A latitudinal gradient of deep-sea invasions for marine fishes
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Google Scholar
Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).
Google Scholar
Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).
Google Scholar
Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).ADS
CAS
Google Scholar
Alexander Pyron, R. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B Biol. Sci. 280, 1–10 (2013).
Google Scholar
Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).
Google Scholar
Wright, S., Keeling, J. & Gillman, L. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc. Natl Acad. Sci. USA 103, 7718–7722 (2006).ADS
CAS
Google Scholar
Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).
Google Scholar
Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS
CAS
Google Scholar
Igea, J. & Tanentzap, A. J. Angiosperm speciation speeds up near the poles. Ecol. Lett. 23, 1–40 (2020).
Google Scholar
Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).ADS
CAS
Google Scholar
Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181–193 (2016).
Google Scholar
Hansen, J. et al. Global temperature change. Proc. Natl Acad. Sci. USA 103, 14288–14293 (2006).ADS
CAS
Google Scholar
Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, E140–E150 (2019).
Google Scholar
Gerringer, M. E., Linley, T. D., Jamieson, A. J., Goetze, E. & Drazen, J. C. Pseudoliparis swirei sp. Nov.: A newly-discovered hadal snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench. Zootaxa 4358, 161–177 (2017).
Google Scholar
Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol. Evol. 10, 30–36 (1995).CAS
Google Scholar
Seibel, B. A. & Drazen, J. C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos. Trans. R. Soc. B Biol. Sci. 362, 2061–2078 (2007).CAS
Google Scholar
Eme, D., Anderson, M. J., Myers, E. M. V., Roberts, C. D. & Liggins, L. Phylogenetic measures reveal eco-evolutionary drivers of biodiversity along a depth gradient. Ecography 43, 689–702 (2020).
Google Scholar
Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).CAS
Google Scholar
Brown, A. & Thatje, S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: Physiological contributions to adaptation of life at depth. Biol. Rev. 89, 406–426 (2014).
Google Scholar
Zintzen, V., Anderson, M. J., Roberts, C. D., Harvey, E. S. & Stewart, A. L. Effects of latitude and depth on the beta diversity of New Zealand fish communities. Sci. Rep. 7, 1–10 (2017).CAS
Google Scholar
Coleman, R. R., Copus, J. M., Coffey, D. M., Whitton, R. K. & Bowen, B. W. Shifting reef fish assemblages along a depth gradient in Pohnpei, Micronesia. PeerJ 2018, 1–30 (2018).
Google Scholar
Neat, F. C. & Campbell, N. Proliferation of elongate fishes in the deep sea. J. Fish. Biol. 83, 1576–1591 (2013).CAS
Google Scholar
Martinez, C. M. et al. The deep sea is a hot spot of fish body shape evolution. Ecol. Lett. 24, 1788–1799 (2021).
Google Scholar
Webb, P. Introduction to Oceanography (Online OER textbook, 2017).Hanly, P. J., Mittelbach, G. G. & Schemske, D. W. Speciation and the latitudinal diversity gradient: Insights from the global distribution of endemic fish. Am. Nat. 189, 604–615 (2017).
Google Scholar
Tedesco, P. A., Paradis, E., Lévêque, C. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2017).
Google Scholar
Cooney, C. R., Seddon, N. & Tobias, J. A. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85, 869–878 (2016).
Google Scholar
Title, P. O. & Burns, K. J. Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecol. Lett. 18, 433–440 (2015).
Google Scholar
Seeholzer, G. F., Claramunt, S. & Brumfield, R. T. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution 71, 702–715 (2017).
Google Scholar
Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).
Google Scholar
Schnitzler, J., Graham, C. H., Dormann, C. F., Schiffers, K. & Peter Linder, H. Climatic niche evolution and species diversification in the cape flora, South Africa. J. Biogeogr. 39, 2201–2211 (2012).
Google Scholar
Ghezelayagh, A. et al. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nat. Ecol. Evol. 1–10. https://doi.org/10.1038/s41559-022-01801-3 (2022).Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).ADS
CAS
Google Scholar
Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).
Google Scholar
O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 565, 636–639 (2019).ADS
Google Scholar
Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
Google Scholar
Hulsey, C. D., Roberts, R. J., Loh, Y. H. E., Rupp, M. F. & Streelman, J. T. Lake Malawi cichlid evolution along a benthic/limnetic axis. Ecol. Evol. 3, 2262–2272 (2013).CAS
Google Scholar
Woolley, S. N. C. et al. Deep-sea diversity patterns are shaped by energy availability. Nature 533, 393–396 (2016).ADS
CAS
Google Scholar
Pigot, A. L., Owens, I. P. F. & Orme, C. D. L. The environmental limits to geographic range expansion in birds. Ecol. Lett. 13, 705–715 (2010).
Google Scholar
Gerringer, M. E., Linley, T. D. & Nielsen, J. G. Revision of the depth record of bony fishes with notes on hadal snailfishes (Liparidae, Scorpaeniformes) and cusk eels (Ophidiidae, Ophidiiformes). Mar. Biol. 168, 1–9 (2021).
