More stories

  • in

    Mapping the benefits of nature in cities with the InVEST software

    1.United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (2019).2.Gouldson, A. et al. Accelerating Low-Carbon Development in the World’s Cities. Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. New Climate Economy, London and Washington, DC. Available at: http://newclimateeconomy.report/misc/working-papers. (2015).3.Revi, A. et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Field, C. B. et al.) 1132 pp https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).4.Bartesaghi Koc, C., Osmond, P. & Peters, A. Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies. Urban Ecosyst. 20, 15–35 (2017).
    Google Scholar 
    5.Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).
    Google Scholar 
    6.Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio. 43, 413–433 (2014).
    Google Scholar 
    7.van den Bosch, M. & Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health—a systematic review of reviews. Environ. Res. 158, 373–384 (2017).
    Google Scholar 
    8.Depietri, Y. & McPhearson, T. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 91–109, https://doi.org/10.1007/978-3-319-56091-5_6 (Springer International Publishing, 2017).9.Cortinovis, C. & Geneletti, D. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc. Urban Plan. 201, 103842 (2020).
    Google Scholar 
    10.Lafortezza, R., Chen, J., van den Bosch, C. K. & Randrup, T. B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 165, 431–441 (2018).CAS 

    Google Scholar 
    11.European Union. Mapping and assessment of ecosystems and their services urban ecosystems 4th Report. https://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/102.pdf (2016).12.Sharp, R. S. et al. InVEST 3.8 User’s Guide. http://releases.naturalcapitalproject.org/invest-userguide/latest/. (2020).13.Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 LP–270272 (2018).
    Google Scholar 
    14.Ruckelshaus, M. et al. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econ. 115, 11–21 (2015).
    Google Scholar 
    15.Grêt-Regamey, A., Sirén, E., Brunner, S. H. & Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 26, 306–315 (2017).
    Google Scholar 
    16.Mandle, L. & Natural Capital Project. Database of publications using InVEST and other natural capital project software. https://purl.stanford.edu/bb284rg5424 (2019).17.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 

    Google Scholar 
    18.de Groot, R., Moolenaar, S., van Weelden, M., Konovska, I. & de Vente, J. The ESP Guidelines in a Nustshell. Ecosystem Services Partnership. FSD Working Paper 2018-09. (2018).19.Hamilton, S. H. et al. A framework for characterising and evaluating the effectiveness of environmental modelling. Environ. Model. Softw. 118, 83–98 (2019).
    Google Scholar 
    20.Creutzig, F. et al. Upscaling urban data science for global climate solutions. Glob. Sustain. 2, e2 (2019).
    Google Scholar 
    21.Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 104075 (2020).CAS 

    Google Scholar 
    22.Brugnach, M. & Pahl-Wostl, C. In Adaptive and Integrated Water Management: Coping with Complexity and Uncertainty (eds. Pahl-Wostl, C., Kabat, P. & Möltgen, J.) 187–203 https://doi.org/10.1007/978-3-540-75941-6_10 (Springer Berlin Heidelberg, 2008).23.Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 100, 8086–8091 (2003).CAS 

    Google Scholar 
    24.Haines-Young, R. & Potschin, M. In Ecosystem Ecology: A New Synthesis, BES Ecological Reviews Series, CUP (eds. Raffaelli, D. & Frid, C.) (2010).25.Tallis, H. et al. A global system for monitoring ecosystem service change. Bioscience 62, 977–986 (2012).
    Google Scholar 
    26.Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).
    Google Scholar 
    27.Ma, G., Zhao, X., Wu, Q. & Pan, T. Concept definition and system construction of gross ecosystem product. Resour. Sci. 37, 1709–1715 (2015).
    Google Scholar 
    28.Ouyang, Z. et al. Gross ecosystem product concept accounting framework and case study. Acta Ecol. Sin. 33, 6747–6761 (2013).
    Google Scholar 
    29.Ouyang, Z. & Jin, L. Developing Gross Ecosystem Product and Ecological Asset Accounting for Eco-Compensation (Science Press, 2017).30.Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 117, 14593–14601 (2020).CAS 

    Google Scholar 
    31.SEEA. Experimental Ecosystem Accounting. System of Environmental-Economic Accounting 2012. https://seea.un.org/sites/seea.un.org/files/websitedocs/eea_final_en.pdf (2012).32.Office for National Statistics. UK Natural Capital: urban accounts. https://www.ons.gov.uk/economy/environmentalaccounts/bulletins/uknaturalcapital/urbanaccounts (2020).33.Polasky, S., Tallis, H. & Reyers, B. Setting the bar: standards for ecosystem services. Proc. Natl. Acad. Sci. USA 112, 7356–7361 (2015).CAS 

    Google Scholar 
    34.Turner, K., Badura, T. & Ferrini, S. Natural capital accounting perspectives: a pragmatic way forward. Ecosyst. Heal. Sustain. 5, 237–241 (2019).
    Google Scholar 
    35.Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS 

