1.Ellis, B. J., Figueredo, A. J., Brumbach, B. H. & Schlomer, G. L. Fundamental dimensions of environmental risk—The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Hum. Nat. 20, 204–268. https://doi.org/10.1007/s12110-009-9063-7 (2009).Article
PubMed
Google Scholar
2.Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359. https://doi.org/10.1038/346357a0 (1990).ADS
Article
Google Scholar
3.Pianka, E. R. On r- and K-selection. Am. Nat. 104, 592–597. https://doi.org/10.1086/282697 (1970).Article
Google Scholar
4.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47. https://doi.org/10.1086/409052 (1976).CAS
Article
PubMed
Google Scholar
5.Flegr, J. Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems. J. Theor. Biol. 188, 121–126. https://doi.org/10.1006/jtbi.1997.0458 (1997).Article
Google Scholar
6.Bowyer, R. T., Person, D. K. & Pierce, B. M. Detecting top-down versus bottom-up regulation of ungulates by large carnivores: Implications for conservation of biodiversity. In Large Carnivores and the Conservation of Biodiversity (eds. Ray, J. C et al.) 342–361 (Island Press, 2005).7.Jones, M. E. et al. Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl. Acad. Sci. USA 105, 10023–10027. https://doi.org/10.1073/pnas.0711236105 (2008).ADS
Article
PubMed
Google Scholar
8.Scheele, B. C. et al. Disease-associated change in an amphibian life-history trait. Oecologia 184, 825–833. https://doi.org/10.1007/s00442-017-3911-7 (2017).ADS
Article
PubMed
Google Scholar
9.Thornhill, J. A., Jones, J. T. & Kusel, J. R. Increased oviposition and growth in immature Biomphalaria glabrata after exposure to Schistosoma mansoni. Parasitology 93, 443–450. https://doi.org/10.1017/S0031182000081166 (1986).Article
PubMed
Google Scholar
10.Polak, M. & Starmer, W. T. Parasite-induced risk of mortality elevates reproductive effort in male Drosophila. Proc. R. Soc. B 265, 2197–2201. https://doi.org/10.1098/rspb.1998.0559 (1998).CAS
Article
PubMed
Google Scholar
11.Chadwick, W. & Little, T. J. A parasite-mediated life-history shift in Daphnia magna. Proc. R. Soc. B 272, 505–509. https://doi.org/10.1098/rspb.2004.2959 (2005).Article
PubMed
Google Scholar
12.Schwanz, L. E. Chronic parasitic infection alters reproductive output in deer mice. Behav. Ecol. Sociobiol. 62, 1351–1358. https://doi.org/10.1007/s00265-008-0563-y (2008).Article
Google Scholar
13.Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437. https://doi.org/10.1111/j.1469-7998.1990.tb04316.x (1990).Article
Google Scholar
14.Hill, K. Life history theory and evolutionary anthropology. Evol. Anthropol. 2, 78–88. https://doi.org/10.1002/evan.1360020303 (1993).CAS
Article
Google Scholar
15.Charlesworth, B. Evolution in Age-Structured Populations 2nd edn. (Cambridge University Press, 1994).Book
Google Scholar
16.Nettle, D. & Frankenhuis, W. E. Life-history theory in psychology and evolutionary biology: One research programme or two?. Philos. Trans. R. Soc. B 375, 9. https://doi.org/10.1098/rstb.2019.0490 (2020).Article
Google Scholar
17.Del Giudice, M. Rethinking the fast-slow continuum of individual differences. Evol. Hum. Behav. 41, 536–549. https://doi.org/10.1016/j.evolhumbehav.2020.05.004 (2020).Article
Google Scholar
18.Lammers, C., Ireland, M., Resnick, M. & Blum, R. Influences on adolescents’ decision to postpone onset of sexual intercourse: A survival analysis of virginity among youths aged 13 to 18 years. J. Adolesc. Health 26, 42–48. https://doi.org/10.1016/s1054-139x(99)00041-5 (2000).CAS
Article
PubMed
Google Scholar
19.Wilson, M. & Daly, M. Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. BMJ 314, 1271–1274 (1997).CAS
Article
Google Scholar
20.Bereczkei, T. & Csanaky, A. Stressful family environment, mortality, and child socialisation: Life-history strategies among adolescents and adults from unfavourable social circumstances. Int. J. Behav. Dev. 25, 501–508. https://doi.org/10.1080/01650250042000573 (2001).Article
Google Scholar
21.Nettle, D. Dying young and living fast: Variation in life history across English neighborhoods. Behav. Ecol. 21, 387–395. https://doi.org/10.1093/beheco/arp202 (2010).Article
Google Scholar
