More stories

  • in

    Production of basil (Ocimum basilicum L.) under different soilless cultures

    The experiment was conducted at Agricultural and Bio-Systems Engineering Department, Faculty of Agriculture Moshtohor, Benha University, Egypt (latitude 30° 21′ N and 31° 13′ E), during the period of May to July, 2019 season under the university guidelines and legislation. Basil seedlings were sown in the plastic cups (7 cm diameter and 7 cm height) filled with peat moss. The cups were irrigated daily using water with nutrient solution (Ca(NO3)2, 236 g L−1, KNO3, 101 g L−1, K2SO4, 115 g L−1, KH2PO4, 136 g L−1, MgSO4 246 g L−1 and chelates for trace elements into preacidified groundwater (from the following ppm concentration are achieved in this formulation: N = 210, P = 31, K = 234, Ca = 200, Mg = 48, S = 64, Fe = 14, Mn = 0.5, Zn = 0.05, Cu = 0.02, B = 0.5, Mo = 0.01)). Two weeks old basil seedlings were planted at 9.0 plant m−2 in the experimental tanks. These seedlings were planted according to the permission of Benha university rules and legislation.Culture systems descriptionFigure 1a,b show the experimental setup. It shows the system which consists of hydroponic system, aeroponic system, soilless substrate, solution system and pumps.Figure 1(a) The experimental setup. (b) Images of system.Full size imageThe hydroponic system (Deep Water Culture (DWC)) consists of three rectangular polyethylene tanks that used for basil plants culture. Dimensions of each tank are 80 cm long, 40 cm wide and 30 cm high. The slope of hydroponic tanks was 2% and stand 1 m high above the ground. The hydroponic tanks were covered with foam boards to support the plants. Each hydroponic tank provided with an air blower (Model NS 780—Flow Rate 850 L h−1—Head 1.5 m—Power 15 W, China) to increase dissolved oxygen concentrations. The solution was circulated by a pump (Model First QB60—Flow Rate 30 L min−1—Head 25 m—Power 0.5 hp, China) from the solution tank to the upper ends of the hydroponic tanks. Small tubes (16 mm) were used to provide tanks with solution in a closed system.Aeroponic system consists of three rectangular polyethylene tanks that used for basil plants culture. Dimensions of each tank are 80 cm long, 40 cm wide and 50 cm high. The aeroponic tanks were established 1 m above the ground. Each aeroponic tank was divided into two parts, the lower part was made from polyethylene and the upper part was made from wood. The aeroponic tanks were covered with foam boards to support the plants. Each aeroponic tank was provided with two fog nozzles (Model M3MNWT5M – Orifice 2 mm – Discharge 8 L h−1, India) located at the bottom of the tank sprayed nutrient solution into the tank in order to keep the roots wet. Small tubes (16 mm) were used to provide aeroponic tank with solution in a closed system.Soilless substrates consist are placed in three rows are 2 m long. Each row consists standard peat moss slabs (1.00 m × 0.20 m × 0.075 m). Basil plants were placed on row peat moss slabs with a drip irrigation system. There were three plants per slab giving a mean density of 9.0 plant m−2. Each plant was fed by a single drip.The circular polyethylene tank of the nutrient solution system 500 L capacity was used for collecting the drained solution by gravity from the ends of the three systems. The nutrient solutions were prepared manually once per ten days17,18 by dissolving appropriate amounts of Ca(NO3)2, 236 g L−1, KNO3, 101 g L−1, K2SO4, 115 g L−1, KH2PO4, 136 g L−1, MgSO4 246 g L−1 and chelates for trace elements into preacidified groundwater (from the following ppm concentration are achieved in this formulation: N = 210, P = 31, K = 234, Ca = 200, Mg = 48, S = 64, Fe = 14, Mn = 0.5, Zn = 0.05, Cu = 0.02, B = 0.5, Mo = 0.01). pH and Electrical Conductivity (EC) were further adjusted to 6.5–7.0 and 1.4–1.8 dS m−1, respectively, after salt addition. The average air ambient temperature was 25.97 ± 4.37 °C and the average water temperature was 24.03 ± 3.92 °C. The average relative humidity was 65.4% and the light intensity was 338.55 ± 40.06 W m−2.MeasurementsThree plants sample were taken during the vegetative and flowering stages (four and seven weeks after transplanting, respectively) for growth measurement and chemical analysis. Plant height, root length and the fresh and dry weight of leaves, stems and roots were determined. After measuring fresh mass, the plants were oven dried at 65 °C until constant weight was reached19. Total content of macro elements was evaluated after being digested20. Nitrogen was determined by Kjeldahl digestion methods21. Potassium, Calcium and magnesium were determined by Photofatometer (Model Jenway PFP7—Range 0—160 mmol L−1, USA) and phosphorus (P) was determined colorimetrically method22. The content of oil was determined in different organs: leaves, stems and inflorescences according to23.Water samples were taken, at inlet and outlet of the culture units for measuring nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were measured every week at 10 am during the experimental period.Total production costThe cost calculation based on the following parameters was also performed:Fixed costs (Fc)Depreciation costs (Dc)$$D_{c} = frac{{P_{d} – S_{r} }}{{L_{d} }}$$
    (1)

    where Dc is the depreciation cost, EGP (Egyptian pound) year−1. ($ = 15.63 EGP). Pd is the system price, EGP. Sr is the salvage rate (0.1Pd) EGP. Ld is the system life, year.Interest costs (In):$$I_{n} = frac{{P_{d} + S_{r} }}{2} times {text{i}}_{{text{n}}}$$
    (2)

    where In is the interest, EGP year−1. in is the interest as compounded annually, decimal (12%). Shelter, taxes and insurance costs (Si).Shelter, taxes and insurance costs were assumed to be 3% of the purchase price of the automatic feeder (Pm).Then:$${text{Fixed,cost }} = {text{ D}}_{{text{c}}} + {text{ I}}_{{text{n}}} + 0.03{text{ P}}_{{text{m}}} /{text{ hour, of, use ,per ,year}}$$
    (3)
    Variable (operating) costs (Vc)Repair and maintenance costs (Rm):$${text{R}}_{{text{m}}} = 100% ;{text{deprecation,cost/hour,of,use,per,year}}$$
    (4)
    Energy costs (E):$${text{E }} = {text{ EC }} times {text{ EP}}$$
    (5)

    where E is the energy costs, EGP h−1. EC is the electrical energy consumption, kWh. EP is the energy price, 0.57 EGP kW−1.Labor costs (La):$${text{L}}_{{text{a}}} = {text{ Salary, of, one, worker }} times {text{ No}}{text{. ,of, workers}}$$
    (6)

    where La is the Labor costs, EGP h−1. Salary of one worker = 10 EGP h−1. No. of workers = 1.Then:$${text{Variable,costs }} = {text{ Rm }} + {text{ E }} + {text{ La}}$$
    (7)
    Total costs (Tc)$${text{Total ,costs }} = {text{ Fixed ,costs }} + {text{ Variable ,costs}}$$
    (8)

    Table 1 shows the input parameters of calculate total production costs of basil plants grown in different soilless systems.Table 1 The input parameters of calculate total production costs of basil plants grown in different soilless systems.Full size tableNutrients consumption rateThe Nutrients consumption rate were calculated as the differences between the nutrients at inlet and outlet of culture units by the following formula24:$$C_{{Nc}} = frac{{Nc_{{in}} – Nc_{{out}} }}{{{text{Number, of ,plants}}}} times Q times {text{24}}$$
    (9)

    where CNc is the nutrients consumption rate, mg day−1 plant −1. Ncin is the nutrients at inlet of the hydroponic unit, mg L−1. Ncout is the nutrients at outlet of the hydroponic unit, mg L−1. Q is the discharge, L h−1.Model development of nutrient consumptionModel assumptions:

    N, P, K, Ca and Mg are the nutrients used in study.

    The plants are uniformity distributed in the solution, so they work as a uniform sink for water and minerals with space at any time.

    The root systems are uniformly dispersed in the solution with uniform root length density at any time.

    The whole root system uptake characteristics are uniform.

    Water losses by evaporation are negligible.

    The simplest nutrient consumption models relate the nutrient consumption to the concentration gradient using some sort of proportionality factor such as root permeability or conductivity25,26. The nutrient consumption was determined by using the following equation:$$NC = a_{{NC}} cdot Delta {text{C }}$$
    (10)

    where NC is the nutrient consumption, mg plant−1 day−1. ∆C is the concentration gradient, mg plant−1 day−1. aNC is the proportionality factor, dimensionless.A similar model of nutrient consumption takes into consideration the differing effects caused by variations in root growth stage. Assuming that growth follows a first order differential equation and assuming that the root growth is exponential27, then Eq. (11) can be derived. This equation is presented in similar form to Eq. (10) and use the following equation:$$NC = left( {frac{{left( {C_{{plant}} – {text{C}}_{{{text{plant0}}}} } right)}}{{A_{r} – A_{{r0}} }}} right) cdot left( {frac{{{text{ln}}left( {frac{{{text{A}}_{{text{r}}} }}{{{text{A}}_{{{text{r0}}}} }}} right)}}{{{text{t}} – {text{t}}_{0} }}} right){text{.A}}_{{text{r}}}$$
    (11)

    where Cplanto is the concentration of the nutrients in the plant at time t0, mg plant−1. Ar is the root surface area at time t, cm2 plant−1. Ar0 is the root surface area at time t0, cm2 plant−1.Root surface area was calculated from root length and mean root radius using the following equation:$$A_{r} = {text{2}}pi {text{r}}_{{text{0}}} {text{L}}_{{text{r}}}$$
    (12)
    The root length increment using the following equation28:$$Delta L_{r} = Delta DW_{{root}} {text{v }}$$
    (13)

    where ∆Lr is the root length increment, cm day−1. ∆DWroot is the daily amount of root dry mass increment, g day−1. v is the ratio of root length and mass of roots, cm g−1.The daily amount of dry weight of roots is calculated from the following equation29:$$Delta DW_{{root}} = left{ {begin{array}{*{20}l} {{text{5LAI}}} hfill & {{text{for,LAI}} le {{0}}{{.5}}} hfill \ {{{2}}{{.5}} + {{23}}{{.9}}left( {{text{LAI-0}}{{.5}}} right)} hfill & {{text{for,LAI}} > {{0}}{{.5}}} hfill \ end{array} } right.$$
    (14)

    where LAI is the leaf area index.Leaf area index was changed in the same proportions as root length density to maintain a constant ratio between roots and shoots. The leaf area index is calculated from the following equation30:$$LAI = frac{{LAI_{{max }} }}{{1 + K_{2} e^{{left( { – k_{1} t} right)}} }}$$
    (15)

    where LAImax is the maximum leaf area index. K2 and k1 are the coefficients of the growth functions.All computational procedures of the model were carried out using Excel spreadsheet. The computer program was devoted to mass balance for predicting the nutrients consumption. The differences between the predicted and measured values were evaluated using RMSE indicator (root means square error) which is calculated using the following equation:$$RMSE = sqrt {frac{{sum {left( {Predicted-Measured} right)^{2} } }}{n}}$$
    (16)
    The parameters used in the model that were obtained from the literature are listed in Table 2. Figure 2 shows flow chart of the model.Table 2 The parameters used in the model.Full size tableFigure 2Flow chart of nutrients consumption rate.Full size imageStatistical analysisThree replicates of each treatment were allocated in a Randomize Complete Block Design (RCBD) in the system. Data were analyzed one-way ANOVA (analysis of variance) using statistical package for social sciences (spss v21). Means were separated using New Duncan Multiple Range Test (DMRT). Data presented are mean ± standard division (SD) of four replicates. More

