More stories

  • in

    Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments

    1.D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science. 2004;306:2216–21.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 1979;43:1075–90.CAS 
    Article 

    Google Scholar 
    3.Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.CAS 
    Article 

    Google Scholar 
    4.Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci. 2011;3:401–25.Article 

    Google Scholar 
    5.Thamdrup B, Rosselló-Mora R, Amann R. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol. 2000;66:2888–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, editor. Advances in microbial ecology. Boston, MA, US: Springer; 2000. p. 41–84.7.Jørgensen BB, Kasten S. Sulfur cycling and methane oxidation. In: Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006. p. 271–309.8.Bowles MW, Mogollón JM, Kasten S, Zabel M, Hinrichs K-U. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science. 2014;344:889–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005;308:67–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Raiswell R, Hawkings JR, Benning LG, Baker AR, Death R, Albani S, et al. Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences. 2016;13:3887–900.CAS 
    Article 

    Google Scholar 
    11.Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun. 2014;5:3929.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Death R, Wadham JL, Monteiro F, Le Brocq AM, Tranter M, Ridgwell A, et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences. 2014;11:2635–43.Article 

    Google Scholar 
    13.Monien D, Monien P, Brünjes R, Widmer T, Kappenberg A, Silva Busso AA, et al. Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarct Sci. 2017;29:277–91.Article 

    Google Scholar 
    14.Henkel S, Kasten S, Hartmann JF, Silva-Busso A, Staubwasser M. Iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island. Geochim Cosmochim Acta. 2018;237:320–38.CAS 
    Article 

    Google Scholar 
    15.Hodson A, Nowak A, Sabacka M, Jungblut A, Navarro F, Pearce D, et al. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff. Nat Commun. 2017;8:14499.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Wang S, Bailey D, Lindsay K, Moore JK, Holland M. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences. 2014;11:4713–31.CAS 
    Article 

    Google Scholar 
    17.Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Findlay AJ, Kamyshny A. Turnover rates of intermediate sulfur species (Sx2−, S0, S2O32−, S4O62−, SO32−) in anoxic freshwater and sediments. Front Microbiol. 2017;8:2551.19.Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochim Cosmochim Acta. 2020;280:441–52.CAS 
    Article 

    Google Scholar 
    20.Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol. 1993;113:27–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Michaud AB, Laufer K, Findlay A, Pellerin A, Antler G, Turchyn AV, et al. Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochim Cosmochim Acta. 2020;280:423–40.CAS 
    Article 

    Google Scholar 
    22.Jensen MM, Thamdrup B, Rysgaard S, Holmer M, Fossing H. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry. 2003;65:295–317.Article 

    Google Scholar 
    23.Beckler JS, Kiriazis N, Rabouille C, Stewart FJ, Taillefert M. Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Mar Chem. 2016;178:22–34.CAS 
    Article 

    Google Scholar 
    24.Riedinger N, Brunner B, Krastel S, Arnold GL, Wehrmann LM, Formolo MJ, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: the Argentine Continental Margin. Front Earth Sci. 2017;5:33.Article 

    Google Scholar 
    25.Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta. 1994;58:5115–29.CAS 
    Article 

    Google Scholar 
    26.Arndt S, Jørgensen BB, LaRowe DE, Middelburg J, Pancost R, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev. 2013;123:53–86.CAS 
    Article 

    Google Scholar 
    27.Algora C, Vasileiadis S, Wasmund K, Trevisan M, Krüger M, Puglisi E, et al. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol. 2015;91:fiv056.PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Franco M, De Mesel I, Diallo MD, Van Der Gucht K, Van Gansbeke D, Van, et al. Effect of phytoplankton bloom deposition on benthic bacterial communities in two contrasting sediments in the southern North Sea. Aquat Micro Ecol. 2007;48:241–54.Article 

    Google Scholar 
    29.Zonneveld KAF, Versteegh GJM, Kasten S, Eglinton TI, Emeis K-C, Huguet C, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences. 2010;7:483–511.CAS 
    Article 

    Google Scholar 
    30.Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci U S A. 2012;109:E2846–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zinke LA, Glombitza C, Bird JT, Røy H, Jørgensen BB, Lloyd KG, et al. Microbial organic matter degradation potential in Baltic Sea sediments is influenced by depositional conditions and in situ geochemistry. Appl Environ Microbiol. 2019;85:e02164-18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Yang J, Jiang H, Wu G, Dong H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep. 2016;6:25078.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Hicks N, Liu X, Gregory R, Kenny J, Lucaci A, Lenzi L, et al. Temperature driven changes in benthic bacterial diversity influences biogeochemical cycling in coastal sediments. Front Microbiol. 2018;9:1730.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 2013;7:685–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006.36.Geprägs P, Torres ME, Mau S, Kasten S, Römer M, Bohrmann G. Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic. Geochem, Geophys Geosystems. 2016;17:1401–18.Article 
    CAS 

    Google Scholar 
    37.Atkinson A, Whitehouse MJ, Priddle J, Cripps GC, Ward P, Brandon MA. South Georgia, Antarctica: a productive, cold water, pelagic ecosystem. Mar Ecol Prog Ser. 2001;216:279–308.CAS 
    Article 

    Google Scholar 
    38.Löffler B. Geochemische Prozesse und Stoffkreisläufe in Sedimenten innerhalb und außerhalb des Cumberland-Bay Fjordes, Süd Georgien. Bachelor Thesis. Bremen, Germany: University of Bremen; 2013.39.Köster M. (Bio-)geochemische Prozesse in den eisenreichen Seep-Sedimenten der Cumberland-Bucht Südgeorgiens, Subantarktis. Bachelor Thesis. Bremen, Germany: University of Bremen; 2014.40.Römer M, Torres M, Kasten S, Kuhn G, Graham AG, Mau S, et al. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth Planet Sci Lett. 2014;403:166–77.Article 
    CAS 

    Google Scholar 
    41.Bohrmann G, Aromokeye AD, Bihler V, Dehning K, Dohrmann I, Gentz T, et al. R/V METEOR Cruise Report M134, emissions of free gas from cross-shelf troughs of South Georgia: distribution, quantification, and sources for methane ebullition sites in sub-Antarctic waters, Port Stanley (Falkland Islands)—Punta Arenas (Chile), 16 January–18 February 2017. 2017.42.Schnakenberg A, Aromokeye DA, Kulkarni A, Maier L, Wunder LC, Richter-Heitmann T, et al. Electron acceptor availability shapes Anaerobically Methane Oxidizing Archaea (ANME) communities in South Georgia sediments. Front Microbiol. 2021;12:726.Article 

    Google Scholar 
    43.Rückamp M, Braun M, Suckro S, Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planet Change. 2011;79:99–109.44.Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods. 2005;3:361–71.Article 

    Google Scholar 
    45.Oni OE, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol. 2015;6:365.PubMed 
    PubMed Central 

    Google Scholar 
    46.Aromokeye DA, Richter-Heitmann T, Oni OE, Kulkarni A, Yin X, Kasten S, et al. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Front Microbiol. 2018;9:2574.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Ovreås L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–73.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72.51.Viollier E, Inglett P, Hunter K, Roychoudhury A, Van Cappellen P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 2000;15:785–90.CAS 
    Article 

    Google Scholar 
    52.Yin X, Kulkarni AC, Friedrich MW. DNA and RNA stable isotope probing of methylotrophic methanogenic Archaea. In: Dumont MG, Hernández García M, editors. Stable isotope probing: methods and protocols. New York, NY: Springer; 2019. p. 189–206.53.Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front Microbiol. 2020;10:3041.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Eden PA, Schmidt TM, Blakemore RP, Pace NR. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Evol Microbiol. 1991;41:324–5.CAS 

    Google Scholar 
    55.Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89:670–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Lueders T, Friedrich MW. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol. 2002;68:2484–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: John Wiley and Sons; 1991. p. 115–75.58.Großkopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol. 1998;64:960–9.59.Reyes C, Schneider D, Thürmer A, Kulkarni A, Lipka M, Sztejrenszus SY, et al. Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian Bay sediments. Geomicrobiol J. 2017;34:840–50.CAS 
    Article 

    Google Scholar 
    60.Kondo R, Nedwell DB, Purdy KJ, Silva SQ. Detection and enumeration of sulphate-reducing Bacteria in estuarine sediments by competitive PCR. Geomicrobiol J. 2004;21:145–57.CAS 
    Article 

    Google Scholar 
    61.Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.Article 

    Google Scholar 
    62.R Core Team. R: a language and environment for statistical computing, 3.6.1. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from: https://www.R-project.org.63.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package, 2.5-6. 2019. Available from: https://CRAN.R-project.org/package=vegan.64.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Inkscape Team. Inkscape, 1.0.1. 2020. Available from: https://inkscape.org.68.Sun H, Spring S, Lapidus A, Davenport K, Glavina Del Rio T, Tice H, et al. Complete genome sequence of Desulfarculus baarsii type strain (2st14T). Stand Genom Sci. 2010;3:276–84.Article 

    Google Scholar 
    69.Kümmel S, Herbst F-A, Bahr A, Duarte M, Pieper DH, Jehmlich N, et al. Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol. 2015;91:fiv006.70.Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, et al. The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology. 2006;75:161–71.71.Rezadehbashi M, Baldwin SA. Core sulphate-reducing microorganisms in metal-removing semi-passive biochemical reactors and the co-occurrence of methanogens. Microorganisms. 2018;6:16.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Sorokin DY, Chernyh NA. ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles. 2016;20:895–901.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips E, Gorby YA, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159:336–44.75.Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993;59:734–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Lovley DR, Coates JD, Saffarini DA, Lonergan DJ. Dissimilatory iron reduction. In: Winkelmann G, Carrano CJ, editors. Transition metals in microbial metabolism. Amsterdam: Harwood Academic Publishers; 1997. p. 187–215.77.Vandieken V, Finke N, Jørgensen BB. Pathways of carbon oxidation in an Arctic fjord sediment (Svalbard) and isolation of psychrophilic and psychrotolerant Fe(III)-reducing bacteria. Mar Ecol Prog Ser. 2006;322:29–41.CAS 
    Article 

    Google Scholar 
    78.Vandieken V, Thamdrup B. Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Microbiol Ecol. 2013;84:373–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, et al. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front Microbiol. 2015;6:386.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Vandieken V, Mußmann M, Niemann H, Jørgensen BB. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol. 2006;56:1133–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol. 2012;62:2463–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Tu T-H, Wu L-W, Lin Y-S, Imachi H, Lin L-H, Wang P-L. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano. Front Microbiol. 2017;8:2137.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol. 1993;113:41–53.CAS 
    Article 