22.Griskevicius, V., Delton, A. W., Robertson, T. E. & Tybur, J. M. Environmental contingency in life history strategies: The influence of mortality and socioeconomic status on reproductive timing. J. Pers. Soc. Psychol. 100, 241–254. https://doi.org/10.1037/a0021082 (2011).Article
PubMed
PubMed Central
Google Scholar
23.Sheppard, P., Pearce, M. S. & Sear, R. How does childhood socioeconomic hardship affect reproductive strategy? Pathways of development. Am. J. Hum. Biol. 28, 356–363. https://doi.org/10.1002/ajhb.22793 (2016).Article
PubMed
Google Scholar
24.Belsky, J., Steinberg, L. & Draper, P. Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Dev. 62, 647–670. https://doi.org/10.1111/j.1467-8624.1991.tb01558.x (1991).CAS
Article
PubMed
Google Scholar
25.Rickard, I. J., Frankenhuis, W. E. & Nettle, D. Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspect. Psychol. Sci. 9, 3–15. https://doi.org/10.1177/1745691613513467 (2014).Article
PubMed
Google Scholar
26.Chua, K. J., Lukaszewski, A. W., Grant, D. M. & Sng, O. Human life history strategies: Calibrated to external or internal cues?. Evol. Psychol. 15, 1474704916677342. https://doi.org/10.1177/1474704916677342 (2017).Article
PubMed
Google Scholar
27.Adamo, S. A. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim. Behav. 57, 117–124. https://doi.org/10.1006/anbe.1998.0999 (1999).CAS
Article
PubMed
Google Scholar
28.Giehr, J., Grasse, A. V., Cremer, S., Heinze, J. & Schrempf, A. Ant queens increase their reproductive efforts after pathogen infection. R. Soc. Open Sci. 4, 170547. https://doi.org/10.1098/rsos.170547 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
29.Sorci, G., Clobert, J. & Michalakis, Y. Cost of reproduction and cost of parasitism in the common lizard, Lacerta vivipara. Oikos 76, 121–130. https://doi.org/10.2307/3545754 (1996).Article
Google Scholar
30.Oppliger, A., Christe, P. & Richner, H. Clutch size and malarial parasites in female great tits. Behav. Ecol. 8, 148–152. https://doi.org/10.1093/beheco/8.2.148 (1997).Article
Google Scholar
31.Sanz, J. J., Arriero, E., Moreno, J. & Merino, S. Interactions between hemoparasite status and female age in the primary reproductive output of pied flycatchers. Oecologia 126, 339–344. https://doi.org/10.1007/s004420000530 (2001).ADS
Article
PubMed
Google Scholar
32.Westendorp, R. G. J. & Kirkwood, T. B. L. Human longevity at the cost of reproductive success. Nature 396, 743–746. https://doi.org/10.1038/25519 (1998).ADS
CAS
Article
PubMed
Google Scholar
33.Thomas, F., Teriokhin, A. T., Renaud, F., De Meeus, T. & Guégan, J. F. Human longevity at the cost of reproductive success: Evidence from global data. J. Evol. Biol. 13, 409–414. https://doi.org/10.1046/j.1420-9101.2000.00190.x (2000).Article
Google Scholar
34.Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The heritability of life history strategy: The K-factor, covitality, and personality. Soc. Biol. 51, 121–143 (2004).PubMed
Google Scholar
35.Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The K-factor, covitality, and personality—A psychometric test of life history theory. Hum. Nat. 18, 47–73. https://doi.org/10.1007/bf02820846 (2007).Article
PubMed
Google Scholar
36.Hill, S. E., Boehm, G. W. & Prokosch, M. L. Vulnerability to disease as a predictor of faster life history strategies. Adapt. Hum. Behav. Physiol. 2, 116–133. https://doi.org/10.1007/s40750-015-0040-6 (2016).Article
Google Scholar
37.Uggla, C. & Mace, R. Local ecology influences reproductive timing in Northern Ireland independently of individual wealth. Behav. Ecol. 27, 158–165. https://doi.org/10.1093/beheco/arv133 (2016).Article
Google Scholar
38.Waynforth, D. Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort. Proc. R. Soc. B 279, 2998–3002. https://doi.org/10.1098/rspb.2012.0220 (2012).Article
PubMed
Google Scholar
39.Mace, R. Evolutionary ecology of human life history. Anim. Behav. 59, 1–10. https://doi.org/10.1006/anbe.1999.1287 (2000).CAS
Article
PubMed
Google Scholar
40.Low, B. S., Simon, C. P. & Anderson, K. G. An evolutionary ecological perspective on demographic transitions: Modeling multiple currencies. Am. J. Hum. Biol. 14, 149–167. https://doi.org/10.1002/ajhb.10043 (2002).Article