  • in

    Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics

    1.van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    2.Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).ADS 
    Article 

    Google Scholar 
    4.Cardinale, B. J. Impacts of biodiversity loss. Science 336, 552–553 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Caliman, A., Pires, A. F., Esteves, F. A., Bozelli, R. L. & Farjalla, V. F. The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers. Conserv 19, 651–664 (2010).Article 

    Google Scholar 
    6.Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Porre R. J., van der Werf W., De Deyn G. B., Stomph T. J. & Hoffland E. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol. Biochem. 145, 107791 (2020).8.Kou, L. et al. Diversity-decomposition relationships in forests worldwide. eLife 9, e55813 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Srivastava, D. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    13.Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377–384 (1999).Article 

    Google Scholar 
    17.Marks, J. C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. 50, 547–568 (2019).Article 

    Google Scholar 
    18.Tonin, A. M. et al. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87, 1465–1474 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Jonsson, M. & Malmqvist, B. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134, 554–559 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Bastian, M., Pearson, R. G. & Boyero, L. Effects of diversity loss on ecosystem function across trophic levels and ecosystems: a test in a detritus-based tropical food web. Austral. Ecol. 33, 301–306 (2008).Article 

    Google Scholar 
    21.McKie, B. G., Schindler, M., Gessner, M. O. & Malmqvist, B. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160, 757–770 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.McKie, B. G. et al. Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 77, 495–504 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Tylianakis, J. M. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Boyero, L. et al. Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob. Ecol. Biogeogr. 21, 134–141 (2012).Article 

    Google Scholar 
    26.Boyero, L. et al. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92, 1839–1848 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    29.Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).Article 

    Google Scholar 
    30.Woodward, G. et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336, 1438–1440 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Jonsson, M. & Malmqvist, B. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89, 519–523 (2000).Article 

    Google Scholar 
    32.Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. North Am. Benthol. Soc. 28, 397–403 (2009).Article 

    Google Scholar 
    33.Jonsson, M., Malmqvist, B. & Hoffsten, P. O. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshw. Biol. 46, 161–171 (2001).Article 

    Google Scholar 
    34.Cornejo, A. et al. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 14, e0220528 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Cornejo, A. et al. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. J. Environ. Manag. 263, 110425 (2020).CAS 
    Article 

    Google Scholar 
    36.Zubrod, J. P. et al. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study. Environ. Toxicol. Chem. 36, 2178–2189 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Rasmussen, J. J. et al. Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquat. Toxicol. 118-119, 54–61 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Dai, A. Drought under global warming: a review. Clim. Change 2, 45–65 (2011).
    Google Scholar 
    40.Tonin, A. M., Hepp, L. U., Restello, R. M. & Gonçalves, J. F. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740, 79–88 (2014).Article 

    Google Scholar 
    41.Pérez, J., Basaguren, A., Descals, E., Larrañaga, A. & Pozo, J. Leaf-litter processing in headwater streams of northern Iberian Peninsula: moderate levels of eutrophication do not explain breakdown rates. Hydrobiologia 718, 41–57 (2013).Article 

    Google Scholar 
    42.Friberg, N. et al. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Adv. Ecol. Res. 44, 211–278 (2011).Article 

    Google Scholar 
    43.Pennington, R. T., Cronk, Q. C. B. & Richardson, J. A. Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos. Trans. R. Soc. Lond. B 359, 1455–1464 (2004).Article 

    Google Scholar 
    44.Proches, S. Latitudinal and longitudinal barriers in global biogeography. Biol. Lett. 2, 69–72 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Vanderpoorten, A., Gradstein, S. R., Carine, M. A. & Devos, N. The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. 85, 471–487 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    46.Young, R. G., Matthaei, C. D. & Townsend, C. R. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J. North Am. Benthol. Soc. 27, 605–625 (2008).Article 

    Google Scholar 
    47.Gessner, M. O. & Chauvet, E. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl 12, 498–510 (2002).Article 

    Google Scholar 
    48.Ramírez A., Pringle C. M., Wantzen K. M. in Tropical Stream Ecology (ed. Dudgeon, D.) (Academic Press, 2008).49.Tiegs, S. D., Akinwole, P. O. & Gessner, M. O. Litter decomposition across multiple spatial scales in stream networks. Oecologia 161, 343–351 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Ferreira, V. et al. A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems 22, 629–642 (2018).Article 

    Google Scholar 
    51.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    52.Boyero, L. et al. Latitude dictates plant diversity effects on decomposition. Sci. Adv. 7, eabe7860 (2021).53.Fugère, V., Lostchuck, E. & Chapman, L. J. Litter decomposition in Afrotropical streams: effects of land use, home-field advantage, and terrestrial herbivory. Freshw. Sci. 39, 497–507 (2020).54.Fenoy, E. et al. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol. Ecol. 92, fiw169 (2016).55.López-Rojo, N. et al. Shifts in key leaf litter traits can predict effects of plant diversity loss on decomposition in streams. Ecosystems 24, 185–196 (2021).56.Araneda, M., Pérez, E. P. & Gasca-Leyva, E. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture 283, 13–18 (2008).Article 

    Google Scholar 
    57.Weya, J. M., Rumbiak, N. S., Hariyanto, S., Irawan, B. & Soegianto, A. Length-weight relationship and condition factor of crayfish from South Sorong and Jayawijaya, Papua, Indonesia. Croat. J. Fish. 75, 18–24 (2017).Article 

    Google Scholar 
    58.Poepperl, R. Biomass determination of aquatic invertebrates in the Northern German lowland using the relationship between body length and dry mass. Faunistisch-Ökologische Mitteilungen 7, 379–386 (1998).
    Google Scholar 
    59.Baumgärtner, D. & Rothhaupt, K. O. Predictive length–dry mass regressions for freshwater invertebrates in a pre‐alpine lake littoral. Int. Rev. Hydrobiol. 88, 453–463 (2003).Article 

    Google Scholar 
    60.Mehler, K., Acharya, K. & Sada, D. W. Spatial and temporal pattern in length-mass regressions of freshwater gastropods in Nevada Spring ecosystems. Malacologia 58, 167–177 (2015).Article 

    Google Scholar 
    61.Benke, A. C., Huryn, A. D., Smock, L. A. & Wallace, J. B. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. North Am. Benthol. Soc. 18, 308–343 (1999).Article 

    Google Scholar 
    62.Miyasaka, H. et al. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9, 75–80 (2008).Article 

    Google Scholar 
    63.Costa, L. C., Kiffer, W. P. J., Casotti, C. G. & Moretti, M. S. Size-mass relationships in Trichodactylus fluviatilis (Decapoda: Brachyura: Trichodactylidae), a macroconsumer in coastal streams of the Atlantic Forest, southeastern Brazil. J. Crust. Biol. 38, 539–546 (2018).Article 

    Google Scholar 
    64.Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    65.Wood S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).66.Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith G. M. Mixed Effects Models and Extensions in Ecology With R (Springer, 2009).68.Ieno, E. N. & Zuur, A. F. Beginner’s Guide to Data Exploration and Visualisation with R (2015).69.Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. & Team R. C. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-151. https://CRAN.R-project.org/package=nlme (2020).70.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    71.Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-6. https://CRAN.R-project.org/package=vegan) (2019). More

  • in

    Correlative Microscopy: a tool for understanding soil weathering in modern analogues of early terrestrial biospheres

    1.Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1719588115 (2018).Article 
    PubMed 

    Google Scholar 
    2.Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Gibling, M. R. et al. Palaeozoic co-evolution of rivers and vegetation: A synthesis of current knowledge. Proc. Geol. Assoc. 125, 524–533 (2014).Article 

    Google Scholar 
    4.Mitchell, R. L. et al. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44, 1007–1010 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Mergelov, N. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    6.McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Field, K. J. et al. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J. 10, 1514–1526 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Mills, B., Watson, A. J., Goldblatt, C., Boyle, R. & Lenton, T. M. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nat. Geosci. 4, 861–864 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28, 71–85 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Edwards, D., Cherns, L. & Raven, J. A. Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times?. Palaeontology 58, 803–837 (2015).Article 

    Google Scholar 
    11.Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the mojave desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76, 1685 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).
    Google Scholar 
    13.Mitchell, R. L. et al. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated soils. Geobiology 00, 1–15 (2021).
    Google Scholar 
    14.Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: Consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. B Biol. Sci. 367, 519–536 (2012).Article 

    Google Scholar 
    15.Strullu-Derrien, C., Wawrzyniak, Z., Goral, T. & Kenrick, P. Fungal colonization of the rooting system of the early land plant Asteroxylon mackiei from the 407-Myr-old Rhynie Chert (Scotland, UK). Bot. J. Linn. Soc. 179, 201–213 (2015).Article 

    Google Scholar 
    16.Krings, M., Kerp, H., Hass, H., Taylor, T. N. & Dotzler, N. A filamentous cyanobacterium showing structured colonial growth from the Early Devonian Rhynie chert. Rev. Palaeobot. Palynol. 146, 265–276 (2007).Article 

    Google Scholar 
    17.Remy, W., Taylort, T. N., Hass, H. & Kerp, H. Four Hundred-million-year-old Vesicular Arbuscular Mycorrhizae (Endomycorrhiae/symbiosis/fossil fungi/mutualims). Proc. Natl. Acad. Sci. United States Am. 91, 11841–11843 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Field, K. J. et al. Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat. Commun. 3, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    19.Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Mills, B. J. W., Batterman, S. A. & Field, K. J. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition. Phil. Trans. R. Soc. B 373, 20160503 (2017).21.Mitchell, R. L., Strullu-Derrien, C. & Kenrick, P. Biologically mediated weathering in modern cryptogamic ground covers and the early paleozoic fossil record. J. Geol. Soc. London. 176, 430–439 (2019).CAS 
    Article 

    Google Scholar 
    22.Furnes, H. et al. Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks. Precambrian Res. 158, 156–176 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Smits, M. M. et al. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology 37, 615–618 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    24.Bonneville, S. et al. Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988–7005 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLoughlin, N. Fungal origins?. Nat. Ecol. Evol. 1, 1–2 (2017).Article 

    Google Scholar 
    26.Ivarsson, M. et al. Intricate tunnels in garnets from soils and river sediments in Thailand-Possible endolithic microborings. PLoS ONE 13, 0200351 (2018).Article 
    CAS 

    Google Scholar 
    27.Hoffland, E. et al. The role of fungi in weathering. Front. Ecol. Environ. 2, 258–264 (2004).Article 

