1.Elson, C. S. The Ecology of Invasions by Animals and Plants (Springer Nature, 2020).
Google Scholar
2.Riccardi, A. & Atkinson, S. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol. Lett. 7, 781–784. https://doi.org/10.1111/j.1461-0248.2004.00642.x (2004).Article
Google Scholar
3.Ricciardi, A. & Ryan, R. The exponential growth of invasive species denialism. Biol. Invasions 20, 549–553. https://doi.org/10.1007/s10530-017-1561-7 (2018).Article
Google Scholar
4.Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800. https://doi.org/10.1038/s41559-019-0851-0 (2019).Article
PubMed
PubMed Central
Google Scholar
5.Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154. https://doi.org/10.1038/474153a (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
6.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).Article
Google Scholar
7.Hutchings, J. A. Unintentional selection, unanticipated insights: Introductions, stocking and the evolutionary ecology of fishes. J. Fish Biol. 85, 1907–1926 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Frenot, Y. et al. Biological invasions in the Antarctic: Extent, impacts and implications. Biol. Rev. 80, 45–72 (2005).PubMed
Article
PubMed Central
Google Scholar
9.MacCrimmon, H. R. & Marshall, T. World distribution of brown trout, Salmo trutta. J. Fish. Board Can. 25, 2527–2548 (1968).Article
Google Scholar
10.Labonne, J. et al. Invasion dynamics of a fish-free landscape by brown trout (Salmo trutta). PLoS ONE 8, 1–7 (2013).Article
CAS
Google Scholar
11.Lecomte, F., Beall, E., Chat, J., Davaine, P. & Gaudin, P. The complete history of salmonid introductions in the Kerguelen Islands, Southern Ocean. Polar Biol. 36, 457–475. https://doi.org/10.1007/s00300-012-1281-5 (2013).Article
Google Scholar
12.de Leaniz, C. G., Gajardo, G. & Consuergra, S. From Best to Pest: changing perspectives on the impact of exotic salmonids in the Southern Hemisphere. Syst. Biodivers. 8, 447–459 (2010).Article
Google Scholar
13.Lésel, R. & Derenne, P. Introducing animals to Iles Kerguelen. Polar Rec. 17, 485–494 (1975).Article
Google Scholar
14.Monzón-Argüello, C. et al. Contrasting patterns of genetic and phenotypic differentiation in two invasive salmonids in the southern hemisphere. Evol. Appl. 71, 921–936. https://doi.org/10.1111/eva.12188 (2014).Article
Google Scholar
15.Stewart, L. A history of migratory salmon acclimatization experiments in parts of the Southern Hemisphere and the possible effects of oceanic currents and gyres upon their outcome. Adv. Mar. Biol. 17, 397–466. https://doi.org/10.1016/S0065-2881(08)60305-3 (1980).Article
Google Scholar
16.Grobbelaar, J. U. The lentic and lotic freshwater types of Marion Island (sub-Antarctic): A limnological study. Verhandlungen Inte. Vereinigung Limnol. 19, 949–951. https://doi.org/10.1080/03680770.1974.11896202 (1975).Article
Google Scholar
17.Grobbelaar, J. U. Factors limiting the algal growth on the sub-Antarctic island Marion. Verhandlungen Int. Vereinigung Limnol. 20, 1159–1164. https://doi.org/10.1080/03680770.1977.11896666 (1978).Article
Google Scholar
18.Lèsel, R., Therezien, Y. & Vibert, R. Introduction de salmonide´s aux Iˆles Kerguelen: Premiers re´sultats et observations pre´liminaires. Ann. d’Hydrobiol. 2, 275–304 (1971).
Google Scholar
19.Wojtenka, J. & van Steenberghe, F. Variations nycthe´me´rales et saisonnie`res de la faune en place et en de´rive, strate´gie alimentaire de la truite (Salmo trutta L.) dans une petite rivie`re des ıˆles Kerguelen. Com. Natl. Franç. Rech. Antarct. 51, 413–442 (1981).
