Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs
1.Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).
Google Scholar
2.Mackenzie, F. T. Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change (1998). https://downloads.globalchange.gov/ocp/ocp1998/ocp1998.pdf3.Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry 13, 87–115 (1991).
Google Scholar
4.Webb, K. L., DuPaul, W. D., Wiebe, W., Sottile, W. & Johannes, R. E. Enewetak (Eniwetok) Atoll: aspects of the nitrogen cycle on a coral reef. Limnol. Oceanogr. 20, 198–210 (1975).ADS
CAS
Google Scholar
5.Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).ADS
CAS
Google Scholar
6.Hoegh-Guldberg, O. Environmental and economic importance of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
Google Scholar
7.Bell, P. R. F. Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon. Water Res. 26, 553–568 (1992).CAS
Google Scholar
8.Sorokin, Y. I. Microbiological Aspects of the Productivity of Coral Reefs. In Biology and Geology of Coral Reefs (eds. Jones, O. A. & Endean, R.) 17–46 (Academic press, Inc., 1973).9.O’Neil, J. M. & Capone, D. G. Nitrogen Cycling in Coral Reef Environments. In Nitrogen in the Marine Environment 949–989 (2008). https://doi.org/10.1016/B978-0-12-372522-6.00021-910.Cardini, U. et al. Budget of primary production and dinitrogen fixation in a highly seasonal red sea coral reef. Ecosystems 19, 771–785 (2016).
Google Scholar
11.Scheffers, S. R., Nieuwland, G., Bak, R. P. M. & Van Duyl, F. C. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23, 413–422 (2004).
Google Scholar
12.Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).PubMed
Google Scholar
13.Koop, K. et al. ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).CAS
PubMed
Google Scholar
14.Capone, D. G., Dunham, S. E., Horrigan, S. G. & Duguay, L. E. Microbial nitrogen transformations in unconsolidated coral reef sediments. Mar. Ecol. Prog. Ser. 80, 75–88 (1992).ADS
CAS
Google Scholar
15.Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS
PubMed
Google Scholar
16.Wiebe, W. J., Johannes, R. E. & Webb, K. L. Nitrogen fixation in a coral reef community. Science 188, 257–259 (1975).ADS
CAS
PubMed
Google Scholar
17.Larkum, A. W. D., Kennedy, I. R. & Muller, W. J. Nitrogen fixation on a coral reef. Mar. Biol. 98, 143–155 (1988).
Google Scholar
18.Kimes, N. E., Van Nostrand, J. D., Weil, E., Zhou, J. & Morris, P. J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ. Microbiol. 12, 541–556 (2010).CAS
PubMed
Google Scholar
19.Yang, S., Sun, W., Zhang, F. & Li, Z. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. Mar. Biotechnol. 15, 540–551 (2013).CAS
Google Scholar
20.Tilstra, A. et al. Denitrification aligns with N2 fixation in red sea corals. Sci. Rep. 9, 19460 (2019).ADS
PubMed
PubMed Central
Google Scholar
21.El-Khaled, Y. et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar. Ecol. Prog. Ser. 645, 55–66 (2020).ADS
CAS
Google Scholar
22.O’Neil, J. M. & Capone, D. G. Nitrogen cycling in coral reef environments. Nitrog. Mar. Environ. https://doi.org/10.1016/B978-0-12-372522-6.00021-9 (2008).Article
Google Scholar
23.Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
Google Scholar
24.Wafar, M., Wafar, S. & David, J. J. Nitrification in reef corals. Limnol. Oceanogr. 35, 725–730 (1990).ADS
CAS
Google Scholar
25.Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science (80-) 333, 418–422 (2011).ADS
CAS
Google Scholar
26.Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90 (2017).ADS
CAS
PubMed
Google Scholar
27.Fabricius, K. E. Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In Coral Reefs: An Ecosystem in Transition (eds. Dubinsky, Z. & Stambler, N.) 493–505 (2011). https://doi.org/10.1007/978-94-007-0114-4_28.28.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS
CAS
PubMed
Google Scholar
29.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Marine Biology 166, (Springer, 2019).30.Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS
PubMed
Google Scholar
31.Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).ADS
Google Scholar
32.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).ADS
CAS
PubMed
Google Scholar
33.Roth, F. et al. High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs. Funct. Ecol. https://doi.org/10.1111/1365-2435.13625 (2020).Article
PubMed
Google Scholar
34.Done, T. J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247, 121–132 (1992).
