (1991) On the low heritability of life‐history traits. Evolution 45:853–861PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Proulx SR, Day T, Rowe L (2002) Older males signal more reliably. Proc R Soc Lond B Biol Sci 269:2291–2299Article 

    Google Scholar 
    Prum RO (2006) Anatomy, physics, and evolution of structural colours. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press. p 295–353.Prum RO (2010) The Lande–Kirkpatrick mechanism is the null model of evolution by intersexual selection: implications for meaning, honesty, and design in intersexual signals. Evolution 64:3085–3100PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.Reinhold K (2011) Variation in acoustic signalling traits exhibits footprints of sexual selection. Evolution 65:738–745PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Renoult JP, Kelber A, Schaefer HM (2017) Colour spaces in ecology and evolutionary biology. Biol Rev 92:292–315PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Roast MJ, Aranzamendi NH, Fan M, Teunissen N, Hall MD, Peters A (2020) Fitness outcomes in relation to individual variation in constitutive innate immune function. Proc R Soc Lond B Biol Sci 287:20201997
    Google Scholar 
    Roulin A (2016) Condition‐dependence, pleiotropy and the handicap principle of sexual selection in melanin‐based colouration. Biol Rev 91:328–348PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Roulin A, Ducrest AL (2013) Seminars in cell and developmental biology, Vol 24, no 6–7. Academic Press. p 594–608.Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond B Biol Sci 263:1415–1421Article 

    Google Scholar 
    Rowley I, Russell E (1997) Fairy-wrens and Grasswrens: Maluridae. Oxford University Press.Taylor PD, Williams GC (1982) The lek paradox is not resolved. Theor Popul Biol 22:392–409Article 

    Google Scholar 
    Schodde R (1982) The Fairy-wrens: a monograph of the Maluridae. Lansdowne Editions.Shawkey MD, D’Alba L (2017) Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos Trans R Soc Lond B Biol Sci 372:20160536PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tibbetts EA (2010) The condition dependence and heritability of signaling and nonsignaling color traits in paper wasps. Am Nat 175:495–503PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual Selection and the Descent of Man 1871–1971. Heinemann. p 136–179.Vorobyev M, Osorio D, Bennett AT, Marshall NJ, Cuthill IC (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    White TE (2020) Structural colours reflect individual quality: a meta-analysis. Biol Lett 16:20200001PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson AJ, Reale D, Clements MN, Morrissey MM, Postma E, Walling CA et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions

    1.Shewry, P. R. Wheat. J. Exp. Bot. 60, 1537–1553 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Shewry, P. R. & Hey, S. J. The contribution of wheat to human diet and health. Food Energy Secur. 4, 178–202 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Shiferaw, B. et al. Crops that feed the world 10: Past successes and future challenges to the role played by wheat in global food security. Food Secur. 5, 291–317 (2013).Article 

    Google Scholar 
    4.Pickett, J. A. et al. Delivering sustainable crop protection systems via the seed: Exploiting natural constitutive and inducible defence pathways. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20120281 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Dinant, S., Bonnemain, J. L., Girousse, C. & Kehr, J. Phloem sap intricacy and interplay with aphid feeding. C. R. Biol. 333, 504–515 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Rabbinge, R., Drees, E. M., van der Graaf, M., Verberne, F. C. M. & Wesselo, A. Damage effects of cereal aphids in wheat. Netherlands J. Plant Pathol. 87, 217–232 (1981).Article 

    Google Scholar 
    7.Leather, S. R., Walters, K. F. A. & Dixon, A. F. G. Factors determining the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: A study and review. Bull. Entomol. Res. 79, 345–360 (1989).Article 

    Google Scholar 
    8.Halbert, S. E., Connelly, J. B., Bishop, G. W. & Blackmer, J. L. Transmission of barley yellow dwarf virus by field collected aphids (Homoptera: Aphididae) and their relative importance in barley yellow dwarf epidemiology in southwestern Idaho. Ann. Appl. Biol. 121, 105–121 (1992).Article 

    Google Scholar 
    9.Chapin, J. W., Thomas, J. S., Gray, S. M., Smith, D. M. & Halbert, S. E. Seasonal abundance of aphids (Homoptera: Aphididae) in wheat and their role as barley yellow dwarf virus vectors in the South Carolina coastal plain. J. Econ. Entomol. 94, 410–421 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Tanguy, S. & Dedryver, C. Reduced BYDV–PAV transmission by the grain aphid in a Triticum monococcum line. Eur. J. Plant Pathol. 123, 281–289 (2009).Article 

