More stories

  • in

    Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs

    1.Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).
    Google Scholar 
    2.Mackenzie, F. T. Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change (1998). https://downloads.globalchange.gov/ocp/ocp1998/ocp1998.pdf3.Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry 13, 87–115 (1991).
    Google Scholar 
    4.Webb, K. L., DuPaul, W. D., Wiebe, W., Sottile, W. & Johannes, R. E. Enewetak (Eniwetok) Atoll: aspects of the nitrogen cycle on a coral reef. Limnol. Oceanogr. 20, 198–210 (1975).ADS 
    CAS 

    Google Scholar 
    5.Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).ADS 
    CAS 

    Google Scholar 
    6.Hoegh-Guldberg, O. Environmental and economic importance of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    7.Bell, P. R. F. Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon. Water Res. 26, 553–568 (1992).CAS 

    Google Scholar 
    8.Sorokin, Y. I. Microbiological Aspects of the Productivity of Coral Reefs. In Biology and Geology of Coral Reefs (eds. Jones, O. A. & Endean, R.) 17–46 (Academic press, Inc., 1973).9.O’Neil, J. M. & Capone, D. G. Nitrogen Cycling in Coral Reef Environments. In Nitrogen in the Marine Environment 949–989 (2008). https://doi.org/10.1016/B978-0-12-372522-6.00021-910.Cardini, U. et al. Budget of primary production and dinitrogen fixation in a highly seasonal red sea coral reef. Ecosystems 19, 771–785 (2016).
    Google Scholar 
    11.Scheffers, S. R., Nieuwland, G., Bak, R. P. M. & Van Duyl, F. C. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23, 413–422 (2004).
    Google Scholar 
    12.Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).PubMed 

    Google Scholar 
    13.Koop, K. et al. ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).CAS 
    PubMed 

    Google Scholar 
    14.Capone, D. G., Dunham, S. E., Horrigan, S. G. & Duguay, L. E. Microbial nitrogen transformations in unconsolidated coral reef sediments. Mar. Ecol. Prog. Ser. 80, 75–88 (1992).ADS 
    CAS 

    Google Scholar 
    15.Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS 
    PubMed 

    Google Scholar 
    16.Wiebe, W. J., Johannes, R. E. & Webb, K. L. Nitrogen fixation in a coral reef community. Science 188, 257–259 (1975).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Larkum, A. W. D., Kennedy, I. R. & Muller, W. J. Nitrogen fixation on a coral reef. Mar. Biol. 98, 143–155 (1988).
    Google Scholar 
    18.Kimes, N. E., Van Nostrand, J. D., Weil, E., Zhou, J. & Morris, P. J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ. Microbiol. 12, 541–556 (2010).CAS 
    PubMed 

    Google Scholar 
    19.Yang, S., Sun, W., Zhang, F. & Li, Z. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. Mar. Biotechnol. 15, 540–551 (2013).CAS 

    Google Scholar 
    20.Tilstra, A. et al. Denitrification aligns with N2 fixation in red sea corals. Sci. Rep. 9, 19460 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.El-Khaled, Y. et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar. Ecol. Prog. Ser. 645, 55–66 (2020).ADS 
    CAS 

    Google Scholar 
    22.O’Neil, J. M. & Capone, D. G. Nitrogen cycling in coral reef environments. Nitrog. Mar. Environ. https://doi.org/10.1016/B978-0-12-372522-6.00021-9 (2008).Article 

    Google Scholar 
    23.Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 
    24.Wafar, M., Wafar, S. & David, J. J. Nitrification in reef corals. Limnol. Oceanogr. 35, 725–730 (1990).ADS 
    CAS 

    Google Scholar 
    25.Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science (80-) 333, 418–422 (2011).ADS 
    CAS 

    Google Scholar 
    26.Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    27.Fabricius, K. E. Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In Coral Reefs: An Ecosystem in Transition (eds. Dubinsky, Z. & Stambler, N.) 493–505 (2011). https://doi.org/10.1007/978-94-007-0114-4_28.28.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Marine Biology 166, (Springer, 2019).30.Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS 
    PubMed 

    Google Scholar 
    31.Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).ADS 

    Google Scholar 
    32.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    33.Roth, F. et al. High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs. Funct. Ecol. https://doi.org/10.1111/1365-2435.13625 (2020).Article 
    PubMed 

    Google Scholar 
    34.Done, T. J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247, 121–132 (1992).
    Google Scholar 
    35.Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science (80-) 265, 1547–1551 (1994).ADS 
    CAS 

    Google Scholar 
    36.McManus, J. W. & Polsenberg, J. F. Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).ADS 

    Google Scholar 
    37.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Google Scholar 
    38.White, A. T., Vogt, H. P. & Arin, T. Philippine coral reefs under threat: the economic losses caused by reef destruction. Mar. Pollut. Bull. 40, 598–605 (2000).CAS 

    Google Scholar 
    39.McClanahan, T. R., Hicks, C. C. & Darling, E. S. Malthusian overfishing and efforts to overcome it on Kenyan coral reefs. Ecol. Appl. 18, 1516–1529 (2008).PubMed 

    Google Scholar 
    40.Nyström, M. et al. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15, 695–710 (2012).
    Google Scholar 
    41.Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    42.McClanahan, T., Polunin, N. & Done, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6 (2), 18, (2002).
    43.Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Chang. Biol. 10, 1642–1647 (2004).ADS 

    Google Scholar 
    44.Williams, G. J. & Graham, N. A. J. Rethinking coral reef functional futures. Funct. Ecol. 33, 942–947 (2019).
    Google Scholar 
    45.Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).ADS 

    Google Scholar 
    46.Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
    Google Scholar 
    47.Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology https://doi.org/10.1002/ecy.3226 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Bednarz, V. N., Cardini, U., Van Hoytema, N., Al-Rshaidat, M. M. D. & Wild, C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar. Ecol. Prog. Ser. 519, 141–152 (2015).ADS 

    Google Scholar 
    49.Rix, L. et al. Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the northern Red Sea. Mar. Ecol. Prog. Ser. 533, 79–92 (2015).ADS 
    CAS 

    Google Scholar 
    50.den Haan, J. et al. Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef. Coral Reefs 33, 1003–1015 (2014).ADS 

    Google Scholar 
    51.Roth, F. et al. Coral reef degradation affects the potential for reef recovery after disturbance. Mar. Environ. Res. 142, 48–58 (2018).CAS 
    PubMed 

    Google Scholar 
    52.Holmes, G. & Johnstone, R. W. The role of coral mortality in nitrogen dynamics on coral reefs. J. Exp. Mar. Biol. Ecol. 387, 1–8 (2010).CAS 

    Google Scholar 
    53.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science (80-) 318, 1737–1742 (2007).ADS 
    CAS 

    Google Scholar 
    54.Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 1–8 (2016).
    Google Scholar 
    55.Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Chang. Biol. 23, 3869–3881 (2017).ADS 
    PubMed 

    Google Scholar 
    56.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    57.Pogoreutz, C. et al. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Chang. Biol. 23, 3838–3848 (2017).ADS 
    PubMed 

    Google Scholar 
    58.Bednarz, V. N. et al. Dinitrogen fixation and primary productivity by carbonate and silicate reef sand communities of the Northern Red Sea. Mar. Ecol. Prog. Ser. 527, 47–57 (2015).ADS 

    Google Scholar 
    59.Shashar, N., Feldstein, T., Cohen, Y. & Loya, Y. Nitrogen fixation (acetylene reduction) on a coral reef. Coral Reefs 13, 171–174 (1994).ADS 

    Google Scholar 
    60.Patriquin, D. G. & McClung, C. R. Nitrogen accretion, and the nature and possible significance of N2 fixation (acetylene reduction) in a Nova Scotian Spartina alterniflora Stand. Mar. Biol. 47, 227–242 (1978).
    Google Scholar 
    61.Shieh, W. Y. & Lin, Y. M. Nitrogen fixation (acetylene reduction) associated with the zoanthid Palythoa tuberculosa Esper. J. Exp. Mar. Biol. Ecol. 163, 31–41 (1992).CAS 

    Google Scholar 
    62.Bednarz, V. N. et al. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS ONE 13, 1–13 (2018).
    Google Scholar 
    63.Schöttner, S. et al. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ. Microbiol. 13, 1815–1826 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    64.Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Compaoré, J. & Stal, L. J. Effect of temperature on the sensitivity of nitrogenase to oxygen in two heterocystous cyanobacteria. J. Physcol. 46, 1172–1179 (2010).
    Google Scholar 
    66.Littler, M. & Littler, D. The nature of turf and boring algae and their interactions on reefs. Smithson. Contrib. to Mar. Sci. 213–217 (2013).67.Rosenberg, G. & Ramus, J. Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquat. Bot. 19, 65–72 (1984).CAS 

    Google Scholar 
    68.Fong, P., Rudnicki, R. & Zedler, J. B. Algal community response to nitrogen and phosphorus loading in experimental mesocosms: Management recommendations for southern California lagoons. (1987).69.Fong, C. R., Gaynus, C. J. & Carpenter, R. C. Complex interactions among stressors evolve over time to drive shifts from short turfs to macroalgae on tropical reefs. Ecosphere 11(5), e03130 (2020).70.Roth, F., Stuhldreier, I., Sánchez-Noguera, C., Morales-Ramírez, T. & Wild, C. Effects of simulated overfishing on the succession of benthic algae and invertebrates in an upwelling-influenced coral reef of Pacific Costa Rica. J. Exp. Mar. Bio. Ecol. 468, 55–66 (2015).
    Google Scholar 
    71.Stuhldreier, I., Bastian, P., Schönig, E. & Wild, C. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand. Mar. Pollut. Bull. 92, 35–44 (2015).CAS 
    PubMed 

    Google Scholar 
    72.Yamamuro, M., Kayanne, H. & Minagawa, M. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol. Oceanogr. 40, 617–621 (1995).ADS 
    CAS 

    Google Scholar 
    73.Tilstra, A. et al. Seasonality affects dinitrogen fixation associated with two common macroalgae from a coral reef in the northern Red Sea. Mar. Ecol. Prog. Ser. 575, 69–80 (2017).ADS 
    CAS 

    Google Scholar 
    74.El-Khaled, Y. C. et al. Simultaneous measurements of dinitrogen fixation and denitrification associated with coral reef substrates: advantages and limitations of a combined acetylene assay. Front. Mar. Sci. 7, 411 (2020).
    Google Scholar 
    75.Davey, M., Holmes, G. & Johnstone, R. High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs 27, 227–236 (2008).ADS 

    Google Scholar 
    76.Larkum, A. W. D. High rates of nitrogen fixation on coral skeletons after predation by the crown of thorns starfish Acanthaster planci. Mar. Biol. 97, 503–506 (1988).CAS 

    Google Scholar 
    77.Pogoreutz, C. et al. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front. Microbiol. 8, 1–7 (2017).
    Google Scholar 
    78.Arrigo, K. K. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2004).ADS 

