1.Beal, A. P., Kiszka, J. J., Wells, R. S. & Eirin-Lopez, J. M. The Bottlenose dolphin Epigenetic Aging Tool (BEAT): a molecular age estimation tool for small cetaceans. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00561 (2019).2.Garde, E., Heide-Jørgensen, M. P., Hansen, S. H., Nachman, G. & Forchhammer, M. C. Age-specific growth and remarkable longevity in narwhals (Monodon monoceros) from West Greenland as estimated by aspartic acid racemization. J. Mammal. 88, 49–58 (2007).Article
Google Scholar
3.Matkin, C. O., Ward Testa, J., Ellis, G. M. & Saulitis, E. L. Life history and population dynamics of southern Alaska resident killer whales (Orcinus orca). Mar. Mammal. Sci. 30, 460–479 (2014).Article
Google Scholar
4.Olesiuk, P., Bigg, M. & Ellis, G. Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Report of the International Whaling Commission. Special 12, 209–243 (1990).
Google Scholar
5.Wells, R. S. Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies, Primatology Monographs (eds. J. Yamagiwa, & Karczmarski, L.) p. 149–172 (Springer, 2014).6.Robeck, T. R., Willis, K., Scarpuzzi, M. R. & O’Brien, J. K. Survivorship pattern inaccuracies and inappropriate anthropomorphism in scholarly pursuits of killer whale (Orcinus orca) life history: a response to Franks et al.(2016). J. Mammal. 97, 899–905 (2016).PubMed
PubMed Central
Article
Google Scholar
7.Ellis, S. et al. Analyses of ovarian activity reveal repeated evolution of post-reproductive lifespans in toothed whales. Sci. Rep. 8, 1–10 (2018).CAS
Article
Google Scholar
8.Croft, D. P., Brent, L. J., Franks, D. W. & Cant, M. A. The evolution of prolonged life after reproduction. Trends Ecol. Evol. 30, 407–416 (2015).PubMed
Article
PubMed Central
Google Scholar
9.Wursig, B. & Jefferson, T. A. Methods of photo-identification for small cetaceans. Rep. Int. Whal. Comm. 12, 43–52 (1990).
Google Scholar
10.Perrin, W. F. & Myrick, A. C. Age Determination Of Toothed Whales And Sirenians (International Whaling Commission, 1980).11.Bryden, M. Research on Dolphins (eds. Bryden, M. M. & Harrison, R. J.) p. 211–224 (Clarendon Press Oxford, 1986).12.Myrick, A. C., Yochem, P. K. & Cornell, L. H. Toward calibrating dentinal layers in captive killer whales by use of tetracycline labels. Rit Fiskid. 11, 285–296 (1988).
Google Scholar
13.Best, P., Meÿer, M. & Lockyer, C. Killer whales in South African waters—a review of their biology. Afr. J. Mar. Sci. 32, 171–186 (2010).Article
Google Scholar
14.Foote, A. D., Newton, J., Piertney, S. B., Willerslev, E. & Gilbert, M. T. P. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Mol. Ecol. 18, 5207–5217 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Ford, J. K. et al. Shark predation and tooth wear in a population of northeastern Pacific killer whales. Aquat. Biol. 11, 213–224 (2011).Article
Google Scholar
16.Hohn, A. A. & Fernandez, S. Biases in dolphin age structure due to age estimation technique. Mar. Mammal. Sci. 15, 1124–1132 (1999).Article
Google Scholar
17.Lockyer, C. A report on patterns of deposition of dentine and cement in teeth of pilot whales, genus Globicephala. Rep. Int. Whal. Comm. 14, 137–161 (1993).
Google Scholar
18.Waugh, D. A., Suydam, R. S., Ortiz, J. D. & Thewissen, J. Validation of Growth Layer Group (GLG) depositional rate using daily incremental growth lines in the dentin of beluga (Delphinapterus leucas (Pallas, 1776)) teeth. PLoS ONE 13, e0190498 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
19.Sergeant, D. E. Age Determination In Odontocete Whales From Dentinal Growth Layers (Norwegian Whaling Gazette, 1959).20.Brodie, P. F. Mandibular layering in Delphinapterus leucas and age determination. Nature 221, 956–958 (1969).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Goren, A. D. et al. Growth layer groups (GLGs) in the teeth of an adult belukha whale (Delphinapterus leucas) of known age: evidence for two annual layers. Mar. Mammal. Sci. 3, 14–21 (1987).Article
Google Scholar
22.Brodie, P. & Haulena, M. Dentinal growth layer counts of captive, known-age, mother and daughter belugas (Delphinapterus leucas): confirming two growth layer groups (GLG/2) per year; consequences for recovery and management. J Cetacean. Res Manag. 18, 23–31 (2018).
