Poor prey quality is compensated by higher provisioning effort in passerine birds
1.Wright, J., Both, C., Cotton, P. A. & Bryant, D. Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning. J. Anim. Ecol. 67, 620–634 (1998).Article
Google Scholar
2.Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 68, 708–718 (1999).Article
Google Scholar
3.Perrins, C. M. & McCleery, R. H. The effect of fledging mass on the lives of Great Tits Parus major. Ardea 89, 142 (2001).
Google Scholar
4.van Oort, H. & Otter, K. A. Natal nutrition and the habitat distributions of male and female black-capped chickadees. Can. J. Zool. 83, 1495–1501 (2005).Article
Google Scholar
5.Metcalfe, N. B. & Monaghan, P. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).PubMed
Article
PubMed Central
Google Scholar
6.Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113 (1990).Article
Google Scholar
7.Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).Article
Google Scholar
8.Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).Article
Google Scholar
9.Naef-Daenzer, L., Naef-Daenzer, B. & Nager, R. G. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214 (2000).Article
Google Scholar
10.Williams, T. D. Physiological Adaptations for Breeding in Birds (Princeton University Press, Princeton, 2012).Book
Google Scholar
11.Williams, T. D. & Fowler, M. A. Individual variation in workload during parental care: can we detect a physiological signature of quality or cost of reproduction?. J. Ornithol. 156, 441–451 (2015).Article
Google Scholar
12.Dawson, R. D. & Bortolotti, G. R. Parental effort of American kestrels: the role of variation in brood size. Can. J. Zool. 81, 852–860 (2003).Article
Google Scholar
13.Ringsby, T. H., Berge, T., Saether, B. E. & Jensen, H. Reproductive success and individual variation in feeding frequency of House Sparrows (Passer domesticus). J. Ornithol. 150, 469–481 (2009).Article
Google Scholar
14.Mariette, M. M. et al. Using an Electronic Monitoring System to Link Offspring Provisioning and Foraging Behavior of a Wild Passerine. Auk 128, 26–35 (2011).Article
Google Scholar
15.García-Navas, V., Ferrer, E. S. & Sanz, J. J. Prey selectivity and parental feeding rates of Blue Tits Cyanistes caeruleus in relation to nestling age. Bird Study 59, 236–242 (2012).Article
Google Scholar
16.Lifjeld, J. T. et al. Effects of energy costs on the optimal diet: an experiment with pied flycatchers Ficedula hypoleuca feeding nestlings. Ornis Scand. 19, 111–118 (1988).Article
Google Scholar
17.Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, 135–149 (2008).Article
Google Scholar
18.Stodola, K. W. et al. Relative influence of male and female care in determining nestling mass in a migratory songbird. J. Avian Biol. 41, 515–522 (2010).Article
Google Scholar
19.Mägi, M. et al. Low reproductive success of great tits in the preferred habitat: a role of food low reproductive success of great tits in the preferred habitat: a role of food availability. Ecoscience 16, 145–157 (2009).Article
Google Scholar
20.Fowler, M. A. & Williams, T. D. Individual variation in parental workload and breeding productivity in female European starlings: Is the effort worth it?. Ecol. Evol. 5, 3585–3599 (2015).PubMed
PubMed Central
Article
Google Scholar
21.Cornelius Ruhs, E., Vézina, F., Walker, M. A. & Karasov, W. H. Who pays the bill? The effects of altered brood size on parental and nestling physiology. J. Ornithol. 161, 275–288 (2019).Article
Google Scholar
22.Bridge, E. S. & Bonter, D. N. A low-cost radio frequency identification device for ornithological research. J. Field. Ornithol. 82, 52–59 (2011).Article
Google Scholar
23.Major, R. E. Stomach flushing of an insectivorous bird: an assessment of differential digestibility of prey and the risk to birds. Aust. Wildl. Res. 17, 647–657 (1990).ADS
Article
Google Scholar
24.Harris, M. P. & Wanless, S. The diet of shags phalacrocorax aristotelis during the chick-rearing period assessed by three methods. Bird Study 40, 135–139 (1993).Article