Google Scholar
20.Cooper, J., Crafford, J. E. & Hecht, T. Introduction and extinction of brown trout (Salmo trutta L.) in an impoverished subantarctic stream. Antarct. Sci. 4, 9–14 (1992).ADS
Article
Google Scholar
21.Jonsson, B. & Jonsson, N. Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories (Springer, 2011).Book
Google Scholar
22.Boel, M. et al. The physiological basis of the migration continuum in brown trout (Salmo trutta). Physiol. Biochem. Zool. 87, 334–345 (2014).PubMed
Article
PubMed Central
Google Scholar
23.Cucherousset, J., Ombredane, D., Charles, K., Marchand, F. & Bagliniere, J.-L. A continuum of life history tactics in a brown trout Salmo trutta population. Can. J. Fish. Aquat. Sci. 62, 1600–1610 (2005).Article
Google Scholar
24.del Villar-Guerra, D., Aarestrup, K., Skov, C. & Koed, A. Marine migrations in anadromous brown trout (Salmo trutta): Fjord residency as a possible alternative in the continuum of migration to the open sea. Ecol. Freshw. Fish 23, 594–693. https://doi.org/10.1111/eff.12110 (2014).Article
Google Scholar
25.Eldøy, S. H. et al. Marine migration and habitat use of anadromous brown trout Salmo trutta. Can. J. Fish. Aquat. Sci. 72, 1366–1378. https://doi.org/10.1139/cjfas-2014-0560 (2015).Article
Google Scholar
26.Flaten, A. C. et al. The first months at sea: Migration and habitat use of sea trout Salmo trutta post-smolts. J. Fish Biol. 89, 1624–1640. https://doi.org/10.1111/jfb.13065 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
27.Bordeleau, X. et al. Nutritional correlates of spatio-temporal variations in the marine habitat use of brown trout, Salmo trutta, veteran migrants. Can. J. Fish. Aquat. Sci. 75, 1744–1754. https://doi.org/10.1139/cjfas-2017-0350 (2018).Article
Google Scholar
28.Eldøy, S. H. et al. The effects of nutritional state, sex and body size on the marine migration behaviour of sea trout. Mar. Ecol. Prog. Ser. 665, 185–200 (2021).ADS
Article
Google Scholar
29.McDowall, R. M., Allibone, R. M. & Chadderton, W. L. Issues for the conservation and management of Falkland Islands freshwater fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 473–486. https://doi.org/10.1002/aqc.499 (2001).Article
Google Scholar
30.Dartnall, H. J. G. The freshwater fauna of the souht polar region: A 140-year review. Pap. Proc. R. Soc. Tasman. 15, 19–57 (2017).
Google Scholar
31.Berthier, E., Le Bris, R., Mabileau, L., Testut, L. & Rémy, F. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. J. Geophys. Res. 114, 1–14. https://doi.org/10.1029/2008JF001192 (2009).Article
Google Scholar
32.Frenot, Y., Gloaguen, J. C., Picot, G., Bougere, J. & Benjamin, D. Azorella selago Hook. used to estimate glacier fluctuations and climatic history in the Kerguelen Islands over the last two centuries. Oecologia 95, 140–144 (1993).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
33.Delettre, Y. Biologie et écologie de Limnophyes pusillus Eaton, 1875 (Diptera, Chironomidae) aux Iles Kerguelen 1- Présentation générale et étude des populations larvaires. Rev. d’Ecol. Biol. Sol 15, 475–486 (1978).
Google Scholar
34.Gay, C. Ecologie du zooplancton d’eau douce des Iles Kerguelen: 1- Caractéristiques du milieu et inventaire des entomostracés. Com. Natl. Franç. Rech. Antarct. 47, 43–57 (1981).
Google Scholar
35.Wojtenka, J. & Van Steenberghe, F. Variations nycthémérales et saisonnières de la faune en place et en derive, stratégie alimentaire de la truite (Salmo trutta L.) dans une petite rivière des Iles Kerguelen. Com. Natl. Franç. Rech. Antarct. 51, 413–423 (1982).
Google Scholar
36.Davidsen, J. G. et al. (Portail Data INRAE, 2020).37.Labonne, J. et al. From the bare minimum: Genetics and selection in populations founded by only a few parents. Evol. Ecol. Res. 17, 21–34 (2016).