PubMed
Google Scholar
41.Galor, O. The demographic transition: Causes and consequences. Cliometrica 6, 1–28. https://doi.org/10.1007/s11698-011-0062-7 (2012).Article
PubMed
PubMed Central
Google Scholar
42.Protsiv, M., Ley, C., Lankester, J., Hastie, T. & Parsonnet, J. Decreasing human body temperature in the United States since the industrial revolution. Elife 9, e49555. https://doi.org/10.7554/eLife.49555 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
43.Novotná, M. et al. Toxoplasma and reaction time: Role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology 135, 1253–1261. https://doi.org/10.1017/s003118200800485x (2008).Article
PubMed
Google Scholar
44.Flegr, J., Novotná, M., Lindová, J. & Havlíček, J. Neurophysiological effect of the Rh factor. Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuroendocrinol. Lett. 29, 475–481 (2008).PubMed
Google Scholar
45.Flegr, J., Preiss, M. & Klose, J. Toxoplasmosis-associated difference in intelligence and personality in men depends on their Rhesus blood group but not ABO blood group. PLoS One 8, e61272. https://doi.org/10.1371/journal.pone.0061272 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
46.Flegr, J., Šebánková, B., Příplatová, L., Chvátalová, V. & Kaňková, Š. Lower performance of Toxoplasma-infected, Rh-negative subjects in the weight holding and hand-grip tests. PLoS One 13, e0200346. https://doi.org/10.1371/journal.pone.0200346 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
47.Flegr, J., Klose, J., Novotná, M., Berenreitterová, M. & Havlíček, J. Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study. BMC Infect. Dis. https://doi.org/10.1186/1471-2334-9-72 (2009).Article
PubMed
PubMed Central
Google Scholar
48.Flegr, J., Geryk, J., Volný, J., Klose, J. & Černochová, D. Rhesus factor modulation of effects of smoking and age on psychomotor performance, intelligence, personality profile, and health in Czech soldiers. PLoS One 7, e4947810. https://doi.org/10.1371/journal.pone.0049478 (2012).CAS
Article
Google Scholar
49.Flegr, J., Hoffmann, R. & Dammann, M. Worse health status and higher incidence of health disorders in Rhesus negative subjects. PLoS One 10, e0141362. https://doi.org/10.1371/journal.pone.0141362 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
50.Flegr, J. Heterozygote advantage probably maintains Rhesus factor blood group polymorphism: Ecological regression study. PLoS One 11, e0147955. https://doi.org/10.1371/journal.pone.0147955 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
51.Flegr, J., Kuba, R. & Kopecký, R. Rhesus-minus phenotype as a predictor of sexual desire and behavior, wellbeing, mental health, and fecundity. PLoS One 15, e0236134. https://doi.org/10.1371/journal.pone.0236134 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
52.Kaňková, Š., Flegr, J., Toman, J. & Calda, P. Maternal RhD heterozygous genotype is associated with male biased secondary sex ratio. Early Hum. Dev. 140, 104864. https://doi.org/10.1016/j.earlhumdev.2019.104864 (2020).Article
PubMed
Google Scholar
53.Flegr, J. & Dama, M. Does the prevalence of latent toxoplasmosis and frequency of Rhesus-negative subjects correlate with the nationwide rate of traffic accidents?. Folia Parasitol. 61, 485–494 (2014).CAS
Article
Google Scholar
54.Halmin, M. et al. Length of storage of red blood cells and patient survival after blood transfusion: A binational cohort study. Ann. Intern. Med. 166, 248–256. https://doi.org/10.7326/m16-1415 (2017).Article
PubMed
Google Scholar
55.Jacobsen, B. K., Oda, K., Knutsen, S. F. & Fraser, G. E. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: The Adventist Health Study, 1976–88. Int. J. Epidemiol. 38, 245–252. https://doi.org/10.1093/ije/dyn251 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
56.Lakshman, R. et al. Early age at menarche associated with cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 94, 4953–4960. https://doi.org/10.1210/jc.2009-1789 (2009).CAS
Article
PubMed
Google Scholar