Google Scholar
35.Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science (80-) 265, 1547–1551 (1994).ADS
CAS
Google Scholar
36.McManus, J. W. & Polsenberg, J. F. Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).ADS
Google Scholar
37.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
Google Scholar
38.White, A. T., Vogt, H. P. & Arin, T. Philippine coral reefs under threat: the economic losses caused by reef destruction. Mar. Pollut. Bull. 40, 598–605 (2000).CAS
Google Scholar
39.McClanahan, T. R., Hicks, C. C. & Darling, E. S. Malthusian overfishing and efforts to overcome it on Kenyan coral reefs. Ecol. Appl. 18, 1516–1529 (2008).PubMed
Google Scholar
40.Nyström, M. et al. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15, 695–710 (2012).
Google Scholar
41.Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
Google Scholar
42.McClanahan, T., Polunin, N. & Done, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6 (2), 18, (2002).
43.Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Chang. Biol. 10, 1642–1647 (2004).ADS
Google Scholar
44.Williams, G. J. & Graham, N. A. J. Rethinking coral reef functional futures. Funct. Ecol. 33, 942–947 (2019).
Google Scholar
45.Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).ADS
Google Scholar
46.Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
Google Scholar
47.Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology https://doi.org/10.1002/ecy.3226 (2020).Article
PubMed
PubMed Central
Google Scholar
48.Bednarz, V. N., Cardini, U., Van Hoytema, N., Al-Rshaidat, M. M. D. & Wild, C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar. Ecol. Prog. Ser. 519, 141–152 (2015).ADS
Google Scholar
49.Rix, L. et al. Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the northern Red Sea. Mar. Ecol. Prog. Ser. 533, 79–92 (2015).ADS
CAS
Google Scholar
50.den Haan, J. et al. Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef. Coral Reefs 33, 1003–1015 (2014).ADS
Google Scholar
51.Roth, F. et al. Coral reef degradation affects the potential for reef recovery after disturbance. Mar. Environ. Res. 142, 48–58 (2018).CAS
PubMed
Google Scholar
52.Holmes, G. & Johnstone, R. W. The role of coral mortality in nitrogen dynamics on coral reefs. J. Exp. Mar. Biol. Ecol. 387, 1–8 (2010).CAS
Google Scholar
53.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science (80-) 318, 1737–1742 (2007).ADS
CAS
Google Scholar
54.Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 1–8 (2016).
Google Scholar
55.Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Chang. Biol. 23, 3869–3881 (2017).ADS
PubMed
Google Scholar
56.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS
CAS
PubMed
Google Scholar
57.Pogoreutz, C. et al. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Chang. Biol. 23, 3838–3848 (2017).ADS
PubMed
Google Scholar
58.Bednarz, V. N. et al. Dinitrogen fixation and primary productivity by carbonate and silicate reef sand communities of the Northern Red Sea. Mar. Ecol. Prog. Ser. 527, 47–57 (2015).ADS
Google Scholar
59.Shashar, N., Feldstein, T., Cohen, Y. & Loya, Y. Nitrogen fixation (acetylene reduction) on a coral reef. Coral Reefs 13, 171–174 (1994).ADS
Google Scholar
60.Patriquin, D. G. & McClung, C. R. Nitrogen accretion, and the nature and possible significance of N2 fixation (acetylene reduction) in a Nova Scotian Spartina alterniflora Stand. Mar. Biol. 47, 227–242 (1978).