    Google Scholar 
    79.Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    80.Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).CAS 

    Google Scholar 
    81.Porter, J. W., Muscatine, L., Dubinsky, Z. & Falkowski, P. G. Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral, stylophora pistillata. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 222, 161–180 (1984).ADS 

    Google Scholar 
    82.Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253 (2010).
    Google Scholar 
    83.Falkowski, P. P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. Bioscience 43, 606–611 (1993).
    Google Scholar 
    84.Eyre, B. D., Glud, R. N. & Patten, N. Mass coral spawning: a natural large-scale nutrient addition experiment. Limnol. Oceanogr. 53, 997–1013 (2008).ADS 
    CAS 

    Google Scholar 
    85.Tilstra et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability, Royal Society Open Science, https://doi.org/10.1098/rsos.201835 (2021).86.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).
    Google Scholar 
    87.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).ADS 
    CAS 

    Google Scholar 
    88.Ferrier-Pagès, C., Godinot, C., D’Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).
    Google Scholar 
    89.Muscatine, L., Falkowski, P. G., Porter, J. W. & Dubinsky, Z. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 222, 181–202 (1984).ADS 
    CAS 

    Google Scholar 
    90.Conti-Jerpe, I. E. et al. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6(15), eaaz5443 (2020).91.Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    92.Muscatine, L., Porter, J. W. & Kaplan, I. R. Resource partitioning by reef corals as determined from stable isotope composition. Pac. Sci. 48, 304–312 (1994).
    Google Scholar 
    93.Her, J.-J. & Huang, J.-S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 54, 45–51 (1995).CAS 

    Google Scholar 
    94.Chen, S. et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environ. Microbiol. 20, 980–992 (2018).CAS 
    PubMed 

    Google Scholar 
    95.Schlichter, D., Svoboda, A. & Kremer, B. P. Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983).CAS 

    Google Scholar 
    96.Babbin, A. R. et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical stony corals. ISME J. https://doi.org/10.1038/s41396-020-00845-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Pupier, C. A. et al. Divergent capacity of scleractinian and soft corals to assimilate and transfer diazotrophically derived nitrogen to the reef environment. Front. Microbiol. 10, 1860 (2019).98.Muscatine, L. The role of symbiotic algae in carbon and energy flux in coral reefs. In Coral Reefs (ed. Dubinsky, Z.) 75–87 (1990).99.van Woesik, R., Irikawa, A., Anzai, R. & Nakamura, T. Effects of coral colony morphologies on mass transfer and susceptibility to thermal stress. Coral Reefs 31, 633–639 (2012).ADS 

    Google Scholar 
    100.Patterson, M. R. & Sebens, K. P. Forced convection modulates gas exchange in cnidarians. Proc. Natl. Acad. Sci. U. S. A. 86, 8833–8836 (1989).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
    Google Scholar 
    102.Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).ADS 

    Google Scholar 
    103.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    104.Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl. Acad. Sci. U. S. A. 103, 8425–8429 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Sano, M., Shimizu, M. & Nose, Y. Long-term effects of destruction of hermatypic corals by Acanthaster plana infestation on reef fish communities at Iriomote Island, Japan. Mar. Ecol. Prog. Ser. 37, 191–199 (1987).ADS 

    Google Scholar 
    106.Lindahl, U., Öhman, M. C. & Schelten, C. K. The 1997/1998 mass mortality of corals: effects on fish communities on a Tanzanian coral reef. Mar. Pollut. Bull. 42, 127–131 (2001).CAS 
    PubMed 

    Google Scholar 
    107.Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. U. S. A. 101, 8251–8253 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Idjadi, J. A. & Edmunds, P. J. Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar. Ecol. Prog. Ser. 319, 117–127 (2006).ADS 

    Google Scholar 
    109.Bracewell, S. A., Clark, G. F. & Johnston, E. L. Habitat complexity effects on diversity and abundance differ with latitude: an experimental study over 20 degrees. Ecology 99, 1964–1974 (2018).PubMed 

    Google Scholar 
    110.Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).CAS 
    PubMed 

    Google Scholar 
    111.Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A. & Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar. Coast. Shelf Sci. 64, 223–234 (2005).ADS 

    Google Scholar 
    112.Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    113.Adey, W. H. & Goertemiller, T. Coral reef algal turfs: master producers in nutrient poor seas. Phycologia 26, 374–386 (1987).
    Google Scholar 
    114.Fong, P. & Paul, V. J. Coral reef algae. In Coral Reefs: An Ecosystem in Transition (eds. Dubinsky, Z. & Stambler, N.) 241–272 (Springer, 2011). https://doi.org/10.1007/978-94-007-0114-4_17.115.Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs?. Ecol. Lett. 14, 267–273 (2011).PubMed 

    Google Scholar 
    116.Jessen, C. & Wild, C. Herbivory effects on benthic algal composition and growth on a coral reef flat in the Egyptian Red Sea. Mar. Ecol. Prog. Ser. 476, 9–21 (2013).ADS 
    CAS 

    Google Scholar 
    117.Haas, A. F. & Wild, C. Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat. Biol. 10, 131–138 (2010).
    Google Scholar 
    118.Roth et al. Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. Marine Pollution Bulletin. 168, 112444 (2021).119.Haas, A. F. et al. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 2013, 1–28 (2013).
    Google Scholar 
    120.Roach, T. N. F. et al. A multiomic analysis of in situ coral-turf algal interactions. Proc. Natl. Acad. Sci. U. S. A. 117, 13588–13595 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    121.van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 

    Google Scholar 
    122.Liang, J. et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress. Front. Microbiol. 8, 1–10 (2017).ADS 

    Google Scholar 
    123.Fung, T., Seymour, R. M. & Johnson, C. R. Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92, 967–982 (2011).PubMed 

    Google Scholar 
    124.Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).PubMed 

    Google Scholar 
    125.Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.942 (2008).Article 

    Google Scholar 
    126.Riegl, B. & Piller, W. E. Coral frameworks revisited-reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).
    Google Scholar 
    127.Benayahu, Y., Jeng, M. S., Perkol-Finkel, S. & Dai, C. F. Soft corals (Octocorallia: Alcyonacea) from Southern Taiwan. II. Species diversity and distributional patterns. Zool. Stud. 43, 548–560 (2004).
    Google Scholar 
    128.Ninio, R., Meekan, M., Done, T. & Sweatman, H. Temporal patterns in coral assemblages on the Great Barrier Reef from local to large spatial scales. Mar. Ecol. Prog. Ser. 194, 65–74 (2000).ADS 

    Google Scholar 
    129.Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS 
    PubMed 

    Google Scholar 
    130.Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Chang. 3, 683–687 (2013).ADS 
    CAS 

    Google Scholar 
    131.Rasser, M. W. & Riegl, B. Holocene coral reef rubble and its binding agents. Coral Reefs 21, 57–72 (2002).ADS 

    Google Scholar 
    132.Dalsgaard, T., Thamdrup, B. & Canfield, D. E. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 156, 457–464 (2005).CAS 
    PubMed 

    Google Scholar 
    133.Brunner, B. et al. Nitrogen isotope effects induced by anammox bacteria. Proc. Natl. Acad. Sci. 110, 18994–18999 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    134.Zhang, Y. et al. The functional gene composition and metabolic potential of coral-associated microbial communities. Sci. Rep. 5, 1–11 (2015).
    Google Scholar 
    135.Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    136.Hill, J. & Wilkinson, C. Methods for ecological monitoring of coral reefs. Aust. Inst. Mar. Sci. Townsv. https://doi.org/10.1017/CBO9781107415324.004 (2004).Article 

    Google Scholar 
    137.Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).ADS 

    Google Scholar 
    138.Haas, A., El-Zibdah, M. & Wild, C. Seasonal monitoring of coral-algae interactions in fringing reefs of the Gulf of Aqaba, Northern Red Sea. Coral Reefs 29, 93–103 (2010).ADS 

    Google Scholar 
    139.Bahartan, K. et al. Macroalgae in the coral reefs of Eilat (Gulf of Aqaba, Red Sea) as a possible indicator of reef degradation. Mar. Pollut. Bull. 60, 759–764 (2010).CAS 
    PubMed 

    Google Scholar 
    140.Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020).ADS 
    PubMed 

    Google Scholar 
    141.Hynes, R. K. & Knowles, R. Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol. Lett. 4, 319–321 (1978).CAS 

    Google Scholar 
    142.Oremland, R. S. & Capone, D. G. Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. https://doi.org/10.1007/978-1-4684-5409-3_8 (1988).Article 

    Google Scholar 
    143.Haines, J. R., Atlas, R. M., Griffiths, R. P. & Morita, R. Y. Denitrification and nitrogen fixation in Alaskan continental shelf sediments. Appl. Environ. Microbiol. 41, 412–421 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    144.Joye, S. B. & Paerl, H. W. Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats: rapid response to runoff events. Mar. Ecol. Prog. Ser. 94, 267–274 (1993).ADS 
    CAS 

    Google Scholar 
    145.Miyajima, T., Suzumura, M., Umezawa, Y. & Koike, I. Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. Mar. Ecol. Prog. Ser. 217, 273–286 (2001).ADS 

    Google Scholar 
    146.Falkowski, P. G. Enzymology of Nitrogen Assimilation Nitrogen in the Marine Environment (Academic Press, 1983). https://doi.org/10.1016/b978-0-12-160280-2.50031-6.147.den Haan, J. et al. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse. Sci. Rep. 6, 28821 (2016).ADS 

    Google Scholar 
    148.Grover, R., Maguer, J. F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).ADS 
    CAS 

    Google Scholar 
    149.Knapp, A. N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3, 374 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Dilworth, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta 127, 285–294 (1966).CAS 
    PubMed 

    Google Scholar 
    151.Schöllhorn, R. & Burris, R. H. Acetylene as a competitive inhibitor of N-2 fixation. Proc. Natl. Acad. Sci. U. S. A. 58, 213–216 (1967).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    152.Balderston, W. L., Sherr, B. & Payne, W. J. Blockage by acetylene of nitrous-oxide reduction in pseudomonas-perfectomarinus. Appl. Environ. Microbiol. 31, 504–508 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Yoshinari, T. & Knowles, R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 69, 705–710 (1976).CAS 
    PubMed 

    Google Scholar 
    154.Lavy, A. et al. A quick, easy and non-intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. Methods Ecol. Evol. 6, 521–531 (2015).
    Google Scholar 
    155.Gutierrez-Heredia, L., Benzoni, F., Murphy, E. & Reynaud, E. G. End to end digitisation and analysis of three-dimensional coral models, from communities to corallites. PLoS ONE 11, e0149641 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    156.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).ADS 
    CAS 

