Assessing the tropical forest cover change in northern parts of Sonitpur and Udalguri District of Assam, India
1.Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Philos. Trans. R. Soc. Lond. B Biol. Sci. 60(1454), 373–384. https://doi.org/10.1098/rstb.2004.1590 (2005).Article
Google Scholar
2.Lovejoy, T. E. Biodiversity: What is it? In Biodiversity II: Understanding and Protecting Our Biological Resources (eds Reaka-Kudla, M. L. et al.) 7–14 (Joseph Henry Press, 1997).
Google Scholar
3.Harris, L. D. The Fragmented Forest: Island Biogeographic Theory and the Preservation of Biological Diversity (The University of Chicago Press, 1984).Book
Google Scholar
4.Achard, F. et al. Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583), 999–1002. https://doi.org/10.1126/science.1070656 (2002).ADS
CAS
Article
PubMed
Google Scholar
5.NRSA – 1983. Mapping of forest cover in India from satellite imagery (1972–75 and 1980–82). Summary Report, National Remote Sensing Agency, Hyderabad, India, pp. 5–6.6.FAO – 2000. Global forest resources assessment. Chapter 23. South Asia. Food and Agriculture Organization, Rome, Italy. http://www.fao.org/3/Y1997E/y1997e0s.htm#bm28. (Accessed on 8 August 2020).7.Datta, D. & Deb, S. Analysis of coastal land use/land cover changes in the Indian Sunderbans using remotely sensed data. Geo-sp. Inf. Sci. 15, 241–250. https://doi.org/10.1080/10095020.2012.714104 (2012).Article
Google Scholar
8.Reddy, C. S., Jha, C. S. & Dadhwal, V. K. Assessment and monitoring of long-term forest cover changes in Odisha, India using remote sensing and GIS. Environ. Monit. Assess. 185, 4399–4415. https://doi.org/10.1007/s10661-012-2877-5 (2013).Article
PubMed
Google Scholar
9.Champion, H. G. & Seth, S. K. A revised forest types of India (Manager of Publications, 1968).
Google Scholar
10.FSI – 2019. State of forest report, Assam. Forest Survey of India, Ministry of Environment and Forests, Dehradun, pp. 23–33.11.Assam Times – 2019. Encroachment killing forest in the state. https://www.assamtimes.org/node/22026. (Accessed on 25 August 2020).12.Saikia, A., Hazarika, R. & Sahariah, D. Land-use/land-cover change and fragmentation in the Nameri Tiger Reserve India. Danish J. Geogr. 113(1), 1–10. https://doi.org/10.1080/00167223.2013.782991 (2013).Article
Google Scholar
13.Assam Human Development Report – 2014. Managing diversities, achieving human development. Omeo Kumar Das Institute of Social Change and Development and Institute for Human Development, Planning and Development Department, Government of Assam. https://niti.gov.in/writereaddata/files/human-development/Assam_HDR_30Sep2016.pdf. (Accessed on 26 August 2020).14.Woods, C. H. & Skole, D. Linking satellite, census, and survey data to study deforestation in the Brazilian Amazon. In People and Pixels: Linking Remote Sensing and Social Science (eds Liverman, D. et al.) 70–90 (National Academy Press, 1998). https://doi.org/10.17226/5963.
Google Scholar
15.Srivastava, S., Singh, T. P., Singh, H., Kushwaha, S. P. S. & Roy, P. S. Assessment of large scale deforestation in Sonitpur district of Assam. Curr. Sci. 82, 1480–1484 (2002).
Google Scholar
16.Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D. & Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 34(4), 1–9. https://doi.org/10.1017/S0376892907004262 (2007).Article
Google Scholar
17.Manjula, K. R., Jyothi, S., Varma, A. K. & Kumar, S. V. Construction of spatial dataset from remote sensing using GIS for deforestation study. Int. J. Comput. Appl. 31(10), 26–32 (2011).
Google Scholar
18.Phukan, P., Thakuriah, G. & Saikia, R. Land use land cover change detection using remote sensing and GIS techniques: A case study of Golaghat district of Assam, India. Int. Res. J. Earth Sci. 1(1), 11–15 (2013).
Google Scholar
19.Armenta, S. A. M. et al. Determination and analysis of hot spot areas of deforestation using Remote Sensing and Geographic Information System techniques. Case study: State Sinaloa, Mexico. Open J. For. 6, 295–304. https://doi.org/10.4236/ojf.2016.64024 (2016).Article
Google Scholar
20.Sarma, P. K. et al. Land-use and land-cover change and future implication analysis in Manas National Park, India using multi-temporal satellite data. Curr. Sci. 95(2), 223–227 (2008).
Google Scholar
21.Valožić, L. & Cvitanović, M. Mapping the forest change: using Landsat imagery in forest transition analysis within the Medvednica protected area. Hrvat. Geo. Glas. 73(1), 245–255. https://doi.org/10.21861/hgg.2011.73.01.16 (2011).Article
Google Scholar
22.Gambo, J., Mohd Shafri, H. Z., Shaharum, N. S., Abidin, F. A. & Rahman, M. T. Monitoring and predicting land use-land cover (LULC) changes within and around Krau wildlife reserve (KWR) protected area in Malaysia using multi-temporal Landsat data. Geoplanning: J. Geomatics Plan. 5(1), 17–34. https://doi.org/10.14710/geoplanning.5.1.17-34 (2018).23.Bapu, T. D. & Nimasow, G. Land cover change assessment of Pakke Tiger Reserve (PTR), East Kameng district of Arunachal Pradesh. J. Remote Sens. & GIS, 9(1), 26–33. http://doi.org/https://doi.org/10.37591/.v9i1.93 (2018).24.Kushwaha, S. P. S. & Hazarika, R. Assessment of habitat loss in Kameng and Sonitpur Elephant reserves. Curr. Sci. 87(10), 1447–1453 (2004).
Google Scholar
25.Census of India – 2011. Primary Census Abstracts. Registrar General of India, Ministry of Home Affairs, Government of India, Retrieved from https://www.censusindia.gov.in/2011census/PCA/pca_highlights/pe_data.html26.Bose, A. U. Tracking the forest rights act in Nameri National Park & Sonai Rupai Wildlife Sanctuary. A report of Kalpavriksh Environmental Action Group, Pune, Maharashtra. https://kalpavriksh.org/wp-content/uploads/2020/07/Assam-Poster_August14_FINAL1.pdf. (2009). (Accessed on 25 August 2020).27.Das, N. Assessment of ecotourism resources: An applied methodology to Nameri National Park of Assam-India. J. Geogr. Reg. Plan. 6(6), 218–228. https://doi.org/10.5897/JGRP12.057 (2013).Article
Google Scholar
28.Dong, J. et al. Mapping deciduous rubber plantations through integration of PALSAR and multitemporal landsat imagery. Remote Sens. Environ. 134, 392–402. https://doi.org/10.3390/rs70101048 (2013).ADS
Article
Google Scholar
29.USGS – 2003. Preliminary Assessment of the Value of Landsat 7 ETM+ Data Following Scan Line Corrector Malfunction. USA: EROS Data Center. United States Geological Survey. https://landsat.usgs.gov/sites/default/files/documents/SLC_off_Scientific_Usability.pdf. (Accessed on 8 August 2020).30.Settle, J. J. & Briggs, S. S. Fast maximum likelihood classification of remotely sensed imagery. Int. J. Remote Sens. 8, 723–734. https://doi.org/10.1080/01431168708948683 (1987).ADS
Article
Google Scholar
31.Richards, J. A. Remote Sensing Digital Image Analysis: An introduction. https://doi.org/10.1007/978-3-642-30062-2_8 (Springer, 2013).Book
Google Scholar
32.Stehman, S. V. & Czaplewski, R. L. Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sens. Environ. 64, 331–334. https://doi.org/10.1016/S0034-4257(98)00010-8 (1998).ADS
Article
Google Scholar
33.Story, M. & Congalton, R. G. Accuracy assessment: A user’s perspective. Photogram. Eng. Rem. S. 52(3), 397–399 (1986).
Google Scholar
34.Munoz, S. R. & Bangdiwala, S. I. Interpretation of kappa and B statistics measures of agreement. J. Appl. Stat. 24(1), 105–111. https://doi.org/10.1080/02664769723918 (1997).Article
Google Scholar
35.Sim, J. & Wright, C. C. The Kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 85(3), 257–268 (2005).Article
Google Scholar
36.Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174. https://doi.org/10.2307/2529310 (1977).CAS
Article
PubMed
MATH
Google Scholar
37.Balasubramanian, D., Arunachalam, K. & Arunachalam, A. Human-induced land use/land-cover change and bioresource management in Bura Chapori Wildlife Sanctuary in North-East India. Clim. Change Environ. Sustain. 4(1), 28–37. https://doi.org/10.5958/2320-642X.2016.00005.3 (2016).Article
Google Scholar
38.Sugden, A. M. Mapping global deforestation patterns. Science 361(6407), 1083. https://doi.org/10.1126/science.361.6407.1083-e (2018).Article
Google Scholar
39.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361(6407), 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS
CAS
Article
PubMed
Google Scholar
40.Myers, N. Tropical deforestation: rates and patterns. In K. Brown & D. Pearce (Eds.), The causes of tropical deforestation. The economic and statistical analysis of factors giving rise to the loss of the tropical forest (pp. 27–40). London: UCL Press (1994).41.Barraclough, S. & Ghimire, K. B. Agricultural Expansion and Tropical Deforestation (Virginia, 2000).
Google Scholar
42.Hansen, M. C. et al. High-resolution global maps of the 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
43.Reddy, C. S., Rao, P. R. M., Pattanaik, C. & Joshi, P. K. Assessment of large-scale deforestation in Nawarangpur district, Orissa, India: A remote sensing based study. Environ. Monit. Assess. 154, 325–335. https://doi.org/10.1007/s10661-008-0400-9 (2009).Article
Google Scholar
44.Saikia, A. Drivers of forest loss. In A. Saikia (Eds.), Over-exploitation of forests. Springer Briefs in Geography. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-01408-1_7 (2014).45.Lele, N. & Joshi, P. K. Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environ. Monit. Assess. 156, 159–170. https://doi.org/10.1007/s10661-008-0472-6 (2009).Article
PubMed
Google Scholar
46.Joppa, L. N., Loarie, S. R. & Pimm, S. L. On the protection of ‘“protected areas”’. Proc. Natl. Acad. Sci. U.S.A. 105(18), 6673–6678 (2008).ADS
CAS
Article
Google Scholar
47.Bharucha, E. Textbook of Environmental Studies for Undergraduate Courses (Universities Press, 2005).
Google Scholar
48.Talukdar, N. R. & Choudhury, P. Conserving wildlife wealth of Patharia Hills Reserve Forest, Assam, India: A critical analysis. Glob. Ecol. Conserv. 10, 126–138. https://doi.org/10.1016/j.gecco.2017.02.002 (2017).Article
Google Scholar
49.Sonitpur District Judiciary – 2016. In the Court of Additional Sessions Judge, Sonitpur, Tezpur. Sessions Case No. 224 of 2016, U/s. 51 of Wildlife (Protection) Act, 1972. http://sonitpurjudiciary.gov.in/Judgement/09_Sessions%20Case%20No.224%20of%202016.pdf. (Accessed on 2 August 2020.50.Assam Forest Department – 2014. A draft proposal for declaring Eco-Sensitive Zone around Sonai-Rupai Wildlife Sanctuary. Prepared by Divisional Forest Officer Western Assam Wildlife Division, Tezpur, Assam Forest Department, Government of Assam. http://103.8.249.31/assamforest/notificationsOrders/ESZ%20Sonai-Rupai_final.pdf. (Accessed on 25 August 2020.51.ESZ Expert Committee Meeting – 2020. Minutes of 41st ESZ expert committee meeting for the declaration of Eco-Sensitive Zone (ESZ) around protected areas & Zonal Master Plan through video conferencing held on 23rd to 24th June 2020. Ministry of Environment, Forests and Climate Change, Government of India. http://moef.gov.in/wp-content/uploads/2019/10/41-st-ECM_Approved-minutes_.pdf. (Accessed on 25 August 2020). More