    Google Scholar 
    84.Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing Bacterium from deep sediment layers in the Japan Sea. Int J Syst Evol Microbiol. 1997;47:515–21.85.Treude N, Rosencrantz D, Liesack W, Schnell S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol. 2003;44:261–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J. 2010;4:267–78.87.Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol. 2015;6:989.PubMed 
    PubMed Central 

    Google Scholar 
    88.Roalkvam I, Drønen K, Stokke R, Daae FL, Dahle H, Steen IH. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front Microbiol. 2015;6:987.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Schlosser C, Schmidt K, Aquilina A, Homoky WB, Castrillejo M, Mills RA, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean. Biogeosciences. 2018;15:4973–93.CAS 
    Article 

    Google Scholar 
    90.Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. 2015;1:e1500050.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Petro C, Starnawski P, Schramm A, Kjeldsen KU. Microbial community assembly in marine sediments. Aquat Micro Ecol. 2017;79:177–95.Article 

    Google Scholar 
    92.Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front Microbiol. 2019;10:758.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Starnawski P, Bataillon T, Ettema TJ, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017;114:2940–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Marshall IPG, Ren G, Jaussi M, Lomstein BA, Jørgensen BB, Røy H, et al. Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME J. 2019;13:1920–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Berner RA. Early diagenesis: a theoretical approach. Princeton, New Jersey: Princeton University Press; 1980.96.Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Bissett A, Bowman JP, Burke CM. Flavobacterial response to organic pollution. Aquat Micro Ecol. 2008;51:31–43.Article 

    Google Scholar 
    98.Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE. 2012;7:e35314.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Sabree ZL, Kambhampati S, Moran NA. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A. 2009;106:19521–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Bowman JP, McCuaig RD. Biodiversity, community structural shifts, and biogeography of Prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol. 2003;69:2463–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Blazejak A, Schippers A. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol. 2010;72:198–207.CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol. 2006;56:1331–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Storesund JE, Øvreås L. Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek. 2013;104:569–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Kovaleva OL, Merkel AY, Novikov AA, Baslerov RV, Toshchakov SV, Bonch-Osmolovskaya EA. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microbiol. 2015;65:549–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Borrione I, Schlitzer R. Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean. Biogeosciences. 2013;10:217–31.Article 

    Google Scholar 
    106.Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976;110:3–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Finster K, Bak F, Pfennig N. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch Microbiol. 1994;161:328–32.CAS 
    Article 

    Google Scholar 
    108.Lovley DR, Phillips EJP, Lonergan DJ, Widman PK. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol. 1995;61:2132–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.An TT, Picardal FW. Desulfuromonas carbonis sp. nov., an Fe(III)-, S0- and Mn(IV)-reducing bacterium isolated from an active coalbed methane gas well. Int J Syst Evol Microbiol. 2015;65:1686–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Pjevac P, Kamyshny A Jr, Dyksma S, Mußmann M. Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ Microbiol. 2014;16:3416–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Miao Z-Y, He H, Tan T, Zhang T, Tang J-L, Yang Y-C, et al. Biotreatment of Mn2+ and Pb2+ with sulfate-reducing bacterium Desulfuromonas alkenivorans S-7. J Environ Eng. 2018;144:04017116.Article 

    Google Scholar 
    112.Buongiorno J, Herbert L, Wehrmann L, Michaud A, Laufer K, Røy H, et al. Complex microbial communities drive iron and sulfur cycling in Arctic fjord sediments. Appl Environ Microbiol. 2019;85:e00949-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Zhang H, Liu F, Zheng S, Chen L, Zhang X, Gong J. The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Mar Life Sci Technol. 2020;2:87–96.Article 

    Google Scholar 
    114.Ravenschlag K, Sahm K, Pernthaler J, Amann R. High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol. 1999;65:3982–9.115.Kashefi K, Holmes DE, Baross JA, Lovley DR. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol. 2003;69:2985–93.116.Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol. 2004;70:6023–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Jørgensen BB. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature. 1982;296:643–5.Article 

    Google Scholar 
    118.Bryant M, Campbell LL, Reddy C, Crabill M. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol. 1977;33:1162–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe (III) and graphite electrodes. Appl Environ Microbiol. 2004;70:1234–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Lovley DR, Phillips EJP. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol. 1987;53:2636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Finke N, Vandieken V, Jørgensen BB. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol. 2007;59:10–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Canfield DE, Thamdrup B, Hansen JW. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta. 1993;57:3867–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    125.Jørgensen BB. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr. 1977;22:814–32.Article 

    Google Scholar 
    126.Jørgensen BB, Laufer K, Michaud AB, Wehrmann LM. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems—case study of Svalbard fjords. Limnol Oceanogr. 2021;66:S273–92.Article 
    CAS 

    Google Scholar 
    127.Laufer K, Michaud AB, Røy H, Jørgensen BB. Reactivity of iron minerals in the seabed toward microbial reduction—a comparison of different extraction techniques. Geomicrobiol J. 2020;37:170–89.Article 

    Google Scholar 
    128.Holmkvist L, Ferdelman TG, Jørgensen BB. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta. 2011;75:3581–99.CAS 
    Article 

    Google Scholar 
    129.Riedinger N, Brunner B, Formolo MJ, Solomon E, Kasten S, Strasser M, et al. Oxidative sulfur cycling in the deep biosphere of the Nankai Trough, Japan. Geology. 2010;38:851–4.CAS 
    Article 

    Google Scholar  More

  • in

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies

    1.Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-) 328, 894–899 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Benton, M. J. The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Revisiting water loss in insects: a large scale view. J. Insect Physiol. 47, 1377–1388 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Abram, P., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol. Rev. Camb. Philos. Soc. 92, 1859–1876 (2016).PubMed 
    Article 

    Google Scholar 
    5.Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).PubMed 
    Article 

    Google Scholar 
    6.Duffy, G. A., Coetzee, B. W., Janion-Scheepers, C. & Chown, S. L. Microclimate-based macrophysiology: implications for insects in a warming world. Curr. Opin. Insect Sci. 11, 84–89 (2015).PubMed 
    Article 

    Google Scholar 
    7.Pincebourde, S., Sinoquet, H., Combes, D. & Casas, J. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. J. Anim. Ecol. 76, 424–438 (2007).PubMed 
    Article 

    Google Scholar 
    8.Sinoquet, H. et al. 3-D maps of tree canopy geometries at leaf scale. Ecology 90, 283 (2009).Article 

    Google Scholar 
    9.Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).Article 

    Google Scholar 
    10.Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl. Acad. Sci. 116, 5588–5596 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S. & Koch, G. W. Insect infestations linked to shifts in microclimate: important climate change implications. Soil Sci. Soc. Am. J. 69, 2049–2057 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Beetge, L. & Krüger, K. Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Sci. Rep. 9, 3645 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Dale, A. G. & Frank, S. D. Warming and drought combine to increase pest insect fitness on urban trees. PLoS One 12, e0173844 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Sørensen, J. G., Addison, M. F. & Terblanche, J. S. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).Article 

    Google Scholar 
    15.Klassen, W. & Curtis, C. F. History of the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer, 2005).16.Orozco-Dávila, D. et al. Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico-a review. Entomol. Exp. Appl. 164, 176–187 (2017).Article 

    Google Scholar 
    17.Vreysen, M. J. B., Hendrichs, J. & Enkerlin, W. R. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 14, 107–130 (2006).
    Google Scholar 
    18.Enkerlin, W. R. Impact of fruit fly control programmes using the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 652–676 (Springer, 2005).19.Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT)-an introduction. Entomol. Exp. Appl. 164, 151–154 (2017).Article 

    Google Scholar 
    20.Vargas, R. I. Mass production of tephritid fruit flies. in Fruit Flies: Their Biology, Natural Enemies, and Control (eds. Robinson, A. S. & Hooper, G.) 141–152 (Elsevier, 1989).21.Perez-Staples, D., Shelly, T. E. & Yuval, B. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomol. Exp. Appl. 146, 66–78 (2013).Article 

    Google Scholar 
    22.Koyama, J., Kakinohana, H. & Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 49, 331–349 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Cayol, J. P. Changes in sexual behavior and life history traits of tephritid species caused by mass-rearing processes. in Fruit flies (Tephritidae): Phylogeny and Evolution of Behavior (eds. Aluja, M. & Norrbom, A. L.) 843–860 (CRC Press, 2000).24.Meza-Hernández, J. S. & Díaz-Fleischer, F. Comparison of sexual compatibility between laboratory and wild Mexican fruit flies under laboratory and field conditions. J. Econ. Entomol. 99, 1979–1986 (2006).PubMed 
    Article 

    Google Scholar 
    25.Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).Article 

    Google Scholar 
    26.Orozco-Dávila, D., Hernández, R., Meza, S. & Domínguez, J. Sexual competitiveness and compatibility between mass-reared sterile flies and wild populations of Anastrepha ludens (Diptera: Tephritidae) from different regions in Mexico. Florida Entomol. 90, 19–26 (2007).Article 

    Google Scholar 
    27.Weldon, C. W., Schutze, M. K. & Karsten, M. Trapping to monitor tephritid movement: results, best practice, and assessment of alternatives. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 175–217 (Springer, 2014).28.Dominiak, B. C., Worsley, P. M. & Nicol, H. Release from a point source and dispersal of sterile Queensland fruit fly (Bactrocera tryoni (froggatt)) (Diptera: Tephritidae) at Wagga Wagga. Plant Prot. Q. 28, 120–125 (2013).
    Google Scholar 
    29.Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. The distribution of olive fruit fly captures with McPhail traps within an olive orchard. Phytoparasitica 31, 124–131 (2003).Article 

    Google Scholar 
    30.Raghu, S., Drew, R. A. I. & Clarke, A. R. Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly. J. Insect. Behav. 17, 179–190 (2004).Article 

    Google Scholar 
    31.Kaspi, R. & Yuval, B. Mediterranean Fruit Fly leks: factors affecting male location. Funct. Ecol. 13, 539–545 (1999).Article 

    Google Scholar 
    32.Baker, P. S. & van der Valk, H. Distribution and behaviour of sterile Mediterranean fruit flies in a host tree. J. Appl. Entomol. 114, 67–76 (1992).Article 

