Mapping the benefits of nature in cities with the InVEST software
1.United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (2019).2.Gouldson, A. et al. Accelerating Low-Carbon Development in the World’s Cities. Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. New Climate Economy, London and Washington, DC. Available at: http://newclimateeconomy.report/misc/working-papers. (2015).3.Revi, A. et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Field, C. B. et al.) 1132 pp https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).4.Bartesaghi Koc, C., Osmond, P. & Peters, A. Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies. Urban Ecosyst. 20, 15–35 (2017).
Google Scholar
5.Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).
Google Scholar
6.Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio. 43, 413–433 (2014).
Google Scholar
7.van den Bosch, M. & Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health—a systematic review of reviews. Environ. Res. 158, 373–384 (2017).
Google Scholar
8.Depietri, Y. & McPhearson, T. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 91–109, https://doi.org/10.1007/978-3-319-56091-5_6 (Springer International Publishing, 2017).9.Cortinovis, C. & Geneletti, D. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc. Urban Plan. 201, 103842 (2020).
Google Scholar
10.Lafortezza, R., Chen, J., van den Bosch, C. K. & Randrup, T. B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 165, 431–441 (2018).CAS
Google Scholar
11.European Union. Mapping and assessment of ecosystems and their services urban ecosystems 4th Report. https://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/102.pdf (2016).12.Sharp, R. S. et al. InVEST 3.8 User’s Guide. http://releases.naturalcapitalproject.org/invest-userguide/latest/. (2020).13.Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 LP–270272 (2018).
Google Scholar
14.Ruckelshaus, M. et al. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econ. 115, 11–21 (2015).
Google Scholar
15.Grêt-Regamey, A., Sirén, E., Brunner, S. H. & Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 26, 306–315 (2017).
Google Scholar
16.Mandle, L. & Natural Capital Project. Database of publications using InVEST and other natural capital project software. https://purl.stanford.edu/bb284rg5424 (2019).17.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS
Google Scholar
18.de Groot, R., Moolenaar, S., van Weelden, M., Konovska, I. & de Vente, J. The ESP Guidelines in a Nustshell. Ecosystem Services Partnership. FSD Working Paper 2018-09. (2018).19.Hamilton, S. H. et al. A framework for characterising and evaluating the effectiveness of environmental modelling. Environ. Model. Softw. 118, 83–98 (2019).
Google Scholar
20.Creutzig, F. et al. Upscaling urban data science for global climate solutions. Glob. Sustain. 2, e2 (2019).
Google Scholar
21.Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 104075 (2020).CAS
Google Scholar
22.Brugnach, M. & Pahl-Wostl, C. In Adaptive and Integrated Water Management: Coping with Complexity and Uncertainty (eds. Pahl-Wostl, C., Kabat, P. & Möltgen, J.) 187–203 https://doi.org/10.1007/978-3-540-75941-6_10 (Springer Berlin Heidelberg, 2008).23.Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 100, 8086–8091 (2003).CAS
Google Scholar
24.Haines-Young, R. & Potschin, M. In Ecosystem Ecology: A New Synthesis, BES Ecological Reviews Series, CUP (eds. Raffaelli, D. & Frid, C.) (2010).25.Tallis, H. et al. A global system for monitoring ecosystem service change. Bioscience 62, 977–986 (2012).
Google Scholar
26.Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).
Google Scholar
27.Ma, G., Zhao, X., Wu, Q. & Pan, T. Concept definition and system construction of gross ecosystem product. Resour. Sci. 37, 1709–1715 (2015).
Google Scholar
28.Ouyang, Z. et al. Gross ecosystem product concept accounting framework and case study. Acta Ecol. Sin. 33, 6747–6761 (2013).
Google Scholar
29.Ouyang, Z. & Jin, L. Developing Gross Ecosystem Product and Ecological Asset Accounting for Eco-Compensation (Science Press, 2017).30.Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 117, 14593–14601 (2020).CAS
Google Scholar
31.SEEA. Experimental Ecosystem Accounting. System of Environmental-Economic Accounting 2012. https://seea.un.org/sites/seea.un.org/files/websitedocs/eea_final_en.pdf (2012).32.Office for National Statistics. UK Natural Capital: urban accounts. https://www.ons.gov.uk/economy/environmentalaccounts/bulletins/uknaturalcapital/urbanaccounts (2020).33.Polasky, S., Tallis, H. & Reyers, B. Setting the bar: standards for ecosystem services. Proc. Natl. Acad. Sci. USA 112, 7356–7361 (2015).CAS
Google Scholar
34.Turner, K., Badura, T. & Ferrini, S. Natural capital accounting perspectives: a pragmatic way forward. Ecosyst. Heal. Sustain. 5, 237–241 (2019).
