1.Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the martian atmosphere: evidence for life?. Icarus 172, 537–547 (2004).ADS
CAS
Article
Google Scholar
2.Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of mars. Science 306, 1758–1761 (2004).ADS
CAS
PubMed
Article
Google Scholar
3.Geminale, A., Formisano, V. & Giuranna, M. Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194–1203 (2008).ADS
CAS
Article
Google Scholar
4.Mumma, M. J. et al. Strong release of methane on mars in northern summer 2003. Science 323, 1041–1045 (2009).ADS
CAS
PubMed
Article
Google Scholar
5.Webster, C. R. et al. Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015).ADS
CAS
PubMed
Article
Google Scholar
6.Webster, C. R. et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).ADS
MathSciNet
CAS
PubMed
Article
Google Scholar
7.Korablev, O. et al. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature 568, 517–520 (2019).ADS
CAS
PubMed
Article
Google Scholar
8.Fries, M. et al. A cometary origin for martian atmospheric methane. Geochem. Perspect. Lett. 2, 10–23 (2016).Article
Google Scholar
9.Keppler, F. et al. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486, 93–96 (2012).ADS
CAS
PubMed
Article
Google Scholar
10.Moores, J. E. & Schuerger, A. C. UV degradation of accreted organics on Mars: IDP longevity, surface reservoir of organics, and relevance to the detection of methane in the atmosphere. J. Geophys. Res. Planets 117, E8 (2012).Article
CAS
Google Scholar
11.Schuerger, A. C., Moores, J. E., Clausen, C. A., Barlow, N. G. & Britt, D. T. Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions. J. Geophys. Res. Planets 117, E8 (2012).Article
CAS
Google Scholar
12.Etiope, G., Ehlmann, B. L. & Schoell, M. Low temperature production and exhalation of methane from serpentinized rocks on Earth: a potential analog for methane production on Mars. Icarus 224, 276–285 (2013).ADS
CAS
Article
Google Scholar
13.Oehler, D. Z. & Etiope, G. Methane seepage on mars: where to look and why. Astrobiology 17, 1233–1264 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
14.Onstott, T. C. et al. Martian CH 4: sources, flux, and detection. Astrobiology 6, 377–395 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
15.Elwood Madden, M. E., Ulrich, S. M., Onstott, T. C. & Phelps, T. J. Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars. Geophys. Res. Lett. https://doi.org/10.1029/2006GL029156 (2007).Article
Google Scholar
16.Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Kendrick, M. G. & Kral, T. A. Survival of methanogens during desiccation: implications for life on mars. Astrobiology 6, 546–551 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
18.Anderson, K. L., Apolinario, E. E. & Sowers, K. R. Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl. Environ. Microbiol. 78, 1473–1479 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
19.Kral, T. A. & Altheide, S. T. Methanogen survival following exposure to desiccation, low pressure and martian regolith analogs. Planet. Space Sci. 89, 167–171 (2013).ADS
CAS
Article
Google Scholar
20.Sowers, K. R. & Gunsalus, R. P. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170, 998–1002 (1988).CAS
PubMed
PubMed Central
Article
Google Scholar
21.Maestrojuan, G. M. et al. Taxonomy and halotolerance of mesophilic methanosarcina strains, assignment of strains to species, and synonymy of methanosarcina mazei and methanosarcina frisia. Int. J. Syst. Bacteriol. 42, 561–567 (1992).CAS
Article
Google Scholar
22.Sowers, K. R., Boone, J. E. & Gunsalus, R. P. Disaggregation of methanosarcina spp and growth as single cells at elevated osmolarity. Appl. Environ. Microbiol. 59, 3832–3839 (1993).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Sowers, K. R. & Gunsalus, R. P. Halotolerance in methanosarcina spp: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation. Appl. Environ. Microbiol. 61, 4382–4388 (1995).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Roessler, M. et al. Identification of a salt-induced primary transporter for glycine betaine in the methanogen methanosarcina mazei go1. Appl. Environ. Microbiol. 68, 2133–2139 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