    Google Scholar 
    33.Aluja, M. & Birke, A. Habitat use by adults of Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Ann. Entomol. Soc. Am. 86, 799–812 (1993).Article 

    Google Scholar 
    34.Aluja, M., Jácome, I., Birke, A., Lozada, N. & Quintero, G. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Ann. Entomol. Soc. Am. 86, 776–793 (1993).Article 

    Google Scholar 
    35.Huettel, M. D. Monitoring the quality of laboratory-reared insects: A biological and behavioral perspective. Environ. Entomol. 5, 807–814 (1976).Article 

    Google Scholar 
    36.Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).Article 

    Google Scholar 
    37.MacLellan, R. & King, K. National fruit fly surveillance programme 2017–2018. Surveillance 45, 68–71 (2018).
    Google Scholar 
    38.Aguilar, G., Blanchon, D., Foot, H., Pollonais, C. & Mosee, A. Queensland fruit fly invasion of New Zealand: Predicting area suitability under future climate change scenarios. Unitec ePress Perspectives in Biosecurity Research Series (2015).39.Vargas, R. I., Leblanc, L., Piñero, J. C. & Hoffman, K. Male annihilation, past, present, and future. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 493–511 (Springer, 2014).40.Vargas, R., Piñero, J. & Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6, 297–318 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).Article 

    Google Scholar 
    42.Dominiak, B. C. Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann. Entomol. Soc. Am. 105, 434–446 (2012).Article 

    Google Scholar 
    43.Hancock, D. L., Hamacek, E. L., Lloyd, A. C. & Elson-Harris, M. M. The distribution and host plants of fruit flies (Diptera: Tephritidae) in Australia. Queensland Department of Primary Industries (2000).44.PHA. The National Plant Health Status Report (08/09). Plant Health Australia, Canberra, ACT (2009).45.Ha, A., Larson, K., Harvey, S., Fisher, W. & Malcolm, L. Benefit-cost analysis of options for managing Queensland fruit fly in Victoria. Victoria Department of Primary Industries (2010).46.Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop Prot. 116, 56–67 (2019).Article 

    Google Scholar 
    47.Stringer, L. D., Kean, J. M., Beggs, J. R. & Suckling, D. M. Management and eradication options for Queensland fruit fly. Popul. Ecol. 59, 259–273 (2017).Article 

    Google Scholar 
    48.Lynch, K. E., White, T. E. & Kemp, D. J. The effect of captive breeding upon adult thermal preference in the Queensland fruit fly (Bactrocera tryoni). J. Therm. Biol. 78, 290–297 (2018).PubMed 
    Article 

    Google Scholar 
    49.Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).Article 

    Google Scholar 
    51.Moadeli, T., Taylor, P. W. & Ponton, F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J. Pest Sci. 2004(90), 507–520 (2017).Article 

    Google Scholar 
    52.Pérez-Staples, D., Weldon, C. W. & Taylor, P. W. Sex differences in developmental response to yeast hydrolysate supplements in adult Queensland fruit fly. Entomol. Exp. Appl. 141, 103–113 (2011).Article 

    Google Scholar 
    53.Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).Article 

    Google Scholar 
    54.McInnis, D. O., Rendon, P. & Komatsu, J. Mating and remating of medflies (Diptera: Tephritidae) in Guatemala: Individual fly marking in field cages. Florida Entomol. 85, 126–137 (2002).Article 

    Google Scholar 
    55.R Core Team. R: a language and environment for statistical computing version 1.1.419. R Foundation for Statistical Computing (2019).56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    57.Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6 (2019).58.Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    60.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    61.Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package version 1.3.3 (2019).62.Prokopy, R. J., Bennett, E. W. & Bush, G. L. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae) II. Temportal organization. Can. Entomol. 104, 97–104 (1972).Article 

    Google Scholar 
    63.McQuate, G. T. & Vargas, R. I. Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and the oriental fruit fly, B. dorsalis. J. Insect Sci. 7, 13 (2007).Article 

    Google Scholar 
    64.Casas, J. & Aluja, M. The geometry of search movements of insects in plant canopies. Behav. Ecol. 8, 37–45 (1997).Article 

    Google Scholar 
    65.Shelly, T. E. & Kennelly, S. S. Settlement patterns of Mediterranean fruit flies in the tree canopy: an experimental analysis. J. Insect Behav. 20, 453–472 (2007).Article 

    Google Scholar 
    66.Warburg, M. S. & Yuval, B. Circadian patterns of feeding and reproductive activities of Mediterranean fruit flies (Diptera: Tephritidae) on various hosts in Israel. Ann. Entomol. Soc. Am. 90, 487–495 (1997).Article 

    Google Scholar 
    67.Hendrichs, J. & Hendrichs, M. A. Mediterranean fruit fly (Diptera: Tephritidae) in nature: Location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Ann. Entomol. Soc. Am. 83, 632–641 (1990).Article 

    Google Scholar 
    68.Morgan, K. R., Shelly, T. E. & Kimsey, L. S. Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 155, 561–570 (1985).69.Whitman, D. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57, 369–383 (1988).Article 

    Google Scholar 
    70.Tychsen, P. H. & Fletcher, B. S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 17, 2139–2156 (1971).Article 

    Google Scholar 
    71.Cheng, D., Chen, L., Yi, C., Liang, G. & Xu, Y. Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel). Sci. Rep. 4, 7489 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Warburg, M. S. & Yuval, B. Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314–319 (1997).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Arita, L. & Kaneshiro, K. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. 43, 135–143 (1989).
    Google Scholar 
    74.Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86, 250–264 (1993).Article 

    Google Scholar 
    75.Urbaneja-Bernat, P., Tena, A., González-Cabrera, J. & Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects. Proc. R. Soc. B Biol. Sci. 287, 20201080 (2020).CAS 
    Article 

    Google Scholar 
    76.Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Prokopy, R. J., Drew, R. A. I., Sabine, B. N. E., Lloyd, A. C. & Hamacek, E. Effects of physiological and experiential state of Bactrocera tryoni flies on intra-tree foraging behavior for food (Bacteria) and host fruit. Oecologia 87, 394–400 (1991).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Scarpati, M. L., Scalzo, R. L., Vita, G. & Gambacorta, A. Chemiotropic behavior of female olive fly (Bactrocera oleae GMEL.) on Olea Europeae L. J. Chem. Ecol. 22, 1027–1036 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Truu, M. et al. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front. Microbiol. 8, 557 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Hockberger, P. E. The discovery of the damaging effect of sunlight on bacteria. J. Photochem. Photobiol. B Biol. 58, 185–191 (2000).CAS 
    Article 

    Google Scholar 
    81.Jones, J., Raju, B. & Engelhard, A. Effects of temperature and leaf wetness on development of bacterial spot of geraniums and chrysanthemums incited by Pseudomonas cichorii. Plant Dis. 68, 248–251 (1984).Article 

    Google Scholar 
    82.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    83.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-generation sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 14292 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Morrow, J., Frommer, M., Shearman, D. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    88.Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 151–161 (1981).ADS 

    Google Scholar 
    89.Fletcher, B. The ecology of a natural population of the Queensland Fruit Fly, Dacus tryoni. IV. The immigration and emigration of adults. Aust. J. Zool. 21, 541 (1973).Article 

    Google Scholar 
    90.Bateman, M. A. The ecology of fruit flies. Annu. Rev. Entomol. 17, 493–518 (1972).Article 

    Google Scholar 
    91.O’Loughlin, G. T., East, R. A. & Meats, A. Survival, development rates and generation times of the Queensland fruit fly, Dacus tryoni, in a marginally favourable climate: experiments in Victoria. Aust. J. Zool. 32, 353–361 (1984).Article 

    Google Scholar 
    92.Dominiak, B. C., Mavi, H. S. & Nicol, H. I. Effect of town microclimate on the Queensland fruit fly Bactrocera tryoni. Aust. J. Exp. Agric. 46, 1239–1249 (2006).Article 

    Google Scholar 
    93.Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).Article 

    Google Scholar 
    94.Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Meats, A. Rapid acclimatization to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19, 1903–1911 (1973).Article 

    Google Scholar 
    96.Meats, A. Developmental and long-term acclimation to cold by the Queensland fruit-fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 22, 1013–1019 (1976).ADS 
    Article 

    Google Scholar 
    97.Fay, H. A. C. & Meats, A. Survival rates of the queensland fruit fly, dacus tryoni, in early spring: Field-cage studies with cold-acclimated wild flies and irradiated, warm- or cold-acclimated, laboratory flies. Aust. J. Zool. 35, 187–195 (1987).Article 

    Google Scholar 
    98.Fay, H. A. C. & Meats, A. The sterile insect release method and the importance of thermal conditioning before release: field-cage experiments with dacus tryoni in spring weather. Aust. J. Zool. 35, 197–204 (1987).Article 

    Google Scholar 
    99.Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Weldon, C., Diaz-Fleischer, F. & Perez-Staples, D. Desiccation resistance of tephritid flies: Recent research results and future directions. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D., Díaz-Fleischer, F., Montoya, P. & Vera, T.) 3–36 (CRC Press, 2019).101.Nishida, T. Food system of tephritid fruit flies in Hawaii. Proc. Hawaiian Entomol. Soc. 23, 245–254 (1980).
    Google Scholar 
    102.Nishida, T. & Bess, H. A. Studies on the ecology and control of the melon fly Dacus (Strumeta) Cucurbitae Coquillett (Diptera: Tephritidae). Hawaii Agric. Exp. Stn. Tech. Bull. 1–44 (1957). More

  • in

    A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant

    1.Redfern, M. Plant Galls. The New Naturalist Library (Harper Collins, 2011).
    Google Scholar 
    2.Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 18, 512–522 (2003).Article 

    Google Scholar 
    3.Dawkins, R. The Extended Phenotype (Oxford University Press, 1982).
    Google Scholar 
    4.Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora 206, 517–533 (2011).Article 

    Google Scholar 
    5.Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. Rev. Biol. Trop. 67, 1359–1382 (2019).Article 

    Google Scholar 
    6.Gonçalves-Alvim, S. J. & Fernandes, G. W. Biodiversity of galling insects: Historical, community and habitat effects in four neotropical savannas. Biodivers. Conserv. 10, 79–98 (2001).Article 

    Google Scholar 
    7.Veldtman, R. & McGeoch, M. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: The importance of plant community composition. Austral. Ecol. 28, 1–13 (2003).Article 

    Google Scholar 
    8.Stuart, J., Chen, M.-S., Shukle, R. & Harris, M. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopath. 50, 339–357 (2012).CAS 
    Article 