Google Scholar
61.Shieh, W. Y. & Lin, Y. M. Nitrogen fixation (acetylene reduction) associated with the zoanthid Palythoa tuberculosa Esper. J. Exp. Mar. Biol. Ecol. 163, 31–41 (1992).CAS
Google Scholar
62.Bednarz, V. N. et al. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS ONE 13, 1–13 (2018).
Google Scholar
63.Schöttner, S. et al. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ. Microbiol. 13, 1815–1826 (2011).PubMed
PubMed Central
Google Scholar
64.Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).CAS
PubMed
PubMed Central
Google Scholar
65.Compaoré, J. & Stal, L. J. Effect of temperature on the sensitivity of nitrogenase to oxygen in two heterocystous cyanobacteria. J. Physcol. 46, 1172–1179 (2010).
Google Scholar
66.Littler, M. & Littler, D. The nature of turf and boring algae and their interactions on reefs. Smithson. Contrib. to Mar. Sci. 213–217 (2013).67.Rosenberg, G. & Ramus, J. Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquat. Bot. 19, 65–72 (1984).CAS
Google Scholar
68.Fong, P., Rudnicki, R. & Zedler, J. B. Algal community response to nitrogen and phosphorus loading in experimental mesocosms: Management recommendations for southern California lagoons. (1987).69.Fong, C. R., Gaynus, C. J. & Carpenter, R. C. Complex interactions among stressors evolve over time to drive shifts from short turfs to macroalgae on tropical reefs. Ecosphere 11(5), e03130 (2020).70.Roth, F., Stuhldreier, I., Sánchez-Noguera, C., Morales-Ramírez, T. & Wild, C. Effects of simulated overfishing on the succession of benthic algae and invertebrates in an upwelling-influenced coral reef of Pacific Costa Rica. J. Exp. Mar. Bio. Ecol. 468, 55–66 (2015).
Google Scholar
71.Stuhldreier, I., Bastian, P., Schönig, E. & Wild, C. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand. Mar. Pollut. Bull. 92, 35–44 (2015).CAS
PubMed
Google Scholar
72.Yamamuro, M., Kayanne, H. & Minagawa, M. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol. Oceanogr. 40, 617–621 (1995).ADS
CAS
Google Scholar
73.Tilstra, A. et al. Seasonality affects dinitrogen fixation associated with two common macroalgae from a coral reef in the northern Red Sea. Mar. Ecol. Prog. Ser. 575, 69–80 (2017).ADS
CAS
Google Scholar
74.El-Khaled, Y. C. et al. Simultaneous measurements of dinitrogen fixation and denitrification associated with coral reef substrates: advantages and limitations of a combined acetylene assay. Front. Mar. Sci. 7, 411 (2020).
Google Scholar
75.Davey, M., Holmes, G. & Johnstone, R. High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs 27, 227–236 (2008).ADS
Google Scholar
76.Larkum, A. W. D. High rates of nitrogen fixation on coral skeletons after predation by the crown of thorns starfish Acanthaster planci. Mar. Biol. 97, 503–506 (1988).CAS
Google Scholar
77.Pogoreutz, C. et al. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front. Microbiol. 8, 1–7 (2017).
Google Scholar
78.Arrigo, K. K. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2004).ADS
Google Scholar
79.Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).ADS
CAS
PubMed
Google Scholar
80.Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).CAS
Google Scholar
81.Porter, J. W., Muscatine, L., Dubinsky, Z. & Falkowski, P. G. Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral, stylophora pistillata. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 222, 161–180 (1984).ADS
Google Scholar
82.Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253 (2010).
Google Scholar
83.Falkowski, P. P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. Bioscience 43, 606–611 (1993).
Google Scholar
84.Eyre, B. D., Glud, R. N. & Patten, N. Mass coral spawning: a natural large-scale nutrient addition experiment. Limnol. Oceanogr. 53, 997–1013 (2008).ADS
CAS
Google Scholar
85.Tilstra et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability, Royal Society Open Science, https://doi.org/10.1098/rsos.201835 (2021).86.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).