Google Scholar
23.Brodie, P., Ramirez, K. & Haulena, M. Growth and maturity of belugas (Delphinapterus leucas) in Cumberland Sound, Canada, and in captivity: evidence for two growth layer groups (GLGs) per year in teeth. J. Cetacean Res. Manag. 13, 1–18 (2013).
Google Scholar
24.Lockyer, C., Hohn, A. A., Doidge, D. W., Heide-Jørgensen, M. P. & Suydam, R. Age determination in belugas (Delphinapterus leucas in Belugas): a quest for validation of dentinal layering. Aquat. Mamm. 33, 293–304 (2007).Article
Google Scholar
25.Stewart, R., Campana, S., Jones, C. & Stewart, B. Bomb radiocarbon dating calibrates beluga (Delphinapterus leucas) age estimates. Can. J. Zool. 84, 1840–1852 (2006).Article
Google Scholar
26.Brodie, P. A reconsideration of aspects of growth, reproduction, and behavior of the white whale (Delphinapterus leucas), with reference to the Cumberland Sound, Baffin Island, population. J. Fish. Board Can. 28, 1309–1318 (1971).Article
Google Scholar
27.Brodie, P. F., Parsons, J. L. & Sergeant, D. E. Present status of the white whale (Delphinapterus leucas) in Cumberland Sound, Baffin Island.Rep. Int. Whal. Comm. 31, 579–582 (1981).
Google Scholar
28.Robeck, T. R. et al. Reproduction, growth and development in captive beluga (Delphinapterus leucas). Zoo Biol. 24, 29–49 (2005).Article
Google Scholar
29.Bada, J., Brown, S. & Masters, P. Age determination of marine mammals based on aspartic acid racemization in the teeth and lens nucleus. Age Determination of Toothed Whales and Sirenians. p. 113–118 (Report of the International Whaling Commission, Special, 1980).30.George, J. C. et al. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Can. J. Zool. 77, 571–580 (1999).Article
Google Scholar
31.Pleskach, K. et al. Use of mass spectrometry to measure aspartic acid racemization for ageing beluga whales. Mar. Mammal. Sci. 32, 1370–1380 (2016).CAS
Article
Google Scholar
32.Garde, E., Peter Heide-Jørgensen, M., Ditlevsen, S. & Hansen, S. H. Aspartic acid racemization rate in narwhal (Monodon monoceros) eye lens nuclei estimated by counting of growth layers in tusks. Polar Res. https://doi.org/10.3402/polar.v31i0.15865 (2012).33.Herman, D. P. et al. Assessing age distributions of killer whale Orcinus orca populations from the composition of endogenous fatty acids in their outer blubber layers. Mar. Ecol. Prog. Ser. 372, 289–302 (2008).CAS
Article
Google Scholar
34.Herman, D. P. et al. Age determination of humpback whales Megaptera novaeangliae through blubber fatty acid compositions of biopsy samples. Mar. Ecol. Prog. Ser. 392, 277–293 (2009).Article
Google Scholar
35.Marcoux, M., Lesage, V., Thiemann, G. W., Iverson, S. J. & Ferguson, S. H. Age estimation of belugas, Delphinapterus leucas, using fatty acid composition: a promising method. Mar. Mammal. Sci. 31, 944–962 (2015).Article
Google Scholar
36.Olsen, M. T., Berube, M., Robbins, J. & Palsboll, P. J. Empirical evaluation of humpback whale telomere length estimates; quality control and factors causing variability in the singleplex and multiplex qPCR methods. BMC Genet. 13, 77 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Broer, L. et al. Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 21, 1163–1168 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Dunshea, G. et al. Telomeres as age markers in vertebrate molecular ecology. Mol. Ecol. Resour. 11, 225–235 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Tanabe, A. et al. Age estimation by DNA methylation in the Antarctic minke whale. Fish. Sci. 86, 35–41 (2020).CAS
Article
Google Scholar
41.Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Rakyan, V. K. et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20, 434–439 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
44.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
46.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed
PubMed Central
Article
Google Scholar
47.Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 1–24 (2019).Article
Google Scholar
48.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960.e956 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Cole, J. J. et al. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol. 18, 1–16 (2017).Article
CAS
Google Scholar
50.Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
51.Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 1–14 (2017).Article
CAS
Google Scholar
52.Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Meer, M. V., Podolskiy, D. I., Tyshkovskiy, A. & Gladyshev, V. N. A whole lifespan mouse multi-tissue DNA methylation clock. Elife 7, e40675 (2018).PubMed
PubMed Central
Article
Google Scholar
54.Ito, T., Teo, T. V., Evans, S. A., Neretti, N. & Sedivy, J. Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 22, 3480–3492 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
55.St Aubin, D., Deguise, S., Richard, P., Smith, T. & Geraci, J. Hematology and plasma chemistry as indicators of health and ecological status in beluga whales, Delphinapterus leucas. Arctic 54, 317–331 (2001).56.Norman, S. A. et al. Seasonal hematology and serum chemistry of wild beluga whales (Delphinapterus leucas) in Bristol Bay, Alaska, USA. J. Wildl. Dis. 48, 21–32 (2012).PubMed
Article
PubMed Central
Google Scholar
57.Frost, K. J. & Suydam, R. S. Subsistence harvest of beluga or white whales (Delphinapterus leucas) in northern and western Alaska 1987–2006. J. Cetacea. Res. Manag. 11, 293–299 (2010).