    Google Scholar 
    36.Hueber, D. & Worzala, E. “Code Blue” for U.S. Golf Course Real Estate Development: “Code Green” for Sustainable Golf Course Redevelopment. J. Sustain. Real Estate http://www.josre.org/wp-content/uploads/2012/09/Sustainable_Golf_Courses-Hueber-JOSRE1.pdf (2010).37.Ingram, M. A., Hoke, L. & Meyer, J. The declining economic viability of municipal golf courses. Public Munic. Financ. 2, 46–55 (2013).38.Ossola, A. et al. The provision of urban ecosystem services throughout the private-social-public domain: a conceptual framework. Cities Environ. 11, 1–15 (2018).
    Google Scholar 
    39.IDEFESE. Modeling and mapping ecosystem services for sustainable urban planning decisions. https://idefese.wordpress.com/ (2020).40.Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).
    Google Scholar 
    41.Langemeyer, J. & Connolly, J. J. T. Weaving notions of justice into urban ecosystem services research and practice. Environ. Sci. Policy 109, 1–14 (2020).
    Google Scholar 
    42.Kremer, P. et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 21, 29 (2016).43.Andersson, E., Borgström, S. T. & McPhearson, T. Double Insurance in Dealing with Extremes: Ecological and social factors for making nature-based solutions. In nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 51–64 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-56091-5_4.44.Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).
    Google Scholar 
    45.Cortinovis, C. & Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 70, 298–312 (2018).
    Google Scholar 
    46.Barnett, C. & Parnell, S. Ideas, implementation and indicators: epistemologies of the post-2015 urban agenda. Environ. Urban. 28, 87–98 (2016).
    Google Scholar 
    47.Sarabi, S. E., Han, Q., Romme, A. G. L., Vries, Bde & Wendling, L. Key enablers of and barriers to the uptake and implementation of nature-based solutions in urban settings: a review. Resources 8, 121 (2019).
    Google Scholar 
    48.Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).
    Google Scholar 
    49.Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).
    Google Scholar 
    50.McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2019).
    Google Scholar 
    51.McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).
    Google Scholar 
    52.Song, X. P., Richards, D., Edwards, P. & Tan, P. Y. Benefits of trees in tropical cities. Science 356, 1241 LP–1241241 (2017).
    Google Scholar 
    53.McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).
    Google Scholar 
    54.Cabral, P., Feger, C., Levrel, H., Chambolle, M. & Basque, D. Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux. France. Ecosyst. Serv. 22, 318–327 (2016).
    Google Scholar 
    55.Levrel, H., Cabral, P., Feger, C., Chambolle, M. & Basque, D. How to overcome the implementation gap in ecosystem services? A user-friendly and inclusive tool for improved urban management. Land Use Policy 68, 574–584 (2017).
    Google Scholar 
    56.Sudmanns, M., Tiede, D., Augustin, H. & Lang, S. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. Int. J. Digit. Earth 13, 768–784 (2020).
    Google Scholar 
    57.Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Landsc. Urban Plan. https://doi.org/10.31219/osf.io/3wx5a (2020).58.OECD. The territorial impact of COVID-19: Managing the crisis across levels of government. https://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/ (2020).59.McDonald, R. I., Colbert, M., Hamann, M., Simkin, R. & Walsh, B. Nature in the Urban Century. https://www.nature.org/content/dam/tnc/nature/en/documents/TNC_NatureintheUrbanCentury_FullReport.pdf (2018).60.Endreny, T. et al. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Modell. 360, 328–335 (2017).
    Google Scholar 
    61.UrbanFootprint. The ultimate technical guideguide to UrbanFootprint. https://urbanfootprint.com/ (2017).62.EnvisionTomorrow. Web-based Envision Tomorrow 1.0 Technical Documentation. http://envisiontomorrow.org/et-publications (2014).63.Galle, N. J., Nitoslawski, S. A. & Pilla, F. The internet of nature: How taking nature online can shape urban ecosystems. Anthr. Rev. 6, 279–287 (2019).
    Google Scholar 
    64.Natural capital project. Incorporating climate change scenarios into InVEST and RIOS. https://naturalcapitalproject.stanford.edu/sites/g/files/sbiybj9321/f/publications/incorporating-climate-change-scenarios-into-invest-and-rios-2016-01-11.pdf (2016).65.Rosenthal, A. et al. Process matters: a framework for conducting decision-relevant assessments of ecosystem services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 11, 190–204 (2015).
    Google Scholar 
    66.Jakeman, A. J., Letcher, R. A. & Norton, J. P. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 21, 602–614 (2006).
    Google Scholar 
    67.McKenzie, E. et al. Understanding the use of ecosystem service knowledge in decision making: Lessons from international experiences of spatial planning. Environ. Plan. C Gov. Policy 32, 320–340 (2014).
    Google Scholar 
    68.Hamel, P. & Bryant, B. P. Uncertainty assessment in ecosystem services analyses: seven challenges and practical responses. Ecosyst. Serv. 24, 1–15 (2017).69.Markevych, I. et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 158, 301–317 (2017).CAS 

    Google Scholar 
    70.Lonsdorf, E. V., Nootenboom, C., Janke, B. & Horgan, B. P. Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area. Landsc. Urban Plan. 208, 104022 (2021).
    Google Scholar 
    71.Ricketts, T. H. & Lonsdorf, E. Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecol. Appl. 23, 1113–1123 (2013).
    Google Scholar 
    72.Tardieu, L., Coste, L., Levrel, H. & Viguié, V. Les services rendus par la nature peuvent-ils devenir un levier d’action dans les décisions d’aménagement? https://idefese.files.wordpress.com/2019/08/rapport_idefese1_2019_cadredecisionnel.pdf (2019).73.Liotta, C., Kervinio, Y., Levrel, H. & Tardieu, L. Planning for environmental justice—reducing well-being inequalities through urban greening. Environ. Sci. Policy 112, 47–60 (2020).
    Google Scholar 
    74.Hamel. P. et al. Metadata record for the manuscript: Mapping the benefits of nature in cities with the InVEST software. figshare https://doi.org/10.6084/m9.figshare.13910660 (2021).75.Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).
    Google Scholar 
    76.Hamel, P., Tardieu, L., Lemonsu, A., de Munck, C. & Viguié, V. Co-developing the InVEST urban cooling module. In French: Co-développement du module rafraîchissement offert par la végétation de l’outil InVEST. https://idefese.wordpress.com (2020).77.Bosch, M. et al. A spatially-explicit approach to simulate urban heat islands in complex urban landscapes. Geosci. Model Dev. (2020) [preprint] in review.78.Hamel, P. et al. Stormwater management services maps for the San Francisco Bay Area. Working paper. https://naturalcapitalproject.stanford.edu (2019).79.Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).
    Google Scholar 
    80.Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 3, 913–918 (2013).
    Google Scholar 
    81.Keeler, B. et al. Recreational demand for clean water: evidence from geotagged photographs by visitors to lakes. Front. Ecol. Environ. 13, 76–81 (2015).82.Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 2976 (2013).
    Google Scholar 
    83.Liu, H., Remme, R. P., Hamel, P., Nong, H. & Ren, H. Supply and demand assessment of urban recreation service and its implication for greenspace planning-A case study on Guangzhou. Landsc. Urban Plan. 203, 103898 (2020).
    Google Scholar 
    84.Griffin, R. et al. Incorporating the visibility of coastal energy infrastructure into multi-criteria siting decisions. Mar. Policy 62, 218–223 (2015).
    Google Scholar 
    85.Lonsdorf, E. et al. Modelling pollination services across agricultural landscapes. Ann. Bot. 103, 1589–1600 (2009).
    Google Scholar 
    86.Davis, A. Y. et al. Enhancing pollination supply in an urban ecosystem through landscape modifications. Landsc. Urban Plan. 162, 157–166 (2017).
    Google Scholar 
    87.Hamel, P., Chaplin-Kramer, R., Sim, S. & Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 524–525, 166–177 (2015).88.Redhead, J. W. et al. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 610–611, 666–677(2018). More

  • in

    Maintenance power requirements of anammox bacteria “Candidatus Brocadia sinica” and “Candidatus Scalindua sp.”