    Google Scholar 
    157.Mulholland, M. R., Bronk, D. A. & Capone, D. G. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat. Microb. Ecol. 37, 85–94 (2004).
    Google Scholar 
    158.Clarke, K. R. & Gorley, R. N. PRIMER v6: Use manual/Tutorial. PRIMER-E:Plymouth (2006).
    159.Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER. Guide to software and statistical methods. (2008).160.R Core Team. R: A language and environment for statistical computing. (2017).161.RStudio Team. RStudio: Integrated Development for R. (2020).162.Wilson, S. T., Böttjer, D., Church, M. J. & Karl, D. M. Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic north pacific ocean. Appl. Environ. Microbiol. 78, 6516–6523 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Yu, K., Seo, D. C. & Delaune, R. D. Incomplete acetylene inhibition of nitrous oxide reduction in potential denitrification assay as revealed by using 15N-Nitrate tracer. Commun. Soil Sci. Plant Anal. 41, 2201–2210 (2010).CAS 

    Google Scholar 
    164.Groffman, P. M. et al. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol. Appl. 16, 2091–2122 (2006).PubMed 

    Google Scholar 
    165.Maldonado, M., Ribes, M. & van Duyl, F. C. Nutrient Fluxes Through Sponges. Biology, Budgets, and Ecological Implications. Advances in Marine Biology Vol. 62 (Elsevier Ltd., 2012).
    Google Scholar 
    166.Roth, F. et al. An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13151 (2019).Article 

    Google Scholar  More

  • in

    Novel thermal habitat in lakes

    1.Kraemer, B. M. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01060-3 (2021).Article 

    Google Scholar 
    2.Woolway, R. I. et al. Nat. Rev. Earth Environ. 1, 388–403 (2020).Article 

    Google Scholar 
    3.Woolway, R. I. et al. Nature 589, 402–407 (2021).CAS 
    Article 

    Google Scholar 
    4.Sharma, S. et al. Nat. Clim. Change 9, 227–231 (2019).Article 

    Google Scholar 
    5.Maberly, S. C. et al. Nat. Commun. 11, 1232 (2020).CAS 
    Article 

    Google Scholar 
    6.Winslow, L. A., Read, J. S., Hansen, G. J. A., Rose, K. C. & Robertson, D. M. Limnol. Oceanogr. 62, 2168–2178 (2017).Article 

    Google Scholar 
    7.O’Reilly, C. M. et al. Geophys. Res. Lett. 42, 10773–10781 (2015).
    Google Scholar 
    8.Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Limnol. Oceanogr. Lett. 1, 44–53 (2016).Article 

    Google Scholar 
    9.Winslow, L. A., Read, J. S., Hansen, G. J. A. & Hanson, P. C. Geophys. Res. Lett. 42, 355–361 (2015).Article 

    Google Scholar 
    10.Bartosiewicz, M. et al. Limnol. Oceanogr. Lett. 4, 132–144 (2019).CAS 
    Article 

    Google Scholar 
    11.Reid, A. J. et al. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    12.Woolway, R. I. & Maberly, S. C. Nat. Clim. Change 10, 1124–1129 (2020).Article 

    Google Scholar 
    13.Winder, M. & Schindler, D. E. Glob. Change Biol. 10, 1844–1856 (2004).Article 

    Google Scholar 
    14.Burrows, M. T. et al. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    15.Jacobson, P. C., Stefan, H. G. & Pereira, D. L. Can. J. Fish. Aquat. Sci. 67, 2002–2013 (2010).CAS 
    Article 

    Google Scholar 
    16.Thackeray, S. J. et al. Glob. Change Biol. 16, 3304–3313 (2010).Article 

    Google Scholar 
    17.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. P. R. Soc. B 267, 739–745 (2000).CAS 
    Article 

    Google Scholar 
    18.Vadeboncoeur, Y., McIntyre, P. B. & Vander Zanden, M. J. BioScience 61, 526–537 (2011).Article 

    Google Scholar 
    19.Thompson, L. M. et al. Fisheries 46, 8–21 (2021).Article 

    Google Scholar  More

  • in

    Spatial ecology of cane toads (Rhinella marina) in their native range: a radiotelemetric study from French Guiana

    1.Crystal-Ornelas, R. & Lockwood, J. L. Cumulative meta-analysis identifies declining but negative impacts of invasive species on richness after 20 yr. Ecology 101, e03082. https://doi.org/10.1002/ecy.3082 (2020).Article 
    PubMed 

    Google Scholar 
    2.Emery-Butcher, H. E., Beatty, S. J. & Robson, B. J. The impacts of invasive ecosystem engineers in freshwaters: A review. Freshw. Biol. 65, 999–1015. https://doi.org/10.1111/fwb.13479 (2020).Article 

    Google Scholar 
    3.Simberloff, D. Maintenance management and eradication of established aquatic invaders. Hydrobiologia 848, 2399–2420. https://doi.org/10.1007/s10750-020-04352-5 (2021).Article 

    Google Scholar 
    4.Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 57, 1806–1817. https://doi.org/10.1111/1365-2664.13656 (2020).Article 

    Google Scholar 
    5.Simberloff, D. Invasive species in Conservation biology for all (eds Sodhi, N. S. & Ehrlich, P. R.) 131–152 (Oxford University Press, 2010).6.Hoddle, M. S. Restoring balance: Using exotic species to control invasive exotic species. Conserv. Biol. 18, 38–49 (2004).Article 

    Google Scholar 
    7.Turvey, N. D. Cane toads: a tale of sugar, politics and flawed science. (Sydney University Press, 2013).8.Shine, R. Cane toad wars. (University of California Press, 2018).9.Seebacher, F. & Alford, R. A. Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: Seasonal variation and environmental correlates. J. Herpetol. 33, 208–214. https://doi.org/10.2307/1565716 (1999).Article 

    Google Scholar 
    10.Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94. https://doi.org/10.1016/j.biocon.2006.05.020 (2006).Article 

    Google Scholar 
    11.Brown, G. P., Shilton, C., Phillips, B. L. & Shine, R. Invasion, stress, and spinal arthritis in cane toads. Proc. Natl. Acad. Sci. 104, 17698–17700. https://doi.org/10.1073/pnas.0705057104 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    12.Brown, G. P., Kelehear, C. & Shine, R. Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet–dry tropics. Funct. Ecol. 25, 1339–1347. https://doi.org/10.1111/j.1365-2435.2011.01888.x (2011).Article 

    Google Scholar 
    13.Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B Biol. Sci. 281, 20141385. https://doi.org/10.1098/rspb.2014.1385 (2014).Article 

    Google Scholar 
    14.Brown, G., Kelehear, C., Pizzatto, L. & Shine, R. The impact of lungworm parasites on rates of dispersal of their anuran host, the invasive cane toad. Biol. Invasions 18, 103–114 https://doi.org/10.1007/s10530-015-0993-1 (2015).Article 

    Google Scholar 
    15.Phillips, B. L., Brown, G. P. & Shine, R. Evolutionarily accelerated invasions: the rate of dispersal evolves upwards during the range advance of cane toads. J. Evol. Biol. 23, 2595–2601. https://doi.org/10.1111/j.1420-9101.2010.02118.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, ,. R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48. https://doi.org/10.1086/588255 (2008).Article 
    PubMed 

    Google Scholar 
    17.Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803. https://doi.org/10.1038/439803a (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Alford, R. A., Brown, G. P., Schwarzkopf, L., Phillips, B. L. & Shine, R. Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildl. Res. 36, 23–28 (2009).Article 

    Google Scholar 
    19.Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the Australian semi-desert. PLoS ONE 6, e25979. https://doi.org/10.1371/journal.pone.0025979 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Pizzatto, L., Both, C., Brown, G. & Shine, R. The accelerating invasion: dispersal rates of cane toads at an invasion front compared to an already-colonized location. Evol. Ecol. 31, 533–545. https://doi.org/10.1007/s10682-017-9896-1 (2017).Article 

    Google Scholar 
    21.Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. 110, 13452. https://doi.org/10.1073/pnas.1303157110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    22.Pettit, L. J., Greenlees, M. J. & Shine, R. Is the enhanced dispersal rate seen at invasion fronts a behaviourally plastic response to encountering novel ecological conditions? Biol. Lett. 12, 20160539. https://doi.org/10.1098/rsbl.2016.0539 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Pettit, L., Greenlees, M. & Shine, R. The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 184, 411–422. https://doi.org/10.1007/s00442-017-3871-y (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    24.Pettit, L. J., Greenlees, M. J. & Shine, R. The behavioural consequences of translocation: how do invasive cane toads (Rhinella marina) respond to transport and release to novel environments? Behav. Ecol. Sociobiol. 71, 15. https://doi.org/10.1007/s00265-016-2245-5 (2016).Article 

    Google Scholar 
    25.Finnerty, P. B., Shine, R. & Brown, G. P. The costs of parasite infection: Effects of removing lungworms on performance, growth and survival of free-ranging cane toads. Funct. Ecol. 32, 402–415. https://doi.org/10.1111/1365-2435.12992 (2018).Article 

    Google Scholar 
    26.Blennerhassett, R. A., Bell-Anderson, K., Shine, R. & Brown, G. P. The cost of chemical defence: the impact of toxin depletion on growth and behaviour of cane toads (Rhinella marina). Proc. R. Soc. B Biol. Sci. 286, 20190867. https://doi.org/10.1098/rspb.2019.0867 (2019).CAS 
    Article 

    Google Scholar 
    27.Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: Spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700. https://doi.org/10.1371/journal.pone.0151700 (2016).CAS 
    Article 

    Google Scholar 
    28.Slade, R. W. & Moritz, C. Phylogeography of Bufo marinus from its natural and introduced ranges. Proc. R. Lond. Ser. B Biol. Sci. 265, 769–777. https://doi.org/10.1098/rspb.1998.0359 (1998).CAS 
    Article 

    Google Scholar 
    29.Acevedo, A. A., Lampo, M. & Cipriani, R. The cane or marine toad, Rhinella marina (Anura, Bufonidae): two genetically and morphologically distinct species. Zootaxa 4103, 574–586. https://doi.org/10.11646/zootaxa.4103.6.7 (2016).Article 

    Google Scholar 
    30.Freeland, W. J. & Kerin, S. H. Ontogenetic alteration of activity and habitat selection by Bufo marinus. Wildl. Res. 18, 431–443 (1991).Article 

    Google Scholar 
    31.Seebacher, F. & Alford, R. A. Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). J. Herpetol. 36, 69–75. https://doi.org/10.2307/1565804 (2002).Article 

    Google Scholar 
    32.Schwarzkopf, L. & Alford, R. A. Desiccation and shelter-site use in a tropical amphibian: Comparing toads with physical models. Funct. Ecol. 10, 193–200. https://doi.org/10.2307/2389843 (1996).Article 

    Google Scholar 
    33.Heise-Pavlov, S. R. & Longway, L. J. Diet and dietary selectivity of Cane Toads (Rhinella marina) in restoration sites: a case study in Far North Queensland, Australia. Ecol. Manag. Restor. 12, 230–233. https://doi.org/10.1111/j.1442-8903.2011.00603.x (2011).Article 

    Google Scholar 
    34.Jørgensen, C. B. 200 years of amphibian water economy: From Robert Townson to the present. Biol. Rev. 72, 153–237. https://doi.org/10.1017/S0006323196004963 (1997).Article 
    PubMed 