    Google Scholar 
    28.McLoughlin, N., Furnes, H., Banerjee, N. R., Muehlenbachs, K. & Staudigel, H. Ichnotaxonomy of microbial trace fossils in volcanic glass. J. Geol. Soc. London. 166, 159–169 (2009).Article 

    Google Scholar 
    29.Berner, R. A. & Cochran, M. F. Plant-induced weathering of Hawaiian basalts. J. Sediment. Res. 68, 723–726 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W. & Van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16, 248–254 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Van Schöll, L. et al. Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles. Plant Soil 303, 35–47 (2008).Article 
    CAS 

    Google Scholar 
    32.Quirk, J. et al. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol. Lett. 8, 1006–1011 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Daly, M. et al. A multi-scale correlative investigation of ductile fracture. Acta Mater. 130, 56–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Gelb, J., Finegan, D. P., Brett, D. J. L. & Shearing, P. R. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy. J. Power Sour. 357, 77–86 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Slater, T. J. A. et al. Multiscale correlative tomography: An investigation of creep cavitation in 316 stainless steel. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    36.Burnett, T. L. & Withers, P. J. Completing the picture through correlative characterization. Nat. Mater. 18, 1041–1049 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Mitchell, R. L. et al. Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides: correlative imaging, biological form and function, and bioinspiration. J. R. Soc. Interface 16, 20190218 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bradley, R. S. & Withers, P. J. Correlative multiscale tomography of biological materials. MRS Bull. 41, 549–556 (2016).ADS 
    Article 

    Google Scholar 
    39.Ferstl, S. et al. Nanoscopic X-ray tomography for correlative microscopy of a small meiofaunal sea-cucumber. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    40.O’Sullivan, J. D. B., Cruickshank, S. M., Starborg, T., Withers, P. J. & Else, K. J. Characterisation of cuticular inflation development and ultrastructure in Trichuris muris using correlative X-ray computed tomography and electron microscopy. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    41.Goral, J., Walton, I., Andrew, M. & Deo, M. Pore system characterization of organic-rich shales using nanoscale- resolution 3D imaging. Fuel 258, 116049 (2019).CAS 
    Article 

    Google Scholar 
    42.Andrew, M. Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles. Geol. Soc. Lond. Spec. Publ. 484, 4844 (2018).
    Google Scholar 
    43.Ma, L. et al. Correlative multi-scale imaging of shales: a review and future perspectives. Geol. Soc. Lond. Spec. Publ. 454, 175–199 (2017).ADS 
    Article 

    Google Scholar 
    44.Schlüter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Bandara, C. D. et al. High-Resolution Chemical Mapping and Microbial Identification of Rhizosphere using Correlative Microscopy. bioRxiv 1–26 (2021).46.Spruzeniece, L., Piazolo, S., Daczko, N. R., Kilburn, M. R. & Putnis, A. Symplectite formation in the presence of a reactive fluid: insights from hydrothermal experiments. J. Metamorph. Geol. 35, 281–299 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Stefánsson, A. et al. Major impact of volcanic gases on the chemical composition of precipitation in Iceland during the 2014–2015 Holuhraun eruption. J. Geophys. Res. Atmos. Geophys. Res. Atmos. 122, 1971–1982 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    48.Gadd, G. M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Jongmans, A. G. et al. Rock-eating fungi. 389, 682–683 (1997).CAS 

    Google Scholar 
    50.Gadd, G. M. Fungi, rocks, and minerals. Elements 13, 171–176 (2017).Article 

    Google Scholar 
    51.Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegredation 46, 343–368 (2000).CAS 
    Article 

    Google Scholar 
    52.Burghelea, C. et al. Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza. Biogeochemistry 124, 187–203 (2015).CAS 
    Article 

    Google Scholar 
    53.Mcloughlin, N., Staudigel, H., Furnes, H., Eickmann, B. & Ivarsson, M. Mechanisms of microtunneling in rock substrates: Distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8, 245–255 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Hoffland, E., Giesler, R., Jongmans, T. & Van Breemen, N. Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems 5, 11–22 (2002).Article 

    Google Scholar 
    55.Wierzchos, J. & delos Ríos A, Ascaso C, ,. Microorganisms in desert rocks: The edge of life on Earth. Int. Microbiol. 15, 173–183 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Ascaso, C. & Wierzchos, J. New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Int. Microbiol. 5, 215–222 (2003).
    Google Scholar 
    57.Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein, W. E. & Vendrell-Saz, M. Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (Tepuis) of Venezuela. Geomicrobiol. J. 18, 117–132 (2001).CAS 
    Article 

    Google Scholar 
    58.Adamo, P. & Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 16, 229–256 (2000).CAS 
    Article 

    Google Scholar 
    59.Oggerin, M., Tornos, F., Rodriguez, N., Pascual, L. & Amils, R. Fungal iron biomineralization in Río Tinto. Minerals 6, 37 (2016).Article 
    CAS 

    Google Scholar 
    60.Akhtar, M. E. & Kelso, W. I. Electron microscopic characterisation of iron and manganese oxide/hydroxide precipitates from agricultural field drains 1. Biol. Fertil. Soils 16, 305–312 (1993).CAS 
    Article 

    Google Scholar 
    61.Gadd, G. M. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Napieralski, S. A. et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl. Acad. Sci. U. S. A. 116, 26394–26401 (2019).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dorn, R. I., Mahaney, W. C. & Krinsley, D. H. Case hardening: turning weathering rinds into protective shells. Elements 13, 165–169 (2017).Article 

    Google Scholar 
    64.Schreiber, H. D. Experimental studies of nickel and chromium partitioning into olivine from synthetic basaltic melts. in Lunar and Planetary Science Conference, 10th, Houston, Texas, Proceedings Volume 1 509–516 (1979).65.Burford, E. P., Kierans, M. & Gadd, G. M. Geomycology: Fungi in mineral substrata. Mycologist 17, 98–107 (2003).Article 

    Google Scholar 
    66.Dorn, R. I., Gordon, S. J., Krinsley, D. & Langworthy, K. Nanoscale: Mineral Weathering Boundary. In: Treatise on Geomorphology (eds. Shroder, J., Pope, G. A.), vol. 4, 44–69 (2013).67.Smits, M. Mineral tunneling by fungi. in Fungi in Biogeochemical cycles (ed. Gadd, G. M.) 311–327 (Cambridge University Press, 2006).68.Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Gadd, G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Arocena, J. M., Zhu, L. P. & Hall, K. Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau China. Earth Surf. Process. Landforms 28, 1429–1437 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Krumbein, W. E. & Jens, K. Biogenic rock varnishes of the Negev desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50, 25–38 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Gadd, G. M. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11, 297–316 (1993).CAS 
    Article 

    Google Scholar 
    73.Mitchell, R. L. et al. What lies beneath: 3d vs 2d correlative imaging challenges and how to overcome them. Microsc. Microanal. 25, 416–417 (2019).Article 

    Google Scholar 
    74.Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Photoperiodically driven transcriptome-wide changes in the hypothalamus reveal transcriptional differences between physiologically contrasting seasonal life-history states in migratory songbirds

    A single long day induces the photoperiodic molecular responseFigure 1c shows results from the experiment 1, as evidenced from the qPCR measurement of mRNA expression of genes of known biological functions in the blood and hypothalamus. Clearly, the exposure to extended light period induced a molecular response by hour 18 of the first long day, as shown by change in mRNA levels of candidate genes in both central (hypothalamus) peripheral (blood) tissues of photosensitive buntings. Blood mRNA levels of peroxiredoxin 4 (prdx4) were significantly lower at hour 18 mimicking a long 18 h photoperiod than those at hour 10 mimicking a short 10 h photoperiod (p = 0.002, t = 5.18, n = 4/time point). Paradoxically, this indicated a reduced cellular response against oxidative stress in the otherwise photo stimulated birds on the first long day. We speculate that prdx4 expression pattern would be inversed (i.e. increased prdx4 mRNA levels) after several long days when birds show photoperiodically stimulated hyperphagia (increased food intake) and lipogenesis (fat accumulation). Intriguingly, however, blood mRNA levels of gpx1 (p = 0.399, t = 0.91, n = 4/time point) and sod1 (p = 0.845, t = 0.20, n = 4/time point) genes were not different between hours 10 and 18 (Student’s t-test, Fig. 1c(a–c)). Taken together differences in the expression pattern of these enzymes, we speculate differential activation of the enzymatic pathways that are probably involved in the oxidative cellular response when migratory birds are exposed to an acute change in their photoperiodic environment.On the other hand, blood il1β mRNA levels were significantly higher at hour 18 than the hour 10 (p = 0.041, t = 2.58, n = 4/time point; Student’s t-test, Fig. 1c(d)). It is consistent with the known role of il1β-encoded interleukin 1β, as a crucial mediator of the inflammation and a marker of the innate immune system22,23. Increased il1β mRNA expression on the first long day is consistent with the idea of parallel photoperiodic induction of multiple biological processes, including those associated with the innate immune response, body fattening and gonadal maturation in migratory songbirds28; however, the possibility that an upregulated interleukin was an indicative a stress response cannot be excluded at this time.Changes in hypothalamic gene expressions further confirm a rapid molecular response to the extended light period when it surpasses the threshold photoperiod, i.e. acts as the stimulatory long day. Reciprocal switching of genes involved in the thyroid hormone responsive pathway at hour 18 particularly evidences this. Hypothalamic mRNA levels of tshβ (p = 0.033, t = 2.75, n = 4/time point) and dio2 (p = 0.0004, t = 7.14, n = 4/time point) genes were higher, and that of dio3 gene expression was lower at hour 18 than the hour 10 (p = 0.036, t = 2.68, n = 4/time point). This is also in agreement with the rapid photoperiodic response found on the first long day in plasma LH secretion, and in hypothalamic expressions of Fos-immunoreactivity and thyroid hormone responsive genes in blackheaded buntings14,33 and other photoperiodic birds15,17,19,32,34,35,36,37,38. However, gnrh mRNA levels were not found significantly different between hours 10 and 18 of the first long day (p = 0.324, t = 1.07, n = 4/time point; Student’s t-test, Fig. 1c(e–h) indicating that hour 18 was probably too early a time for an upregulated gnrh expression on the first long day37,38,39.RNA-Seq reveals differences in time course of the photoperiodic responseTable S2 summarizes the primary statistics used for RNA-Seq results. Using only transcripts with non-zero abundance, we compared the time course of transcriptome-wide response in the hypothalamus both as the function of time (within photosensitive or photorefractory state) and LHS (photosensitive vs. photorefractory state; n = 2/time point/state except at hour 22 in photorefractory state which had n = 1 sample size). Further, to show a functional linkage of differentially expressed genes (DEGs), we performed STRING analysis that predicts the protein–protein interaction (see methods for details).Results on hypothalamic gene expressions suggest that buntings react to the acute photoperiodic change in photorefractory state almost as they do in the photosensitive state. However, the comparison of the overall RNASeq data from both states revealed LHS-dependent pattern in the time course of transcriptional response, with differences in the number and functions of DEGs and associated physiological pathways.Within state differences in time course of transcriptional responseWe examined the time course of response on the first long day, by comparing gene expressions at the hours 14, 18 and 22 of the extended light period that mimicked 14 h, 18 h and 22 h long photoperiods, respectively, with those at hour 10 that mimicked a 10 h short photoperiod.Photosensitive stateAt hour 14, we found 10 differentially expressed genes (DEGs) with 4 upregulated and 6 downregulated genes (Figs. 2a, 3a, Table S3). Of the 10 DEGs, atp6v1e1, atp6v1b2, uqcrc1 and pgam1 genes enriched the oxidative phosphorylation, metabolic pathways, phagosome and mTOR signalling pathways (Table 1). The oxidative phosphorylation and metabolic pathways were upregulated at hour 10, while the phagosome and mTOR signalling pathways were enriched by two genes that were opposite in the expression trend: atp6v1e1 was upregulated while atp6v1b2 was downregulated at hour 14. The STRING analysis showed a significant interaction of atp6v1e1 and atp6v1b2 encoded proteins (ATP6V1E1 and ATP6V1B2). These proteins are the components of vacuolar ATPase enzyme that mediates the acidification of eukaryotic intracellular organelles necessary for protein sorting and zymogen activation. Further, at hour 14, ttr gene that codes for transthyretin (a preferential T3 binder) and pomc gene that codes for the proopiomelanocortin receptor had significantly lower expressions. Whereas, low ttr gene expression, as in photostimulated redheaded buntings40, might indicate a reduced trafficking of thyroid hormones via ttr-encoded transthyretins in the photosensitive state, the low pomc gene expression might suggest the removal of inhibitory effects of the opioids (e.g. β-endorphin, a pomc-encoded proopiomelanocortin product) on hypothalamic GnRH and, in turn, pituitary LH secretion41,42.Figure 2Top panel: Volcano plots showing results of differential gene expression analysis (− log10 padj. vs. log2 fold change values) in the hypothalamus within the photosensitive (a–c) and photorefractory states (e–g). The comparison protocol is shown on the left. In each state, the comparisons were done with respect to the hour 10 value (akin to short day control). Venn diagram shows common and unique DEGs in photosensitive (d) and photorefractory states (h). Bottom panel: Volcano plots showing results of differential gene expression analysis (− log10 padj. vs. log2 fold change values) between the photosensitive and photorefractory states. The pairwise comparisons were made at all the four time points (hours 10 (i), 14 (j), 18 (k) and 22 (l)). Venn diagram shows common and unique DEGs between states at hours 10, 14, 18 and 22 (m). Genes in a volcano plot with log2 fold change  > 2 are marked by green colour, and those with log2 fold change  > 2 and p value (padj.)  More