    1.Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. Full-scale partial nitritation/anammox experience – an application survey. Water Res. 2014;55:292–303.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Ali M, Okabe S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere. 2015;141:144–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Ni S, Sung S, Yue Q, Gao B. Substrate removal evaluation of granular anammox process in a pilot-scale upflow anaerobic sludge blanket reactor. Ecol Eng 2012;38:30–36.Article 

    Google Scholar 
    4.Wang B, Peng Y, Guo Y, Yuan Y, Zhao M, Wang S. Impact of partial nitritation degree and C/N ratio on simultaneous sludge fermentation, denitrification and anammox process. Bioresour Technol. 2016;219:411–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Okabe S. Maximum specific growth rate of anammox bacteria revisited. Water Res. 2017;116:296–303.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Zhang L, Okabe S. Ecological niche differentiation among anammox bacteria. Water Res. 2020;171:115468.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, et al. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. J Appl Microbiol. 2014;116:464–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Zhu GB, Wang SY, Wang WD, Wang Y, Zhou LL, Jiang B, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci. 2013;6:103–7.CAS 
    Article 

    Google Scholar 
    9.Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Schmid M, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol. 2007;9:1476–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuña-González J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature. 2003;422:606–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kuypers MMM, Olav Sliekers A, Lavik G, Schmid M, Jørgensen BB, Gijs Kuenen J, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature. 2003;422:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J. 2010;4:450–4.PubMed 
    Article 

    Google Scholar 
    14.Zhu GB, Wang SY, Wang Y, Wang CX, Risgaard-Petersen N, Jetten MSM, et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 2011;5:1905–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol. 2016;18:2784–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Sonthiphand P, Hall MW, Neufeld JD. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol. 2014;5:1–14.Article 

    Google Scholar 
    17.van Bodegom P. Microbial maintenance: A critical review on its quantification. Microb Ecol. 2007;53:513–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Wang G, Post WM. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling. FEMS Microbiol Ecol. 2012;81:610–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Overkamp W, Ercan O, Herber M, van Maris AJA, Kleerebezem M, Kuipers OP. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis. Environ Microbiol. 2015;17:346–63.PubMed 
    Article 

    Google Scholar 
    20.Ma X, Wang Y, Zhou S, Yan Y, Lin X, Wu M. Endogenous metabolism of anaerobic ammonium oxidizing bacteria in response to short-term anaerobic and anoxic starvation stress. Chem Eng J. 2017;313:1233–41.CAS 
    Article 

    Google Scholar 
    21.Ma X, Wang Y. Anammox bacteria exhibit capacity to withstand long-term starvation stress: a proteomic-based investigation of survival mechanisms. Chemosphere. 2018;211:952–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Xing B-S, Guo Q, Jiang X-Y, Chen Q-Q, He M-M, Wu L-M, et al. Long-term starvation and subsequent reactivation of anaerobic ammonium oxidation (anammox) granules. Chem Eng J. 2016;287:575–84.CAS 
    Article 

    Google Scholar 
    23.Wang Q, Song K, Hao X, Wei J, Pijuan M, van Loosdrecht MCM, et al. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere. 2018;201:25–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lopez C, Pons MN, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorous removal. Water Res. 2006;40:1519–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J, et al. Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Appl Environ Microbiol. 1999;65:2471–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Vos T, Hakkaart XDV, de Hulster EAF, van Maris AJA, Pronk JT, Daran-Lapujade P. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Micro Cell Fact. 2016;15:111.Article 
    CAS 

    Google Scholar 
    27.Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshiaki H, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium “Candidatus Jettenia caeni”. Environ Microbiol. 2015;17:2172–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Narita Y, Zhang L, Kimura, Ali M, Fujii T, Okabe S. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sapporoensis”. Syst Appl Microbiol. 2017;40:448–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica”. Microbiol. 2011;157:1706–13.CAS 
    Article 

    Google Scholar 
    30.Okabe, S, Shafdar, AA, Kobayashi, K, Zhang, L, and Oshiki, M. Glycogen metabolism of the anammox bacterium “Candidatus Brocadia sinica” ISME J. 2020; https://doi.org/10.1038/s41396-020-00850-5.31.van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng. 2008;101:286–94.PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Zhang L, Okabe S. Rapid cultivation of free-living planktonic anammox cells. Water Res. 2017;127:204–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Oshiki M, Awata T, Kindaichi T, Satoh H, Okabe S. Cultivation of planktonic anaerobic ammonium oxidation (Anammox) bacteria using membrane bioreactor. Microbes Environ. 2013;28:436–43.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus Scalindua” group. Appl Environ Microbiol. 2013;79:4145–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Ishii S, et al. Microbial competition among anammox baxteria in nitrite-limited bioreactors. Water Res. 2017;125:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Graaf AA, Van DE, Bruijn PDE, Robertson LA, Jetten MSM, Kuenen JG. Autotrophic growth of anaerobic in a fluidized bed reactor. Microbiol. 1996;142:2187–96.Article 

    Google Scholar 
    37.Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, et al. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ. 2011;26:67–73.PubMed 
    Article 

    Google Scholar 
    38.APHA. Standard Methods for the Examination of Water and Sewage, Washington DC,1998,39.Nagaraja P, Shivaswamy M, Kumar H. Highly sensitive N-(1-Naphthyl)ethylene diamine method for the spectrophotometric determination of trace amounts of nitrite in various water samples. Intern J Environ Anal Chem. 2001;80:39–48.CAS 
    Article 

    Google Scholar 
    40.Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res. 2007;41:1623–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Kindaichi T, Tsushima I, Ogasawara Y, Shimokawa M, Ozaki N, Satoh H, et al. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl Environ Microbiol. 2007;73:4931–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol. 1999;65:3182–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Pirt SJ. Maintenance energy of bacteria in growing cultures. Proc R soc Lond B Biol Sci. 1965;163:224–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Pirt SJ. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol. 1982;133:300–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Herbert D, Elsworth R, Telling RC. The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol. 1956;14:601–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.van Verseveld HW, De Hollander JA, Frankena J, Braster M, Leeuwerik FJ, Stouthamer AH. Modeling of microbial substrate conversion, growth and product formation in a recycling fermentor. Antonie Van Leeuwenhoek. 1986;52:325–42.PubMed 
    Article 

    Google Scholar 
    47.Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCM. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014;60:1–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. A thermodynmically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589–96.CAS 
    Article 

    Google Scholar 
    50.Awata T, Kindaichi T, Ozaki N, Ohashi A. Biomass yield efficiency of the marine anammox bacterium, “Candidatus Scalindua sp.,” is affected by salinity. Microbes Environ. 2015;30:86–91.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Henze, M. Wastewater Treatment: Biological and chemical processes. New York, NY: Springer, 1997.52.Vandekerckhove, TGL, Bodé, S, De Mulder, C, Vlaeminck, SE, Boon, N. 13C Incorporation as a tool to estimate biomass yields in thermophilic and mesophilic nitrifying communities. Front Microbiol. 2019;10:192.53.Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J. Cultivation of nitrifying bacteria in the retentostat, a simple fermentor with internal biomass retention. FEMS Microbiol Ecol. 1996;19:47–52.CAS 
    Article 

    Google Scholar 
    54.Rebnegger C, Vos T, Graf AB, Valli M, Pronk JT, Daran-Lapujade P, et al. Picha pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Appl Environ Microbiol. 2016;82:4570–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Bulthuis BA, Frankena J, Koningstein GM, van Verseveld HW, Stouthamer AH. Instability of protease production in a rel1/rel2 pair of Bacillus licheniformis and associated morphological and physiological characteristics. Antonie Leeuwenhoek. 1988;54:95–111.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Kempes, CP, van Bodegom PM, Wolpert, D, Libby, E, Amend, J, Hoehler, T. Drivers of bacterial maintenance and minimal energy requirements. Front Microbiol. 2017;8:31.58.Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 2001;25:175–243.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Amend JP, LaRowe DE. Minireview: demystifying microbial reaction energetics. Environ Microbiol. 2019;21:3539–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kartal B, Keltjens JT. Anammox biochemistry: a tale of heme c proteins. Trends Biochem Sci. 2016;41:998–1011.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Scholten JCM, Conrad R. Energetics of syntrophic propionate oxidation in defined batch and chemostat coculture. Appl Environ Microbiol. 2000;66:2934–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.LaRowe DE, Amend JP. The energetics of anabolism in natural settings. ISME J. 2016;10:1285–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.CAS 
    Article 