57.Canoy, D. et al. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation 131, 237–244. https://doi.org/10.1161/circulationaha.114.010070 (2015).Article
PubMed
Google Scholar
58.Macsali, F. et al. Early age at menarche, lung function, and adult asthma. Am. J. Respir. Crit. Care Med. 183, 8–14. https://doi.org/10.1164/rccm.200912-1886OC (2011).Article
PubMed
Google Scholar
59.Stöckl, D. et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32–81 years) from the general population: The KORA F4 Study. Diabetologia 55, 681–688. https://doi.org/10.1007/s00125-011-2410-3 (2012).Article
PubMed
Google Scholar
60.Brinton, L. A., Schairer, C., Hoover, R. N. & Fraumeni, J. F. Menstrual factors and risk of breast cancer. Cancer Investig. 6, 245–254. https://doi.org/10.3109/07357908809080645 (1988).CAS
Article
Google Scholar
61.Kvale, G. & Heuch, I. Menstrual factors and breast cancer risk. Cancer 62, 1625–1631. https://doi.org/10.1002/1097-0142(19881015)62:8%3c1625::aid-cncr2820620828%3e3.0.co;2-k (1988).CAS
Article
PubMed
Google Scholar
62.Adair, L. S. Size at birth predicts age at menarche. Pediatrics 107, e59. https://doi.org/10.1542/peds.107.4.e59 (2001).CAS
Article
PubMed
Google Scholar
63.Romundstad, P. R. et al. Birth size in relation to age at menarche and adolescent body size: Implications for breast cancer risk. Int. J. Cancer 105, 400–403. https://doi.org/10.1002/ijc.11103 (2003).CAS
Article
PubMed
Google Scholar
64.Sloboda, D. M., Hart, R., Doherty, D. A., Pennell, C. E. & Hickey, M. Age at menarche: Influences of prenatal and postnatal growth. J. Clin. Endocrinol. Metab. 92, 46–50. https://doi.org/10.1210/jc.2006-1378 (2007).CAS
Article
PubMed
Google Scholar
65.Rich-Edwards, J. W. et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315, 396–400. https://doi.org/10.1136/bmj.315.7105.396 (1997).CAS
Article
PubMed
PubMed Central
Google Scholar
66.Andersen, A. M. N. & Osler, M. Birth dimensions, parental mortality, and mortality in early adult age: A cohort study of Danish men born in 1953. Int. J. Epidemiol. 33, 92–99. https://doi.org/10.1093/ije/dyg195 (2004).Article
PubMed
Google Scholar
67.Gluckman, P. D. & Hanson, M. A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12. https://doi.org/10.1016/j.tem.2005.11.006 (2006).CAS
Article
PubMed
Google Scholar
68.Kulin, H. E., Bwibo, N., Mutie, D. & Santner, S. J. The effect of chronic childhood malnutrition on pubertal growth and development. Am. J. Clin. Nutr. 36, 527–536. https://doi.org/10.1093/ajcn/36.3.527 (1982).CAS
Article
PubMed
Google Scholar
69.Khan, A. D., Schroeder, D. G., Martorell, R., Haas, J. D. & Rivera, J. Early childhood determinants of age at menarche in rural Guatemala. Am. J. Hum. Biol. 8, 717–723. https://doi.org/10.1002/(sici)1520-6300(1996)8:6%3c717::aid-ajhb3%3e3.0.co;2-q (1996).Article
PubMed
Google Scholar
70.Leenstra, T. et al. Prevalence and severity of malnutrition and age at menarche; cross-sectional studies in adolescent schoolgirls in western Kenya. Eur. J. Clin. Nutr. 59, 41–48. https://doi.org/10.1038/sj.ejcn.1602031 (2005).CAS
Article
PubMed
Google Scholar
71.Walker, R. et al. Growth rates and life histories in twenty-two small-scale societies. Am. J. Hum. Biol. 18, 295–311. https://doi.org/10.1002/ajhb.20510 (2006).Article
PubMed
Google Scholar
72.Idler, E. L. & Kasl, S. V. Self-ratings of health: Do they also predict change in functional ability. J. Gerontol. B 50, S344–S353. https://doi.org/10.1093/geronb/50B.6.S344 (1995).CAS
Article
Google Scholar
73.O’Sullivan, L. F. & Byers, E. S. College students’ incorporation of initiator and restrictor roles in sexual dating interactions. J. Sex Res. 29, 435–446. https://doi.org/10.1080/00224499209551658 (1992).Article
Google Scholar
74.Smith, C. A. Factors associated with early sexual activity among urban adolescents. Soc. Work 42, 334–346. https://doi.org/10.1093/sw/42.4.334 (1997).CAS
Article
PubMed
Google Scholar
75.Mercer, C. H. et al. Changes in sexual attitudes and lifestyles in Britain through the life course and over time: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet 382, 1781–1794. https://doi.org/10.1016/s0140-6736(13)62035-8 (2013).Article
PubMed
PubMed Central
Google Scholar