    Google Scholar 
    35.Kosmala, G. K., Brown, G. P., Shine, R. & Christian, K. Skin resistance to water gain and loss has changed in cane toads (Rhinella marina) during their Australian invasion. Ecol. Evol. 10, 13071–13079. https://doi.org/10.1002/ece3.6895 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hopkins, G. R. & Brodie, E. D. Occurrence of amphibians in saline habitats: A review and evolutionary perspective. Herpetol. Monogr. 29, 1–27 (2015).Article 

    Google Scholar 
    37.Yasumiba, K., Alford, R. A. & Schwarzkopf, L. Seasonal reproductive cycles of cane toads and their implications for control. Herpetologica 72, 288–292. https://doi.org/10.1655/Herpetologica-D-15-00048.1 (2016).Article 

    Google Scholar 
    38.Brodie, S., Yasumiba, K., Towsey, M., Roe, P. & Schwarzkopf, L. Acoustic monitoring reveals year-round calling by invasive toads in tropical Australia. Bioacoustics 30, 125–141. https://doi.org/10.1080/09524622.2019.1705183 (2020).Article 

    Google Scholar 
    39.Evans, M., Yáber, C. & Hero, J.-M. Factors influencing choice of breeding site by Bufo marinus in its natural habitat. Copeia 1996, 904–912. https://doi.org/10.2307/1447653 (1996).Article 

    Google Scholar 
    40.DeVore, J. L., Shine, R. & Ducatez, S. Urbanization and translocation disrupt the relationship between host density and parasite abundance. J. Anim. Ecol. 89, 1122–1133. https://doi.org/10.1111/1365-2656.13175 (2020).Article 
    PubMed 

    Google Scholar 
    41.Météo-France. Données publiques. https://donneespubliques.meteofrance.fr/ (2021).42.Kelehear, C. & Shine, R. Non-reproductive male cane toads (Rhinella marina) withhold sex-identifying information from their rivals. Biol. Lett. 15, 20190462. https://doi.org/10.1098/rsbl.2019.0462 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Higginson, A. D. & Ruxton, G. D. Foraging mode switching: the importance of prey distribution and foraging currency. Anim. Behav. 105, 121–137. https://doi.org/10.1016/j.anbehav.2015.04.014 (2015).Article 

    Google Scholar 
    44.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article 

    Google Scholar 
    45.Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506. https://doi.org/10.1034/j.1600-0706.2002.960311.x (2002).Article 

    Google Scholar 
    46.R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).47.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1-140 (2019).48.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    49.Fox, J. & Weisberg, S. An R Companion to Applied Regression. Third edn, (Sage, 2019).50.Lenth, R. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.2 (2019).51.Pettit, L., Ducatez, S., DeVore, J. L., Ward-Fear, G. & Shine, R. Diurnal activity in cane toads (Rhinella marina) is geographically widespread. Sci. Rep. 10, 5723. https://doi.org/10.1038/s41598-020-62402-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Doody, J. S., McHenry, C. R., Rhind, D. & Clulow, S. Novel habitat causes a shift to diurnal activity in a nocturnal species. Sci. Rep. 9, 230. https://doi.org/10.1038/s41598-018-36384-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Webb, J. K., Letnic, M., Jessop, T. S. & Dempster, T. Behavioural flexibility allows an invasive vertebrate to survive in a semi-arid environment. Biol. Lett. 10, 20131014. https://doi.org/10.1098/rsbl.2013.1014 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.González-Bernal, E., Brown, G. P., Crowther, M. S. & Shine, R. Sex and age differences in habitat use by invasive cane toads (Rhinella marina) and a native anuran (Cyclorana australis) in the Australian wet–dry tropics. Austral Ecol. 40, 953–961. https://doi.org/10.1111/aec.12279 (2015).Article 

    Google Scholar 
    55.Lettoof, D. C. et al. Cane toads beneath bird rookeries: utilization of a natural disturbance by an invasive species. Curr. Zool. 64, 433–439. https://doi.org/10.1093/cz/zox041 (2018).Article 
    PubMed 

    Google Scholar 
    56.Biesinger, Z., Bolker, B. M. & Lindberg, W. J. Predicting local population distributions around a central shelter based on a predation risk-growth trade-off. Ecol. Model. 222, 1448–1455. https://doi.org/10.1016/j.ecolmodel.2011.02.009 (2011).Article 

    Google Scholar 
    57.Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L. & Russello, M. A. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethol. Ecol. Evol. 22, 393–404. https://doi.org/10.1080/03949370.2010.505580 (2010).Article 

    Google Scholar 
    58.Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640. https://doi.org/10.1139/z90-092 (1990).Article 

    Google Scholar 
    59.Godin, J.-G.J. & Smith, S. A. A fitness cost of foraging in the guppy. Nature 333, 69–71. https://doi.org/10.1038/333069a0 (1988).ADS 
    Article 

    Google Scholar 
    60.Heithaus, M. R. et al. State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. J. Anim. Ecol. 76, 837–844. https://doi.org/10.1111/j.1365-2656.2007.01260.x (2007).Article 
    PubMed 

    Google Scholar 
    61.Brown, G. P., Kelehear, C. & Shine, R. The early toad gets the worm: cane toads at an invasion front benefit from higher prey availability. J. Anim. Ecol. 82, 854–862. https://doi.org/10.1111/1365-2656.12048 (2013).Article 
    PubMed 

    Google Scholar 
    62.Lampo, M. & Bayliss, P. Density estimates of cane toads from native populations based on mark-recapture data. Wildl. Res. 23, 305–315. https://doi.org/10.1071/wr9960305 (1996).Article 

    Google Scholar 
    63.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148. https://doi.org/10.1086/527494 (2008).Article 
    PubMed 

    Google Scholar 
    64.Ducatez, S., Tingley, R. & Shine, R. Using species co-occurrence patterns to quantify relative habitat breadth in terrestrial vertebrates. Ecosphere 5, art152, https://doi.org/10.1890/ES14-00332.1 (2014).65.Baldwin, J. M. A new factor in evolution. Am. Nat. 30, 441–451 (1896).Article 

    Google Scholar 
    66.Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl. Acad. Sci. USA 102, 5460–5465. https://doi.org/10.1073/pnas.0408145102 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Letnic, M., Webb, J. K., Jessop, T. S., Florance, D. & Dempster, T. Artificial water points facilitate the spread of an invasive vertebrate in arid Australia. J. Appl. Ecol. 51, 795–803. https://doi.org/10.1111/1365-2664.12232 (2014).Article 

    Google Scholar 
    68.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B Biol. Sci. 274, 1413–1419. https://doi.org/10.1098/rspb.2007.0114 (2007).Article 

    Google Scholar 
    69.Zug, G. R. & Zug, P. B. The marine toad, Bufo marinus: A natural history resumé of native populations. Smithsonian Contrib. Zool. 284, 1–58, https://doi.org/10.5479/si.00810282.284 (1979).Article 

    Google Scholar 
    70.Kosmala, G., Christian, K., Brown, G. & Shine, R. Locomotor performance of cane toads differs between native-range and invasive populations. R. Soc. Open Sci. 4, 170517. https://doi.org/10.1098/rsos.170517 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Gruber, J., Brown, G., Whiting, M. J. & Shine, R. Geographic divergence in dispersal-related behaviour in cane toads from range-front versus range-core populations in Australia. Behav. Ecol. Sociobiol. 71, 38. https://doi.org/10.1007/s00265-017-2266-8 (2017).Article 

    Google Scholar  More

  • in

    Ancient DNA, lipid biomarkers and palaeoecological evidence reveals construction and life on early medieval lake settlements

    1.Menotti, F. & O’Sullivan, A. The Oxford Handbook of Wetland Archaeology. (Oxford University Press, 2013)2.O’Sullivan, A. The Archaeology of Lake Settlement in Ireland. (Discovery Programme, 1998)3.Crone, A. Forging a chronological framework for Scottish crannogs; the radiocarbon and dendrochronological evidence. In Lake Dwellings After Robert Munro. Proceedings from the Munro International Seminar: The Lake Dwellings of Europe (Midgley, M.S., Sanders, J. eds.) (University of Edinburgh, 2012).4.Lane, A., M. & Redknap, M. Llangorse Crannog: Excavation of an Early Medieval Royal Site in the Kingdom of Brycheiniog. (Oxbow Books, 2019).5.Hertz, J. The excavation of Solvig a Danish crannog in southern Denmark. Further excavation at Solvig. Chateau Gaillard 6, 84–105 (1974).
    Google Scholar 
    6.Barber, J. & Crone, B. A. Crannogs: A diminishing resource? A survey of the crannogs of south-west Scotland and excavations at Buiston crannog. Antiquity 67, 520–533 (1993).Article 

    Google Scholar 
    7.Henderson, J. & Cavers, G. Proc. Soc. An Iron age crannog in south-west Scotland: Underwater survey and excavation at Lough Arthur. Antiq. Scot. 141, 103–124 (2011).8.Garrow, D. & Sturt, F. Neolithic crannogs: Rethinking settlement, monumentality and deposition in the Outer Hebrides and beyond. Antiquity 93, 664–684 (2019).Article 

    Google Scholar 
    9.O’Brien, C.E., Selby, K.A., Ruiz, Z., Brown, A.G., Dinnin, M Caseldine, C., Langdon, P.G. & Stuijts, I. Sediment-based multi-proxy approach to the archaeology of crannogs: A case study from Central Ireland. Holocene 15, 707–719 (2005).10.O’Sullivan, A. Crannogs Lake Dwellings of Early Ireland. (Country House, 2000).11.Wood-Martin, W. G. The Lake Dwellings of Ireland (Figgis and Co., 1886).
    Google Scholar 
    12.Fredengren, C. Crannogs: A study of people’s interaction with lakes, with particular reference to Lough Gara in the north-west of Ireland (Wordwell Press, 2002).
    Google Scholar 
    13.Stratigos, M. J. & Noble, G. Crannogs, castles and lordly residences: New research and dating of crannogs in north-east Scotland. Proc. Soc. Antiq. Scot. 144, 205–222 (2014).
    Google Scholar 
    14.Tóth, M., Hardenbroek, M. van., Bleicher, N. & Heiri, O. Pronounced early human impact on lakeshore environments documented by aquatic invertebrate remains in waterlogged Neolithic settlement deposits. Q. Sci. Rev. 205, 126–142. https://doi.org/10.1016/j.quascirev.2018.12.015 (2019).15.Chen, W. & Ficetola, G. F. Conditionally autoregressive models improve occupancy analyses of autocorrelated data: An example with environmental DNA. Mol. Ecol. Resour. 19, 163–175 (2019).Article 