    Google Scholar 
    64.Marschall E, Jogler M, Henssge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol. 2010;12:1348–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Bradley, JA, Arndt, S, Amend, JP, Burwicz, E, Dale, AW, Egger, M et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv. 2020;6:eaba0697.66.Hoehler TM, Jorgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.LaRowe, DE, Amend, JP. Power limits for microbial life. Front Microbiol 2015;6:718.68.Zhao R, Mogollon JM, Abby SS, Schleper C, Biddle JF, Roerdink DL. et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA. 2020;117:32617–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Sinninghe Damste JS. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J. 2011;5:1896–904.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Günter M, et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 2012;6:1200–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    71.Füchslin HP, Schneider C, Egli T. In glucose-limited continuous culture the minimum substrate concentration for growth, Smin, is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium. ISME J. 2012;6:777–89.PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Effects of climate variation on bird escape distances modulate community responses to global change

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).2.Pearson, R. G. & Dawson, T. E. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    3.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Dunn, P. O. Changes in timing of breeding and reproductive success in birds. in Effects of Climate Change on Birds, 2nd edn. (eds. Dunn, P. O. & Møller, A. P.). 108–119 (Oxford University Press, 2019).5.Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).6.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
    Article 

    Google Scholar 
    7.Staniczenko, P. P. A., Sivasubramaniam, P., Suttle, K. B. & Pearson, R. G. Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks. Ecol. Lett. 20, 693–707 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mendoza, M. & Araújo, M. B. Climate shapes mammal community trophic structures and humans simplify them. Nature Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    9.Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).PubMed 
    Article 

    Google Scholar 
    10.Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).Article 

    Google Scholar 
    11.Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Nat. Acad. Sci. USA 110, 9374–9379 (2013).CAS 
    PubMed 
    ADS 
    Article 

    Google Scholar 
    12.Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).Article 

    Google Scholar 
    13.Díaz M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One 8, e64634 (2013).14.Samia, D. S., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 
    Article 

    Google Scholar 
    15.Samia, D. S. M. et al. Rural-urban difference in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 55, 6 (2017).
    Google Scholar 
    16.Møller, A. P. Urban areas as refuges from predators and flight distance of prey. Behav. Ecol. 23, 1030–1035 (2012).Article 

    Google Scholar 
    17.Møller, A. P. The value of a mouthful: Flight initiation distance as an opportunity cost. Eur. J. Ecol. 1, 43–51 (2015).Article 

    Google Scholar 
    18.Møller, A. P. et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 26, 861–865 (2015).Article 

    Google Scholar 
    19.Møller, A. P., Grim, T., Ibáñez-Álamo, J. D., Markó, G. & Tryjanowski, P. Change in flight distance between urban and rural habitats following a cold winter. Behav. Ecol. 24, 1211–1217 (2013).Article 

    Google Scholar 
    20.Møller, A. P. Life history, predation and flight initiation distance in a migratory bird. J. Evol. Biol. 27, 1105–1113 (2014).PubMed 
    Article 

    Google Scholar 
    21.Carrete, M. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 6, 1–6 (2016).Article 

    Google Scholar 
    22.Díaz, M. et al. Interactive effects of fearfulness and geographical location on bird population trends. Behav. Ecol. 26, 716–721 (2015).Article 

    Google Scholar 
    23.Møller, A. P. & Díaz, M. Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool. 64, 623–630 (2018).PubMed 
    Article 

    Google Scholar 
    24.Møller, A. P. & Díaz, M. Niche segregation, competition and urbanization. Curr Zool. 64, 145–152 (2018).Article 

    Google Scholar 
    25.Cox, A. R., Robertson, R. J., Lendvai, Á. Z., Everitt, K. & Bonier, F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proc. R. Soc. B 286, 20190018 (2019).PubMed 
    Article 

    Google Scholar 
    26.Sergio, F. From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117 (2003).Article 

    Google Scholar 
    27.Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).Article 

    Google Scholar 
    28.Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).Article 

    Google Scholar 
    29.Møller, A. P. et al. Effects of urbanization on animal phenology: A continental study of paired urban and rural avian populations. Clim. Res. 66, 185–199 (2015).Article 

    Google Scholar 
    30.Winter, Y. & Von Helversen, O. The energy cost of flight: Do small bats fly more cheaply than birds?. J. Comp. Physiol. B 168, 105–111 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Møller, A. P., Erritzøe, J. & Nielsen, J. T. Causes of interspecific variation in susceptibility to cat predation on birds. Chin. Birds 1, 97–111 (2010).Article 

    Google Scholar 
    32.Møller, A. P. et al. Spatial consistency in susceptibility of prey species to predation by two Accipiter hawks. J. Avian Biol. 43, 390–396 (2012).Article 

    Google Scholar 
    33.Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).PubMed 
    Article 

    Google Scholar 
    34.Morelli, F. et al. Insurance for the future? Potential avian community resilience in cities across Europe. Clim. Change 159, 195–214 (2020).ADS 
    Article 

    Google Scholar 
    35.Storchová, L. & Hořák, D. Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 27, 400–406 (2018).Article 

    Google Scholar 
    36.Garamszegi, L. Z. & Møller, A. P. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 85, 797–805 (2010).PubMed 

    Google Scholar 
    37.Bell, G. A comparative method. Am. Nat. 133, 553–571 (1989).Article 

    Google Scholar 
    38.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    39.Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis. https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php (Sage, 2001).40.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988). More

  • in

    Novel metagenome-assembled genomes involved in the nitrogen cycle from a Pacific oxygen minimum zone