  • in

    Electrical conductivity as a driver of biological and geological spatial heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile

    1.Rothschild, L. & Mancinelli, R. Life in extreme environments. Nature 409, 1092–1101 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Cavicchioli, R. Extremophiles and the search for extraterrestrial life. Astrobiology 2, 281–292 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Parro, V. et al. A microbial oasis in the hypersaline atacama subsurface discovered by a life detector chip: Implications for the search for life on mars. Astrobiology 11, 969–996 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Lee, C. J. D. et al. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Coleine, C. et al. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS ONE 15, 1–17 (2020).Article 
    CAS 

    Google Scholar 
    6.Rathour, R. et al. A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci. Total Environ. 731, 139074 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Suosaari, E. P. et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    8.Suosaari, E. P. et al. Stromatolite provinces of Hamelin pool: Physiographic controls on stromatolites and associated lithofacies. J. Sediment. Res. 89, 207–226 (2019).ADS 
    Article 

    Google Scholar 
    9.Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms 4, 6 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Grotzinger, J. R. & Knoll, A. H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Grotzinger, J. P. & James, N. P. Precambrian carbonates: Evolution of understanding. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, J. P. & James, N. P.) 3–20 (Society for Sedimentary Geology, 2000).Chapter 

    Google Scholar 
    12.Demergasso, C. et al. Microbial mats from the Llamara salt flat, northern Chile. Rev. Chil. Hist. Nat. 76, 485–499 (2003).Article 

    Google Scholar 
    13.Demergasso, C. et al. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Mirobiol. Ecol. 48, 57–69 (2004).CAS 
    Article 

    Google Scholar 
    14.Saghaï, A. et al. Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ. Microbiol. 19, 2405–2421 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Shen, J., Zerkle, A. L., Stueeken, E. & Claire, M. W. Nitrates as a potential N supply for microbial ecosystems in a hyperarid mars analog system. Life 9, 79 (2019).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    16.Albarracín, V. H., Galván, F. S. & Farías, M. E. Extreme microbiology at Laguna Socompa: A high-altitude Andean lake (3570 m a.s.l.) in Salta, Argentina. In Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites (ed. Farías, M. E.) 205–220 (Springer, 2020).Chapter 

    Google Scholar 
    17.Aszalós, J. M. et al. Bacterial diversity of a high-altitude permafrost thaw pond located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 20, 754–765 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    18.Boidi, F. J., Mlewski, E. C., Gomez, F. J. & Gérard, E. Characterization of microbialites and microbial mats of the Laguna Negra hypersaline lake (Puna of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 183–203 (Springer, 2020).Chapter 

    Google Scholar 
    19.Farías, M. E. & Saona Acuña, L. A. Modern microbial mats and endoevaporite systems in Andean lakes: A general approach. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 21–33 (Springer, 2020).Chapter 

    Google Scholar 
    20.Farías, M. E., Villafañe, P. G. & Lencina, A. I. Integral propsection of andean microbial ecosystem project. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 245–260 (Springer, 2020).Chapter 

    Google Scholar 
    21.Gomez, F. J., Boidi, F. J., Mlewski, E. C. & Gérard, E. The carbonate system in Hypersaline Lakes: The case of Laguna Negra (in the Puna Region of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 231–242 (Springer, 2020).Chapter 

    Google Scholar 
    22.Otálora, F. et al. Hydrochemical and mineralogical evolution through evaporitic processes in Salar de Llamara Brines (Atacama, Chile). ACS Earth Sp. Chem. 4, 882–896 (2020).Article 
    CAS 

    Google Scholar 
    23.Rasuk, M. C., Visscher, P. T., Leiva, M. C. & Farías, M. E. Mats and microbialites from Laguna La Brava. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 221–230 (Springer, 2020).Chapter 

    Google Scholar 
    24.Demergasso, C. et al. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12, 491–504 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.del Rocío Mora-Ruiz, M. & Díaz-Gil, C. Microbial diversity in athalassohaline Argentinean Salterns. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 165–179 (Springer, 2020).Chapter 

    Google Scholar 
    26.Vignale, F. A. et al. Lithifying and non-lithifying microbial ecosystems in the wetlands and salt flats of the central Andes. Microb. Ecol. https://doi.org/10.1007/s00248-021-01725-8 (2021).Article 
    PubMed 

    Google Scholar 
    27.Stivaletta, N., Barbieri, R., Cevenini, F. & López-García, P. Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol. J. 28, 83–95 (2011).CAS 
    Article 

    Google Scholar 
    28.Farías, M. E. et al. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18, 311–329 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1–18 (2016).Article 

    Google Scholar 
    30.Rasuk, M. C. et al. Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb. Ecol. 71, 44–56 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Farias, M. E. et al. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 12, 1–25 (2017).Article 
    CAS 

    Google Scholar 
    32.Gutiérrez-Preciado, A. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat. Ecol. Evol. 2, 1700–1708 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Escudero, L. et al. A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie Van Leeuwenhoek 111, 1403–1419 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Chong-Díaz, G. Die Salare in Nordchile—Geologie, Struktur und Geochemie. Geotekton. Forsch. 67, 1–146 (1984).
    Google Scholar 
    35.Risacher, F. & Fritz, B. Geochemistry of Bolivian salars, Lipez, southern Altiplano: Origin of solutes and brine evolution. Geochim. Cosmochim. Acta 55, 687–705 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Pueyo, J. J., Chong, G. & Jensen, A. Neogene evaporites in Desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48, 1411–1431 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Simicic Hernández, Y. P. Thickness Distribution of the Oligo-Neogenous Sedimentary Cover of the Tamarugal Pampas, Northern Chile (20 ° 45 ’to 21 ° 30’S) (Universidad de Chile, 2015).
    Google Scholar 
    38.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. B Biol. 28, 137–142 (1995).CAS 
    Article 

    Google Scholar 
    39.Cabrol, N. A. et al. Life in the Atacama: Searching for life with rovers (science overview). J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000298 (2007).Article 

    Google Scholar 
    40.Solari, M. The unexplored geobiological heritage of Chile: Key to understand the past and future. In XIV Congr. Geológico Chil. 1–5 (2015).41.Rasuk, M. C. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Surma, J., Assonov, S., Herwartz, D., Voigt, C. & Staubwasser, M. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci. Rep. 8, 4972 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Rasuk, M. C., Leiva, M. C., Kurth, D. & Farías, M. E. Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 153–164 (Springer, 2020).Chapter 

    Google Scholar 
    44.Kiefer, E., Dorr, M., Ibbeken, H. & Gotze, H. Gravity-based mass balance of an alluvial fan giant: The Arcas Fan, Pampa del Tamarugal, Northern Chile. Rev. Geol. Chile 24, 165–185 (1997).
    Google Scholar 
    45.Houston, J. & Hartley, A. J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol. 23, 1453–1464 (2003).Article 

    Google Scholar 
    46.Dunai, T. J., López, G. A. G. & Juez-Larré, J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321–324 (2005).ADS 
    Article 

    Google Scholar 
    47.Hartley, A. J., Chong, G., Houston, J. & Mather, A. 150 million years of climatic stability: Evidence from the Atacama Desert, northern Chile. J. Geol. Soc. Lond. 162, 421–424 (2005).Article 

    Google Scholar 
    48.Clarke, J. D. A. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73, 101–114 (2006).ADS 
    Article 

    Google Scholar 
    49.Houston, J. Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes. J. Hydrol. 330, 402–412 (2006).ADS 
    Article 

    Google Scholar 
    50.Fuenzalida, H. & Rutllant, J. Estudio Sobre el Origen del Vapor de agua que Precipita en el Invierno Altiplánico (1986).51.Grosjean, M., Geyh, M. A., Messerli, B. & Schotterer, U. Late-glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano 22–24°S. J. Paleolimnol. 14, 241–252 (1995).ADS 
    Article 

    Google Scholar 
    52.Garreaud, R. Multiscale analysis of the summertime precipitation over the central Andes. Mon. Weather Rev. 127, 901–921 (1999).ADS 
    Article 

    Google Scholar 
    53.Houston, J. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: Mechanisms, magnitudes and causes. Hydrol. Process. 16, 3019–3035 (2002).ADS 
    Article 

    Google Scholar 
    54.Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: The Salar de Atacama example. Sci. Total Environ. 651, 668–683 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Cereceda, P., Larrain, H., Osses, P., Farías, M. & Egaña, I. The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos. Res. 87, 312–323 (2008).Article 