Google Scholar
87.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).ADS
CAS
Google Scholar
88.Ferrier-Pagès, C., Godinot, C., D’Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).
Google Scholar
89.Muscatine, L., Falkowski, P. G., Porter, J. W. & Dubinsky, Z. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 222, 181–202 (1984).ADS
CAS
Google Scholar
90.Conti-Jerpe, I. E. et al. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6(15), eaaz5443 (2020).91.Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed
Google Scholar
92.Muscatine, L., Porter, J. W. & Kaplan, I. R. Resource partitioning by reef corals as determined from stable isotope composition. Pac. Sci. 48, 304–312 (1994).
Google Scholar
93.Her, J.-J. & Huang, J.-S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 54, 45–51 (1995).CAS
Google Scholar
94.Chen, S. et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environ. Microbiol. 20, 980–992 (2018).CAS
PubMed
Google Scholar
95.Schlichter, D., Svoboda, A. & Kremer, B. P. Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983).CAS
Google Scholar
96.Babbin, A. R. et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical stony corals. ISME J. https://doi.org/10.1038/s41396-020-00845-2 (2020).Article
PubMed
PubMed Central
Google Scholar
97.Pupier, C. A. et al. Divergent capacity of scleractinian and soft corals to assimilate and transfer diazotrophically derived nitrogen to the reef environment. Front. Microbiol. 10, 1860 (2019).98.Muscatine, L. The role of symbiotic algae in carbon and energy flux in coral reefs. In Coral Reefs (ed. Dubinsky, Z.) 75–87 (1990).99.van Woesik, R., Irikawa, A., Anzai, R. & Nakamura, T. Effects of coral colony morphologies on mass transfer and susceptibility to thermal stress. Coral Reefs 31, 633–639 (2012).ADS
Google Scholar
100.Patterson, M. R. & Sebens, K. P. Forced convection modulates gas exchange in cnidarians. Proc. Natl. Acad. Sci. U. S. A. 86, 8833–8836 (1989).ADS
CAS
PubMed
PubMed Central
Google Scholar
101.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
Google Scholar
102.Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).ADS
Google Scholar
103.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).ADS
CAS
PubMed
Google Scholar
104.Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl. Acad. Sci. U. S. A. 103, 8425–8429 (2006).ADS
CAS
PubMed
PubMed Central
Google Scholar
105.Sano, M., Shimizu, M. & Nose, Y. Long-term effects of destruction of hermatypic corals by Acanthaster plana infestation on reef fish communities at Iriomote Island, Japan. Mar. Ecol. Prog. Ser. 37, 191–199 (1987).ADS
Google Scholar
106.Lindahl, U., Öhman, M. C. & Schelten, C. K. The 1997/1998 mass mortality of corals: effects on fish communities on a Tanzanian coral reef. Mar. Pollut. Bull. 42, 127–131 (2001).CAS
PubMed
Google Scholar
107.Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. U. S. A. 101, 8251–8253 (2004).ADS
CAS
PubMed
PubMed Central
Google Scholar
108.Idjadi, J. A. & Edmunds, P. J. Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar. Ecol. Prog. Ser. 319, 117–127 (2006).ADS
Google Scholar
109.Bracewell, S. A., Clark, G. F. & Johnston, E. L. Habitat complexity effects on diversity and abundance differ with latitude: an experimental study over 20 degrees. Ecology 99, 1964–1974 (2018).PubMed
Google Scholar
110.Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).CAS
PubMed
Google Scholar
111.Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A. & Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar. Coast. Shelf Sci. 64, 223–234 (2005).ADS
Google Scholar
112.Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).PubMed
PubMed Central
Google Scholar
113.Adey, W. H. & Goertemiller, T. Coral reef algal turfs: master producers in nutrient poor seas. Phycologia 26, 374–386 (1987).