    Oxygen minimum zones (OMZs) are unique oceanic regions with strong redox gradients. Anoxic zones in OMZs are hotspots for fixed nitrogen loss and production of the greenhouse gas N2O [1, 2]. Microbes in OMZs make important contributions to biogeochemistry, which motivates us to reconstruct metagenome-assembled genomes (MAGs) from the Eastern Tropical South Pacific (ETSP) OMZ (Fig. 1a, b). Among 147 recovered MAGs, we present 39 high- and medium-quality MAGs with completeness >50% and contamination 100 nM d−1) at the same station [6], where MAGs were recovered. Consistently, Thaumarchaeota MAGs (AOAs) were nearly absent (only AOA-2 had a relative abundance higher than 0.01%) and NOB MAGs (NOB-1 and NOB-2) were much more abundant than AOA in the anoxic core (Fig. 1d). MAGs in this study will provide opportunities to discover novel processes and adaptation strategies.Most MAGs had their highest relative abundances in the anoxic zone (Fig. 1c). Many of them contribute to the loss of fixed nitrogen, which occurs by denitrification (the sequential reduction of nitrate to nitrite, NO, N2O, and finally N2) and anammox (anaerobic oxidation of ammonium to N2). Measured nitrate reduction rates at this [5, 8] and other [16, 17] nearby stations were much larger than rates of any subsequent denitrification steps (e.g., nitrite reduction to N2O or to N2). Consistently, preliminary prediction of metabolisms shows that more than half of the MAGs found here contained nar, which encodes nitrate reduction, and one-third of those contained only nar and none of the other denitrification genes (i.e., they are nitrate-reducing specialists) (Fig. 2). Consistently, a previous study found that nar dramatically outnumbered the other denitrification genes in contigs from the Eastern Tropical North Pacific (ETNP) OMZ [18]. Indeed, four of the five most abundant MAGs in the anoxic core were nitrate-reducing specialists (Fig. 2). The fifth was an anammox MAG, which was only assigned to the genus level (Candidatus Scalindua) in GTDB and was not represented at the species level in the Tara Oceans dataset (Table S1). However, this anammox MAG was highly related to 20 anammox single-cell amplified genomes (SAGs) from the ETNP OMZ [19]. The anammox MAG had at least 90% average nucleotide identity (ANI) to the SAGs, with the highest ANI (98.8%) to SAG K21. Consistent with the previous work [19], the anammox MAG also encoded cyanase, indicating its potential of using organic nitrogen substrates. The most abundant nitrate reducer MAG here is Marinimicrobia-1 (Fig. 1), which belongs to the newly proposed phylum Candidatus Marinimicrobia [20]. Notably, one nitrate reducer can only be assigned to phylum level (Candidatus Wallbacteria) and was not present in the Tara Oceans MAGs (Table S1).We also identified a novel archaeal MAG possessing multiple denitrification genes. MG-II MAG-2 encoded Nar alpha and beta subunits, nitrate/nitrite transporters, copper-containing nitrite reductase, and N2O reductase (Fig. 2). Two MAGs from the Tara Oceans metagenomes (Table S1) were identified as the same species as MG-II MAG-2. TOBG_NP-110 (ANI to MG-II MAG-2 = 99.8%) from the North Pacific encoded Nar and nitrate/nitrite transporters, and TOBG_SP-208 (ANI to MG-II MAG-2 = 99.6%) from the South Pacific also contained the same denitrification genes as MG-II MAG-2 (Table S2). In addition, two MG-II SAGs (AD-615-F09 and AD-613-O09) were found at a different station of the ETSP OMZ sampled on the same cruise as this study [21]. Partial 16S rRNA genes of both SAGs are 100% identical to that of MG-II MAG-2 (alignment length = 200 bp for AD-615-F09 and 183 bp for AD-613-O09), but only AD-615-F09 might be the same species as MG-II MAG-2 based on ANI analyses (MG-II MAG-2 had 99.5% ANI to AD-615-F09, and 80.9% to AD-613-O09). Both SAGs also encoded Nar and nitrate/nitrite transporters [21]. The absence of other denitrification genes may be due to the low completeness of the two SAGs (completeness = 5.61% for both SAGs) [21]. Nitrite reductase and N2O reductase genes were located on the same contig in both MG-II MAG-2 and TOBG_SP-208 (Table S2). MG-II MAG-2 and TOBG_SP-208 had low contamination (1.9% and 0.8%, respectively), and their contigs with nitrite reductase and N2O reductase genes contained single-copy marker genes present only once in each MAG (Supplementary Methods). Although these results suggest a nearly complete denitrification metabolism in MG-II archaea, especially N2O consumption metabolism, methods besides metagenomics (e.g. reconstructing SAGs with high completeness) are highly recommended to rule out possible artifacts introduced by metagenomic binning and confirm the presence of these genes and their denitrification activity. Nonetheless, MG-II MAG-2 was present (Fig. 1e) and transcriptionally active in both Pacific OMZs (Fig. S2), indicating its adaptation to low oxygen environments. The MG-III MAG did not have any denitrification genes but was abundant in the anoxic zone (Figs. 1e and 2). It had a GC value (43.2%) distinct from all other known MG-III MAGs [22] and is the most complete (86.0%) and the least contaminated (0%) (Table S1) among all reported MG-III MAGs, indicating that MG-III is a novel archaeon in this group. Bacterial and archaeal MAGs recovered here implied that nitrogen metabolisms were present in more microbial lineages than previously thought. Further analyses of these MAGs will shed light on adaptation strategies in the unique OMZ environment and novel functions related to important element cycles. More

