Reinterpreting the relationship between number of species and number of links connects community structure and stability
1.May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).CAS
PubMed
Article
Google Scholar
2.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS
PubMed
Article
Google Scholar
3.Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
4.Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).Article
CAS
Google Scholar
5.Chen, X. & Cohen, J. E. Support of the hyperbolic connectance hypothesis by qualitative stability of model food webs. Community Ecol. 1, 215–225 (2001).Article
Google Scholar
6.Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).Article
Google Scholar
7.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article
Google Scholar
8.Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks. Proc. Biol. Sci. 268, 2039–2045 (2001).PubMed
PubMed Central
Article
Google Scholar
9.Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
10.Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B 364, 1711–1723 (2009).Article
Google Scholar
11.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).Article
Google Scholar
12.Kaiser‐Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed
Article
Google Scholar
13.Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).PubMed
Article
Google Scholar
14.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed
Article
Google Scholar
15.Cohen, J. E. & Briand, F. Trophic links of community food webs. Proc. Natl Acad. Sci. USA 81, 4105–4109 (1984).CAS
PubMed
Article
Google Scholar
16.Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).Article
Google Scholar
17.Riede, J. O. et al. in Advances in Ecological Research (ed. Woodward, G.) 139–170 (Academic Press, 2010).18.Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs 27–60 (Oxford Univ. Press, 2006).19.Calizza, E., Rossi, L., Careddu, G., Caputi, S. S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).20.Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).Article
Google Scholar
21.Schmid‐Araya, J. M. et al. Connectance in stream food webs. J. Anim. Ecol. 71, 1056–1062 (2002).Article
Google Scholar
22.Warren, P. H. Variation in food-web structure: the determinants of connectance. Am. Nat. 136, 689–700 (1990).Article
Google Scholar
23.Havens, K. Scale and structure in natural food webs. Science 257, 1107–1109 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Martinez, N. D. Effect of scale on food web structure. Science 260, 242–243 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Ings, T. C. et al. Review: ecological networks—beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).PubMed
Article
PubMed Central
Google Scholar
26.Briand, F. Environmental control of food web structure. Ecology 64, 253–263 (1983).Article
Google Scholar
27.Schneider, D. W. Predation and food web structure along a habitat duration gradient. Oecologia 110, 567–575 (1997).PubMed
Article
PubMed Central
Google Scholar
28.Briand, F. Structural singularities of freshwater food webs. Archiv Hydrobiol. 22, 3356–3364 (1985).
Google Scholar
29.Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).Article
Google Scholar
30.Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).CAS
PubMed
Article
Google Scholar
31.Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B 364, 1701–1709 (2009).Article
Google Scholar
32.Brosi, B. J., Niezgoda, K. & Briggs, H. M. Experimental species removals impact the architecture of pollination networks. Biol. Lett. 13, 20170243 (2017).PubMed
PubMed Central
Article
Google Scholar
33.Eklöf, A. & Ebenman, B. Species loss and secondary extinctions in simple and complex model communities. J. Anim. Ecol. 75, 239–246 (2006).PubMed
Article
Google Scholar
34.Zhao, L. et al. Weighting and indirect effects identify keystone species in food webs. Ecol. Lett. 19, 1032–1040 (2016).PubMed
PubMed Central
Article
Google Scholar
35.Bellingeri, M. & Vincenzi, S. Robustness of empirical food webs with varying consumer’s sensitivities to loss of resources. J. Theor. Biol. 333, 18–26 (2013).PubMed
Article
PubMed Central
Google Scholar
36.Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).Article
Google Scholar
37.Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R. News 8, 8–11 (2008).