25.Shcherbakova, V., Oshurkova, V. & Yoshimura, Y. The effects of perchlorates on the permafrost methanogens: implication for autotrophic life on mars. Microorganisms 3, 518–534 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
26.Kral, T. A. et al. Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars. Planet. Space Sci. 120, 87–95 (2016).ADS
CAS
Article
Google Scholar
27.Rivkina, E. M., Laurinavichus, K. S., Gilichinsky, D. A. & Shcherbakova, V. A. Methane generation in permafrost sediments. Dokl. Biol. Sci. https://doi.org/10.1023/A:1015366613580 (2002).Article
PubMed
PubMed Central
Google Scholar
28.Rivkina, E. et al. Microbial life in permafrost. Adv. Sp. Res. 33, 1215–1221 (2004).ADS
CAS
Article
Google Scholar
29.Rivkina, E. et al. Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol. Ecol. 61, 1–15 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Takai, K. et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. U. S. A. 105, 10949–10954 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
31.Sinha, N., Nepal, S., Kral, T. & Kumar, P. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: implications for deep subsurface life on Mars. Planet. Space Sci. 136, 15–24 (2017).ADS
CAS
Article
Google Scholar
32.Chastain, B. K. & Kral, T. A. Approaching mars-like geochemical conditions in the laboratory: omission of artificial buffers and reductants in a study of biogenic methane production on a Smectite clay. Astrobiology 10, 889–897 (2010).ADS
CAS
PubMed
Article
Google Scholar
33.Kral, T. A., Altheide, T. S., Lueders, A. E. & Schuerger, A. C. Low pressure and desiccation effects on methanogens: Implications for life on Mars. Planet. Space Sci. 59, 264–270 (2011).ADS
CAS
Article
Google Scholar
34.Mickol, R. L. & Kral, T. A. Low pressure tolerance by methanogens in an aqueous environment: implications for subsurface life on mars. Orig. Life Evol. Biosph. 47, 511–532 (2017).ADS
CAS
PubMed
Article
Google Scholar
35.Coates, J. D. & Achenbach, L. A. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat. Rev. Microbiol. 2, 569–580 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Ericksen, G. E. The Chilean Nitrate Deposits: The origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years. Am. Sci. 71, 366–374 (1983).ADS
Google Scholar
37.Kounaves, S. P. et al. Discovery of natural perchlorate in the antarctic dry valleys and its global implications. Environ. Sci. Technol. 44, 2360–2364 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
38.Hecht, M. H. et al. Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325, 64–67 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
39.Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115, E12010 (2010).ADS
Article
Google Scholar
40.Glavin, D. P. et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 118, 1955–1973 (2013).ADS
CAS
Article
Google Scholar
41.Kounaves, S. P. et al. Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226–231 (2014).ADS
CAS
Article
Google Scholar
42.Kounaves, S. P., Carrier, B. L., O’Neil, G. D., Stroble, S. T. & Claire, M. W. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics. Icarus 229, 206–213 (2014).ADS
CAS
Article
Google Scholar
43.Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. https://doi.org/10.1038/ngeo2546 (2015).Article
Google Scholar
44.Clark, B. C. & Kounaves, S. P. Evidence for the distribution of perchlorates on Mars. Int. J. Astrobiol. 15, 311–318 (2016).ADS
CAS
Article
Google Scholar
45.Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. Polythermal study of the systems M(ClO4)2–H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russ. J. Appl. Chem. 78, 409–413 (2005).CAS
Article
Google Scholar
46.Chevrier, V. F., Hanley, J. & Altheide, T. S. Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site Mars. Geophys. Res. Lett. 36, L10202 (2009).ADS
Article
CAS
Google Scholar
47.Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. Modeling aqueous perchlorate chemistries with applications to Mars. Icarus 207, 675–685 (2010).ADS
CAS
Article
Google Scholar
48.Stillman, D. E. & Grimm, R. E. Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site Mars. J. Geophys. Res. 116, E09005 (2011).ADS
Google Scholar
49.Toner, J. D., Catling, D. C. & Light, B. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus 233, 36–47 (2014).ADS
CAS
Article