  • in

    Scenario simulation of land use and land cover change in mining area

    Data source and preprocessingConsidering factors such as amount of cloud and time intervals of image, four remote sensing images with a spatial resolution of 30 m, including Landsat 5 Thematic Mapper (TM) images for 08-21-2000, 09-04-2005 and 09-18-2010, and Landsat 8 Operational Land Imager (OLI) for 09-02-2016,were obtained from the Geospatial Data Cloud Platform (http://www.gscloud.cn). LULC information was extracted from these remote sensing images. In addition, the digital elevation model (DEM) with a spatial resolution of 30 m was obtained from the website. Elevation and slope information were derived from DEM data and used as terrain driving factors for scenario simulation. Other supporting data, such as Weishan County land use data, mine distribution data, general land use planing (2006–2020) and mineral resources planning (2008–2015), Jining City coal mining subsidence land rearrangement planning (2016–2030), were obtained from Weishan Natural Resources and Planning Bureau. These data were used for better data analysis.Considering severe ground subsidence and seeper in the study area, and referring to national standards: Current Land Use Classification (GB/T 21010-2017), remote sensing images were interpreted into six LULC types: farmland, other agricultural land, urban and rural construction land, subsided seeper area, water area, and tidal wetland.In the process of image interpretation, firstly, the remote sensing image was divided into two regions: one region were the lake and the surrounding tidal wetland, and the other region included farmland, other agricultural land, urban and rural construction land, subsided seeper area, etc.In region 1, decision tree classification, combined with the Modified Normalized Difference Water Index (MNDWI), was used to extract lakes. Then we masked them in region 1. The Normalized Difference Vegetation Index (NDVI) was calculated for the remaining image of region 1. Tidal wetland was mainly distributed along rivers and lakes, and NDVI value was higher than that of farmland and other vegetation. By analyzing its geographical distribution and NDVI value, and referring to Weishan County land use data, the appropriate threshold was selected to extract tidal wetland.The spectral signature of rivers, ditches and aquaculture ponds in other agricultural land in region 2 could be easily distinguished from other surface features. They could be extracted step by step by manual visual interpretation and empirical knowledge, referring to Weishan County land use data and water system data. Then we masked them separately in region 2. After extracting rivers, ditches, aquaculture ponds with high water content, the remaining LULC type with high water content in region 2 was subsided seeper area. According to the relationship of spectral signature of different LULC types, it was concluded that among the remaining LULC types in region 2, only TM3 band value of subsided seeper area was higher than TM5 band value. Using this characteristic, subsided seeper area could be distinguished from other LULC types. After extracting subsided seeper area, the remaining LULC types in region 2 were farmland and urban and rural construction land. The spectral characteristics of them were very different. Therefore, they could be distinguished using support vector machine (SVM) classification method, and their respective binary images were generated using decision tree method.The extracted six LULC types were shown in single layer and binary form respectively. Six LULC types were coded and synthesized into one image. We obtained 2000, 2005, 2010, 2016 LULC type maps (Fig. 2). Finally classification post-processing and accuracy evaluation were operated.Figure 2The LULC types maps of 2000, 2005, 2010 and 2016. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageThe accuracy of the interpretation results was verified by confusion matrix and kappa coefficient. The kappa coefficients of the four interpretation maps were 0.84, 0.85, 0.82 and 0.86, respectively (Table 1). The accuracy could meet the needs of further research.Table 1 Accuracy evaluation of the interpretation results (%).Full size tableBy reading previous research results37,38,39,40,41, based on the entropy theory, in the same study area, high spatial resolution data contains more entropy than low spatial resolution data, and reflecting more detailed information, but it will increase the uncertainty of prediction results and reduce the prediction accuracy. Although the prediction accuracy of low spatial resolution data increases, it will lose lots of detailed information. In order to ensure the accuracy of the simulation, considering the area of the study area and data requirement of the CLUE-S model, the interpreted LULC maps with a resolution of 30 m exceed the upper limit of the CLUE-S model data requirement, so the LULC maps were resampled to multiple scales including 60 m, 90 m, 120 m, and 150 m to facilitate logistic regression analysis of LULC types and driving factors.Selection and processing of driving factorsTo interpret the relationship between the LULC and its driving factors in the mining area, we not only need to identify the driving factors that have greater explanatory power for LULC change, but also need to quantitatively describe the relationship between driving factors and LULC types.Considering the accessibility, usability of the data and the actual conditions in the study area, seven driving factors were selected based on the land use map of Weishan County in 2005 and the DEM data5,10,11,13,26,28,29,30. The driving factors included: (1) terrain factors, including elevation and slope factors; (2) five accessibility factors, including the nearest distance between each grid pixel and the main roads, the major rivers, the residential area, the major mines, and the ditches. The 30 m grid data of each driving factor were resampled to 60 m, 90 m, 120 m and 150 m respectively.In this study, BLRM was used to explore the relationship between LULC change and the related 7 driving factors. BLRM is sensitive to multicollinearity. In order to eliminate the influence of collinearity on the regression results, the multicollinearity between independent variables was diagnosed before the regression model was established.The receiver operating characteristic (ROC) curve was used to evaluate the accuracy of regression analysis results at different scales. The results showed that using 60 m resolution provided more accurate regression analysis results and suffered less loss of LULC and driving factor information during resampling. Therefore, we used 60 m × 60 m grid cell data to driving forces analysis.Raster maps of each driving factor at a resolution scale of 60 m are shown in Fig. 3.Figure 3Raster maps of driving factors at a resolution scale of 60 m. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageLogistic regression analysis of LULC types and driving factorsBLRM is often used for regression analysis of explanatory binary variables. The presence and absence of a certain type of LULC in a specific area is set as 1 and 0, respectively, which is characteristic for binary variable. Therefore, we used BLRM to calculate the probability (P) of various LULC types in a specific spatial location, and its mathematical expression is:$$begin{aligned} ln left( frac{P}{1-P}right) = beta _0 + beta _1 X end{aligned}$$
    (1)
    where (frac{P}{1-P}) is the ’odds ratio’ of an event, abbreviated as ( Omega ), which represents the odds that an outcome will occur given a particular condition compared to the odds of the outcome occurring in the absence of that condition; (beta _0) is a constant; (beta _1) is the correlation coefficient of an explaining variable and an explained variable. Making mathematical transformation of the above expression, we get: (Omega = (frac{P}{1-P}) = e^{beta _0 + beta _1 X}).Regression analysis using BLRM, we divided the study area into many grid cells. Taking each LULC type as the explained variable, and the driving factor causing LULC change as the explanatory variable, we calculated the odds ratio of each LULC type in a specific spatial location, and analyzed the relationship between each LULC type and the driving factors. The calculating equation is:$$begin{aligned} mathrm{Logit} P = ln left( frac{P_i}{1-P_i}right) = beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i} end{aligned}$$
    (2)
    Making mathematical transformation of the above equation, we get:$$begin{aligned} P_i = frac{e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}}{1+e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}} end{aligned}$$
    (3)
    where: (P_i) is the probability of a certain LULC type i in a grid cell, (X_{1,i}sim X_{n,i}) are the driving factors of LULC type i, (beta _0) is the constant, (beta _1sim beta _n) are the correlation coefficients of each driving factor and LULC type i.The receiver operating characteristic (ROC) was used to evaluate the accuracy of regression analysis results. The accuracy can be measured by calculating the area under the ROC curve. The area value is between 0.5 and 1. The closer the value is to 1, the higher the accuracy is. In general, the area under the ROC curve is greater than 0.7, which indicates that the selected factor has good explanatory power27,42.CLUE-S simulation and accuracy validationBefore using the CLUE-S model for futural LULC scenario simulation in mining area, the prediction accuracy needs to be verified. Based on the data of LULC in 2005, the spatial distribution pattern of LULC in 2016 was predicted firstly.The modeling accuracy was evaluated based on the Kappa index by comparing the actual LULC map in 2016 with the simulated in 201627,43,44. Equation (4) gives one of the most popular Kappa index equations: i.e.,$$begin{aligned} mathrm{Kappa}=frac{P_o-P_c}{P_p-P_c} end{aligned}$$
    (4)
    where (P_o) is the observed proportion correct, (P_c) is the expected proportion correct due to chance, (P_c) =1/n, n is the number of LULC types, and (P_p) is the proportion correct when classification is perfect.In order to further verify the accuracy of the model simulation, we also calculated kappa for quantity (Kquantity).Scenario setting of futural LULC simulationDue to the continuous population growth and mineral exploitation in the study area, the land resources, especially farmland resources, have become increasingly scarce and the environment has been deteriorating. Based on the simulation and validated results during 2005-2016, we defined three scenarios—namely natural development scenario, ecological protection scenario, and farmland protection scenario—to predict LULC spatial patterns for 2025.Natural development scenarioIn this scenario, the land use demand of the study area was basically not restricted by policies in near future. We assumed that the change rate of each LULC type in near future was consistent with the change trend from 2005 to 2016. So it is defined as natural development scenario. Using Markov model to obtain the area transition probability matrix of each year from 2017 to 2025, and taking the proportion of each LULC type area in the total study area in 2005 as the initial state matrix, the area of each LULC type in 2025 under the natural development scenario was predicted.Based on the characteristics and trend of the LULC change from 2005 to 2016, after appropriately adjusting the transition probability matrix of different LULC types, we predicted the demands of each LULC type in 2025 under ecological protection scenario and farmland protection scenario using Markov model45,46.Ecological protection scenarioThis scenario emphasizes protecting the ecological environment, restricting the conversion of the LULC types that have more regulatory effects on the ecosystem, such as tidal wetland and water area, to other land use types. Garden land, woodland, grassland, and aquaculture land, belong to other agricultural land, which have regulatory effects on the local ecosystem, so their conversion to other LULC types should be restricted as well.Farmland protection scenarioAccording to the guidelines of “the general land use planning in Weishan County (2006-2020)”, we should maximize the potential use of current construction land, implement intensive and economical utilization of construction land, and use less or not use farmland to economical construction. So in order to ensure the dynamic balance of total farmland amount and the regional food supply security, in the farmland protection scenario, the conversion from farmland to other land use types should be restricted. The projected land use demands for 2025 under the three different scenarios are shown in Table 2.Table 2 Areas of LULC types in 2025 under different scenarios (ha).Full size table More