    Google Scholar 
    16.Prost, K., Birk, J.J,. Lehndorff, E., Gerlach, R. & Amelung, W. Steroid biomarkers revisited—Improved source identification of faecal remains in archaeological soil material. PLoS ONE 12(1), 1/30 (2017).17.Selby, K. A. & Brown, A. G. The holocene development, spatial variations and anthropogenic record of a shallow lake system in central Ireland as recorded by diatom stratigraphy. J. Palaeolimnol. 38, 419–440 (2007).ADS 
    Article 

    Google Scholar 
    18.Hawksworth, D. L., Van Geel, B. & Wiltshire, E. J. The enigma of the Diporotheca palynomorph. Rev. Palaeobot. Palynol. 235, 94–98 (2016).Article 

    Google Scholar 
    19.Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13(4), e0195403. https://doi.org/10.1371/journal.pone.0195403 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P-J., Griggo, C., Gielly, L. Domaizon, I., Coissac, E. David, F., Choler P., Poulenard, J. & Taberlet, P. Long livestock farming history and human landscape shaping revealed by lake sediment DNA.Nat. Commun. 5, 1–7 (2014).21.Sabatier, P. et al. Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed. Proc. Natl. Acad. Sci. U.S.A. 111, 15647–15652 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Crone, A. Crannogs and chronologies. Procs. Antiq. Soc. Scotland 123, 245–254. http://journals.socantscot.org/index.php/psas/article/view/9462 (1993).23.Lammers, Y., Clark, C., Erséus, C., Brown, A.G., Edwards, M. E., Gielly, L., Haflidason, H., Mangerud, J., Rota, E., Svendsen, J-I., & Alsos, I.G. Earthworms in late glacial and holocene records discovered in DNA bycatch. Boreas 48, 317–329 (2018).24.McClatchie, M., Mccormick, F. M., Kerr, T. R. & O’Sullivan, A. Early medieval farming and food production: A review of the archaeobotanical evidence from archaeological excavations in Ireland. Veg. Hist. Archaeobotany 24, 179–186 (2015).Article 

    Google Scholar 
    25.McCormick, F., & Murray, E. Knowth and the Zooarchaeology of Early Christian Ireland, Excavations at Knowth 3. (Royal Irish Academy Monographs in Archaeology, 2007).26.Soderberg, J. Wild cattle: Red deer in the religious texts, iconography, and archaeology of early Medieval Ireland. Int. J. Hist. Arch. 8, 167–183 (2004).Article 

    Google Scholar 
    27.Rymer, L. The history and ethnobotany of bracken. J. Linn. Soc. 76, 151–176 (1976).Article 

    Google Scholar 
    28.Stuart, J. Notice of a group of artificial islands in the Lough of Dowalton, Wigtownshire and other artificial islands or crannogs throughout Scotland. Procs. Soc. Antiq. Scot. 10, 31–34 (1866).
    Google Scholar 
    29.Dixon, N. The history of crannog survey and excavation in Scotland. Int. J. Nautical Arch. 20, 1–8 (1991).Article 

    Google Scholar 
    30.Jones, D. & Haggar, R. J. Impact of nitrogen and organic manures on yield, botanical composition and herbage quality of two contrasting grassland field margins. Biol. Agric. Hortic. 14, 107–123 (1997).Article 

    Google Scholar 
    31.O’Sullivan, A. The Social and Idealogical Role of Crannogs in Early Medieval Ireland. PhD Thesis. (UCD, 2004).32.Bourke, C. The Excavations of an Early Medieval Crannog at Newtownlow, County Westmeath (December Publications, 2015).
    Google Scholar 
    33.Jones, M. Feast: Why Humans Share Food. (Oxford University Press).34.Bronk Ramsey, C. Deposition models for chronological records. Q. Sci. Rev. 27, 42–60 (2008).ADS 
    Article 

    Google Scholar 
    35.Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibratin curve. Radiocarbon 1, 1–33 (2020).
    Google Scholar 
    36.Kotov S, Pälike H. QAnalySeries—A cross-platform time series tuning and analysis tool. In AGU Fall Meeting. https://doi.org/10.1002/essoar.10500226.1 (2018)37.Croudace, I. W., Rindby, A. & Rothwell, R. G. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. Geol. Soc. Lond. Spec. Public. 267, 51–63 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Pirrie, D. & Rollinson. G. K. Unlocking the application of automated mineralogy. Geol. Today 27, 226–235 (2011).39.Pirrie, D., Rollinson, G. K., Andersen, J. C., Wootton, D. & Moorhead, S. Soil forensics as a tool to test reported artefact find sites. J. Archaeol. Sci. 41, 461–473 (2014).CAS 
    Article 

    Google Scholar 
    40.Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., Vermat, T., Gérard, C., Brochmann, C. & Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucl. Acids Res. e14 (2007).41.Boyer, F., Mercier, C., Bonin, A,. Le Bras, Y., Taberlet, P. & Coissac E. Obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).42.De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).Article 

    Google Scholar 
    43.Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding?. Mol. Ecol. Resour. 16, 604–607 (2016).CAS 
    Article 

    Google Scholar 
    44.Lahoz-Monfort, J.J., Guillera-Arroita, G. & Tingley, G., R. Statistical approaches to account for false positive errors in environmental DNA samples. Mol. Ecol. Resour. 16, 673–685 (2016).45.Bull, I., Lockheart, M., Elhmmali, M. Roberts, D. E. & Evershed, R. The origin of faeces by means of biomarker detection. Environ. Int. 27, 647–654 (2002).46.Mackay, H., Davies, K.L., Robertson, J., Roy, L., Bull, I.D. Whitehouse, N.J., Crone, A., Cavers, G., McCormick, F., Brown, A.G. & Henderson, A.C.G. Characterising life in settlements and structures: Incorporating faecal lipid biomarkers within a multiproxy case study of a wetland village. J. Archaeol. Sci. 121 (2020).47.Battarbee, R. W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 527–570 (Wiley, 1986).
    Google Scholar 
    48.Krammer, K., Lange-Bertalot, H. Bacillariophyceae. 1–4. Süßwasserflora von Mitteleuropa, Band 2/1–2/3. (Gustav Fischer, 1999–2004).49.Brooks, S.J., Langdon, P.G. & Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecolgy. QRA Technical Guide No. 10. (Quaternary Research Association, 2007).50.Tóthm, M., van Hardenbroek, M., Bleicher, N. & Heiri, O. Pronounced early human impact on lakeshore environments documented by aquatic invertebrate remains in waterlogged Neolithic settlement deposits. Q. Sci. Rev. 205, 126–142 (2019).ADS 
    Article 

    Google Scholar 
    51.Moog, O. Fauna Aquatica Austriaca. Wasserwirtshcaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna (2002)52.Bennion, H. A diatom-total phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275(276), 391–410 (1994).Article 

    Google Scholar  More

  • in

    Ignoring species hybrids in the IUCN Red List assessments for African elephants may bias conservation policy

    Wildlife Conservation Research Unit, Recanati-Kaplan Centre, Zoology, University of Oxford, Oxford, UKHans Bauer & Claudio Sillero-ZubiriEvolutionary Ecology Group, Biology, University of Antwerp, Antwerp, BelgiumHans BauerLaboratory for Applied Ecology, Natural Resource Conservation, University of Abomey-Calavi, Cotonou, BeninAristide Comlan TehouDepartment of HydroSciences and Environment, University Iba Der Thiam, Thiès, SénégalMallé GueyeDirection de la Faune, de la Chasse et des Parcs et Réserves, Ministère de l’Environnement de la Salubrité Urbaine et du Développement Durable, Niamey, NigerHamissou GarbaDirection de la Faune et des Chasses, Ministère de l’Environnement et du Développement Durable, Ouagadougou, Burkina FasoBenoit DoambaNational Parks Directorate, Ministry of Environment and Sustainable Development, Dakar, SenegalDjibril DiouckThe Born Free Foundation, Horsham, UKClaudio Sillero-Zubiri More

  • in

    Widespread deoxygenation of temperate lakes

    1.Wetzel, R. G. In Limnology 3rd edn (ed. Wetzel, R. G.), Ch. 9, 151–168 (Academic Press, 2001).2.Schindler, D. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl Acad. Sci. USA 114, 9764–9765 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    3.North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014).Article 
    ADS 

    Google Scholar 
    4.Fernández, J. E., Peeters, F. & Hofmann, H. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ. Sci. Technol. 48, 7297–7304 (2014).Article 
    ADS 

    Google Scholar 
    5.Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, (2018).8.Jankowski, J., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006).Article 
    ADS 

    Google Scholar 
    9.Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010).Article 

    Google Scholar 
    10.Seki, H., Takahashi, Y., Hara, Y. & Ichimura, S. Dynamics of dissolved oxygen during algal bloom in Lake Kasumigaura, Japan. Water Res. 14, 179–183 (1980).CAS 
    Article 

    Google Scholar 
    11.Jacobson, P. C., Stefan, H. G. & Pereira, D. L. Coldwater fish oxythermal habitat in Minnesota lakes: influence of total phosphorus, July air temperature, and relative depth. Can. J. Fish. Aquat. Sci. 67, 2002–2013 (2010).CAS 
    Article 

    Google Scholar 
    12.Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016).Article 

    Google Scholar 
    13.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    14.Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    15.Livingstone, D. M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003).Article 

    Google Scholar 
    16.Zhang, Y. et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 75, 249–258 (2015).CAS 
    Article 

    Google Scholar 
    17.Bouffard, D., Ackerman, J. D. & Boegman, L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: hourly to seasonal patterns. Wat. Resour. Res. 49, 2380–2394 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    18.O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).ADS 

    Google Scholar 
    19.Nürnberg, G. K. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manage. 12, 432–447 (1996).Article 

    Google Scholar 
    20.Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    21.Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012).Article 
    ADS 

    Google Scholar 
    22.Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012).PubMed 

    Google Scholar 
    23.Winslow, L. A., Leach, T. A. & Rose, K. C. Global lake response to the recent warming hiatus. Environ. Res. Lett. 13, 054005 (2018).Article 
    ADS 

    Google Scholar 
    24.Livingstone, D. M. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. Verh. Int. Ver. Limnol. 26, 822–828 (1997).
    Google Scholar 
    25.Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. 5, (2015).26.Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 1, 44–53 (2016).Article 

    Google Scholar 
    27.Woolway, R. I. et al. Northern hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46, 11983–11992 (2019).Article 
    ADS 

    Google Scholar 
    28.Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011). Article 

    Google Scholar 
    29.R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2017).30.Borchers, H. W. pracma: Practical Numerical Math Functions. R package version 2.1.5 https://CRAN.R-project.org/package=pracma (2018).31.Winslow, L. A. et al. rLakeAnalyzer: Lake Physics Tools. R package version 1.11.4. https://CRAN.R-project.org/package=rLakeAnalyzer (2017).32.Winslow, L. A. et al. LakeMetabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016).CAS 
    Article 

    Google Scholar 
    33.Carslaw, D. C. & Ropkins, K. Openair – an R package for air quality data analysis. Environ. Model. Softw. 27-28, 52–61 (2012).Article 