    Google Scholar 
    9.Kono, H. Langrüssler aus japanischen Reich. Insecta Matsumurana 4, 145–162 (1930).
    Google Scholar 
    10.Morimoto, K. & Kojima, H. Weevils of the genus Smicronyx in Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 62, 1–9 (2007).
    Google Scholar 
    11.Hayakawa, H., Fujii, S. & Yoshitake, H. Reexamination of the host plant of Smicronyx madaranus (Coleoptera, Curculionidae, Smicronycinae). SAYABANE 30, 51–55 (2018) (in Japanese).
    Google Scholar 
    12.Yukawa, J. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105–113 (2000).Article 

    Google Scholar 
    13.Vitou, J., Skuhravá, M., SkuhravÝ, V., Scott, J. & Sheppard, A. The role of plant phenology in the host specificity of Gephyraulus raphanistri (Diptera: Cecidomyiidae) associated with Raphanus spp. (Brassicaceae). Eur. J. Entomol. 105, 113–119 (2008).
    Article 

    Google Scholar 
    14.Yamaguchi, H. et al. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196, 586–595 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tanaka, Y., Okada, K., Asami, T. & Suzuki, Y. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci. Biotechnol. Biochem. 77, 1942–1948 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Liu, P., Yang, Z. X., Chen, X. M. & Foottit, R. G. The effect of the gall-forming aphid Schlechtendalia chinensis (Hemiptera: Aphididae) on leaf wing ontogenesis in Rhus chinensis (Sapindales: Anacardiaceae). Ann. Entomol. Soc. Am. 107, 242–250 (2014).Article 

    Google Scholar 
    17.Hirano, T. et al. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front. Plant Sci. 11, 471 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Kaiser, B., Vogg, G., Fürst, U. B. & Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6, 45 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Pattee, H. E., Allred, K. R. & Wiebe, H. H. Photosynthesis in dodder. Weeds 13, 193–195 (1965).CAS 
    Article 

    Google Scholar 
    20.van der Kooij, T. A. W., Krause, K., Dörr, I. & Krupinska, K. Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210, 701–707 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sherman, T. D., Pettigrew, W. T. & Vaughn, K. C. Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol. 40, 592–603 (1999).CAS 
    Article 

    Google Scholar 
    22.Machado, M. A. & Zetsche, K. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181, 91–96 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Hibberd, J. M. et al. Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205, 506–513 (1998).CAS 
    Article 

    Google Scholar 
    24.Taiz, L., Zieiger, E., Max Moller, I. & Angus, M. Plant Physiology and Development 6th edn. (Sinauer Associates, 2015).
    Google Scholar 
    25.Bartlett, L. & Connor, E. F. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 8, 339–348 (2014).
    Google Scholar 
    26.Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 40, 742–753 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Tokuda, M. et al. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8, e62350 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Suzuki, H. et al. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem. Mol. Biol. 53, 66–72 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Yokoyama, C., Takei, M., Kouzuma, Y., Nagata, S. & Suzuki, Y. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. J. Insect Physiol. 101, 91–96 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kaiser, W., Huguet, E., Casas, J., Commin, C. & Giron, D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. Biol. Sci. 277, 2311–2319 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Body, M., Kaiser, W., Dubreuil, G., Casas, J. & Giron, D. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J. Chem. Ecol. 39, 969–977 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Giron, D. & Glevarec, G. Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. J. Chem. Ecol. 40, 826–835 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 84, 70–89 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Zhao, C. et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25, 613–620 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lemus, L. P. et al. Salivary proteins of a gall-inducing aphid and their impact on early gene responses of susceptible and resistant poplar genotypes. bioRxiv https://doi.org/10.1101/504613 (2018).Article 

    Google Scholar 
    37.Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc. 9, 1549–1562 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Norkunas, K., Harding, R., Dale, J. & Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14, 71 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Christiaens, O. et al. RNA interference: A promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci. Rep. 6, 38836 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome. 6, 6 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Barnewall, E. C. & De Clerck-Floate, R. A. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact. 6, 449–459 (2012).Article 

    Google Scholar 
    43.Aistova, E. V. & Bezborodov, V. G. Weevils belonging to the genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ. J. Biol. Invasions. 8, 184–188 (2017).Article 

    Google Scholar 
    44.Dinelli, G., Bonetti, A. & Tibiletti, E. Photosynthetic and accessory pigments in Cuscuta-Campestris Yuncker and some host species. Weed Res. 33, 253–260 (1993).CAS 
    Article 

    Google Scholar 
    45.Anikin, V. V., Nikelshparg, M. I., Nikelshparg, E. I. & Konyukhov, I. V. Photosynthetic activity of the dodder Cuscuta campestris (Convolvulaceae) in case of plant inhabitation by the gallformed weevil Smicronyx smreczynskii (Coleoptera, Curculionidae). Chem. Biol. Ecol. 17, 42–47 (2017) (in Russian).
    Google Scholar 
    46.Zagorchev, L. I., Albanova, I. A., Tosheva, A. G., Li, J. & Teofanova, D. R. Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris. Planta 248, 591–599 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Carneiro, R. G. D. S. & Isaias, R. M. D. S. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants. 7, plv086 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).CAS 
    Article 

    Google Scholar 
    50.Kawase, M., Hanba, Y. T. & Katsuhara, M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J. Plant Res. 126, 517–527 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph Stat. 5, 299–314 (1996).
    Google Scholar  More

  • in

    Shell shock: a biologist’s quest to save the endangered painted snail

    Download PDF

    In my laboratory at the University of Oriente, in Santiago de Cuba, we study the six species of Polymita, known as painted snails, which are endemic to eastern Cuba and are in danger of extinction. The shells’ vibrant swirls and stripes look as if they’ve been painted by hand. Unfortunately, you can find their shells for sale on eBay, and many are exported to places such as the United States, China and Spain for use in art and jewellery — despite laws banning such trade.Painted snails live in mangrove forests, in sandy and rocky coastal areas and in rainforests. Some species are important parts of agro-ecosystems, such as coffee and coconut plantations. In 1995, my team began a breeding laboratory. We needed a way to isolate individual snails in containers, and to provide them with food, such as a fig-tree branch covered with moss, lichens and sooty mould fungus. But getting enough of the right containers was a problem because the nation was in an economic depression then.My students realized that when tourists visited Cuba, they left behind plastic one-litre water bottles. Since then we’ve been using them as living spaces for the snails.We study the breeding behaviour, nesting, hatching and growth of these hermaphrodites. If we want to save Polymita, we need to know more about their reproduction patterns — why one species hatches only between July and December, for instance.When mating, Polymita use a protrusion called a dart to transfer hormones, but we know very little about it. We are studying how these hormones affect the reproductive tract and influence fertilization success.In Cuba, there is more support for medical research than for biodiversity research. So we look for collaborations around the world. My motto is a Cuban saying: “We have the ‘no’, and therefore always have to look for the ‘yes’.” In other words, there is always another way, if you keep looking.

    Nature 594, 606 (2021)
    doi: https://doi.org/10.1038/d41586-021-01683-8

    Related Articles

    My race against time to capture the sounds of ancient rainforests

    Fighting fires to save a natural reserve in Brazil

    Catching a wave to study coral

    Subjects

    Careers

    Conservation biology

    Developing world

    Latest on:

    Careers

    Six reasons to launch a Young Academy
    Career Column 21 JUN 21

    Better together: collaborative spaces can inspire scientists of all ages
    Career Column 18 JUN 21

    Webcast: How to learn to code
    Career News 16 JUN 21

    Developing world

    Regulate waste recycling internationally
    Correspondence 15 JUN 21

    Count the cost of disability caused by COVID-19
    Comment 26 MAY 21

    How waste water is helping South Africa fight COVID-19
    Technology Feature 24 MAY 21

    Jobs from Nature Careers

    All jobs

    Deputy Director, Division of Lung Diseases
    National Institutes of Health (NIH)
    Bethesda, MD, United States

    JOB POST

    Associate Senior Lecturer/Assistant Professor in Analytical chemistry
    Stockholm University
    Stockholm, Sweden

    JOB POST

    Senior Project Manager – COSMIC
    Wellcome Trust Sanger Institute
    Cambridge, United Kingdom

    JOB POST

    METAL-ORGANIC FRAMEWORK SYNTHESIS AND ADSORPTION STUDIES
    KU Leuven
    Leuven, Belgium

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Fear of large carnivores is tied to ungulate habitat use: evidence from a bifactorial experiment

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ford, A. T. & Goheen, J. R. Trophic cascades by large carnivores: A case for strong Inference and mechanism. Trend Ecol. Evol. 30, 725–735 (2015).Article 

    Google Scholar 
    4.Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698. https://doi.org/10.1038/ncomms10698 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory and trophic interactions. J. Mammal. 80, 385–399 (1999).Article 

    Google Scholar 
    7.Brown, J. S. Ecology of fear. In Encyclopedia of Animal Behaviour (ed. Chun, C.) (Academic Press, 2019).
    Google Scholar 
    8.Trussell, G. C., Ewanchuk, P. J. & Matassa, C. M. The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87, 2979–2984 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    10.Say-Sallaz, E., Chamaillé-James, S., Fritz, H. & Valeix, M. Non-consumptive effects of predation in large terrestrial mammals: Mapping our knowledge and revealing the tip of the iceberg. Biol. Conserv. 235, 36–52 (2019).Article 

    Google Scholar 
    11.Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 113, 838–846 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl. Acad. Sci. USA 106, 4947–4952 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates: A systematic review. Environ. Evid. 7, 13. https://doi.org/10.1186/s13750-018-0125-3 (2018).Article 

    Google Scholar 
    15.Creel, S. The control of risk hypothesis: Reactive vs proactive antipredator responses and stress-mediated vs food-mediated costs of response. Ecol. Lett. 21, 947–956 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Riginos, C. Climate and the landscape of fear in an African savanna. J. Anim. Ecol. 84, 124–133 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.le Roux, E. G., Kerley, I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Stanton, R. A. et al. Shrub encroachment and vertebrate diversity: A global meta-analysis. Glob. Ecol. Biogeogr. 27, 368–379 (2018).Article 

    Google Scholar 
    20.Soto-Shoender, J. R., McCleery, R. A., Monadjem, A. & Gwinn, D. C. The importance of grass cover for mammalian diversity and habitat associations in a bush encroached savanna. Biol. Conserv. 221, 127–136 (2018).Article 