  • in

    Exploring physicochemical and cytogenomic diversity of African cowpea and common bean

    1.Lewis, G. P. Legumes of the World (Royal Botanic Gardens, 2005).
    Google Scholar 
    2.The Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017).Article 

    Google Scholar 
    3.Yahara, T. et al. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon 62, 249–266 (2013).Article 

    Google Scholar 
    4.Odendo, M., Bationo, A. & Kimani, S. Socio-economic contribution of legumes to livelihoods in Sub-Saharan Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management (eds Bationo, A. et al.) 27–46 (Springer, 2011).Chapter 

    Google Scholar 
    5.Dakora, F. D. & Keya, S. O. Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol. Biochem. 29, 809–817 (1997).CAS 
    Article 

    Google Scholar 
    6.Ajeigde, H. A., Singh, B. B. & Osenj, T. O. Cowpea-cereal intercrop productivity in the Sudan savanna zone of Nigeria as affected by planting pattern, crop variety and pest management. Afr. Crop Sci. J. 13, 269–279 (2005).
    Google Scholar 
    7.Rahmanian, M., Batello, C. & Calles, T. Pulse Crops for Sustainable Farms in Sub-Saharan Africa (FAO, 2018).
    Google Scholar 
    8.Rawal, V. & Navarro, D. K. The Global Economy of Pulses (FAO, 2017).
    Google Scholar 
    9.Plants of the World Online. http://powo.science.kew.org (2020).10.Broughton, W. J. et al. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 252, 55–128 (2003).CAS 
    Article 

    Google Scholar 
    11.Delgado-Salinas, A., Bibler, R. & Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 31, 779–791 (2006).Article 

    Google Scholar 
    12.Greenway, P. J. Origins of some East African food plants: Part V. East Afr. Agric. J. 11, 56–63 (1945).
    Google Scholar 
    13.Wortmann, C. S. & Allen, D. J. African Bean Production Environments: Their Definition, Characteristics and Constraints. Occasional Publication Series 11 (CIAT, 1994).
    Google Scholar 
    14.Maxted, N. et al. African Vigna: Systematic and Ecogeographic Studies (International Plant Genetic Resource Institute, 2004).
    Google Scholar 
    15.Singh, B. B. Cowpea: The Food Legume of the 21st Century (Crop Science Society of America Inc., 2014).Book 

    Google Scholar 
    16.Catarino, S. et al. Conservation priorities for African Vigna species: Unveiling Angola’s diversity hotspots. Glob. Ecol. Conserv. 25, e01415. https://doi.org/10.1016/j.gecco.2020.e01415 (2021).Article 

    Google Scholar 
    17.Vidigal, P., Romeiras, M. M. & Monteiro, F. Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. In Sustainable Crop Production (ed. Hasanuzzaman, M.) (IntechOpen, 2019).
    Google Scholar 
    18.Maréchal, R. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28, 1–273 (1978).
    Google Scholar 
    19.Peksen, E., Peksen, A. & Gulumser, A. Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. Int. J. Curr. Microbiol. Appl. Sci. 3, 626–634 (2014).CAS 

    Google Scholar 
    20.Iqbal, A., Khalil, I. A., Ateeq, N. & Khan, M. S. Nutritional quality of important food legumes. Food Chem. 97, 331–335 (2006).CAS 
    Article 

    Google Scholar 
    21.African Orphan Crops Consortium. http://africanorphancrops.org/meet-the-crops/ (2021)22.Boukar, O. et al. Cowpea. In Grain Legumes (ed. de Ron, A. M.) 219–250 (Springer, 2015).Chapter 

    Google Scholar 
    23.Animasaun, D. A., Oyedeji, S., Azeez, Y. K., Mustapha, O. T. & Azeez, M. A. Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. J. Agric. Sci. 10, 119–130 (2015).
    Google Scholar 
    24.Timko, M. P. & Singh, B. B. Cowpea, a multifunctional legume. In Plant Genetics and Genomics: Crops and Models Vol. 1 (eds Moore, P. H. & Ming, R.) 227–258 (Springer, 2008).
    Google Scholar 
    25.Wortmann, S. C., Kirkby, A. R., Eledu, A. C. & Allen, J. D. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa (International Centre for Tropical Agriculture, 2004).
    Google Scholar 
    26.Guignard, M. S. et al. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Sheidai, M. et al. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem. Syst. Ecol. 57, 20–26 (2014).CAS 
    Article 

    Google Scholar 
    28.Kron, P., Suda, J. & Husband, B. C. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–876 (2007).Article 

    Google Scholar 
    29.Wu, Y. Q. et al. Genetic analyses of Chinese Cynodon accessions by flow cytometry and AFLP markers. Crop Sci. 46, 917–926 (2016).Article 

    Google Scholar 
    30.Parida, A., Raina, S. N. & Narayan, R. K. J. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82, 125–133 (1990).CAS 
    Article 

    Google Scholar 
    31.Nagl, W. & Treviranus, A. A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Bot. Acta 108, 403–406 (1995).CAS 
    Article 

    Google Scholar 
    32.Barow, M. & Meister, A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 26, 571–584 (2003).Article 

    Google Scholar 
    33.Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org/ (2020).35.Genesys. Plant Genetic Resources Accession. https://www.genesys-pgr.org/ (2021).36.Pope, G. V. & Polhill, R. M. Flora Zambesiaca, part 5 Vol. 3 (Royal Botanic Gardens, 2001).
    Google Scholar 
    37.Tomooka, N., Vaughan, D. A., Moss, H. & Maxted, N. The Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    38.Debouck, D. G. Primary diversification of Phaseolus in the Americas: Three centers. Plant Genet. Resour. Newsl. 67, 2–8 (1986).
    Google Scholar 
    39.Plant Resources of Tropical Africa. https://www.prota4u.org/database/ (2021).40.Linder, H. P. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38. https://doi.org/10.3389/fevo.2014.00038 (2014).Article 
    ADS 

    Google Scholar 
    41.Romeiras, M. M., Figueira, R., Duarte, M. C., Beja, P. & Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 9, e103403. https://doi.org/10.1371/journal.pone.0103403 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Catarino, S. et al. Spatial and temporal trends of burnt area in angola: Implications for natural vegetation and protected area management. Diversity 12, 307. https://doi.org/10.3390/d12080307 (2020).Article 