Google Scholar
38.Frenot, Y., Gloaguen, J. C. & Trehen, P. in Antarctic Communities: Species, Structure and Survival, Vol. 358–366 (eds B. Battaglia, J. Valencia, & D.W.H. Walton) (Cambridge University Press, 1997).39.Huston, A. H. in Methods for Fish Biology (eds C.B. Schreck & P.B. Moyle) 273–343 (American Fisheries Society, 1990).40.Davidsen, J. G. et al. Can sea trout Salmo trutta compromise successful eradication of Gyrodactylus salaris by hiding from CFT Legumin (rotenone) treatments?. J. Fish Biol. 82, 1411–1418. https://doi.org/10.1111/jfb.12065 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
41.Gauthey, Z. et al. The concentration of plasma metabolites varies throughout reproduction and affects offspring number in wild brown trout (Salmo trutta). Comp. Biochem. Physiol. A 184, 90–96 (2015).CAS
Article
Google Scholar
42.Quéméré, E. et al. An improved PCR-based method for faster sex determination in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Conserv. Genet. Resour. 6, 825–827. https://doi.org/10.1007/s12686-014-0259-8 (2014).Article
Google Scholar
43.Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Kruger, N. J. in The Protein Protocols Handbook (ed J.M. Walker) 17–24 (Humana Press, 2009).45.Davidsen, J. G. et al. Marine trophic niche-use and life history diversity among Arctic charr Salvelinus alpinus in southwestern Greenland. J. Fish Biol. 96, 681–692 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Eldøy, S. H., Davidsen, J. G., Vignon, M. & Power, M. The biology and feeding ecology of Arctic charr in the Kerguelen Islands. J. Fish Biol. 98, 526–536. https://doi.org/10.1111/jfb.14596 (2020).Article
PubMed
PubMed Central
Google Scholar
47.Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957).ADS
CAS
Article
Google Scholar
48.Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687 (1983).ADS
CAS
Article
Google Scholar
49.Jardine, T. D. et al. Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropical river. River Res. Appl. 29, 560–573 (2013).Article
Google Scholar
50.Hyslop, E. J. Stomach contents analysis: A review of methods and their application. J. Fish Biol. 17, 411–429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x (1980).Article
Google Scholar
51.Závorka, L., Slavík, O. & Horký, P. Validation of scale-reading estimates of age and growth in a brown trout Salmo trutta population. Biologia 69, 691–695. https://doi.org/10.2478/s11756-014-0356-x (2014).Article
Google Scholar
52.Pincock, D. G. False Detections: What they are and how to remove them from detection data. Vemco Appl. Note 1, 1–11 (2012).
Google Scholar
53.France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).Article
Google Scholar
54.Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).Article
Google Scholar
55.Wissel, B. & Fry, B. Tracing Mississippi River influences in estuarine food webs of coastal Louisiana. Oecologi 144, 659–672. https://doi.org/10.1007/s00442-005-0119-z (2005).ADS
Article
Google Scholar
56.Kline, T. T., Wilson, W. J. & Goering, J. J. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. Can. J. Aquat. Sci. 55, 1494–1502 (1998).Article
Google Scholar
57.Phillips, D. L. Converting isotope values to diet composition: the use of mixing models. J. Mammal. 93, 342–352 (2012).Article
Google Scholar
58.Schawarcz, H. P. Some theoretical aspects of isotope paleodiet studies. J. Archaeol. Sci. 18, 261–275 (1991).Article
Google Scholar
59.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).Article
Google Scholar
60.Saucède, T. et al. in The Kerguelen Plateau: Marine Ecosystem and Fisheries. Proceedings of the Second Symposium (eds D. Welsford, J. Dell, & G. Duhamel) 95–116 (Australian Antarctic Division, 2019).61.Batschelet, E. Circular Statistics in Biology. (Academic Press, 1981).62.Zar, J. H. Bisostatistical Analysis. 5th edn, (Prentice-Hall/Pearson, 2010).63.Cherel, Y., Ducatez, S., Fontaine, C., Richard, P. & Guinet, C. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Mar. Ecol. Prog. Ser. 370, 239–247 (2008).ADS
Article
Google Scholar
64.Guerreiro, M. et al. Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Mar. Ecol. Prog. Ser. 530, 119–134 (2015).ADS
CAS
Article
Google Scholar
65.Ciancio, J., Beauchamp, D. A. & Pascuala, M. Marine effect of introduced salmonids: Prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf. Limnol. Oceanogr. 55, 2181–2192 (2010).ADS
Article
Google Scholar
66.Thorstad, E. B. et al. Marine life of the sea trout. Mar. Biol. 163(47), 1–19. https://doi.org/10.1007/s00227-016-2820-3 (2016).Article
Google Scholar
67.Závorka, L., Koeck, B., Killen, S. S. & Kainz, M. J. Aquatic predators influence flux of essential micronutrients. Trends Ecol. Evol. 34, 880–881 (2019).PubMed
Article
PubMed Central
Google Scholar
68.Colombo, S. M., Wacker, A., Parrish, C. C., Kainz, M. J. & Arts, M. T. A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems. Environ. Rev. 25, 163–174. https://doi.org/10.1139/er-2016-0062 (2017).CAS
Article
Google Scholar
69.Jarry, M. et al. Sea trout (Salmo trutta) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biol. 41, 925–934 (2018).Article
Google Scholar
70.O’Neal, A. L. & Stanford, J. A. Partial migration in a robust brown trout population of a Patagonian river. Trans. Am. Fish. Soc. 140, 623–635 (2011).Article
Google Scholar
71.Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
72.Jonsson, B. & Jonsson, N. Partial migration: niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 3, 348–365 (1993).Article
Google Scholar
73.Newton, C. The Trouts Tale. The Fish that Followed an Empire. 218 (The Medlar Press, 2013).74.Davidsen, J. G. et al. Does reduced feeding prior to release improve the marine migration of hatchery brown trout Salmo trutta L. smolts?. J. Fish Biol. 85, 1992–2002 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
75.Westley, P. A. H. & Fleming, I. A. Landscape factors that shape a slow and persistent aquatic invasion: Brown trout in Newfoundland 1883–2010. Biodivers. Res. 17, 566–579 (2011).