    Google Scholar 
    11.Yu, W. et al. Variation in the transmission of barley yellow dwarf virus-PAV by different Sitobion avenae clones in China. J. Virol. Methods 194, 1–6 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Voss, T. S., Kieckhefer, R. W., Fuller, B. W., Mcleod, M. J. & Beck, D. A. Yield losses in maturing spring wheat caused by cereal aphids (Homoptera: Aphididae) under laboratory conditions. J. Econ. Entomol. 90, 1346–1350 (1997).Article 

    Google Scholar 
    13.Aradottir, G. I. & Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: A review. Curr. Opin. Insect Sci. 45, 59–68 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Foster, S. P. et al. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. Pest Manag. Sci. 70, 1249–1253 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692 (2006).Article 

    Google Scholar 
    16.Pickett, J. A. Food security: Intensification of agriculture is essential, for which current tools must be defended and new sustainable technologies invented. Food Energy Secur. 2, 167–173 (2013).Article 

    Google Scholar 
    17.Bezemer, T. M., Jones, T. H. & Knight, K. J. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid aphidius matricariae. Oecologia 116, 128–135 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Van Der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    19.Thaler, J. S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399, 686–688 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Rasmann, S., Chassin, E., Bilat, J., Glauser, G. & Reymond, P. Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. J. Exp. Bot. 66, 2527–2534 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Turley, N. E. & Johnson, M. T. J. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants. Oecologia 178, 747–759 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Züst, T. & Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    24.Kogan, M. & Ortman, E. F. Antixenosis: A new term proposed to define painter’s ‘nonpreference’ modality of resistance. Bull. Entomol. Soc. Am. 24, 175–176 (1978).
    Google Scholar 
    25.Mumm, R. & Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628–667 (2010).CAS 
    Article 

    Google Scholar 
    26.Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Aradottir, G. I., Martin, J. L., Clark, S. J., Pickett, J. A. & Smart, L. E. Searching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections. Ann. Appl. Biol. 170, 179–188 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Singh, B. et al. Characterization of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Ann. Appl. Biol. https://doi.org/10.1111/aab.12616 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Radchenko, E. E. Resistance of Triticum species to cereal aphids. Czech J. Genet. Plant Breed. 47, 67–70 (2011).Article 

    Google Scholar 
    30.Sotherton, N. W. & Lee, G. Field assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in old and modern spring-sown wheats. Ann. Appl. Biol. 112, 239–248 (1988).Article 

    Google Scholar 
    31.Hu, X. S. et al. Resistance of wheat accessions to the English grain aphid Sitobion avenae. PLoS ONE 11, 1–17 (2016).
    Google Scholar 
    32.Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3, 429–441 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Greenslade, A. F. C. et al. Triticum monococcum lines with distinct metabolic phenotypes and phloem-based partial resistance to the bird cherry-oat aphid Rhopalosiphum padi. Ann. Appl. Biol. 168, 435–449 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Spiller, N. J. & Llewellyn, M. A comparison of the level of resistance in diploid Triticum monococcum and hexaploid Triticum aestivum wheat seedlings to the aphids Metopolophium dirhodum and Rhopalosiphum padi. Ann. Appl. Biol. 109, 173–177 (1986).Article 

    Google Scholar 
    35.Migui, S. M. & Lamb, R. J. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bull. Entomol. Res. 93, 323–333 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Migui, S. M. & Lamb, R. J. Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull. Entomol. Res. 94, 35–46 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.di Pietro, J. P., Caillaud, C. M., Chaubet, B., Pierre, J. S. & Trottet, M. Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae), among diploid wheat genotypes: Multivariate analysis of agronomic data. Plant Breed. 117, 407–413 (1998).Article 

    Google Scholar 
    38.Simon, A. L., Wellham, P. A. D., Aradottir, G. I. & Gange, A. C. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    39.Rosenheim, J. A. Source-sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecol. Monogr. 71, 93–116 (2001).
    Google Scholar 
    40.Pålsson, J. et al. Recruiting on the spot: A biodegradable formulation for lacewings to trigger biological control of aphids. Insects 10, 1–15 (2019).Article 