    Google Scholar 
    56.del Río, C. et al. The role of topography in the spatial distribution of the low stratocumulus cloud and fog in the Peruvian coastal Desert. In AGU Fall Meeting Abstracts 2018, A31J-2979 (2018).57.Hasler, K., Jaque, I., Pucheu, A. & Ortiz, C. Análisis de la Información Histórica de la Operación de la Medida de Mitigación. Estudio de Impacto Ambiental: Modification parcial del Sistema del Sistema de Reinyección en los puquios de Llamara, Elaborado por Geobiota (2020).58.Ordoñez, R., Hasler, K., Pucheu, A. & Ortiz, C. Modelo Numérico Hidrogeológico Acuífero Salar de Llamara. Estudio de Impacto Ambiental, Modificación Parcial del Sistema de reinyección en los Puquios de Llamara, elaborado por Geobiota (2020).59.Babel, M. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol. Pol. 54, 219-U6 (2004).
    Google Scholar 
    60.Rumrich, U., Lange-Bertalot, H. & Rumrich, M. Diatoms of the Andes. Annotated diatom monographs. Iconogr. Diatomol. 9, 671 (2000).
    Google Scholar 
    61.Lowe, R. L. Keeled and canalled raphid diatoms. In Freshwater Algae of North America (ed. Lowe, R. L.) 669–684 (Elsevier, 2003).Chapter 

    Google Scholar 
    62.Whitton, B. A. & Kelly, M. G. Use of algae and other plants for monitoring rivers. Aust. J. Ecol. 20, 45–56 (1995).Article 

    Google Scholar 
    63.Burow, L. C. et al. Identification of Desulfobacterales as primary hydrogenotrophs in a complex microbial mat community. Geobiology 12, 221–230 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Garcés, I. et al. Características geoquímicas generales del sistema salino del Salar de Llamara (Chile). Estud. Geol. 52, 23–35 (1996).Article 

    Google Scholar 
    65.López, P. L., Auqué, L. F., Garcés, I. & Chong, G. Características geoquímicas y pautas de evolución de las salmueras superficiales del Salar de Llamara, Chile. Rev. Geol. de Chile 26, 89–108 (1999).Article 

    Google Scholar 
    66.Kampf, S. K. & Tyler, S. W. Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile. Adv. Water Resour. 29, 336–354 (2006).ADS 
    Article 

    Google Scholar 
    67.Des-Marais, D. J. The Biogeochemistry of Hypersaline Microbial Mats. In Advances in Microbial Ecology (ed. Jones, J. G.) (Springer, 1995).
    Google Scholar 
    68.Vogel, M. B. et al. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiology 9, 875–893 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Vogel, M. B. et al. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment. Geol. 223, 265–280 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Ali-Bik, M. W., Metwally, H. I. M., Wali, A. M. A. & Kamel, M. G. Facies and geochemistry of non-marine gypsum, EMISAL, Egypt. Geol. Acta 11, 409–420 (2013).CAS 

    Google Scholar 
    71.Taher, A. G. Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt. Facies 60, 721–735 (2014).Article 

    Google Scholar 
    72.Handford, C. Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin—Bristol Dry Lake, California. Sedimentology 29, 239–253 (1982).ADS 
    Article 

    Google Scholar 
    73.Gerdes, G., Krumbein, W. E. & Holtkamp, E. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In Hypersaline Ecosystems. Ecological Studies (Analysis and Synthesis) (eds Friedman, G. M. & Krumbein, W. E.) 238–236 (Springer, 1985).Chapter 

    Google Scholar 
    74.Davie, A. W., Mitrovic, S. M. & Lim, R. P. Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inl. Waters 2, 89–100 (2012).Article 

    Google Scholar 
    75.Cohen, Y., Jørgensen, B. B., Padan, E. T. & Shilo, M. Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257, 489–492 (1975).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Oren, A. & Shilo, M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Arch. Microbiol. 122, 77–84 (1979).CAS 
    Article 

    Google Scholar 
    77.Muñoz, J., Amat, F., Green, A. J., Figuerola, J. & Gómez, A. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. PeerJ 2013, 1–28 (2013).
    Google Scholar 
    78.Clegg, J. S. & Trotman, C. N. A. Physiological and biochemical aspects of Artemia ecology. In Artemia: Basic and Applied Biology (eds Abatzopoulos, T. J. et al.) 129–170 (Springer, 2002).Chapter 

    Google Scholar 
    79.Collado, G. A., Valladares, M. A. & Méndez, M. A. Hidden diversity in spring snails from the andean altiplano, the second highest plateau on earth, and the Atacama Desert, the driest place in the world. Zool. Stud. 52, 1–13 (2013).Article 

    Google Scholar 
    80.Herbst, D. B., Conte, F. P. & Brookes, V. J. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34, 903–909 (1988).CAS 
    Article 

    Google Scholar 
    81.Cycil, L. M. et al. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. 11, 1567 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Dillon, J. G., Carlin, M., Gutierrez, A., Nguyen, V. & McLain, N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00399 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).PubMed 
    Article 

    Google Scholar 
    84.Casamayor, E. O. et al. Changes in Archaeal, bacterial and Eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348 (2002).PubMed 
    Article 

    Google Scholar 
    85.Gorrasi, S. et al. Spatio-temporal variation of the bacterial communities along a salinity gradient within a thalassohaline environment (Saline di Tarquinia Salterns, Italy). Molecules 26, 1338 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 1–17 (2015).Article 

    Google Scholar 
    89.Cody, R. D. & Cody, A. M. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sediment. Res. 58, 247–255 (1988).CAS 

    Google Scholar 
    90.Arp, G., Thiel, V., Reimer, A., Michaelis, W. & Reitner, J. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 126, 159–176 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    91.Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Cabestrero, Ó. & Sanz-Montero, M. E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 59, 139–157 (2016).Article 

    Google Scholar 
    93.Farías, M. E. Microbial Ecosystems in Central Andes Extreme Environments (Springer, 2020).Book 

    Google Scholar 
    94.Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 13, 1908–1923 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. (APHA American Public Health Association, 2012).96.Díaz, C. & Maidana, N. I. Diatomeas de los Salares Atacama y Punta Negra II Región-Chile (Centro de Ecología Aplicada Ltda. & Minera Escondida Ltda, 2005).
    Google Scholar 
    97.Patrick, R. Results of Research in the Antofagasta Ranges of Chile and Bolivia. II. Diatoms (Bacillariophyceae) from the Alimentary tract of Phoenicoparrus jamesi (1961).98.Frenguelli, J. Diatomeas del Río de la Plata. Rev. del Mus. la Plata Sección Bot. 3, 213–334 (1941).
    Google Scholar 
    99.Parra, O., González, M., Dellarossa, V., Rivera, P. & Orellana, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part III: Cryptophyceae, Dinophyceae, Euglenophyceae (1982).100.Parra, O. & González, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part I: Volvocales, Tetrasporales, Chlorococcales and Ulothricales (1983).101.Seeligmann, C. & Maidana, N. I. Diatomeas (Bacillariophyceae) en ambientes de altura de la provincia de Catamarca (Argentina). Boletín Soc. Argentina Bot. 38, 39–50 (2003).
    Google Scholar 
    102.Seeligmann, C., Maidana, N. I. & Morales, M. Diatoms (Bacillariophyceae) of high altitude wetlands in the Province of Jujuy-Argentina. Boletín Soc. Argentina Bot. 43, 1–17 (2008).
    Google Scholar 
    103.Maidana, N. I. & Seeligmann, C. Diatomeas (Bacillariophyceae) de ambientes acuáticos de altura de la Provincia de Catamarca, Argentina II. Boletín la Soc. Argentina Bot. 41, 1–13 (2006).
    Google Scholar 
    104.Álvarez Blanco, I., Cejudo Figueiras, C., Godos, I. F., Múñoz Torre, R. & White Lance, S. The diatoms of the salt flats of the Bolivian Altiplano: Floristic singularities. Bull. R. Span. Soc. Nat. Hist. 105, 67–82 (2011).
    Google Scholar 
    105.Maidana, N. I. & Seeligmann, C. T. Diatoms (Bacillariophyceae) in high-altitude wetlands of Catamarca Province (Argentina). III. Bol. LA Soc. Argentina Bot. 50, 447–466 (2015).Article 

    Google Scholar 
    106.Woelfl, S., Caputo, L., García-Chicote, J. & de Los Ríos, P. Manuales Para la Bioindicación: Zooplancton Vol. 1 (Manuales Sociedad Chilena de Limnología, 2008).
    Google Scholar 
    107.De los Rios-Escalante, P. & Salgado, I. Artemia (Crustacea, Anostraca) in Chile: A review of basic and applied biology. Lat. Am. J. Aquat. Res. 40, 487–496 (2017).Article 

    Google Scholar 
    108.Araya, J. M. & Zúñiga, L. R. Taxonomic manual of the lacustrine zooplankton of Chile. Limnol. Bull. Univ. Austral Chile 8, 1–69 (1985).
    Google Scholar 
    109.Fernández, H. R. & Domínguez, E. Guide for the Determination of South American Benthic Arthropods, Entomotropica16(3), 219 (2001).110.Crespo, J. E. & Baessolo, L. A. Biogeografia y taxonomia del género Artemis (Crustacea, Anostraca) en Chile: una revisión. Hist. Nat. I(1), 17–21 (2002).
    Google Scholar 
    111.Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinform. 7, 285 (2006).Article 
    CAS 

    Google Scholar 
    112.Palma, A. T., Schwarz, A. O. & Fariña, J. M. Experimental evidence of the tolerance to chlorate of the aquatic macrophyte Egeria densa in a Ramsar wetland in southern Chile. Wetlands 33, 129–140 (2013).Article 

    Google Scholar 
    113.Echeverría-Vega, A. et al. Watershed-induced limnological and microbial status in two oligotrophic Andean Lakes exposed to the same climatic scenario. Front. Microbiol. 9, 357 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Lane, D. J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, 1991).
    Google Scholar 
    115.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 20 (Plymouth Marine Laboratory, 2015).
    Google Scholar 
    118.Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2014).Article 
    CAS 

    Google Scholar 
    119.Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th Edition. (APHA American Public Health Association, 1998). More

  • in

    Functionalized MWCNTs-quartzite nanocomposite coated with Dacryodes edulis stem bark extract for the attenuation of hexavalent chromium

    1.Akpomie, K. G. & Dawodu, F. A. Montmorillonite-rice husk composite for heavy metal sequestration from binary aqua media: a novel adsorbent. Trans. R. Soc. South Africa 70(1), 83–88 (2015).Article 

    Google Scholar 
    2.Ali, A., Saeed, K. & Mabood, F. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alex. Eng. J. 55(3), 2933–2942 (2016).Article 

    Google Scholar 
    3.Amaku, J. F., Ogundare, S. A., Akpomie, K. G., Ngwu, C. M. & Conradie, J. Sequestered uptake of chromium(VI) by Irvingia gabonensis stem bark extract anchored silica gel. Biomass Conver. Biorefinery 3, 19 (2021).
    Google Scholar 
    4.Malwade, K., Lataye, D., Mhaisalkar, V., Kurwadkar, S. & Ramirez, D. Adsorption of hexavalent chromium onto activated carbon derived from Leucaena leucocephala waste sawdust: kinetics, equilibrium and thermodynamics. Int. J. Environ. Sci. Technol. 13(9), 2107–2116 (2016).CAS 
    Article 