Google Scholar
Kolora, S. R. R. et al. Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374, 842–847 (2021).ADS
CAS
Google Scholar
Rutschmann, S. et al. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol. Ecol. 20, 4707–4721 (2011).
Google Scholar
Wilson, L. A. B., Colombo, M., Hanel, R., Salzburger, W. & Sánchez-Villagra, M. R. Ecomorphological disparity in an adaptive radiation: opercular bone shape and stable isotopes in Antarctic icefishes. Ecol. Evol. 3, 3166–3182 (2013).
Google Scholar
Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B. 278, 613–618 (2011).
Google Scholar
Hyde, J. R., Kimbrell, C. A., Budrick, J. E., Lynn, E. A. & Vetter, R. D. Cryptic speciation in the vermilion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process. Mol. Ecol. 17, 1122–1136 (2008).CAS
Google Scholar
Kai, Y., Orr, J. W., Sakai, K. & Nakabo, T. Genetic and morphological evidence for cryptic diversity in the Careproctus rastrinus species complex (Liparidae) of the North Pacific. Ichthyol. Res. 58, 143–154 (2011).
Google Scholar
Gerringer, M. E. et al. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front. Zool. 18, 1–22 (2021).
Google Scholar
Saveliev, P. A. & Metelyov, E. A. Species composition and distribution of eelpouts (Zoarcidae, Perciformes, Actinopterygii) in the northwestern Sea of Okhotsk in summer. Prog. Oceanogr. 196, 102605 (2021).
Google Scholar
Quattrini, A. M. et al. Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Mol. Ecol. 22, 4123–4140 (2013).
Google Scholar
Zardus, J. D., Etter, R. J., Chase, M. R., Rex, M. A. & Boyle, E. E. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol. Ecol. 15, 639–651 (2006).CAS
Google Scholar
Schüller, M. Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea. Polar Biol. 34, 549–564 (2011).
Google Scholar
Smith, W. L., Everman, E. & Richardson, C. Phylogeny and taxonomy of flatheads, scorpionfishes, sea robins, and stonefishes (Percomorpha: Scorpaeniformes) and the evolution of the lachrymal saber. Copeia 106, 94–119 (2018).
Google Scholar
Jamon, M., Renous, S., Gasc, J. P., Bels, V. & Davenport, J. Evidence of force exchanges during the six-legged walking of the bottom-dwelling fish,Chelidonichthys lucerna. J. Exp. Zool. 307A, 542–547 (2007).
Google Scholar
McCune, A. R. & Carlson, R. L. Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol. Dev. 6, 246–259 (2004).
Google Scholar
Rabosky, D. L. Speciation rate and the diversity of fishes in freshwaters and the oceans. J. Biogeogr. 47, 1207–1217 (2020).
Google Scholar
Daane, J. M. et al. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat. Ecol. Evol. 3, 1102–1109 (2019).
Google Scholar
Mu, Y. et al. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet. 17, e1009530 (2021).CAS
Google Scholar
Yancey, P. H., Gerringer, M. E., Drazen, J. C., Rowden, A. A. & Jamieson, A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc. Natl Acad. Sci. USA 111, 4461–4465 (2014).ADS
CAS
Google Scholar
Janzen, D. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
Google Scholar
Kozak, K. H. & Wiens, J. J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. R. Soc. B: Biol. Sci. 274, 2995–3003 (2007).
Google Scholar
Sheldon, K. S., Huey, R. B., Kaspari, M. & Sanders, N. J. Fifty years of mountain passes: a perspective on Dan Janzen’s classic article. Am. Nat. 191, 553–565 (2018).
Google Scholar
Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Organ. Biol. 1, oby002 (2019).
Google Scholar
Santidrián Tomillo, P., Fonseca, L., Paladino, F. V., Spotila, J. R. & Oro, D. Are thermal barriers ‘higher’ in deep sea turtle nests? PLoS ONE 12, 1–14 (2017).
Google Scholar
Brown, J. H. Why marine islands are farther apart in the tropics. Am. Nat. 183, 842–846 (2014).
Google Scholar
Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).ADS
CAS
Google Scholar
Hattermann, T. Antarctic thermocline dynamics along a narrow shelf with easterly winds. J. Phys. Oceanogr. 48, 2419–2443 (2018).ADS
Google Scholar
Robison, B. H. What drives the diel vertical migrations of Antarctic midwater fish? J. Mar. Biol. Ass. 83, 639–642 (2003).
Google Scholar
Bourgeaud, L. et al. Climatic niche change of fish is faster at high latitude and in marine environments. Preprint at bioRxiv https://doi.org/10.1101/853374 (2019).Pie, M. R. et al. The evolution of latitudinal range limits in tropical reef fishes: heritability, limits, and inverse Rapoport’s rule. J. Biogeogr. 00, 1–12 (2021).
Google Scholar
Powell, M. G. & Glazier, D. S. Asymmetric geographic range expansion explains the latitudinal diversity gradients of four major taxa of marine plankton. Paleobiology 43, 196–208 (2017).
Google Scholar
Lawson, A. M. & Weir, J. T. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecol. Lett. 17, 1427–1436 (2014).