Google Scholar
25.Sánchez-Bayo, F., Ward, R. & Beasley, H. A new technique to measure bird’s dietary exposure to pesticides. Anal. Chim. Acta 399, 173–183 (1999).Article
Google Scholar
26.Tsipoura, N. & Burger, J. Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635–644 (1999).Article
Google Scholar
27.Neves, V. C., Bolton, M. & Monteiro, L. R. Validation of the water offloading technique for diet assessment: an experimental study with Cory’s shearwaters (Calonectris diomedea). J. Ornithol. 147, 474–478 (2006).Article
Google Scholar
28.Goldsworthy, B., Young, M. J., Seddon, P. J. & van Heezik, Y. Stomach flushing does not affect apparent adult survival, chick hatching, or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biol. Conserv. 196, 115–123 (2016).Article
Google Scholar
29.Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257 (2009).PubMed
Article
PubMed Central
Google Scholar
30.Malmqvist, B. & Sjöström, P. The microdistribution of some lotic insect predators in relation to their prey and to abiotic factors. Freshw. Biol. 14, 649–656 (1984).Article
Google Scholar
31.van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451 (1995).Article
Google Scholar
32.Bale, J. S. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. B Biol. Sci. 357, 849–862 (2002).CAS
Article
Google Scholar
33.Hansson, L. A. et al. Experimental evidence for a mismatch between insect emergence and waterfowl hatching under increased spring temperatures. Ecosphere 5, 1–9 (2014).Article
Google Scholar
34.Bates, D., Maechler, M., Bolker, B., & Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R package version 1.1–21. http://CRAN.R-project.org/package=lme4 (2019)35.Hothorn, T., Zeilis, A., Farebrother, R.W., Cummins, C., Millo, G. & Mitchell, D. lmtest: Testing linear regression models. R package version 0.9–37. http://CRAN.R-project.org/package=lmtest (2019)36.Kuznetsova, A., Brockoff, P.B., & R. H. Christensen. LmerTest: Tests for Random and Fixed Effects for Linear Mixed Effect Models (lmer objects of lme4 package). R package version 2.0-3. https://CRANR-projectorg/package=lmerTest (2019)37.Lenth, R. V., Singmann, H., Love, J., Buerkner. P. & Herve, M. emmeans: Estimated marginal means. R package version 1.4.6. https://cran.r-project.org/web/packages/emmeans/index.html (2019)38.Ricklefs, R. E. Preliminary models for growth rates in altricial birds. Ecology 50, 1031–1039 (1969).Article
Google Scholar
39.Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
Google Scholar
40.Killpack, T. L. & Karasov, W. H. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J. Exp. Biol. 215, 1806–1815 (2012).PubMed
Article
PubMed Central
Google Scholar
41.Verboven, N. & Visser, M. E. Seasonal variation in local recruitment of great tits: the importance of being early. Oikos 81, 511 (1998).Article
Google Scholar
42.Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B Biol. Sci. 270, 367–372 (2003).Article
Google Scholar
43.Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).ADS
PubMed
PubMed Central
Article
Google Scholar
44.García-navas, V. & Sanz, J. J. Seasonal decline in provisioning effort and nestling mass of Blue Tits Cyanistes caeruleus: Experimental support for the parent quality hypothesis. Ibis (Lond. 1859). 153, 59–69 (2011).Article
Google Scholar
45.García-Navas, V. & Sanz, J. J. The importance of a main dish: Nestling diet and foraging behaviour in Mediterranean blue tits in relation to prey phenology. Oecologia 165, 639–649 (2011).ADS
PubMed
Article
PubMed Central
Google Scholar
46.Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).Article
Google Scholar
47.Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145 (2009).Article
Google Scholar
48.Stalwick, J. A. & Wiebe, K. L. Delivery rates and prey use of mountain bluebirds in grassland and clear-cut habitats. Avian Conserv. Ecol. 14, 1–11 (2019).