Google Scholar
114.Fong, P. & Paul, V. J. Coral reef algae. In Coral Reefs: An Ecosystem in Transition (eds. Dubinsky, Z. & Stambler, N.) 241–272 (Springer, 2011). https://doi.org/10.1007/978-94-007-0114-4_17.115.Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs?. Ecol. Lett. 14, 267–273 (2011).PubMed
Google Scholar
116.Jessen, C. & Wild, C. Herbivory effects on benthic algal composition and growth on a coral reef flat in the Egyptian Red Sea. Mar. Ecol. Prog. Ser. 476, 9–21 (2013).ADS
CAS
Google Scholar
117.Haas, A. F. & Wild, C. Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat. Biol. 10, 131–138 (2010).
Google Scholar
118.Roth et al. Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. Marine Pollution Bulletin. 168, 112444 (2021).119.Haas, A. F. et al. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 2013, 1–28 (2013).
Google Scholar
120.Roach, T. N. F. et al. A multiomic analysis of in situ coral-turf algal interactions. Proc. Natl. Acad. Sci. U. S. A. 117, 13588–13595 (2020).CAS
PubMed
PubMed Central
Google Scholar
121.van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed
Google Scholar
122.Liang, J. et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress. Front. Microbiol. 8, 1–10 (2017).ADS
Google Scholar
123.Fung, T., Seymour, R. M. & Johnson, C. R. Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92, 967–982 (2011).PubMed
Google Scholar
124.Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).PubMed
Google Scholar
125.Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.942 (2008).Article
Google Scholar
126.Riegl, B. & Piller, W. E. Coral frameworks revisited-reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).
Google Scholar
127.Benayahu, Y., Jeng, M. S., Perkol-Finkel, S. & Dai, C. F. Soft corals (Octocorallia: Alcyonacea) from Southern Taiwan. II. Species diversity and distributional patterns. Zool. Stud. 43, 548–560 (2004).
Google Scholar
128.Ninio, R., Meekan, M., Done, T. & Sweatman, H. Temporal patterns in coral assemblages on the Great Barrier Reef from local to large spatial scales. Mar. Ecol. Prog. Ser. 194, 65–74 (2000).ADS
Google Scholar
129.Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS
PubMed
Google Scholar
130.Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Chang. 3, 683–687 (2013).ADS
CAS
Google Scholar
131.Rasser, M. W. & Riegl, B. Holocene coral reef rubble and its binding agents. Coral Reefs 21, 57–72 (2002).ADS
Google Scholar
132.Dalsgaard, T., Thamdrup, B. & Canfield, D. E. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 156, 457–464 (2005).CAS
PubMed
Google Scholar
133.Brunner, B. et al. Nitrogen isotope effects induced by anammox bacteria. Proc. Natl. Acad. Sci. 110, 18994–18999 (2013).ADS
CAS
PubMed
Google Scholar
134.Zhang, Y. et al. The functional gene composition and metabolic potential of coral-associated microbial communities. Sci. Rep. 5, 1–11 (2015).