    Google Scholar 
    21.Courbin, N. et al. Reactive responses of zebra to lion encounters shape their predator-prey space game at large scale. Oikos 125, 829–838 (2016).Article 

    Google Scholar 
    22.van Buskirk, J. Specific induced responses to different predator species in anuran larvae. J. Evol. Biol. 14, 482–489 (2001).Article 

    Google Scholar 
    23.Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: Functional redundancy or functional diversity?. Ecology 84, 2407–2418 (2003).Article 

    Google Scholar 
    24.Templeton, C. N., Greene, E. & Davis, K. Allometry of alarm calls: Black-capped chickadees encode information about predator size. Science 308, 1934–1937 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autonomy. Behav. Eco. 21, 91–96 (2009).Article 

    Google Scholar 
    26.Dröge, E., Creel, S., Becker, M. S. & Msoka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE https://doi.org/10.1371/journal.pone.0149098 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Bertram, B. C. R. Serengeti Predators and their Social Systems in Serengeti: Dynamics of an Ecosystem, 221–285. (Sinclair, A. R. E. and Norton-Griffiths, M., Eds). (University of Chicago Press, Chicago, 1979).29.Bailey, T. N. The African Leopard: Ecology and Behavior of a Solitary Felid (Columbia University Press, 1993).Book 

    Google Scholar 
    30.Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).Article 

    Google Scholar 
    31.McCleery, R. A. et al. Animal diversity declines with broad-scale homogenization of canopy cover in African savannas. Biol. Conserv. 226, 54–62 (2018).Article 

    Google Scholar 
    32.Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).Article 

    Google Scholar 
    33.Sirami, C. & Monadjem, A. Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Divers. Distrib. 18, 390–400 (2012).Article 

    Google Scholar 
    34.Estes, R. D. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates (University of California Press, 2012).
    Google Scholar 
    35.Hayward, M. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313 (2006).Article 

    Google Scholar 
    36.Holekamp, K. E. & Dloniak, S. M. Intraspecific Variation in the Behavioral Ecology of a Tropical Carnivore, the Spotted Hyena in Advances in the Study of Behavior. Vol. 42 189–229 (Elsevier, 2010).37.Retief, F. The Ecology of Spotted Hyena, Crocuta crocuta, in Majete Wildlife Reserve, Malawi. Dissertation. (Stellenbosch University, 2016).38.Suraci, J. P. et al. A new automated behavioural response system to integrate playback experiments into camera trap studies. Methods Ecol. Evol. 8, 957–964 (2017).Article 

    Google Scholar 
    39.Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. Lond. Ser. B. https://doi.org/10.1098/rspb.2017.0433 (2017).Article 

    Google Scholar 
    40.Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Lond. B. 272, 2627–2634 (2005).
    Google Scholar 
    41.Scogings, P. F. Large herbivores and season independently affect woody stem circumference increment in a semi-arid savanna. Plant Ecol. 215, 1433–1443 (2014).Article 

    Google Scholar 
    42.Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Sub-region (Cambridge University Press, 2005).Book 

    Google Scholar 
    43.Canfield, R. H. Application of the line interception method in sampling range vegetation. J. For. 39, 388–394 (1941).
    Google Scholar 
    44.Favreau, F. R., Pays, O., Goldizen, A. W. & Fritz, H. Short-term behavioural responses of impalas in simulated antipredator and social contexts. PLoS ONE https://doi.org/10.1371/journal.pone.0084970 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Suraci, J. P., Clinchy, M. & Zanette, L. Y. Do large carnivores and mesocarnivores have redundant impacts on intertidal prey?. PLoS ONE https://doi.org/10.1371/journal.pone.0170255 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Chandler, R. B., Engebretsen, K., Cherry, M. J., Garrison, E. P. & Miller, K. V. Estimating recruitment from capture–recapture data by modelling spatio-temporal variation in birth and age-specific survival rates. Methods Ecol. Evol. 9, 2115–2130 (2018).Article 

    Google Scholar 
    47.Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Stud. Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    48.Lind, J. & Cresswell, W. Determining the fitness consequences of anti-predation behavior. Behav. Ecol. 16, 945–956 (2005).Article 

    Google Scholar 
    49.Berger, J. Carnivore repatriation and holarctic prey: Narrowing the deficit in ecological effectiveness. Conserv. Biol. 21, 1105–1116 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Dalerum, F. & Belton, L. African ungulates recognize a locally extinct native predator. Behav. Ecol. 26, 215–222 (2015).Article 

    Google Scholar 
    51.Palmer, M. S. & Gross, A. Eavesdropping in an African large mammal community: Antipredator responses vary according to signaler reliability. Anim. Behav. 137, 1–9 (2018).Article 

    Google Scholar 
    52.Crawley, M. J. Statistical Computing: An Introduction to Data Analysis Using S-PLUS (Wiley, 2002).MATH 

    Google Scholar 
    53.Hodges, J. S. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects (CRC Press, 2016).MATH 
    Book 

    Google Scholar 
    54.Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley, 2002).MATH 
    Book 

    Google Scholar 
    55.Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).Article 

    Google Scholar 
    56.Gorini, L. et al. Habitat heterogeneity and mammalian predator-prey interactions. Mammal Rev. 42, 55–77 (2011).Article 

    Google Scholar 
    57.Creel, S. et al. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol. Conserv. 232, 164–172 (2019).Article 

    Google Scholar 
    58.Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 1–10. https://doi.org/10.1002/ecm.1313 (2018).Article 

    Google Scholar 
    60.Breitenmoser, U., Breitenmoser-Wursten, C., Carbyn, L. N. & Funk, S. M. Assessment of Carnivore Reintroduction in Carnivore Conservation (eds. J. L. Gittleman, S. M. Funk, D. W. Macdonald and R. K. Wayne) 241–280 (Cambridge University Press and Zoological Society of London, 2001).61.Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape, South Africa: an assement. Oryx 41, 205–214 (2007).Article 

    Google Scholar 
    62.Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).PubMed 
    Article 

    Google Scholar 
    63.Augustine, D. J. & Mcnaughton, S. J. Regulation of shrub dynamics by native browsing ungulates on East African rangeland. J. Appl. Ecol. 41, 45–58 (2004).Article 

    Google Scholar 
    64.Daskin, J. H., Stalmans, M. & Pringle, R. M. Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J. Ecol. 104, 79–89 (2016).Article 

    Google Scholar 
    65.Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. https://doi.org/10.1038/s41598-019-53071-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African savanna. Bioscience 64, 487–495 (2014).Article 

    Google Scholar  More

  • in

    Monitoring abundance of aggregated animals (Florida manatees) using an unmanned aerial system (UAS)

    1.Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations, Modeling, Estimation, and Decision Making (eds. Wood, J. M. & Tanner, G. W.) (Academic Press, 2002).2.Krause, J. & Ruxton, G. D. Living in Groups. Oxford Series in Ecology and Evolution (Oxford University Press, 2002).
    Google Scholar 
    3.Riipi, M. et al. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature 413, 512–514. https://doi.org/10.1038/35097061 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Griffin, A. S., Savani, R. S., Hausmanis, K. & Lefebvre, L. Mixed-species aggregations in birds: Zenaida doves, Zenaida aurita, respond to alarm call of carib grackles, Quiscalus lugubris. Anim. Behav. 70, 507–515. https://doi.org/10.1016/j.anbehav.2004.11.023 (2005).Article 

    Google Scholar 
    5.Kunz, T. H. Roosting ecology of bats. In Ecology of Bats (ed. Kunz, T. H.) 1–55 (Springer, 1982).6.Dobson, A. & Poole, J. Conspecific aggregation and conservation biology. In Behavioral Ecology and Conservation Biology (ed. Caro, T. M.) 193–208 (Oxford University Press, 1998).7.Laist, D. W. & Reynolds, J. E. Influence of power plants and other warm-water refuges on Florida manatees. Mar. Mamm. Sci. 21, 739–764 (2005).Article 

    Google Scholar 
    8.Bossart, G. D. et al. Pathological features of the Florida manatee cold stress syndrome. Aquat. Mamm. 29, 9–17 (2002).Article 

    Google Scholar 
    9.Laist, D. W., Taylor, C. & Reynolds, J. E. III. Winter habitat preferences for Florida manatees and vulnerability to cold. PLoS One 8(3), e58978 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Sys. 3, 137–155 (2015).Article 

    Google Scholar 
    11.Hodgson, A., Kelly, N. & Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: A dugong case study. PLoS One 8, 1–15. https://doi.org/10.1371/journal.pone.0079556 (2013).CAS 
    Article 

    Google Scholar 
    12.Hodgson, A., Peel, D. & Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 27, 1253–1267 (2017).Article 

    Google Scholar 
    13.Landeo-Yauri, S. S., Ramos, E. A., Castelblanco-Martínez, D. N., Niño-Torres, C. A. & Searle, L. Using small drones to photo-identify Antillean manatees: A novel method for monitoring an endangered marine mammal in the Caribbean Sea. Endanger. Species Res. 41, 79–90. https://doi.org/10.3354/esr01007 (2020).Article 

    Google Scholar 
    14.Linchant, J., Lisein, J., Smeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mamm. Rev. 45, 239–252. https://doi.org/10.1111/mam.12046 (2015).Article 

    Google Scholar 
    15.Martin, J. et al. Estimating distribution of hidden objects with drones: From tennis balls to manatees. PLoS One 7(6), 1–8. https://doi.org/10.1371/journal.pone.0038882 (2012).CAS 
    Article 

    Google Scholar 
    16.Fiori, L., Martinez, E., Bader, M. K. F., Orams, M. B. & Bollard, B. Insights into the use of an unmanned aerial vehicle (UAV) to investigate the behavior of humpback whales (Megaptera novaeangliae) in Vava’u, Kingdom of Tonga. Mar. Mamm. Sci. 36, 209–223 (2020).Article 

    Google Scholar 
    17.Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).Article 

    Google Scholar 
    18.Edwards, H. H., Pollock, K. H., Ackerman, B. B., Reynolds, J. E. III. & Powell, J. A. Estimation of detection probability in manatee aerial surveys at a winter aggregation site. J. Wildl. Manag. 71, 2052–2060 (2007).Article 

    Google Scholar 
    19.Stith, B. M. et al. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009–2010. Mar. Ecol. Prog. Ser. 462, 287–301. https://doi.org/10.3354/meps09732 (2012).ADS 
    Article 