76.Kalick, S. M., Zebrowitz, L. A., Langlois, J. H. & Johnson, R. M. Does human facial attractiveness honestly advertise health? Longitudinal data on an evolutionary question. Psychol. Sci. 9, 8–13. https://doi.org/10.1111/1467-9280.00002 (1998).Article
Google Scholar
77.Jones, B. C. et al. Facial symmetry and judgements of apparent health: Support for a “good genes” explanation of the attractiveness-symmetry relationship. Evol. Hum. Behav. 22, 417–429. https://doi.org/10.1016/s1090-5138(01)00083-6 (2001).Article
Google Scholar
78.Woodley of Menie, M. A. et al. Slow and steady wins the race: K positively predicts fertility in the USA and Sweden. Evol. Psychol. Sci. 3, 109–117. https://doi.org/10.1007/s40806-016-0077-1 (2017).79.Kington, R., Lillard, L. & Rogowski, J. Reproductive history, socioeconomic status, and self-reported health status of women aged 50 years or older. Am. J. Public Health 87, 33–37. https://doi.org/10.2105/ajph.87.1.33 (1997).CAS
Article
PubMed
PubMed Central
Google Scholar
80.Doblhammer, G. & Oeppen, J. Reproduction and longevity among the British peerage: The effect of frailty and health selection. Proc. R. Soc. B 270, 1541–1547. https://doi.org/10.1098/rspb.2003.2400 (2003).Article
PubMed
Google Scholar
81.Lawlor, D. A. et al. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British women’s heart and health study and the British regional heart study. Circulation 107, 1260–1264. https://doi.org/10.1161/01.cir.0000053441.43495.1a (2003).Article
PubMed
Google Scholar
82.Parikh, N. I. et al. Parity and risk of later-life maternal cardiovascular disease. Am. Heart J. 159, 215–221. https://doi.org/10.1016/j.ahj.2009.11.017 (2010).Article
PubMed
Google Scholar
83.Ryan, C. P. et al. Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Sci. Rep. 8, 11100. https://doi.org/10.1038/s41598-018-29486-4 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
84.Kaňková, Š., Šulc, J. & Flegr, J. Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology 137, 1773–1779. https://doi.org/10.1017/s0031182010000661 (2010).Article
PubMed
Google Scholar
85.Case, A., Fertig, A. & Paxson, C. The lasting impact of childhood health and circumstance. J. Health Econ. 24, 365–389. https://doi.org/10.1016/j.jhealeco.2004.09.008 (2005).Article
PubMed
Google Scholar
86.Kuh, D. J. L. & Wadsworth, M. E. J. Physical health-status at 36 years in a British national birth cohort. Soc. Sci. Med. 37, 905–916. https://doi.org/10.1016/0277-9536(93)90145-t (1993).CAS
Article
PubMed
Google Scholar
87.Eide, E. R. & Showalter, M. H. Estimating the relation between health and education: What do we know and what do we need to know?. Econ. Educ. Rev. 30, 778–791. https://doi.org/10.1016/j.econedurev.2011.03.009 (2011).Article
Google Scholar
88.Behrman, J. R. & Rosenzweig, M. R. Returns to birthweight. Rev. Econ. Stat. 86, 586–601. https://doi.org/10.1162/003465304323031139 (2004).Article
Google Scholar
89.Black, S. E., Devereux, P. J. & Salvanes, K. G. From the cradle to the labor market? The effect of birth weight on adult outcomes. Q. J. Econ. 122, 409–439. https://doi.org/10.1162/qjec.122.1.409 (2007).Article
Google Scholar
90.Almond, D. Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the post-1940 US population. J. Polit. Econ. 114, 672–712. https://doi.org/10.1086/507154 (2006).Article
Google Scholar
91.Almond, D., Edlund, L. & Palme, M. Chernobyl’s subclinical legacy: Prenatal exposure to radioactive fallout and school outcomes in Sweden. Q. J. Econ. 124, 1729–1772. https://doi.org/10.1162/qjec.2009.124.4.1729 (2009).Article
MATH
Google Scholar
92.Nilsson, J. P. The Long-Term Effects of Early Childhood Lead Exposure: Evidence from the Phase-Out of Leaded Gasoline. (Uppsala University and Institute for Labor Market Policy Evaluation (IFAU), 2009).93.Bleakley, H. Disease and development: Evidence from hookworm eradication in the American South. Q. J. Econ. 122, 73–117. https://doi.org/10.1162/qjec.121.1.73 (2007).Article
PubMed
PubMed Central
Google Scholar
94.Rees, D. I. & Sabia, J. J. The effect of migraine headache on educational attainment. J. Hum. Resour. 46, 317–332 (2011).