Google Scholar
135.Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).ADS
CAS
PubMed
Google Scholar
136.Hill, J. & Wilkinson, C. Methods for ecological monitoring of coral reefs. Aust. Inst. Mar. Sci. Townsv. https://doi.org/10.1017/CBO9781107415324.004 (2004).Article
Google Scholar
137.Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).ADS
Google Scholar
138.Haas, A., El-Zibdah, M. & Wild, C. Seasonal monitoring of coral-algae interactions in fringing reefs of the Gulf of Aqaba, Northern Red Sea. Coral Reefs 29, 93–103 (2010).ADS
Google Scholar
139.Bahartan, K. et al. Macroalgae in the coral reefs of Eilat (Gulf of Aqaba, Red Sea) as a possible indicator of reef degradation. Mar. Pollut. Bull. 60, 759–764 (2010).CAS
PubMed
Google Scholar
140.Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020).ADS
PubMed
Google Scholar
141.Hynes, R. K. & Knowles, R. Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol. Lett. 4, 319–321 (1978).CAS
Google Scholar
142.Oremland, R. S. & Capone, D. G. Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. https://doi.org/10.1007/978-1-4684-5409-3_8 (1988).Article
Google Scholar
143.Haines, J. R., Atlas, R. M., Griffiths, R. P. & Morita, R. Y. Denitrification and nitrogen fixation in Alaskan continental shelf sediments. Appl. Environ. Microbiol. 41, 412–421 (1981).CAS
PubMed
PubMed Central
Google Scholar
144.Joye, S. B. & Paerl, H. W. Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats: rapid response to runoff events. Mar. Ecol. Prog. Ser. 94, 267–274 (1993).ADS
CAS
Google Scholar
145.Miyajima, T., Suzumura, M., Umezawa, Y. & Koike, I. Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. Mar. Ecol. Prog. Ser. 217, 273–286 (2001).ADS
Google Scholar
146.Falkowski, P. G. Enzymology of Nitrogen Assimilation Nitrogen in the Marine Environment (Academic Press, 1983). https://doi.org/10.1016/b978-0-12-160280-2.50031-6.147.den Haan, J. et al. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse. Sci. Rep. 6, 28821 (2016).ADS
Google Scholar
148.Grover, R., Maguer, J. F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).ADS
CAS
Google Scholar
149.Knapp, A. N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3, 374 (2012).CAS
PubMed
PubMed Central
Google Scholar
150.Dilworth, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta 127, 285–294 (1966).CAS
PubMed
Google Scholar
151.Schöllhorn, R. & Burris, R. H. Acetylene as a competitive inhibitor of N-2 fixation. Proc. Natl. Acad. Sci. U. S. A. 58, 213–216 (1967).ADS
PubMed
PubMed Central
Google Scholar
152.Balderston, W. L., Sherr, B. & Payne, W. J. Blockage by acetylene of nitrous-oxide reduction in pseudomonas-perfectomarinus. Appl. Environ. Microbiol. 31, 504–508 (1976).CAS
PubMed
PubMed Central
Google Scholar
153.Yoshinari, T. & Knowles, R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 69, 705–710 (1976).CAS
PubMed
Google Scholar
154.Lavy, A. et al. A quick, easy and non-intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. Methods Ecol. Evol. 6, 521–531 (2015).
Google Scholar
155.Gutierrez-Heredia, L., Benzoni, F., Murphy, E. & Reynaud, E. G. End to end digitisation and analysis of three-dimensional coral models, from communities to corallites. PLoS ONE 11, e0149641 (2016).PubMed
PubMed Central
Google Scholar
156.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).ADS
CAS
Google Scholar
157.Mulholland, M. R., Bronk, D. A. & Capone, D. G. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat. Microb. Ecol. 37, 85–94 (2004).
Google Scholar
158.Clarke, K. R. & Gorley, R. N. PRIMER v6: Use manual/Tutorial. PRIMER-E:Plymouth (2006).
159.Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER. Guide to software and statistical methods. (2008).160.R Core Team. R: A language and environment for statistical computing. (2017).161.RStudio Team. RStudio: Integrated Development for R. (2020).162.Wilson, S. T., Böttjer, D., Church, M. J. & Karl, D. M. Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic north pacific ocean. Appl. Environ. Microbiol. 78, 6516–6523 (2012).CAS
PubMed
PubMed Central
Google Scholar
163.Yu, K., Seo, D. C. & Delaune, R. D. Incomplete acetylene inhibition of nitrous oxide reduction in potential denitrification assay as revealed by using 15N-Nitrate tracer. Commun. Soil Sci. Plant Anal. 41, 2201–2210 (2010).CAS
Google Scholar
164.Groffman, P. M. et al. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol. Appl. 16, 2091–2122 (2006).PubMed
Google Scholar
165.Maldonado, M., Ribes, M. & van Duyl, F. C. Nutrient Fluxes Through Sponges. Biology, Budgets, and Ecological Implications. Advances in Marine Biology Vol. 62 (Elsevier Ltd., 2012).
Google Scholar
166.Roth, F. et al. An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13151 (2019).Article
Google Scholar More