    Google Scholar 
    20.Edwards, H. H. & Ackerman, B. B. (eds.) Aerial surveys of manatee distribution in Florida, 1984–2004. In Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Fish and Wildlife Research Institute Technical Report, TR-19, 273 (2016).21.Hartman, D. S. Ecology and behavior of the manatee (Trichechus manatus) in Florida. Am. Soc. Mamm. Spec. Publ. 5, 1–153 (1979).
    Google Scholar 
    22.Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 1–133 (1978).MATH 

    Google Scholar 
    23.Kéry, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective (Elsevier, Amsterdam, 2012).
    Google Scholar 
    24.Dorazio, R. M., Martin, J. & Edwards, H. H. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts. Ecology 94, 1472–1478 (2013).Article 

    Google Scholar 
    25.Martin, J. et al. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods Ecol. Evol. 2, 595–601 (2011).ADS 
    Article 

    Google Scholar 
    26.Hostetler, J. A., Edwards, H. H., Martin, J. & Schueller, P. Updated statewide abundance estimates for the Florida manatee. https://f50006a.eos-intl.net/F50006A/OPAC/Details/Record.aspx?BibCode=1864664. Accessed 12 June 2021 (2018).27.Craig, B. A. & Reynolds, J. E. III. Determination of manatee population trends along the Atlantic coast of Florida using a Bayesian approach with temperature adjusted aerial survey data. Mar. Mamm. Sci. 20, 386–400 (2004).Article 

    Google Scholar 
    28.Hisakado, M., Kitsukawa, K. & Mori, S. Correlated binomial models and correlation structures. J. Phys. A Math. Gen. 39, 15365–15378 (2006).MathSciNet 
    Article 

    Google Scholar 
    29.Royle, A. J., Dorazio, R. M. & Link, W. A. Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Stat. 16(1), 67–85. https://doi.org/10.1198/106186007X181425 (2007).MathSciNet 
    Article 

    Google Scholar 
    30.Royle, A. J. & Dorazio, R. M. Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J. Ornithol. 152, 521–537 (2012).Article 

    Google Scholar 
    31.Kellner, K. jagsUI: a wrapper around “rjags” to streamline “JAGS” analyses. R package. version 1.4.4. (2016).32.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020) www.R-project.org/. Accessed 12 June 2021.33.Runge, M.C. et al. Status and threats analysis for the Florida manatee (Trichechus manatus latirostris), 2016. U.S. Geological Survey Scientific Investigations Report 2017–5030, Reston, VA, 2017. https://doi.org/10.3133/sir2017503034.U.S. Fish and Wildlife Service. Florida Manatee Recovery Plan, Trichechus manatus latirostris, Third Revision. (U.S. Fish and Wildlife Service, 2001).35.Flamm, R. O., Reynolds, J. E. III. & Harmak, C. Improving conservation of Florida manatees (Trichechus manatus latirostris): Conceptualization and contributions toward a regional warm-water network management strategy for sustainable winter habitat. Environ. Manag. 51, 154–166 (2013).ADS 
    Article 

    Google Scholar 
    36.Martin, J. et al. Combining information for monitoring at large spatial scales: First statewide abundance estimate of the Florida manatee. Biol. Conserv. 186, 44–51 (2015).Article 

    Google Scholar 
    37.Valade, J., Mezich, R., Smith, K., Merrill, M. & Calleson, T. Florida Manatee Warm-Water Habitat Action Plan. Florida Fish & Wildlife Service and Florida Fish and Wildlife Conservation Commission. 1–43 (2020).38.Wang, D., Shao, Q. & Yue, H. Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs): A review. Remote Sens. 11(1308), 1–28 (2019).ADS 

    Google Scholar 
    39.Colefax, A. P., Butcher, P. A. & Kelaher, B. P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 75, 1–8 (2018).Article 

    Google Scholar 
    40.Linchant, et al. UAS imagery reveals new survey opportunities for counting hippos. PLoS One 13, 1–17. https://doi.org/10.1371/journal.pone.0206413 (2018).CAS 
    Article 

    Google Scholar 
    41.Ezat, M. A., Fritsch, C. J. & Downs, C. T. Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa. Biol. Conserv. 223, 76–81 (2018).Article 

    Google Scholar 
    42.Pӧysӓ, H., Kotilainen, J., Väänänen, V. & Kunnasranta, M. Estimating production in ducks: A comparison between ground surveys and unmanned aircraft surveys. Eur. J. Wildl. Res. 64(74), 1–4. https://doi.org/10.1007/s10344-018-1238-2 (2018).Article 

    Google Scholar 
    43.Ratcliffe, N. et al. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101. https://doi.org/10.1139/juvs-2015-0006 (2015).Article 

    Google Scholar 
    44.Brack, I. V., Kindel, A. & Oliveira, L. F. B. Detection error in wildlife abundance estimates from unmanned aerial systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 9, 1864–1873 (2018).Article 

    Google Scholar 
    45.Goebel, M. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).Article 

    Google Scholar  More

  • in

    Whimbrel populations differ in trans-atlantic pathways and cyclone encounters

    Field methodsWe captured 24 whimbrels between 2008 and 2018. Birds were captured on migration staging sites along the lower Delmarva Peninsula in Virginia, USA (n = 6) (37.398° N, 75.865° W), along the coast of Georgia, USA (n = 5) (31.148° N, 81.379° W), along the Acadian Peninsula in New Brunswick, Canada (n = 3) (47.973° N, 64.509° W) as well as on the nesting ground near the Mackenzie River, Northwest Territories, Canada (n = 10) (69.372° N, 134.894° W). All birds were aged as adults by plumage26, 27 and were banded with United States Geological Survey tarsal bands and coded leg flags. Sex of captured birds was not determined.We fitted all birds with satellite transmitters called Platform Transmitter Terminals (PTTs) using a modification of the leg-loop harness28, 29. Instead of elastic cord, we used Teflon® ribbon (Bally Ribbon Mills, Bally, Pennsylvania, USA) that was fastened with brass rivets or crimps30. We glued transmitters to a larger square of neoprene to elevate it above the body and prevent the bird from preening feathers over the solar panels. The transmitter package was below 3% of body mass (measured at the time of deployment,(bar{x}) = 484.5 ± 17.1) for all individuals tracked in this study. The PTTs used in this study were 9.5 g PTT-100 (n = 14) or 5.0 g PTT-100 (n = 10) solar-powered units produced by Microwave Telemetry, Inc. (Columbia, Maryland, USA).TrackingBirds were located using satellites of the National Oceanic and Atmospheric Administration and the European Organization for the Exploitation of Meteorological Satellites with onboard tracking equipment operated by Collecte Localisation Satellites (CLS America, Inc., Largo, Maryland, USA)31. Transmitters were programmed to operate with a duty cycle of 24 h off and 5 h on (n = 9) or 48 h off and 10 h on (n = 15) and collected 1–34 ((bar{x}) = 5.48 ± 0.07) locations per cycle. Locations in latitude and longitude decimal degrees, date, time, and location error were received from CLS America within 24 h of satellite contact with PTTs. Locations were estimated by the Advanced Research and Global Observation Satellite (ARGOS) system (www.Argos-system.org), which uses a Doppler shift in signal frequency and calculates a probability distribution within which the estimate lies. The standard deviation of this distribution gives an estimate of the location accuracy and assigns it to a “location class” (LC): LC3 =   1000 m, LCA = location based on 3 messages and has no accuracy estimate, LCB = location based on 2 messages and has no accuracy estimate, and LCZ = location process failed. We used LC classes 1–3 to determine whimbrel locations.Migration pathwaysWe used tracking data to delineate fall migration pathways and, though migration duration can include fueling at breeding territories32, we defined migration duration as the time between departure from the breeding grounds and arrival on winter territory. We identified the source population for all individuals included in this study either by capture on the breeding grounds (n = 10) or by capture within migratory staging sites and tracking birds to the breeding grounds (n = 14). Birds were either from the Mackenzie Delta (n = 13) or Hudson Bay (n = 11) breeding populations. We assessed departure and arrival when birds moved away from or settled into stationary breeding and winter territories respectively. Departure was abrupt and we recorded no “false starts” of birds leaving breeding areas and then returning before resuming migration. We present a stylized map of migration routes that was drawn by hand using the collection of flights recorded to provide a broad overview of routes relative to the distribution of storms.Trans-atlantic flightsWe used tracking data to delineate migration pathways across the Atlantic Ocean (from coast of North America to coast of South America). Most birds departed from coastal staging sites and we considered the last staging location prior to crossing the Atlantic the terminal staging area. Several birds departed from inland locations on James Bay. We only consider the segment of the latter flights that occur over the ocean. We consider the duration of transoceanic flights to be the time interval between emerging from the coast of North America and arriving along the coast of South America. In cases where departure and arrival times occurred outside the radio transmitter’s duty cycle, we drew a straight-line between the last known location on land for departures or the first known location on land for arrivals and the nearest location over water and measured the distance between the in-flight point and the coastline along the line. We then used the mean overall speed between in-flight points for all birds ((bar{x}) = 14.8 ± 0.4 m/s, n = 40) to interpolate the leaving or arrival times. We consider the flight length to be the sum of the distance between consecutive locations along the path taken between the site of emergence along the coast of North America and the site of landfall along the northern coast of South America.Exposure to tropical cyclonesWe examined the distribution of tropical cyclones throughout the Atlantic Ocean using position records (1961–2018) within the revised Atlantic hurricane best tracks from the National Hurricane Center (https://www.nhc.noaa.gov/data/#hurdat), known as the Atlantic HURDAT233. We restricted our analyses to storms classified as tropical depressions or above and HURDAT data collected since 1961, when satellites were first used to monitor tropical cyclone activity34. The database contains the storm category (Saffir Simpson Scale), wind speed (mph) and coordinates recorded for six-hour intervals during the period that each storm existed using standard six-hour intervals which allows for weighting of the storms according to their lifespans and estimating the distribution of probability density. We selected storms (N = 590) that were active between 15 July and 30 November to coincide with whimbrel migration through the region. We mapped all storm observation points (N = 17,637) using a kernel density estimator (KDE) method35 with the “ks” package36 in program R37. We used the normal (or Gaussian) kernel and a smooth cross-validation bandwidth selector38 to map 50% kernel densities. We considered the 50% KDE to be the area of highest storm occurrence and estimated exposure to this region by overlaying whimbrel tracks on the KDE polygon and measuring each whimbrel’s time within the area. Because the first and last points within the polygon occurred when the bird’s transmitter first transmitted the bird’s location within and outside the polygon, rather than when the bird first entered and exited the polygon, we measured the distance between the first point inside the polygon and the previous point outside the polygon and used the mean overall speed between in-flight points for all birds (,(bar{x}) = 14.8 ± 0.4 m/s, n = 40) to interpolate the time that the bird entered the polygon. We used the same method to calculate the time that the bird left the polygon using the last point within the polygon and next point outside the polygon.Encounters with tropical cyclonesWe documented encounters between whimbrels and tropical cyclones within the Atlantic Basin by overlaying migration tracks for individual birds on archives of storm tracks within HURDAT2 for the period (2008–2019) of the tracking study. We considered a whimbrel-storm encounter to have occurred when bird tracks intersected storm tracks during the same time period. For grounded birds, we considered an encounter to have occurred when a storm track moved over the ground position of a bird. For each encounter, we recorded the coordinate of the encounter and the storm intensity. Storm intensities were classified as tropical depressions, (≤ 38 mph), tropical storms (39–73 mph), category 1 hurricane (74–95 mph), category 2 hurricanes (96–110 mph), category 3 hurricanes (111–129 mph), category 4 hurricanes (130–156 mph), and category 5 hurricanes (≥ 157 mph) according to the Saffir–Simpson Hurricane Wind Scale39.We examined the post-encounter track of birds to categorize the response of birds including none, detour or grounding. We considered birds to exhibit no response to the storm encounter if the migration trajectory was unchanged during or shortly following a storm encounter. We considered birds to have taken a detour in response to a storm encounter if the migration trajectory followed over the previous day was deflected by  > 20° during or shortly following an encounter. We considered birds to have grounded if they landed on an island following a storm encounter.StatisticsWe used mixed-effects logistic regressions (R3.6.2: R Core Team 2019) to compare the likelihood of storm encounters between whimbrel populations using tracks as replicate samples. We initially fit models using whimbrel identity and year as random intercepts to account for potential lack of independence for journeys made by the same individuals and journeys made within the same year, but inclusion of bird identity as a random intercept resulted in a singular fit so this variable was excluded from further analysis. We then compared models with year as a random intercept and no fixed effects, year as a random intercept and breeding population (Mackenzie Delta vs Hudson Bay) as a fixed effect, year as a random intercept and journey number (1st, 2nd, or 3rd journey) as a fixed effect, and year as a random intercept with breeding population and journey number as fixed effects. We used Akaike’s information criterion for small sample size (AICc) and selected the model with the lowest AICc score as the best-supported model if no other model was within 2 ΔAICc after removing models with uninformative parameters40. Several birds made more than one transoceanic crossing in different years and we consider these to be independent samples. We used two-tailed t-tests to compare migration lengths and duration between routes. We used g-tests with Yates correction to make frequency comparisons.Data and ethics statementThis study was conducted in compliance with ARRIVE guidelines. Data used in this manuscript are unique and have not been submitted for publication elsewhere. The authors claim no conflict of interest. This project was reviewed and approved by the William & Mary Institutional Animal Care and Use Committee protocol IACUC-2017-04-18-12065 of The College of William and Mary, Environment Canada Animal Care Committee protocols EC-PN-12-006, EC-PN-13-006, EC-PN-14-006, Mount Allison University Animal Care Committee protocol 15-14, and the Government of the Northwest Territories Wildlife Care Committee protocol NWTWCC2014-007. All Methods were performed in accordance with the relevant guidelines and regulations. More