Google Scholar
95.Kessler, R. C., Foster, C. L., Saunders, W. B. & Stang, P. E. Social consequences of psychiatric disorders, I. Educational attainment. Am. J. Psychiatry 152, 1026–1032 (1995).CAS
Article
Google Scholar
96.Miech, R. A., Caspi, A., Moffitt, T. E., Wright, B. R. E. & Silva, P. A. Low socioeconomic status and mental disorders: A longitudinal study of selection and causation during young adulthood. Am. J. Sociol. 104, 1096–1131. https://doi.org/10.1086/210137 (1999).Article
Google Scholar
97.Flegr, J. & Horáček, J. Negative effects of latent toxoplasmosis on mental health. Front. Psychiatry. https://doi.org/10.3389/fpsyt.2019.01012 (2020).Article
PubMed
PubMed Central
Google Scholar
98.Kopecký, R., Boschetti, S. & Flegr, J. Effect of being religious on wellbeing in a predominantly atheist country: Explorative study on wellbeing, fitness, physical and mental health. PsyArXiv https://doi.org/10.31234/osf.io/3kr6n (2019).99.Flegr, J. & Horáček, J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur. Psychiatry. 40, 82–87. https://doi.org/10.1016/j.eurpsy.2016.09.001 (2017).CAS
Article
PubMed
Google Scholar
100.Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Revised edn. (Academic Press, 1977).101.Armelagos, G. J., Goodman, A. H. & Jacobs, K. H. The origins of agriculture: Population growth during a period of declining health. Popul. Environ. 13, 9–22. https://doi.org/10.1007/bf01256568 (1991).Article
Google Scholar
102.Lallo, J. W., Armelagos, G. J. & Mensforth, R. P. The role of diet, disease, and physiology in the origin of porotic hyperostosis. Hum. Biol. 49, 471–483 (1977).CAS
PubMed
Google Scholar
103.Goodman, A. H., Armelagos, G. J. & Rose, J. C. Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Hum. Biol. 52, 515–528 (1980).CAS
PubMed
Google Scholar
104.Angel, J. L. Porotic hyperostosis, anemias, malarias, and marshes in the prehistoric Eastern Mediterranean. Science 153, 760–763 (1966).ADS
CAS
Article
Google Scholar
105.Eaton, S. B., Eaton, S. B. & Konner, M. J. Paleolithic nutrition revisited: A twelve-year retrospective on its nature and implications. Eur. J. Clin. Nutr. 51, 207–216. https://doi.org/10.1038/sj.ejcn.1600389 (1997).CAS
Article
PubMed
Google Scholar
106.Flegr, J. & Kuba, R. The relation of Toxoplasma infection and sexual attraction to fear, danger, pain, and submissiveness. Evol. Psychol. https://doi.org/10.1177/1474704916659746 (2016).Article
Google Scholar
107.Penke, L. & Asendorpf, J. B. Beyond global sociosexual orientations: A more differentiated look at sociosexuality and its effects on courtship and romantic relationships. J. Pers. Soc. Psychol. 95, 1113–1135. https://doi.org/10.1037/0022-3514.95.5.1113 (2008).Article
PubMed
Google Scholar
108.Sýkorová, K. & Flegr, J. Dataset to the study ‘Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health’. igshare https://doi.org/10.6084/m9.figshare.12100623.v1 (2020).109.R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ . Accessed September 2018. (2019).110.Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).Article
Google Scholar
111.Epskamp, S. semPlot: Unified visualizations of structural equation models. Struct. Equ. Model. 22, 474–483. https://doi.org/10.1080/10705511.2014.937847 (2015).MathSciNet
Article
Google Scholar More