Google Scholar
50.Nikolakakos, G. & Whiteway, J. A. Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar. Geophys. Res. Lett. 42, 7899–7906 (2015).ADS
CAS
Article
Google Scholar
51.Maeder, D. L. et al. The Methanosarcina barkeri Genome: Comparative Analysis with Methanosarcina acetivorans and Methanosarcina mazei Reveals Extensive Rearrangement within Methanosarcinal Genomes. J. Bacteriol. 188, 7922–7931 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Sorek, R. & Cossart, P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat. Rev. Genet. 11, 9–16 (2010).CAS
PubMed
Article
Google Scholar
53.Lobo, A. L. & Zinder, S. H. Diazotrophy and Nitrogenase Activity in the Archaebacterium Methanosarcina barkeri 227. Appl. Environ. Microbiol. 54, 1656–1661 (1988).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Lobo, A. L. & Zinder, S. H. Nitrogenase in the archaebacterium Methanosarcina barkeri 227. J. Bacteriol. 172, 6789–6796 (1990).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Kessler, P. S. & Leigh, J. A. Genetics of nitrogen regulation in Methanococcus maripaludis. Genetics 152, 1343–1351 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Kessler, P. S., Daniel, C. & Leigh, J. A. Ammonia Switch-Off of Nitrogen Fixation in the Methanogenic Archaeon Methanococcus maripaludis: Mechanistic Features and Requirement for the Novel GlnB Homologues, NifI1 and NifI2. J. Bacteriol. 183, 882–889 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Kempf, B. & Bremer, E. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in bacillus subtilis. J. Biol. Chem. 270, 16701–16713 (1995).CAS
PubMed
Article
Google Scholar
58.Kempf, B. & Bremer, E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170, 319–330 (1998).ADS
CAS
PubMed
Article
Google Scholar
59.Hoffmann, T. & Bremer, E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol. Chem. 398, 193–214 (2017).CAS
PubMed
Article
Google Scholar
60.Hippe, H., Caspari, D., Fiebig, K. & Gottschalk, G. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. 76, 494–498 (1979).ADS
CAS
PubMed
Article
Google Scholar
61.Kreisl, P. & Kandler, O. Chemical structure of the cell wall polymer of methanosarcina. Syst. Appl. Microbiol. 7, 293–299 (1986).CAS
Article
Google Scholar
62.Jarrell, K. F., Jones, G. M., Kandiba, L., Nair, D. B. & Eichler, J. S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea 2010, 1–13 (2010).Article
CAS
Google Scholar
63.Srinivasan, G. Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).ADS
CAS
PubMed
Article
Google Scholar
64.Bin, P., Huang, R. & Zhou, X. Oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed Res. Int. 2017, 1–6 (2017).Article
CAS
Google Scholar
65.Armesto, X. L., Canle, L. M., Fernández, M. I., Garcı́a, M. V. & Santaballa, J. A. First steps in the oxidation of sulfur-containing amino acids by hypohalogenation: very fast generation of intermediate sulfenyl halides and halosulfonium cations. Tetrahedron 56, 1103–1109 (2000).CAS
Article
Google Scholar
66.Casanueva, A., Tuffin, M., Cary, C. & Cowan, D. A. Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol. 18, 374–381 (2010).CAS
PubMed
Article
Google Scholar
67.Oren, A. Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie Van Leeuwenhoek 58, 291–298 (1990).CAS
PubMed
Article
Google Scholar
68.Seibel, B. A. & Walsh, P. J. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol. 205, 297–306 (2002).CAS
PubMed
Article
Google Scholar
69.Lobo, A. L. & Zinder, S. H. Nitrogen fixation by methanogenic bacteria. in Biological Nitrogen Fixation (eds. Stacey, G., Burris, R. H. & Evans, H. J.) 191–211 (Chapman and Hall, 1992).70.Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 499–508 (2011).CAS
PubMed
Article
Google Scholar
71.Bardiya, N. & Bae, J.-H. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 166, 237–254 (2011).CAS
PubMed
Article
Google Scholar
72.Barnum, T. P. et al. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J. 12, 1568–1581 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Oren, A., Elevi, B. R. & Mana, L. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. Extremophiles 18, 75–80 (2014).CAS
PubMed
Article
Google Scholar
74.Liebensteiner, M. G., Pinkse, M. W. H., Schaap, P. J., Stams, A. J. M. & Lomans, B. P. Archaeal (Per)Chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Science 340, 85–87 (2013).ADS