    Google Scholar 
    5.Belay, A. A. Impacts of chromium from tannery effluent and evaluation of alternative treatment options. J. Environ. Prot. 1(01), 53 (2010).CAS 
    Article 

    Google Scholar 
    6.Das, A. K. Micellar effect on the kinetics and mechanism of chromium(VI) oxidation of organic substrates. Coord. Chem. Rev. 248(1), 81–99 (2004).CAS 
    Article 

    Google Scholar 
    7.Paš, M., Milačič, R., Drašar, K., Pollak, N. & Raspor, P. Uptake of chromium (III) and chromium (VI) compounds in the yeast cell structure. Biometals 17(1), 25–33 (2004).PubMed 
    Article 

    Google Scholar 
    8.Medeiros, M. et al. Elevated levels of DNA–protein crosslinks and micronuclei in peripheral lymphocytes of tannery workers exposed to trivalent chromium. Mutagenesis 18(1), 19–24 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Tuzen, M.; Elik, A.; Altunay, N., Ultrasound-assisted supramolecular solvent dispersive liquid-liquid microextraction for preconcentration and determination of Cr (VI) in waters and total chromium in beverages and vegetables. J. Mol. Liq. 2021, 329, 115556.10.Gao, H. et al. Improved Adsorption Performance of α-Fe2O3 Modified with Carbon Spheres for Cr (VI) Removal from Aqueous Solution. J. Nanosci. Nanotechnol. 18(2), 1034–1042 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Amaku, J. F.; Ogundare, S. A.; Akpomie, K. G.; Conradie, J., Enhanced sequestration of chromium (VI) onto spent self-indicating silica gels coated with Harpephyllum caffrum stem bark extract. International Journal of Environmental Analytical Chemistry 2021, 1–17.12.Pagilla, K. R. & Canter, L. W. Laboratory studies on remediation of chromium-contaminated soils. J. Environ. Eng. 125(3), 243–248 (1999).CAS 
    Article 

    Google Scholar 
    13.Ali, J. et al. Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. J. Mol. Liq. 291, 111299 (2019).CAS 
    Article 

    Google Scholar 
    14.Aksu, Z., Özer, D., Ekiz, H. I., Kutsal, T. & Çaglar, A. Investigation of biosorption of chromium (VI) on Cladophora crispata in two-staged batch reactor. Environ. Technol. 17(2), 215–220 (1996).CAS 
    Article 

    Google Scholar 
    15.Tiravanti, G., Petruzzelli, D. & Passino, R. Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36(2), 197–207 (1997).CAS 
    Article 

    Google Scholar 
    16.Seaman, J. C., Bertsch, P. M. & Schwallie, L. In situ Cr (VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (II) solutions. Environ. Sci. Technol. 33(6), 938–944 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Amaku, J. F. et al. Chrysophyllum albidum stem bark extract coated tillite adsorbent for the uptake of Cr (VI): thermodynamic, kinetic, isotherm, and reusability. Biomass Conver. Biorefinery 2, 1–13 (2021).
    Google Scholar 
    18.Lyubchik, S. I. et al. Kinetics and thermodynamics of the Cr (III) adsorption on the activated carbon from co-mingled wastes. Colloids Surf. A 242(1), 151–158 (2004).CAS 
    Article 

    Google Scholar 
    19.Demirbas, E., Kobya, M., Senturk, E. & Ozkan, T. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water Sea 30(4), 533–539 (2004).CAS 

    Google Scholar 
    20.Oliveira, E., Montanher, S., Andrade, A., Nobrega, J. & Rollemberg, M. Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 40(11), 3485–3490 (2005).CAS 
    Article 

    Google Scholar 
    21.Samuel, M. S. et al. Efficient removal of Chromium (VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int. J. Biol. Macromol. 121, 285–292 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Samuel, M. S. et al. Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium (VI) removal from aqueous solution. Int. J. Biol. Macromol. 119, 540–547 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Parlayici, S., Eskizeybek, V., Avcı, A. & Pehlivan, E. Removal of chromium (VI) using activated carbon-supported-functionalized carbon nanotubes. J. Nanostruct. Chem. 5(3), 255–263 (2015).CAS 
    Article 

    Google Scholar 
    24.Hu, J., Chen, C., Zhu, X. & Wang, X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009).CAS 
    PubMed 

    Google Scholar 
    25.Amaku, J., Ogundare, S., Akpomie, K., Ngwu, C. & Conradie, J. Enhanced chromium (VI) removal by Anacardium occidentale stem bark extract-coated multiwalled carbon nanotubes. Int. J. Environ. Sci. Technol. 6, 1–14 (2021).
    Google Scholar 
    26.Amaku, J. F. et al. Thermodynamics, kinetics and isothermal studies of chromium (VI) biosorption onto Detarium senegalense stem bark extract coated shale and the regeneration potentials. Int. J. Phytoremed. 5, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    27.Tunali, S., Kiran, I. & Akar, T. Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner. Eng. 18(7), 681–689 (2005).CAS 
    Article 

    Google Scholar 
    28.Módenes, A. N. et al. Study of the involved sorption mechanisms of Cr (VI) and Cr (III) species onto dried Salvinia auriculata biomass. Chemosphere 172, 373–383 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Hlihor, R. M., Figueiredo, H., Tavares, T. & Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Saf. Environ. Prot. 108, 44–56 (2017).CAS 
    Article 

    Google Scholar 
    30.Ji, B. et al. Chromium (VI) removal from water using starch coated nanoscale zerovalent iron particles supported on activated carbon. Chem. Eng. Commun. 7, 1–8 (2018).
    Google Scholar 
    31.Zhu, Y. et al. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Biores. Technol. 261, 142–150 (2018).CAS 
    Article 

    Google Scholar 
    32.Zhang, S.-H. et al. Mechanism investigation of anoxic Cr (VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chem. Eng. J. 335, 945–953 (2018).CAS 
    Article 

    Google Scholar 
    33.Amaku, J. F. et al. Adsorption of Cr (VI) onto Azadirachta indica stem bark extract modified dolerite composite adsorbent. Int. J. Environ. Anal. Chem. 7, 1–18 (2021).
    Google Scholar 
    34.Agarwal, G., Bhuptawat, H. K. & Chaudhari, S. Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Biores. Technol. 97(7), 949–956 (2006).CAS 
    Article 

    Google Scholar 
    35.Zhang, Y. et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr (VI) and Cu (II) from aqueous solution. Chem. Eng. J. 3, 79 (2018).
    Google Scholar 
    36.Moussout, H., Ahlafi, H., Aazza, M. & El Akili, C. Performances of local chitosan and its nanocomposite 5% Bentonite/Chitosan in the removal of chromium ions (Cr (VI)) from wastewater. Int. J. Biol. Macromol. 108, 1063–1073 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Moreira, A. L. D. S. L. et al. Bifunctionalized chitosan: a versatile adsorbent for removal of Cu (II) and Cr (VI) from aqueous solution. Carbohydr. Polym. 201, 218–227 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Lordi, V. & Yao, N. Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103(1–3), 2555–2558 (1999).CAS 
    Article 

    Google Scholar 
    40.Harris, P. J., Carbon nanotubes and related structures: new materials for the twenty-first century. AAPT: 2004.41.Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B. Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85(24), 5186 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Dai, H. et al. Electrical transport properties and field effect transistors of carbon nanotubes. NANO 1(01), 1–13 (2006).CAS 
    Article 

    Google Scholar 
    43.Rao, G. P., Lu, C. & Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58(1), 224–231 (2007).CAS 
    Article 

    Google Scholar 
    44.Vuković, G. D. et al. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 173(3), 855–865 (2011).Article 
    CAS 

    Google Scholar 
    45.Gao, Z., Bandosz, T. J., Zhao, Z., Han, M. & Qiu, J. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167(1–3), 357–365 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Xu, D., Tan, X., Chen, C. & Wang, X. Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154(1–3), 407–416 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Kanthapazham, R., Ayyavu, C. & Mahendiradas, D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalin. Water Treat. 57(36), 16871–16885 (2016).CAS 

    Google Scholar 
    48.Wang, Y. et al. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products. Water Res. 92, 104–112 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Patiño, Y. et al. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere 136, 174–180 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    50.Czech, B. & Oleszczuk, P. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 149, 272–278 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Howard, J. L. The quartzite problem revisited. J. Geol. 113(6), 707–713 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Olivier, T. T., Moïse, F., Jackson, S. A. & Francis, N. T. A review on traditional uses, phytochemical and pharmacological profiles, spiritual and economic values, and toxicity of Dacryodes Edulis (G. Don) HJ Lam. J. Drug Deliv. Therap. 6(5), 84–90 (2016).
    Google Scholar 
    53.Ogunmoyole, T., Kade, I., Johnson, O. & Makun, O. Effect of boiling on the phytochemical constituents and antioxidant properties of African pear Dacryodes edulis seeds in vitro. Afr. J. Biochem. Res. 6(8), 105–114 (2012).CAS 
    Article 

    Google Scholar 
    54.Omoregie, E. S. & Okugbo, O. T. In vitro antioxidant activity and phytochemical screening of methanol extracts of Ficus capensis and Dacryodes edulis leaves. Journal of Pharmacy & Bioresources 11(2), 66–75 (2014).Article 

    Google Scholar 
    55.Niazi, L., Lashanizadegan, A. & Sharififard, H. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J. Clean. Prod. 185, 554–561 (2018).CAS 
    Article 

    Google Scholar 
    56.Klimaviciute, R., Bendoraitiene, J., Rutkaite, R. & Zemaitaitis, A. Adsorption of hexavalent chromium on cationic cross-linked starches of different botanic origins. J. Hazard. Mater. 181(1–3), 624–632 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Mishra, S., Chakraborty, T. & Matsagar, V. Dynamic characterization of himalayan quartzite using SHPB. Procedia Eng. 191, 2–9 (2017).Article 

    Google Scholar 
    58.Torres, P., Manjate, R., Quaresma, S., Fernandes, H. & Ferreira, J. M. D. F. Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 27(16), 4649–4655 (2007).CAS 
    Article 

    Google Scholar 
    59.Amaral, P. M.; Fernandes, J. C.; Rosa, L. G. In A comparison between X-ray diffraction and petrography techniques used to determine the mineralogical composition of granite and comparable hard rocks, Materials science forum, Trans Tech Publ: 2006; pp 1628-1632.60.Hessel, C. M., Henderson, E. J. & Veinot, J. G. Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18(26), 6139–6146 (2006).CAS 
    Article 

    Google Scholar 
    61.Xie, P.-P. et al. Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 122, 392–398 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Wang, G. et al. Removal of Pb (II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab. J. Chem. 11(1), 99–110 (2018).CAS 
    Article 

    Google Scholar 
    63.Brunauer, S. & Emmett, P. Chemisorptions of gases on iron synthetic ammonia catalysts1. J. Am. Chem. Soc. 62(7), 1732–1746 (1940).CAS 
    Article 