Google Scholar
35.Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS
Google Scholar
36.Hueber, D. & Worzala, E. “Code Blue” for U.S. Golf Course Real Estate Development: “Code Green” for Sustainable Golf Course Redevelopment. J. Sustain. Real Estate http://www.josre.org/wp-content/uploads/2012/09/Sustainable_Golf_Courses-Hueber-JOSRE1.pdf (2010).37.Ingram, M. A., Hoke, L. & Meyer, J. The declining economic viability of municipal golf courses. Public Munic. Financ. 2, 46–55 (2013).38.Ossola, A. et al. The provision of urban ecosystem services throughout the private-social-public domain: a conceptual framework. Cities Environ. 11, 1–15 (2018).
Google Scholar
39.IDEFESE. Modeling and mapping ecosystem services for sustainable urban planning decisions. https://idefese.wordpress.com/ (2020).40.Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).
Google Scholar
41.Langemeyer, J. & Connolly, J. J. T. Weaving notions of justice into urban ecosystem services research and practice. Environ. Sci. Policy 109, 1–14 (2020).
Google Scholar
42.Kremer, P. et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 21, 29 (2016).43.Andersson, E., Borgström, S. T. & McPhearson, T. Double Insurance in Dealing with Extremes: Ecological and social factors for making nature-based solutions. In nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 51–64 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-56091-5_4.44.Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).
Google Scholar
45.Cortinovis, C. & Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 70, 298–312 (2018).
Google Scholar
46.Barnett, C. & Parnell, S. Ideas, implementation and indicators: epistemologies of the post-2015 urban agenda. Environ. Urban. 28, 87–98 (2016).
Google Scholar
47.Sarabi, S. E., Han, Q., Romme, A. G. L., Vries, Bde & Wendling, L. Key enablers of and barriers to the uptake and implementation of nature-based solutions in urban settings: a review. Resources 8, 121 (2019).
Google Scholar
48.Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).
Google Scholar
49.Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).
Google Scholar
50.McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2019).
Google Scholar
51.McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).
Google Scholar
52.Song, X. P., Richards, D., Edwards, P. & Tan, P. Y. Benefits of trees in tropical cities. Science 356, 1241 LP–1241241 (2017).
Google Scholar
53.McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).
Google Scholar
54.Cabral, P., Feger, C., Levrel, H., Chambolle, M. & Basque, D. Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux. France. Ecosyst. Serv. 22, 318–327 (2016).
Google Scholar
55.Levrel, H., Cabral, P., Feger, C., Chambolle, M. & Basque, D. How to overcome the implementation gap in ecosystem services? A user-friendly and inclusive tool for improved urban management. Land Use Policy 68, 574–584 (2017).
Google Scholar
56.Sudmanns, M., Tiede, D., Augustin, H. & Lang, S. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. Int. J. Digit. Earth 13, 768–784 (2020).
Google Scholar
57.Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Landsc. Urban Plan. https://doi.org/10.31219/osf.io/3wx5a (2020).58.OECD. The territorial impact of COVID-19: Managing the crisis across levels of government. https://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/ (2020).59.McDonald, R. I., Colbert, M., Hamann, M., Simkin, R. & Walsh, B. Nature in the Urban Century. https://www.nature.org/content/dam/tnc/nature/en/documents/TNC_NatureintheUrbanCentury_FullReport.pdf (2018).60.Endreny, T. et al. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Modell. 360, 328–335 (2017).
Google Scholar
61.UrbanFootprint. The ultimate technical guideguide to UrbanFootprint. https://urbanfootprint.com/ (2017).62.EnvisionTomorrow. Web-based Envision Tomorrow 1.0 Technical Documentation. http://envisiontomorrow.org/et-publications (2014).63.Galle, N. J., Nitoslawski, S. A. & Pilla, F. The internet of nature: How taking nature online can shape urban ecosystems. Anthr. Rev. 6, 279–287 (2019).
