Effects of large herbivore grazing on relics of the presumed mammoth steppe in the extreme climate of NE-Siberia
1.Doughty, C. E., Wolf, A. & Field, C. B. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?. Geophys. Res. Lett. 37, L15703 (2010).ADS
Article
Google Scholar
2.Svenning, J.-C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).ADS
CAS
PubMed
Article
Google Scholar
3.Owen-Smith, N. The pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).Article
Google Scholar
4.Vera, F. W. M. Grazing Ecology and Forest History (CABI Publishing, 2000). https://doi.org/10.1079/9780851994420.0000.Book
Google Scholar
5.Zimov, S. A. et al. Steppe-Tundra transition: A herbivore-driven biome shift at the end of the pleistocene. Am. Nat. 146, 765–794 (1995).Article
Google Scholar
6.Gill, J. L. Ecological impacts of the late quaternary megaherbivore extinctions. New Phytol. 201, 1163–1169 (2014).PubMed
Article
Google Scholar
7.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. 113, 847–855 (2016).ADS
CAS
PubMed
Article
Google Scholar
8.Martin, P. S. & Wright, H. E. Pleistocene Extinctions: The Search for a Cause, Vol 6*** (Yale University Press, 1967).
Google Scholar
9.Haynes, G. The evidence for human agency in the late Pleistocene megafaunal extinctions. In Encyclopedia of the Anthropocene, voxl 1 (eds DellaSala, D. & Goldstein, M.) 219–226 (Elsevier Inc., 2018).Chapter
Google Scholar
10.Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).CAS
Article
Google Scholar
11.Gradmann, R. Die Steppenheidentheorie. Geogr. Z. 39, 265–278 (1933).
Google Scholar
12.Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).CAS
PubMed
Article
Google Scholar
13.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. Mammoth steppe: A high-productivity phenomenon. Quat. Sci. Rev. 20, 20 (2012).
Google Scholar
14.Zimov, S. A., Zimov, N. S. & Chapin, F. S. The past and future of the mammoth steppe ecosystem. Springer Earth Syst. Sci. https://doi.org/10.1007/978-3-642-25038-5_10 (2012).Article
Google Scholar
15.Zimov, S. A. Pleistocene park: Return of the Mammoth’ s ecosystem. Science (80–) 08, 796–798 (2005).Article
CAS
Google Scholar
16.Yurtsev, B. A. The pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. https://doi.org/10.1016/S0277-3791(00)00125-6 (2001).Article
Google Scholar
17.Blinnikov, M. S., Gaglioti, B. V., Walker, D. A., Wooller, M. J. & Zazula, G. D. Pleistocene graminoid-dominated ecosystems in the Arctic. Quat. Sci. Rev. 30, 2906–2929 (2011).ADS
Article
Google Scholar
18.Kienast, F. Plant macrofossil records—Arctic Eurasia. In Encyclopedia of Quaternary Science (eds Elias, S. A. & Mock, C.) 733–745 (Elsevier, 2013).Chapter
Google Scholar
19.Guthrie, R. D. Mammals of the mammoth steppe as paleoenvironmental indicators. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 307–326 (Elsevier Inc, 1982).Chapter
Google Scholar
20.Kienast, F., Schirrmeister, L., Siegert, C. & Tarasov, P. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quat. Res. 63, 283–300 (2005).Article
Google Scholar
21.Sher, A. V., Kuzmina, S. A., Kuznetsova, T. V. & Sulerzhitsky, L. D. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat. Sci. Rev. 24, 533–569 (2005).ADS
Article
Google Scholar
22.Guthrie, R. D. Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quatern. Sci. Rev. 20, 20 (2001).