    Google Scholar 
    43.Catarino, S., Duarte, M. C., Costa, E., Carrero, P. G. & Romeiras, M. M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 7, e6736. https://doi.org/10.7717/peerj.6736 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Romeiras, M. M. et al. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 180, 413–425 (2016).Article 

    Google Scholar 
    45.Gomes, A. M. et al. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060 (2020).CAS 
    Article 

    Google Scholar 
    46.The International Institute of Tropical Agriculture (IITA). https://www.iita.org/ (2021)47.Fatokun, C. et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 8, 16035. https://doi.org/10.1038/s41598-018-34555-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Rocha, V., Duarte, M. C., Catarino, S., Duarte, I. & Romeiras, M. M. Cabo Verde’s Poaceae flora: A reservoir of crop wild relatives diversity for crop improvement. Front. Plant Sci. 12, 630217. https://doi.org/10.3389/fpls.2021.630217 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Brilhante, M. et al. Tackling food insecurity in Cabo Verde Islands: The nutritional, agricultural and environmental values of the legume species. Foods 10, 206. https://doi.org/10.3390/foods10020206 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pasquet, R. S. Wild cowpea (Vigna unguiculata) evolution. In Advances in Legume Systematics 8: Legumes of Economic Importance (eds Pickersgill, B. & Lock, J. M.) 95–100 (Royal Botanic Gardens, 1996).
    Google Scholar 
    51.Di Bella, G. et al. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 67, 239–248 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E. & Rojas-Cifuentes, G. A. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 47, 1361–1366 (2007).CAS 
    Article 

    Google Scholar 
    53.Dakora, F. D. & Belane, A. K. Evaluation of protein and micronutrient levels in edible cowpea (Vigna unguiculata L. Walp) leaves and seeds. Front. Sustain. Food Syst. 3, 70. https://doi.org/10.3389/fsufs.2019.00070 (2019).Article 

    Google Scholar 
    54.Yeken, M. Z., Akpolat, H., Karaköy, T. & Çiftçi, V. Assessment of mineral content variations for biofortification of the bean seed. Int. J. Agric. Sci. 4, 261–269 (2018).
    Google Scholar 
    55.Gondwe, T. M., Alamu, E. O., Mdziniso, P. & Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 9, 15991. https://doi.org/10.1038/s41598-019-52360-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.Sperotto, R. A., Ricachenevsky, F. K., Williams, L. E., Vasconcelos, M. W. & Menguer, P. K. From soil to seed: Micronutrient movement into and within the plant. Front. Plant Sci. 5, 438. https://doi.org/10.3389/fpls.2014.00438 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Maziya-Dixon, B., Kling, J. G., Menkir, A. & Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 21, 419–422 (2000).Article 

    Google Scholar 
    58.Shewfelt, R. L. Sources of variation in the nutrient content of agricultural commodities from the farm to the consumer. J. Food Qual. 13, 37–54 (1990).Article 

    Google Scholar 
    59.World Health Organization. The World Health Report 2006: Working Together for Health. https://www.who.int/whr/2006/whr06_en.pdf?ua=1 (2006).60.Gödecke, T., Stein, A. J. & Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Sec. 17, 21–29 (2018).Article 

    Google Scholar 
    61.Shankar, A. H. Mineral deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Diseases (eds Ryan, E. T. et al.) 1048–1054 (Elsevier, 2020).Chapter 

    Google Scholar 
    62.Muthayya, S. et al. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 8, e67860. https://doi.org/10.1371/journal.pone.0067860 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.Joy, E. J. et al. Dietary mineral supplies in Africa. Physiol. Plant. 151, 208–229 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.World Health Organization. World health statistics 2015. https://apps.who.int/iris/bitstream/handle/10665/170250/9789240694439_eng.pdf;jsessionid=9CFCB446F9217B60415DD216E70F6A49?sequence=1 (2015).65.Muriuki, J. M. et al. Estimating the burden of iron deficiency among African children. BMC Med. 18, 31. https://doi.org/10.1186/s12916-020-1502-7 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Official Journal of the European Union. Regulation (Eu) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (2011).67.Nowicka, A. et al. Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Sci. Hortic. 209, 132–138 (2016).CAS 
    Article 

    Google Scholar 
    68.Guilengue, N., Alves, S., Talhinhas, P. & Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 10, 21. https://doi.org/10.3390/agronomy10010021 (2020).Article 

    Google Scholar 
    69.Chable, V. et al. Embedding cultivated diversity in society for agro-ecological transition. Sustainability 12, 784. https://doi.org/10.3390/su12030784 (2020).Article 

    Google Scholar 
    70.Knight, C. A., Molinari, N. A. & Petrov, D. A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95, 177–190 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Pati, K., Zhang, F. & Batley, J. First report of genome size and ploidy of the underutilized leguminous tuber crop Yam Bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genet. Resour. 17, 456–459 (2019).CAS 
    Article 

    Google Scholar 
    72.Sliwinska, E. Flow cytometry—A modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 30, 103–128 (2018).Article 

    Google Scholar 
    73.Veselý, P., Bureš, P. & Šmarda, P. Nutrient reserves may allow for genome size increase: Evidence from comparison of geophytes and their sister non-geophytic relatives. Ann. Bot. 112, 1193–1200 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.African Plant Database. http://www.ville-ge.ch/musinfo/bd/cjb/africa/index. (2021).75.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Botswana. https://www.botswanaflora.com (2021).76.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Malawi. http://www.malawiflora.com (2021).77.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Mozambique. http://www.mozambiqueflora.com (2021)78.Bingham, M. G., Willemen, A., Wursten, B. T., Ballings, P. & Hyde, M. A. Flora of Zambia http://www.zambiaflora.com (2021).79.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Zimbabwe. http://www.zimbabweflora.co.zw (2021).80.International Legume Database & Information Service. https://ildis.org/LegumeWeb (2020).81.Exell, A.W. & Fernandes, A. Conspectus florae angolensis. Vol. 3, No. 2. Leguminosae (Papilionoideae: Hedysareae-Sophoreae) (Junta de Investigações do Ultramar, 1966)82.Pasquet, R. S. Notes on the genus Vigna (Leguminosae-Papilionoideae). Kew Bull 56, 223–227 (2001).Article 

    Google Scholar 
    83.van Zonneveld, M. et al. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 10, 2111. https://doi.org/10.1038/s41598-020-58646-8 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    84.Global Biodiversity Information Facility. https://www.gbif.org/ (2021).85.GBIF Occurrence Download—Vigna. https://doi.org/10.15468/dl.bsjsk5 (2021).86.GBIF Occurrence Download—Phaseolus. https://doi.org/10.15468/dl.kjw72 (2021).87.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).88.Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631 (1992).Article 

    Google Scholar 
    89.Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 100, 875–888 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Doležel, J. & Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Jelihovschi, E. G., Faria, J. C. & Allaman, I. B. ScottKnott: A package for performing the Scott-Knott clustering algorithm in R. TEMA 15, 3–17 (2014).MathSciNet 
    Article 

    Google Scholar 
    93.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    94.R Core Team. R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020). More

  • in

    Salmon going viral

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More