Google Scholar
64.Natural capital project. Incorporating climate change scenarios into InVEST and RIOS. https://naturalcapitalproject.stanford.edu/sites/g/files/sbiybj9321/f/publications/incorporating-climate-change-scenarios-into-invest-and-rios-2016-01-11.pdf (2016).65.Rosenthal, A. et al. Process matters: a framework for conducting decision-relevant assessments of ecosystem services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 11, 190–204 (2015).
Google Scholar
66.Jakeman, A. J., Letcher, R. A. & Norton, J. P. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 21, 602–614 (2006).
Google Scholar
67.McKenzie, E. et al. Understanding the use of ecosystem service knowledge in decision making: Lessons from international experiences of spatial planning. Environ. Plan. C Gov. Policy 32, 320–340 (2014).
Google Scholar
68.Hamel, P. & Bryant, B. P. Uncertainty assessment in ecosystem services analyses: seven challenges and practical responses. Ecosyst. Serv. 24, 1–15 (2017).69.Markevych, I. et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 158, 301–317 (2017).CAS
Google Scholar
70.Lonsdorf, E. V., Nootenboom, C., Janke, B. & Horgan, B. P. Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area. Landsc. Urban Plan. 208, 104022 (2021).
Google Scholar
71.Ricketts, T. H. & Lonsdorf, E. Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecol. Appl. 23, 1113–1123 (2013).
Google Scholar
72.Tardieu, L., Coste, L., Levrel, H. & Viguié, V. Les services rendus par la nature peuvent-ils devenir un levier d’action dans les décisions d’aménagement? https://idefese.files.wordpress.com/2019/08/rapport_idefese1_2019_cadredecisionnel.pdf (2019).73.Liotta, C., Kervinio, Y., Levrel, H. & Tardieu, L. Planning for environmental justice—reducing well-being inequalities through urban greening. Environ. Sci. Policy 112, 47–60 (2020).
Google Scholar
74.Hamel. P. et al. Metadata record for the manuscript: Mapping the benefits of nature in cities with the InVEST software. figshare https://doi.org/10.6084/m9.figshare.13910660 (2021).75.Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).
Google Scholar
76.Hamel, P., Tardieu, L., Lemonsu, A., de Munck, C. & Viguié, V. Co-developing the InVEST urban cooling module. In French: Co-développement du module rafraîchissement offert par la végétation de l’outil InVEST. https://idefese.wordpress.com (2020).77.Bosch, M. et al. A spatially-explicit approach to simulate urban heat islands in complex urban landscapes. Geosci. Model Dev. (2020) [preprint] in review.78.Hamel, P. et al. Stormwater management services maps for the San Francisco Bay Area. Working paper. https://naturalcapitalproject.stanford.edu (2019).79.Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).
Google Scholar
80.Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 3, 913–918 (2013).
Google Scholar
81.Keeler, B. et al. Recreational demand for clean water: evidence from geotagged photographs by visitors to lakes. Front. Ecol. Environ. 13, 76–81 (2015).82.Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 2976 (2013).
Google Scholar
83.Liu, H., Remme, R. P., Hamel, P., Nong, H. & Ren, H. Supply and demand assessment of urban recreation service and its implication for greenspace planning-A case study on Guangzhou. Landsc. Urban Plan. 203, 103898 (2020).
Google Scholar
84.Griffin, R. et al. Incorporating the visibility of coastal energy infrastructure into multi-criteria siting decisions. Mar. Policy 62, 218–223 (2015).
Google Scholar
85.Lonsdorf, E. et al. Modelling pollination services across agricultural landscapes. Ann. Bot. 103, 1589–1600 (2009).
Google Scholar
86.Davis, A. Y. et al. Enhancing pollination supply in an urban ecosystem through landscape modifications. Landsc. Urban Plan. 162, 157–166 (2017).
Google Scholar
87.Hamel, P., Chaplin-Kramer, R., Sim, S. & Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 524–525, 166–177 (2015).88.Redhead, J. W. et al. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 610–611, 666–677(2018). More