Google Scholar
23.Rivals, F., Semprebon, G. & Lister, A. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quat. Int. 255, 188–195 (2012).Article
Google Scholar
24.van Asperen, E. N. & Kahlke, R.-D. Dietary traits of the late Early Pleistocene Bison menneri (Bovidae, Mammalia) from its type site Untermassfeld (Central Germany) and the problem of Pleistocene ‘wood bison’. Quat. Sci. Rev. 177, 299–313 (2017).ADS
Article
Google Scholar
25.Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).Article
Google Scholar
26.Sher, A. V. Fossil saiga in northeastern Siberia and Alaska. Int. Geol. Rev. 10, 1247–1260 (1968).Article
Google Scholar
27.Kahlke, R. D. & Lacombat, F. The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas. Quat. Sci. Rev. 27, 1951–1961 (2008).ADS
Article
Google Scholar
28.Kahlke, R. D. The origin of Eurasian Mammoth Faunas (Mammuthus-Coelodonta Faunal Complex). Quat. Sci. Rev. 96, 32–49 (2014).ADS
Article
Google Scholar
29.Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quat. Sci. Rev. 146, 116–133 (2016).ADS
Article
Google Scholar
30.Kahlke, R. D. The maximum geographic extension of Late Pleistocene Mammuthus primigenius (Proboscidea, Mammalia) and its limiting factors. Quat. Int. 379, 147–154 (2015).Article
Google Scholar
31.Chapin, F. S., Shaver, R. R., Giblin, A. E., Nadelhoffer, K. G. & Laundre, J. A. Response of arctic tundra to experimental and observed changes in climat. Ecology 76, 694–711 (1995).Article
Google Scholar
32.Reinecke, J., Troeva, E. & Wesche, K. Extrazonal steppes and other temperate grasslands of northern Siberia—phytosociological classification and ecological characterization. Phytocoenologia 47, 167–196 (2017).Article
Google Scholar
33.Yurtsev, B. A. Relics of the xerophyte vegetation of Beringia in northeastern Asia. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 157–177 (Elsevier Inc, 1982).Chapter
Google Scholar
34.Ashastina, K. et al. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quartern. Sci. Rev. 196, 38–61 (2018).ADS
Article
Google Scholar
35.Chytrý, M. et al. Refugial ecosystems in central Asia as indicators of biodiversity change during the Pleistocene–Holocene transition. Ecol. Indic. 77, 357–367 (2017).Article
Google Scholar
36.Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science (80–) 326, 1100–1103 (2009).ADS
CAS
Article
Google Scholar
37.Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).Article
Google Scholar
38.Wehrden, H. V., Hanspach, J., Kaczensky, P., Fischer, J. & Wesche, K. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393–399 (2012).Article
Google Scholar
39.Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).Article
Google Scholar
40.Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).PubMed
Article
Google Scholar
41.Manseau, M., Huot, J. & Crête, M. Effects of summer grazing by caribou on composition and productivity of vegetation: Community and landscape level. J. Ecol. 84, 503–513 (1996).Article
Google Scholar
42.Suominen, O. & Olofsson, J. Impacts of semi-domesticated reindeer on structure of tundra and forest communities in fennoscandia: A review. Ann. Zool. Fennici 37, 233–249 (2000).
Google Scholar
43.Virtanen, R. Effects of grazing on above-ground biomass on a mountain snowbed, NW Finland. Oikos 90, 295–300 (2000).Article
Google Scholar
44.Ravolainen, V. T. et al. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl. Ecol. 12, 643–653 (2011).Article
Google Scholar
45.Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).Article
Google Scholar
46.Díaz, S., Noy-meir, I. & Cabido, M. Can grazing of herbaceous plants be predicted response from simple vegetative traits?. J. Appl. Ecol. 38, 497–508 (2001).Article
Google Scholar
47.Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).ADS
Article
Google Scholar
48.Pakeman, R. J. & Marriott, C. A. A functional assessment of the response of grassland vegetation to reduced grazing and abandonment. J. Veg. Sci. 21, 683–694 (2010).