  • in

    The effect of COVID19 pandemic restrictions on an urban rodent population

    1.Tobin, M. E. & Fall, M. W. USDA National Wildlife Research Center-Staff Publications Vol. 67, 1–21 (USDA National Wildlife Research Center-Staff Publications, 2006).
    Google Scholar 
    2.Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270. https://doi.org/10.1080/10408410902989837 (2009).Article 
    PubMed 

    Google Scholar 
    3.Meerburg, B. G., Singleton, G. R. & Leirs, H. The Year of the Rat ends—Time to fight hunger!. Pest. Manag. Sci. 65, 351–352. https://doi.org/10.1002/ps.1718 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Mills, J. N. The role of rodents in emerging human disease: Examples from the hantaviruses and arenaviruses. in Ecologically-Based Rodent Management (eds Grant R. Singleton, Lyn A. Hinds, Herwig Leirs, & Zhibin Zhang) 134–160 (Australian Centre for International Agricultural Research, 1999)5.Barnett, S. A. The Story of Rats: Their Impact on Us, and Our Impact on Them (Allen & Unwin, 2001).
    Google Scholar 
    6.Almeida, A., Corrigan, R. M. & Sarno, R. The economic impact of commensal rodents on small businesses in Manhattan’s Chinatown: Trends and possible causes. Suburban. Sustain. 1, 1–15. https://doi.org/10.5038/2164-0866.1.1.2 (2013).Article 

    Google Scholar 
    7.Strand, T. M. & Lundkvist, Å. Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995–2016. Infect. Ecol. Epidemiol. 9, 1553461–1553461. https://doi.org/10.1080/20008686.2018.1553461 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Firth, C. et al. Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. MBio 5, e01933-e11914. https://doi.org/10.1128/mBio.01933-14 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Frye, M. J. et al. Preliminary survey of ectoparasites and associated pathogens from Norway rats in New York City. J. Med. Entomol. 52, 253–259. https://doi.org/10.1093/jme/tjv014 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Cross, R. W. et al. Old world hantaviruses in rodents in New Orleans, Louisiana. Am. J. Trop. Med. Hyg. 90, 897–901. https://doi.org/10.4269/ajtmh.13-0683 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Peterson, A. C. et al. Rodent-borne Bartonella infection varies according to host species within and among cities. EcoHealth 14, 771–782. https://doi.org/10.1007/s10393-017-1291-4 (2017).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    12.Rael, R. C. et al. Rat lungworm infection in rodents across post-katrina New Orleans, Louisiana, USA. Emerg. Infect. Dis. 24, 2176 (2018).Article 

    Google Scholar 
    13.Bordes, F., Blasdell, K. & Morand, S. Transmission ecology of rodent-borne diseases: New frontiers. Integr. Zool. 10, 424–435. https://doi.org/10.1111/1749-4877.12149 (2015).Article 
    PubMed 

    Google Scholar 
    14.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044. https://doi.org/10.1073/pnas.1501598112 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Stenseth, N. C. et al. Mice, rats, and people: The bio-economics of agricultural rodent pests. Front. Ecol. Environ. 1, 367–375. https://doi.org/10.1890/1540-9295(2003)001[0367:MRAPTB]2.0.CO;2 (2003).Article 

    Google Scholar 
    16.Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).Article 

    Google Scholar 
    17.Feng, A. Y. T. & Himsworth, C. G. The secret life of the city rat: A review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst. 17, 149–162. https://doi.org/10.1007/s11252-013-0305-4 (2014).Article 

    Google Scholar 
    18.Himsworth, C. G., Parsons, K. L., Jardine, C. & Patrick, D. M. Rats, cities, people, and pathogens: A systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector-Borne Zoonotic Diseases 13, 349–359. https://doi.org/10.1089/vbz.2012.1195 (2013).Article 
    PubMed 

    Google Scholar 
    19.Lambropoulos, A. S., Fine, J. B., Perbeck, A. & Torres, D. Rodent control in urban areas: An interdisciplinary approach. J. Environ. Health 61, 12 (1999).
    Google Scholar 
    20.Peterson, A. C. et al. Rodent assemblage structure reflects socioecological mosaics of counter-urbanization across post-hurricane Katrina New Orleans. Landsc. Urban. Plann. 195, 103710. https://doi.org/10.1016/j.landurbplan.2019.103710 (2020).Article 

    Google Scholar 
    21.Shiels, A. B., Lombard, C. D., Shiels, L. & Hillis-Starr, Z. Invasive rat establishment and changes in small mammal populations on Caribbean Islands following two hurricanes. Glob. Ecol. Conserv. 22, e00986. https://doi.org/10.1016/j.gecco.2020.e00986 (2020).Article 

    Google Scholar 
    22.Htwe, N. M., Singleton, G. R. & Nelson, A. D. Can rodent outbreaks be driven by major climatic events? Evidence from cyclone Nargis in the Ayeyawady Delta, Myanmar. Pest. Manag. Sci. 69, 378–385. https://doi.org/10.1002/ps.3292 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712. https://doi.org/10.1007/s10393-018-1359-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Gulachenski, A., Ghersi, B. M., Lesen, A. E. & Blum, M. J. Abandonment, ecological assembly and public health risks in counter-urbanizing cities. Sustainability 8, 491 (2016).Article 

    Google Scholar 
    25.Rael, R. C., Peterson, A. C., Ghersi, B. M., Childs, J. & Blum, M. J. Disturbance, reassembly, and disease risk in socioecological systems. EcoHealth 13, 450–455. https://doi.org/10.1007/s10393-016-1157-1 (2016).Article 
    PubMed 

    Google Scholar 
    26.LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).Article 

    Google Scholar 
    27.Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evolut. 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z (2020).Article 

    Google Scholar 
    28.Coronavirus: Why more rats are being spotted during quarantine. BBC News. https://www.bbc.com/news/world-us-canada-52177587 (2020).29.Latest pest control news. Features and blog articles from British Pest Control Association. BPCA. https://bpca.org.uk/News-and-Blog/advice-for-pest-professionals-operating-during-covid-19 (2020).30.Rodent control. Centers For Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/php/rodents.html (2020).31.Zhou, N. Sydney braces for rat ‘plague’ after Covid-19 forces hungry rodents to turn to cannibalism. in The Guardian. Australian Edition. https://www.theguardian.com/australia-news/2020/may/28/sydney-braces-for-rat-plague-after-covid-19-forces-hungry-rodents-to-turn-to-cannibalism (2020).32.The Pest Control Sydney sector warns of increase of rat activity due to COVID-19 shuts down food supply. Safe Pest Control. https://safepestcontrol.net.au/pest-control-sydney-sector-warns-increase-rat-activity-covid-19/ (2020).33.Sutton, C. Rats on the rise as shutdown cuts their food supply. in Tweed Daily News. https://www.tweeddailynews.com.au/news/covid-19-leads-to-rat-explosion/3989127/ (2020).34.Mannix, L. The Age (Nine Entertainment Co., 2020).
    Google Scholar 
    35.Prokop, P., Fančovičová, J. & Fedor, P. Health is associated with antiparasite behavior and fear of disease-relevant animals in humans. Ecol. Psychol. 22, 222–237. https://doi.org/10.1080/10407413.2010.496676 (2010).Article 