    Google Scholar 
    34.Moran, P. A. P. The interpretation of statistical maps. J. R. Stat. Soc. B 10, 243–251 (1948).MathSciNet 
    MATH 

    Google Scholar 
    35.Kalogirou, S. lctools: Local Correlation, Spatial Inequalities, Geographically Weighted Regression and Other Tools. R package version 0.2-7. https://CRAN.R-project.org/package=lctools (2019).36.Copernicus Climate Change Service (C3S). ERA5: Climate Data Store (CDS) https://cds.climate.copernicus.eu/cdsapp#!/home (accessed 1 October 2019).37.Gelman, G. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).38.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).39.Lumley, T. leaps: Regression Subset Selection. R package version 3.1. https://CRAN.R-project.org/package=leaps (2020).40.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).Book 

    Google Scholar 
    41.Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. R package version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).42.Pinheiro, J. C. & Bates, D. M. Mixed Effects Models in S and S-Plus (Springer, 2000).43.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    44.Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression 2nd edn (John Wiley and Sons, Inc., 2000).45.Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information. Photogramm. Eng. Remote Sensing 81, 345–354 (2015).
    Google Scholar 
    46.Lele, S. R., Keim, J. L. & Solymos, P. ResourceSelection: Resource Selection (Probability) Functions for Use-Availability Data. R package version 0.3-2. https://CRAN.R-project.org/package=ResourceSelection (2017).47.Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).Article 

    Google Scholar 
    48.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    49.Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    50.Stetler, J. T., Jane, S. F., Mincer, J. L., Sanders, M. N. & Rose, K. C. Long-term lake dissolved oxygen and temperature data, 1941–2018 ver 2. Environmental Data Initiative https://doi.org/10.6073/pasta/841f0472e19853b0676729221aedfb56 (2021).51.Adrian, R., Jane, S. F., & Rose, K. C. Widespread deoxygenation of temperate lakes – Müggelsee data. IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries dataset. https://doi.org/10.18728/568.0 (2021).52.Jenny, J.-P. Time series dataset of dissolved oxygen, water temperature and Secchi depths profiles in Lakes Annecy and Geneva. Portail Data INRAE V1, https://doi.org/10.15454/BUJUSX (2021). More

  • in

    A performance evaluation of despiking algorithms for eddy covariance data

    A review of existing despiking proceduresAmong despiking algorithms for raw, high-frequency, EC data, a popular approach was developed by Vickers and Mahrt6 (hereinafter VM97). The method consists in estimating the sample mean and standard deviation in overlapping temporal windows whose width in time is 5 min. The temporal window slides point by point, and any data point whose value exceeds (pm 3.5 sigma) (sample standard deviation) is flagged as a spike. The method is highly sensitive to the masking effect (where less extreme spikes go undetected because of the existence of the most extreme spikes), a reason for which the procedure is iterated increasing by 0.1 the threshold value at each pass, until no more spikes are detected.A revised version of the VM97 procedure was proposed by Metzger et al.14 (hereinafter M12), who suggested replacing the mean and standard deviation by more robust estimates, such as the median and the median absolute deviation (MAD), respectively. The authors found that this method reliably removed spikes that were not detected by VM97, showing a superior performance.To reduce the high-computational burden attributable to the windowed computations prescribed by the VM97 algorithm, Mauder et al.7 (hereinafter M13) proposed to estimate median and MAD over the whole flux averaging period (usually 30 or 60 min). M13 suggested to consider as spike those observations exceeding (pm 7cdot)MAD. Such an approach was selected as candidate method in the data processing scheme at the ICOS ecosystem stations15.Starkenburg et al9 recommended the approach developed by Brock16 (hereinafter BR86) as the best method for despiking EC data. This algorithm is currently implemented in the processing pipeline adopted by the National Ecological Observatory Network (NEON, https://www.neonscience.org). It is based on a two-stage procedure, where the first step consists in extracting the signal by means of a rolling third-order median filter which replaces the center value in the window with the median value of all the points within the window; the second step aims at identifying spikes by analyzing the histogram of the differences between the raw signal and the median filtered signal. Specifically, the differences are initially binned into 25 classes. Then, the first bins with zero counts on either side of the histogram are identified and points in the original signal that exceed the empty bins are flagged as spikes. If no bin with zero counts is found, then the number of bins is doubled (for example from 25 to 51, with one bin added ensuring to retain an odd number because the mean of differences, which is expected to be close to zero, should fall into the central bin of the histogram). The procedure is iterated by increasing the number of bins until the bin width is not less than the acquiring instrument resolution.The proposed despiking algorithmFigure 1Flowchart of the proposed despiking algorithm.Full size image
    In order to define a modeling framework suitable for the representation of a sequence ((x_t)_{t in Z}) of observed raw EC data indexed by time t and contaminated by spikes, we assume a component model as follows:$$begin{aligned} left. begin{aligned} x_t&= mu _t + v_t + s_t,\ end{aligned}right. end{aligned}$$
    (1)
    where (mu _t) denotes the low frequency component (signal); (v_t) the deviations from the signal level (residuals) whose variability ((sigma _t^2)) is allowed to change slowly over time; and (s_t) the spike generating mechanism which is zero most of time but occasionally generates large absolute values.To achieve unbiased estimates of both the signal and the scale parameter ((sigma _t)) when data are contaminated by errors, the use of robust estimators is required. One of the most popular measures of robustness of a statistical procedure is the breakdown point, which represents the proportion of outlying data points an estimator can resist before giving a biased result. The maximum breakdown point is 50%, since, if more than half of the observations are contaminated, it is not possible to distinguish between the distribution of good data and the distribution of outlying data. Described in these terms, the arithmetic mean has a breakdown point of 0% (i.e. we can make the mean arbitrarily large just by changing any of the data point), whereas the median has a breakdown point of 50% (i.e. it becomes biased only when 50% or more of the data are large outliers).The proposed despiking procedure (hereinafter RobF) makes use of robust functionals whose breakdown point is 50% and consists in three stages (see Fig. 1). In the first step the signal ((mu _t)) extraction is carried out by means of the repeated median (RM) regression technique10,17. The second step involves the estimation of the time-varying scale parameter (sigma _t) by means of the (Q_n) estimator12. A detailed description of the robust functionals will be provided in the following sections. Spikes are detected in the third step, through the examination of outlier scores calculated as:$$begin{aligned} z_t=frac{x_t-mu _t}{sigma _t}. end{aligned}$$
    (2)
    Any values of (|z_t|) exceeding a pre-fixed threshold value ((z_{th})) is considered as spike. The choice of the threshold value should be based on the outlier scores data distribution which can vary across time. In this work (z_{th}) was set equal to 5 which means that for Normal- and Laplace-distributed data there is a 1 in 3.5 million and 1 in 300 chance, respectively, that an anomalous value is the result of a statistical fluctuation over the spectrum of plausible values. Once detected, spikes are removed and replaced by (mu _t) estimates obtained by the RM filter.Repeated median filterThe idea underlying moving time window based approaches is that of approximating the signal underlying observed data by means of local estimates that approximate the level of data in the center of the window.To this end, we fit a local linear trend11 of the form$$begin{aligned} mu _{t+i}=mu _t+ibeta _t, quad i=-k,ldots ,k, quad mathrm {to} quad {x_{t-k},ldots ,x_{t+k}}, end{aligned}$$
    (3)
    where k is the parameter defining the time window of length (n=2k+1), whereas (mu _t) and (beta _t) are estimated by means of the RM filter10 as$$begin{aligned} left. begin{aligned} tilde{mu }_t^{RM}&=medbigl (x_{t-k}+ktilde{beta }_t,ldots ,x_{t+k}-ktilde{beta }_tbigr ),\ tilde{beta }_t^{RM}&=med_{i=-k,ldots ,k} Bigl (med_{j=-k,ldots k,j ne i} frac{x_{t+i}-x_{t+j}}{i-j}Bigr ). end{aligned}right. end{aligned}$$
    (4)
    The only parameter required for the application of the RM filter is k, which controls how many neighbouring points are included in the estimation of (mu _t). Its choice depends not only on the time series characteristics, but also on the situations a procedure needs to handle. For despiking purposes, k has to be chosen as a trade-off problem between the duration of periods in which trends can be assumed to be approximately linear and the maximum number of consecutive outliers the estimator allows to resist before returning biased results.Results of previous studies18 for the evaluation of the RM filter performance in the removal of patches of impulsive noise showed that the RM resists up to 30% subsequent outliers without being substantially affected. Therefore, the minimal window width should be larger than at least three times the maximal length of outlier patches to be removed.To this end, the optimal time window width selection is carried out through a preliminary analysis of the data distribution. Specifically, the time series is subject to a preliminary de-trending procedure, where trend is approximated by a 5-degree polynomial function whose parameters are estimated via iterated re-weighted least squares (IWLS) regression. The optimal window width is then set equal to 4 times the maximum number of values exceeding (pm 3cdot s_g) in 30 s intervals, where (s_g) is the (global) standard deviation estimated by the (Q_n) estimator on de-trended data. To prevent cases where few or no data exceed the threshold values, a minimum window width of 5 s is imposed (i.e. 51 time steps for data sampled at 10 Hz acquisition frequency).
    ({{Q}}_n) scale estimatorBeyond the ability of the filter adopted for signal extraction, the effectiveness of a despiking strategy depends also on the robustness of the scale parameter, (sigma _t), which is of fundamental importance for the outlier scores derivation. Raw EC time series cannot be assumed to be identically distributed as variability may vary over time as the effect of changes in turbulence regimes and heterogeneity of the flux footprint area. In such situations, global estimates of the scale parameter are unrepresentative of the local variability. Consequently, the spike detection procedure becomes ineffective. To cope with this feature, the scale parameter (sigma _t) was estimated in rolling time windows whose width was set equal to those adopted for the signal extraction. As a robust estimates of (sigma _t), we used the (Q_n) estimator12$$begin{aligned} Q_n=2.2219{|x_i-x_j|;i0), then the process (X_t) is said to be integrated of order d, meaning that (X_t) needs to be differenced d times to achieve stationarity. To allow heteroskedasticity, we assume that (varepsilon _t= sigma _t e_t), where (e_t) is a sequence of independently and identically distributed variables with mean 0 and variance 1 and (sigma _t^2) is the conditional variance allowed to vary with time.The latter was simulated by means of a CGARCH process, which can be written as:$$begin{aligned} left. begin{aligned} sigma _t^2&=q_t + sum _{i=1}^r alpha _i (varepsilon _{t-i}^2 – q_{t-i}) + sum _{j=1}^s beta _j (sigma _{t-j}^2 -q_{t-j})\ q_t&=omega + eta _{11} q_{t-1} + eta _{21} (varepsilon _{t-1}^2 – sigma _{t-1}^2), end{aligned}right. end{aligned}$$
    (7)
    where (omega), (alpha _i), (beta _j), (eta _{11}), (eta _{21}) are strictly positive coefficients; (q_t) is the permanent (long-run) component of the conditional variance allowed to vary with time following first order autoregressive type dynamics. The difference between the conditional variance and its trend, (sigma _{t}^2 – q_{t}), is the transitory (short-run) component of the conditional variance. The conditions for the non-negativity estimation of the conditional variance23 are related to the stationary conditions that (alpha _i + beta _j < 1) and that (eta _{11} < 1) (such quantities provide a measure of the persistence of the transitory and permanent components, respectively).Model order specification and parameter estimation were performed by analyzing real EC data (more detail are provided in the “Results and discussion” section). With this modelling framework, we simulated 18,000 values as in EC raw data sampled at 10 Hz scanning frequency within a 30-min interval. Simulations were executed in the R v.4.0.2 programming environment by using the tools implemented in the rugarch package24.Once simulated, synthetic time series were intentionally corrupted with 180 spiky data points (1% for a sample size of 18000). Two macro-scenarios were considered. In the first scenario (S1), isolated or consecutive spike events of short duration were generated. In particular, 180 spike locations were randomly selected in such a way to obtain 30 single spikes, 30 spikes as double (consecutive) events, and 30 spikes as triple (consecutive) events. In the second scenario (S2), instead, time series were contaminated by impulsive peaks of longer duration. To this end, spike locations were carried out by randomly selecting five blocks of 50 consecutive data points. Once located, spikes were generated by multiplying the corresponding time series values (after mean removal) for a factor 10 in such a way to have magnitude similar to those commonly encountered on real, observed EC data. To simulate consecutive spike events as imposed by S2 scenario, generated spiky data points were taken in absolute term. Each scenario was permuted 99 times.MetricsThe ability of the despiking algorithms was assessed by comparing the number of artificial spikes inserted into the time series with the number of spikes identified by the method. More particularly, by referring to the (2times 2) confusion matrix as reported in Table 1, a valid despiking procedure maximizes decisions of type true positive (TP) while, at the same time, keeping decisions of the types false negative (FN) and false positive (FP) at the lowest levels possible. This trade-off can be measured in terms of Precision and Recall, which are commonly used for measuring the effectiveness of set-based retrieval25. For any given threshold value, the Precision is defined as the fraction of reported spikes that truly turn out to be spikes:$$begin{aligned} text {Precision}=frac{text {TP}}{text {TP}+text {FP}}, end{aligned}$$ (8) while the Recall is correspondingly defined as the fraction of ground-truth spikes that have been reported as spikes:$$begin{aligned} text {Recall}=frac{text {TP}}{text {TP}+text {FN}}. end{aligned}$$ (9) Table 1 Confusion matrix.Full size tableAs a measure that combines Precision and Recall, we consider the balanced F1-Score, which is the harmonic mean of the two indices above-mentioned, and given by:$$begin{aligned} text {F1-Score}=2 cdot frac{text {Precision} cdot text {Recall}}{text {Precision} + text {Recall}}. end{aligned}$$ (10) We have (0le text {F1-Score} le 1) where 0 implies that no spikes are detected and 1 indicates that all, and only, the spikes are detected. The closer to 1 the F1-Score index, the greater the effectiveness of the despiking method.In addition to the previous outlined metrics, a comparison between variances of (simulated) uncorrupted time series and the one estimated after the application of the despiking procedure has been performed.For an overall evaluation of the performance of the despiking algorithms, the Friedman test26 using a significance level (alpha =0.05), followed by a post-hoc test based on the procedure introduced in Nemenyi27 was applied. The Friedman test is a non-parametric statistical test, equivalent to repeated-measures ANOVA, which can be used to compare the performances of several algorithms28. The null hypothesis of the Friedman test is that there are no significant differences between performances of all the considered algorithms. Provided that significant differences were detected by the Friedman test (that is the null hypothesis is rejected) the Nemenyi test can be used for pairwise multiple comparisons of the considered algorithms. Nemenyi test is similar to the post-hoc Tukey test for ANOVA, and its output consists of a critical difference (CD) threshold. In order to do that, ranks are assigned to algorithms. For each data set, the algorithm with the best performance gets the lowest (best) average rank. The mean performance of two despiking algorithms is judged to be signifycantly different if the corresponding average ranks differ by at least the critical difference (the graphical output of Nemenyi test was implemented using tools provided in the R package tsutils (https://CRAN.R-project.org/package=tsutils)). More