Google Scholar
76.Larsson, S. Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta: Implications for their niche segregation. Environ. Biol. Fishes 73, 89–96 (2005).Article
Google Scholar
77.Elliot, J. M. Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshwat. Biol. 44, 237–245 (2000).Article
Google Scholar
78.Elliot, J. M. & Hurley, M. A. Optimum energy intake and gross efficiency of energy conversion for brown trout, Salmo trutta, feeding on invertebrates or fish. Freshwat. Biol. 44, 605–615 (2000).Article
Google Scholar
79.Jensen, J. L. A. et al. Water temperatures influence the marine area use of Salvelinus alpinus and Salmo trutta. J. Fish Biol. 84, 1640–1653. https://doi.org/10.1111/jfb.12366 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
80.Rikardsen, A. H. et al. The marine temperature and depth preferences of Arctic charr and sea trout, as recorded by data storage tags. Fish. Oceanogr. 16, 436–447. https://doi.org/10.1111/j.1365-2419.2007.00445.x (2007).Article
Google Scholar
81.Chernitsky, A. G., Zabruskov, G. V., Ermolaev, V. V. & Shkurko, D. S. Life history of trout, Salmo trutta L., in the Varsina River estuary, (The Barents Sea). Nord. J. Freshw. Res. 71, 183–189 (1995).
Google Scholar
82.Honkanen, H. M. et al. Summer survival and activity patterns of estuary feeding anadromous Salmo trutta. Ecol. Freshwat. Fish 29, 31–39 (2020).Article
Google Scholar
83.Thomas, T., Davaine, P. & Beall, E. Dynamique de la migration et reproduction de la truite de mer, Salmo trutta L., dans la Rivière Norvégienne Iles Kerguelen. Com. Natl. Franç. Rech. Antarct. 47, 5–42 (1981).
Google Scholar
84.Beall, E. & Davaine, P. Analyse scalimetrique de la truite de mer (Salmo trutta L.): formation des anneaux et criteres d’identification chez les individus sedentaires et migrateurs d’une meme population acclimatee aux iles Kerguelen (TAAF). Aquat. Living Resour. 1, 3–16 (1988).Article
Google Scholar
85.Ciancio, J. E., Pascual, M. A., Botto, F., Frere, E. & Iribarne, O. Trophic relationships of exotic anadromous salmonids in the southern Patagonian Shelf as inferred from stable isotopes. Limnol. Oceanogr. 53, 788–798 (2008).ADS
Article
Google Scholar
86.Davidsen, J. G. et al. Trophic niche variation among sea trout Salmo trutta in Central Norway investigated by three different time-integrated trophic tracers. J. Aquat. Biol. 26, 217–227. https://doi.org/10.3354/ab00689 (2017).Article
Google Scholar
87.Elliott, J. A. Stomach contents of adult sea trout caught in six English rivers. J. Fish Biol. 50, 1129–1132 (1997).
Google Scholar
88.Knutsen, J. A., Knutsen, H., Gjøsæter, J. & Jonsson, B. Food of anadromous brown trout at sea. J. Fish Biol. 59, 533–543 (2001).Article
Google Scholar
89.Rikardsen, A. H. et al. Temporal variability in marine feeding of sympatric Arctic charr and sea trout. J. Fish Biol. 70, 837–847 (2007).Article
Google Scholar
90.Grønvik, S. & Klemetsen, A. Marine food and diet overlap of Co-occuring Arctic charr (Salvelinus alpinus L.), brown trout (Salmo trutta L.) and Atlantic salmon (S. salar L.) off Senja, N. Norway. Polar Biol. 7, 173–177 (1987).Article
Google Scholar
91.Aulus-Giacosa, L. Spatio-temporal evolution of life history traits related to dispersal. Brown trout (Salmo trutta L.) colonization of the sub-Antarctic Kerguelen Islands PhD thesis, Université de Pau et des Pays de l’Adour (2021).92.Cherel, Y., Fontaine, C., Richard, P., Labat, J. P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 55, 324–332. (2010). More