Google Scholar
38.Guardiola, M., Stefanescu, C., Rodà, F. & Pino, J. Do asynchronies in extinction debt affect the structure of trophic networks? A case study of antagonistic butterfly larvae–plant networks. Oikos 127, 803–813 (2018).Article
Google Scholar
39.Cai, Q. & Liu, J. The robustness of ecosystems to the species loss of community. Sci. Rep. 6, 35904 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).CAS
PubMed
Article
Google Scholar
41.Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).CAS
PubMed
Article
Google Scholar
42.Vieira, M. C. & Almeida‐Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).PubMed
Article
Google Scholar
43.Vanbergen, A. J., Woodcock, B. A., Heard, M. S. & Chapman, D. S. Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Funct. Ecol. 31, 1285–1293 (2017).Article
Google Scholar
44.Allesina, S. & Bodini, A. Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. J. Theor. Biol. 230, 351–358 (2004).PubMed
Article
Google Scholar
45.Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).Article
Google Scholar
46.Donohue, I. et al. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Glob. Change Biol. 23, 2962–2972 (2017).Article
Google Scholar
47.Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).Article
Google Scholar
48.Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).Article
Google Scholar
49.Ramos‐Jiliberto, R., Valdovinos, F. S., Espanés, P. Mde & Flores, J. D. Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).PubMed
Article
Google Scholar
50.Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).Article
Google Scholar
51.Thébault, E. & Fontaine, C. Does asymmetric specialization differ between mutualistic and trophic networks? Oikos 117, 555–563 (2008).Article
Google Scholar
52.Banašek-Richter, C., Cattin, M.-F. & Bersier, L.-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226, 23–32 (2004).PubMed
Article
PubMed Central
Google Scholar
53.Martinez, N. D., Hawkins, B. A., Dawah, H. A. & Feifarek, B. P. Effects of sampling effort on characterization of food-web structure. Ecology 80, 1044–1055 (1999).Article
Google Scholar
54.Bersier, L.-F., Dixon, P. & Sugihara, G. Scale-invariant or scale-dependent behavior of the link density property in food webs: a matter of sampling effort? Am. Nat. https://doi.org/10.1086/303200 (1999).55.Barabási, A.-L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).PubMed
Article
CAS
Google Scholar
56.Guardiola, M., Stefanescu, C., Rodà, F. & Pino, J. Data from: Do asynchronies in extinction debt affect the structure of trophic networks? A case study of antagonistic butterfly larvae–plant networks. Dryad https://doi.org/10.5061/dryad.hk30k (2017).57.Brosi, B. J., Niezgoda, K. & Briggs, H. M. Data from: Experimental species removals impact the architecture of pollination networks. Dryad https://doi.org/10.5061/dryad.hk30k (2017).58.Kemp, J. E., Evans, D. M., Augustyn, W. J. & Ellis, A. G. Data from: Invariant antagonistic network structure despite high spatial and temporal turnover of interactions. Dryad https://doi.org/10.5061/dryad.jb4dh (2016).59.Fricke, E. C., Tewksbury, J. J., Wandrag, E. M. & Rogers, H. S. Data from: Mutualistic strategies minimize coextinction in plant-disperser networks. Dryad https://doi.org/10.5061/dryad.r1478 (2017).60.Santamaría, S., Galeano, J., Pastor, J. M. & Méndez, M. Data from: Removing interactions, rather than species, casts doubt on the high robustness of pollination networks. Dryad https://doi.org/10.5061/dryad.73520 (2015).61.Saavedra, S., Cenci, S., Del-Val, E., Boege, K. & Rohr, R. P. Data from: Reorganization of interaction networks modulates the persistence of species in late successional stages. Dryad https://doi.org/10.5061/dryad.5h187 (2018).62.Olito, C. & Fox, J. W. Data from: Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Dryad https://doi.org/10.5061/dryad.7st32 (2015).63.Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).Article
Google Scholar
64.Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).PubMed
Article
PubMed Central
Google Scholar
65.Hampton, S. E., Fradkin, S. C., Leavitt, P. R. & Rosenberger, E. E. Disproportionate importance of nearshore habitat for the food web of a deep oligotrophic lake. Mar. Freshw. Res. 62, 350–358 (2011).CAS
Article
Google Scholar
66.Olito, C. & Fox, J. W. Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Oikos 124, 428–436 (2015).Article
Google Scholar More