Google Scholar
49.Troeva, E. I. & Cherosov, M. M. Transformation of Steppe communities of Yakutia due to climatic change and anthropogenic impact in Eurasian Steppes. Ecol. Probl. Livelih. Changing World https://doi.org/10.1007/978-94-007-3886-7_14 (2012).Article
Google Scholar
50.Gavrilyeva, L., Sofronov, R., Arzhakova, A., Barashkova, N. & Ivanov, I. Hayfields and pastures. In The Far North: Plant Biodiversity and Ecology of Yakutia (ed. Al, T.) 275–281 (Springer, 2010).
Google Scholar
51.Gill, J. L. Learning from Africa’s herbivores. Science (80–) 350, 1036–1037 (2015).ADS
CAS
Article
Google Scholar
52.Reinecke, J. S. F. The Return of the Mammoth Steppe?—Rewilding in Yakutia and the Actual Impact of Large Herbivore Grazing on Vegetation (Technische Universität Dresden, 2019).
Google Scholar
53.Malyschev, L. I. Flora of Siberia (Science Publishers, 2006).
Google Scholar
54.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article
Google Scholar
55.McCune, B. Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables. J. Veg. Sci. 18, 751–754 (2007).Article
Google Scholar
56.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
57.Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: Software for ordination. 496 (2012).58.Ashastina, K. Palaeo-environments at the Batagay site in West Beringia During the Late Quaternary (Friedrich-Schiller-Universität Jena, 2018).
Google Scholar
59.McCune, B. & Mefford, M. J. PC-ORD. (2011).60.Pakeman, R. J., Lennon, J. J. & Brooker, R. W. Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia 167, 209–218 (2011).ADS
PubMed
Article
PubMed Central
Google Scholar
61.Troeva, E. I., Isaev, A. P., Cherosov, M. M. & Karpov, N. S. The Far North: Plant Diversity and Ecology of Yakutia (Springer, 2010).Book
Google Scholar
62.Elvebakk, A. ‘Arctic hotspot complexes’—proposed priority sites for studying and monitoring effects of climatic change on arctic biodiversity. Phytocoenologia 35, 1067–1079 (2005).Article
Google Scholar
63.Coughenour, M. B. Graminoid responses to grazing by large herbivores: Adaptations, exaptations, and interacting processes. Ann. Missouri Bot. Gard. 72, 852–863 (1985).Article
Google Scholar
64.Quiroga, R. E., Golluscio, R. A., Blanco, L. J. & Fernández, R. J. Aridity and grazing as convergent selective forces: An experiment with an Arid Chaco bunchgrass. Ecol. Appl. 20, 1876–1889 (2010).PubMed
Article
PubMed Central
Google Scholar
65.Herms, D. A. & Matson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67, 293–335 (1992).Article
Google Scholar
66.Hobbie, S. E. Effect of plant species on nutrient cycling. Trends Ecol. Evol. 7, 336–339 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
67.Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science (80–) 230, 895–899 (1985).ADS
CAS
Article
Google Scholar
68.Wesche, K., Nadrowski, K. & Retzer, V. Habitat engineering under dry conditions: The impact of pikas (Ochotona pallasi) on vegetation and site conditions in southern Mongolian steppes. J. Veg. Sci. 18, 665 (2007).Article
Google Scholar
69.Newediuk, L. J., Waters, I. & Hare, J. F. Aspen parkland pasture altered by Richardson’s ground squirrel (Urocitellus richardsonii Sabine) activity: The good, the bad, and the not so ugly?. Can. Field-Nat. 129, 331–341 (2015).Article
Google Scholar
70.Wheeler, H. C. & Hik, D. S. Arctic ground squirrels Urocitellus parryii as drivers and indicators of change in northern ecosystems. Mamm. Rev. 43, 238–255 (2013).Article
Google Scholar
71.Steuter, A. A. & Hidinger, L. Comparative ecology of bison and cattle on mixed-grass prairie. Gt. Plains Res. 9, 329–342 (1999).