CAS
PubMed
Article
Google Scholar
75.Bender, K. S. et al. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 187, 5090–5096 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Youngblut, M. D. et al. Perchlorate reductase is distinguished by active site aromatic gate residues. J. Biol. Chem. 291, 9190–9202 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Okeke, B. C., Giblin, T. & Frankenberger, W. T. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. https://doi.org/10.1016/S0269-7491(01)00288-3 (2002).Article
PubMed
Google Scholar
78.He, L. et al. Biological perchlorate reduction: which electron donor we can choose?. Environ. Sci. Pollut. Res. 26, 16906–16922 (2019).CAS
Article
Google Scholar
79.Xie, T. et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2018.06.011 (2018).Article
PubMed
Google Scholar
80.Chaudhuri, S. K., O’Connor, S. M., Gustavson, R. L., Achenbach, L. A. & Coates, J. D. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.68.9.4425-4430.2002 (2002).Article
PubMed
PubMed Central
Google Scholar
81.Abu-Omar, M. M. Effective and catalytic reduction of perchlorate by atom transfer-reaction kinetics and mechanisms. Comments Inorg. Chem. 24, 15–37 (2003).CAS
Article
Google Scholar
82.Adkins, H. & Cramer, H. I. The use of nickel as a catalyst for hydrogenation. J. Am. Chem. Soc. 52, 4349–4358 (1930).CAS
Article
Google Scholar
83.Thauer, R. K. et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
84.Zhang, H., Bruns, M. A. & Logan, B. E. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium. Environ. Microbiol. https://doi.org/10.1046/j.1462-2920.2002.00338.x (2002).Article
PubMed
Google Scholar
85.Ide, T., Bäumer, S. & Deppenmeier, U. Energy conservation by the H2: heterodisulfide oxidoreductase from methanosarcina mazei Gö1: identification of two proton-translocating segments. J. Bacteriol. 181, 4076–4080 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Deppenmeier, U. The membrane-bound electron transport system of methanosarcina species. J. Bioenerg. Biomembr. 36, 55–64 (2004).CAS
PubMed
Article
Google Scholar
87.Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R. & Metcalf, W. W. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. 99, 5632–5637 (2002).ADS
CAS
PubMed
Article
Google Scholar
88.Kulkarni, G., Mand, T. D. & Metcalf, W. W. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri. MBio 9, (2018).89.Bobik, T. Formyl-methanofuran synthesis in Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 87, 323–326 (1990).CAS
Article
Google Scholar
90.Wang, D. M., Shah, S. I., Chen, J. G. & Huang, C. P. Catalytic reduction of perchlorate by H2 gas in dilute aqueous solutions. Sep. Purif. Technol. 60, 14–21 (2008).CAS
Article
Google Scholar
91.Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
92.Mand, T. D. & Metcalf, W. W. Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus Methanosarcina. Microbiol. Mol. Biol. Rev. 83, (2019).93.Rummel, J. D. et al. A new analysis of mars “special regions”: findings of the second MEPAG special regions science analysis group (SR-SAG2). Astrobiology 14, 887–968 (2014).ADS
PubMed
Article
PubMed Central
Google Scholar
94.Bryant, M. P. & Boone, D. R. Emended description of strain MST(DSM 800T), the type strain of methanosarcina barkeri. Int. J. Syst. Bacteriol. 37, 169–170 (1987).Article
Google Scholar
95.Widdel, F., Kohring, G.-W. & Mayer, F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch. Microbiol. 134, 286–294 (1983).CAS
Article
Google Scholar
96.Francisco, D. E., Mah, R. A. & Rabin, A. C. Acridine orange-epifluorescence technique for counting bacteria in natural waters. Trans. Am. Microsc. Soc. 92, 416 (1973).CAS
PubMed
Article
PubMed Central
Google Scholar
97.Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
98.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
99.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
100.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
101.Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
102.Love, M., Anders, S. & Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 15, 10–1186 (2014).Article
CAS
Google Scholar
103.Ogata, H. et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar More