Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza
1.Neugschwandter, R. W. & Kaul, H. P. Sowing ratio and N fertilization affect yield and yield components of oat and pea in intercrops. Field Crops Res. 155, 159–163 (2014).Article
Google Scholar
2.Hu, F. et al. Low N fertilizer application and intercropping increases N concentration in pea (Pisum sativum L.) grains. Front Plant Sci. 9, 1763 (2018).PubMed
PubMed Central
Article
Google Scholar
3.Jensen, E. S., Carlsson, G. & Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron. Sustain. Dev. 40, 5 (2020).Article
Google Scholar
4.Jannoura, R., Joergensen, R. G. & Bruns, C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur. J. Agron. 52, 259–270 (2014).Article
Google Scholar
5.Darch, T. et al. Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. Plant Soil 427, 125–138 (2018).CAS
PubMed
Article
Google Scholar
6.Monti, M., Pellicanò, A., Santonoceto, C., Preiti, G. & Pristeri, A. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crops Res. 196, 379–388 (2016).Article
Google Scholar
7.Scalise, A., Pappa, V. A., Gelsomino, A. & Rees, R. M. Pea cultivar and wheat residues affect carbon/nitrogen dynamics in pea-triticale intercropping: a microcosms approach. Sci. Tot. Environ. 592, 436–450 (2017).CAS
Article
Google Scholar
8.Bedoussac, L. et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35, 911–935 (2015).Article
Google Scholar
9.Garcia, K., Doidy, J., Zimmermann, S. D., Wipf, D. & Courty, P. E. Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci. 21, 937–950 (2016).CAS
PubMed
Article
Google Scholar
10.Oelbermann, M., Regehr, A. & Echarte, L. Changes in soil characteristics after six seasons of cereal–legume intercropping in the Southern Pampa. Geoderma Reg. 4, 100–107 (2015).Article
Google Scholar
11.Wichern, F., Eberhardt, E., Mayer, J., Joergensen, R. G. & Müller, T. Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol. Biochem. 40, 30–48 (2008).CAS
Article
Google Scholar
12.Pausch, J., Tian, J., Riederer, M. & Kuzyakov, Y. Estimation of rhizodeposition at field scale: upscaling of a 14C labeling study. Plant Soil 364, 273–285 (2013).CAS
Article
Google Scholar
13.Fustec, J., Lesuffleur, F., Mahieu, S. & Cliquet, J. B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 30, 57–66 (2010).CAS
Article
Google Scholar
14.Hupe, A. et al. Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments. Plant Soil 443, 449–462 (2019).CAS
Article
Google Scholar
15.Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).CAS
PubMed
Article
Google Scholar
16.Jones, D. L., Hodge, A. & Kuzyakov, Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163, 459–480 (2004).CAS
PubMed
Article
Google Scholar
17.Hupe, A. et al. Even flow? Changes of carbon and nitrogen release from pea roots over time. Plant Soil 431, 143–157 (2018).CAS
Article
Google Scholar
18.He, X., Xu, M., Qiu, C. Y. & Zhou, J. Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J. Plant Ecol. 2, 107–118 (2009).Article
Google Scholar
19.Pepe, A., Giovannetti, M. & Sbrana, C. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci. Rep. 8, 10235 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
20.Xiao, Y., Li, L. & Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant Soil 262, 45–54 (2004).CAS
Article
Google Scholar
21.Thilakarathna, M. S., McElroy, M. S., Chapagain, T., Papadopoulos, Y. A. & Raizada, M. N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron. Sustain. Dev. 36, 58 (2016).Article
CAS
Google Scholar
22.Meng, L. et al. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci. 6, 339 (2015).ADS
PubMed
PubMed Central
Google Scholar
23.Shao, Z. et al. Root contact between maize and alfalfa facilitates nitrogen transfer and uptake using techniques of foliar 15N-labeling. Agronomy 10, 360 (2020).CAS
Article
Google Scholar
24.Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. & Gianinazzi, S. First report of non-mycorrhizal plant mutants (Myc−) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 60, 215–222 (1989).Article
Google Scholar
25.Kleikamp, B. & Joergensen, R. G. Evaluation of arbuscular mycorrhiza with symbiotic and nonsymbiotic pea isolines at three sites in the Alentejo, Portugal. J. Plant Nutr. Soil Sci. 169, 661–669 (2006).CAS
Article
Google Scholar
26.Jannoura, R., Kleikamp, B., Dyckmans, J. & Joergensen, R. G. Impact of pea growth and of arbuscular mycorrhizal fungi on the decomposition of 15N-labeled maize residues. Biol. Fertil. Soils 48, 547–560 (2012).Article
Google Scholar
27.Chalk, P. M. et al. Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol. Biochem. 73, 10–21 (2014).CAS
Article
Google Scholar
28.Wahbi, S. et al. Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis. Appl. Soil Ecol. 107, 91–98 (2016).Article
Google Scholar
29.Ingraffia, R., Amato, G., Frenda, A. S. & Giambalvo, D. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS ONE 14, e0213672 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Fusconi, A. Regulation of root morphogenesis in arbuscular mycorrhizae, what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation. Ann. Bot. 113, 19–33 (2014).CAS
PubMed
Article
Google Scholar
31.Wang, W. et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10, 1147–1158 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Xue, Y. et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann. Bot. 117, 363–377 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Abdelhalim, T., Jannoura, R. & Joergensen, R. G. Mycorrhiza response and phosphorus acquisition efficiency of sorghum cultivars differing in strigolactone composition. Plant Soil 437, 55–63 (2019).CAS
Article
Google Scholar
34.Louarn, G. et al. The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 389, 289–305 (2015).CAS
Article
Google Scholar
35.Faust, S., Kaiser, K., Wiedner, K., Glaser, B. & Joergensen, R. G. Comparison of different methods to determine lignin concentration and quality in herbaceous and woody plant residues. Plant Soil 433, 7–18 (2018).CAS
Article
Google Scholar
36.Baldrian, P. et al. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338, 1–15 (2011).Article
CAS
Google Scholar
37.Wichern, F., Andreeva, D., Joergensen, R. G. & Kuzyakov, Y. Distribution of applied 14C and 15N in legumes using two different labelling methods. J. Plant Nutr. Soil Sci. 174, 732–741 (2011).CAS
Article
Google Scholar
38.Turner, T. R. et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7, 2248–2258 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Yu, L., Nicolaisen, M., Larsen, J. & Ravnskov, S. Molecular characterization of root-associated fungal communities in relation to health status of Pisum sativum using barcoded pyrosequencing. Plant Soil 357, 395–405 (2012).CAS
Article
Google Scholar
40.Gunina, A. & Kuzyakov, Y. Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol. Biochem. 90, 87–100 (2015).CAS
Article
Google Scholar
41.Allison, S. D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8, 626–635 (2005).Article
Google Scholar
42.Joergensen, R. G. & Wichern, F. Alive and kicking: why dormant soil microorganisms matter. Soil Biol. Biochem. 116, 419–430 (2018).CAS
Article
Google Scholar
43.IUSS Working Group. WRB World reference base for soil resources 2014 (update 2015), international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports (2015).44.Mahieu, S., Fustec, J., Jensen, E. S. & Crozat, Y. Does labelling frequency affect N rhizodeposition assessment using the cotton-wick method?. Soil Biol. Biochem. 41, 2236–2243 (2009).CAS
Article
Google Scholar
45.Russell, C. A. & Fillery, I. R. P. Estimates of lupin below-ground biomass nitrogen, drymatter, and nitrogen turnover to wheat. Crop Pasture Sci. 47, 1047–1059 (1996).CAS
Article
Google Scholar
46.Wichern, F., Mayer, J., Joergensen, R. & Müller, T. Evaluation of the wick method for in situ 13C and 15N labelling of annual plants using sugar-urea mixtures. Plant Soil 329, 105–115 (2010).CAS
Article
Google Scholar
47.Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transact. Brit. Mycol. Soc. 55, 158–168 (1970).Article
Google Scholar
48.Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen. A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).CAS
Article
Google Scholar
49.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS
Article
Google Scholar
50.Mueller, T., Joergensen, R. G. & Meyer, B. Estimation of soil microbial biomass C in the p resence of living roots by fumigation-extraction. Soil Biol. Biochem. 24, 179–181 (1992).Article
Google Scholar
51.Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).CAS
Article
Google Scholar
52.Hupe, A., Schulz, H., Bruns, C., Joergensen, R. G. & Wichern, F. Digging in the dirt—inadequacy of below-ground plant biomass quantification. Soil Biol. Biochem. 96, 137–144 (2016).CAS
Article
Google Scholar More