    Google Scholar 
    64.Xing, Z.; Hébert, R.; Beaucour, A.; Ledésert, B.; Noumowé, A.; Linder, N. In Influence of aggregate’s nature on their instability at elevated temperature, 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, RILEM Publications SARL: 2011; pp 149–156.65.Szabó, M. et al. Equilibria and kinetics of chromium (VI) speciation in aqueous solution–a comprehensive study from pH 2 to 11. Inorg. Chim. Acta 472, 295–301 (2018).Article 
    CAS 

    Google Scholar 
    66.Saygi, K. O., Tuzen, M., Soylak, M. & Elci, L. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J. Hazard. Mater. 153(3), 1009–1014 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Shanmugalingam, A. & Murugesan, A. Removal of hexavalent chromium by adsorption on microwave assisted activated carbon prepared from stems of Leucas Aspera. Z. Phys. Chem. 232(4), 489–506 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Belachew, N. & Hinsene, H. Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Appl. Water Sci. 10(1), 38 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Gaikwad, M. S. & Balomajumder, C. Removal of Cr (VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode. Sep. Purif. Technol. 195, 305–313 (2018).CAS 
    Article 

    Google Scholar 
    70.Altundogan, H. S. Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp. Process Biochem. 40(3), 1443–1452 (2005).CAS 
    Article 

    Google Scholar 
    71.Demiral, H., Demiral, I., Tümsek, F. & Karabacakoğlu, B. Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem. Eng. J. 144(2), 188–196 (2008).CAS 
    Article 

    Google Scholar 
    72.Ma, M., Lu, Y., Chen, R., Ma, L. & Wang, Y. Hexavalent chromium removal from water using heat-acid activated red mud. Open J. Appl. Sci. 4(05), 275 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    73.Aslani, H., Kosari, T. E., Naseri, S., Nabizadeh, R. & Khazaei, M. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. Environ. Sci. Pollut. Res. 2, 1–15 (2018).
    Google Scholar 
    74.Gao, H. et al. Characterization of Cr (VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J. Hazard. Mater. 150(2), 446–452 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Chagas, P. M. B. et al. Nanostructured oxide stabilized by chitosan: Hybrid composite as an adsorbent for the removal of chromium (VI). J. Environ. Chem. Eng. 6(1), 1008–1019 (2018).CAS 
    Article 

    Google Scholar 
    76.Qiu, J. et al. Adsorption of Cr (VI) using silica-based adsorbent prepared by radiation-induced grafting. J. Hazard. Mater. 166(1), 270–276 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Hamza, I. A. A., Martincigh, B. S., Ngila, J. C. & Nyamori, V. O. Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Phys. Chem. Earth Parts A/B/C 66, 157–166 (2013).ADS 
    Article 

    Google Scholar 
    78.Liu, Y. & Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 61(3), 229–242 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California

    Ethics and vertebrate animalsThe field surveys and collections were conducted on accessible public areas or private residential areas with property owners’ permission. The study did not involve human participants, or endangered or protected species. Laboratory mice were used as a blood source for mosquitoes. All experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California, Irvine (UCI) (IACUC protocol number: AUP-19-165). All methods were carried out in accordance with relevant IACUC guidelines and regulations.Study sites and mosquito larval habitat surveillanceThe study was carried out in Orange County, California, USA. Orange County is a highly urbanized county with an estimated population density of approximately 1470 people/km2 according to U.S. Census Bureau, an average annual low/high temperature range of 13–25 °C, 65% relative humidity, and annual precipitation of about 350 mm according to U.S. Climate Data. Annual rainfall was 261 mm, 311 mm, 198 mm and 475 mm for 2016, 2017, 2018 and 2019, respectively. A major drought event occurred in December 2017 and February 2018 when the total rainfall in the 3-month period was 20.6% of the 30-year average. Both Ae. aegypti and Ae. albopictus were discovered in the county in 20158. Culex quinquefasciatus is the most abundant mosquito in the county and breeds readily in a variety of residential, commercial and USDS water sources, and is the primary vector of West Nile virus in southern California18.Larval mosquito surveillance in Orange County was conducted from 2016 to 2019 by the Orange County Mosquito and Vector Control District (OCMVCD) through its routine mosquito surveillance and treatment program, following the recommendations of the California Department of Public Health and the Mosquito and Vector Control Association of California19. Briefly, OCMVCD staff conducted routine inspection for aquatic habitats in randomly selected public areas, and performed door-to-door mosquito larval and adult sampling on residential or commercial premises upon the request of the residents or business owners while distributing public education materials for vector control and personal protection. Arial photography was used to examine the presence of abandoned swimming pools in residential areas. In addition to surface aquatic habitats, subsurface habitats (e.g., catch basins, underground drains, manhole chambers, and public utility vaults) were examined for larval abundance of all mosquito species. In 2019, OCMVCD completed 5,622 mosquito service requests, and conducted 11,813 inspection and treatments on routine sites using a variety of public health-approved adulticides and larvicides. A total of 38,099 underground drains and catch basins and 6925 km of flood channels were treated. In addition, a total of 17,783 km of gutters and 3562 neglected swimming pools were inspected and treated. The larval distribution data reported here were based on this extensive field sampling effort20.Larval sampling used standard mosquito dippers or pipettes, and specialized modifications of these to sample hard to reach areas. Mosquito larvae from each source were collected, transferred into a uniquely-numbered vial with isopropyl alcohol (70%), and submitted to the laboratory for identification; if present, live pupae were collected and held in site-specific labelled rearing chambers (BioQuip Products, Inc., Rancho Dominguez, CA) until emergence. Third and fourth instar mosquito larvae (1–100, depending on sample size) and emerged adults were identified to species using a stereo microscope (40–50x) and morphological features described in taxonomic keys21,22. Results were uploaded to OCMVCD’s data management system, along with collection date, GPS location, and habitat type for each sample site. For this study, larval habitats were classified into six types: small container, underground system, ornamental water features, marsh, pools/spas, and creek (Table S1). The container classification included flowerpots/vases, saucers, tires, bowls, boxes, buckets, dishes, tree holes, etc. Underground storm drain system referred to larval habitats such as catch basins, manhole chambers, underground drains, and public utility vaults that were below the ground. Water feature included flood control channels, ponds, fountains, birdbaths, street gutters and small reservoirs, etc. Marsh included both fresh and salt water marshes.Mosquito strains and water source for laboratory studiesWe examined the effect of USDS water on oviposition substrate preference and larval development in microcosms in an insectary with climate control (27 ± 1 °C, 70 ± 10% relative humidity, and 12 h light/12 h dark photoperiod) at UCI. To minimize potential bias on behavior and ecology from mosquito colonization, this study did not use previously established laboratory mosquito colonies. Instead, we used Ae. aegypti and Ae. albopictus adults reared from field-collected eggs using ovicups in residential areas of Orange and Los Angeles Counties, California, respectively. Culex quinquefasciatus were also reared from eggs of field-collected, blood-engorged adult mosquitoes using gravid traps in Orange County23.All experiments reported here used two types of habitat water: (1) USDS water collected from seven manhole chambers or catch basins (33°47′01.9″N, 117°53′19.0″W, Orange City, manhole; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, manhole; 33°44′44.4″N, 118°06′24.2″W, Seal Beach City, manhole; 33°55′38.9″N, 117°56′51.4″W, La Habra City, manhole; 33°52′48.9″N, 117°55′21.4″W, Fullerton City, catch basin; 33°54′35.2″N, 117°56′02.5″W, Fullerton City, catch basin; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, catch basin); and 2) flowerpot water from vases of three cemeteries in Orange County (33°50′29.0″N, 117°53′57.9″W; 33°46′21.5″N, 117°50′35.8″W; 33°46′12.3″N, 117°50′21.4″W). Water (including sediments) from each breeding source was collected with mosquito dippers and mixed together by habitat type into 18.9 L (five-gallon) Nalgene™ containers. The containers were transported to the laboratory in shaded ice containers, and stored overnight in a refrigerator at 4 °C. The experiments described below were conducted on the field-collected water for the two habitat types. We selected flowerpot water as the comparison substrate because flowerpot containers showed the highest larval positivity rate in the study area.Oviposition preference testTo examine whether USDS water attracts or repels egg laying by Ae. aegypti and Ae. albopictus mosquitoes, a two-choice oviposition preference test was conducted. Briefly, this experiment used two ovicups placed within a mosquito cage (1 × 0.5 × 0.5 m3), one ovicup with 200 ml USDS water and another with 200 ml flowerpot water. Adult mosquitoes were bloodfed on mice; fully engorged females 3-days post-bloodfeeding were used for oviposition preference tests. Ten gravid Ae. aegypti females were released into a cage and allowed to lay eggs for three days, and the number of eggs in each ovicup were counted. Five replicates were used. The same experiment was conducted for Ae. albopictus.To evaluate whether the presence of Cx. quinquefasciatus larvae has any impact on the egg laying behavior of invasive Aedes mosquitoes, the two-choice oviposition preference test described above was used. One ovicup contained 200 ml USDS water and ten first-instar Cx. quinquefasciatus larvae, while the second ovicup contained 200 ml USDS water only. Ten gravid Ae. aegypti or Ae. albopictus females were released into a cage and allowed to lay eggs for three days. Five replicates were used. We also conducted this experiment using flowerpot water with the same design and same number of replicates to determine whether the impact of Cx. quinquefasciatus larvae on Aedes mosquito egg laying behavior was similar across different water substrate types.Egg hatchingTo investigate the effects of different habitat water sources on egg hatching, 50 Ae. aegypti or Ae. albopictus eggs on separate filter papers were introduced into ovicups with 200 ml USDS water or flowerpot water. Deoxygenized distilled water that we routinely use in laboratory mosquito colony maintenance was used as a positive control. The experiment was conducted in an insectary with climate control (27 ± 1 °C). The number of larvae hatched were counted daily for six days continuously. Five replicates were used.Larval survivorshipA life table study was conducted on Ae. aegypti and Ae. albopictus larvae to determine the effect of USDS water and flowerpot water on larval development and survivorship. Twenty-five newly hatched Ae. aegypti or Ae. albopictus larvae were introduced into a microcosm that contained 200 ml USDS or field flowerpot water. The number of dead and surviving larvae was recorded daily until they pupated. Pupae were counted, and removed to different paper cups for emergence to adults. Four replicates were used for each type of habitat water per species. We included Cx. quinquefasciatus in the larval life table study for method validation purposes because the larvae of this species were known to successfully develop into pupae and adults in USDS water in southern California10.Larval survivorship experiments were conducted in two different seasons. The first was in the summer (August–September) 2019 when the density of invasive Aedes species peaked19, and also insecticide runoff from mosquito and residential/agricultural pest control applications were at the highest levels in southern California24. The second was in the winter (December) 2019 when there was little insecticide treatment for mosquito and pest control. This design enabled us to examine seasonality in larval survivorship and the impact of environmental insecticide runoff in USDS water. To determine whether USDS water’s nutritional deficiency plays a major role in limiting Aedes larval development, we repeated the larval survival experiment by adding 0.1 g Tetramin Tropical Flakes, the standard larval mosquito diet in insectaries, to the microcosms every 2 days. The number of dead and surviving larvae, pupae, and emergent adults was recorded daily.Data analysisAll aquatic habitats that were positive or negative for the larvae of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus (the predominant species), were mapped using ArcGIS 10.7.1. The proportion of aquatic habitats positive for Ae. aegypti and Cx. quinquefasciatus was calculated for each habitat type from 2016 to 2019. To examine variation in Aedes and Culex larval positivity rate among different groups of larval habitats within the USDS, larval positivity rates for Ae. aegypti and Cx. quinquefasciatus were calculated for underground water retention vaults, underground catch basins/manholes, and underground pipelines/tunnels. The Chi-square test was used to examine the statistical significance. Culex quinquefasciatus was analyzed because it was the most common species, whereas Ae. albopictus was not included in the analysis due to insufficient number of Ae. albopictus positive habitats. To determine whether USDS water attracted or repelled oviposition of invasive Aedes mosquitoes, a pairwise t test was used to compare egg number in USDS water ovicups to flowerpot water ovicups for each Aedes species. Similarly, a pairwise t-test was used to test the effect of Cx. quinquefasciatus larvae on Aedes mosquito oviposition choice.To examine the effect of water sources on egg hatching, the t-test was used to analyze the egg hatching rate. The analysis of larval life table study data focused on pupation rates and larval-to-pupal development times. The pupation rate was calculated as the proportion of first-instar larvae that molted into pupae. The effect of water sources and larval food supplementation on pupation rate was analyzed using non-parametric Wilcoxon test. The t-test was used to analyze the duration of larval-to-pupal development. Kaplan–Meier survival analysis was used to determine the effects of food supplementation and water source on larval development for each species, and the log-rank test was conducted to determine their statistical significance. All statistical analyses were performed using JMP software (JMP 14.2, SAS Institute Inc.). More