Google Scholar
58.Rosen, A. D. et al. DNA methylation age is accelerated in alcohol dependence. Transl. Psychiatry 8, 182 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
59.Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Gronniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 6, e1000971 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
61.Doi, A. et al. Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
62.Vandiver, A. R. et al. Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biol. 16, 1–15 (2015).CAS
Article
Google Scholar
63.Li, Q. S., Sun, Y. & Wang, T. Epigenome-wide association study of Alzheimer’s disease replicates 22 differentially methylated positions and 30 differentially methylated regions. Clin. Epigenet. 12, 1–14 (2020).Article
CAS
Google Scholar
64.Sun, L., Zhang, X., Wang, T., Chen, M. & Qiao, H. Association of ANK1 variants with new‑onset type 2 diabetes in a Han Chinese population from northeast China. Exp. Ther. Med. 14, 3184–3190 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Luoma, L. M. & Berry, F. B. Molecular analysis of NPAS3 functional domains and variants. BMC Mol. Biol. 19, 1–19 (2018).Article
CAS
Google Scholar
66.Cosgrove, D. et al. Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. bioRxiv https://doi.org/10.1101/2019.12.16.877837 (2019).67.Decourcelle, A. et al. O-GlcNAcylation links nutrition to the epigenetic downregulation of UNC5A during colon carcinogenesis. Cancers 12, 3168 (2020).CAS
PubMed Central
Article
Google Scholar
68.Yang, T., Zhang, X.-B., Li, X.-N., Sun, M.-Z. & Gao, P.-Z. Homeobox C4 promotes hepatocellular carcinoma progression by the transactivation of Snail. Neoplasma 68, 23–30 (2020).69.Yeung, B., Law, A. & Wong, C. K. Evolution and roles of stanniocalcin. Mol. Cell. Endocrinol. 349, 272–280 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Chen, C., Jamaluddin, M. S., Yan, S., Sheikh-Hamad, D. & Yao, Q. Human stanniocalcin-1 blocks TNF-α–induced monolayer permeability in human coronary artery endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 906–912 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
71.Jourdain, E. & Karoliussen, R. Identification catalogue of Norwegian killer whales: 2007–2018. Figshare https://doi.org/10.608/m9.figshare.4205226 (2018).72.Kuningas, S., Similä, T. & Hammond, P. S. Population size, survival and reproductive rates of northern Norwegian killer whales (Orcinus orca) in 1986-2003. J. Mar. Biol. Assoc. UK 94, 1277 (2014).Article
Google Scholar
73.Christensen, I. Growth and reproduction of killer whales, Orcinus orca, in Norwegian coastal waters. Rep. Int. Whal. Commn 6, 253–258 (1984).
Google Scholar
74.Jourdain, E., Vongraven, D., Bisther, A. & Karoliussen, R. First longitudinal study of seal-feeding killer whales (Orcinus orca) in Norwegian coastal waters. PLoS ONE 12, e0180099 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
75.Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. bioRxiv https://doi.org/10.1101/2021.01.07.425637 (2021).76.Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed
PubMed Central
Google Scholar
77.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1 (2010).PubMed
PubMed Central
Article
Google Scholar
78.Shao, J. Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486–494 (1993).Article
Google Scholar
79.Zhang, P. Model selection via multifold cross validation. Ann. Statist. 21, 299–313 (1993).80.Team, R. C. R.: A language and environment for statistical computing (2020). More