    Google Scholar 
    36.Byers, K. A., Cox, S. M., Lam, R. & Himsworth, C. G. “They’re always there”: Resident experiences of living with rats in a disadvantaged urban neighbourhood. BMC Public Health 19, 853. https://doi.org/10.1186/s12889-019-7202-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.German, D. & Latkin, C. A. Exposure to urban rats as a community stressor among low-income urban residents. J. Community Psychol. 44, 249–262. https://doi.org/10.1002/jcop.21762 (2016).Article 

    Google Scholar 
    38.Elgar, M. A., Crespi, B. J. & Crespi, D. B. B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).
    Google Scholar 
    39.Depoux, A. et al. The pandemic of social media panic travels faster than the COVID-19 outbreak. J. Travel Med. https://doi.org/10.1093/jtm/taaa031 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Himsworth, C. G. et al. A mixed methods approach to exploring the relationship between Norway rat (Rattus norvegicus) abundance and features of the urban environment in an inner-city neighborhood of Vancouver, Canada. PLoS ONE 9, e97776. https://doi.org/10.1371/journal.pone.0097776 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Parsons, M. H. et al. Rats and the COVID-19 pandemic: Early data on the global emergence of rats in response to social distancing. medRxiv. https://doi.org/10.1101/2020.07.05.20146779 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Murray, M. H. et al. Public complaints reflect rat relative abundance across diverse urban neighborhoods. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2018.00189 (2018).Article 

    Google Scholar 
    43.Király, O. et al. Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Compr. Psychiatry 100, 152180. https://doi.org/10.1016/j.comppsych.2020.152180 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Wiederhold, B. K. Social media use during social distancing. Cyberpsychol. Behav. Soc. Netw. 23, 275–276. https://doi.org/10.1089/cyber.2020.29181.bkw (2020).Article 
    PubMed 

    Google Scholar 
    45.Harbison, B. PMPs re-strategize rodent control in response to COVID-19 pandemic. Pest Control Technology. https://www.pctonline.com/article/pmps-restrategize-rodent-control-respose-covid-19/ (2020).46.Sieg, L. As Japan fights coronavirus with shutdowns, rats emerge onto deserted streets. Reuters. https://www.reuters.com/article/us-health-coronavirus-japan-rats-idUSKCN22A0DG (2020).47.Carthey, A. J. R. & Banks, P. B. Naïve, bold, or just hungry? An invasive exotic prey species recognises but does not respond to its predators. Biol. Invasions 20, 3417–3429. https://doi.org/10.1007/s10530-018-1782-4 (2018).Article 

    Google Scholar 
    48.Sanchez, F., Korine, C., Kotler, B. P. & Pinshow, B. Ethanol concentration in food and body condition affect foraging behavior in Egyptian fruit bats (Rousettus aegyptiacus). Naturwissenschaften 95, 561–567. https://doi.org/10.1007/s00114-008-0359-y (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Berger-Tal, O. & Kotler, B. P. State of emergency: Behavior of gerbils is affected by the hunger state of their predators. Ecology 91, 593–600. https://doi.org/10.1890/09-0112.1 (2010).Article 
    PubMed 

    Google Scholar 
    50.Berger-Tal, O., Mukherjee, S., Kotler, B. P. & Brown, J. S. Complex state-dependent games between owls and gerbils. Ecol. Lett. 13, 302–310. https://doi.org/10.1111/j.1461-0248.2010.01447.x (2010).Article 
    PubMed 

    Google Scholar 
    51.Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Limited, 2016).
    Google Scholar 
    52.Zuur, A. F., Ieno, E. N. & Saveliev, A. A. Zero Inflated Models and Generalized Linear Mixed Models with R (Highland Statistics Limited, 2012).
    Google Scholar 
    53.Cavia, R., Cueto, G. R. & Suárez, O. V. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc. Urban Plann. 90, 11–19. https://doi.org/10.1016/j.landurbplan.2008.10.017 (2009).Article 

    Google Scholar 
    54.Restrictions on non-essential services. Australian Government Business. https://www.business.gov.au/risk-management/emergency-management/coronavirus-information-and-support-for-business/restrictions-on-non-essential-services (2020).55.Barnett, S. A. Experiments on “neophobia” in wild and laboratory rats. Br. J. Psychol. 49, 195–201. https://doi.org/10.1111/j.2044-8295.1958.tb00657.x (1958).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Barnett, S. A. & Cowan, P. E. Activity, exploration, curiosity and fear: An ethological study. Interdisc. Sci. Rev. 1, 43–62. https://doi.org/10.1179/030801876789768534 (1976).Article 

    Google Scholar 
    57.Chitty, D. & Southern, H. N. Control of Rats and Mice (Agricultural Extension Service, University of Wyoming, 1954).
    Google Scholar 
    58.Taylor, K. D., Hammond, L. E. & Quy, R. J. The reactions of common rats to four types of live-capture trap. J. Appl. Ecol. 11, 453–459. https://doi.org/10.2307/2402199 (1974).Article 

    Google Scholar 
    59.Brunton, C. F. A., Macdonald, D. W. & Buckle, A. P. Behavioural resistance towards poison baits in brown rats, Rattus norvegicus. Appl. Anim. Behav. Sci. 38, 159–174. https://doi.org/10.1016/0168-1591(93)90063-U (1993).Article 

    Google Scholar 
    60.Inglis, I. R. R. et al. Foraging behaviour of wild rats (Rattus norvegicus) towards new foods and bait containers. Appl. Anim. Behav. Sci. 47, 175–190. https://doi.org/10.1016/0168-1591(95)00674-5 (1996).Article 

    Google Scholar 
    61.Domjan, M. Poison-induced neophobia in rats: Role of stimulus generalization of conditioned taste aversions. Anim. Learn. Behav. 3, 205–211. https://doi.org/10.3758/BF03213432 (1975).Article 

    Google Scholar 
    62.Rusiniak, K. W., Hankins, W. G., Garcia, J. & Brett, L. P. Flavor-illness aversions: Potentiation of odor by taste in rats. Behav. Neural Biol. 25, 1–17. https://doi.org/10.1016/S0163-1047(79)90688-5 (1979).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Fowler, C. W. Density dependence as related to life history strategy. Ecology 62, 602–610. https://doi.org/10.2307/1937727 (1981).ADS 
    Article 

    Google Scholar 
    64.Korobenko, L., Kamrujjaman, M. & Braverman, E. Persistence and extinction in spatial models with a carrying capacity driven diffusion and harvesting. J. Math. Anal. Appl. 399, 352–368. https://doi.org/10.1016/j.jmaa.2012.09.057 (2013).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    65.Perry, J. S. The reproduction of the wild brown rat (Rattus norvegicus Erxleben). Proc. Zool. Soc. Lond. 115, 19–46 (1945).Article 

    Google Scholar 
    66.Emlen, J. T., Stokes, A. W. & Winsor, C. P. The rate of recovery of decimated populations of brown rats in nature. Ecology 29, 133–145. https://doi.org/10.2307/1932809 (1948).Article 

    Google Scholar 
    67.Richardson, J. L. et al. Significant genetic impacts accompany an urban rat control campaign in Salvador, Brazil. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00115 (2019).Article 

    Google Scholar 
    68.Schultz, L. A., Collier, G. & Johnson, D. F. Behavioral strategies in the cold: Effects of feeding and nesting costs. Physiol. Behav. 67, 107–115. https://doi.org/10.1016/S0031-9384(99)00041-4 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Collier, G. H., Johnson, D. F., Naveira, J. & Cybulski, K. A. Ambient temperature and food costs: Effects on behavior patterns in rats. Am. J. Physiol. Regulat. Integr. Comparat. Physiol. 257, R1328–R1334. https://doi.org/10.1152/ajpregu.1989.257.6.R1328 (1989).CAS 
    Article 

    Google Scholar 
    70.Frantz, S. C. & Comings, J. P. Evaluation of urban rodent infestations- An approach in Nepal. Proc. Vertebr. Pest Conf. 7, 279–290 (1976).
    Google Scholar 
    71.Margulis, H. L. Rat fields, neighborhood sanitation, and rat complaints in Newark, New Jersey. Geogr. Rev. 67, 221–231. https://doi.org/10.2307/214022 (1977).Article 

    Google Scholar 
    72.Climate statistics for Australian locations. Australian Bureau of Meteorology. http://www.bom.gov.au/climate/averages/tables/cw_066196_All.shtml (2020).73.Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 32, 1921–1935. https://doi.org/10.1007/s10980-017-0561-4 (2017).Article 

    Google Scholar 
    74.Byers, K. A., Lee, M. J., Patrick, D. M. & Himsworth, C. G. Rats about town: A systematic review of rat movement in urban ecosystems. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00013 (2019).Article 

    Google Scholar 
    75.Liu, Y. et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. bioRxiv https://doi.org/10.1101/2020.04.22.046565 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Singleton, G., Leirs, H., Hinds, L. & Zhang, Z. Ecologically-Based Management of Rodent Pests—Re-evaluating Our Approach to an Old problem 17–29 (Australian Centre for International Agricultural Research (ACIAR), 1999).
    Google Scholar 
    77.Sydney (C) (Statistical Local Area). Australian Bureau of Statistics. https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/LGA17200?opendocument (2016).78.Fritzboger, P. inventor. Anticimex Innovation Centre A/S, assignee. A trap. Australia patent 2014359825 (2014).79.R Core Team. R: A language and environment for statistical computing v. 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria, 2019).80.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    81.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear lixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    82.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar 
    83.Sweet, S. A. & Grace-Martin, K. Data Analysis with SPSS: A First Course in Applied Statistics (Allyn and Bacon, 2008).
    Google Scholar 
    84.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2018).
    Google Scholar 
    85.Lenth, R. & Herve, M. Emmeans: Estimated marginal means, aka least-square means. v. R package version 1.1. 2 (2018).86.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    87.Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, 2009).Book 

    Google Scholar 
    88.ESRI. ArcGIS Desktop v. Release 10.5 (Environmental Systems Research Institute, Redlands, CA, 2017).89.IBM Corp. IBM SPSS Statistics for Windows v. 24.0 (IBM Corp., Armonk, NY, 2016).90.Bedoya-Pérez, M. A., Ward, M. P., Loomes, M. & Crowther, M. S. Flick SMART multi-catch rodent station and bait station data sets: Council of the city of Sydney, October 2019 to July 2020. Dryad Dataset. https://doi.org/10.5061/dryad.4tmpg4f81(2020).Article 

    Google Scholar  More