  • in

    Tarsal morphology of ischyromyid rodents from the middle Eocene of China gives an insight into the group’s diversity in Central Asia

    Systematic paleontologyOrder Rodentia Bowdich, 182131Family Ischyromyidae Alston, 187632Genus Asiomys Qi, 198733Asiomys dawsoni Qi, 198733Figure 3A–EMaterial. Fragment of right calcaneus (IVPP V24417), early Middle Eocene, Huheboerhe, Irdin Manha Formation, Erlian Basin, China.Description. The bone is damaged and most probably that of a juvenile as it shows loss of the tissue in the extremities of the bone such as the calcaneal tuber and calcaneal eminence, which are usually less calcified in juveniles. The bone is relatively large (Table 1), with an elongated calcaneal tuber and a relatively short body (Fig. 3A–D). The sustentaculum tali is partly damaged; it has a subcircular articulation facet, which was probably more extended craniocaudally than mediolaterally. The caudal margin of the sustentaculum tali is inclined cranially, similar to the condition seen in species A and more than in species B (Fig. 3A). The sustentacular facet overlaps about one-half of the craniocaudal reach of the ectal facet. The groove for the ‘spring ligament’ (sensu Szalay and Decker34), which runs along the medial edge of the sustentaculum tali, is poorly pronounced. Likewise, the calcaneal groove for the tendon of the flexor fibularis muscle is shallow and poorly marked, most probably due to poor preservation. The ectal facet is relatively wide and similarly shaped as in species B (below). The peroneal process is completely damaged.Table 1 Measurements (in mm) of ischyromyid calcanei from the early middle Eocene of the Erlian Basin, Nei Mongol, China.Full size tableFigure 2Linear measurements of the calcaneus. Abbreviations: AEW, ectal facet anterior width; BL, calcaneal body length; BW, calcaneal body width; CCL, calcaneocuboid facet length; CCW, calcaneocuboid facet width; CL, calcaneus length; CMT, calcaneus maximum thickness; CW, calcaneal width; EL, ectal facet length; TEW, ectal facet total width; TL, tuber calcanei length; TT, tuber calcanei thickness; TW, tuber calcanei width; TWM, tuber calcanei width in mid-length. (Figure created in Corel Draw X4 (v.14.0.0.567) by Łucja Fostowicz-Frelik).Full size imageFigure 3Ischyromyid calcanei from the early middle Eocene of the Erlian Basin, Nei Mongol, China. (A–E), Asiomys dawsoni (IVPP V24417), right calcaneus, juvenile?; (F–K), species A (IVPP V24416), right calcaneus, adult; (L–Q), species B (IVPP V24418), right calcaneus, adult. In: A, F and L, dorsal; B, G and M, medial; C, H and N, lateral; D, I and O plantar; J and P caudal; E, K and Q, cranial views. Explanatory line drawings (right side) show important morphological features. Note sustentacular facet marked pale yellow. Scale bar equals 10 mm. (Photographs taken by Łucja Fostowicz-Frelik; drawings created in Corel Draw X4 (v.14.0.0.567) by Łucja Fostowicz-Frelik).Full size imageThe calcaneal tuber is strongly compressed, but it resembles in shape those of species A and B. A long groove for the calcaneofibular ligament is impressed on its lateral side.The anterior plantar tubercle is large and swollen, similar to that in species A, and touches the brim of the calcaneocuboid surface. The latter, only slightly damaged laterally, is round in outline, without a distinct pit, and inclined about 20–30°.Systematic remark: The fossil was associated with Asiomys dentition found in the same spot. We attribute specimen IVPP V24417 to Asiomys dawsoni, based on this fact and its distinctive size (Asiomys being the largest rodent in the assemblage). Asiomys is the only ischyromyid rodent known from the basal strata of the Irdin Manha Formation of Huheboerhe.Genus indet.Species AFigure 3F–KMaterial. Right calcaneus (IVPP V24416), early Middle Eocene, Irdin Manha Escarpment, Irdin Manha Formation, Erlian Basin, China.Description. The right almost complete calcaneus of an adult specimen is relatively large (Table 1), comparable in length to the calcaneus of a coypu (Myocastor coypus) or Asiatic brush-tailed porcupine (Atherurus macrourus). The bone has a characteristically elongated calcaneal tuber and rather short body (Fig. 3F–I). The calcaneal tuber is quite slender in comparison with the structure found in the coypu and porcupines. The shape of the bone resembles most closely the calcaneus of Paramys wortmani (see35: Fig. 12B), although in Paramys the calcaneal tuber is more compressed mediolaterally.The sustentaculum tali is large and eminent, reaching far medially and tapering, although its medial end forms a blunt edge parallel to the long axis of the bone. This medial edge also bears a well-marked but not deep groove of the calcaneonavicular (or ‘spring’) ligament (Fig. 3G). The sustentacular facet (facies articularis talaris media in Fostowicz-Frelik36: Fig. 12B2) is round, with only slight anteroposterior compression. It occupies almost the whole dorsal surface of the sustentaculum, encroaching slightly onto the calcaneal body. In that it differs from Notoparamys and Paramys wortmani, which both have a much more medially placed sustentacular facet, which does not encroach on the calcaneal body. The range of the sustentacular facet overlaps less than one-third of the ectal facet (posterior facies articularis talaris in Fostowicz-Frelik36: Fig. 12B2) on its anterior and medial sides. The calcaneal eminence is slightly longer than that in Marmota and Sciurus, in proportions closer to that of porcupines and of similar size as in Paramys wortmani. The ectal facet is wide, long, and has a distinctly helical course, even more strongly marked than in North American ischyromyids (see Rose and Chinnery35: Fig. 12A). It is, however, inclined more strongly mediolaterally than in Notoparamys and Paramys, and faces strongly medially. On the dorsal side of the calcaneal eminence, posterolateral to the ectal facet, there is a flattened rough area (finely pitted), marking the place of attachment of the lateral collateral ligaments binding the distal fibula and the astragalus with the calcaneus and stabilizing the astragalocalcaneal joint.A calcaneal body is short and stocky with poorly marked tendon ridges at the dorsal surface. A large peroneal process is partly damaged at its lateral margin. The process is placed closer to the cuboid surface than the sustentaculum tali. The position of the sustentaculum tali and the proportions of the calcaneal body of specimen IVPP V24416 resemble rather closely the calcaneus of Paramys wortmani (see35).The calcaneal tuber is not ‘pinched’ at its dorsal side but moderately compressed, thus there is no coracoid ridge posterior to the ectal facet. At the lateral side of the tuber, there is a long groove for the calcaneofibular ligament running askew, towards the dorsal surface of the calcaneal tuber. The groove for the calcaneofibular ligament is more weakly expressed than in the North American paramyines and arboreal sciurids, but similar to that of Marmota.The caudal surface of the calcaneal tuber is subcircular (only slightly more extended dorsoplantarly than mediolaterally, see Fig. 3 and Table 1). The groove for the calcaneal tendon (= Achilles tendon) is deep and placed asymmetrically at the surface (Fig. 3J). Also, the medial process of the calcaneal tuber is much better developed and extending medially.The plantar surface of the bone is almost straight with a delicate flexure cranially to a well-developed plantar heel process (Fig. 3G). The anterior plantar tubercle is relatively large, swollen, but shifted medially, towards the sustentaculum tali. It is placed very close to the cuboid surface, almost touching its margin; such location and the medial shifting resembles the condition in some ground squirrels, e.g., Cynomys (see Fostowicz-Frelik et al.8: Fig. 3D–F). The anterior plantar tubercle is also somewhat flattened and inclined medially and forms a well-marked calcaneal groove for the tendon of the flexor fibularis muscle.The calcaneocuboid articular surface is semicircular, slightly wider mediolaterally than long dorsoplantarly, which distinguishes species A from Marmota and paramyines (see35). It is almost transversally positioned, not inclined, as in most of the rodent taxa (coypu and porcupines included), and gently concave; it is also confluent and level with the cuboid pit, forming one round surface at the cranial end of the bone.Genus indet.Species BFigure 3L–QMaterial Right calcaneus (IVPP V24418), early Middle Eocene, Daoteyin Obo, Irdin Manha Formation, Erlian Basin, China.Description The bone is complete, slightly larger than in species A (Table 1), matching in length the calcaneus of the coypu. Its overall structure is very similar to the calcaneus of Paramys (either P. wortmani or P. taurus, see Rose and Chinnery35: Fig. 12B, C). It has a long and strong calcaneal tuber and a relatively strong but short calcaneal body (Fig. 3L). The tuber is more compressed mediolaterally than in species A; thus, the caudal surface of the tuber is extended more dorsoplantarly than mediolaterally (Fig. 3P). The attachment for the calcaneal tendon forms a rounded concavity at the caudal side of the tuber, and is more horizontally and symmetrically located at the surface than in species A. The lateral surface of the calcaneal tuber bears a marked scar from the calcaneofibular ligament, although the scar is convex, not concave as in species A and in other compared taxa (e.g., Cynomys).The sustentaculum tali is large and round; it is located relatively close to the calcaneal body, not extending as far medially as in the North American paramyines (see35). It is slightly longer anteroposteriorly and located more caudally (closer to the ectal facet) than in species A. Thus, the sustentacular surface