  • in

    Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations

    1.Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624. https://doi.org/10.1016/j.tree.2005.08.006 (2005).Article 
    PubMed 

    Google Scholar 
    2.Kaplan, I. et al. Physiological integration of roots and shoots in plant defense strategies links above-and belowground herbivory. Ecol. Lett. 11, 841–851. https://doi.org/10.1111/j.1461-0248.2008.01200.x (2008).Article 
    PubMed 

    Google Scholar 
    3.Huang, W., Siemann, E., Carrillo, J. & Ding, J. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores. Ann. Bot. 115, 841–846. https://doi.org/10.1093/aob/mcv011 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Omer, A. D., Thaler, J. S., Granett, J. & Karban, R. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J. Econ. Entomol. 93, 840–845. https://doi.org/10.1603/0022-0493-93.3.840 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Yamawo, A., Ohsaki, H. & Cahill, J. F. Jr. Damage to leaf veins suppresses root foraging precision. Am. J. Bot. 106, 1126–1130. https://doi.org/10.1002/ajb2.1338 (2019).Article 
    PubMed 

    Google Scholar 
    6.Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144. https://doi.org/10.1016/j.tree.2009.09.010 (2010).Article 
    PubMed 

    Google Scholar 
    7.Karban, R., Yang, L. J. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52. https://doi.org/10.1111/ele.12205 (2014).Article 
    PubMed 

    Google Scholar 
    8.Yoneya, K. & Takabayashi, J. Plant-plant communication mediated by airborne signals: Ecological and plant physiological perspectives. Plant Biotechnol. 31, 409–416. https://doi.org/10.5511/plantbiotechnology.14.0827a (2014).CAS 
    Article 

    Google Scholar 
    9.Morrell, K. & Kessler, A. Plant communication in a widespread goldenrod: Keeping herbivores on the move. Funct. Ecol. 31, 1049–1061. https://doi.org/10.1111/1365-2435.12793 (2017).Article 

    Google Scholar 
    10.Arimura, G. et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–515 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Shiojiri, K. et al. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Sci. Rep. 7, 1–8. https://doi.org/10.1038/srep41508 (2017).CAS 
    Article 

    Google Scholar 
    12.Karban, R., Shiojiri, K., Huntzinger, M. & McCall, A. C. Damage-induced resistance in sagebrush: Volatiles are key to intra- and interplant communication. Ecology 87, 922–930. https://doi.org/10.1890/0012-9658(2006)87[922:drisva]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    13.Kikuta, Y. et al. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol. 52, 588–596. https://doi.org/10.1093/pcp/pcr017 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G. & Felton, G. W. Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125, 66–71. https://doi.org/10.1007/PL00008892 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Karban, R., Huntzinger, M. & McCall, A. C. The specificity of eavesdropping on sagebrush by other plants. Ecology 85, 1845–1852. https://doi.org/10.1890/03-0593 (2004).Article 

    Google Scholar 
    16.Shiojiri, K. et al. Exposure to artificially damaged goldenrod volatiles increases saponins in seeds of field-grown soybean plants. Phytochem. Lett. 36, 7–10. https://doi.org/10.1016/j.phytol.2020.01.014 (2020).CAS 
    Article 

    Google Scholar 
    17.Glinwood, R., Ninkovic, V. & Pettersson, J. Chemical interaction between undamaged plants—Effects on herbivores and natural enemies. Phytochemistry 72, 1683–1689. https://doi.org/10.1016/j.phytochem.2011.02.010 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Lokesh, R. A. V. I., Manasvi, V. & Lakshmi, B. P. Antibacterial and antioxidant activity of saponin from Abutilon indicum leaves. Asian J. Pharm. Clin. Res. 9, 344–347. https://doi.org/10.22159/ajpcr.2016.v9s3.15064 (2016).CAS 
    Article 

    Google Scholar 
    19.Raji, P., Samrot, A. V., Keerthana, D. & Karishma, S. Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J. Cluster Sci. 30, 881–895. https://doi.org/10.1007/s10876-019-01547-2 (2019).CAS 
    Article 

    Google Scholar 
    20.Toth, R., Toth, D. & Starke, D. Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can. J. Bot. 68, 1039–1044. https://doi.org/10.1139/b90-131 (1990).Article 

    Google Scholar 
    21.Matyssek, R. et al. The plant’s capacity in regulating resource demand. Plant Biol. 7, 560–580. https://doi.org/10.1055/s-2005-872981 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x (2002).Article 
    PubMed 

    Google Scholar 
    23.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81. https://doi.org/10.1038/nature01931 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Walters, D. R. Plant Defense: Warding Off Attack by Pathogens, Herbivores, and Parasitic Plants (Blackwell Publishing, 2011).
    Google Scholar 
    25.Szakiel, A., Pączkowski, C. & Henry, M. Influence of environmental biotic factors on the content of saponins in plants. Phytochem. Rev. 10, 493–502. https://doi.org/10.1007/s11101-010-9164-2 (2011).CAS 
    Article 

    Google Scholar 
    26.Singh, B. & Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT 87, 93–101. https://doi.org/10.1016/j.lwt.2017.08.077 (2018).CAS 
    Article 

    Google Scholar 
    27.Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta-analysis. Am. Nat. 175, 481–493. https://doi.org/10.1086/650722 (2010).Article 
    PubMed 

    Google Scholar 
    28.Feeny PP. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581 https://doi.org/10.2307/1934037 (1970).Article 

    Google Scholar 
    29.Dudt, J. F. & Shure, D. J. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75, 86–98. https://doi.org/10.2307/1939385 (1994).Article 

    Google Scholar 
    30.Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Asian J. Pharm. Clin. Res. 33, 213–217. https://doi.org/10.1021/jf00062a013 (1985).CAS 
    Article 

    Google Scholar 
    31.Folin, O. & Denis, W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 22, 305–308 (1915).CAS 
    Article 

    Google Scholar 
    32.Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856. https://doi.org/10.1021/jf030723c (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Mukai, T., Horie, H. & Goto, T. A simple method for determining saponin in tea seed. Chagyo Kenkyu Hokoku 75, 29–31 (1992) (Japanese with English abstract).CAS 
    Article 

    Google Scholar 
    34.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. A colorimetric method for the determination of sugars. Nature 168, 167–167 (1951).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356. https://doi.org/10.1021/ac60111a017 (1956).CAS 
    Article 

    Google Scholar 
    36.Harad, Y. Cation and anion exchange capacity of soil background and methods. 302 Jpn. J. Soil Scie. Plant Nutr. 55, 273–283. 303 (1984) (in Japanese).
    37.R Development Core Team. R A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    38.De Geyter, E., Lambert, E., Geelen, D. & Smagghe, G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 1, 96–105 (2007).
    Google Scholar 
    39.Pankhurst, C. E. & Sprent, J. I. Effects of water stress on the respiratory and nitrogen-fixing activity of soybean root nodules. J. Exp. Bot. 26, 287–304. https://doi.org/10.1093/jxb/26.2.287 (1975).CAS 
    Article 

    Google Scholar 
    40.Sparg, S., Light, M. E. & Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243. https://doi.org/10.1016/j.jep.2004.05.016 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Saha, S., Walia, S., Kumar, J., Dhingra, S. & Parmar, B. S. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J. Agric. Food Chem. 58, 434–440. https://doi.org/10.1021/jf902439m (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Hoagland, R. E., Zablotowicz, R. M. & Oleszek, W. A. Effects of alfalfa saponins on in vitro physiological activity of soil and rhizosphere bacteria. J. Crop. Prod. 4, 349–361. https://doi.org/10.1300/J144v04n02_16 (2001).CAS 
    Article 

    Google Scholar 
    43.Killeen, G. F. et al. Antimicrobial saponins of Yucca schidigera and the implications of their in vitro properties for their in vivo impact. J. Agric. Food Chem. 46, 3178–3186. https://doi.org/10.1021/jf970928j (1998).CAS 
    Article 

    Google Scholar 
    44.Sugiyama, A. The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J. Adv. Res. 19, 67–73. https://doi.org/10.1016/j.jare.2019.03.005 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Lucas-Barbosa, D. Integration studies on plant-pollinator and plant–herbivore interactions. Trends Plant Sci. 21, 125–133. https://doi.org/10.1016/j.tplants.2015.10.013 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.De Deyn, G. B., Raaijmakers, C. E. & Van der Putten, W. H. Plant community development is affected by nutrients and soil biota. J. Ecol. 92(5), 824–834. https://doi.org/10.1111/j.0022-0477.2004.00924.x (2004).Article 

    Google Scholar 
    47.Knelman, J. E. et al. Nutrient addition dramatically accelerates microbial community succession. PLoS ONE 9(7), e102609. https://doi.org/10.1371/journal.pone.0102609 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Yoneya, K. & Takeshi, M. Co-evolution of foraging behaviour in herbivores and their natural enemies predicts multifunctionality of herbivore-induced plant volatiles. Funct. Ecol. 29, 451–461. https://doi.org/10.1111/1365-2435.12398 (2015).Article 

    Google Scholar 
    49.Karban, R. Plant communication increases heterogeneity in plant phenotypes and herbivore movement. Funct. Ecol. 31, 990–991. https://doi.org/10.1111/1365-2435.12806 (2017).Article 

    Google Scholar  More