Google Scholar
Boag, T. H., Gearty, W. & Stockey, R. G. Metabolic tradeoffs control biodiversity gradients through geological time. Curr. Biol. 31, 2906–2913.e3 (2021).CAS
Google Scholar
Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. USA 109, 3434–3439 (2012).ADS
CAS
Google Scholar
Hotaling, S., Borowiec, M. L., Lins, L. S. F., Desvignes, T. & Kelley, J. L. The biogeographic history of eelpouts and related fishes: Linking phylogeny, environmental change, and patterns of dispersal in a globally distributed fish group. Mol. Phylogenet. Evol. 162, 107211 (2021).
Google Scholar
Thatje, S., Hillenbrand, C.-D., Mackensen, A. & Larter, R. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89, 682–692 (2008).
Google Scholar
Keller, I. & Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol. 21, 782–799 (2012).CAS
Google Scholar
Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).ADS
CAS
Google Scholar
Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327, 477–482 (1987).ADS
CAS
Google Scholar
Boag, T. H., Stockey, R. G., Elder, L. E., Hull, P. M. & Sperling, E. A. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. Proc. R. Soc. B: Biol. Sci. 285, 2011724 (2018).
Google Scholar
Koslow, J. A. Community structure in North Atlantic deep-sea fishes. Prog. Oceanogr. 31, 321–338 (1993).ADS
Google Scholar
Brunn, A. The abyssal fauna: its ecology, distribution, and origin. Nature 177, 1105–1108 (1956). Fr.ADS
Google Scholar
Gaither, M. R. et al. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Mol. Phylogenet. Evol. 104, 73–82 (2016).
Google Scholar
Eastman, J. T. Evolution and diversification of Antarctic notothenioid fishes. Am. Zool. 31, 93–110 (1991).
Google Scholar
Quattrini, A. M., Gómez, C. E. & Cordes, E. E. Environmental filtering and neutral processes shape octocoral community assembly in the deep sea. Oecologia 183, 221–236 (2017).ADS
Google Scholar
Stefanoudis, P. V. et al. Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Front. Mar. Sci. 6, 1–16 (2019).
Google Scholar
Zintzen, V., Anderson, M. J., Roberts, C. D. & Diebel, C. E. Increasing variation in taxonomic distinctness reveals clusters of specialists in the deep sea. Ecography 34, 306–317 (2011).
Google Scholar
Price, S. A., Claverie, T., Near, T. J. & Wainwright, P. C. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs 34, 997–1009 (2015).ADS
Google Scholar
Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a Community Context: On Integrating Ecological Interactions and Macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).
Google Scholar
Linley, T. D. et al. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 99–110 (2016).ADS
Google Scholar
Jamieson, A. J., Linley, T. D., Eigler, S. & Macdonald, T. A global assessment of fishes at lower abyssal and upper hadal depths (5000 to 8000 m). Deep Sea Res. Part I Oceanogr. Res. Pap. 103642. https://doi.org/10.1016/j.dsr.2021.103642 (2021).Boers, N. Observation-based early-warning signals for a collapse of the Atlantic meridional overturning circulation. Nat. Clim. Chang. 11, 680–688 (2021).ADS
Google Scholar
Paulus, E. Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front. Mar. Sci. 8, 667048 (2021).Froese, R. & Pauly, D. FishBase. FishBase www.fishbase.org (2019).Boettiger, C., Lang, D. T. & Wainwright, P. C. Rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).CAS
Google Scholar
Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Google Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS
Google Scholar
Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).ADS
Google Scholar
Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. Part I: Oceanogr. Res. Pap. 126, 85–102 (2017).ADS
Google Scholar
Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).
Google Scholar
Magnuson-Ford, K. & Otto, S. P. Linking the investigations of character evolution and species diversification. Am. Nat. 180, 225–245 (2012).
Google Scholar
Goldberg, E. E. & Igić, B. Tempo and mode in plant breeding system evolution. Evolution 66, 3701–3709 (2012).
Google Scholar
Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).CAS
Google Scholar
Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
Google Scholar
Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. (2019).Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).
Google Scholar
Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: What are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).
Google Scholar
Freckleton, R. P., Phillimore, A. B. & Pagel, M. Relating traits to diversification: a simple test. Am. Nat. 172, 102–115 (2008).
Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS
CAS
Google Scholar
Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS
CAS
Google Scholar
May, M. R. & Moore, B. R. A Bayesian approach for inferring the impact of a discrete character on rates of continuous-character evolution in the presence of background-rate variation. Syst. Biol. 69, 530–544 (2020).
Google Scholar
Höhna. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).
Google Scholar
Burress, E. D. & Muñoz, M. M. Ecological opportunity from innovation, not islands, drove the anole lizard adaptive radiation. Syst. Biol. 0, 1–12 (2021).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS
Google Scholar
Ives, A. R. & Helmus, M. R. Phylogenetic metrics of community similarity. Am. Nat. 176, E128–E142 (2010).
Google Scholar
Costello, M. J. & Breyer, S. Ocean depths: the mesopelagic and implications for global warming. Curr. Biol. 27, R36–R38 (2017).CAS
Google Scholar More