overlaps ca. one-half of the cranial part of the ectal facet. The medial edge of the sustentacular shelf bears a deep groove for the ‘spring ligament’.The ectal facet is large, equally wide throughout its length, long and helical, although its course is straighter along the proximodistal direction than in species A. The ectal surface faces mediodorsally, with a slightly weaker medial component than in species A. The dorsal surface of the tuber, just caudal to the ectal facet, is not typically ‘pinched’ into a sagittally oriented crest, but it is, nevertheless, more mediolaterally compressed than in the species A, similar to Marmota.The calcaneal body forms about one-third of the bone length. Its dorsal surface is carved by deep longitudinal marks indicating the position of the extensor digitorum brevis muscle (Fig. 3). A middle-size peroneal process is located cranially at the calcaneal body. It is strong and long anteroposteriorly, reaching almost the edge of the calcaneocuboid surface. Its lateral edge shows a deep groove for the tendon of the peroneus longus muscle, while its dorsal surface forms a groove for the peroneus brevis muscle tendon (Fig. 3). Species B differs from the ground squirrels in the shape and location of the peroneal process, which is less extended laterally in species B than e.g., in marmots, although it is relatively much larger than in the coypu and porcupines.The anterior plantar tubercle looks less swollen than in species A; it is located at the very margin of the calcaneocuboid surface and as in species A is shifted medially (Fig. 3O, Q). The calcaneocuboid surface is slightly inclined (ca. 25°) anteromedially, which distinguishes the bone from species A, Marmota, and Notoparamys, which all have the calcaneocuboid facet almost transversal and perpendicular to the long axis of the calcaneus. In this respect, the calcaneocuboid surface resembles more closely the calcaneus of Paramys taurus (Rose and Chinnery35: Fig. 12C). The calcaneocuboid surface is almost round, slightly wider mediolaterally, resembling that of species A. A relatively small calcaneal pit (extending only to a half of the anterior plantar tubercle base, see Fig. 3Q), smaller but deeper than in species A, forms a shallow sink at the medial side of the surface, cranially to the sustentaculum tali.PCA analysisA Principal Component Analysis (PCA) was performed based on 14 measurements of the calcaneus. The analysis included the calcaneal measurements of five ischyromyid species (two described here as species A and B, and three comparative species from North America) and 16 extant large rodent species (Supplementary Table S1). The extant taxa represent six basic types of locomotor adaptations found in rodents: ambulatorial (terrestrial generalists), amphibious (swimming), arboreal (tree climbing), cursorial (four-pedal runners), ricochetal (bipedal jumpers), and semi-fossorial (burrowing).Principal Components 1 and 2 (PC1 and PC2) represent 87.48% and 5.75% of the variance, respectively, whereas Principal Components 3–4 represent further 4% of the variance (Supplementary Table S2). All the variables are positively correlated with PC1 and their loadings are very balanced (Fig. 4). Thus, it implies that the PC1 represents a proxy for the size of the bone. PC2 is most strongly correlated with the length of the calcaneal body, BL (-0.86) and more weakly correlated with the width of the cuboid facet (CCW) and anterior width of the ectal facet (AEW), 0.31 and 0.21, respectively (Fig. 4). The correlation with the length of the calcaneal body is an especially important factor for estimating an animal’s vertical jumping ability; the species with elongated calcaneal bodies are generally better jumpers (see8,36). The strong negative correlation of the length of the calcaneal body in the second component is illustrated by grouping the species with a strong jumping locomotor repertoire (e.g., squirrels and chinchillas) towards the left side of the plot (Fig. 4). Incidentally, this phenomenon does not concern the calcanei of ricochetal species (see the position of Pedetes versus that of Sciurus and Chinchilla: Fig. 4), where the mechanics of a jump are differently realized, and the stabilisation and relative stiffness of the ankle joint plays the most important role (thus, the calcaneal body and calcaneal tuber are more similar in size).Figure 4Principal component analysis of 14 metric parameters of rodent calcanei. The morphospace including paramyid calcanei from Nei Mongol in yellow circle. Lines connecting all data points represent a minimum spanning tree (MST) based on a Euclidean distance matrix. The loadings of the Components 1 and 2 shown at the corresponding axes. Strictly fossil taxa marked in red and pink, extant in black. (Figure created in Corel Draw X4 (v.14.0.0.567) by Łucja Fostowicz-Frelik).Full size imageIn the plot of PC1 against PC2, ischyromyids do not cluster together. Instead, the PCA morphospace is divided into two (or even three) broad groups of ischyromyid locomotor adaptations: the ambulatorial species and those with more pronounced jumping or cursorial ability. Chinese taxa fall among typically large ambulatorial rodents, such as the coypu (Myocastor) and porcupines (Atherurus and Hystrix). Closest to them there is the North American ischyromyid Quadratomus, which is somewhat shifted towards the cursorial species and can be thus distinguished as differently specialized (more cursorial). Two other North American ischyromyids, Ischyromys and Reithroparamys, are grouped with Chinchilla and Ondatra, respectively, which may imply some jumping and slightly scansorial locomotor adaptations for Ischyromys and those of typical agile generalist species for Reithroparamys.Although the sample is limited, the results of the PCA analysis point to general differences in the structure of the calcaneus, and thus, locomotor specialisation, between Asian and North American ischyromyid species. Moreover, Asian species seem to differ less from each other than the North American ones do, reflecting the overall greater species diversity and coverage of a wider niche spectrum of the North American ischyromyids.Functional and paleoecological implicationsThe studied calcanei add to our knowledge on the functional aspects of locomotion of ischyromyid rodents. Proximal tarsal morphology has been recently used to interpret the locomotor behavior of some extinct rodents (see e.g.,8,37,38,39). In the scheme of locomotor categories of Samuels and Van Valkenburgh40, attributions proposed for early ischyromyids fit into generally terrestrial41, arboreal42 or a mixture of those two35.A relatively short calcaneal body, widely spread sustentaculum tali, and a large peroneal process observed in most ischyromyid species (including these studied herein) indicate rather poor cursoriality. Instead, their ankle joint structure allows for a large freedom of foot movements in different planes. A medially extended sustentaculum tali together with a long and helically twisted ectal facet indicate a large degree of sliding between the calcaneus and astragalus along their articular facets, which makes possible a great degree of foot torsion resulting in foot eversion and inversion. This effect is further enhanced by an extended calcaneocuboid facet that is gently concave and oriented perpendicularly to the long axis of the calcaneus in species A.Such adaptations are helpful for both clinging to branches and adjusting to uneven or inclined substrate during climbing. A great degree of freedom of movement may be helpful also during burrowing, when the hind legs are used to push forward loose soil out of a burrow or an animal is forced to maintain a crouched posture, when it digs with its forelegs and head. Nevertheless, as much as the calcaneal structure may suggest some burrowing ability in ischyromyids (see Rose and Chinnery35), the rest of the postcranial skeleton known from the more complete specimens of North American representatives41 does not support fossorial adaptations. In particular, a long tail in the pre-Oligocene North American (see e.g., Paramys or Reithroparamys in Wood41: figs. 8 and 44, respectively) suggests some arboreal adaptations or at least occasional climbing, as such a tail greatly enhances balancing on uneven terrain. In contrast, typically fossorial mammals have reduced tails43.The overall morphology of dental and mandibular remains16,18 of Asian ischyromyids is similar to that of their North American counterparts16,19. As complete or even partial postcranial skeletons are unknown for the Asian ischyromyids, we can surmise their general locomotor adaptations based on calcaneal morphology which, although not in striking contrast with their North American counterparts, shows some differences.Overall, the calcaneal morphology of Chinese ischyromyids is closest to that of ground squirrels and especially porcupines (both Atherurus and Hystrix) and the coypu; the similarity to the last one is supported also by the PCA analysis. The calcaneal morphology and proportions may therefore reflect their locomotion behavior as generalized terrestrials, with a somewhat limited ability to climb (a rare but observed behavior in Hystrix) and to dig burrows (as does Atherurus43). A transverse and gently concave calcaneocuboid facet of species A facilitates foot rotation along the long axis, useful on an uneven, rocky terrain or while traversing branches, when an animal needs a flexible foot for a better grip (see Chester et al.44). On the other hand, the lack of both a characteristically bent calcaneal tuber and posteriorly located peroneal process in all ischyromyids (except for Notoparamys, see Rose and Chinnery35) argues against the arboreal adaptations characteristic of tree squirrels. More