Google Scholar
49.Kadin, M., Olsson, O., Hentati-Sundberg, J., Ehrning, E. W. & Blenckner, T. Common Guillemot Uria aalge parents adjust provisioning rates to compensate for low food quality. Ibis (Lond. 1859). 158, 167–178 (2016).Article
Google Scholar
50.Stauss, M. J., Burkhardt, J. F. & Tomiuk, J. Foraging flight distances as a measure of parental effort in blue tits Parus caeruleus differ with environmental conditions. J. Avian Biol. 36, 47–56 (2005).Article
Google Scholar
51.Killpack, T. L., Tie, D. N. & Karasov, W. H. Compensatory growth in nestling Zebra Finches impacts body composition but not adaptive immune function. Auk 131, 396–406 (2014).Article
Google Scholar
52.Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. Ecol. Evol. Approaches 72, 189–197 (1999).CAS
Article
Google Scholar
53.Williams, J. B. & Tieleman, B. I. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J. Exp. Biol. 203, 3153–3159 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Barceló, G., Love, O. P. & Vézina, F. Uncoupling basal and summit metabolic rates in white-throated Sparrows: digestive demand drives maintenance costs, but changes in muscle mass are not needed to improve thermogenic capacity. Physiol. Biochem. Zool. 90, 153–165 (2016).PubMed
Article
PubMed Central
Google Scholar
55.Cotton, P. A., Kacelnik, A. & Wright, J. Chick begging as a signal: are nestlings honest?. Behav. Ecol. 7, 178–182 (1996).Article
Google Scholar
56.Royle, N. J., Hartley, I. R. & Parker, G. A. Begging for control: when are offspring solicitation behaviours honest?. Trends Ecol. Evol. 17, 434–440 (2002).Article
Google Scholar
57.Kilner, R. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Tree 12, 11–15 (1997).CAS
PubMed
PubMed Central
Google Scholar
58.Macnair, M. R. & Parker, G. A. Models of parent-offspring conflict III. Intra-brood conflict. Anim. Behav. 27, 1202–1209 (1979).Article
Google Scholar
59.Hamer, K. C., Lynnes, A. S. & Hill, J. K. Parent-offspring interactions in food provisioning of Manx shearwaters: Implications for nestling obesity. Anim. Behav. 57, 627–631 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: the evolution of parent-offspring signalling. Philos. Trans. R. Soc. B Biol. Sci. 355, 1581–1591 (2000).CAS
Article
Google Scholar
61.Leonard, M. L. & Horn, A. G. Acoustic signalling of hunger and thermal state by nestling tree swallows. Anim. Behav. 61, 87–93 (2001).PubMed
Article
PubMed Central
Google Scholar
62.Leonard, M. L. & Horn, A. G. Ambient noise and the design of begging signals. Proc. Biol. Sci. 272, 651–656 (2005).PubMed
PubMed Central
Google Scholar
63.Sacchi, R., Saino, N. & Galeotti, P. Features of begging calls reveal general condition and need of food of barn swallow (Hirundo rustica) nestlings. Behav. Ecol. 13, 268–273 (2002).Article
Google Scholar
64.Marques, P. A. M., Vicente, L. & Márquez, R. Iberian azure-winged magpie cyanopica (cyana) cooki nestlings begging calls: call characterization and hunger signalling. Bioacoustics 18, 133–149 (2008).Article
Google Scholar
65.Marques, P. A. M., Vicente, L. & Márquez, R. Nestling begging call structure and bout variation honestly signal need but not condition in Spanish sparrows. Zool. Stud. 48, 587–595 (2009).
Google Scholar
66.Klenova, A. V. Chick begging calls reflect degree of hunger in three auk species (Charadriiformes: Alcidae). PLoS ONE 10, 4–6 (2015).Article
CAS
Google Scholar
67.Williams, T. D. Physiology, activity and costs of parental care in birds. J. Exp. Biol. 221, 1–8 (2018).Article
Google Scholar More