    Google Scholar 
    41.Mohamed, A. H., Lester, P. J. & Holtzer, T. O. Abundance and effects of predators and parasitoids on the Russian wheat aphid (Homoptera: Aphididae) under organic farming conditions in Colorado. Environ. Entomol. 29, 360–368 (2000).Article 

    Google Scholar 
    42.Schröder, M. L., Glinwood, R., Ingell, R. & Krüger, K. Visual cues and host-plant preference of the bird cherry-oat aphid, Rhopalosiphum padi (Hemiptera: Aphididae). Afr. Entomol. 22, 428–436 (2014).Article 

    Google Scholar 
    43.Weaver, D. K. et al. Cultivar preferences of ovipositing wheat stem sawflies as influenced by the amount of volatile attractant. J. Econ. Entomol. 102, 1009–1017 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Dong, L. et al. Characterization of volatile aroma compounds in different brewing barley cultivars. J. Sci. Food Agric. 95, 915–921 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Mattiolo, E., Licciardello, F., Lombardo, G. M., Muratore, G. & Anastasi, U. Volatile profiling of durum wheat kernels by HS–SPME/GC–MS. Eur. Food Res. Technol. 243, 147–155 (2017).CAS 
    Article 

    Google Scholar 
    46.Schröder, M. L., Glinwood, R., Webster, B., Ignell, R. & Krüger, K. Olfactory responses of Rhopalosiphum padi to three maize, potato, and wheat cultivars and the selection of prospective crop border plants. Entomol. Exp. Appl. 157, 241–253 (2015).Article 
    CAS 

    Google Scholar 
    47.Evans, E. W. & Youssef, N. N. Numerical responses of aphid predators to varying prey density among utah alfalfa fields. J. Kansas Entomol. Soc. 65, 30–38 (1992).
    Google Scholar 
    48.Garratt, M. P. D., Wright, D. J. & Leather, S. R. The effects of organic and conventional fertilizers on cereal aphids and their natural enemies. Agric. For. Entomol. 12, 307–318 (2010).
    Google Scholar 
    49.Messina, F. J. & Sorenson, S. M. Effectiveness of lacewing larvae in reducing Russian wheat aphid populations on susceptible and resistant wheat. Biol. Control 21, 19–26 (2001).Article 

    Google Scholar 
    50.Farid, A., Johnson, J. B., Shafii, B. & Quisenberry, S. S. Tritrophic studies of Russian wheat aphid, a parasitoid, and resistant and susceptible wheat over three parasitoid generations. Biol. Control 12, 1–6 (1998).Article 

    Google Scholar 
    51.Ponder, K. L., Pritchard, J., Bale, J. S. & Harrington, R. Feeding behaviour of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on nitrogen and water-stressed barley (Hordeum vulgare) seedlings. Bull. Entomol. Res. 91, 125–130 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cabrera, H. M., Argandoña, V. H., Zúñiga, G. E. & Corcuera, L. J. Effect of infestation by aphids on the water status of barley and insect development. Phytochemistry 40, 1083–1088 (1995).CAS 
    Article 

    Google Scholar 
    53.Pons, X. & Tatchell, G. M. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19–31 (1995).Article 

    Google Scholar 
    54.Silva, P. S., Albuquerque, G. S., Tauber, C. A. & Tauber, M. J. Life history of a widespread Neotropical predator, Chrysopodes (Chrysopodes) lineafrons (Neuroptera: Chrysopidae). Biol. Control 41, 33–41 (2007).Article 

    Google Scholar 
    55.Malina, R., Praslička, J. & Schlarmannová, J. Developmental rates of the aphid Aphis pomi (Aphidoidea: Aphididae) and its parasitoid Aphidius ervi (Hymenoptera: Aphidiidae). Biologia 65, 899–902 (2010).Article 

    Google Scholar 
    56.Bensadia, F., Boudreault, S., Guay, J. F., Michaud, D. & Cloutier, C. Aphid clonal resistance to a parasitoid fails under heat stress. J. Insect Physiol. 52, 146–157 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Vorburger, C., Ganesanandamoorthy, P. & Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 3, 706–713 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52–58 (2013).ADS 
    Article 

    Google Scholar  More