Google Scholar
72.Ivanova, V. Tipchakovye stepi—odin iz etapov pastbischnoi digressii rastitelnosti v doline srednei Leny. In Rastitelnost Yakutii i Eyo Okhrana (ed. Andreyev, V.) 37–56 (1981).73.Ivanova, V. O vliyanii vypasa na stepnuyu rastitelnost v doline r. Leny. In Lyubite i okhranyaite prirodu Yakutii 86–93 (1967).74.Gavrilyeva, L. Pastbishnaya Digressiya i Ratsionalnoye Ispolzovaniye Rastitelnosti Alasov Leno-Amginskogo Mezhdurechya (University of Yakutsk, 1998).
Google Scholar
75.Bazha, S. N., Gunin, P. D., Danzhalova, E. V., Drobyshev, Y. I. & Prishcepa, A. V. Pastoral degradataion of steppe ecosystems in Central Mongolia. In Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World (eds Werger, M. J. A. & Staalduinen, M. A.) 289–319 (Springer, 2012).Chapter
Google Scholar
76.Crate, S. et al. Permafrost livelihoods: A transdisciplinary review and analysis of thermokarst-based systems of indigenous land use. Anthropocene 18, 89–104 (2017).Article
Google Scholar
77.Ellis, J. & Swift, D. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. J. Range Manag. 41, 450–459 (1988).Article
Google Scholar
78.Nachinshonhor, U. G. Use of steppe vegetation by nomadic pastoralism in Mongolia. In Ecological Research Monographs (eds Yamamura, N. et al.) 145–156 (Springer, 2014).
Google Scholar
79.Wang, Y. et al. Multiple indicators yield diverging results on grazing degradation and climate controls across Tibetan pastures. Ecol. Indic. 93, 1199–1208 (2018).Article
Google Scholar
80.Ahlborn, J. et al. Climate—grazing interactions in Mongolian rangelands: Effects of grazing change along a large-scale environmental gradient. J. Arid Environ. 173, 20 (2020).Article
Google Scholar
81.Vesk, P. A. & Westoby, M. Predicting plant species’ responses to grazing. J. Appl. Ecol. 28, 897–909 (2001).Article
Google Scholar
82.Shipley, L. Grazers and browsers: how digestive morphology affects diet selection. Grazing behavior of livestock and wildlife 70, 20–27 (1999).83.Larter, N. C. Diet and habitat selection of an erupting wood bison population. 1–118 (1988).84.Kuznetsova, T. V. Fossils of the mammoth fauna. Russian-German Cooperation SYSTEM LAPTEV SEA: The Expedition Lena—New Siberian Islands 2007 during the International Polar Year 2007/2008, 139–140 (2008).85.Kuznetsova, T. V., Sulerzhitsky, L. D. & Siegert, C. New data on the ‘Mammoth’ fauna of the Laptev Shelf Land (East Siberian Arctic). In The World of Elephants—International Congress 289–292 (2001).86.Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158, 99–107 (2012).ADS
Article
Google Scholar
87.Gill, R. The influence of large herbivores on tree recruitment and forest dynamics. In Large Herbivore Ecology, Ecosystem Dynamics and Conservation (eds Danell, K. et al.) 170–202 (Cambridge University Press, 2006).Chapter
Google Scholar
88.Martin, P. J. Digestive and grazing strategies of animals in the arctic steppe. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 259–266 (Elsevier Inc, 1982).Chapter
Google Scholar
89.Huisman, J. & Olff, H. Competition and facilitation in multispecies plant-herbivore systems of productive environments. Ecol. Lett. 1, 25–29 (1998).Article
Google Scholar
90.Waldram, M. S., Bond, W. J. & Stock, W. D. Ecological engineering by a mega-grazer: White Rhino impacts on a south African savanna. Ecosystems 11, 101–112 (2008).Article
Google Scholar
91.Cornelissen, P. Large Herbivores as a Driving Force of Woodland-Grassland Cycles (Wageningen University, 2017).
Google Scholar
92.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Biotechnol. Agron. Soc. Environ. 14, 203–211 (2003).
Google Scholar
93.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. 109, 21384–21389 (2012).ADS
CAS
PubMed
Article
Google Scholar More